Science.gov

Sample records for aerosol monitoring instruments

  1. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  2. A study on the temporal and spatial variability of absorbing aerosols using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument Aerosol Index data

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2009-05-01

    Absorbing aerosols, especially mineral dust and black carbon, play key roles in climate change by absorbing solar radiation, heating the atmosphere, and contributing to global warming. In this paper, we first examine the consistency of the Aerosol Index (AI) product as measured by the Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) instruments and then analyze these AI data sets to investigate the temporal and spatial variability of UV absorbing aerosols. In contrast to the trend in aerosol optical depth found in the advanced very high-resolution radiometer data, no obvious long-term trend in absorbing aerosols is observed from the time series of AI records. The comparison between the mean annual cycle in the two data sets shows that the cycles agree very well both globally and regionally, indicating a consistency between the AI products from TOMS and OMI. Varimax rotated Empirical Orthogonal Function (EOF) analysis of detrended, deseasonalized AI data proves to be successful in isolating major dust and biomass burning source regions, as well as dust transport. Finally, we find that large, individual events, such as the Kuwait oil fire and Australian smoke plum, are isolated in individual higher-order principal components.

  3. Characterization of Custom-Designed Charge-Coupled Devices for Applications to Gas and Aerosol Monitoring Sensorcraft Instrument

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Farnsworth, Glenn R.; Garcia, Christopher S.; Zawodny, Joseph M.

    2005-01-01

    Custom-designed charge-coupled devices (CCD) for Gas and Aerosols Monitoring Sensorcraft instrument were developed. These custom-designed CCD devices are linear arrays with pixel format of 512x1 elements and pixel size of 10x200 sq m. These devices were characterized at NASA Langley Research Center to achieve a full well capacity as high as 6,000,000 e-. This met the aircraft flight mission requirements in terms of signal-to-noise performance and maximum dynamic range. Characterization and analysis of the electrical and optical properties of the CCDs were carried out at room temperature. This includes measurements of photon transfer curves, gain coefficient histograms, read noise, and spectral response. Test results obtained on these devices successfully demonstrated the objectives of the aircraft flight mission. In this paper, we describe the characterization results and also discuss their applications to future mission.

  4. Atmospheric Trace Gases, Aerosols, and Cloud Data from the EOS Ozone Monitoring Instrument (OMI) on the Aura Satellite

    NASA Astrophysics Data System (ADS)

    Ahmad, S. P.; Levelt, P. F.; Hilsenrath, E.; Tamminen, J.; Bhartia, P.; Veefkind, P. J.; van den Oord, B.; Joiner, J.; Fleig, A.; Johnson, J.; Leptoukh, G.; Kempler, S.

    2005-12-01

    The Ozone Monitoring Instrument (OMI) along with the other three instruments MLS, HIRDLS and TES is flown (July 2004) on the Aura satellite. OMI is a nadir imaging sensor which measures ultraviolet and visible solar and earth-atmosphere radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm, and a spatial resolution of 13x24 km2 (http://www.knmi.nl/omi). OMI is the primary instrument on Aura for tracking the expected recovery of the ozone layer, the sources of aerosol and its transport over oceans and continents, and trace gases that effect air quality. The primary data product from OMI is total column ozone. The other major products are tropospheric ozone, nitrogen dioxide, sulfur dioxide, and aerosol optical depth (four of the U.S. Environmental Protection Agency's six criteria pollutants), formaldehyde, bromine monoxide, chlorine dioxide, cloud fraction and height, and surface erythemal UV-B irradiances. After preliminary validation (based on limited in-situ observations), some of these products (version 2.0) are released to the public and are available from Goddard Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC (http://acdisc.gsfc.nasa.gov/). This presentation will provide an overview of the OMI data products and its applications, along with the software and web based on-line tool (OMI Giovanni) that have been developed for the subsetting, manipulation and analysis of these data. Details of the data access and data mining tools will be provided in another presentation (see J. Johnson et al. at this AGU session).

  5. An instrument for semi-continuous monitoring of the size-distribution of nitrate, ammonium, sulphate and chloride in aerosol

    NASA Astrophysics Data System (ADS)

    ten Brink, Harry; Otjes, René; Jongejan, Piet; Slanina, Sjaak

    An instrument was developed for semi-continuous measurement of the size-distribution of submicron nitrate, ammonium, sulphate and chloride. Novel in the instrumentation is the size-classification, which is realised with a pre-separator that consists of a set of four parallel impactors. The cut-off diameters of the impactors are at 0.18, 0.32, 0.56 and 1.0 μm. Aerosols smaller than the associated cut-off size pass the respective impactor and arrive in the detector. The manifold with impactors contains two additional lines, one open line and one containing a filter that removes all aerosols. This latter line provides an on-line field-blank. The sample air-flow is automatically switched by wide-bore ball valves to one of the six sampling lines for a period of 20 min; a measuring cycle thus takes 2 h. Down-stream of the pre-separator the sampling and automated on-line analysis of the transmitted aerosol is accomplished with a "MARGA". In this instrument steam condensation is used to grow the aerosol. The droplets formed are collected in a cyclone that drains to wet-chemical analysis systems. A wet-denuder between pre-separator and collector removes interfering gases, like nitric acid and ammonia. This enables artefact-free and thus representative semi-continuous measurement of the size-distribution of the semi-volatile (ammonium) nitrate. The novel MARGA-sizer was first used in a 1 week field-test. After modifications it was then deployed in a monitoring campaign of 2 months in the summer of 2002, at the top level of the meteo-tower of Cabauw in the centre of the Netherlands. The high location, 200 m, was chosen to obtain data on ammonium nitrate that are minimally affected by surface emissions of ammonia. The data coverage over the period was over 60%; failure of the instrumentation was mainly associated with spells of extreme solar heating of the tower and associated high temperatures inside. The average concentration of nitrate was 2.6 μg m -3, which was very

  6. Comparison of the TSI Model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry.

    PubMed

    Cheng, Yu-Hsiang

    2008-03-01

    This study uses two real-time dust monitors, the TSI Model 8520 DustTrak and Grimm Series 1.108 Aerosol Spectrometer, to determine PM(10) and PM(2.5) levels simultaneously in an iron foundry. The SA Model 241 Dichotomous Sampler was used as a reference gravimetric method for comparing the measurement results obtained by these direct-reading instruments. The response to PM levels from DustTrak is higher than that of the Aerosol Spectrometer. The DustTrak provides an overestimation PM levels, and PM levels measured by an Aerosol Spectrometer are lower than actual concentrations. Calibration factors of the DustTrak and Aerosol Spectrometer are 0.74 and 1.33, respectively, when used to measure particulate matter at an iron foundry. Based on measurement results, the DustTrak provides a lower overestimation of PM(10) levels than PM(2.5) levels; that is, the response of the DustTrak increases as particle size decreases. In addition, measurement results suggest that the Aerosol Spectrometer provides precise measurements of PM(10) and PM(2.5), and measurement accuracy compared with the reference gravimetric method can be improved through a calibration factor.

  7. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  8. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  9. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    ) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in

  10. Intercomparison of aerosol instruments: number concentration

    SciTech Connect

    Knutson, E O; Sinclair, D; Tu, K W; Hinchliffe, L; Franklin, H

    1982-05-01

    An intercomparison of aerosol instruments conducted February 23-27, 1981, at the Environmental Measurements Laboratory (EML) focused on five instruments: the Pollak and TSI condensation nucleus counters; the Active Scattering Aerosol Spectrometer (ASAS-X); and two aerosol electrometers. Test aerosols of sodium chloride and ammonium fluorescein generated by nebulization/electrostatic classification were used to obtain 195 lines of comparison data. Concentrations measured by the ASAS-X and the TSI aerosol electrometer averaged respectively 1.388 and 1.581 times that measured by the Pollak. These ratios were very stable during the week and there was little effect of particle size or material. Most other comparisons were equally stable. However, a review of past work at EML and elsewhere led to the disturbing conclusion that these ratios may change from year to year, or from season to season. A filter sample was taken from microscopy, concurrent with readings from the ASAS-X and the TSI condensation nucleus counters. In this sample, the two instruments differed by 20%. Within its 20% uncertainty, the filter result matched both the TSI and ASAS-X readings.

  11. The TROPOspheric Monitoring Instrument (TROPOMI)

    NASA Astrophysics Data System (ADS)

    Veefkind, Pepijn; Kleipool, Quintus; Aben, Ilse; Levelt, Pieternel

    2015-04-01

    The Copernicus Sentinel 5 Precursor (S5P), scheduled for launch in 2016, is the first of the sentinels dedicated to monitoring of the atmospheric composition. The main application areas of the mission are air quality, climate and the ozone layer. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI). TROPOMI is a nadir viewing shortwave spectrometer that will measure in the UV-visible wavelength range (270-500 nm), the near infrared (710-770 nm) and the shortwave infrared (2314-2382 nm). TROPOMI will have an unprecedented spatial resolution of about 7x7 km2 at nadir. The spatial resolution is combined with a wide swath to allow for daily global coverage. The high spatial resolution serves two goals: (1) emissions sources can be detected with more accuracy and (2) the number of cloud-free ground pixels will increase substantially. The TROPOMI/S5P geophysical (Level 2) data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulphur dioxide, formaldehyde and aerosol and cloud parameters. In this contribution we will present the TROPOMI instrument performance and the new science opportunities that it will enable.

  12. Ozone monitoring instrument (OMI)

    NASA Astrophysics Data System (ADS)

    de Vries, Johan; van den Oord, Gijsbertus H. J.; Hilsenrath, Ernest; te Plate, Maurice B.; Levelt, Pieternel F.; Dirksen, Ruud

    2002-01-01

    The Ozone Monitoring Instrument (OMI) is an UV-Visible imaging spectrograph using two dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a wide swath (114 degrees) combined with a small ground pixel (nominally 13 x 24 km). The instrument is planned for launch on NASA's EOS-AURA satellite in June 2003. Currently the OMI Flight Model is being build. This shortly follows the Instrument Development Model (DM) which was built to, next to engineering purposes, verify the instrument performance. The paper presents measured results from this DM for optical parameters such as distortion, optical efficiency, stray light and polarization sensitivity. Distortion in the spatial direction is shown to be on sub-pixel level and the stray light levels are very low and almost free from ghost peaks. The polarization sensitivity is presently demonstrated to be below 10-3 but we aim to lower the detection limit by an order of magnitude to make sure that spectral residuals do not mix with trace gas absorption spectra. Critical detector parameters are presented such as the very high UV quantum efficiency (60 % at 270 nm), dark current behavior and the sensitivity to radiation.

  13. Instrument comparison for Aerosolized Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration

  14. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  15. The Dry Aerosol Deposition Device (DADD): An Instrument for Depositing Microbial Aerosols onto Surfaces

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-TY-TR-2008-4592 THE DRY AEROSOL DEPOSITION DEVICE (DADD): AN INSTRUMENT FOR DEPOSITING MICROBIAL AEROSOLS ONTO SURFACES...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 30-NOV-2008 Final Technical Report 01-OCT-2004 -- 02-OCT-2008 The Dry Aerosol Deposition ...Device (DADD): An Instrument for Depositing Microbial Aerosols Onto Surfaces FA4819-07-D-0001 99999F DODT 00 DODT0056 Heimbuch, Brian K.; Kinney

  16. The Dry Aerosol Deposition Device (DADD): An Instrument for Depositing Microbial Aerosols onto Surfaces (PREPRINT)

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-TY-TP-2008-4617 PREPRINT THE DRY AEROSOL DEPOSITION DEVICE (DADD): AN INSTRUMENT FOR DEPOSITING MICROBIAL AEROSOLS ONTO SURFACES... Deposition Device (DADD): 3  An Instrument for Depositing Microbial Aerosols onto Surfaces 4  5  Authors and affiliation 6  7  Heimbuch, B.K., Kinney...footprint, variable loading, etc.). We developed a Dry Aerosol 33  Deposition Device (DADD) that uses impaction rather than settling for loading surfaces

  17. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  18. Instrument Would Detect and Collect Biological Aerosols

    NASA Technical Reports Server (NTRS)

    Savoy, Steve; Mayo, Mike

    2006-01-01

    A proposed compact, portable instrument would sample micron-sized airborne particles, would discriminate between biological ones (e.g., bacteria) and nonbiological ones (e.g., dust particles), and would collect the detected biological particles for further analysis. The instrument is intended to satisfy a growing need for means of rapid, inexpensive collection of bioaerosols in a variety of indoor and outdoor settings. Purposes that could be served by such collection include detecting airborne pathogens inside buildings and their ventilation systems, measuring concentrations of airborne biological contaminants around municipal waste-processing facilities, monitoring airborne effluents from suspected biowarfare facilities, and warning of the presence of airborne biowarfare agents

  19. Miniaturized Environmental Monitoring Instrumentation

    SciTech Connect

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  20. Aerosol deposition and losses in two alpha air monitors

    SciTech Connect

    Biermann, A.H.; Sawyer, S.R.

    1985-11-27

    We assessed particle deposition and loss occurring in two alpha-air monitors: an Eberline Alpha-3 Continuous Air Monitor (CAM) and a working-area transuranic aerosol monitor (WOTAMS). We investigated the dependence of particle size on losses in the sampling inlets and the real-time alpha detector areas for both instruments. We determined the uniformity of particle deposition on the filter to ascertain the effectiveness of the detector and collection-filter configuration. Results indicate that particle losses are a strong function of particle size in the CAM unit, with a 44% loss occurring for 6-..mu..m-diameter aerosols and a 0.3% loss for 0.6-..mu..m-diameter aerosols. Losses in the WOTAMS were less than 1% for particle diameters in the 0.6-to-7 ..mu..m range.

  1. Evaluation of the discmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols

    NASA Astrophysics Data System (ADS)

    Mills, Jessica Breyan

    This work evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103-104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (+/-35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present.

  2. Personal Computer Monitors Instrumentation Bus

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce L.

    1994-01-01

    IBM-compatible personal computer used instead of logic analyzer or other special instrument to monitor IEEE-488 interface data bus that interconnects various pieces of laboratory equipment. Needed is short program for computer, commercial general-purpose interface bus circuit card, and adapter cable to link card to bus. Software available in Ada or Quick Basic language.

  3. ACTRIS ACSM intercomparison - Part I: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with Time-of-Flight ACSM (ToF-ACSM), High Resolution ToF Aerosol Mass Spectrometer (HR-ToF-AMS) and other co-located instruments

    NASA Astrophysics Data System (ADS)

    Crenn, V.; Sciare, J.; Croteau, P. L.; Verlhac, S.; Fröhlich, R.; Belis, C. A.; Aas, W.; Äijälä, M.; Alastuey, A.; Artiñano, B.; Baisnée, D.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Lunder, C.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petit, J.-E.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Estève, R.; Slowik, J. G.; Setyan, A.; Wiedensohler, A.; Baltensperger, U.; Prévôt, A. S. H.; Jayne, J. T.; Favez, O.

    2015-07-01

    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for three weeks during the late fall-early winter period (November-December 2013). The first week was dedicated to tuning and calibration of each instrument whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual ACSM across all chemical families except for chloride for which three ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025) and were found to be of 9, 15, 19, 28 and 36 % for NR-PM1, nitrate, organic matter, sulfate and ammonium respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of ACSMs, detailed intercomparison results are presented as well as a discussion of some recommendations

  4. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  5. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO)

    NASA Technical Reports Server (NTRS)

    McCormick, M. Patrick; Winker, David M.

    1998-01-01

    This paper will describe the planned 3-year Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission, its instrumentation and implementation. It will use LITE and other data, plus analyses, to show the feasibility of such a mission. PICASSO is being proposed for NASA's Earth System Science Pathfinder (ESSP) program with launch predicted in 2003.

  6. A Framework for Aerosol-Cloud Interactions Monitoring

    NASA Astrophysics Data System (ADS)

    Russchenberg, H. W. J.; Sarna, K.

    2014-12-01

    A broad range of strategies have been used to study Aerosol-Cloud Interactions (ACI). However, the wide scope of methods and scales used makes it difficult to quantitatively compare result from different studies. In this paper, we propose a method of aerosol-cloud interaction monitoring based on widely available remote sensing instruments and easily applicable at many different observatories. This method provides a way of identifying cases where a change in the aerosol environment causes a change in the cloud. In this scheme we attempt to use (as far as possible) the observed signal from lidar and radar. For an aerosol proxy we use the attenuated backscatter (sensitive to aerosol concentration) and to obtain information about changes in the cloud we use the radar reflectivity factor (sensitive to cloud droplet size and concentration). Assuming a positive dependence between the number concentration of cloud droplets and the number concentration of aerosol we expect that an increase of the attenuated backscatter coefficient will correspond to a small increase of the radar reflectivity factor (due to the increase of cloud droplets concentration). However, the slope of this correlation will vary. A number of factors, such as meteorology or cloud drop microphysical properties, can influence changes in a cloud. For that reason we put a constraint on the liquid water content using liquid water path information from microwave radiometers. This limitation ensures that the variability in the cloud will be primarily due to changes in microphysical properties associated with the variation in aerosols. Further, we limit the cases only to non-precipitating, low-level stratiform and stratocumulus clouds without drizzle. Although this method is based on a synergy of instruments, we use widely available systems for an efficient evaluation of the aerosol influence on the cloud. The main advantages of this scheme are the use of direct observables from widely spread remote sensing

  7. Monitoring biological aerosols using UV fluorescence

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  8. Aerosol observing system platform integration and AAF instrumentation

    SciTech Connect

    Springston, S.; Sedlacek, A.

    2010-03-15

    As part of the federal government’s 2009 American Recovery and Reinvestment Act (ARRA), the U.S. DOE Office of Science allocated funds for the capital upgrade of the Atmospheric Radiation Measurement (ARM) Climate Research Facility to improve and expand observational capabilities related to cloud and aerosol properties. The ARM Facility was established as a national user facility for the global scientific community to conduct a wide range of interdisciplinary science. Part of the ARRA-funded expansion of the ARM Facility includes four new Aerosol Observing Systems (AOS) to be designed, instrumented, and mentored by BNL. The enclosures will be customized SeaTainers. These new platforms ([AMF2]: ARM Mobile Facility-2; [TWP-D]: Tropical Western Pacific at Darwin; and [MAOS-A]/[MAOS-C]: Mobile Aerosol Observing System-Aerosol/-Chemistry) will provide a laboratory environment for fielding instruments to collect data on aerosol life cycle, microphysics, and optical/physical properties. The extensive instrument suite includes both established methods and initial deployments of new techniques to add breadth and depth to the AOS data sets. The platforms are designed: (1) to have all instruments pre-installed before deployment, allowing a higher measurement duty cycle; (2) with a standardized configuration improving the robustness of data inter-comparability; (3) to provide remote access capability for instrument mentors; and (4) to readily accommodate guest instrumentation. The first deployment of the AMF2 platform will be at the upcoming StormVEx campaign held at Steamboat Springs, Colorado, October 15, 2010–March 31, 2011 while the TWP-D AOS will be stationed at the ARM Darwin site. The maiden deployments of the MAOS-A and MAOS-C platforms will be during the Ganges Valley Experiment (GVAX) scheduled for April 2011–April 2012. In addition to the ground-based AOS platforms, thee major instrument builds for the AAF are also being undertaken (new trace gas package [NO

  9. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  10. New instruments for plant area and personnel monitoring

    SciTech Connect

    Gammage, R. B.; Hawthorne, A. R.; Vo-Dinh, T.; Schuresko, D. D.

    1980-01-01

    Advances in portable monitoring instruments and simple luminescence techniques for analyzing polynuclear aromatic hydrocarbons (PNAs) are reported. A small, derivative ultra-violet absorption spectrometer is suitable for multipollutant real-time monitoring of several mono- and bicyclic aromatic vapors. A non-compound selective fluorescence spill spotter and lightpipe luminoscope are active instruments for measuring general surface and skin contamination, respectively. A small passive integrating filter paper exposure device that responds to PNA vapors such a pyrene is a very promising and recent development. Synchronous luminescence and room temperature phosphoresence are two attractive and simple to use analytical methodologies for the rapid assaying of major PNA compounds. Their potential for analyzing the cyclohexane extract of particulate matter, or incorporation into a device for the continuous monitoring of select PNAs in aerosols in near-real-time, are discussed.

  11. Developments in the Aerosol Layer Height Retrieval Algorithm for the Copernicus Sentinel-4/UVN Instrument

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Sanders, Abram; Veefkind, Pepijn

    2016-04-01

    The Sentinel-4 mission is a part of the European Commission's Copernicus programme, the goal of which is to provide geo-information to manage environmental assets, and to observe, understand and mitigate the effects of the changing climate. The Sentinel-4/UVN instrument design is motivated by the need to monitor trace gas concentrations and aerosols in the atmosphere from a geostationary orbit. The on-board instrument is a high resolution UV-VIS-NIR (UVN) spectrometer system that provides hourly radiance measurements over Europe and northern Africa with a spatial sampling of 8 km. The main application area of Sentinel-4/UVN is air quality. One of the data products that is being developed for Sentinel-4/UVN is the Aerosol Layer Height (ALH). The goal is to determine the height of aerosol plumes with a resolution of better than 0.5 - 1 km. The ALH product thus targets aerosol layers in the free troposphere, such as desert dust, volcanic ash and biomass during plumes. KNMI is assigned with the development of the Aerosol Layer Height (ALH) algorithm. Its heritage is the ALH algorithm developed by Sanders and De Haan (ATBD, 2016) for the TROPOMI instrument on board the Sentinel-5 Precursor mission that is to be launched in June or July 2016 (tentative date). The retrieval algorithm designed so far for the aerosol height product is based on the absorption characteristics of the oxygen-A band (759-770 nm). The algorithm has heritage to the ALH algorithm developed for TROPOMI on the Sentinel 5 precursor satellite. New aspects for Sentinel-4/UVN include the higher resolution (0.116 nm compared to 0.4 for TROPOMI) and hourly observation from the geostationary orbit. The algorithm uses optimal estimation to obtain a spectral fit of the reflectance across absorption band, while assuming a single uniform layer with fixed width to represent the aerosol vertical distribution. The state vector includes amongst other elements the height of this layer and its aerosol optical

  12. Instrumentation for Environmental Monitoring: Water, Volume 2.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Berkeley Lab.

    This volume is one of a series discussing instrumentation for environmental monitoring. Each volume contains an overview of the basic problems, comparisons among the basic methods of sensing and detection, and notes that summarize the characteristics of presently available instruments and techniques. The text of this survey discusses the…

  13. Pollution Analyzing and Monitoring Instruments.

    ERIC Educational Resources Information Center

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  14. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  15. Instruments for the Analysis of the Martian Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.; Gunnlaugsson, H. P.; Jensen, J.; Kinch, K.; Nørnberg, P.; Rasmussen, K. R.

    2004-04-01

    Dust is a dominant component in the Martian environment, featuring significantly in the atmosphere and covering most of the planets surface. The origin of this dust is of great scientific interest in the study of the Martian climate and its history. It also poses a serious hazard to both instrumentation and biological systems alike. Accurate measurements of the physical nature of the dust, the local wind flow and dust concentration are necessary for modelling the transport of this dust. Using a unique re-circulating Mars simulation wind tunnel a series of miniaturised instruments are being developed which would allow direct, in-situ measurements of a wide variety of physical properties of the Martian aerosol. Specifically three prototype instruments have been constructed and successfully tested, these were a miniature laser anemometer, which determines velocity and suspended dust concentration, an optoelectronics device for quantification of dust deposition and an instrument which collects electrically charged wind-blown dust. These instruments will be presented and the possibility for integration discussed.

  16. Retrieval of aerosol absorption properties using the AATSR satellite instrument: a case study of wildfires over Russia 2010

    NASA Astrophysics Data System (ADS)

    Rodríguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundström, A.-M.; de Leeuw, G.

    2014-09-01

    The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured radiances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties.The optimum fit is obtained for a certain combination of aerosol components, which are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). However, other aerosol properties could be provided. In the aerosol retrieval algorithm (ADV) applied to data from the Advanced Along Track Scanning Radiometer (AATSR), four aerosol components are used, each of which is defined by their (lognormal) size distribution and a complex refractive index. The fine mode fraction is a continuous mixture of weakly and strongly absorbing components which allows for the definition of any absorbing aerosol model within the specified limits. Hence, assuming that the correct aerosol model is selected during the retrieval process, also the single scattering albedo (SSA) should correctly be retrieved. In this paper we present the SSA retrieval using the ADV algorithm by application to wildfires over Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE is 0.03 for SSA and 0.02 for AAOD. The SSA is further evaluated by comparison with the SSA retrieved from the Ozone Monitoring Instrument (OMI). The SSA retrieved from both instruments show similar features, but the AATSR-retrieved SSA values over areas affected by wildfires are lower.

  17. Evaluation of a tractor cab using real-time aerosol counting instrumentation.

    PubMed

    Hall, Ronald M; Heitbrink, William A; Reed, Laurence D

    2002-01-01

    Aerosol instrumentation was used to evaluate air infiltration into tractor cabs that are used to protect the agricultural worker during pesticide applications. Preliminary surveys were conducted on three different manufactured agriculture enclosures. The results of these preliminary surveys indicated that aerosols are entering the cab through leak sources or are being generated inside the cab. These results identified the need for in-depth field evaluations of tractor cabs to identify any leak sources. To evaluate the ability of tractor cabs to reduce operator air contaminant exposure, field evaluations were conducted on two tractor cabs. Specifically, we evaluated: 1) the particle size distribution and the effectiveness of the filter system; and 2) air infiltration into the cab. These evaluations were also conducted to demonstrate the ease and practicality of using optical particle counters to evaluate the ability of cabin filtration systems. Pesticide particle size distribution during an air blast spray operation was also evaluated during the study. The field tests were conducted on a John Deere 7000 series tractor cab (tractor manufacturer's cab) and a Nelson spraycab (retrofit cab). Both cabs were equipped with high efficiency particulate air (HEPA) filter media which were assumed to be 99.97 percent efficient at removing the test aerosol, atmospheric condensation nuclei. Thus, the major source of aerosols inside the cab was assumed to be leakage around filters at the seals. Using a portable dust monitor (PDM), the ratio of the outside to inside aerosol measurements was used to calculate a cab protection factor. During the evaluations, one PDM was placed inside the tractor cab (near the tractor operator) and one PDM was placed outside (near the air intake) to count particles. During the evaluations, the instruments were switched to prevent instrument bias from affecting the findings. The ratio of the two measurements (i.e., protection factor = outside

  18. Water quality monitor (EMPAX instrument)

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Clark, Ben; Thornton, Mike

    1991-01-01

    The impetus of the Viking Mission to Mars led to the first miniaturization of a X-ray Fluorescence Spectrometer (XRFS). Two units were flown on the Viking Mission and successfully operated for two years analyzing the elemental composition of the Martian soil. Under a Bureau of Mines/NASA Technology Utilization project, this XRFS design was utilized to produce a battery powered, portable unit for elemental analysis of geological samples. This paper will detail design improvements and additional sampling capabilities that were incorporated into a second generation portable XRFS that was funded by the EPA/NASA Technology Utilization project. The unit, Environment Monitoring with Portable Analysis by X-ray (EMPAX), was developed specifically for quantitative determination of the need of EPA and and any industry affected by environmental concerns, the EMPAX fulfills a critical need to provide on-site, real-time analysis of toxic metal contamination. A patent was issued on EMPAX, but a commercial manufacturer is still being sought.

  19. Near Real-Time Capabilities for Ozone Monitoring Instrument (OMI)

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Durbin, P.; Duggan, B.; Das, B.

    2010-12-01

    The Ozone Monitoring Instrument (OMI) is a Dutch instrument launched on NASA's Aura spacecraft in 2004. It measures various atmospheric constituents including ozone (column and profile), aerosols, clouds, surface ultraviolet (UV) irradiance, and a number of other trace gases. The Royal Dutch Meteorological Institute (KNMI) and NASA have developed a Near Real-time (NRT) capability for the processing system. That system has subsequently been integrated into NASA's Land Atmosphere Near Real-time Capability for EOS (LANCE) system. The NRT system uses slightly modified algorithms that reduce latency while still maintaining acceptable quality. The data are already being used by a number of operational users for applications such as weather models and volcanic ash warnings for aircraft. This paper will describe some characteristics of the system and highlight differences from the standard science products.

  20. Diode laser based photoacoustic gas detection instruments for environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Bozóki, Z.; Pogány, A.; Varga, A.; Mohácsi, Á.; Szabó, G.

    2009-04-01

    We have developed several diode laser based photoacoustic instruments for environmental applications. Both laboratory tests and field measurement campaigns show that these instruments are capable of highly reliable, fully automatic operation over several years, even under harsh conditions. One instrument (WaSul-Hygro) is mounted on-board of a commercial aircraft and measures water vapour and total water concentration in the 1-30,000 ppm concentration range, within the CARIBIC project. Another instrument (WaSul-Flux) measures ammonia concentration in the lower ppb concentration range, simultaneously in up to three channels. Field intercomparison campaigns with several other instruments show that it is a reliable instrument for environmental ammonia monitoring. The third instrument (WaSul-MuWaPas) is a multi-wavelength instrument for quantitative and qualitative aerosol measurements. It measures the optical absorption of aerosols in a particularly broad wavelength range from the UV to the NIR, and consequently it is ideal for differentiation between various aerosol types. The instrument was calibrated with well defined aerosols in the laboratory, and tested under field conditions as well.

  1. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  2. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  3. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  4. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  5. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  6. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  7. Atmospheric aerosol monitoring at the Pierre Auger Observatory

    SciTech Connect

    Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews, J.A.J.; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

    2005-07-01

    For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

  8. Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept

    NASA Technical Reports Server (NTRS)

    Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David

    2015-01-01

    In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.

  9. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  10. Design And Performance Of The Stratospheric Aerosol And Gas Experiment II (SAGE II) Instrument

    NASA Astrophysics Data System (ADS)

    Zaun, N. H.; Mauldin, L. E.; McCormick, M. P.

    1984-01-01

    Design and performance data are presented for the Stratospheric Aerosol and Gas Experi-ment II (SAGE II) instrument, which has been developed for the Earth Radiation Budget Satellite (ERBS). SAGE II is designed to monitor globally the vertical distribution of strato-spheric aerosols, ozone, water vapor and nitrogen dioxide by measuring the extinction of solar radiation through the earth's atmosphere during the ERBS observatory solar occultations. Solar radiation is reflected from a flat scanning mirror into a Cassegrain type telescope, which forms a solar image on the entrance slit of a grating spectrometer. The SAGE II instantaneous-field-of-view (IFOV) is scanned along the vertical solar diameter by the elevation scan mirror. The entire optical system is contained within an azimuth gimbal which tracks the solar radiometric centroid during the data event. This spectrometer, with help from three interference filters, isolates seven spectral wavelengths ranging from 0.385 micrometers to 1.02 micrometers. All seven channels use silicon photodiode detectors oper-ated in the photovoltaic mode. Detector outputs are multiplexed into a serial data stream for readout by the ERBS telemetry system. Each output is sampled 64 times per second and digitized to 12 bit resolution. SAGE II is a third generation instrument following the highly successful SAM II and SAGE programs.

  11. 17 years of aerosol and clouds from the ATSR Series of Instruments

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.

    2015-12-01

    Aerosols play a significant role in Earth's climate by scattering and absorbing incoming sunlight and affecting the formation and radiative properties of clouds. The extent to which aerosols affect cloud remains one of the largest sources of uncertainty amongst all influences on climate change. Now, a new comprehensive datasets has been developed under the ESA Climate Change Initiative (CCI) programme to quantify how changes in aerosol levels affect these clouds. The unique dataset is constructed from the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm used in (A)ATSR (Along Track Scanning Radiometer) retrievals of aerosols generated in the Aerosol CCI and the CC4CL ( Community Code for CLimate) for cloud retrieval in the Cloud CCI. The ATSR instrument is a dual viewing instrument with on board visible and infra red calibration systems making it an ideal instrument to study trends of Aerosol and Clouds and their interactions. The data set begins in 1995 and ends in 2012. A new instrument in the series SLSTR(Sea and Land Surface Temperature Radiometer) will be launch in 2015. The Aerosol and Clouds are retreived using similar algorithms to maximise the consistency of the results These state-of-the-art retrievals have been merged together to quantify the susceptibility of cloud properties to changes in aerosol concentration. Aerosol-cloud susceptibilities are calculated from several thousand samples in each 1x1 degree globally gridded region. Two-D histograms of the aerosol and cloud properties are also included to facilitate seamless comparisons between other satellite and modelling data sets. The analysis of these two long term records will be discussed individually and the initial comparisons between these new joint products and models will be presented.

  12. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  13. Instrumented composite turbine blade for health monitoring

    NASA Astrophysics Data System (ADS)

    Robison, Kevin E.; Watkins, Steve E.; Nicholas, James; Chandrashekhara, K.; Rovey, Joshua L.

    2012-04-01

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission.

  14. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing.

  15. Improved and new balloon-borne instruments for the measurements of stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Gaubicher, Bertrand; Chartier, Michel; Brogniez, Colette; Verwaerde, Christian; Balois, Jean-Yves; Auriol, Frédérique; Palumbo, Pasquale

    The aerosols in the stratosphere play an important role in the ozone chemistry. Liquid sulphate aerosols are involved in the heterogeneous chemistry of nitrogen and bromine species. The key parameters for modelling calculations of stratospheric species are the amount of these aerosols and their size distribution. In fact, the aerosol content in the stratosphere is more complex than previously assumed, since different natures of solid particles are present: soot from various origins and interplanetary dust intercepted by the Earth atmosphere. Since no major volcanic eruption has occurred since 15 years, it is possible to study at present the content of stratospheric background aerosols and to detect the different natures of particles. There is no unique technique of measurements in order to fully describe the physical properties of liquid and solid aerosols. Then different instruments must be used: SALOMON-N2, which is a night-time UV-visible spectrometer (from 350 to 950 nm) allowing the retrieval of the extinction coefficient of aerosols, the STAC particle counter (giving 14 size classes of aerosols), and MicroRADIBAL, which is a polarimeter allowing the retrieval of the aerosol phase function from the radiance and the polarisation measurements in the near infrared. Analysis of measurements performed during previous flights shows that significant amount of solid aerosols were detected in the middle stratosphere, up to about 30 km, with strong spatial and temporal variability. Combined aerosols measurements are necessary in order to be able to distinguish between the various natures of aerosols. Then, STAC is now implanted in the SALOMON-N2 and MicroRADIBAL gondolas. STAC can be also implanted on other gondolas flying in the stratosphere a few days apart, in order to study the variability of the total aerosol content. A new instrument, DUSTER, will be implanted soon in the SALOMON gondola. This instrument will collect solid particles in the middle stratosphere, in

  16. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite

  17. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  18. Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which

  19. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  20. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  1. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  2. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols.

    PubMed

    Mills, Jessica B; Park, Jae Hong; Peters, Thomas M

    2013-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride [NaCl] and spark-generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <10(3); Medium, 10(3)-10(4); and High, >10(4) particles/cm(3)). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared with those measured with reference instruments, a scanning mobility particle sizer (SMPS), and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm, but caution should be exercised when particles larger than 300 nm are present. [Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Occupational and Environmental Hygiene for the following free supplemental resources: manufacturer-reported capabilities of instruments used, and information from the SMPS measurements for polydispersed test particles.].

  3. Aerosol Absorption Retrievals from the PACE Broad Spectrum Ocean Color Instrument (OCI)

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine A.; Levy, Robert C.; Gupta, Pawan; Ahmad, Ziauddin; Martins, J. Vanderlei; Lima, Adriana Rocha; Torres, Omar

    2016-01-01

    The PACE (Pre-­Aerosol, Clouds and ocean Ecosystem) mission, anticipated for launch in the early 2020s, is designed to characterize oceanic and atmospheric properties. The primary instrument on-­-board will be a moderate resolution (approximately 1 km nadir) radiometer, called the Ocean Color Instrument (OCI). OCI will provide high spectral resolution (5 nm) from the UV to NIR (350 - 800 nm), with additional spectral bands in the NIR and SWIR. The OCI itself is an excellent instrument for atmospheric objectives, providing measurements across a broad spectral range that in essence combines the capabilities of MODIS and OMI, but with the UV channels from OMI to be available at moderate resolution. (Image credit: PACE Science Definition Team Report). Objective: Can we make use of the UV-­SWIR measurements to derive information about aerosol absorption when aerosol loading is high?

  4. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  5. EOS-Aura's Ozone Monitoring Instrument (OMI): Validation Requirements

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; McPeters, R.; deHaan, J. F.; Levelt, P. F.; Hilsenrath, E.; Bhartia, P. K.

    2003-01-01

    OMI is an advanced hyperspectral instrument that measures backscattered radiation in the UV and visible. It will be flown as part of the EOS Aura mission and provide data on atmospheric chemistry that is highly synergistic with other Aura instruments HIRDLS, MLS, and TES. OMI is designed to measure total ozone, aerosols, cloud information, and UV irradiances, continuing the TOMS series of global mapped products but with higher spatial resolution. In addition its hyperspectral capability enables measurements of trace gases such as SO2, NO2, HCHO, BrO, and OClO. A plan for validation of the various OM1 products is now being formulated. Validation of the total column and UVB products will rely heavily on existing networks of instruments, like NDSC. NASA and its European partners are planning aircraft missions for the validation of Aura instruments. New instruments and techniques (DOAS systems for example) will need to be developed, both ground and aircraft based. Lidar systems are needed for validation of the vertical distributions of ozone, aerosols, NO2 and possibly SO2. The validation emphasis will be on the retrieval of these products under polluted conditions. This is challenging because they often depend on the tropospheric profiles of the product in question, and because of large spatial variations in the troposphere. Most existing ground stations are located in, and equipped for, pristine environments. This is also true for almost all NDSC stations. OMI validation will need ground based sites in polluted environments and specially developed instruments, complementing the existing instrumentation.

  6. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  7. LESSONS LEARNED IN AEROSOL MONITORING WITH THE RASA

    SciTech Connect

    Forrester, Joel B.; Bowyer, Ted W.; Carty, Fitz; Comes, Laura; Eslinger, Paul W.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Kirkham, Randy R.; Lepel, Elwood A.; Litke, Kevin E.; Miley, Harry S.; Morris, Scott J.; Schrom, Brian T.; Van Davelaar, Peter; Woods, Vincent T.

    2011-09-14

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory (PNNL) in the 1990's and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The RASA operates unattended, save for regularly scheduled maintenance, iterating samples through a three-step process on a 24-hour interval. In its 15-year history, much has been learned from the operation and maintenance of the RASA that can benefit engineering updates or future aerosol systems. On 11 March 2011, a 9.0 magnitude earthquake and tsunami rocked the eastern coast of Japan, resulting in power loss and cooling failures at the Daiichi nuclear power plants in Fukushima Prefecture. Aerosol collections were conducted with the RASA in Richland, WA. We present a summary of the lessons learned over the history of the RASA, including lessons taken from the Fukushima incident, regarding the RASA IMS stations operated by the United States.

  8. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  9. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  10. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  11. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, K.; Russchenberg, H. W. J.

    2015-11-01

    A method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product-Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m-2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα) is not the best way of quantifying aerosol-cloud interactions.

  12. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  13. Optimization of Routine Monitoring of Workers Exposed to Plutonium Aerosols.

    PubMed

    Davesne, Estelle; Quesne, Benoit; De Vita, Antoine; Chojnacki, Eric; Blanchardon, Eric; Franck, Didier

    2016-10-01

    In case of incidental confinement failure, mixed oxide (MOX) fuel preparation may expose workers to plutonium aerosols. Due to its potential toxicity, occupational exposure to plutonium compounds should be kept as low as reasonably achievable. To ensure the absence of significant intake of radionuclides, workers at risk of internal contamination are monitored by periodic bioassay planned in a routine monitoring programme. From bioassay results, internal dose may be estimated. However, accurate dose calculation relies on known exposure conditions, which are rarely available when the exposure is demonstrated by routine monitoring only. Therefore, internal dose calculation is subject to uncertainty from unknown exposure conditions and from activity measurement variability. The present study calculates the minimum detectable dose (MDD) for a routine monitoring programme by considering all plausible conditions of exposure and measurement uncertainty. The MDD evaluates the monitoring quality and can be used for optimization. Here, MDDs were calculated for the monitoring of workers preparing MOX fuel. Uncertain parameters were modelled by probability distributions defined according to information provided by experts of routine monitoring, of workplace radiological protection and of bioassay analysis. Results show that the current monitoring is well adapted to potential exposure. A sensitivity study of MDD highlights high dependence on exposure condition modelling. Integrating all expert knowledge is therefore crucial to obtain reliable MDD estimates, stressing the value of a holistic approach to worker monitoring.

  14. Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling

    PubMed Central

    Evans, Douglas E.; Ku, Bon Ki; Birch, M. Eileen; Dunn, Kevin H.

    2010-01-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations

  15. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.

    PubMed

    Evans, Douglas E; Ku, Bon Ki; Birch, M Eileen; Dunn, Kevin H

    2010-07-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO(2) were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 x 10(6) cm(-3), were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m(-3), were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control

  16. Science Objectives of EOS-Aura's Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Levelt, P. F.; Veefkind, J. P.; Stammes, P.; Hilsenrath, E.; Bhartia, P. K.; Chance, K. V.; Leppelmeier, G. W.; Maelkki, A.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    OMI is a UV/VIS nadir solar backscatter spectrograph, which provides near global coverage in one day with a spatial resolution of 13 x 24 sq km. OMI is a new instrument, with a heritage from the European satellite instruments GOME, GOMOS and SCIAMACHY. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will measure solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with spectral resolution of about 0.5 nm and a spectral sampling of about 2-3 per FWHM. From these observations, total columns of O3, NO2, BrO and SO2 will be derived from the back-scattered solar radiance using differential absorption spectroscopy (DOAS). The TOMS total ozone record will also be continued by employing the well established TOMS algorithm. Because of the high accuracy and spatial resolution of the measurements, a good estimate of tropospheric amounts of ozone and NO2 are expected. Ozone profiles will be derived using the optimal estimation method. The spectral aerosol optical depth will be determined from measurements between 340 and 500 nm. This will provide information on aerosol concentration, aerosol size distribution and aerosol type. This wavelength range makes it possible to retrieve aerosol information over both land and sea. OMI observations will also allow retrievals of cloud coverage and cloud heights. From these products, the UV-B flux at the surface can then be derived with high spatial resolution.

  17. ON THE IMPACT OF THE HUMAN (CHILD) MICROCLIMATE ON PASSIVE AEROSOL MONITOR PERFORMANCE

    EPA Science Inventory

    Research into the wind microclimate and its effect on the accuracy and effectiveness of passive aerosol monitors is expanding as the importance of personal monitoring versus regional monitoring increases. The important phenomena for investigation include thermal and dynamic eff...

  18. Spatial patterns of substantial climate impact from anthropogenic aerosols in the early instrumental period

    NASA Astrophysics Data System (ADS)

    Undorf, Sabine; Bollasina, Massimo; Hegerl, Gabriele

    2016-04-01

    While many aspects of climate variation in the early instrumental period (1860-1950) are still unexplained, for instance the early twentieth-century warming from the 1910s to the 1940s, the role of anthropogenic aerosols in this period has been overlooked. Yet, the period is also an interesting case study to isolate aerosol impacts since it is characterised by the increase of North American and especially European aerosol emissions concurrently with negligible Asian emissions and relatively low carbon dioxide concentrations. We thus analyse the spatial and temporal patterns of aerosol impact for this period in available observations (NOAA 20th-century reanalysis, etc.) and historical single-forcing and all-forcing experiments with state-of-the-art CMIP5 models. We make use of coupled empirical orthogonal functions (EOFs) applied to surface temperature -the most reliable variable in observations- and different aerosol indicating variables such as aerosol optical depth and short-wave downward radiation, some of which include aerosol indirect effects. The principal components of the most important EOFs are then regressed onto sea level pressure, winds, and other variables to identify associated circulation patterns. A decomposition into multi-decadal and longer time scales is performed by filtering the data prior to the analysis. Our analysis reveals both statistically significant local and non-local aerosol impact and identifies circulation states associated with the temperature response. The results are consistent across different aerosol variables, and show a strong non-local response as well as specific differences between time scales. We find a distinctive circulation pattern which strongly resembles observations and might explain the observed early twentieth century warming in the Arctic.

  19. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  20. Expected trace gas and aerosol retrieval accuracy of the Geostationary Environment Monitoring Spectrometer

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.

    2015-12-01

    The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.

  1. Global aerosol retrieval by synergistic use of ESA ENVISAT instruments and potential for long-term aerosol records from Sentinel-3

    NASA Astrophysics Data System (ADS)

    North, P. R.; Bevan, S. L.; Brockmann, C.; Fischer, J.; Gomez-Chova, L.; Grey, W.; Heckel, A.; Moreno, J. F.; Munoz Mari, J.; Preusker, R.; Regner, P.

    2009-12-01

    We present research on for improved global aerosol retrieval by synergistic use of optical sensors on the European Space Agency ENVISAT satellite, MERIS and AATSR. Previously aerosol retrievals have been developed in isolation for these instruments, using spectral and mult-angular approaches respectively. These sensors will be succeeded with improved specification on the Sentinel-3 mission (2012-2030) with the aim to offer data suitable for long-term climate records. The research aims to use combined multi-angular and spectral approaches to constrain the inverse problem. The MERIS and AATSR instruments onboard ENVISAT provide similar resolution and swath but complementary information, encompassing different spectral domains and viewing geometries. Substantial success has been obtained previously by a number of researchers in using the instruments independently; for example MERIS aerosol retrieval using spectral methods over known targets, and AATSR approaches using the dual-view capability. The research explores the gain by using information from both instruments simultaneously to constrain atmospheric profile, characterise cloud, and provide improved atmospheric correction to surface reflectance. Results suggest improved estimation of aerosol properties compared to single-instrument retrievals, when compared with AERONET. A sensitivity study is performed to evaluate potential of Sentinel-3 for aerosol retreval, to be launched in 2012, which will give continuity with enhanced instrument specifications for the successor instruments OLCI and SLSTR.

  2. A dual-wavelength single particle aerosol fluorescence monitor

    NASA Astrophysics Data System (ADS)

    Kaye, Paul H.; Stanley, Warren R.; Foot, Virginia; Baxter, Karen; Barrington, Stephen J.

    2005-10-01

    Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

  3. Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Davis, Anthony B.; Diner, David J.

    2016-12-01

    We present initial results using computed tomography to reconstruct the three-dimensional structure of an aerosol plume from passive observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. MISR views the Earth from nine different angles at four visible and near-infrared wavelengths. Adopting the 672 nm channel, we treat each view as an independent measure of aerosol optical thickness along the line of sight at 1.1 km resolution. A smoke plume over dark water is selected as it provides a more tractable lower boundary condition for the retrieval. A tomographic algorithm is used to reconstruct the horizontal and vertical aerosol extinction field for one along-track slice from the path of all camera rays passing through a regular grid. The results compare well with ground-based lidar observations from a nearby Micropulse Lidar Network site.

  4. Proceedings of the Department of Energy workshop on Workplace Aerosol Monitoring

    SciTech Connect

    Kenoyer, J.L.; Vallario, E.J.; Murphy, B.L.

    1987-02-01

    The workshop on Workshop Aerosol Monitoring was held October 28-30, 1985 in Napa, California and was sponsored by the US Department of Energy, Radiological Controls Division. This workshop brought together participants from the United States, England, France, and West Germany who represented government, research, and industry. The participants discussed the types of air sampling and air monitoring instrumentation that are currently being developed, the problems that need to be addressed in order to obtain ''representative'' samples, and the need for a lower minimum detectable activity to protect the worker from inhalation of radionuclides in a timely manner. This proceedings includes papers and speeches that were presented at the workshop, plus edited transcripts of panel and open discussions, and question and answer sessions.

  5. Deriving aerosol properties from measurements of the Atmosphere-Surface Radiation Automatic Instrument (ASRAI)

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Li, Donghui; Li, Zhengqiang; Zheng, Xiaobing; Li, Xin; Xie, Yisong; Liu, Enchao

    2015-10-01

    The Atmosphere-surface Radiation Automatic Instrument (ASRAI) is a newly developed hyper-spectral apparatus by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (AIOFM, CAS), measuring total spectral irradiance, diffuse spectral irradiance of atmosphere and reflected radiance of the land surface for the purpose of in-situ calibration. The instrument applies VIS-SWIR spectrum (0.4~1.0 μm) with an averaged spectral resolution of 0.004 μm. The goal of this paper is to describe a method of deriving both aerosol optical depth (AOD) and aerosol modes from irradiance measurements under free cloudy conditions. The total columnar amounts of water vapor and oxygen are first inferred from solar transmitted irradiance at strong absorption wavelength. The AOD together with total columnar amounts of ozone and nitrogen dioxide are determined by a nonlinear least distance fitting method. Moreover, it is able to infer aerosol modes from the spectral dependency of AOD because different aerosol modes have their inherent spectral extinction characteristics. With assumption that the real aerosol is an idea of "external mixing" of four basic components, dust-like, water-soluble, oceanic and soot, the percentage of volume concentration of each component can be retrieved. A spectrum matching technology based on Euclidean-distance method is adopted to find the most approximate combination of components. The volume concentration ratios of four basic components are in accordance with our prior knowledge of regional aerosol climatology. Another advantage is that the retrievals would facilitate the TOA simulation when applying 6S model for satellite calibration.

  6. National Oceanic and Atmospheric Administration /NOAA/ contamination monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Maag, C. R.

    1980-01-01

    The JPL has designed and built a plume contamination monitoring package to be installed on a NOAA environmental services satellite. The package is designed to monitor any condensible contamination that occurs during the ignition and burn of a TE-M-364-15 apogee kick motor. The instrumentation and system interface are described, and attention is given to preflight analysis and test.

  7. Assessing hospitals' clinical risk management: Development of a monitoring instrument

    PubMed Central

    2010-01-01

    Background Clinical risk management (CRM) plays a crucial role in enabling hospitals to identify, contain, and manage risks related to patient safety. So far, no instruments are available to measure and monitor the level of implementation of CRM. Therefore, our objective was to develop an instrument for assessing CRM in hospitals. Methods The instrument was developed based on a literature review, which identified key elements of CRM. These elements were then discussed with a panel of patient safety experts. A theoretical model was used to describe the level to which CRM elements have been implemented within the organization. Interviews with CRM practitioners and a pilot evaluation were conducted to revise the instrument. The first nationwide application of the instrument (138 participating Swiss hospitals) was complemented by in-depth interviews with 25 CRM practitioners in selected hospitals, for validation purposes. Results The monitoring instrument consists of 28 main questions organized in three sections: 1) Implementation and organizational integration of CRM, 2) Strategic objectives and operational implementation of CRM at hospital level, and 3) Overview of CRM in different services. The instrument is available in four languages (English, German, French, and Italian). It allows hospitals to gather comprehensive and systematic data on their CRM practice and to identify areas for further improvement. Conclusions We have developed an instrument for assessing development stages of CRM in hospitals that should be feasible for a continuous monitoring of developments in this important area of patient safety. PMID:21144039

  8. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  9. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-06-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal and snapshot spectral polarization modulation technique, and hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~ 5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the co-located AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  10. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-12-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal, and snapshot spectral polarization modulation technique, and is hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the colocated AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  11. CLOUDCLOUD : general-purpose instrument monitoring and data managing software

    NASA Astrophysics Data System (ADS)

    Dias, António; Amorim, António; Tomé, António

    2016-04-01

    An effective experiment is dependent on the ability to store and deliver data and information to all participant parties regardless of their degree of involvement in the specific parts that make the experiment a whole. Having fast, efficient and ubiquitous access to data will increase visibility and discussion, such that the outcome will have already been reviewed several times, strengthening the conclusions. The CLOUD project aims at providing users with a general purpose data acquisition, management and instrument monitoring platform that is fast, easy to use, lightweight and accessible to all participants of an experiment. This work is now implemented in the CLOUD experiment at CERN and will be fully integrated with the experiment as of 2016. Despite being used in an experiment of the scale of CLOUD, this software can also be used in any size of experiment or monitoring station, from single computers to large networks of computers to monitor any sort of instrument output without influencing the individual instrument's DAQ. Instrument data and meta data is stored and accessed via a specially designed database architecture and any type of instrument output is accepted using our continuously growing parsing application. Multiple databases can be used to separate different data taking periods or a single database can be used if for instance an experiment is continuous. A simple web-based application gives the user total control over the monitored instruments and their data, allowing data visualization and download, upload of processed data and the ability to edit existing instruments or add new instruments to the experiment. When in a network, new computers are immediately recognized and added to the system and are able to monitor instruments connected to them. Automatic computer integration is achieved by a locally running python-based parsing agent that communicates with a main server application guaranteeing that all instruments assigned to that computer are

  12. a Novel Instrument to Monitor Lanslides Deformation

    NASA Astrophysics Data System (ADS)

    Pasuto, A.; Mantovani, M.; Schenato, L.; Scherneck, H.

    2013-12-01

    Landslides are more widespread than any other geological event and have high ranking among the natural disasters in terms of casualties and economical damages. Deforestation and constructions of new settlements and infrastructures, as direct consequences of population growth, and the increasing frequency of extreme meteorological events, due to the global climatic changing, could lead to a more severe impact of landslides on human life and activities in the next future. Risk reduction generally comes through countermeasures, both structural and non-structural, that directly act on the developing process or tend to reduce the effects on the fabric of the city and of the environment. Nevertheless countermeasures have often shown their flimsiness especially if they are carried out on disruptions hard to stabilize for their dimensions, kinematics and morpho-evolutive conditions. In these cases there are basically two options: the relocation of the element at risk or the surveillance of the evolution of the instability process by means of a monitoring system. Monitoring therefore represents a powerful tool in both the surveillance of the territory and the management of the emergencies coming from geo-hydrological hazard. In this study we propose the development and testbedding of a novel, low-cost wireless smart sensor network for remote monitoring of land surface deformations. The purpose is to create a flexible and scalable monitoring system in order to overcome some of the limitations of the existing devices and to strongly reduce the costs. The system consists in a master station that works as a control and measuring unit, and a series of sensors (motes) placed over the unstable areas. The master station transmits a microwave signal and receives the response from each mote measuring their relative position and inferring any deformation occurred between successive interrogations. Moreover the motes can work as bridges so that even those that are not directly visible

  13. Spectral Aerosol Extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-06-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström Exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  14. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, Edward L.; Ziemba, L. D.

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  15. Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites.

    NASA Astrophysics Data System (ADS)

    Delene, David J.; Ogren, John A.

    2002-03-01

    Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in aerosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations. The mean aerosol light absorption coefficient (ap) is 10 times larger and the mean aerosol scattering coefficient (sp) is 5 times larger at the anthropogenically influenced site at BND than at BRW. The aerosol optical properties of single scattering albedo (o) and hemispheric backscatter fraction (b) have variability of approximately ±3% and ±8%, respectively, in mean values among the four stations. To assess the importance of the variability in o and b on top of the atmosphere aerosol radiative forcing calculations, the aerosol radiative forcing efficiency (F/) is calculated. The F/ is defined as the aerosol forcing (F) per unit optical depth () and does not depend explicitly on the amount of aerosol present. Based on measurements at four North American stations, radiative transfer calculations that assume fixed aerosol properties can have errors of 1%-6% in the annual average forcing at the top of the atmosphere due to variations in average single scattering albedo and backscatter fraction among the sites studied. The errors increase when shorter-term variations in aerosol properties are considered; for monthly and hourly timescales, errors are expected to be greater than 8% and 15%, respectively, approximately one-third of the time. Systematic relationships exist between various aerosol optical properties [ap, o, b, F/, and Ångström exponent (å)] and the amount of aerosol present (measured by sp) that are qualitatively similar but quantitatively

  16. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  17. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  18. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven; Bunch, Kyle; Good, Morris; Waltar, Alan E.

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP) will require the development of actinide transmutation, which can most effectively be accomplished in a fast-spectrum reactor. To achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required-- during both fabrication and operation. This paper reports parts of a knowledge capture and technology state-of-the-art assessment for fast-reactor instrumentation and controls, monitoring and diagnostics. (authors)

  19. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  20. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  1. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K.; Moore, Ronald J.

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  2. The DMON2: A Commercially Available Broadband Acoustic Monitoring Instrument

    DTIC Science & Technology

    2015-09-30

    Monitoring Instrument Mark Baumgartner, Tom Hurst, Jim Partan, & Lee Freitag Woods Hole Oceanographic Institution Biology and AOPE Departments...MS #33 266 Woods Hole Road Woods Hole, MA 02543 phone: (508) 289-2678 fax: (508) 457-2134 email: mbaumgartner@whoi.edu Award Number...snow, or high winds). To meet this urgent need, engineers at the Woods Hole Oceanographic Institution developed the digital acoustic monitoring (DMON

  3. Monitoring Aerosols from Space: What We can Say, and What We Can't

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2011-01-01

    Aerosols are understood to play a significant role is the global energy balance, and especially on atmospheric as well as surface energy balances regionally. A combination of direct radiative cooling of the surface, atmospheric warming through diabatic heating, and indirect effects of aerosol on clouds are all thought to contribute to the net aerosol effect, though the magnitudes of each are both highly variable in space and time, and highly uncertain. Passive space-based remote sensing is a key tool for constraining these effects, due to the frequent, global coverage satellites can provide. However, information from such observations about total-column aerosol amount (i.e., aerosol optical depth or AOD), and especially about aerosol type, is limited. The current generation of passive aerosol remote-sensing instruments, including the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) offer vast improvements over previous instruments, including AOD over water and much of the land surface, fine vs. coarse particle type over ocean from MODIS, and discrimination of about a dozen aerosol types from MISR under good retrieval conditions, based on particle size, shape, and single-scattering albedo (SSA) constraints. This presentation will summarize the capabilities and expected improvements in the currently available aerosol products, in light of required energy budget constraints. Ways of addressing the need for detailed information about particle microphysical properties, especially SSA, unobtainable from MISR or MODIS, will be discussed.

  4. The DMON2: A Commercially Available Broadband Acoustic Monitoring Instrument

    DTIC Science & Technology

    2014-09-30

    Monitoring Instrument Mark Baumgartner, Tom Hurst, Jim Partan, and Lee Freitag Woods Hole Oceanographic Institution Biology and AOPE Departments...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Woods Hole Oceanographic Institution,Biology and AOPE Departments,266 Woods Hole Road,Woods

  5. 3. Interior view of instrumentation, controls, and monitoring equipment on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Interior view of instrumentation, controls, and monitoring equipment on north wall of the equipment room on the east side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  6. 5. Interior view of instrumentation, controls, and monitoring equipment on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Interior view of instrumentation, controls, and monitoring equipment on north and east walls of the signal transfer room on the west side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  7. 4. Interior view of instrumentation, controls, and monitoring equipment on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Interior view of instrumentation, controls, and monitoring equipment on east wall of the equipment room on the east side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  8. Instrumentation for full-year plot-scale runoff monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicated 0.34 ha cropping systems plots have been in place since 1991 at the USDA-ARS Goodwater Creek Experimental Watershed in central Missouri. Recently, instrumentation has been installed at 18 of those plots for continuous runoff water quality and quantity monitoring. That installation require...

  9. Volcano-Monitoring Instrumentation in the United States, 2008

    USGS Publications Warehouse

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  10. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  11. Dense Heavy Metal Aerosol Monitoring by Direct X-Ray Fluorescence

    DTIC Science & Technology

    1989-06-01

    TECHNICAL REPORT BRL-TR-3003 BRL 0 sDENSE HEAVY METAL AEROSOL MONITORING BY DIRECT X-RAY FLUORESCENCE I GEORGE M. THOMSON flgDTIC ELF% CTE b JUN 16...21005-5066 /F 6261A jIN8 1001I 11. TITLE (-’mi- Sawt Cauif&aan)II DENSE HEAVY METAL AEROSOL MONITORMN BY DIRECT X-RAY FLUORESCENCE 12. PERSONAL AUTHOR(S...Before proceeding, a definition of the term "dense, heavy - metal aerosol" is in order. For present purposes, it is an aerosol in which the suspended

  12. Improved effectiveness of performance monitoring in amateur instrumental musicians.

    PubMed

    Jentzsch, Ines; Mkrtchian, Anahit; Kansal, Nayantara

    2014-01-01

    Here we report a cross-sectional study investigating the influence of instrumental music practice on the ability to monitor for and respond to processing conflicts and performance errors. Behavioural and electrophysiological indicators of response monitoring in amateur musicians with various skill levels were collected using simple conflict tasks. The results show that instrumental musicians are better able than non-musicians to detect conflicts and errors as indicated by systematic increases in the amplitude of the error-related negativity and the N200 with increasing levels of instrumental practice. Also, high levels of musical training were associated with more efficient and less reactive responses after experience of conflicts and errors as indicated by reduced post-error interference and post-conflict processing adjustments. Together, the present findings suggest that playing a musical instrument might improve the ability to monitor our behavior and adjust our responses effectively when needed. As these processes are amongst the first to be affected by cognitive aging, our evidence could promote musical activity as a realistic intervention to slow or even prevent age-related decline in frontal cortex mediated executive functioning.

  13. Monitoring of Observation Errors from Satellite Ozone Instruments in Assimilation

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven

    2002-01-01

    Ozone distributions derived from the Solar Backscatter UltraViolet/2 (SBUV/2) instruments and the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) have been assimilated in near-real time at the NASA/Goddard Data Assimilation Office since January 2000. Observed-minus-forecast (O-F) residuals are the differences between the incoming ozone data and the co-located short-term model forecast. They are routinely produced and monitored in the assimilation process. Using examples from the NOAA-14 and NOAA-16 SBUV/2 and the EP-TOMS instruments, it is demonstrated that the monitoring of time series of O-F residual statistics is an effective method of identifying time-dependent changes in the observation-error characteristics of ozone. In addition, the data assimilation system was used to assist the validation of updated calibration coefficients for the NOAA-14 SBUV/2 instrument. This assimilation-based monitoring work will be extended to ozone data from instruments on new satellites: Envisat EOS, Aqua, and EOS Aura.

  14. Development and design of three monitoring instruments for spacecraft charging

    NASA Astrophysics Data System (ADS)

    Sturman, J. C.

    1981-09-01

    A set of instruments which provide early detection of potentially dangerous geomagnetic substorm conditions and monitor the spacecraft response are discussed. The set consists of a sensor that measures the characteristic energy of collected electrons or ions from + 100 to - 20,000 V, a logarithmic current density sensor that measures local electron flux and a transient events counter that counts the spurious pulses from electrostatic discharges that couple into the spacecraft wiring harness. Design details and performance characteristics of the three instruments are given. Size, weight, and power requirements are minimized.

  15. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  16. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  17. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  18. Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.

    2016-12-01

    Peculiarities of the formation of carbon gas and fine aerosol emissions into the atmosphere during wildfires are analyzed. A prompt satellite monitoring system and technique for the assessment of burnt areas and volumes of CO2, CO, and PM2.5 emissions from wildfires are described. The results of satellite monitoring of the Russian Federation and some Russian regions for different months over 2010-2014 are given; burnt areas and volumes of carbon gas and aerosol emissions throughout the entire territory are assessed. The peculiarities of seasonal frequencies of wildfires and volumes of hazardous gas and fine aerosol emissions in the regions under study are identified.

  19. Development and application of new instrumental techniques for real-time characterization of aerosol volatility and morphology

    NASA Astrophysics Data System (ADS)

    Huffman, John Alexander

    Aerosols represent the area of largest uncertainty in the radiative forcing of climate and contribute significantly to negative effects on human health and visibility. To better understand the balance between natural and anthropogenic aerosol emissions, and thus the systemic perturbations caused by human activity, advanced instrumentation is needed to measure ambient aerosol properties. This thesis presents the development of novel aerosol measurement instrumentation and resulting observations of aerosol morphology and volatility. A particle beam width probe (BWP) for use within the Aerosol Mass Spectrometer (AMS) and an associated computational model were developed to aid the direct determination of ambient particle morphology and investigate AMS quantification. BWP observations and model results helped determine that particles were not lost in the instrument by morphology-related effects, but were instead collected less efficiently due to particle bounce from the vaporizer surface. This study introduces psi, the lift-shape factor, which allows for the direct determination of particle non-sphericity through use of the BWP. The development and characterization of an instrument modified to directly measure chemically-resolved aerosol volatility is described. A thermodenuder operated between 50-230°C was coupled to a High-Resolution Time-of-Flight AMS (HR-ToF-AMS) with a fast-switching valve system, thus allowing direct and chemically-resolved aerosol volatility measurements to be made for the first time. The instrument was applied in two polluted, urban field studies (Riverside, CA and Mexico City, Mexico) and to sample several biomass-burning, meat-cooking and chamber-generated secondary organic aerosol (SOA) sources. Reduced hydrocarbon-like OA (HOA), biomass-burning OA (BBOA) and oxygenated OA (OOA) were all determined to be semi-volatile, with the most aged OOA-1 consistently showing the lowest volatility. This represents a significant departure from most

  20. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years

  1. Interpreting the Ultraviolet Aerosol Index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-10-01

    Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 35 % over South America in September, up to 25 % over southern Africa in July, and up to 20 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  2. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  3. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  4. Ultrasonic wave-based structural health monitoring embedded instrument

    SciTech Connect

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  5. Ultrasonic wave-based structural health monitoring embedded instrument

    NASA Astrophysics Data System (ADS)

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  6. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  7. Developments of aerosol retrieval algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS) and the retrieval accuracy test

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Ahn, C.; Bhartia, P. K.; Torres, O.

    2013-12-01

    A scanning UV-Visible spectrometer, the GEMS (Geostationary Environment Monitoring Spectrometer) onboard the GEO-KOMPSAT2B (Geostationary Korea Multi-Purpose Satellite) is planned to be launched in geostationary orbit in 2018. The GEMS employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol optical properties such as aerosol optical depth (AOD) and single scattering albedo (SSA). By taking the advantage, the OMI UV aerosol algorithm has provided information on the absorbing aerosol (Torres et al., 2007; Ahn et al., 2008). This study presents a UV-VIS algorithm to retrieve AOD and SSA from GEMS. The algorithm is based on the general inversion method, which uses pre-calculated look-up table with assumed aerosol properties and measurement condition. To obtain the retrieval accuracy, the error of the look-up table method occurred by the interpolation of pre-calculated radiances is estimated by using the reference dataset, and the uncertainties about aerosol type and height are evaluated. Also, the GEMS aerosol algorithm is tested with measured normalized radiance from OMI, a provisional data set for GEMS measurement, and the results are compared with the values from AERONET measurements over Asia. Additionally, the method for simultaneous retrieve of the AOD and aerosol height is discussed.

  8. Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia

    USGS Publications Warehouse

    Lavigne, F.; Thouret, J.-C.; Voight, B.; Young, K.; LaHusen, R.; Marso, J.; Suwa, H.; Sumaryono, A.; Sayudi, D.S.; Dejean, M.

    2000-01-01

    More than 50 volcanic debris flows or lahars were generated around Mt Merapi during the first rainy season following the nuees ardentes of 22 November 1994. The rainfalls that triggered the lahars were analyzed, using such instruments as weather radar and telemetered rain gauges. Lahar dynamics were also monitored, using new non-contact detection instrumentation installed on the slopes of the volcano. These devices include real-time seismic amplitude measurement (RSAM), seismic spectral amplitude measurement (SSAM) and acoustic flow monitoring (AFM) systems. Calibration of the various systems was accomplished by field measurements of flow velocities and discharge, contemporaneously with instrumental monitoring. The 1994–1995 lahars were relatively short events, their duration in the Boyong river commonly ranging between 30 min and 1 h 30 min. The great majority (90%) of the lahars was recognized at Kaliurang village between 13:00 and 17:30 h, due to the predominance of afternoon rainfalls. The observed mean velocity of lahar fronts ranged between 1.1 and 3.4 m/s, whereas the peak velocity of the flows varied from 11 to 15 m/s, under the Gardu Pandang viewpoint location at Kaliurang, to 8–10 m/s at a section 500 m downstream from this site. River slopes vary from 28 to 22 m/km at the two sites. Peak discharges recorded in various events ranged from 33 to 360 m3/s, with the maximum value of peak discharge 360 m3/s, on 20 May 1995. To improve the lahar warning system along Boyong river, some instrumental thresholds were proposed: large and potentially hazardous lahars may be detected by RSAM units exceeding 400, SSAM units exceeding 80 on the highest frequency band, or AFM values greater than 1500 mV on the low-gain, broad-band setting.

  9. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  10. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Bunch, Kyle J.; Good, Morris S.; Waltar, Alan E.

    2007-07-28

    The Global Nuclear Energy Partnership (GNEP) has been proposed as a viable system in which to close the fuel cycle in a manner consistent with markedly expanding the global role of nuclear power while significantly reducing proliferation risks. A key part of this system relies on the development of actinide transmutation, which can only be effectively accomplished in a fast-spectrum reactor. The fundamental physics for fast reactors is well established. However, to achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required--during both fabrication and operation. Since the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor – II (EBR-II) reactors were operational in the USA, there have been major advances in instrumentation, not the least being the move to digital systems. Some specific capabilities have been developed outside the USA, but new or at least re-established capabilities will be required. In many cases the only available information is in reports and papers. New and improved sensors and instrumentation will be required. Advanced instrumentation has been developed for high-temperature/high-flux conditions in some cases, but most of the original researchers and manufacturers are retired or no longer in business.

  11. Optoelectronic Instrument Monitors pH in a Culture Medium

    NASA Technical Reports Server (NTRS)

    Anderson, Melody M.; Pellis, Neal; Jeevarajan, Anthony S.; Taylor, Thomas D.

    2004-01-01

    An optoelectronic instrument monitors the pH of an aqueous cell-culture medium in a perfused rotating-wall-vessel bioreactor. The instrument is designed to satisfy the following requirements: It should be able to measure the pH of the medium continuously with an accuracy of 0.1 in the range from 6.5 to 7.5. It should be noninvasive. Any material in contact with the culture medium should be sterilizable as well as nontoxic to the cells to be grown in the medium. The biofilm that inevitably grows on any surface in contact with the medium should not affect the accuracy of the pH measurement. It should be possible to obtain accurate measurements after only one calibration performed prior to a bioreactor cell run. The instrument should be small and lightweight. The instrument includes a quartz cuvette through which the culture medium flows as it is circulated through the bioreactor. The cuvette is sandwiched between light source on one side and a photodetector on the other side. The light source comprises a red and a green light-emitting diode (LED) that are repeatedly flashed in alternation with a cycle time of 5 s. The responses of the photodiode to the green and red LEDs are processed electronically to obtain a quantity proportional to the ratio between the amounts of green and red light transmitted through the medium.

  12. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  13. The Automated Instrumentation and Monitoring System (AIMS) reference manual

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Hontalas, Philip; Listgarten, Sherry

    1993-01-01

    Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).

  14. Hanford double shell tank corrosion monitoring instrument tree prototype

    SciTech Connect

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.

  15. Validation of SO2 Retrievals from the Ozone Monitoring Instrument over NE China

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; McClure, Brittany; Dickerson, Russell R.; Carn, Simon A.; Li, Can; Bhartia, Pawan K.; Yang, Kai; Krueger, Arlin J.; Li, Zhanqing; Levelt, Pieternel F.; Chen, Hongbin; Wang, Pucai; Lu, Daren

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) launched on the NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space-based UV measurements of sulfur dioxide (SO2). We present a first validation of the OMI SO2 data with in situ aircraft measurements in NE China in April 2005. The study demonstrates that OMI can distinguish between background SO2 conditions and heavy pollution on a daily basis. The noise (expressed as the standard deviation,sigma) is approximately 1.5 DU (Dobson units; 1 DU = 2.69 10 (exp 16) molecules/cm (exp 2)) for instantaneous field of view boundary layer (PBL) SO2 data. Temporal and spatial averaging can reduce the noise to sigma approximetly 0.3 DU over a remote region of the South Pacific; the long-term average over this remote location was within 0.1 DU of zero. Under polluted conditions collection 2 OMI data are higher than aircraft measurements by a factor of two. Improved calibrations of the radiance and irradiance data (collection 3) result in better agreement with aircraft measurements on polluted days. The air mass corrected collection 3 data still show positive bias and sensitivity to UV absorbing aerosols. The difference between the in situ data and the OMI SO2 measurements within 30 km of the aircraft profiles was about 1 DU, equivalent to approximately 5 ppb from 0 to 3000 m altitude. Quantifying the SO2 and aerosol profiles and spectral dependence of aerosol absorption between 310 and 330 nm are critical for an accurate estimate of SO2 from satellite UV measurements.

  16. Geothermal chemical control and monitoring instrumentation - an overview

    SciTech Connect

    Jensen, G.A.

    1982-10-08

    The authors must have accurate knowledge of the geothermal fluid chemistry at operating temperature if they are to optimize operation, prevent corrosion, increase equipment service life and maximize profit and use. Available electrochemical sensors do not survive at the temperatures encountered in geothermal fluids; and new developments in this area are required. In order to fill this gap in technology, the Pacific Northwest Laboratory (PNL) is developing chemical control and monitoring instruments for measuring in situ characteristics of geothermal fluids. Progress in the development of electrochemical sensors to measure pH, carbonate and sulfide-sulfur is discussed.

  17. Comparison of POLDER Derived Aerosol Optical Thickness to Surface Monitor Fine Particle Concentration

    NASA Astrophysics Data System (ADS)

    Leon, J.; Kacenelenbogen, M.; Chiapello, I.

    2005-12-01

    The Particulate Matter (PM) mass measured at the ground level is a common way to quantify the amount of aerosol particles in the atmosphere and is used as a standard to evaluate air quality. Satellite remote sensing is well suited for a daily monitoring of the aerosol load. However, there are no straightforward relationship between aerosol optical properties derived from the satellite sensor and the PM mass at the ground. This paper is focused on the use of Polarization and Directionality of Earth's Reflectance (POLDER-2) derived aerosol optical thickness (AOT) for the monitoring of PM2.5. We present a correlation study between PM2.5 data collected in the frame of the French Environmental protection agency, aerosol optical properties derived from Sun photometer measurements, and POLDER derived-AOT over the land. POLDER AOT retrieval algorithm over the land is based on the use of the measurement of the linear polarized light in the 670 nm and 865 nm channels. We show that only the fine fraction (below 0.3 μm) of the aerosol size distribution contributes to the signal in polarization and then to the POLDER derived-AOT and then is well suited for monitoring of fine particle. The correlation between POLDER AOT and PM2.5 is significant (R between 0.6 and 0.7) over several sites. We present a tentative evaluation of Air Quality Categories from satellite data.

  18. An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies

    NASA Astrophysics Data System (ADS)

    Wragg, Francis P. H.; Fuller, Stephen J.; Freshwater, Ray; Green, David C.; Kelly, Frank J.; Kalberer, Markus

    2016-10-01

    The adverse health effects associated with ambient aerosol particles have been well documented, but it is still unclear which aerosol properties are most important for their negative health impact. Some studies suggest the oxidative effects of particle-bound reactive oxygen species (ROS) are potential major contributors to the toxicity of particles. Traditional ROS measurement techniques are labour-intensive, give poor temporal resolution and generally have significant delays between aerosol sampling and ROS analysis. However, many oxidising particle components are reactive and thus potentially short-lived. Thus, a technique to quantify particle-bound ROS online would be beneficial to quantify also the short-lived ROS components. We introduce a new portable instrument to allow online, continuous measurement of particle-bound ROS using a chemical assay of 2'7'-dichlorofluorescein (DCFH) with horseradish peroxidase (HRP), via fluorescence spectroscopy. All components of the new instrument are attached to a containing shell, resulting in a compact system capable of automated continuous field deployment over many hours or days. From laboratory measurements, the instrument was found to have a detection limit of ˜ 4 nmol [H2O2] equivalents per cubic metre (m3) air, a dynamic range up to at least ˜ 2000 nmol [H2O2] equivalents per m3 air and a time resolution of ≤ 12 min. The instrument allows for ˜ 16 h automated measurement if unattended and shows a fast response to changes in concentrations of laboratory-generated oxidised organic aerosol. The instrument was deployed at an urban site in London, and particulate ROS levels of up to 24 nmol [H2O2] equivalents per m3 air were detected with PM2.5 concentrations up to 28 µg m-3. The new and portable Online Particle-bound ROS Instrument (OPROSI) allows fast-response quantification; this is important due to the potentially short-lived nature of particle-bound ROS as well as fast-changing atmospheric conditions

  19. Sleep monitoring: a comparison between three wearable instruments.

    PubMed

    van Wouwe, Nelleke C; Valk, Pierre J L; Veenstra, Bertil J

    2011-07-01

    During military operations soldiers often encounter extreme environmental circumstances like heat, cold, prolonged physical exercise, and disturbed sleep, which hamper their performance. Monitoring changes in physiological parameters may assist with adequate interventions to prevent the negative consequences and support recovery. The current study was employed to reduce the number of measurement instruments to monitor physiological variables, especially with respect to adequate sleep prediction. We compared three instruments with respect to their effectiveness in predicting sleep; the Equivital, Sensewear, and Actiwatch. Additionally, we investigated the added value of cardio-respiratory to accelerometer signals to estimate sleep duration. The Equivital model (based on acceleration data) and Sensewear predict sleep and wake as accurate as the commonly used Actiwatch model, and the cardio-respiratory Equivital data further improve accuracy and specificity. In sum, the current study provides an indication that the Equivital system (or any other chestband that measures 3-dimensional acceleration plus other physiological variables) might be interchanged with an Actiwatch for sleep prediction.

  20. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  1. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  2. Instrumentation for the remote monitoring of physiological and behavioral variables.

    PubMed

    Andrews, R D

    1998-11-01

    Few commercial products are available for investigators who wish to monitor multiple physiological and behavioral variables in unrestrained subjects. When telemetry is not practical, e.g., in studies of at-sea diving physiology, one of the only options is to design and build a custom data-logging instrument. This paper describes how a data logger was developed for the successful long-term monitoring of dive depth, swim speed, heart rate, water temperature, and multiple body temperatures from free-ranging northern elephant seals. The task was facilitated by using a commercially available single-board computer designed specifically for portable multichannel data acquisition and, where possible, off-the-shelf sensors/transducers available with integrated signal-conditioning circuits. A smaller data logger for monitoring the electrocardiogram, body temperature, and dive behavior of double-crested cormorants is also described to illustrate the flexibility and simplicity of this approach. Although it is customized for diving animals, with incorporation of the appropriate sensors the basic design should be applicable to studies of comparative, environmental, or exercise physiology involving most medium-to-large animals, including humans.

  3. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  4. Assesment of aerosol optical depth at UV wavelegths from Microtops II "ozone monitor

    NASA Astrophysics Data System (ADS)

    Gómez-Amo, J. L.; di Sarra, A.; Estellés, V.; Utrillas, M. P.; Martínez-Lozano, J. A.

    2009-04-01

    The aerosol optical depth (AOD) retrieval at ultraviolet spectral region (UV) has been of interest for the last few years, especially due to the important rule that the particles play in the Earth climate modifying the earth-atmosphere energy budget. That is the reason why a great number of methodologies have been developed to obtain AOD, usually by means of instruments aimed to ozone monitoring. Microtops II "ozone meter" is a small hand-held manually operated instrument designed for the measurement of ozone atmospheric columnar content. The instrument operates in five spectral channels centred at 305.5, 312.5, 320.0, 936 and 1020nm wavelengths. The firsts three channels (UV) are used to obtain the ozone content, the 936nm channel is used to water vapour retrieval and the last one permit to obtain the AOD at 1020nm. The aim of this work is to use the UV ozone channels to assess the capability of Microtops II "ozone monitor" to retrieve AOD at 312.5, 305.5 and 320nm. On this way we can improve substantially the performance of Microtops II for the characterization of important components present in the atmosphere using only its own measurements. The methodology used to carry out the AOD retrieval is based on the application of the Beer-Lambert-Bouguer law to the Microtops II UV channels. A very good calibration is needed to apply this kind of methodologies since they show an important dependence on the calibration factors. The AOD is calculated eliminating the ozone contribution (using the ozone content from the combination of 305.5 and 312.5 channels) and the molecular one (Rayleigh). The AOD retrieval has been tested in a 15-days field campaign carried out at Lampedusa Island (35.52°N, 12.63°E, 45m a.s.l.) in the framework of the GAMARF (Ground-based and Airborne Measurments of the Aerosol Radiative Forcing) project. The results obtained during the campaign show, for a background atmospheric situation, AOD values of 0.10 ± 0.03, 0.17 ± 0.03 and 0.05 ± 0.03 at

  5. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  6. Monitoring of Sahelian aerosol and Atmospheric water vapor content characteristics from sun photometer measurements

    NASA Astrophysics Data System (ADS)

    Faizoun, C. A.; Podaire, A.; Dedieu, G.

    1994-11-01

    Atmospheric measurements in two Sahelian sites in West Africa are presented and analyzed. The measurements were performed using a sun photometer with five bands in the visible and near-infrared range of the solar spectrum. This instrument measures spectral values of the solar irradiances that are used to derive the aerosol optical thickness in three bands; the two other bands are used to derive the integrated atmospheric water vapor content using a differential absorption method. The Angstroem exponent, which is an estimate of the aerosol particle size, is derived from the spectral dependence of the optical thickness. Although the sites were located far from Sahara Desert aerosol sources, the observed aerosol optical thicknesses were high, with a mean annual value of 0.5 at 550 nm. The spectral dependence of aerosol optical thickness is generally low, with a mean annual value of Angstroem exponent of 0.4. The aerosol optical thickness and the atmosphereic water vapor content are both characterized by high temporal variability and exhibit seasonal cycles. From these measurements, climatological values and associated probability distribution laws are proposed.

  7. FTIR instrumentation to monitor vapors from Shuttle tile waterproofing materials

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Schwindt, C. J.

    1995-01-01

    The Space Shuttle Thermal Protection System (TPS) tiles and blankets are waterproofed using DimethylEthoxySilane (DMEX) in the Orbiter Processing Facilities (OPF). DMES has a Threshold Limit Value (TLV) for exposure of personnel to vapor concentration in air of 0.5 ppm. The OPF high bay cannot be opened for normal work after a waterproofing operation until the DMES concentration is verified by measurement to be below the TLV. On several occasions the high bay has been kept closed for up to 8 hours following waterproofing operations due to high DMES measurements. In addition, the Miran 203 and Miran 1 BX infrared analyzers calibrated at different wavelengths gave different readings under the same conditions. There was reason to believe that some of the high DMES concentration readings were caused by interference form water and ethanol vapors. The Toxic Vapor Detection Laboratory (TVDL) was asked to test the existing DMES instruments and identify the best qualified instrument. In addition the TVDL was requested to develop instrumentation to ensure the OPF high bay could be opened safely as soon as possible after a waterproofing operation. A Fourier Transform Infrared (FTIR) spectrophotometer instrument developed for an earlier project was reprogrammed to measure DMES vapor along with ethanol, water, and several common solvent vapors. The FTIR was then used to perform a series of laboratory and field tests to evaluate the performance of the single wavelength IR instruments in use. The results demonstrated that the single wavelength IR instruments did respond to ethanol and water vapors, more or less depending on the analytical IR wavelength selected. The FTIR was able to separate the responses to DMES, water and ethanol, and give consistent readings for the DMES vapor concentration. The FTIR was then deployed to the OPF to monitor real waterproofing operations. The FTIR was also used to measure the time for DMES to evaporate from TPS tile under a range of humidity

  8. Aquarius: An Instrument to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S .E.; Colomb, R.; Yueh, S.; Pellerano, F.

    2007-01-01

    Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/SAC-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (CONAE). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  9. Optical properties of urban aerosols, aircraft emissions, and heavy-duty diesel trucks using aerosol light extinction measurements by an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex)

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Massoli, P.; Wood, E. C.; Allan, J. D.; Fortner, E.; Yu, Z.; Herndon, S. C.; Miake-Lye, R. C.; Onasch, T. B.

    2010-12-01

    We present results of optical property characterization of ambient particulate during several field deployments where measurements of aerosol light extinction (σep) are obtained using an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex). The CAPS PMex is able to provide extinction measurements with 3-σ detection limit of 3 Mm-1 for 1s integration time. The CAPS PMex (630 nm) is integrated in the Aerodyne Research, Inc. (ARI) mobile laboratory where a co-located Multi Angle Absorption Photometer (MAAP) provides particle light absorption coefficient at 632 nm. The combination of the CAPS with the MAAP data allows estimating the single scattering albedo (ω) of the ambient aerosol particles. The ARI mobile laboratory was deployed in winter 2010 at the Chicago O’Hare International Airport to measure gas phase and particulate emissions from different aircraft engines, and during summer 2010 in Oakland, CA, to characterize vehicular gaseous and particulate emissions (mainly exhaust from heavy-duty diesel trucks) from the Caldecott Tunnel. We provide estimates of black carbon emission factors from individual aircraft engines and diesel trucks, in addition to characterizing the optical properties of these ambient samples studying fleet-average emissions for both light-duty passenger vehicles and heavy-duty diesel trucks. Two CAPS PMex instruments (measuring σep at 630 and 532 nm) were also deployed during the CalNex 2010 study (May 14 - June 16) at the CalTech ground site in Pasadena, CA. During the same time, a photo-acoustic spectrometer (PAS, DMT) and an aethalometer instrument (Magee Sci.) measured particle light absorption of submicron aerosol particles from the same sample line as the CAPS PMex monitors. We combine these data to provide multi-wavelength ω trends for the one-month campaign. Our results show the high potential of the CAPS as light weight, compact instrument to perform precise and accurate σep measurements of

  10. Multisensor Instrument for Real-Time Biological Monitoring

    NASA Technical Reports Server (NTRS)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  11. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  12. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  13. Monitoring Disasters by Use of Instrumented Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Sullivan, Donald V.; Dunagan, Steven E.; Brass, James A.; Ambrosia, Vincent G.; Buechel, Sally W.; Stoneburner, Jay; Schoenung, Susan M.

    2009-01-01

    Efforts are under way to develop data-acquisition, data-processing, and data-communication systems for monitoring disasters over large geographic areas by use of uninhabited aerial systems (UAS) robotic aircraft that are typically piloted by remote control. As integral parts of advanced, comprehensive disaster- management programs, these systems would provide (1) real-time data that would be used to coordinate responses to current disasters and (2) recorded data that would be used to model disasters for the purpose of mitigating the effects of future disasters and planning responses to them. The basic idea is to equip UAS with sensors (e.g., conventional video cameras and/or multispectral imaging instruments) and to fly them over disaster areas, where they could transmit data by radio to command centers. Transmission could occur along direct line-of-sight paths and/or along over-the-horizon paths by relay via spacecraft in orbit around the Earth. The initial focus is on demonstrating systems for monitoring wildfires; other disasters to which these developments are expected to be applicable include floods, hurricanes, tornadoes, earthquakes, volcanic eruptions, leaks of toxic chemicals, and military attacks. The figure depicts a typical system for monitoring a wildfire. In this case, instruments aboard a UAS would generate calibrated thermal-infrared digital image data of terrain affected by a wildfire. The data would be sent by radio via satellite to a data-archive server and image-processing computers. In the image-processing computers, the data would be rapidly geo-rectified for processing by one or more of a large variety of geographic-information- system (GIS) and/or image-analysis software packages. After processing by this software, the data would be both stored in the archive and distributed through standard Internet connections to a disaster-mitigation center, an investigator, and/or command center at the scene of the fire. Ground assets (in this case

  14. Investigations of Physicochemical Properties of Size-Resolved, Subsaturated, Atmospheric Aerosol Particles: Instrument Development, Field Measurements, and Data Analysis

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor

    Aerosol particle properties and their impact on air quality, clouds, and the hydrologic cycle remain a critically important factor for the understanding of our atmosphere. Particle hygroscopic growth leads to impacts on direct and indirect radiative forcing properties, the likelihood for particles to act as cloud condensation nuclei, and aerosol-cloud interactions. Current instruments measuring hygroscopic growth have a number of limitations, lacking either the ability to measure size-resolved particles or process samples at a fast enough resolution to be suitable for airborne deployment. Advanced in-situ airborne particle retrieval and measurements of aerosol hygroscopic growth and scattering properties are analyzed and discussed. To improve the analysis of cloud nuclei particles, an updated counterflow virtual impact inlet was characterized and deployed during the 2011 E-PEACE field campaign. Theoretical and laboratory based cut size diameters were determined and validated against data collected from an airborne platform. In pursuit of higher quality aerosol particle hygroscopicity measurements, a newer instrument, the differential aerosol sizing and hygroscopicity probe (DASH-SP) has been developed in the recent past and only flown on a handful of campaigns. It has been proven to provide quality, rapid, size-resolved hygroscopic growth factor data, but was further improved into a smaller form factor making it easier for deployment on airborne platforms. It was flown during the 2013 SEAC4RS field campaign and the data was analyzed to composite air mass based hygroscopicity and refractive index (real portion only) statistics. Additionally, a comparison of bulk and size-resolved hygroscopic growth measurements was conducted. Significant findings include a potential particle size bias on bulk scattering measurements as well as a narrow range of ambient real portion of refractive index values. An investigation into the first reported ambient hygroscopicity

  15. Observations over Hurricanes from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Yang, K.; Bhartia, P. K.

    2006-01-01

    There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.

  16. CALIPSO: Global Aerosol and Cloud Observations from Lidar and Passive Instruments

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Winker, D. M.; Pelon, J. R.; McCormick, M. P.

    2002-01-01

    CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Spaceborne Observations) is an approved satellite mission being developed through collaboration between NASA and the French space agency CNES. The mission is scheduled for launch in 2004 and will operate for 3 years as part of a five-satellite formation called the Aqua constellation. This constellation will provide a unique data set on aerosol and cloud optical and physical properties and aerosol-cloud interactions that will substantially increase our understanding of the climate system and the potential for climate change.

  17. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  18. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosol

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the third year of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this one-year grant consisted in analysis and publication of field studies using a new in-situ capability for measuring aerosol 180 deg backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Analyzed data consisted of measurements made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with target in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator.

  19. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  20. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  1. Real-time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atlanta, Georgia, using the Aerodyne Aerosol Chemical Speciation Monitor.

    PubMed

    Budisulistiorini, Sri Hapsari; Canagaratna, Manjula R; Croteau, Philip L; Marth, Wendy J; Baumann, Karsten; Edgerton, Eric S; Shaw, Stephanie L; Knipping, Eladio M; Worsnop, Douglas R; Jayne, John T; Gold, Avram; Surratt, Jason D

    2013-06-04

    Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.

  2. Holographic instrumentation for monitoring crystal growth in space

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra B.; Batra, Ashok K.

    1990-01-01

    Measurement requirements and candidates for measuring crystal growth in space are described, emphasizing holographic instrumentation. Existing instrumentation planned for the IML-1 Spaceflight is described along with advanced concepts for future application which incorporate diode lasers, fiber optics, and holographic optical elements. Particle image displacement velocimetry in crystal growth chambers is described.

  3. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  4. Development of Real-Time Coal Monitoring Instrument

    SciTech Connect

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  5. ISSARS Aerosol Database : an Incorporation of Atmospheric Particles into a Universal Tool to Simulate Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Goetz, Michael B.

    2011-01-01

    The Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) entered its third and final year of development with an overall goal of providing a unified tool to simulate active and passive space borne atmospheric remote sensing instruments. These simulations focus on the atmosphere ranging from UV to microwaves. ISSARS handles all assumptions and uses various models on scattering and microphysics to fill the gaps left unspecified by the atmospheric models to create each instrument's measurements. This will help benefit mission design and reduce mission cost, create efficient implementation of multi-instrument/platform Observing System Simulation Experiments (OSSE), and improve existing models as well as new advanced models in development. In this effort, various aerosol particles are incorporated into the system, and a simulation of input wavelength and spectral refractive indices related to each spherical test particle(s) generate its scattering properties and phase functions. These atmospheric particles being integrated into the system comprise the ones observed by the Multi-angle Imaging SpectroRadiometer(MISR) and by the Multiangle SpectroPolarimetric Imager(MSPI). In addition, a complex scattering database generated by Prof. Ping Yang (Texas A&M) is also incorporated into this aerosol database. Future development with a radiative transfer code will generate a series of results that can be validated with results obtained by the MISR and MSPI instruments; nevertheless, test cases are simulated to determine the validity of various plugin libraries used to determine or gather the scattering properties of particles studied by MISR and MSPI, or within the Single-scattering properties of tri-axial ellipsoidal mineral dust particles database created by Prof. Ping Yang.

  6. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology

    NASA Astrophysics Data System (ADS)

    Baumgardner, D.; Brenguier, J. L.; Bucholtz, A.; Coe, H.; DeMott, P.; Garrett, T. J.; Gayet, J. F.; Hermann, M.; Heymsfield, A.; Korolev, A.; Krämer, M.; Petzold, A.; Strapp, W.; Pilewskie, P.; Taylor, J.; Twohy, C.; Wendisch, M.; Bachalo, W.; Chuang, P.

    2011-10-01

    An overview is presented of airborne systems for in situ measurements of aerosol particles, clouds and radiation that are currently in use on research aircraft around the world. Description of the technology is at a level sufficient for introducing the basic principles of operation and an extensive list of references for further reading is given. A number of newer instruments that implement emerging technology are described and the review concludes with a description of some of the most important measurement challenges that remain. This overview is a synthesis of material from a reference book that is currently in preparation and that will be published in 2012 by Wiley.

  7. Development and Validation of a Parental Monitoring Instrument: Measuring How Parents Monitor Adolescents' Activities and Risk Behaviors

    ERIC Educational Resources Information Center

    Cottrell, Scott A.; Branstetter, Steven; Cottrell, Lesley; Harris, Carole V.; Rishel, Carrie; Stanton, Bonita F.

    2007-01-01

    The aim of this article is to describe the development and validation of the Parental Monitoring Instrument (PMI). The PMI was administered to a sample of 518 parent-adolescent (aged 12 to 17 years) dyads. Initial findings provide evidence of instrument reliability and validity. The exploratory factor analysis results suggested a seven-factor…

  8. Report on monitoring and support instruments for solar physics research from Spacelab

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Quick Reaction and Special Purpose Facility Definition Team for Solar Physics Spacelab Payloads examined a variety of instruments to fulfill the following functions: (1) solar physics research appropriate to Spacelab, (2) correlative data for research in such fields as aeronomy, magnetospheric physics, ionospheric physics, meteorology and climatology, (3) target selection for activity alert monitoring and (4) pointing accuracy monitoring of Spacelab platforms. In this examination the team accepted a number of restrictions and qualifications: (1) the cost of such instruments must be low, so as not to adversely impact the development of new, research class instrumentation in the early Spacelab era; (2) the instruments should be of such a size that they each would occupy a small fraction of a pointing system, and (3) the weight and power consumption of the instruments should also be small. With these restrictions, the instruments chosen are: the visible light telescope and magnetograph, the extreme-ultraviolet telescope, and the solar irradiance monitor.

  9. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  10. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the calibration gas may be a mixture of one or more compounds to be measured in air. (5) Monitoring... not significantly affect the quality of the data. Examples of minor departures are monitoring at a... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Instrument and sensory monitoring...

  11. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    DTIC Science & Technology

    2015-08-27

    Orthogonal Polarization (CALIOP) aerosol and cloud layer products, as well as collocated Ozone Monitoring Instrument (OMI) Aerosol Index (Al) data and...radiance assimilation capability by: 1) improving forecast performance over cloudy regions using the Ozone Monitoring Instrument (OMI) Aerosol Index...only CALIOP layer products. Both OMI-MODIS and CALIOP-based daytime spatial distributions of ACA events show similar patterns during both periods

  12. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-09-01

    Finding the number and best locations of fixed air quality monitoring stations at street level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Data sets of such urban parameters as land use, building morphology and street geometry in high-resolution grid cells in combination with direct measurements of airborne pollutants at high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self-Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. This proof of concept study showed that the selected urban parameters proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e., group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  13. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-03-01

    Finding the number and significant locations of fixed air quality monitoring stations at ground level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Datasets of urban parameters such as land use, building morphology and street geometry in high resolution grid cells in combination with direct measurements of airborne pollutants in high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. The urban parameters used in this case proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e. group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  14. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  15. Real-time seismic monitoring of instrumented hospital buildings

    USGS Publications Warehouse

    Kalkan, Erol; Fletcher, Jon Peter B.; Leith, William S.; McCarthy, William S.; Banga, Krishna

    2012-01-01

    In collaboration with the Department of Veterans Affairs (VA), the U.S. Geological Survey's National Strong Motion Project has recently installed sophisticated seismic monitoring systems to monitor the structural health of two hospital buildings at the Memphis VA Medical Center in Tennessee. The monitoring systems in the Bed Tower and Spinal Cord Injury buildings combine sensing technologies with an on-site computer to capture and analyze seismic performance of buildings in near-real time.

  16. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  17. Solar energy assessment in the Alpine area: satellite data and ground instruments integration for studying the radiative forcing of aerosols.

    NASA Astrophysics Data System (ADS)

    Castelli, M.; Petitta, M.; Emili, E.

    2012-04-01

    The primary objective of this work is to purpose an approach for estimating the effect of aerosols on surface incoming shortwave radiation (SIS) in the Alpine region, which is based on the integration of different instruments: we develop a GIS model, whose output is corrected by monthly atmospheric coefficients, and then we progressively add details by daily updated atmospheric information. The assessment of solar energy availability at the earth's surface over a specific geographic area is crucial for planning photovoltaic panels installation. When modeling SIS with GIS instruments or retrieving it from satellites measurements, we have to account for terrain shadowing and atmospheric extinction, both of which are difficult to describe in the Alpine area, because of the topographic complexity and the local atmospheric circulation influence on the atmospheric composition. While advanced methods were developed to carefully describe the effect of topography, the atmospheric attenuation was considered so far only through monthly turbidity values, and the question remains whether it be possible to develop a time-effective routine to model the atmospheric effect on SIS at daily scale. As a first step we produced a WebGIS for the town of Bressanone, Italy, showing a classification of the roofs of the buildings according to the yearly amount of global irradiance. Furthermore we provide the annual electricity production based on the efficiency of the most common PV technologies. At this stage clear sky irradiance was computed with a GIS based model, and afterwards monthly correction coefficients were applied to add real sky conditions to the merely geometrical computations, which were obtained from 20 years of measurement collected by the pyranometer in the closest meteorological station. As a second step we investigate the influence of aerosol optical properties on SIS by running the radiative transfer model libRadtran by using as input the aerosol model defined for the

  18. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A.; Raspet, R.; Slaton, W. V.; Hand, J. L.; Kreidenweis, S. M.; Collett, J. L.

    2003-01-01

    Ambient measurements are reported of aerosol light absorption from photoacoustic and filter-based instruments (aethalometer and a particle soot absorption photometer (PSAP)) to provide insight on the measurement science. Measurements were obtained during the Big Bend Regional Aerosol and Visibility Observational Study at the Big Bend National Park in South Texas. The aethalometer measurements of black carbon concentration at this site correlate reasonably well with photoacoustic measurements of aerosol light absorption, with a slope of 8.1 m2/g and a small offset. Light absorption at this site never exceeded 2.1 Mm-1 during the month of collocated measurements. Measurements were also obtained, as a function of controlled relative humidity between 40% and 90%, during the Photoacoustic IOP in 2000 at the Department of Energy Southern Great Plains Cloud and Radiation Testbed site (SGP). PSAP measurements of aerosol light absorption correlated very well with photoacoustic measurements, but the slope of the correlation indicated the PSAP values were larger by a factor of 1.61. The photoacoustic measurements of light absorption exhibited a systematic decrease when the RH increased beyond 70%. This apparent decrease in light absorption with RH may be due to the contribution of mass transfer to the photoacoustic signal. Model results for the limiting case of full water saturation are used to evaluate this hypothesis. A second PSAP measured the light absorption for the same humidified samples, and indicated very erratic response as the RH changed, suggesting caution when interpreting PSAP data under conditions of rapid relative humidity change.

  19. Simultaneous online monitoring of inorganic compounds in aerosols and gases in an industrialized area

    NASA Astrophysics Data System (ADS)

    Khezri, Bahareh; Mo, Huan; Yan, Zhen; Chong, Shey-Ling; Heng, Aik Kian; Webster, Richard D.

    2013-12-01

    The automatic MARGA (monitor for aerosols and gases in ambient air) sampling system was used to measure the inorganic ions Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+ in the PM2.5 aerosol phase and the corresponding inorganic gases HCl, HNO2, SO2, HNO3 and NH3 present in the gas phase. Samples were collected and analyzed hourly for 3 months between April and June, 2011, from a sampling site in Singapore close to a heavy industrial area containing extensive petrochemical refineries. The data (hourly and daily average) were analyzed, compared and discussed based on the ratios of HNO2/HNO3 and NH3/NH4+, the levels of nitrate and sulfate, the total nitrogen, the distribution of particulate matter and gaseous compounds, and the acidity of the aerosols. SO2 was the most abundant gas that appeared in an order of magnitude higher concentration than the other trace gases, and correspondingly SO42- was found to be at least 3-10 times higher than other anionic aerosol species. The concentration of major ions in aerosol samples and the related gaseous compounds followed the order of: SO42- > NH4+ > NO3- > K+ > Na+ > Cl- > Ca2+ > Mg2+ and SO2 > NH3 > HNO2 > HNO3, respectively. The maximum values for many of the target analytes occurred during the hazy period in May when there was significant contamination from regional fires. The elevated levels of HNO2 compared to HNO3 and high levels of HNO3 were rationalized based on artifacts in the denuder sampling methodology.

  20. The new Mediterranean background monitoring station of Ersa, Cape Corsica: A long term Observatory component of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)

    NASA Astrophysics Data System (ADS)

    Dulac, Francois

    2013-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) is a French initiative supported by the MISTRALS program (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The major stake is an understanding of the future of the Mediterranean region in a context of strong regional anthropogenic and climatic pressures. The target of ChArMEx is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry. In order to fulfill these objectives, important efforts have been put in 2012 in order to implement the infrastructure and instrumentation for a fully equipped background monitoring station at Ersa, Cape Corsica, a key location at the crossroads of dusty southerly air masses and polluted outflows from the European continent. The observations at this station began in June 2012 (in the context of the EMEP / ACTRIS / PEGASOS / ChArMEx campaigns). A broad spectrum of aerosol properties is also measured at the station, from the chemical composition (off-line daily filter sampling in PM2.5/PM10, on-line Aerosol Chemical Speciation Monitor), ground optical properties (extinction/absorption/light scattering coeff. with 1-? CAPS PMex monitor, 7-? Aethalometer, 3-? Nephelometer), integrated and vertically resolved optical properties (4-? Cimel sunphotometer and LIDAR, respective), size distribution properties (N-AIS, SMPS, APS, and OPS instruments), mass (PM1/PM10 by TEOM/TEOM-FDMS), hygroscopicity (CCN), as well as total insoluble deposition. So far, real-time measurement of reactive gases (O3, CO, NO, NO2), and off-line VOC measurements (cylinders, cartridges) are also

  1. CALIPSO Observations of Volcanic Aerosol in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Pitts, Michael C.

    2008-01-01

    In the stratosphere, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) has observed the presence of aerosol plumes associated with the eruptions several volcanoes including Montserrat (May 2006), Chaiten (May 2008), and Kasatochi (August 2008). While the dense ash plumes from these eruptions dissipate relatively quickly, CALIPSO continued to detect an enhanced aerosol layer from the Montserrat eruption from the initial observations in June 2006 well into 2008. Solar occultation missions were uniquely capable of monitoring stratospheric aerosol. However, since the end of long-lived instruments like the Stratospheric Aerosol and Gas Experiment (SAGE II), there has been no clear space-based successor instrument. A number of active instruments, some employing new techniques, are being evaluated as candidate sources of stratospheric aerosol data. Herein, we examine suitability of the CALIPSO 532-nm aerosol backscatter coefficient measurements.

  2. Instrument monitoring, data sharing, and archiving using Common Instrument Middleware Architecture (CIMA).

    PubMed

    Bramley, Randall; Chiu, Kenneth; Devadithya, Tharaka; Gupta, Nisha; Hart, Charles; Huffman, John C; Huffman, Kianosh; Ma, Yu; McMullen, Donald F

    2006-01-01

    The Common Instrument Middleware Architecture (CIMA) aims at Grid-enabling a wide range of scientific instruments and sensors to enable easy access to and sharing and storage of data produced by these instruments and sensors. This paper describes the implementation of CIMA applied to the field of single-crystal X-ray crystallography. To allow the researchers to easily view the current and past data streams from the instruments or sensors in a laboratory, a crystallography portal and associated portlets were developed for this application. The CIMA-based crystallography system provides an opportunity for anyone with Web access to observe and use crystallographic and other data from laboratories that previously had only limited access.

  3. Instrument Monitoring, Data Sharing, and Archiving Using Common Instrument Middleware Architecture (CIMA)

    SciTech Connect

    Bramley, Randall; Chiu, Kenneth; Devadithya, Tharaka; Gupta, Nisha; Hart, Charles; Huffman, John C.; Huffman, Kianosh; Ma, Yu; McMullen, Donald F.

    2008-10-03

    The Common Instrument Middleware Architecture (CIMA) aims at Grid-enabling a wide range of scientific instruments and sensors to enable easy access to and sharing and storage of data produced by these instruments and sensors. This paper describes the implementation of CIMA applied to the field of single-crystal X-ray crystallography. To allow the researchers to easily view the current and past data streams from the instruments or sensors in a laboratory, a crystallography portal and associated portlets were developed for this application. The CIMA-based crystallography system provides an opportunity for anyone with Web access to observe and use crystallographic and other data from laboratories that previously had only limited access.

  4. Engineering Upgrades to the Radionuclide Aerosol Sampler/Analyzer for the CTBT International Monitoring System

    SciTech Connect

    Forrester, Joel B.; Carty, Fitz; Comes, Laura; Hayes, James C.; Miley, Harry S.; Morris, Scott J.; Ripplinger, Mike D.; Slaugh, Ryan W.; Van Davelaar, Peter

    2013-05-13

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory in the 1990’s and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The utility of such an automated system is the reduction of human intervention and the production of perfectly uniform results. However, maintainability and down time issues threaten this utility, even for systems with over 90% data availability. Engineering upgrades to the RASA are currently being pursued to address these issues, as well as Fukushima lessons learned. Current work includes a new automation control unit, and other potential improvements such as alternative detector cooling and sampling options are under review. This paper presents the current state of upgrades and improvements under investigation

  5. A CAM (continuous air monitor) sampler for collecting and assessing alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Bethel, E.L.; Ortiz, C.A.; Stanke, J.G. )

    1991-07-01

    A new continuous air monitor (CAM) sampler for assessing alpha-emitting transuranic aerosol particles has been developed. The system has been designed to permit collection of particles that can potentially penetrate into the thoracic region of the human respiratory system. Wind tunnel testing of the sampler has been used to characterize the penetration of aerosol to the collection filter. Results show that greater than or equal to 50% of 10-micrograms aerodynamic equivalent diameter (AED) particles are collected by the filter at wind speeds of 0.3 to 2 m s-1 and at sampling flow rates of 28 to 113 L min-1 (1 to 4 cfm). The deposition of 10-microns AED particles takes place primarily in the center of the filter, where the counting efficiency of the detector is highest.

  6. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  7. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate

    NASA Astrophysics Data System (ADS)

    Huffman, Donald R.; Swanson, Benjamin E.; Huffman, J. Alex

    2016-08-01

    We describe a novel, low-cost instrument to acquire both elastic and inelastic (fluorescent) scattering spectra from individual supermicron-size particles in a multi-particle collection on a microscope slide. The principle of the device is based on a slitless spectroscope that is often employed in astronomy to determine the spectra of individual stars in a star cluster but had not been applied to atmospheric particles. Under excitation, most commonly by either a 405 nm diode laser or a UV light-emitting diode (LED), fluorescence emission spectra of many individual particles can be determined simultaneously. The instrument can also acquire elastic scattering spectra from particles illuminated by a white-light source. The technique also provides the ability to detect and rapidly estimate the number fraction of fluorescent particles that could contaminate a collection of non-fluorescent material, even without analyzing full spectra. Advantages and disadvantages of using black-and-white cameras compared to color cameras are given. The primary motivation for this work has been to develop an inexpensive technique to characterize fluorescent biological aerosol particles, especially particles such as pollen and mold spores that can cause allergies. An example of an iPhone-enabled device is also shown as a means for collecting data on biological aerosols at lower cost or by utilizing citizen scientists for expanded data collection.

  8. A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring

    NASA Astrophysics Data System (ADS)

    Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón

    2017-02-01

    A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.

  9. Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Curci, G.; Palmer, P. I.; Kurosu, T. P.; Chance, K.; Visconti, G.

    2010-12-01

    Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere stems from biogenic and human activities, and their estimation is difficult because of the many and not fully understood processes involved. In order to narrow down the uncertainty related to VOC emissions, which negatively reflects on our ability to simulate the atmospheric composition, we exploit satellite observations of formaldehyde (HCHO), an ubiquitous oxidation product of most VOCs, focusing on Europe. HCHO column observations from the Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a summer maximum and winter minimum. In summer, the oxidation of methane and other long-lived VOCs supply a slowly varying background HCHO column, while HCHO variability is dominated by most reactive VOC, primarily biogenic isoprene followed in importance by biogenic terpenes and anthropogenic VOCs. The chemistry-transport model CHIMERE qualitatively reproduces the temporal and spatial features of the observed HCHO column, but display regional biases which are attributed mainly to incorrect biogenic VOC emissions, calculated with the Model of Emissions of Gases and Aerosol from Nature (MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected through a Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or a-posteriori isoprene emissions are lower than "bottom-up" by 40% over the Balkans and by 20% over Southern Germany, and higher by 20% over Iberian Peninsula, Greece and Italy. We conclude that OMI satellite observations of HCHO can provide a quantitative "top-down" constraint on the European "bottom-up" VOC inventories.

  10. Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Curci, G.; Palmer, P. I.; Kurosu, T. P.; Chance, K.; Visconti, G.

    2010-08-01

    Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere stems from biogenic and human activities, and their estimation is difficult because of the many and not fully understood processes involved. In order to narrow down the uncertainty related to VOC emissions, which negatively reflects on our ability to simulate the atmospheric composition, we exploit satellite observations of formaldehyde (HCHO), an ubiquitous oxidation product of most VOCs, focusing on Europe. HCHO column observations from the Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a summer maximum and winter minimum. In summer, the oxidation of methane and other long-lived VOCs supply a slowly varying background HCHO column, while HCHO variability is dominated by most reactive VOC, primarily biogenic isoprene followed in importance by biogenic terpenes and anthropogenic VOCs. The chemistry-transport model CHIMERE qualitatively reproduces the temporal and spatial features of the observed HCHO column, but display regional biases which are attributed mainly to incorrect biogenic VOC emissions, calculated with the Model of Emissions of Gases and Aerosol from Nature (MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected through a Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or a-posteriori isoprene emissions are lower than "bottom-up" by 40% over the Balkans and by 20% over Southern Germany, and higher by 20% over Iberian Peninsula, Greece and Italy. The inversion is shown to be robust against assumptions on the a-priori and the inversion parameters. We conclude that OMI satellite observations of HCHO can provide a quantitative "top-down" constraint on the European "bottom-up" VOC inventories.

  11. An observation-based approach to identify local natural dust events from routine aerosol ground monitoring

    NASA Astrophysics Data System (ADS)

    Tong, D. Q.; Dan, M.; Wang, T.; Lee, P.

    2012-02-01

    Dust is a major component of atmospheric aerosols in many parts of the world. Although there exist many routine aerosol monitoring networks, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population) or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose a new approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1) high PM10 concentrations; (2) low PM2.5/PM10 ratio; (3) higher concentrations and percentage of crustal elements; (4) lower percentage of anthropogenic pollutants; and (5) low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the Western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado). During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000-2003 and the other in 2004-2007). The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24 recorded dust events, respectively, while the years of 2000, 2004 and 2005 are the calmest periods, all with single digit dust records. Among these deserts, the Chihuahua Desert (59 cases) and the Sonoran Desert (62 cases) are by far the most active

  12. Estimating Ground-Level PM2.5 in China Using Aerosol Optical Depth Determined from the GOCI Satellite Instrument

    NASA Astrophysics Data System (ADS)

    Xu, J.; Martin, R.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.

    2014-12-01

    The severe air pollution in China imposes a pressing need to monitor fine aerosol concentration (PM2.5) at fine temporal and spatial resolutions. Satellite remote sensing is emerging as a key solution to this need. GOCI is the first satellite remote sensor that is able to provide multi-spectral aerosol optical properties in Northeast Asia on an hourly basis. We implemented a set of filters to minimize cloud contamination in GOCI aerosol optical depths (AOD). Evaluation of filtered GOCI AOD by AERONET AOD data at three sites in China indicates significant agreement (hourly RMSE=0.03-0.16). A global chemical transport model (GEOS-Chem) is used to relate total column AOD to near-surface PM2.5. The simulated PM2.5/AOD ratio generally captures the seasonal variation in ground measurements. We assess the relationship of a full year of GOCI-derived PM2.5 concentrations versus ground measurements at more than 800 locations across China, and found significant agreement (r=0.86, slope=0.8), indicating GOCI is a promising tool to provide in-depth and accurate data for air quality studies in Northeast Asia.

  13. The CU 2-D-MAX-DOAS instrument - Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; Lantz, Kathy; Michalsky, Joseph; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-08-01

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ˜ 0.19, and that over oceans is ˜ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), -0.012 ± 0.024 (MFRSR), -0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD - MFRSRAOD) and yields the following expressions for correlations between different instruments

  14. Monitoring biomass burning and aerosol loading and transport from a geostationary satellite perspective

    SciTech Connect

    Prins, E.M.; Menzel, W.P.

    1996-12-31

    The topic of this paper is the use of geostationary operational environmental satellites (GOES) to monitor trends in biomass burning and aerosol production and transport in South America and through the Western Hemisphere. The GOES Automated Biomass Burning Algorithm (ABBA) was developed to provide diurnal information concerning fires in South America; applications demonstrating the ability to document long-term trends in fire activity are described. Analyses of imagery collected by GOES-8 is described; six biomass burning seasons in South America revealed many examples of large-scale smoke transport extending over several million square kilometers. Four major transport regimes were identified. Case studies throughout South America, Canada, the United States, Mexico, Belize, and Guatemala have successfully demonstrated the improved capability of GOES-8 for fire and smoke monitoring in various ecosystems. Global geostationary fire monitoring will be possible with the launch of new satellites. 12 refs., 4 figs., 1 tab.

  15. The System of the Calibration for Visibility Measurement Instrument Under the Atmospheric Aerosol Simulation Environment

    NASA Astrophysics Data System (ADS)

    Shu, Zhifeng; Yang, ShaoChen; Xu, Wenjing

    2016-06-01

    Visibility is one of the most important parameters for meteorological observation and numerical weather prediction (NWP).It is also an important factor in everyday life, mainly for surface and air traffic especially in the Aeronautical Meteorology. The visibility decides the taking off and landing of aircraft. If the airport visibility is lower than requirement for aircraft taking off stipulated by International Civil Aviation Administration, then the aircraft must be parked at the airport. So the accurate measurement of visibility is very important. Nowadays, many devices can be measured the visibility or meteorological optical range (MOR) such as Scatterometers, Transmissometers and visibility lidar. But there is not effective way to verify the accuracy of these devices expect the artificial visual method. We have developed a visibility testing system that can be calibration and verification these devices. The system consists of laser transmitter, optical chopper, phase-locking amplifier, the moving optic receiving system, signal detection and data acquisition system, atmospheric aerosol simulation chamber. All of them were placed in the atmosphere aerosol simulation chamber with uniform aerosol concentration. The Continuous wave laser, wavelength 550nm, has been transmitted into the collimation system then the laser beam expanded into 40mm diameter for compressing the laser divergence angle before modulated by optical chopper. The expanding beam transmitting in the atmosphere aerosol cabin received by the optic receiving system moving in the 50m length precision guide with 100mm optical aperture. The data of laser signal has been acquired by phase-locking amplifier every 5 meter range. So the 10 data points can be detected in the 50 meters guide once. The slope of the fitting curve can be obtained by linear fitting these data using the least square method. The laser extinction coefficient was calculated from the slope using the Koschmieder formula, then it been

  16. A new method for monitoring long term calibration of the SBUV and TOMS instruments

    NASA Technical Reports Server (NTRS)

    Ahmad, Z.; Seftor, C.; Wellemeyer, C.

    1994-01-01

    A new method has been developed to monitor the long-term calibration of the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) instruments. It is based on the fact that the radiance in one channel can be expressed as a linear sum of the radiances in neighboring channels. Using simulated radiances for the SBUV and TOMS instruments, various scenarios of changes in instrument calibration are investigated. Results from sample processing of SBUV data are also presented.

  17. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  18. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    SciTech Connect

    Polagye, B. L.; Copping, A. E.; Brown-Saracino, J.; Suryan, R.; Kramer, S.; Smith, C.

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  19. Research on auto monitoring and control instrument of deep foundation pit engineering

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Li, Heng; Zhang, Yi; Wang, Xutao; Wang, Hao; Xu, Xueyong

    2012-01-01

    At present, deep foundation pit supporting structure and slope soil deep displacement monitoring of conventional method is artificial repeated measurements, but sometimes pit instability is sudden, use this method to reach the purposes of real-time monitoring. This paper developed the instrument from the ordinary inclinometer, based on artificial measurement, improve it to the automatic measurement, monitoring personnel remain within doors can be remote, real-time control and obtaining measurement data, can really achieve real-time monitoring, can meet the requirements of building deep foundation pit monitoring needs, also has a geological disaster monitoring application prospect.

  20. Research on auto monitoring and control instrument of deep foundation pit engineering

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Li, Heng; Zhang, Yi; Wang, Xutao; Wang, Hao; Xu, Xueyong

    2011-11-01

    At present, deep foundation pit supporting structure and slope soil deep displacement monitoring of conventional method is artificial repeated measurements, but sometimes pit instability is sudden, use this method to reach the purposes of real-time monitoring. This paper developed the instrument from the ordinary inclinometer, based on artificial measurement, improve it to the automatic measurement, monitoring personnel remain within doors can be remote, real-time control and obtaining measurement data, can really achieve real-time monitoring, can meet the requirements of building deep foundation pit monitoring needs, also has a geological disaster monitoring application prospect.

  1. The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2012-09-01

    The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ɛ, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  2. Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols

    PubMed Central

    Birch, M. Eileen; Ku, Bon-Ki; Evans, Douglas E.; Ruda-Eberenz, Toni A.

    2015-01-01

    Production of carbon nanofibers and nanotubes (CNFs/CNTs) and their composite products is increasing globally. High volume production may increase the exposure risks for workers who handle these materials. Though health effects data for CNFs/CNTs are limited, some studies raise serious health concerns. Given the uncertainty about their potential hazards, there is an immediate need for toxicity data and field studies to assess exposure to CNFs/CNTs. An extensive study was conducted at a facility that manufactures and processes CNFs. Filter, sorbent, cascade impactor, bulk, and microscopy samples, combined with direct-reading instruments, provided complementary information on air contaminants. Samples were analyzed for organic carbon (OC) and elemental carbon (EC), metals, and polycyclic aromatic hydrocarbons (PAHs), with EC as a measure of CNFs. Transmission electron microscopy with energy-dispersive X-ray spectroscopy also was applied. Fine/ultrafine iron-rich soot, PAHs, and carbon monoxide were production byproducts. Direct-reading instrument results were reported previously [Evans DE et al. (Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 2010;54:514–31.)] Results for time-integrated samples are reported as companion papers in this Issue. OC and EC, metals, and microscopy results are reported here, in Part I, while results for PAHs are reported in Part II [Birch ME. (Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part II: Polycyclic Aromatic Hydrocarbons. Ann. Occup. Hyg 2011; 55: 1037–47.)]. Respirable EC area concentrations inside the facility were about 6–68 times higher than outdoors, while personal breathing zone samples were up to 170 times higher. PMID:21965464

  3. A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deirmendjian, D.

    1980-01-01

    A critical survey of the literature on the use of light-scattering mechanisms in the remote monitoring of atmospheric aerosols, their geographical and spatial distribution, and temporal variations was undertaken to aid in the choice of future operational systems, both ground based and air or space borne. An evaluation, mainly qualitative and subjective, of various techniques and systems is carried out. No single system is found to be adequate for operational purposes. A combination of earth surface and space-borne systems based mainly on passive techniques involving solar radiation with active (lidar) systems to provide auxiliary or backup information is tentatively recommended.

  4. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  5. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument

    SciTech Connect

    Ermold, B; Flynn, CJ; Barnard, J

    2013-11-27

    The Shortwave Array Spectroradiometer – Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures the direct and diffuse solar irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) – an instrument that has been in the ARM suite of instruments for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm width from 415 to 940 nm. The SAS-He, in contrast, incorporates two fiber-coupled grating spectrometers: a Si CCD spectrometer with over 2000 pixels covering the range from 325-1040 nm with ~ 2.5 nm resolution ,and an InGaAs array spectrometer with 256 pixels covering the wavelength range from 960-1700 nm with ~ 6 nm resolution.

  6. Remote instrumentation and safeguards monitoring for the star project

    SciTech Connect

    Buettner, H M; Labiak, W; Spiridon, A

    2000-06-15

    A part of the Nuclear Energy Research Initiative (NERI) is the development of the Small Transportable Autonomous Reactor (STAR) for deployment in countries that do not have a nuclear industry. STARs would have an output of from 100 to 150 MW electric, would be fueled in the country of manufacture, and after 15 to 20 years of operation the reactor core would be returned to the country of manufacture for refueling. A candidate STAR design can be found in (Greenspan, 2000). This paper describes the design of the control and monitoring system that might be used. There are two unique features to this system. One is that the monitored information will be transmitted to a remote site for two purposes, safeguards, and allowing experts a great distance away direct access to view the reactor's operating parameters. The second feature is safeguards sensors will be designed into the system and there will monitoring of the safeguards aspects of the system for tampering. Any safeguards anomalies will be sent to the remote site as alarms. Encrypted satellite communications will be used to transmit the data. These features allow the STAR to be operated by a small staff and will reduce the costs of safeguards monitoring by reducing the number of plant visits by inspectors.

  7. NOX/NOY MONITORING USING MODIFIED/UNMODIFIED COMMERCIAL INSTRUMENTATION

    EPA Science Inventory

    Three systems were used for monitoring oxides of nitrogen (NO, NO2, Noy, at the Cornelia Fort Airpark site in the 1999 Southern Oxidant Study near Nashville, TN during the months of June and July. Of the three systems, one was an unmodified ultraviolet differential optical abs...

  8. Thermal Earth Resource Monitoring Instrument (THERMI) size, weight and power reduction

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Bergen, Z.; Hancock, J.; Hansen, S.; Shumway, A.; Stauder, J.; Williams, D.

    2015-09-01

    The Thermal Earth Resource Monitoring Instrument (THERMI) has been designed to meet stringent Landsat heritage requirements with reduced size, weight and power (SWaP). The instrument design provides Earth resource monitoring through the use of two long-wave infrared bands that measure the land surface temperatures. These bands are especially valuable for monitoring water resources and water use. Instrument subsystems, including electronics, cryocooler, thermal management, optical telescope assembly, focal plane module, in-flight calibrator, and scene select mirror were studied and conceptually designed to reduce overall THERMI SWaP. Reductions in SWaP make it possible for THERMI to fit on a small satellite bus with room available for an additional optical instrument. Since mission cost historically correlates well with mass and power on-orbit, it is expected that significant cost savings will result from the predicted SWaP reductions.

  9. Monitoring of atmospheric nitrogen dioxide using Ozone Monitoring Instrument remote sensing data

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongyong; Jiang, Hong; Song, Xiaodong; Zhang, Xiuying

    2013-01-01

    Measurements from the Ozone Monitoring Instrument are used to investigate the temporal and spatial dynamics of global nitrogen dioxide (NO2). The results show that the global tropospheric column NO2 increased by 11.10% during 2005 to 2010 at a 1.76% annual growth rate. The largest tropospheric and total NO2 columns are mainly concentrated in the industrialized regions of North America, Europe, and east Asia. The large values of column NO are also observed and scattered in South America, Africa, and Indonesia due to biomass burning and savannah fires. Average tropospheric column NO increased by 32.62% at a 4.82% annual rate over eastern Asia. On the contrary, the trend decreased by 35.47% at a 7.04% annual rate over eastern America. The trend was not significant over Europe as a whole, where a decrease was observed over western and southern Europe and an increase was observed over eastern and northern Europe. Over the polluted urban areas, the ratios of tropospheric to total column NO2 are larger than 0.6 and the correlation coefficients are larger than 0.8. This can be mainly attributed to the anthropogenic NOx emissions over land, and it is noteworthy that the ratios are higher than 0.8 (correlation coefficients >0.95) over northern China.

  10. Physical and performance characteristics of instruments selected for global change monitoring

    NASA Astrophysics Data System (ADS)

    Allen, Cheryl L.

    1991-09-01

    The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.

  11. The atmospheric monitoring system of the JEM-EUSO instrument

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The JEM-EUSO telescope will detect Ultra-High Energy Cosmic Rays (UHECRs) from space, detecting the UV Fluorescence Light produced by Extensive Air Showers (EAS) induced by the interaction of the cosmic rays with the earth's atmosphere. The capability to reconstruct the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring (AM) system of JEM-EUSO will host a LIDAR, operating in the UV band, and an Infrared camera to monitor the cloud cover in the JEM-EUSO Field of View, in order to be sensitive to clouds with an optical depth τ ≥ 0.15 and to measure the cloud top altitude with an accuracy of 500 m and an altitude resolution of 500 m.

  12. Estimating ground-level PM2.5 in Eastern China using aerosol optical depth determined from the GOCI Satellite Instrument

    NASA Astrophysics Data System (ADS)

    Xu, J.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-06-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in East China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean Geostationary Ocean Color Imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5/AOD ratio exhibits high consistency with ground-based measurements (MFB = -0.52-8.0 %). We evaluate the satellite-derived PM2.5 vs. the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in-situ observations in both annual averages (r = 0.81, N = 494) and monthly averages (MFB = 13.1 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical speciation of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating are responsible for an increase in the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over East China for 2013 is 53.8 μg m-3, threatening the health and life expectancy of its 600 million residents.

  13. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument

    NASA Astrophysics Data System (ADS)

    Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-11-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.

  14. Instrumentation for Monitoring Breath Biomarkers for Diagnosis of Health Condition, Toxic Exposure and Disease

    DTIC Science & Technology

    2007-12-01

    response to respiratory viral infections. It also has been identified in acute lung injury and ARDS . ALFA monitoring will be used to monitor impending...the research community in the field of acute lung injury, airway acidification, and prognostic lung health assessment. Honors/Awards: Respiratory ...COVERED (From - To) 27-12-2007 FINAL REPORT From 30-9-2005 to 29-9-2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Instrumentation for Monitoring Breath

  15. Instrumentation for Monitoring Breath Biomarkers for Diagnosis of Health Condition Toxic Exposure and Disease

    DTIC Science & Technology

    2007-12-01

    27-12-2007 FINAL REPORT From 30-9-2005 to 29-9-2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Instrumentation for Monitoring Breath Biomarkers for...identified in acute lung injury and ARDS . ALFA monitoring will be used to monitor impending deterioration of lung status in patients on mechanical...valuable nature has been accumulated enabling Respiratory Research, Inc. to uniquely serve the needs of the research community in the field of acute lung

  16. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  17. Scintigraphic monitoring of mucociliary tracheo-bronchial clearance of technetium-99m macroaggregated albumin aerosol

    SciTech Connect

    Zwas, S.T.; Katz, I.; Belfer, B.; Baum, G.L.; Aharonson, E.

    1987-02-01

    A simple method for in vivo monitoring mucociliary tracheo-bronchial clearance is described. Eighteen healthy subjects and 13 patients with various chronic lung diseases were studied by this method. The principle of using an aerosol administration system similar to the system used for routine ventilation lung studies is stressed. Proximal large airway deposition of the radioaerosol was obtained by using relatively large particles (average diameter 2 microM) of (99mTc)MAA aerosol. Monitoring was performed by visual inspection of the tracheo-bronchial cinescintigraphic ascendence of the accumulated radioactive boli and by assessing their rate of clearance via automated computer analysis of the time-activity curves, following the movement of each bolus. The normal mean +/- s.d. clearance rate thus obtained was 4.7 +/- 1.3 mm/min. This rate appears to be more precise as compared with the range of results obtained by other radioisotopic methods. Significantly faster rates, mean 8.2 +/- 1.4 mm/min (p less than 0.001) were obtained in bronchiectatic patients while slower rates (2.8 mm/min) were seen in a patient with ciliary dyskinesia.

  18. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  19. Analysis and Monitoring of the Spatio-temporal Aerosol Patterns over Bangladesh

    NASA Astrophysics Data System (ADS)

    Mamun, M.; Islam, M.

    2012-12-01

    Nowadays climate change is the burning issue and atmospheric aerosols are vital parameter of the global climate system. So, atmospheric aerosols are one of the hot topics for present scientific research. Most remote sensing methods retrieve aerosol optical depth (AOD) to assess the aerosols and their various effects on environmental and climate system. However, there is lack of studies dealing with monitoring of aerosol patterns over Bangladesh. In this research, we have analyzed the spatial and temporal variations in aerosol load over Bangladesh, using MODerate resolution Imaging Spectroradiometer (MODIS) Level 3 remote sensing data. A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to generate a backward trajectory in order to identify the origins of air masses, with the aim of understanding these spatial and temporal variabilities in aerosol concentrations. During the last decade, AODs have increased across Bangladesh and revealed a higher AOD concentration in western part but a much cleaner environment in eastern part. An assessment of monthly mean variations in AOD has exhibited maximum AODs in June and minimum AODs in October. Looking over seasonal variations during the last decade over Bangladesh showed maximum AOD values during the summer, while minimum AOD values showed during the post monsoon also an evidence of a decreasing AOD trend showed during the monsoon can be owing to an increase in monsoonal rainfall in Bangladesh, while all other seasons showed increasing trends. Northwestern part of Bangladesh has showed at the top of AOD concentration in winter season during the year 2010. Dense fog activities in northern part of Bangladesh may be the causes of this high AOD distribution. We also documented, the regional AOD variations over seven different divisions of Bangladesh, for which Dhaka and Sylhet divisions showed decreasing trends where all others showed increasing trends. Annual mean AODs have highest levels in

  20. Field test of a new instrument to measure UV/Vis (300-700 nm) ambient aerosol extinction spectra in Colorado during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Dibb, J. E.; Greenslade, M. E.; Martin, R.; Scheuer, E. M.; Shook, M.; Thornhill, K. L., II; Troop, D.; Winstead, E.; Ziemba, L. D.

    2014-12-01

    An optical instrument has been developed to investigate aerosol extinction spectra in the ambient atmosphere. Based on a White-type cell design and using a differential optical approach, aerosol extinction spectra over the 300-700 nm ultraviolet and visible (UV/Vis) wavelength range are obtained. Laboratory tests conducted at NASA Langley Research Center (NASA LaRC) in March 2014 showed good agreement with Cavity Attenuated Phase Shift (CAPS PMex, Aerodyne Research) extinction measurements (at 450, 530, and 630 nm) for a variety of aerosols, e.g., scatterers such as polystyrene latex spheres and ammonium sulfate; absorbers such as dust (including pigmented minerals), smoke (generated in a miniCAST burning propane) and laboratory smoke analogs (e.g., fullerene soot and aquadag). The instrument was field tested in Colorado in July and August 2014 aboard the NASA mobile laboratory at various ground sites during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. A description of the instrument, results from the laboratory tests, and summer field data will be presented. The instrument provides a new tool for probing in situ aerosol optical properties that may help inform remote sensing approaches well into the UV range.

  1. Monitoring of urban air pollution from MODIS and AERONET Aerosol Optical Thickness (AOT) data

    NASA Astrophysics Data System (ADS)

    Tijani, K.; Chiaradia, M.; Guerriero, L.; Pasquariello, G.; Morea, A.; Nutricato, R.; Preziosa, G.

    2012-12-01

    Air pollution, caused by fuel industries and urban traffic and its environmental impact, are of considerable interest to studies in air quality. In this paper, the monitoring of the air pollution over urban areas in Italy through Aerosol Optical Thickness (AOT) data retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements is presented. The high spatio-temporal frequency of MODIS AOT products (twice per day at 470nm, 1km full resolution) demonstrates that this satellite can be potentially used to routinely monitor the air pollution over land, especially urban area, which is the main source of aerosol particles. In this work AOT data derived by MODIS from November 2010 to February 2011 (winter period) and from May 2011 to August 2011 (summer period) were compared with AOT measurements from 6 different Aerosol Robotic Network (AERONET) stations over Italy (Bari, Lecce, Roma, Ispra, Potenza, Etna). The statistical analysis shows a good agreement between the ground based AOT measurements and the values retrieved using space based sensors, as shown in Figure 1. For all the stations the mean error is negligible, with a correlation ranging from 0.725 (in the worst case) to 0.96 (see Table 1). Moreover, LANDSAT-panchromatic images were used to discriminate urban and rural areas, based on the typical finger-like projections of urban land uses. The results of this study will be presented and commented. Acknowledgements This work was funded by Apulian Region in the framework of the ECOURB project. (Analisi e Modelli di inquinamento atmosferico e termico per sistemi di ECOlabeling URBano, 2009-2012). Figure 1: Scatter plot between AOT derived from MODIS and AERONET for Lecce City in summer period from May 2011 to August 2011. Y = - 0.023+0.86x (fit) ; Table 1: Statistical Analysis Report on the difference between AOT derived from MODIS and AERONET from May 2011 to August 2011 (summer period) for 6 different Aerosol Robotic Network (AERONET) stations

  2. Monitoring pavement response and performance using in-situ instrumentation

    SciTech Connect

    Chen, D.H.; Bilyeu, J.; Hugo, F.

    1999-07-01

    The purpose of this paper is to present the effectiveness of in-situ instrumentation on diagnosing the pavement layer conditions under full-scale accelerated traffic loading. The test section is an in-service pavement (US281) in Jacksboro, Texas. Multi-Depth Deflectometers (MDDs) are used to measure both permanent deformations and transient deflections, caused by accelerated traffic loading and Falling Weight Deflectometers (MDDs) are used to measure both permanent deformations and transient deflections, caused by accelerated traffic loading and Falling Weight Deflectometer (FWD) tests. Four different FWD loads of 25, 40, 52, and 67 kN were applied in close proximity to the MDDs at various traffic loading intervals to determine pavement conditions. It was found that the majority of rutting occurred in the newly recycled asphalt mix. The aged ({gt}40 years) underlying base and subgrade layers contributed less than 30% to overall rutting. Only the top recycled Asphalt layer underwent notable deterioration due to traffic loading. Up to 1.5 million axle repetitions, the test pad responded to FWD load almost linearly, not only over the whole pavement system but also within individual layers. However, under higher FWD loads, the percentage of total deflection contributed by the subgrade increased.

  3. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    SciTech Connect

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-12-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorption of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.

  4. Instrumentation for durability monitoring of a long-span cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Hua, X. G.; Ni, Y. Q.; Zhou, H. F.; Ko, J. M.

    2005-05-01

    This paper outlines the design of an instrumentation system for durability monitoring of the world's longest cable-stayed bridge: the Sutong Bridge with a central span of 1088 m. As part of the Structural Health Monitoring And Safety Evaluation System (SHMASES) for the Sutong Bridge, the durability monitoring system is designed to monitor the corrosion in reinforced concrete structures. The sensors for durability monitoring include two categories. The first category refers to the sensors to monitor the causes leading to corrosion, such as temperature and relative humidity. The second category is electrode assemblies which are used to monitor the end results of corrosion. Data from the sensory system are then periodically collected using a portable or remotely computerized data acquisition system. The collected data from this system will provide useful information on maintenance and repair of concrete structures, and are envisaged to be incorporated into the reliability-based safety evaluation system developed for the Sutong Bridge

  5. Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011.

    PubMed

    Kanai, Yutaka

    2012-09-01

    Artificial radionuclides were released into the atmosphere by the Fukushima Dai-ichi Nuclear Power Plant incident after a strong earthquake on 11 March 2011. Aerosol monitoring at the Geological Survey of Japan, Tsukuba, was started 20 d after the incident. Radionuclides such as (99)Mo/(99m)Tc, (132)Te/(132)I, (129 m)Te/(129)Te, (131)I, (137)Cs, (136)Cs, (134)Cs, (140)Ba/(140)La, (110 m)Ag, and (95)Nb were observed and, with the exception of (137)Cs and (134)Cs, these radionuclides decreased to below the limit of detection in the middle of June. The activity ratio of atmospheric (134)Cs/(137)Cs in aerosols decreased over time almost following physical decays. Therefore, the (134)Cs/(137)Cs activity ratio in the averaged air mass in this study could be regarded as homogeneous although those of several reactors in the Nuclear Power Plant were not ascertained. A further research on the released (137)Cs and (134)Cs would be necessary for the sedimentology of lake sediment.

  6. Evaluation and field calibration of the Miniram PDM-3 aerosol monitor for measuring respirable and total coal dust.

    PubMed

    Middendorf, P J; Lehocky, A H; Williams, P L

    1999-01-01

    The MIE Miniram PDM-3 is a real-time aerosol dust monitor designed to measure dust based on Mie scattering. It has an optional in-line filter that, when attached to a constant flow air sampling pump, allows a gravimetric air sample to be collected from the same air stream that passes through the Miniram sensing chamber. This study compared real-time Miniram digital respirable and total dust readings with concentrations from an in-line 5 microns polyvinyl chloride filter connected to a constant flow pump and with results from traditional respirable and total dust samples. Area samples were collected at three coal-fired power generating facilities over a 2-month period. Traditional respirable dust concentrations ranged from 0.04 to 10.8 mg/m3. In the monitored range of concentrations the Miniram respirable concentrations and the in-line respirable dust concentrations were not significantly different (p > or = 0.05), nor were the Miniram in-line filter concentrations and the side-by-side respirable dust concentrations significantly different (p > or = 0.05). However, the Miniram respirable concentrations and the traditional respirable concentrations were significantly different (p = 0.02). The Statistical Analysis System (SAS) procedure CALIS, which meets the statistical requirements for developing calibration lines for two variables each measured with error, is used to develop field calibration curves for the comparisons between direct-reading instrument concentrations and concentrations from traditional National Institute for Occupational Safety and Health methods for total and respirable dust.

  7. Development of a Distributed In Situ Instrument for Snowpack Monitoring

    NASA Astrophysics Data System (ADS)

    Skalka, C.; Frolik, J.; Walker, M. J.; Moeser, C. D.

    2009-12-01

    Wireless sensor networks (WSNs) are formed by micro-stations, each of which can be deployed independently to characterize spatially distributed variables, such as snow water equivalent (SWE). Snowcloud is a novel WSN-based system featuring application specific technologies specialized for studying variations in snowpack in harsh alpine environments. The Snowcloud WSN system makes use of low-cost, very portable hardware architectures. Unlike fixed based data acquisition systems, Snowcloud can be easily repositioned to gather intensive information about specific locations, and the low cost allows more data points to be monitored. Power consumption in Snowcloud is regulated by a network software protocol that optimizes both radio and sensor actuation, extending operating life. Snowcloud also exploits a multi-tiered architecture to provide data reliability despite traditional volatility of WSN nodes. This includes in-network data replication, and an on-site "smart" network gateway allowing remote data retrieval over cell- or radio-modem while buffering data on local massive storage in case of modem failure. Snowcloud complements information about snowpack depth and SWE currently collected from fixed-base systems, such as the 750 SNOTEL sites that form the primary network for water supply forecasting in the western United States, and data collected manually from snow courses. Snowcloud is particularly useful for temporary seasonal deployment in steep alpine environments or areas with landcover (such as forested areas) that inhibits acquisition of snowpack information by fixed-base stations, manual surveys and satellites. The highly portable framework of Snowcloud creates an ideal utility for augmenting manual measurements in areas that have established snow courses and in areas that are excessively difficult or dangerous to measure manually. Snowcloud is also useful for enhancing SWE approximations at basin scales. SWE is highly variable spatially and temporally and

  8. Condensation Particle Counter Instrument Handbook

    SciTech Connect

    Kuang, C.

    2016-02-01

    The Model 3772 CPC is a compact, rugged, and full-featured instrument that detects airborne particles down to 10 nm in diameter, at an aerosol flow rate of 1.0 lpm, over a concentration range from 0 to 1x104 #/cc. This CPC is ideally suited for applications without high concentration measurements, such as basic aerosol research, filter and air-cleaner testing, particle counter calibrations, environmental monitoring, mobile aerosol studies, particle shedding and component testing, and atmospheric and climate studies.

  9. Ion and aerosol precursor densities in Titan's ionosphere: A multi-instrument case study

    NASA Astrophysics Data System (ADS)

    Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Andrews, D. J.; Vigren, E.; Desai, R. T.; Coates, A. J.; Mandt, K. E.; Waite, J. H.

    2016-10-01

    The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below 1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere (ne/ni ≤ 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (ne/ni < 0.5 at 1000 km altitude). The average charge of the dust grains (≥1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.

  10. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  11. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  12. An Overview of Striking Scientific Applications of Nitrogen Dioxide Retrievals from the Ozone Monitoring Instrument Between 2004 and 2014

    NASA Astrophysics Data System (ADS)

    Boersma, K. F.

    2014-12-01

    Nitrogen oxides are involved in many atmospheric processes relevant to air pollution, climate change, and environmental stress. Gaseous nitrogen oxides are toxic, regulated by regional authorities and the WHO, and their emissions and chemistry are important for the formation of ozone and aerosols. Nitrogen oxides are thought to act as a net climate cooler, mostly via enhancing the oxidative capacity of the global troposphere resulting in CH4 lifetime reductions, and via the formation of light-scattering particles. In this paper I will discuss how tropospheric NO2 column retrievals from the Ozone Monitoring Instrument on board EOS-Aura have pushed the envelope in various scientific applications over the last decade. A categorization of these applications shows that OMI NO2 data have been used for (1) high-resolution monitoring of NOx emissions, (2) monitoring trends in NO2 air pollution levels, (3) evaluating mid-day NOx chemistry, (4) evaluating secondary pollutant formation, (5) estimating surface NO2 concentrations, (6) improving forecasting skills of air quality and chemistry transport models, (7) estimating nitrogen deposition to ecosystems, and (8) outreach activities to the general public. I will show some intriguing examples of the above applications, and pay close attention to the steps necessary to arrive at these successful applications. These steps include advanced filtering of the data for e.g. wind direction or speed, spatial pattern recognition to isolate specific emission categories, and more generally improving the description of NOx emission categories and chemistry in models at spatial and temporal scales relevant to OMI and upcoming TROPOMI and geostationary sensors.

  13. Applications of UV Scattering and Absorbing Aerosol Indices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Beirle, S.; Wagner, T.

    2009-04-01

    Aerosols cause a substantial amount of radiative forcing, but quantifying this amount is difficult: determining aerosol concentrations in the atmosphere and, especially, characterizing their (optical) properties, has proved to be quite a challenge. A good way to monitor aerosol characteristics on a global scale is to perform satellite remote sensing. Most satellite aerosol retrieval algorithms are based on fitting of aerosol-induced changes in earth reflectance, which are usually subtle and have a smooth wavelength dependence. In such algorithms certain aerosol models are assumed, where optical parameters such as single scattering albedo, asymmetry parameter and size parameter (or Angstrom exponent) are defined. Another, semi-quantitative technique for detecting aerosols is the calculation of UV Aerosol Indices (UVAI). The Absorbing and Scattering Aerosol Indices detect "UV-absorbing" aerosols (most notably mineral dust, black and brown carbon particles) and "scattering" aerosols (sulfate and secondary organic aerosol particles), respectively. UVAI are essentially a measure of the contrast between two wavelengths in the UV range. The advantages of UVAI are: they can be determined in the presence of clouds, they are rather insensitive to surface type, and they are very sensitive to aerosols. The Absorbing Aerosol Index (AAI) has been in use for over a decade, and the Scattering Aerosol Index (SAI) was recently introduced by our group. Whereas the AAI is mainly used to detect desert dust and biomass burning plumes, the SAI can be used to study regions with high concentrations of non-absorbing aerosols, either anthropogenic (e.g. sulfate aerosols in eastern China) or biogenic (e.g. secondary organic aerosols formed from VOCs emitted by plants). Here we will present our recent UVAI results from SCIAMACHY: we will discuss the seasonal trend of SAI, and correlate our UVAI data with other datasets such as trace gases (HCHO, NO2, CO) and fire counts from the (A

  14. Instrumentation for controlling and monitoring environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Advanced Instrumentation concepts for improving performance of manned spacecraft Environmental Control and Life Support Systems (EC/LSS) have been developed at Life Systems, Inc. The difference in specific EC/LSS instrumentation requirements and hardware during the transition from exploratory development to flight production stages are discussed. Details of prior control and monitor instrumentation designs are reviewed and an advanced design presented. The latter features a minicomputer-based approach having the flexibility to meet process hardware test programs and the capability to be refined to include the control dynamics and fault diagnostics needed in future flight systems where long duration, reliable operation requires in-flight hardware maintenance. The emphasis is on lower EC/LSS hardware life cycle costs by simplicity in instrumentation and using it to save crew time during flight operation.

  15. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES)

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.

    2002-01-01

    Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.

  16. Overview of atmospheric aerosol studies in Malaysia: Known and unknown

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi Devi; Kaskaoutis, Dimitris G.; San Lim, Hwee; Latif, Mohd Talib; Kamarul Zaman, Nurul Amalin Fatihah; Liew, Juneng

    2016-12-01

    Atmospheric aerosols particularly those originated from anthropogenic sources can affect human health, air quality and the regional climate system of Southeast Asia (SEA). Population growth, and rapid urbanization associated with economic development in the SEA countries including Malaysia have resulted in high aerosol concentrations. Moreover, transboundary smoke plumes add more aerosols to the atmosphere in Malaysia. Nevertheless, the aerosol monitoring networks and/or field studies and research campaigns investigating the various aerosol properties are not so widespread over Malaysia. In the present work, we summarize and discuss the results of previous studies that investigated the aerosol properties over Malaysia by means of various instrumentation and techniques, focusing on the use of remote sensing data to examine atmospheric aerosols. Furthermore, we identify gaps in this research field and recommend further studies to bridge these knowledge gaps. More specifically gaps are identified in (i) monitoring aerosol loading and composition over urban areas, (ii) examining the influence of dust, (iii) assessing radiative effects of aerosols, (iv) measuring and modelling fine particles and (v) quantifying the contribution of long range transport of aerosols. Such studies are crucial for understanding the optical, physical and chemical properties of aerosols and their spatio-temporal characteristics over the region, which are useful for modelling and prediction of aerosols' effects on air quality and climate system.

  17. Design of a new comprehensive continuous monitoring system for environmental radioactive aerosol.

    PubMed

    Xu, Hongkun; Huang, Zihan; Wang, Ge; Mu, Changli; Yin, Yin

    2017-02-01

    In order to comprehensive monitoring the radioactive isotopes from nuclear facilities, we developed a dual channel spectral monitoring instrument, and realized synchronous measurement for alpha, beta and gamma radionuclides. This article focuses on how to ensure its accuracy, stability and efficiency. First is the accuracy. In order to lower the interference of environmental and detector performance variation, the zero phase shift filter was designed to ensure the accuracy of characteristic peak position. Lorenz fitting algorithm was designed to reduce the effect of spectral low-energy tailing. Multi thread processing was introduced to ensure that there was sufficient time to complete our complex algorithms. Second is the stability. The complicated measuring process was decomposed into several sub-states. A state monitoring method was set up to timely dispose the abnormal operation. Third is the efficiency. Sampling process and measurement process were designed in synchronous to save monitoring time, which is especially useful for environmental low level radioactive monitoring. Continuous test for seven days shows that the detection limit is less than 0.0003Bq/m(3) for U, (239)Pu, and less than 0.048Bq/m(3) for beta and (137)Cs.

  18. Optical instrumentation systems for environmental and structural health monitoring based on the molecular condensation nuclei (MCN) detector

    NASA Astrophysics Data System (ADS)

    Kuptsov, Vladimir D.; Katelevsky, Vadim Ya.; Valyukhov, Vladimir P.; Aladov, Andrei V.

    2016-04-01

    The foundation of measurement systems for environmental and structural health monitoring based on molecular condensation nuclei (MCN) detector is the measurement of the intensity of light scattered by aerosol particles. Aerosol particles are formed in the condensation chamber around single molecules of detected impurities (harmful and dangerous substances in the case of environmental monitoring and biomarkers in the case of structural health monitoring). The size of an aerosol particle is about 106 times larger than the size of the original impurity molecule. The ability of the aerosol particle to scatter incident light also increases 1014÷1016 times compared with the original molecule. By measuring the light scattering intensity the concentration of chemical impurities in the air is determined. The paper investigates many aspects of the detection process - the optical scattering by aerosol particles inside the photometer of MCN detector; signal conditioning, processing of light scattering measurements results, determination of the criteria for making a decision about the presence of detected impurities in the environment; multi-component sensing of detected impurities and graphical user interface design. Experimental results of the detection of toxic substances in micro-concentrations in the environment are presented.

  19. Underground Fiber-Optic Differential Absorption Instrument for Monitoring Carbon Dioxide Soil Gas Concentrations for Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Humphries, S. D.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2007-12-01

    The burning of fossil fuels has resulted in higher carbon dioxide (CO2) concentrations in the atmosphere with potential impacts on the Earth's climate. The use of fossil fuels is predicted to grow over the next several decades with the potential for further increasing the atmospheric concentration of CO2. A proposed method of diminishing the impacts of increased CO2 on the Earth's climate is to capture and store the CO2 in geologic storage sites. One issue with underground sequestration of CO2 is the ability to monitor sequestration sites to verify the integrity of the storage of the CO2. An underground fiber optic differential absorption instrument based on a tunable distributed feedback (DFB) diode laser is being developed at Montana State University to detect small changes in CO2 soil gas concentration in an effort to monitor the overall integrity of the sequestration storage site. The fiber optic instrument exploits the 2003-2006 nm region of the spectrum which contains four CO2 absorption lines. Light from the DFB laser is delivered to an underground absorption cell one meter in length via a single mode optical fiber. The normalized transmission is measured by tuning the DFB diode laser across these four absorption lines and the results are used to determine the CO2 soil gas concentration. A description of this instrument will be presented including the instrument design, operation, and performance characteristics. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. Two release experiments were performed this past summer with flow rates of 0.1 and 0.3 tons CO2/day. The first release experiment lasted ten days while the second release lasted seven days. Measurements taken with the

  20. Aerosol generation and measurement of multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Myojo, Toshihiko; Oyabu, Takako; Nishi, Kenichiro; Kadoya, Chikara; Tanaka, Isamu; Ono-Ogasawara, Mariko; Sakae, Hirokazu; Shirai, Tadashi

    2009-01-01

    Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment. In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments. A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2 to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT fibers were 4-6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study.

  1. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Aben, I.; Tol, P.; Krijger, J. M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J.

    2015-03-01

    Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675-775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning.

  2. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  3. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGES

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  4. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  5. 47 CFR 1.549 - Requests for extension of authority to operate without required monitors, indicating instruments...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Requests for extension of authority to operate without required monitors, indicating instruments, and EBS Attention Signal devices. 1.549 Section 1.549... required monitors, indicating instruments, and EBS Attention Signal devices. See § 73.3549....

  6. Instrument Description: The Total Solar Irradiance Monitor on the FY-3C Satellite, an Instrument with a Pointing System

    NASA Astrophysics Data System (ADS)

    Wang, Hongrui; Wang, Yupeng; Ye, Xin; Yang, Dongjun; Wang, Kai; Li, Huiduan; Fang, Wei

    2017-01-01

    The Total Solar Irradiance Monitor (TSIM) onboard the nadir Feng Yun-3C (FY-3C) satellite provides measurements of the total solar irradiance with accurate solar tracking and sound thermal stability of its heat sink. TSIM/FY-3C mainly consists of the pointing system, the radiometer package, the thermal control system, and the electronics. Accurate solar tracking is achieved by the pointing system, which greatly improves the science data quality when compared with the previous TSIM/FY-3A and TSIM/FY-3B. The total solar irradiance (TSI) is recorded by TSIM/FY-3C about 26 times each day, using a two-channel radiometer package. One channel is used to perform routine observation, and the other channel is used to monitor the degradation of the cavity detector in the routine channel. From the results of the ground test, the incoming irradiance is measured by the routine channel (AR1) with a relative uncertainty of 592 ppm. A general description of the TSIM, including the instrument modules, uncertainty evaluation, and its operation, is given in this article.

  7. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  8. Laser Based Instruments Using Differential Absorption Detection for Above and Below Ground Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Barr, J. L.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2008-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. A field experiment was conducted at the ZERT field site beginning July 9th, 2008 and ending August 7th, 2008 to test the performance of several CO2 detection instruments. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. A flow rate of 0.3 tons CO2/day was used for the entirety of this experiment. This paper describes the results from two laser based instruments that use differential absorption techniques to determine CO2 concentrations in real time both above and below the ground surface. Both instruments use a continuous wave (cw) temperature tunable distributed feedback (DFB) laser capable of tuning across several CO2 and water vapor absorption features between at 2003 nm and 2006 nm. The first instrument uses the DFB laser to measure path integrated atmospheric concentrations of CO2. The second instrument uses the temperature tunable DFB laser to monitor underground CO2 concentrations using a buried photonic bandgap optical fiber. The above ground instrument operated nearly continuously during the CO2 release experiment and an increase in atmospheric CO2 concentration above the release pipe of approximately 2.5 times higher than the background was observed. The underground instrument also operated continuously during the experiment and saw an increase in underground CO2 concentration of approximately 15 times higher than the background. These results from the 2008 ZERT field experiment demonstrate

  9. ESYRO Lidar system developments for troposphere monitoring of aerosols and clouds properties

    NASA Astrophysics Data System (ADS)

    Tudose, Ovidiu-Gelu; Cazacu, Marius-Mihai; Timofte, Adrian; Balin, Ioan

    2011-11-01

    Aiming the remote sensing low cost, up-gradable and modular tools development for monitoring relevant atmospheric parameters and processes in the whole troposphere (from 250 m to 12-15 Km altitude), a new configuration LIDAR system, i.e. ESYROLIDAR, dedicated for tropospheric aerosols and clouds high temporal (minutes) and spatial resolutions (meters) monitoring have been developed and tested. This extremely up-gradable configuration of ESYROLIDAR is based on: a multi -wavelengths (1064, 532 and 355 nm) powerful (200, 100 and 45 mJ/pulse) and relatively high variable repetition rate (up to 30 Hz) Nd:YAG pulsed laser, a large Newtonian telescope (40 cm diameter of collector mirror) and a new opto-mechanics detection module built in an original "eye geometry" consideration. The firsts tests and measurements were performed at the site of Science and Technology Park TehnopolIS (Iasi city located on the northeastern region of Romania), using a basic configuration with a 532 nm elastic detection with depolarization study module. Different types of clouds up to 12 km in daylight are highlighted from this first measurement. Measurements and tests made in other recent campaigns for 355 nm elastic channel are also presented. The ability of the new LIDAR system to determine the height of planetary boundary layer (PBL) determined from the LIDAR signals, as well as the aerosols load and optical parameters (extinction and backscatter) and the evaluation of atmospheric dynamics at high spatial-temporal resolutions are clearly confirmed. This paper presents the ESYROLIDAR basic configuration with its two VIS elastic channels (532 nm, parallel and cross). The first measurements made with the UV (355 nm - interchangeable channel) and VIS (532 nm) elastic channels are illustrated by typical examples. The quality of ESYROLIDAR atmospheric profiles is based on advantages of low divergence (0.15 mrad), relatively high repetition rate (30 Hz) and the coaxial UV-VIS-NIR .The present

  10. Monitoring Indicators of Scholarly Language: A Progress-Monitoring Instrument for Measuring Narrative Discourse Skills

    ERIC Educational Resources Information Center

    Gillam, Sandra Laing; Gillam, Ronald B.; Fargo, Jamison D.; Olszewski, Abbie; Segura, Hugo

    2017-01-01

    The purpose of this study was to assess the basic psychometric properties of a progress-monitoring tool designed to measure narrative discourse skills in school-age children with language impairments (LI). A sample of 109 children with LI between the ages of 5 years 7 months and 9 years 9 months completed the "Test of Narrative Language"…

  11. Automated Identification of Volcanic Plumes using the Ozone Monitoring Instrument (OMI)

    NASA Astrophysics Data System (ADS)

    Flower, V. J. B.; Oommen, T.; Carn, S. A.

    2015-12-01

    Volcanic eruptions are a global phenomenon which are increasingly impacting human populations due to factors such as the extension of population centres into areas of higher risk, expansion of agricultural sectors to accommodate increased production or the increasing impact of volcanic plumes on air travel. In areas where extensive monitoring is present these impacts can be moderated by ground based monitoring and alert systems, however many volcanoes have little or no monitoring capabilities. In many of these regions volcanic alerts are generated by local communities with limited resources or formal communication systems, however additional eruption alerts can result from chance encounters with passing aircraft. In contrast satellite based remote sensing instruments possess the capability to provide near global daily monitoring, facilitating automated volcanic eruption detection. One such system generates eruption alerts through the detection of thermal anomalies, known as MODVOLC, and is currently operational utilising moderate resolution MODIS satellite data. Within this work we outline a method to distinguish SO2 eruptions from background levels recorded by the Ozone Monitoring Instrument (OMI) through the identification and classification of volcanic activity over a 5 year period. The incorporation of this data into a logistic regression model facilitated the classification of volcanic events with an overall accuracy of 80% whilst consistently identifying plumes with a mass of 400 tons or higher. The implementation of the developed model could facilitate the near real time identification of new and ongoing volcanic activity on a global scale.

  12. A new code for spectrometric analysis for environmental radiological surveillance on monitors focused on gamma radioactivity on aerosols

    SciTech Connect

    De Blas, Alfredo; Tapia, Carlos; Riego, Albert; Garcia, Roger; Dies, Javier; Diaz, Pedro; Toral, Juan; Batalla, Enric

    2015-07-01

    pGamma is a code developed by the NERG group of the Technical University of Catalonia - Barcelona Tech for the analysis of gamma spectra generated by the Equipment for the Continuous Measurement and Identification of Gamma Radioactivity on Aerosols with Paper Filter developed for our group and Raditel Servies company. Nowadays the code is in the process of adaptation for the monitors of the Environmental Radiological Surveillance Network of the Local Government of Catalonia (Generalitat of Catalonia), Spain. The code is a Spectrum Analysis System, it identifies the gamma emitters on the spectrum, determines its Concentration of Activity, generates alarms depending on the Activity of the emitters and generates a report. The Spectrum Analysis System includes a library with emitters of interest, NORM and artificial. The code is being used on the three stations with the aerosol monitor of the Network (Asco and Vandellos, near both Nuclear Power Plants and Barcelona). (authors)

  13. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  14. An instrument system for monitoring and sampling suspended sediment in the benthic boundary layer

    USGS Publications Warehouse

    Sternberg, R.W.; Johnson, R.V.; Cacchione, D.A.; Drake, D.E.

    1986-01-01

    An instrument system has been constructed that can monitor and sample suspended sediment distributions in the benthic boundary layer. It consists of miniature nephelometers and suspended sediment samplers placed within one meter of the seabed. The system is capable of continuously monitoring suspended sediment profiles at eight levels between 14 and 100 cm above the seabed and collecting suspended sediment samples at four levels (20, 50, 70 and 100 cm) at three times during a deployment period. The suspended sediment system is designed to fit onto the instrumented tripod GEOPROBE which contains four electromagnetic current meters, pressure sensor, bottom stereo camera, two temperature sensors, transmissometer, and a Savonius rotor current meter. Sensor operation, data recording, and sediment sampling events are synchronized. Thus detailed measurements of the near-bottom flow conditions are made concurrently with suspended sediment measurements. The combined system has been used in sediment transporting environments within San Francisco Bay, California, and Puget Sound, Washington. ?? 1986.

  15. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    NASA Astrophysics Data System (ADS)

    Coggiola, M. J.; Becker, C. H.; Witham, C. L.

    1994-10-01

    An instrument is being developed that will be capable of providing real-time (less than 1 minute), quantitative, chemical analysis of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument can detect and identify volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup. It consists of an isokinetic sampler operable up to 500 K and wide flow rate range, a high- to low-pressure transition and sampling region separating particles from vapors for separate analysis, two small mass spectrometers (one for organic analysis by field ionization and one for particulate analysis by thermal pyrolysis and electron-impact ionization), and a powerful PC for control/data acquisition. Initially, the instrument will used with the K-1435 Toxic Substances Control Act (TSCA) incinerator at K-25; other applications are also possible, e.g., vitrification monitoring, storage tank offgassing analysis, etc. It will be easily transportable.

  16. Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Shettle, Eric P.; Levelt, Pieternel F.; Kowalewski, Matthew G.

    2010-01-01

    Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis.

  17. Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Parlange, Marc

    2013-04-01

    A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.

  18. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-06-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first CEAS detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. A further innovation consists in the measurement of extinction losses from the cavity, e.g. due to aerosols, at two wavelengths by observing O4 (477 nm) and H2O (443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7×10-7 cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement in open cavity mode (mirrors facing the open atmosphere), and eliminates the need for sampling lines to supply air to the cavity, and/or keep the cavity enclosed and aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction at 477 nm and 443 nm. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation

  19. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Cowen, K.; Kelly, T.; Hanft, E.; Mishoe, K.; Rogers, C.; Proost, R.; Lear, G.; Frelink, T.; Walker, J. T.

    2011-12-01

    Ambient air monitoring as part of the U.S. EPA's Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The U.S. EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to examine ecosystem exposure to nitrogen and sulfur compounds at higher time resolution and with greater accuracy than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the U.S. EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, NC from September 8th-October 8th, 2010. Precision of the MARGA was evaluated by comparing duplicate units and accuracy was evaluated by comparing duplicate MARGAs to duplicate reference denuder/filter packs. The MARGA utilizes a Wet Rotating Denuder (WRD) to collect gases, while aerosols are collected by a Steam Jet Aerosol Collector (SJAC). Both the WRD and the SJAC produce aqueous sample streams, which are analyzed by online ion chromatography for anions and cations. The reference denuder/filter pack consisted of sodium carbonate (Na2CO3) and phosphorous acid (H3PO3) coated denuders followed by a Teflon filter, a nylon filter, and a citric acid coated cellulose filter. The assessment of the MARGA units focused on gaseous SO2, HNO3 and NH3 and aerosol SO4-, NO3- and NH4+. To evaluate accuracy, hourly MARGA concentrations were averaged over 12 hours to match with 12-hour integrated concentrations from the reference system. The concentrations were compared using linear regression with performance goals of slope between 0.8-1.2 and y-intercept between -10 ppb and 10 ppb. Accuracy was further quantified as the median absolute relative percent difference (MARPD) between 12-hour MARGA and reference concentrations, with a performance goal of ≤ 40%. The precision of

  20. Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Demott, P. J.; Möhler, O.; Abbatt, J. P. D.

    2011-01-01

    The University of Toronto continuous flow diffusion chamber (UT-CFDC) was used to study heterogeneous ice nucleation at the International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS 2007) which also represented the 4-th ice nucleation workshop, on 14-28 September 2007. One goal of the workshop was to inter-compare different ice nucleation measurement techniques using the same aerosol sample source and preparation method. The aerosol samples included four types of desert mineral dust, graphite soot particles, and live and dead bacterial cells (Snomax®). This paper focuses on the UT-CFDC results, with a comparison to techniques of established heritage including the Colorado State CFDC and the AIDA expansion chamber. Good agreement was found between the different instruments with a few specific differences, especially at low temperatures, perhaps due to the variation in how onset of ice formation is defined between the instruments and the different inherent residence times. It was found that when efficiency of ice formation is based on the lowest onset relative humidity, Snomax® particles were most efficient followed by the desert dusts and then soot. For all aerosols, deposition mode freezing was only observed for T<45 K except for the dead bacteria where freezing occurred below water saturation as warm as 263 K.

  1. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-12-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7 × 10-7cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation chambers and in the open atmosphere.

  2. An online monitor of the oxidative capacity of aerosols (o-MOCA)

    NASA Astrophysics Data System (ADS)

    Eiguren-Fernandez, Arantzazu; Kreisberg, Nathan; Hering, Susanne

    2017-02-01

    The capacity of airborne particulate matter to generate reactive oxygen species (ROS) has been correlated with the generation of oxidative stress both in vitro and in vivo. The cellular damage from oxidative stress, and by implication with ROS, is associated with several common diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and some neurological diseases. Yet currently available chemical and in vitro assays to determine the oxidative capacity of ambient particles require large samples, analyses are typically done offline, and the results are not immediate.Here we report the development of an online monitor of the oxidative capacity of aerosols (o-MOCA) to provide online, time-resolved assessment of the capacity of airborne particles to generate ROS. Our approach combines the Liquid Spot Sampler (LSS), which collects particles directly into small volumes of liquid, and a chemical module optimized for online measurement of the oxidative capacity of aerosol using the dithiothreitol (DTT) assay. The LSS uses a three-stage, laminar-flow water condensation approach to enable the collection of particles as small as 5 nm into liquid. The DTT assay has been improved to allow the online, time-resolved analysis of samples collected with the LSS but could be adapted to other collection methods or offline analysis of liquid extracts.The o-MOCA was optimized and its performance evaluated using the 9,10-phenanthraquinone (PQ) as a standard redox-active compound. Laboratory testing shows minimum interferences or carryover between consecutive samples, low blanks, and a reproducible, linear response between the DTT consumption rate (nmol min-1) and PQ concentration (µM). The calculated limit of detection for o-MOCA was 0.15 nmol min-1. The system was validated with a diesel exhaust particle (DEP) extract, previously characterized and used for the development, improvement, and validation of the standard DTT analysis. The DTT consumption rates (nmol min-1

  3. Borehole Seismic Monitoring at Otway Using the Naylor-1 Instrument String

    SciTech Connect

    Daley, T.M.; Sharma, Sandeep; Dzunic, Aleksander; Urosevic, Milovan; Kepic, Anton; Sherlock, Don

    2009-06-01

    The Naylor-1 monitoring completion, a unique and innovative instrumentation package, was designed and fabricated in FY 2007 at Berkeley Laboratory. Tom Daley, Barry Freifeld and Duo Wang (all from Berkeley Lab) were on site at the Otway Project between September 26 and October 14, 2007, working with CO2CRC and their subcontractors, AGR Asia Pacific and Eastern Well Services to complete Naylor-1 and initiate baseline data collection. Figure 1 shows a schematic of Naylor-1's sensor layout. There are three U-tube geochemical samplers, with one located near the top of the residual CH{sub 4} gas cap and two located beneath the gas-water contact. The 21 geophones are used for performing three distinct seismic measurements, high resolution travel time (HRTT), walkaway vertical seismic profiling (WVSP), and microseismic monitoring. These activities are separated in to active source seismic and microseismic monitoring, and will be described separately.

  4. Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    2002-12-01

    A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.

  5. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  6. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; de Graaf, M.; Stammes, P.

    2012-10-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.

  7. Novel Technique for Monitoring the Performance of the LAT Instrument on Board the GLAST Satellite

    SciTech Connect

    Paneque, D.; Borgland, A.; Bovier, A.; Bloom, E.; Edmonds, Y.; Funk, S.; Godfrey, G.; Rando, R.; Wai, L.; Wang, P.

    2007-06-13

    The Gamma-ray Large Area Space Telescope (GLAST) is an observatory designed to perform gamma-ray astronomy in the energy range 20 MeV to 300 GeV, with supporting measurements for gamma-ray bursts from 10 keV to 25 MeV. GLAST will be launched at the end of 2007, opening a new and important window on a wide variety of high energy astrophysical phenomena . The main instrument of GLAST is the Large Area Telescope (LAT), which provides break-through high-energy measurements using techniques typically used in particle detectors for collider experiments. The LAT consists of 16 identical towers in a four-by-four grid, each one containing a pair conversion tracker and a hodoscopic crystal calorimeter, all covered by a segmented plastic scintillator anti-coincidence shield. The scientific return of the instrument depends very much on how accurately we know its performance, and how well we can monitor it and correct potential problems promptly. We report on a novel technique that we are developing to help in the characterization and monitoring of LAT by using the power of classification trees to pinpoint in a short time potential problems in the recorded data. The same technique could also be used to evaluate the effect on the overall LAT performance produced by potential instrumental problems.

  8. Monitoring the environmental impact of aerosol loading and dispersion from distinct industrial sources in Cubatao, Brazil, using a scanning lidar

    NASA Astrophysics Data System (ADS)

    da Costa, Renata F.; Marques, Márcia Talita Amorim; Lopes, Daniel Silveira; Guardani, Maria Lucia Goncalves; Macedo, Fernanda d. M.; Landulfo, Eduardo; Guardani, Roberto

    2016-10-01

    This paper reports the results of campaigns carried out with a scanning lidar system in an industrial area for monitoring the spatial distribution of atmospheric aerosol. The aim of the study was to verify the possibility of applying a lidar system to identify fixed sources of aerosol emission, as well as to monitor the dispersion of the emitted plume, and the ability of the system to evaluate pertinent properties of the suspended particles, such as particle number concentration and representative particle size. The data collection was carried out with a scanning backscatter lidar system in the biaxial mode with a three-wavelength light source, based on a commercial Nd:YAG laser, operating at 355 nm, 532 nm, and 1064 nm. The campaigns were carried out in an industrial site close to the city of Cubatao, Brazil, 23° 53' S and 46° 25' W, one of the largest industrial sites of the Country, comprising a steel plant, two fertilizer complexes, a cement plant and a petrochemical complex. Backscattered light intensity plots were made from the primary data collected via 360-degree scans at 15 degree elevation. The collected data correspond to distances ranging from 200 m to 1500 m from the measurement location. The results indicate that the technique can provide valuable information on the spatial and temporal distribution of aerosol concentration in the area, which therefore can represent a valuable tool in source apportionment and to validate plume dispersion models.

  9. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information

  10. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  11. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    DTIC Science & Technology

    2012-09-30

    framework for considering current and future satellite aerosol products. 2 . Develop forward models to enable a radiance assimilation capability by: 1...improving forecast performance over cloudy regions using the Ozone Monitoring Instrument (OMI) Aerosol Index; and 2 ) preparing for the post-MODIS... 2 . REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Improving Aerosol and Visibility Forecasting Capabilities Using Current and

  12. Raman Spectroscopy for In-Line Water Quality MonitoringInstrumentation and Potential

    PubMed Central

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  13. Advanced earthquake monitoring system for U.S. Department of Veterans Affairs medical buildings--instrumentation

    USGS Publications Warehouse

    Kalkan, Erol; Banga, Krishna; Ulusoy, Hasan S.; Fletcher, Jon Peter B.; Leith, William S.; Reza, Shahneam; Cheng, Timothy

    2012-01-01

    In collaboration with the U.S. Department of Veterans Affairs (VA), the National Strong Motion Project (NSMP; http://nsmp.wr.usgs.gov/) of the U.S. Geological Survey has been installing sophisticated seismic systems that will monitor the structural integrity of 28 VA hospital buildings located in seismically active regions of the conterminous United States, Alaska, and Puerto Rico during earthquake shaking. These advanced monitoring systems, which combine the use of sensitive accelerometers and real-time computer calculations, are designed to determine the structural health of each hospital building rapidly after an event, helping the VA to ensure the safety of patients and staff. This report presents the instrumentation component of this project by providing details of each hospital building, including a summary of its structural, geotechnical, and seismic hazard information, as well as instrumentation objectives and design. The structural-health monitoring component of the project, including data retrieval and processing, damage detection and localization, automated alerting system, and finally data dissemination, will be presented in a separate report.

  14. Raman spectroscopy for in-line water quality monitoring--instrumentation and potential.

    PubMed

    Li, Zhiyun; Deen, M Jamal; Kumar, Shiva; Selvaganapathy, P Ravi

    2014-09-16

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  15. Performance assessment and characterization of needed IR GEO instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Peuch, V.; Flaud, J.

    2011-12-01

    Efficiently monitoring air quality (AQ) from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in the field of atmospheric sounding from space have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary Earth orbit (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a comprehensive simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAFIT inversion module. Note that to assess the impact of the different instruments on the analyses and forecasts of AQ by means of models, our

  16. Performance assessment of future thermal infrared geostationary instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Gaubert, B.; Flaud, J.-M.

    2012-04-01

    Air quality (AQ) has a recognized onerous impact on human health and the environment, and then on society. It is more and more clear that constantly and efficiently monitoring AQ from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in this field have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations [1]. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a general simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAfit inversion module [2]. Note that to assess the

  17. Stratospheric aerosol and gas experiment II and ROCOZ-A ozone profiles at Natal, Brazil - A basis for comparison with other satellite instruments

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Mcmaster, Leonard R.; Chu, William P.; Mccormick, M. Patrick; Gelman, Melvyn E.

    1991-01-01

    Satellite measurements of ozone carried out during the Stratospheric Aerosol and Gas Experiment II (SAGE II) are compared with in situ measurements made by the ROCOZ-A and electrochemical concentration cell ozonesondes at Natal (Brazil) during the Southern Hemisphere autumn of 1985. It was found that the SAGE II values were higher than the ROCOZ-A values by 3.4 percent, with an average absolute difference of 3.8 percent. It is suggested that the differences between the ozone density and mixing ratio results are due to the auxiliary temperature and pressure values for the satellite and in situ instruments.

  18. Model-based monitoring and diagnosis of a satellite-based instrument

    NASA Technical Reports Server (NTRS)

    Bos, Andre; Callies, Jorg; Lefebvre, Alain

    1995-01-01

    For about a decade model-based reasoning has been propounded by a number of researchers. Maybe one of the most convincing arguments in favor of this kind of reasoning has been given by Davis in his paper on diagnosis from first principles (Davis 1984). Following their guidelines we have developed a system to verify the behavior of a satellite-based instrument GOME (which will be measuring Ozone concentrations in the near future (1995)). We start by giving a description of model-based monitoring. Besides recognizing that something is wrong, we also like to find the cause for misbehaving automatically. Therefore, we show how the monitoring technique can be extended to model-based diagnosis.

  19. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI)

    NASA Astrophysics Data System (ADS)

    Flower, Verity J. B.; Oommen, Thomas; Carn, Simon A.

    2016-11-01

    Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005-2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ˜ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  20. Instrumentation design and installation for monitoring air injection ground water remediation technologies

    SciTech Connect

    Hall, B.L.; Baldwin, C.K.; Lachmar, T.E.; Dupont, R.R.

    2000-03-31

    An in situ instrumentation bundle was designed for inclusion in monitoring wells that were installed at the Wasatch Trailer Sales site in Layton, Utah, to evaluate in situ air sparging (IAS) and in-well aeration (IWA). Sensors for the bundle were selected based on laboratory evaluation of accuracy and precision, as well as consideration of size and cost. SenSym pressure transducers, Campbell Scientific, Inc. (CSI) T-type thermocouples, and dissolved oxygen (DO) probes manufactured by Technalithics Inc. (Waco, Texas), were selected for each of the 27 saturated zone bundles. Each saturated zone bundle also included a stirring blade to mix water near the DO probe. A Figaro oxygen sensor was included in the vadose zone bundle. The monitoring wells were installed by direct push technique to minimize soil disruption and to ensure intimate contact between the 18 inch (46 cm) long screens and the soil. A data acquisition system, comprised of a CSI 21X data logger and four CSI AM416 multiplexers, was used to control the stirring blades and record signals from more than 70 in situ sensors. The instrumentation performed well during evaluation of IAS and IWA at the site. However, the SenSym pressure transducers were not adequately temperature compensated and will need to be replaced.

  1. Monitoring atmospheric turbulence profiles with high vertical resolution using PML/PBL instrument

    NASA Astrophysics Data System (ADS)

    Blary, F.; Ziad, A.; Borgnino, J.; Fantéï-Caujolle, Y.; Aristidi, Eric; Lantéri, H.

    2014-07-01

    Wide-Field Adaptive Optics (WFAO) have been proposed for the next generation of telescopes. In order to be efficient, correction using WFAO require knowledge of atmospheric turbulence parameters. The structure constant of index-of-refraction fluctuations (C2 N ) being one of them. Indirect methods implemented in instruments as SCIDAR, MASS, SLODAR, CO-SLIDAR and MOSP have been proposed to measure C2 N (h) pro le through different layers of the atmosphere. A new monitor called the Profiler of Moon Limb (PML) is presented. In this instrument, C2 N (h) pro les are retrieved from the transverse covariance via minimization of a maximum likelihood criterion under positivity constraint using an iterative gradient method. An other approach using a regularization method (RM) is also studied. Instrument errors are mainly related to the detection of the Moon limb position and are mostly due to photon noise. Numerical simulations have been used to evaluate the error on the extracted pro le and its propagation from the detection to the inverse technique.

  2. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Marchenko, S.; Krotkov, N. A.; Lamsal, L. N.; Celarier, E. A.; Swartz, W. H.; Bucsela, E. J.

    2015-06-01

    Nitrogen dioxide retrievals from the Aura/Ozone Monitoring Instrument (OMI) have been used extensively over the past decade, particularly in the study of tropospheric air quality. Recent comparisons of OMI NO2 with independent data sets and models suggested that the OMI values of slant column density (SCD) and stratospheric vertical column density (VCD) in both the NASA OMNO2 and Royal Netherlands Meteorological Institute DOMINO products are too large, by around 10-40%. We describe a substantially revised spectral fitting algorithm, optimized for the OMI visible light spectrometer channel. The most important changes comprise a flexible adjustment of the instrumental wavelength shifts combined with iterative removal of the ring spectral features; the multistep removal of instrumental noise; iterative, sequential estimates of SCDs of the trace gases in the 402-465 nm range. These changes reduce OMI SCD(NO2) by 10-35%, bringing them much closer to SCDs retrieved from independent measurements and models. The revised SCDs, submitted to the stratosphere-troposphere separation algorithm, give tropospheric VCDs ˜10-15% smaller in polluted regions, and up to ˜30% smaller in unpolluted areas. Although the revised algorithm has been optimized specifically for the OMI NO2 retrieval, our approach could be more broadly applicable.

  3. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    NASA Astrophysics Data System (ADS)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  4. Geoazur's contribution in instrumentation to monitor seismic activity of the Earth

    NASA Astrophysics Data System (ADS)

    Yates, B.; Hello, Y.; Anglade, A.; Desprez, O.; Ogé, A.; Charvis, P.; Deschamps, A.; Galve, A.; Nolet, G.; Sukhovich, A.

    2011-12-01

    Seismic activity in the earth is mainly located near the tectonic plate boundaries, in the deep ocean (expansion centers) or near their margins (subduction zones). Travel times and waveforms of recorded seismograms can be used to reconstruct the three-dimensional wave speed distribution in the earth with seismic tomography or to image specific boundaries in the deep earth. Because of the lack of permanent sea-bottom seismometers these observation are conducted over short period of time using portable ocean bottom seismometers. Geaozur has a long experience and strong skills in designing and deploying Ocean Bottom Seismometers all over the world. We have developed two types of ocean bottom instruments. The "Hippocampe" for long deployment and "Lady bug" for aftershock monitoring or for fast overlaps during wide angle experiments. Early warning systems for tsunamis and earthquakes have been developed in recent years but these need real time data transmission and direct control of the instrument. We have developed a permanent real time Broad Band instrument installed in the Mediterranean Sea and connected to the Antares Neutrinos telescope. This instrument offers all the advantages of a very heavy and costly installation, such as the ability to do real-time seismology on the seafloor. Such real-time seafloor monitoring is especially important for seismic hazard. Major earthquakes cause human and economic losses directly related to the strong motion of the ground or by induced phenomena such as tsunamis and landslides. Fiber optical cables provide a high-capacity lightweight alternative to traditional copper cables. Three-component sensors analyze permanently the noise signal and detect the events to record. Major events can force the network to transmit data with almost zero lag time. The optical link also allows us to retrieve events at a later date. However, OBSs alone can never provide the density and long term, homogeneous data coverage needed for local and global

  5. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  6. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  7. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR OMNIDIRECTIONAL... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008...

  8. Comparison of the SidePak personal monitor with the Aerosol Particle Sizer (APS).

    PubMed

    Sánchez Jiménez, Araceli; van Tongeren, Martie; Galea, Karen S; Steinsvåg, Kjersti; MacCalman, Laura; Cherrie, John W

    2011-06-01

    The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 μm, 2.5 μm and 1 μm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist.

  9. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.

    PubMed

    Park, Ji-Woon; Kim, Hyeong Rae; Hwang, Jungho

    2016-10-19

    We present a methodology for continuous and real-time bioaerosol monitoring wherein an aerosol-to-hydrosol sampler is integrated with a bioluminescence detector. Laboratory test was conducted by supplying an air flow with entrained test bacteria (Staphylococcus epidermidis) to the inlet of the sampler. High voltage was applied between the discharge electrode and the ground electrode of the sampler to generate air ions by corona discharge. The bacterial aerosols were charged by the air ions and sampled in a flowing liquid containing both a cell lysis buffer and adenosine triphosphate (ATP) bioluminescence reagents. While the liquid was delivered to the bioluminescence detector, sampled bacteria were dissolved by the cell lysis buffer and ATP was extracted. The ATP was reacted with the ATP bioluminescence reagents, causing light to be emitted. When the concentration of bacteria in the aerosols was varied, the ATP bioluminescence signal in relative light units (RLUs) closely tracked the concentration in particles per unit air volume (# cm(-3)), as measured by an aerosol particle sizer. The total response time required for aerosol sampling and ATP bioluminescence detection increased from 30 s to 2 min for decreasing liquid sampling flow rate from 800 to 200 μLPM, respectively. However, lower concentration of S. epidermidis aerosols was able to be detected with lower liquid sampling flow rate (1 RLU corresponded to 6.5 # cm(-3) of S. epidermidis aerosols at 200 μLPM and 25.5 # cm(-3) at 800 μLPM). After obtaining all data sets of concentration of S. epidermidis aerosols and concentration of S. epidermidis particles collected in the flowing liquid, it was found that with our bioluminescence detector, 1 RLU corresponded to 1.8 × 10(5) (±0.2 × 10(5)) # mL(-1) of S. epidermidis in liquid. After the lab-test with S. epidermidis, our bioaerosol monitoring device was located in the lobby of a building. Air sampling was conducted continuously for 90

  10. Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites

    SciTech Connect

    William Goddard

    2008-09-30

    In the past 48 months of the project, we have accomplished all objectives outlined in the proposal. In the first year, we demonstrated the technology for remote sensing on a bench top scale. The core electronics are designed and fabricated. We achieved results that will safely deliver the specifications outlined in the proposal. In the 2nd year, 2 major technical tasks outlined in the Statement of Objectives, i.e. Build a field test ready prototype of a long-range CO2 monitor, and characterize its performance in the short term and demonstrate that the monitor characteristics meet the goals set in the initial proposal, have been accomplished. We also conducted simulation work that defines the different deployment strategies for our sensors at sequestration sites. In the 3rd year, Specifications and Testing protocols have been developed for the CO2 monitor. 1% accuracy had been demonstrated in short period tests ({approx}1 hour). Unattended system operation and stability over a period of a week has been demonstrated with and without EDFA (laser power amplifier). The sensitivity of the instrument to CO2 leaks has been demonstrated. In the 4th no-cost extension year, we further field tested the system and the experience we accumulated give us a clear picture of what else are needed for final field deployment. These results have shown all the objectives of the project have been fulfilled. In July 2008, along with our commercial partner we won the DOE STTR phase I award to commercialize the instrument developed in this project - a testimony to the achievement of this research.

  11. An instrument for on-line chemical oxygen demand and nitrate in water monitoring

    NASA Astrophysics Data System (ADS)

    Feng, Wei-Wei; Li, Dan; Cai, Zong-Qi; Zhang, Yong-Chun; Xu, Xiao

    2016-11-01

    Chemical Oxygen Demand (COD) and Nitrate concentration data are of vital importance in coastal water quality monitoring. The traditional method for monitoring these two parameters is a chemical method that consumes chemical reagent. The drawbacks of these chemical methods are the waste they generate, and the difficulty in implementing in-situ long term monitoring. A new instrument based on an optical method to measure Chemical Oxygen Demand and Nitrate concentration without reagent is described in this paper. According to the different water quality, optical path length of flow cell is variable in this system. A 10 mm path length is selected in this paper. And a Y type of structure of quartz optical fibers is used for real-time compensation. Concentration calculation principle is based on the analysis of absorption spectrum and partial least square method. Comparison between model calculation and experimental data is also discussed in detail with several test samples. The implementation of standard test and measurements for the collected water samples is presented in this paper.

  12. The Ancona Early Warning Centre, Instrumentation and Continuous Monitoring of the Landslide

    NASA Astrophysics Data System (ADS)

    Cardellini, S.

    2013-12-01

    The 'Grande frana di Ancona' is an deep-seated landslide reactivated in 1982 after a long period of precipitation. The landslide involves clay and silty clay layers (Pliocene-Pleistocene), fractured with different OCR parameter, alternated with thin sand levels. Overlapped sliding zones are active (maximum depth: 100-120 m, maximum depth 1982 event is 75 m bgl). All the investigations aimed at the consolidation preliminary design in 2000, but the plan concluded that a final consolidation was impossible. Ancona Administration decided then to 'live with the landslide' reducing nevertheless the risk for the people living there. In 2002 a regional law was specifically issued for the people living in the landslide, to give Ancona Administration the responsibility of creating an Early Warning System and an Emergency Plan for people. It's active a surface monitoring system based on 7 total stations and 33 geodetic GPS integrated by a subsurface in place geotechnical system based on 3 DMS multiparametric columns installed down to 95 m depth. Surface Monitoring system The combination of the different instruments: GPS, Automatic Robotic Stations and the clinometric sensors allows us to monitor in the 3D (3D, X, Y, Z) a great number of points previously identified, to keep them under supervision with different measuring technical and from different control positions. The adoption of the geodetic GPS at dual frequency assure an high quality of the GPS measures, and a greater versatility at all the system. The measuring cycle is set up on 30 minutes, but in emergency or after a long rainy period, the system can operate on every points of the dual frequency GPS net also in Real Time RTK, and with the 7 Automatic Robotic Stations. Geotechnical monitoring (DMS) The in place Geotechnical Monitoring System DMS (patents and trade mark CSG srl -Italy) was installed in February 2009. It is made by n°3 Modular Dynamic System columns positioned inside borehole 100 m depth. DMS columns

  13. Near-real Time Monitoring of Global Biomass Burning Emissions from Multiple Geostationary Instruments

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Ram, J.; Schmidt, C. C.

    2010-12-01

    Biomass burning from wildland fires releases a significant amount of trace gases and aerosols into the atmosphere. These emissions and their long-range transports significantly affect air quality, climate change, and carbon budget. We present the use of fire radiative power (FRP) to derive biomass burning emissions in near-real time. The instantaneous FRP at an interval of 15-30 minutes is retrieved using WF_ABBA_V65 (Wildfire Automated Biomass Burning Algorithm) from a network of geostationary satellites. This network consists of two Geostationary Operation Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration(NOAA), the Meteosat Second Generation satellites (MET-09) operated by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and the Multi-functional Transport Satellite (MTSAT-1R) operated by the Japan Meteorological Agency (JMA). The spatial consistence of FRP values retrieved from different geostationary instruments are investigated and compared with MODIS FRP retrievals. Further, the consistency of temporal pattern in instantaneous FRP is simulated because the continuous observations from satellites are impeded by sensor saturation, cloud cover, and background surface effects. The gaps in observations are filled using simulated values which are calculated by combing the observed instantaneous FRP values within a day and a set of representative diurnal patterns of half-hourly FRPs for various ecosystems. Furthermore, the diurnal variation in FRP is applied to quantify emissions of PM2.5 (particulate mass for particles with diameter < 2.5 µm), CH4, CO2, N2O, NH3, NOX, and TNMHC. This algorithm has been applied to produce global biomass emissions with one-day latency since January 2010. Results from the analysis of global patterns in hourly biomass burning emissions for 2009-2010 will be presented.

  14. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  15. Tools and strategies for instrument monitoring, data mining and data access

    NASA Astrophysics Data System (ADS)

    van Hees, R. M., ,, Dr

    2009-04-01

    The ever growing size of data sets produced by various satellite instruments creates a challenge in data management. Three main tasks were identified: instrument performance monitoring, data mining by users and data deployment. In this presentation, I will discuss the three tasks and our solution. As a practical example to illustrate the problem and make the discussion less abstract, I will use Sciamachy on-board the ESA satellite Envisat. Since the launch of Envisat, in March 2002, Sciamachy has performed nearly a billion science measurements and performed daily calibrations measurements. The total size of the data set (not including reprocessed data) is over 30 TB, distributed over 150,000 files. [Instrument Monitoring] Most instruments produce house-keeping data, which may include time, geo-location, temperature of different parts of the instrument and instrument settings and configuration. In addition, many instruments perform calibration measurements. Instrument performance monitoring requires automated analyzes of critical parameters for events, and the option to off-line inspect the behavior of various parameters in time. We choose to extract the necessary information from the SCIAMACHY data products, and store everything in one file, where we separated house-keeping data from calibration measurements. Due to the large volume and the need to have quick random-access, the Hierarchical Data Format (HDF5) was our obvious choice. The HDF5 format is self describing and designed to organize different types of data in one file. For example, one data set may contain the meta data of the calibration measurements: time, geo-location, instrument settings, quality parameters (temperature of the instrument), while a second large data set contains the actual measurements. The HDF5 high-level packet table API is ideal for tables that only grow (by appending rows), while the HDF5 table API is better suited for tables where rows need to be updated, inserted or replaced. In

  16. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    hello, yann; Charvis, Philippe; Yegikyan, Manuk; verfaillie, Romain; Rivet, Diane

    2016-04-01

    Real time monitoring of seismic activity is a major issue for early warning of earthquakes and tsunamis. It can be done using regional scale wired nodes, such as Neptune in Canada and in the U.S, or DONET in Japan. Another approach to monitor seismic activity at sea is to deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four time 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight time 6-months deployments) and the Osisec program in Ecuador (four time 6-months deployments). These autonomous OBSs are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data. Among the most recent alternative we developed a 3/4 years autonomy ocean bottom system with 9 channels (?) allowing the acquisition of different seismic or environmental parameters. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a crisis) using one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years, it is a perfect tool to monitor large seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. For remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two-way Iridium satellite communication. After a period of 3 years the main station is self-recovered by

  17. Instrumentation for a next-generation x-ray all-sky monitor

    SciTech Connect

    Peele, A. G.

    1999-12-15

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors--long-term all-sky archive and watchdog alert to new events--will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  18. Uveka: a UV exposure monitoring system using autonomous instruments network for Reunion Island citizens

    NASA Astrophysics Data System (ADS)

    Sébastien, Nicolas; Cros, Sylvain; Lallemand, Caroline; Kurzrock, Frederik; Schmutz, Nicolas

    2016-04-01

    Reunion Island is a French oversea territory located in the Indian Ocean. This tropical Island has about 840,000 inhabitants and is visited every year by more than 400,000 tourists. On average, 340 sunny days occurs on this island in a whole year. Beyond these advantageous conditions, exposure of the population to ultraviolet radiation constitutes a public health issue. The number of hospitalisations for skin cancer increased by 50% between 2005 and 2010. Health insurance reimbursements due to ophthalmic anomalies caused by the sun is about two million Euros. Among the prevention measures recommended by public health policies, access to information on UV radiation is one of the basic needs. Reuniwatt, supported by the Regional Council of La Reunion, is currently developing the project Uveka. Uveka is a solution permitting to provide in real-time and in short-term forecast (several hours), the UV radiation maps of the Reunion Island. Accessible via web interface and smartphone application, Uveka informs the citizens about the UV exposure rate and its risk according to its individual characteristics (skin phototype, past exposure to sun etc.). The present work describes this initiative through the presentation of the UV radiation monitoring system and the data processing chain toward the end-users. The UV radiation monitoring system of Uveka is a network of low cost UV sensors. Each instrument is equipped with a solar panel and a battery. Moreover, the sensor is able to communicate using the 3G telecommunication network. Then, the instrument can be installed without AC power or access to a wired communication network. This feature eliminates a site selection constraint. Indeed, with more than 200 microclimates and a strong cloud cover spatial variability, building a representative measurement site network in this island with a limited number of instruments is a real challenge. In addition to these UV radiation measurements, the mapping of the surface solar radiation

  19. Selected Measurements of Total Arctic Column Ozone Amounts from Aura's Ozone Monitoring Instrument,

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Images from Aura's Ozone Monitoring Instrument showing the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March. Although there was near record chemical ozone loss between January and March, comparing the January and March images shows that on average the lowest total column ozone values in polar regions are slightly higher in March than in January. This is because of the other process that brought higher ozone into the vortex region, thus compensating for the very significant chemical loss. The 11 March image shows that, despite the unremarkable overall March values, on an individual day, chemical loss and dynamical processes combined to result in localized regions of much lower ozone (which resulted in higher UV exposure at the Earth's surface for individual days and places).

  20. Solar Diameter Monitor: an instrument to measure long-term changes.

    PubMed

    Brown, T M; Elmore, D F; Lacey, L; Hull, H

    1982-10-01

    Analyses of historical data suggest that the solar diameter may vary with time with an amplitude of a few tenths of a second of arc. The High Altitude Observatory has constructed a special purpose telescope, the Solar Diameter Monitor, designed to detect any such changes. The telescope is an f/50 transit instrument with an aperture of 10 cm and is almost completely automated to avoid observer bias. Each day at solar noon, it measures the sun's horizontal diameter by timing the solar disk transit time and the vertical diameter by comparing the image size to that of a stable length standard. Preliminary estimates suggest that these observations will allow a test of the solar diameter's constancy at the 1-sec of arc/century level in an observing time of 3-5 years.

  1. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  2. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  3. Greenhouse Gases in the South Atlantic: Testing and Automation of Instrumentation for Long-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R.; Sriskantharajah, S.; Lanoisellé, M.; Etchells, A.; Manning, A.; Nisbet, E.

    2009-04-01

    Understanding ocean uptake of atmospheric CO2 by the Southern Ocean is important for modelling of future global warming scenarios, particularly since it was recently proposed that this sink was reducing (Le Quéré, et al., 2007). To help our understanding of this problem a new project aims to flask sample air from 5 South Atlantic sites and set up continuous monitoring at the 2 most accessible of these: Ascension Island and the Falklands. Flask sample measurements will include CO2 and CH4 mixing ratios and the ^13C measurement of both of these gases using the rapid continuous flow trace gas analysis system at Royal Holloway, University of London (RHUL). Routine precisions are ±0.03 per mil and ±0.05 per mil for CO2 and CH4, respectively (Fisher et al., 2006). A time series of ^13C in CH4 was maintained for Ascension Island from 2000-2005 and a time series for methane isotopes commenced for the Falkland Islands in autumn 2007. To meet the continuous monitoring requirements of the new project, three Picarro G1301 CO2 / CH4 / H2O Cavity Ring Down Spectrometers (CRDS) were installed at RHUL in October 2008 for testing, calibration and the development of an automated air inlet system suitable for analysis of calibration gases at the remote sites. Initial testing included calibration with NOAA calibrated and target gases, validation of the Picarro-defined H2O-correction of CO2, and derivation of an H2O-correction for CH4. Continuing checks on the H2O correction are made by having 2 instruments side-by-side taking air from the same inlet, but one having a combined Nafion / Mg-perchlorate drying system that utilizes the analysis system exhaust gas for the reverse flow through the Nafion and maintains water-levels at 0.05% for more than 2 weeks. These instruments are connected to the same air inlet as a GC measuring CH4 mixing ratio and a LiCor 6252 measuring CO2 mixing ratio at 30-minute and 1-minute intervals respectively. The third CRDS instrument is connected to a

  4. Cosmic ray dose monitoring using RadFET sensors of the Rosetta instruments SESAME and COSIMA

    NASA Astrophysics Data System (ADS)

    Falke, Peter; Fischer, Hans-Herbert; Seidensticker, Klaus J.; Thiel, Klaus; Fischer, Henning; Hilchenbach, Martin; Henkel, Hartmut; Koch, Andreas

    2016-08-01

    On its more than 10 years journey to comet 67P/Churyumov-Gerasimenko, Rosetta carried RadFET ionising dose monitors in the central electronics of the orbiter instrument COSIMA and the lander instrument SESAME. The readings of the dosimeters were corrected for the temperature of the devices during measurements. Because the sensitivity of RadFETs depends on the energy of impinging charged particles, a mean efficiency factor for the prevalent proton radiation was determined by applying nine efficiency models to proton energy spectra of Rosetta's radiation environment. The resulting dose profiles show linear increases of the accumulated dose with time, mainly caused by galactic cosmic radiation, and the arrival of two solar particle events in 2005. The accumulated dose (in Silicon) during 3909 days in space from 2004-03-02 to 2014-11-14 was 3.2 ± 0.6 Gy in case of COSIMA and 1.9 ± 0.4 Gy for SESAME. The deviation of the two measurements is mainly due to the solar particle event in September 2005, which had a 5.3 ± 1.0 times stronger impact on the COSIMA RadFET. Measured dose levels are one order of magnitude lower than those expected before launch for not being exceeded on the 90% confidence level, which is mainly due to the low solar activity during the mission so far.

  5. Raman-shifted eye-safe aerosol lidar (REAL) in 2010: instrument status and two-component wind measurements

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.

    2010-10-01

    This paper and corresponding seminar given on 20 September 2010 at the 16th International School for Quantum Electronics in Nesebar, Bulgaria, will describe the key hardware aspects of the Raman-shifted Eye-safe Aerosol Lidar (REAL) and recent advances in extracting two-component wind vector fields from the images it produces. The REAL is an eye-safe, ground-based, scanning, elastic aerosol backscatter lidar operating at 1.54 microns wavelength. Operation at this wavelength offers several advantages compared to other laser wavelengths including: (1) maximum eye-safety, (2) invisible beam, (3) superior performance photodetectors compared with those used at longer wavelengths, (4) low atmospheric molecular scattering when compared with operation at shorter wavelengths, (5) good aerosol backscattering, (6) atmospheric transparency, and (7) availability of optical and photonic components used in the modern telecommunations industry. A key issue for creating a high-performance direct-detection lidar at 1.5 microns is the use of InGaAs avalanche photodetectors that have active areas of at most 200 microns in diameter. The small active area imposes a maximum limitation on the field-of-view of the receiver (about 0.54 mrad full-angle for REAL). As a result, a key requirement is a transmitter that can produce a pulsed (>10 Hz) beam with low divergence (<0.25 mrad full-angle), high pulse-energy (>150 mJ), and short pulse-duration (<10 ns). The REAL achieves this by use of a commercially-available flashlamp-pumped Nd:YAG laser and a custom high-pressure methane gas cell for wavelength shifting via stimulated Raman scattering. The atmospheric aerosol features in the images that REAL produces can be tracked to infer horizontal wind vectors. The method of tracking macroscopic aerosol features has an advantage over Doppler lidars in that two components of motion can be sensed. (Doppler lidars can sense only the radial component of flow.) Two-component velocity estimation is done

  6. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  7. Monitoring O3 and Aerosols with the NASA LaRC Mobile Ozone Lidar System

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene; Gronoff, Guillaume; Berkoff, Timothy; DeYoung, Russell; Carrion, William

    2016-01-01

    The NASA's Langley Mobile Ozone Lidar (LMOL) system routinely measures tropospheric ozone and aerosol profiles, and is part of the Tropospheric Lidar Network (TOLNet). Recent upgrades to the system include a new pump laser that has tripled the transmission output power extending measurements up to 8 km in altitude during the day. In addition, software and algorithm developments have improved data output quality and enabled a real-time ozone display capability. In 2016, a number of ozone features were captured by LMOL, including the dynamics of an early-season ozone exceedance that impacted the Hampton Roads region. In this presentation, we will review current LMOL capabilities, recent air quality events observed by the system, and show a comparison of aerosol retrieval through the UV channel and the green line channel.

  8. Postrelease monitoring of radio-instrumented sea otters in Prince William Sound

    USGS Publications Warehouse

    Monnett, C.; Rotterman, L.M.; Stack, C.; Monson, Daniel H.; Bayha, Keith; Kormendy, Jennifer

    1990-01-01

    Sea otters (Enhydra lutris) that were captured in western Prince William Sound (PWS) or the Gulf of Alaska, treated, and held in captivity at the temporary rehabilitation centers established in response to the T/V Exxon Valdez oil spill were instrumented with radio transmitters, released into eastern PWS, and monitored by radiotelemetry. We undertook the present study to gain information for guiding the release of the remaining captive otters and evaluating the efficacy of sea otter rehabilitation after exposure to crude oil. Radio transmitters were attached to the flippers of seven sea otters released in May 1989 and monitored for periods of a few hours to more than 60 days. However, little was learned about the fate of these animals because the radio transmitters used proved unreliable. Forty-five additional sea otters from the rehabilitation centers were implanted with radio transmitters, released into northeastern PWS and monitored for 8 months. During the first 20 days after the first release of these implanted otters (n = 21), they were more mobile than wild-caught and released sea otters studied in PWS, from 1984 through 1990. All were alive and vigorous at the end of the 20-day period. Tracking of all 45 implanted sea otters during the 8-month period showed that the otters remained highly mobile. Many (46.6%) crossed into western PWS. However, by the end of the 8 months, 12 of the instrumented otters were dead and 9 were missing. One radio failed. These mortality and missing rates are much higher than those normally observed for adult sea otters in PWS. The death rate was highest in winter. These data suggest that, despite the tremendous amount of money and energy directed toward the treatment and care of these animals, the sea otters released from the centers were not completely rehabilitated, that is, not returned to a normal state. We recommend that future policies focus on preventing otters from becoming oiled, rather than attempting to treat them

  9. SiO2 aerosol nanoparticle reactor for occupational health and safety studies.

    PubMed

    Ostraat, Michele L; Swain, Keith A; Krajewski, James J

    2008-06-01

    Important questions are emerging about potential occupational safety, toxicological, and ecotoxicological effects and occupational inhalation exposure risks to engineered aerosol nanoparticles. Although multiple avenues are available to synthesize nanoparticles, few tools are accessible to industrial hygienists and inhalation toxicologists to produce well-characterized aerosols of known aerosol size distribution and particle number concentration that are stable, simple, and robust to operate. This article describes a SiO(2) aerosol nanoparticle reactor that has been developed as a tool for the study of the safety, health, and environmental consequences of exposure to nanoparticle synthesis and processing. The SiO(2) aerosol nanoparticle reactor is capable of stable, long-term synthesis of amorphous SiO(2) aerosol nanoparticles from d(50) = 10-70 nm at particle concentrations approximately 10(4)-10(7)particles/cm(3) that does not produce halogen-containing byproducts and does not require daily monitoring of the particle size distribution. This reactor is designed to produce a well-characterized aerosol to enable subsequent testing with a continuous, stable supply of aerosol nanoparticles (i) to facilitate inhalation toxicology studies, (ii) to measure explosion characteristics of aerosol nanoparticles, (iii) to determine the barrier efficacy for respirator filtration, bag house exhaust, and personal protective garment media challenged with diverse aerosol nanoparticles, and (iv) to develop airborne monitoring technologies for verifying workplace safety protocols. This article details reactor design, synthesis parameters, and instruments available to characterize the resulting aerosol nanoparticle size distributions.

  10. The Calibration and Characterization of Earth Remote Sensing and Environmental Monitoring Instruments. Chapter 10

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Barnes, Robert A.

    2005-01-01

    The use of remote sensing instruments on orbiting satellite platforms in the study of Earth Science and environmental monitoring was officially inaugurated with the April 1, 1960 launch of the Television Infrared Observation Satellite (TIROS) [1]. The first TIROS accommodated two television cameras and operated for only 78 days. However, the TIROS program, in providing in excess of 22,000 pictures of the Earth, achieved its primary goal of providing Earth images from a satellite platform to aid in identifying and monitoring meteorological processes. This marked the beginning of what is now over four decades of Earth observations from satellite platforms. reflected and emitted radiation from the Earth using instruments on satellite platforms. These measurements are input to climate models, and the model results are analyzed in an effort to detect short and long-term changes and trends in the Earth's climate and environment, to identify the cause of those changes, and to predict or influence future changes. Examples of short-term climate change events include the periodic appearance of the El Nino-Southern Oscillation (ENSO) in the tropical Pacific Ocean [2] and the spectacular eruption of Mount Pinatubo on the Philippine island of Luzon in 1991. Examples of long term climate change events, which are more subtle to detect, include the destruction of coral reefs, the disappearance of glaciers, and global warming. Climatic variability can be both large and small scale and can be caused by natural or anthropogenic processes. The periodic El Nino event is an example of a natural process which induces significant climatic variability over a wide range of the Earth. A classic example of a large scale anthropogenic influence on climate is the well-documented rapid increase of atmospheric carbon dioxide occurring since the beginning of the Industrial Revolution [3]. An example of the study of a small-scale anthropogenic influence in climate variability is the Atlanta Land

  11. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  12. Curriculum-Based Measurement: Developing a Computer-Based Assessment Instrument for Monitoring Student Reading Progress on Multiple Indicators

    ERIC Educational Resources Information Center

    Forster, Natalie; Souvignier, Elmar

    2011-01-01

    The purpose of this study was to examine the technical adequacy of a computer-based assessment instrument which is based on hierarchical models of text comprehension for monitoring student reading progress following the Curriculum-Based Measurement (CBM) approach. At intervals of two weeks, 120 third-grade students finished eight CBM tests. To…

  13. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska.

    PubMed

    Castellote, Manuel; Small, Robert J; Lammers, Marc O; Jenniges, Justin J; Mondragon, Jeff; Atkinson, Shannon

    2016-05-01

    As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described.

  14. Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval

    NASA Astrophysics Data System (ADS)

    González Abad, G.; Liu, X.; Chance, K.; Wang, H.; Kurosu, T. P.; Suleiman, R.

    2015-01-01

    We present and discuss the Smithsonian Astrophysical Observatory (SAO) formaldehyde (H2CO) retrieval algorithm for the Ozone Monitoring Instrument (OMI) which is the operational retrieval for NASA OMI H2CO. The version of the algorithm described here includes relevant changes with respect to the operational one, including differences in the reference spectra for H2CO, the fit of O2-O2 collisional complex, updates in the high-resolution solar reference spectrum, the use of a model reference sector over the remote Pacific Ocean to normalize the retrievals, an updated air mass factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical H2CO profile in the level 2 products. The setup of the retrieval is discussed in detail. We compare the results of the updated retrieval with the results from the previous SAO H2CO retrieval. The improvement in the slant column fit increases the temporal stability of the retrieval and slightly reduces the noise. The change in the AMF calculation has increased the AMFs by 20%, mainly due to the consideration of the radiative cloud fraction. Typical values for retrieved vertical columns are between 4 × 1015 and 4 × 1016 molecules cm-2, with typical fitting uncertainties ranging between 45 and 100%. In high-concentration regions the errors are usually reduced to 30%. The detection limit is estimated at 1 × 1016 molecules cm-2.

  15. Design and validation of a fiber optic point probe instrument for therapy guidance and monitoring

    NASA Astrophysics Data System (ADS)

    Xie, Haiyan; Xie, Zhiyuan; Mousavi, Monirehalsadat; Bendsoe, Niels; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan

    2014-07-01

    Optical techniques for tissue diagnostics currently are experiencing tremendous growth in biomedical applications, mainly due to their noninvasive, inexpensive, and real-time functionality. Here, we demonstrate a hand-held fiber optic probe instrument based on fluorescence/reflectance spectroscopy for precise tumor delineation. It is mainly aimed for brain tumor resection guidance with clinical adaptation to minimize the disruption of the standard surgical workflow and is meant as a complement to the state-of-the-art fluorescence surgical microscopy technique. Multiple light sources with fast pulse modulation and detection enable precise quantification of protoporphyrin IX (PpIX), tissue optical properties, and ambient light suppression. Laboratory measurements show the system is insensitive to strong ambient light. Validation measurements of tissue phantoms using nonlinear least squares support vector machines (LS-SVM) regression analysis demonstrate an error of <5% for PpIX concentration ranging from 400 to 1000 nM, even in the presence of large variations in phantom optical properties. The mean error is 3% for reduced scattering coefficient and 5% for blood concentration. Diagnostic precision of 100% was obtained by LS-SVM classification for in vivo skin tumors with topically applied 5-aminolevulinic acid during photodynamic therapy. The probe could easily be generalized to other tissue types and fluorophores for therapy guidance and monitoring.

  16. Algorithm for NO2 Vertical Column Retrieval from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Bucsela, Eric J.; Celarier, Edward A.; Wenig, Mark O.; Gleason, James F.; Veefkind, J. Pepijn; Boersma, K. Folkert; Brinksma, Ellen J.

    2006-01-01

    We describe the operational algorithm for the retrieval of stratospheric, tropospheric, and total column densities of nitrogen dioxide NO2 from earthshine radiances measured by the Ozone Monitoring Instrument (OMI), aboard the EOS-Aura satellite. The algorithm uses the DOAS method for the retrieval of slant column NO densities. Air mass factors (AMFs) calculated from a stratospheric NO2 profile are used to make initial estimates of the vertical column density. Using data collected over a 24-h period, a smooth estimate of the global stratospheric field is constructed. Where the initial vertical column densities exceed the estimated stratospheric field, we infer the presence of tropospheric NO2, and recalculate the vertical column density (VCD) using an AMF calculated from an assumed tropospheric NO2 profile. The parameters that control the operational algorithm were selected with the aid of a set of data assembled from stratospheric and tropospheric chemical transport models. We apply the optimized algorithm to OMI data and present global maps of NO2 VCDs for the first time.

  17. Design and validation of a fiber optic point probe instrument for therapy guidance and monitoring.

    PubMed

    Xie, Haiyan; Xie, Zhiyuan; Mousavi, Monirehalsadat; Bendsoe, Niels; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan

    2014-07-01

    Optical techniques for tissue diagnostics currently are experiencing tremendous growth in biomedical applications, mainly due to their noninvasive, inexpensive, and real-time functionality. Here, we demonstrate a hand-held fiber optic probe instrument based on fluorescence/reflectance spectroscopy for precise tumor delineation. It is mainly aimed for brain tumor resection guidance with clinical adaptation to minimize the disruption of the standard surgical workflow and is meant as a complement to the state-of-the-art fluorescence surgical microscopy technique. Multiple light sources with fast pulse modulation and detection enable precise quantification of protoporphyrin IX (PpIX), tissue optical properties, and ambient light suppression. Laboratory measurements show the system is insensitive to strong ambient light. Validation measurements of tissue phantoms using nonlinear least squares support vector machines (LS-SVM) regression analysis demonstrate an error of <5% for PpIX concentration ranging from 400 to 1000 nM, even in the presence of large variations in phantom optical properties. The mean error is 3% for reduced scattering coefficient and 5% for blood concentration. Diagnostic precision of 100% was obtained by LS-SVM classification for in vivo skin tumors with topically applied 5-aminolevulinic acid during photodynamic therapy. The probe could easily be generalized to other tissue types and fluorophores for therapy guidance and monitoring.

  18. Instrumentation, monitoring and hydrology of an experimental small catchment in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Roosevelt, Antonio; Marioti, Juliana; Wallender, Wesley; Steenhuis, Tammo

    2010-05-01

    Long-term watershed studies are critical in designing intervention procedures for proper resources planning and management. The objective of this paper is to describe one of these watershed studies. Instrumentation, monitoring activities and generated data base in the Buriti Vermelho experimental watershed, a sub-catchment of the São Francisco basin, in Brazil is discussed. The basin has a drainage area of 940 hectares and, is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols and several types of land use and crop cover can be observed in the basin. A socioeconomic survey undertaken showed the existence of both small and large scale farming enterprises. Irrigation is needed to prevent yield loss due to insufficient rain. Water usage conflicts are already occurring. The basin was instrumented to study the watershed behavior in detail and to assess the risk of water scarcity in the next twenty years by modeling using the observed data for validation. Evaluations of irrigation efficiencies, leaf area index (LAI) and root depth of crops and natural vegetation, small reservoirs evaporation and infiltration and water table depth are being carried out. The analysis of the results of the first two years showed that air temperature varied from 18 °C in July to 25 °C in October 2008, while the relative humidity varied from 84% in February to 47% in August of 2008. Wind speed was between, from 18 m/s, in November 2008, to 7.0 m/s, in February 2009, and solar radiation from 450 W/m, in October 2008, to 258 W/m in February 2009. There was no precipitation in the basin during May, June and July 2008. The greatest precipitation observed in the basin was equal to 190 mm, in January 2009. The average monthly river discharge measure in a point closed to the middle length of the river varied from 16 L/s to 138 L/s. Water table depth varied from 6.3 m to 11.8 m. LAI varied

  19. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Yegikyan, M.; Charvis, P.; Verfaillie, R.; Philippe, O.

    2015-12-01

    There are several attempts to monitor real time seismic activity, using regional scale wired nodes, such as Neptune in Canada and in the U.S, Antares in France or DONET in Japan.On another hand there are also initiatives in deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight 6-months deployments) and the Osisec program in Ecuador (four 6-months deployments). These OBSs are autonomous, they are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data.Among the most recent alternative we developed a 3-years autonomy OBS equipped with a Nanometrics Trillium 120 s, a triaxial accelerometer, a differential, an absolute pressure gauge, and a hydrophone. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a seismic crisis) utilizing one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years (when an OBS is redeployed on the same site, it will not land in the same place), it is a perfect tool to monitor slow seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. A new version is being developed; for remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two- way Iridium

  20. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Saarnio, K.; Frey, A.; Saarikoski, S.; Teinilä, K.; Kulmala, M.; Hillamo, R.

    2011-10-01

    Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006-2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC), organic and elemental carbon (OC and EC) by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC), and PM2.5 mass with a tapered element oscillating microbalance (TEOM). Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM), EC) represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass) and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  1. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  2. Satellite Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Robles Gonzalez, C.; Kusmierczyk-Michulec, J.; Decae, R.

    SATELLITE RETRIEVAL of AEROSOL PROPERTIES G. de Leeuw, C. Robles Gonzalez, J. Kusmierczyk-Michulec and R. Decae TNO Physics and Electronics Laboratory, The Hague, The Netherlands; deleeuw@fel.tno.nl Methods to retrieve aerosol properties over land and over sea were explored. The dual view offered by the ATSR-2 aboard ERS-2 was used by Veefkind et al., 1998. The retrieved AOD (aerosol optical depth) values compare favourably with collocated sun photometer measurements, with an accuracy of 0.06 +/- 0.05 in AOD. An algorithm developed for GOME on ERS-2 takes advantage of the low surface reflection in the UV (Veefkind et al., 2000). AOD values retrieved from ATSR-2 and GOME data over western Europe are consistent. The results were used to produce a map of mean AOD values over Europe for one month (Robles-Gonzalez et al., 2000). The ATSR-2 is al- gorithm is now extended with other aerosol types with the aim to apply it over the In- dian Ocean. A new algorithm is being developed for the Ozone Monitoring Instrument (OMI) to be launched in 2003 on the NASA EOS-AURA satellite. It is expected that, based on the different scattering and absorption properties of various aerosol types, five major aerosol classes can be distinguished. The experience with the retrieval of aerosol properties by using several wavelength bands is used to develop an algorithm for Sciamachy to retrieve aerosol properties both over land and over the ocean which takes advantage of the wavelengths from the UV to the IR. The variation of the AOD with wavelength is described by the Angstrom parameter. The AOD and the Angstrom parameter together yield information on the aerosol size distribution, integrated over the column. Analysis of sunphotometer data indicates a relation between the Angstrom parameter and the mass ratio of certain aerosols (black carbon, organic carbon and sea salt) to the total particulate matter. This relation has been further explored and was applied to satellite data over land to

  3. Atmospheric aerosol monitoring and characterization: An emission control strategy to protect tropical forests

    NASA Astrophysics Data System (ADS)

    Mateus, V. L.; do Valles, T. V.; de Oliveira, T. B.; de Almeida, A. C.; Maia, L. F. P. G.; Saint'Pierre, T. D.; Gioda, A.

    2013-12-01

    Human activity represents one of the most harmful activities for biodiversity. Population growth has caused increasing interferences in natural areas suffering agriculture or urbanization. As a consequence, tropical forests are at risk, since they shelter more than half of the global biodiversity. In this context, protected areas are indeed important to preserve natural populations as well as threatened habitats. Aerosol samples were collected in two protected areas in Rio de Janeiro, Brazil, in order to quantify water-soluble species and evaluate anthropogenic influences considering secondary aerosol formation and organic compounds. Samplings were conducted at the National Park of Serra dos Orgãos (Parnaso) and the National Forest Mario Xavier (Flonamax) during 24 h every six days using a high-volume sampler from July 2010 to June 2012 (PM10) and from July 2011 to August 2012 (TSP), respectively. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (Br-, Cl-, F-, NO2-, NO3-, PO43-, SO42-) and cations (Li+, Ca2+, K+, Mg2+, Na+, NH4+); total water-soluble carbon (TWSC), water-soluble organic carbon (WSOC) were determined by a TOC analyzer and the elements were determined by Inductively Coupled Plasma Optical Emission Spectrometry. PM10 average concentrations ranged from 11.1 to 67.6 μg m-3 and TSP from 5.7 to 242.6 μg m-3. Regarding the ions, the highest cation concentration was measured for Na+ at both Parnaso and Flonamax sites, respectively, 2.9 and 6.1 μg m-3. Both sites are near to the coast, justifying these results. On the other hand, SO42- was the predominant anion measured at both sites with average concentrations ranged from 2.3 to 2.7 μg m-3. Around 50% of sulphate had a non-marine origin in the former site, while in the latter the percentage was of circa 40%. The correlation between NO3- and nss-SO42- was much stronger at Parnaso (r = 0

  4. A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Brown, Steven S.; Dinesan, Hemanth; Dubé, William P.; Goulette, Marc; Hübler, Gerhard; Orphal, Johannes; Zahn, Andreas

    2016-04-01

    The chemistry of NO3 and N2O5 is important to the regulation of both tropospheric and stratospheric ozone. In situ detection of NO3 and N2O5 in the upper troposphere lower stratosphere (UTLS) represents a new scientific direction as the only previous measurements of these species in this region of the atmosphere has been via remote sensing techniques. Because both the sources and the sinks for NO3 and N2O5 are potentially stratified spatially, their mixing ratios, and their influence on nitrogen oxide and ozone transport and loss at night can show large variability as a function of altitude. Aircraft-based measurements of heterogeneous N2O5 uptake in the lower troposphere have uncovered a surprising degree of variability in the uptake coefficient [1], but there are no corresponding high altitude measurements.The UTLS is routinely sampled by the IAGOS-CARIBIC program (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com), a European infrastructural program with the aim of studying the chemistry and transport across this part of the atmosphere. An airfreight container with 15 different automated instruments from 8 European research partners is utilized on board a commercial Lufthansa airbus 340-600 to monitor ~ 100 atmospheric species (trace gases and aerosol parameters) in the UTLS. The instrumentation in the CARIBIC container is now to be supplemented by a new cavity ring-down device for monitoring nitrogen oxides, jointly developed by researchers from Cork (Ireland), Boulder (USA) and Karlsruhe (Germany). The compact and light-weight instrument is designed to monitor not only NO3 and N2O5, but also NO2 and O3. The detection is based on 4 high-finesse optical cavities (cavity length ~ 44 cm). Two cavities are operated at 662 nm (maximum absorption of NO3), the other two at 405 nm (maximum absorption of NO2). The inlet to one of the (662)-cavities is heated in order to thermally decompose N2O5

  5. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    DOE PAGES

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; ...

    2016-08-23

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ∼ 0.19, and that over oceans is ∼ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations tomore » show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3  <  AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), −0.012 ± 0.024 (MFRSR), −0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD − MFRSRAOD) and yields the following expressions for correlations between different instruments

  6. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    SciTech Connect

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.; Reeves, Kirk Patrick

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  7. Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Shin, C. S.

    2011-11-01

    NiTi endodontic rotary instruments subjected to alternating tension and compression stress in root canals may fracture without prior warning. Once broken, extracting the fractured part from the canal is a difficult job and is annoying to both the patient and the dentist. Warning of an imminent fracture during clinical use will be a great help to avoid medical and legal complications. A monitoring system employing Fiber Bragg Grating (FBG) sensors has been attempted. The reason of using FBG is its small size which is very promising in integrating with the handpiece of the endodontic equipment. When cracking developed in an rotary instrument, we expect the natural vibration frequency of the instrument changes. If we can pick up the stress wave transmitted through the structural components of the rotary instruments, we may be able to detect the occurrence of a crack. In the current work, we found that we can successfully locate the operation period in the time domain by picking up and analyzing the sound wave using FBG. Furthermore, by employing Fast Fourier Transform (FFT) on the signal, we can reveal the energy variation and the frequency shifting phenomenon in specific section of frequency domain. For some characteristic frequencies, it was found that the energy and frequency varied in a well-defined pattern during the period of crack growth. It is hoped that with these information, the fatigue failure of rotary instruments can be closely monitored to avoid/alleviate the occurrence of unexpected fracture during clinical use.

  8. Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Shin, C. S.

    2012-04-01

    NiTi endodontic rotary instruments subjected to alternating tension and compression stress in root canals may fracture without prior warning. Once broken, extracting the fractured part from the canal is a difficult job and is annoying to both the patient and the dentist. Warning of an imminent fracture during clinical use will be a great help to avoid medical and legal complications. A monitoring system employing Fiber Bragg Grating (FBG) sensors has been attempted. The reason of using FBG is its small size which is very promising in integrating with the handpiece of the endodontic equipment. When cracking developed in an rotary instrument, we expect the natural vibration frequency of the instrument changes. If we can pick up the stress wave transmitted through the structural components of the rotary instruments, we may be able to detect the occurrence of a crack. In the current work, we found that we can successfully locate the operation period in the time domain by picking up and analyzing the sound wave using FBG. Furthermore, by employing Fast Fourier Transform (FFT) on the signal, we can reveal the energy variation and the frequency shifting phenomenon in specific section of frequency domain. For some characteristic frequencies, it was found that the energy and frequency varied in a well-defined pattern during the period of crack growth. It is hoped that with these information, the fatigue failure of rotary instruments can be closely monitored to avoid/alleviate the occurrence of unexpected fracture during clinical use.

  9. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  10. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions.

    PubMed

    Coffey, Christopher C; Pearce, Terri A; Lawrence, Robert B; Hudnall, Judith B; Slaven, James E; Martin, Stephen B

    2009-01-01

    The performance of field portable direct-reading organic vapor monitors (DROVMs) was evaluated under a variety of experimental conditions. Four of the DROVMs had photoionization detectors (ppbRAE, IAQRAE, MultiRAE, and Century Toxic Vapor Analyzer), one had a flame ionization detector (Century Toxic Vapor Analyzer), and one was a single-beam infrared spectrophotometer (SapphIRe). Four of each DROVM (two Century Toxic Vapor Analyzers and SapphIRes) were tested. The DROVMs were evaluated at three temperatures (4 degrees C, 21 degrees C, and 38 degrees C), three relative humidities (30%, 60%, and 90%), and two hexane concentrations (5 ppm and 100 ppm). These conditions were selected to provide a range within the operational parameters of all the instruments. At least four replicate trials were performed across the 18 experimental conditions (3 temperatures x 3 relative humidities x 2 concentrations). To evaluate performance, the 4-hr time-weighted average readings from the DROVMs in a given trial were compared with the average of two charcoal tube concentrations using pairwise comparison. The pairwise comparison criterion was +/-25% measurement agreement between each individual DROVM and the DROVMs as a group and the average charcoal tube concentration. The ppbRAE group performed the best with 40% of all readings meeting the comparison criterion followed by the SapphIRe group at 39%. Among individual DROVMs, the best performer was a SapphIRe, with 57% of its readings meeting the criterion. The data was further analyzed by temperature, humidity, and concentration. The results indicated the performance of some DROVMs may be affected by temperature, humidity, and/or concentration. The ppbRAE group performed best at 21 degrees C with the percentage of readings meeting the criterion increasing to 63%. At the 5 ppm concentration, 44% of the ppbRAE group readings met the criterion, while at 100 ppm, only 35% did. The results indicate that monitors can be used as survey tools

  11. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    NASA Astrophysics Data System (ADS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  12. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V; Lukenyuk, A.; Shymkiv, A.

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  13. Testing the Archivas Cluster (Arc) for Ozone Monitoring Instrument (OMI) Scientific Data Storage

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2005-01-01

    The Ozone Monitoring Instrument (OMI) launched on NASA's Aura Spacecraft, the third of the major platforms of the EOS program on July 15,2004. In addition to the long term archive and distribution of the data from OM1 through the Goddard Earth Science Distributed Active Archive Center (GESDAAC), we are evaluating other archive mechanisms that can archive the data in a more immediately available method where it can be used for futher data production and analysis. In 2004, Archivas, Inc. was selected by NASA s Small Business Innovative Research (SBIR) program for the development of their Archivas Cluster (ArC) product. Arc is an online disk based system utilizing self-management and automation on a Linux cluster. Its goal is to produce a low cost solution coupled with the ease of management. The OM1 project is an application partner of the SBIR program, and has deployed a small cluster (5TB) based on the beta Archwas software. We performed extensive testing of the unit using production OM1 data since launch. In 2005, Archivas, Inc. was funded in SBIR Phase II for further development, which will include testing scalability with the deployment of a larger (35TB) cluster at Goddard. We plan to include Arc in the OM1 Team Leader Computing Facility (TLCF) hosting OM1 data for direct access and analysis by the OMI Science Team. This presentation will include a brief technical description of the Archivas Cluster, a summary of the SBIR Phase I beta testing results, and an overview of the OMI ground data processing architecture including its interaction with the Phase II Archivas Cluster and hosting of OMI data for the scientists.

  14. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  15. Arctic Observing Experiment - An Assessment of Instruments Used to Monitor the Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Johnson, J.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Valentic, T. A.; Henderson, G. R.; Marshall, C.; Gallage, C.; Zook, J.; Davis, Z.

    2014-12-01

    To understand and predict weather and climate require an accurate observing network that measures the fundamental meteorological parameters: temperature, air pressure, and wind. Measuring these parameters autonomously in the polar regions is especially challenging. To assess the accuracy of polar measurement networks, we established the Arctic Observing Experiment (AOX) test site in March 2013 at the Department of Energy (DOE) Atmospheric Radiation and Meteorology (ARM) site in Barrow, Alaska. We deployed a myriad of data loggers and autonomous buoys, which represent most of the instruments that are commonly deployed by the International Arctic Buoy Programme (IABP) to measure temperature, air pressure and wind. Estimates of temperature over this area have also been analyzed from satellites (e.g., using the Moderate-resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST)) product, and can complement data from in-situ sensors and provide consistent measurements under clear-sky conditions. Preliminary results reveal that some of the buoys are susceptible to solar heating, icing can block barometers for short periods, and frosting may insulate air temperature sensors and freeze-lock anemometers. Some of these issues may be addressed by simply painting the buoys white to reduce solar heating of the buoys, and using better temperature shields and barometer ports. Nevertheless, frosting of ultrasonic and mechanical anemometers remains a significant challenge. These results will be useful to initiate a protocol to obtain accurate and consistent measurements from the IABP, the Arctic Observing Network (AON), the International Program for Antarctic Buoys, and the Southern Ocean Observing System to monitor polar environments.

  16. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    PubMed

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  17. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-09-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr-1 to more than 4000 kt yr-1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005-2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr-1 and not detected by OMI.

  18. Monitoring

    SciTech Connect

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  19. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  20. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  1. Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors

    NASA Astrophysics Data System (ADS)

    Hatch, Lindsay E.; Yokelson, Robert J.; Stockwell, Chelsea E.; Veres, Patrick R.; Simpson, Isobel J.; Blake, Donald R.; Orlando, John J.; Barsanti, Kelley C.

    2017-01-01

    Multiple trace-gas instruments were deployed during the fourth Fire Lab at Missoula Experiment (FLAME-4), including the first application of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) for laboratory biomass burning (BB) measurements. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was also deployed, as well as whole-air sampling (WAS) with one-dimensional gas chromatography-mass spectrometry (GC-MS) analysis. This combination of instruments provided an unprecedented level of detection and chemical speciation. The chemical composition and emission factors (EFs) determined by these four analytical techniques were compared for four representative fuels. The results demonstrate that the instruments are highly complementary, with each covering some unique and important ranges of compositional space, thus demonstrating the need for multi-instrument approaches to adequately characterize BB smoke emissions. Emission factors for overlapping compounds generally compared within experimental uncertainty, despite some outliers, including monoterpenes. Data from all measurements were synthesized into a single EF database that includes over 500 non-methane organic gases (NMOGs) to provide a comprehensive picture of speciated, gaseous BB emissions. The identified compounds were assessed as a function of volatility; 6-11 % of the total NMOG EF was associated with intermediate-volatility organic compounds (IVOCs). These atmospherically relevant compounds historically have been unresolved in BB smoke measurements and thus are largely missing from emission inventories. Additionally, the identified compounds were screened for published secondary organic aerosol (SOA) yields. Of the total reactive carbon (defined as EF scaled by the OH rate constant and carbon number of each compound) in the BB emissions, 55-77 % was associated with compounds for

  2. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS)

    PubMed Central

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  3. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    PubMed

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  4. Observations of atmospheric water vapor with the SAGE 2 instrument

    NASA Technical Reports Server (NTRS)

    Larsen, Jack C.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.

    1988-01-01

    The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition.

  5. Observations of atmospheric water vapor with the SAGE 2 instrument

    NASA Astrophysics Data System (ADS)

    Larsen, Jack C.; McCormick, M. P.; McMaster, L. R.; Chu, W. P.

    The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition.

  6. Changes in Antarctic stratospheric aerosol characteristics due to volcanic eruptions as monitored by the Stratospheric Aerosol and Gas Experiment II satellite

    NASA Astrophysics Data System (ADS)

    Saxena, V. K.; Anderson, John; Lin, N.-H.

    1995-08-01

    An estimated 20-30 megatons of SO2 and crustal material was injected into the stratosphere during June 12-16, 1991, by the eruption of Mount Pinatubo (15.1°N, 120.4°E). The impact on Antarctic aerosol characteristics is of utmost concern owing to the seasonality in the observed ozone depletion and climate implications. This study focuses on Antarctic stratospheric aerosol characteristics during three temporal periods: September 23-30, September 30 to October 13, and November 13-27, 1991, at latitudes poleward of 60°S for vertically averaged characteristics, and at latitudes poleward of 50°S for temporal and spatial characteristics. Stratospheric aerosol characteristics are inferred from the Stratospheric Aerosol and Gas Experiment (SAGE) II measurements using a modified randomized minimization search technique (RMST). Aerosol characteristics such as size distribution, number concentration, mass loading, surface area concentration, and radial characteristics are derived between 15 and 30 km for particles having radii between 0.1 and 0.8 μm. Results indicate that aerosol size distributions between 15 and 30 km are bimodal in several instances for all three time periods and can be fitted with the sum of two lognormal distributions. Larger concentrations are observed for particles of all sizes between 18 and 30 km during November 1991, signaling the arrival of the Mount Pinatubo plume. An order of magnitude increase in concentration is observed for particles with radii between 0.1 and 0.2 μm and between 0.7 and 0.8 μm. Vertical aerosol profiles show that the peak in aerosol concentration shifted to a higher altitude between 21 and 26 km as compared to the preplume peak between 15 and 18 km. Using the displacement as a function of time for a mass loading of 1.7 μg m-3 isopleth, we estimated meridional velocity ≈0.9 m s-1, zonal velocity ≈16 m s-1, and downward vertical velocity of 0.5 cm s-1 during September to mid-October, 1991, and 0.3 cm s-1 during mid to

  7. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring. Final report, September 1992--August 1994

    SciTech Connect

    Coggiola, M.J.; Becker, C.H.; Witham, C.L.

    1994-10-01

    An instrument is being developed that will be capable of providing real-time (<1 minute), quantitative, chemical analysis of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument can detect and identify volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup. It consists of an isokinetic sampler operable up to 500 K and wide flow rate range, a high- to low-pressure transition and sampling region separating particles from vapors for separate analysis, two small mass spectrometers (one for organic analysis by field ionization and one for particulate analysis by thermal pyrolysis and electron-impact ionization), and a powerful PC for control/data acquisition. Initially, the instrument will used with the K-1435 Toxic Substances Control Act (TSCA) incinerator at K-25; other applications are also possible, eg, vitrification monitoring, storage tank offgassing analysis, etc. It will be easily transportable. This report details the technical accomplishments of Phase I.

  8. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.; Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver, M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420-465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.84, slope = 0.94). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  9. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  10. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Ha, S.; Joshirao, P.; Manchanda, V.; Bak, M. S.; Kim, T.

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ṡ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  11. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  12. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  13. Comparative Study of Aerosol and Cloud Detected by CALIPSO and OMI

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Torres, Omar; McCormick, M. Patrick; Smith, William; Ahn, Changwoo

    2012-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura Satellite detects the presence of desert dust and smoke particles (also known as aerosols) in terms of a parameter known as the UV Aerosol Index (UV AI). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission measures the vertical distribution of aerosols and clouds. Aerosols and clouds play important roles in the atmosphere and climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a very important task. This paper presents a comparative analysis of the CALIPSO Version 2 Vertical Feature Mask (VFM) product with the (OMI) UV Aerosol Index (UV AI) and reflectivity datasets for a full year of 2007. The comparison is done at regional and global scales. Based on CALIPSO arid OMI observations, the vertical and horizontal extent of clouds and aerosols are determined and the effects of aerosol type selection, load, cloud fraction on aerosol identification are discussed. It was found that the spatial-temporal correlation found between CALIPSO and OMI observations, is strongly dependent on aerosol types and cloud contamination. CALIPSO is more sensitivity to cloud and often misidentifies desert dust aerosols as cloud, while some small scale aerosol layers as well as some pollution aerosols are unidentified by OMI UV AI. Large differences in aerosol distribution patterns between CALIPSO and OMI are observed, especially for the smoke and pollution aerosol dominated areas. In addition, the results found a significant correlation between CALIPSO lidar 1064 nm backscatter and the OMI UV AI over the study regions.

  14. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; Stammes, P.

    2011-12-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud-free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressures contain information on aerosol layer pressure. For cloud-free scenes, the derived FRESCO cloud pressures are close to those of the aerosol layer for optically thick aerosols. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressures may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO cloud data and AAI, an estimate for the aerosol layer pressure can be given, which can be beneficial for aviation safety and operations in case of e.g. volcanic ash plumes.

  15. Seismic monitoring instrumentation needs of a building owner and the solution - A cooperative effort

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.; Sinclair, M.; Gallant, S.; Radulescu, D.; ,

    2003-01-01

    A specific case whereby the owner of a building, in collaboration with another federal agency with expertise in seismic monitoring of buildings, private consulting engineers, and a supplier, facilitated development of a seismic monitoring system for a 24-story building in San Francisco, California. The unique aspects of this monitoring systems include: the monitoring system must relate to rapid assessment of the building following an earthquake and the monitoring system must deliver the data in relatively short time, if not in real-time. The system has the standard recording capability at the site server PC. It has the capability to calculate select number of drift ratios, specific to the building.

  16. Monitored plutonium aerosols at a soil cleanup site on Johnston Atoll

    SciTech Connect

    Shinn, J.H.; Fry, C.O.; Johnson, J.S.

    1996-01-23

    Suspended plutonium in air was monitored for four periods near the operation of a stationary sorting system used to {open_quotes}mine{close_quotes} contaminated soil on Johnston Atoll. The monitoring periods were 14 October-14 November 1992, 20 October-15 November 1993, 16 August-3 November 1994, and 17 February-27 February 1995. Pairs of high volume air samplers were located at each of four locations of the process stream: the {open_quotes}spoils pile{close_quotes} that was the feedstock, the {open_quotes}plant area{close_quotes} near the hot soil gate of the sorter, the {open_quotes}clean pile{close_quotes} conveyer area where sorted clean soil was moved, and the {open_quotes}oversize soil{close_quotes} crushing area. These locations were monitored only during the working hours, while air monitoring was also done at an upwind, {open_quotes}background{close_quotes} area 24-hours per day. The median concentrations of Pu in {open_quotes}workplace{close_quotes} air (combined spoils pile, plant area, and clean pile sites) in 1992 was 397 aCi/m{sup 3} (15 {mu}Bq/m{sup 3}), but increased to median values of 23000 aCi/m{sup 3} (852 {mu}Bq/m{sup 3}) in August-November 1994 and 29800 aCi/m{sup 3} (1100 {mu}Bq/m{sup 3}) in February 1995. The highest median value at the worksites (29800 aCi/m{sup 3}) was more than 200 times lower than the regulatory level. The highest observed value was 84200 aCi/m{sup 3} at the spoils pile site, and this was more than 70 times lower than the regulatory level. The conclusion was that, in spite of the dusty environment, and the increased level of specific activity, we did not find that the soil processing posed any significant risk to workers during the observation periods 1992-1995.

  17. Operational challenges for astronomical instrumentation in Antarctica: results from five years of environmental monitoring of AMICA at Dome C

    NASA Astrophysics Data System (ADS)

    Dolci, Mauro; Valentini, Angelo; Tavagnacco, Daniele; Di Cianno, Amico; Straniero, Oscar

    2016-08-01

    The Antarctic Plateau is one of the best observing sites on Earth, especially for infrared astronomy. The extremely low temperatures (down to -80°C), the low pressure (around 650 mbar) and the very dry atmosphere (PWV less than 1 mm) allow for a very clear and dark sky, as well as for a very low instrumental background. These unique properties, however, make it also very difficult to install and operate astronomical instrumentation. AMICA (Antarctic Multiband Infrared CAmera) is an instrument especially designed for Antarctic operation, whose installation at Dome C has been completed in 2013. Since then it has been continuously working over the last five years, monitoring and controlling in particular the environmental and operating conditions through a dedicated application, its Environmental Control System (ECS). The recorded behavior of AMICA highlighted a set of peculiar aspects of the site that are hard to consider a priori. Although mechanical and electronic COTS components can reliably work in thermally insulated and controlled boxes, simple insulation causes their overheating because of the air dryness and rarefaction which make the heat transfer extremely inefficient. Heat removal is also a real problem when managing heavy-duty devices like cryocoolers, whose excess power removal needs to be fast and efficient. Finally, the lack of an electrical ground generates a wide variety of transient electrical and electromagnetic phenomena which often make electronic instrumentation very unstable. A list of new recommendations is therefore presented, as a guideline for future astronomical instruments operating in Antarctica.

  18. A near infrared instrument to monitor relative hemoglobin concentrations of human bone tissue in vitro and in vivo.

    PubMed

    Aziz, Syed Mahfuzul; Khambatta, Faram; Vaithianathan, Tharshan; Thomas, John C; Clark, Jillian M; Marshall, Ruth

    2010-04-01

    A continuous wave near infrared instrument has been developed to monitor in vivo changes in the hemoglobin concentration of the trabecular compartment of human bone. The transmitter uses only two laser diodes of wavelengths 685 and 830 nm, and the receiver uses a single silicon photodiode operating in the photovoltaic mode. The functioning of the instrument and the depth of penetration of the near infrared signals was determined in vitro using tissue-equivalent phantoms. The instrument achieves a depth of penetration of approximately 2 cm for an optode separation of 4 cm and, therefore, has the capacity to interrogate the trabecular compartment of human bone. The functioning of the instrument was tested in vivo to evaluate the relative oxy-hemoglobin (HbO(2)) and deoxy-hemoglobin (Hb) concentrations of the proximal tibial bone of apparently healthy, normal weight, adult subjects in response to a 3 min on, 5 min off, vascular occlusion protocol. The traces of the relative Hb and HbO(2) concentrations obtained were reproducible in controlled conditions. The instrument is relatively simple and flexible, and offers an inexpensive platform for further studies to obtain normative data for healthy cohorts, and to evaluate disease-specific performance characteristics for cohorts with vasculopathies of bone.

  19. Synchronised Aerosol Mass Spectrometer Measurements across Europe

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko

    2010-05-01

    Up to twelve Aerodyne Aerosol Mass Spectrometers (AMSs) were operated simultaneously at rural and background stations (EMEP and EUSAAR sites) across Europe. Measurements took place during three intensive periods, in collaboration between the European EUCAARI IP and the EMEP monitoring activities under the UNECE Convention for Long-Range Transboundary Air Pollution (CLRTAP) during three contrasting months (May 2008, Sep/Oct 2008, Feb/Mar 2009). These measurements were conducted, analysed and quality controlled carefully using a unified protocol, providing the largest spatial database of aerosol chemical composition measured with a unified online technique to date, and a unique snapshots of the European non-refractory submicron aerosol climatology. As campaign averages over all active monitoring sites, organics represent 28 to 43%, sulphate 18 to 25%, ammonium 13 to 15% and nitrate 15 to 36% of the resolved aerosol mass, with the highest relative nitrate contribution during the Feb/Mar campaign. The measurements demonstrate that in NW Europe (e.g. Ireland, UK, The Netherlands, Germany, Switzerland) the regional submicron aerosol tends to be neutralised and here nitrates make a major contribution to the aerosol mass. By contrast, periods with low nitrate and acidic aerosol were observed at sites in S and E Europe (e.g. Greece, Finland), presumably due to a combination of larger SO2 point sources in Easter Europe, smaller local NH3 sources and, in the case of Greece, higher temperatures. While at the more marine and remote sites (Ireland, Scotland, Finland) nitrate concentrations were dominated by episodic transport phenomena, at continental sites (Switzerland, Germany, Hungary) nitrate followed a clear diurnal cycle, reflecting the thermodynamic behaviour of ammonium nitrate. The datasets clearly shows spatially co-ordinated, large-scale pollution episodes of organics, sulphate and nitrate, the latter being most pronounced during the Feb/Mar campaign. At selected

  20. Impact of secondary inorganic aerosol and road traffic at a suburban air quality monitoring station.

    PubMed

    Megido, L; Negral, L; Castrillón, L; Fernández-Nava, Y; Suárez-Peña, B; Marañón, E

    2017-03-15

    PM10 from a suburban site in the northwest of Spain was assessed using data from chemical determinations, meteorological parameters, aerosol maps and five-day back trajectories of air masses. Temporal variations in the chemical composition of PM10 were subsequently related to stationary/mobile local sources and long-range transport stemming from Europe and North Africa. The presence of secondary inorganic species (sulphates, nitrates and ammonium) in airborne particulate matter constituted one of the main focuses of this study. These chemical species formed 16.5% of PM10 on average, in line with other suburban background sites in Europe. However, a maximum of 47.8% of PM10 were recorded after several days under the influence of European air masses. Furthermore, the highest values of these three chemical species coincided with episodes of poor air circulation and influxes of air masses from Europe. The relationship between SO4(2-) and NH4(+) (R(2) = 0.57, p-value<0.01) was found to improve considerably in summer and spring (R(2) = 0.88 and R(2) = 0.87, respectively, p-value<0.01), whereas NO3(-) and NH4(+) (R(2) = 0.55, p-value<0.01) reproduced this pattern in winter (R(2) = 0.91, p-value<0.01). The application of a receptor model to the dataset led to the identification of notable apportionments due to road traffic and other types of combustion processes. In fact, large amounts of particulate matter were released to the atmosphere during episodes of biomass burning in forest fires. On isolated days, combustion was estimated to contribute up to 21.0 μg PM/m(3) (50.8% of PM10). The contribution from industrial processes to this source is also worth highlighting given the presence of Ni and Co in its profile. Furthermore, African dust outbreaks at the sampling site, characterised by an arc through the Atlantic Ocean, were usually associated with a higher concentration of Al2O3 in PM10. Results evidenced the relevance of stationary (i.e., steelworks and

  1. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  2. Investigating vertical distributions of ozone and of the aerosol extinction coefficient in the middle atmosphere with the MKS-M and SFN-4 instruments on board Salyut-7

    NASA Astrophysics Data System (ADS)

    Badaev, V. V.; Grechko, G. M.; Elanskii, N. F.; Kan, V.; Plotkin, M. E.

    1989-04-01

    The technical characteristics of the multichannel spectrometer (MKS-M) system combined with a camera containing a spectrophotography attachment (SFN-4) are discussed together with results obtained by this system on distributions of ozone and aerosol in the middle atmosphere. It is demonstrated that this system is capable of retrieving the fine structure of vertical ozone and aerosol extinction distributions in the lower stratosphere. Results show that, in the ozonosphere, the contents of ozone and of aerosol exhibit a negative correlation.

  3. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  4. A telemedicine instrument for Internet-based home monitoring of thoracoabdominal motion in patients with respiratory diseases

    NASA Astrophysics Data System (ADS)

    da Silva Junior, Evert Pereira; Esteves, Guilherme Pompeu; Dames, Karla Kristine; Melo, Pedro Lopes de

    2011-01-01

    Changes in thoracoabdominal motion are highly prevalent in patients with chronic respiratory diseases. Home care services that use telemedicine techniques and Internet-based monitoring have the potential to improve the management of these patients. However, there is no detailed description in the literature of a system for Internet-based monitoring of patients with disturbed thoracoabdominal motion. The purpose of this work was to describe the development of a new telemedicine instrument for Internet-based home monitoring of thoracoabdominal movement. The instrument directly measures changes in the thorax and abdomen circumferences and transfers data through a transmission control protocol/Internet protocol connection. After the design details are described, the accuracy of the electronic and software processing units of the instrument is evaluated by using electronic signals simulating normal subjects and individuals with thoracoabdominal motion disorders. The results obtained during in vivo studies on normal subjects simulating thoracoabdominal motion disorders showed that this new system is able to detect a reduction in abdominal movement that is associated with abnormal thoracic breathing (p < 0.0001) and the reduction in thoracic movement during abnormal abdominal breathing (p < 0.005). Simulated asynchrony in thoracoabdominal motion was also adequately detected by the system (p < 0.0001). The experimental results obtained for patients with respiratory diseases were in close agreement with the expected values, providing evidence that this instrument can be a useful tool for the evaluation of thoracoabdominal motion. The Internet transmission tests showed that the acquisition and analysis of the thoracoabdominal motion signals can be performed remotely. The user can also receive medical recommendations. The proposed system can be used in a spectrum of telemedicine scenarios, which can reduce the costs of assistance offered to patients with respiratory diseases.

  5. Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product

    NASA Astrophysics Data System (ADS)

    Arvani, Barbara; Pierce, R. Bradley; Lyapustin, Alexei I.; Wang, Yujie; Ghermandi, Grazia; Teggi, Sergio

    2016-09-01

    In this work, the new 1 km-resolved Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is employed to characterize seasonal PM10 - AOD correlations over northern Italy. The accuracy of the new dataset is assessed compared to the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data, retrieved at 0.55 μm with spatial resolution of 10 km (MYD04_L2). We focused on evaluating the ability of these two products to characterize both temporal and spatial distributions of aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, spread across northern Italy, during a three-year period from 2010 to 2012. The Po Valley area (northern Italy) was chosen as the study domain because of its severe urban air pollution, resulting from it having the highest population and industrial manufacturing density in the country, being located in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found that the global correlations between the bin-averaged PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 and for MAIAC, respectively, suggesting a greater sensitivity of the high-resolution product to small-scale deviations. However, the introduction of Relative Humidity (RH) and Planetary Boundary Layer (PBL) depth corrections allowed for a significant improvement to the bin-averaged PM - AOD correlation, which led to a similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 values. The study allowed us to define four seasonal linear correlations that estimate PM10 concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the results show that the high

  6. A multi-instrument approach to monitoring turbidity currents: Case study from the Squamish Delta, British Columbia (Canada)

    NASA Astrophysics Data System (ADS)

    Hage, Sophie; Cartigny, Matthieu; Clare, Michael; Talling, Peter; Sumner, Esther; Vardy, Mark; Hughes Clarke, John

    2016-04-01

    Turbidity currents are volumetrically the most important process for moving sediment in submarine environments. They may travel at high speeds, thereby posing a threat to important and expensive seafloor infrastructure. Despite their importance, we still know little about their flow dynamics because direct monitoring is challenging and consequently rare. Additionally, the few settings in which monitoring has been feasible, have generally involved a single instrument approach, either measuring flow velocity, sediment concentration or grain size. Here we present results issued from a multi-instrument study where a single turbidity current was observed with several instruments at the same location and time using different measuring frequencies. Three types of geophysical sensors were deployed from a single vessel moored over a turbidity current channel on the Squamish Delta in British Colombia, Canada. First, two 500 kHz multibeam sonars suspended from the bow of the ship imaged the incoming turbidity current and documented its interaction with the crescentic bedforms on the channel thalweg. Second, a 600 kHz downward-looking Acoustic Doppler Current Profiler (ADCP) lowered from the back of the ship provided vertical profiles of velocity through time. Third, a 1.0-24.0 kHz Chirp profiler enabled for the first time imaging of the dense near-bed zone of the turbidity current, which has so far been largely impenetrable using higher frequency sonar and ADCP instruments. Besides the stationary deployment, a repetitive multibeam survey was also performed using a moving vessel in order monitor temporal evolution of the seafloor morphology resulting from turbidity currents. By combining the measurements from each system, a single turbidity current was characterised in unusually high resolution. This current was 6 to 8 meters thick and at least 40 meters wide according to the multibeam sonars. The ADCP measured a front speed of around 1.5 m/s, higher than the internal

  7. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman.

    PubMed

    Nawahda, Amin

    2015-08-01

    Ground level ozone (O3) concentrations were measured across Sohar highway in Oman during a four-month period from September to December 2014 by using an open-path deferential optical absorption spectroscopy (DOAS) instrument. The monthly average concentrations of O3 varied from 19.6 to 29.4 ppb. The measurements of O3 are compared with the measurements of a non-open-path UV photometry analyzer (UVP). The percent difference (PD) concept and linear regression methods were used to compare the readings of the two instruments. The findings show high correlation coefficients between the measurements of the DOAS and UVP instruments. The DOAS measurements of O3 are found to be less than those measured by the UVP instrument; the correlation coefficients between absolute PD values and meteorological parameters and PM2.5 were very low indicating a minor effect; therefore, titrations of O3 by traffic emissions and difference in elevation could be the reason for the difference in the measurements of the two instruments.

  8. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to § 63.1006(b). (ii) Pumps in light liquid service shall be monitored pursuant to § 63.1007(b). (iii... § 63.1009(b). (v) Pressure relief devices in gas and vapor service shall be monitored pursuant to § 63... for leaks. (i) Pumps in light liquid service shall be observed pursuant to § 63.1007(b)(3) and...

  9. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    NASA Astrophysics Data System (ADS)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  10. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model

    PubMed Central

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-01-01

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people’s postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future. PMID:27999324

  11. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model.

    PubMed

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-12-17

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people's postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future.

  12. Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis

    NASA Astrophysics Data System (ADS)

    Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing

    2013-12-01

    In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.

  13. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  14. Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model

    NASA Astrophysics Data System (ADS)

    Alam, Khan; Qureshi, Salman; Blaschke, Thomas

    2011-09-01

    Three different satellite-borne sensors, namely the Total Ozone Mapping Spectrometer (TOMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR), were used to investigate the spatial and temporal variations of aerosols over several cities in Pakistan. A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for trajectory analysis in order to reconstruct the origins of air masses and understand the spatio-temporal variability of aerosol concentrations. Recent MODIS aerosol data (2002-2008) and earlier TOMS data (1979-2001) revealed increasing concentrations of aerosols over Pakistan and adjacent areas. Validation of MODIS and MISR derived aerosol optical depths (AODs) with Aerosol Robotic Network (AERONET) data for 2007 demonstrated that the MISR data was more accurate when close to the ocean, while the MODIS was more accurate over vegetated areas. The relationship between MODIS and MISR AOD data from 2002 to 2008 was analyzed, revealing a strong correlation between the two datasets. An assessment of seasonal variability in AOD for industrial, urban, semi-urban, rural, and semi-arid areas revealed maximum AOD values during the summer over all the areas investigated. Back trajectory analyses indicated that while winter air masses reaching Pakistan had travelled long distances, summer air masses had travelled only short distances. The higher aerosol concentrations during the summer are interpreted to be a result of the air masses spending more time over land during the summer than they do during the winter. While monsoonal rainfall tends to reduce aerosol concentrations by washing aerosols out of the atmosphere, this effect is mainly restricted to the eastern and south-eastern parts of Pakistan.

  15. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  16. Plots of ground coverage achieveable by global change monitoring instruments and spacecraft

    NASA Technical Reports Server (NTRS)

    Knight, Heather R.; Foernsler, Lynda

    1991-01-01

    Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) satellite plots are given. All satellites are in an 800 km circular orbit at an inclination of 98.6 deg (sun synchronous). Specifics of the instrument package are given. Additionally, the time period of the plot and the percentage of the Earth covered during the time period are listed.

  17. Distributing space weather monitoring instruments and educational materials worldwide for IHY 2007: The AWESOME and SID project

    NASA Astrophysics Data System (ADS)

    Scherrer, Deborah; Cohen, Morris; Hoeksema, Todd; Inan, Umran; Mitchell, Ray; Scherrer, Philip

    2008-12-01

    The International Heliophysical Year (IHY) aims to advance our understanding of the fundamental processes that govern the Sun, Earth, and heliosphere. The IHY Education and Outreach Program is dedicated to inspiring the next generation of space and Earth scientists as well as spreading the knowledge, beauty, and relevance of our solar system to the people of the world. In our Space Weather Monitor project we deploy a global network of sensors to high schools and universities to provide quantitative diagnostics of solar-induced ionospheric disturbances, thunderstorm intensity, and magnetospheric activity. We bring real scientific instruments and data in a cost-effective way to students throughout the world. Instruments meet the objectives of being sensitive enough to produce research-quality data, yet inexpensive enough for placement in high schools and universities. The instruments and data have been shown to be appropriate to, and usable by, high school age and early university students. Data contributed to the Stanford data center is openly shared and partnerships between groups in different nations develop naturally. Students and teachers have direct access to scientific expertise. The result is a world-wide collaboration of scientists, teachers, and students to investigate the variability of the ionosphere. The research-quality AWESOME (Atmospheric Weather Electromagnetic System of Observation, Modeling, and Education) instruments have been selected as a participating program by the United Nations Basic Space Science Initiative (UNBSSI). The IHY Committee for International Education and Public Outreach has designated the simpler SID (Sudden Ionospheric Disturbance) monitors to be provided to teacher/student teams in each of the 192 countries of the world.

  18. Target mass monitoring and instrumentation in the Daya Bay antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Band, H. R.; Cherwinka, J. J.; Greenler, L. S.; Heeger, K. M.; Hinrichs, P.; Kang, L.; Lewis, C. A.; Li, S. F.; Lin, S. X.; McFarlane, M. C.; Wang, W.; Webber, D. M.; Wei, Y. D.; Wise, T. S.; Xiao, Q.; Yang, L.; Zhang, Z. J.

    2013-04-01

    The Daya Bay experiment measures sin 22θ13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detector's central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors' effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time antineutrino detector monitoring sensors and readout electronics.

  19. Analysis of Instrumentation to Monitor the Hydrologic Performance of Green Infrastructure at the Edison Environmental Center

    EPA Science Inventory

    Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture and water level sensors to monitor surface infiltration and infiltration into the underlying soil for per...

  20. Operational test procedure for pumping and instrumentation control skid SALW-6001B monitor and control system

    SciTech Connect

    Garcia, M.F.

    1995-11-01

    This OTP shall verify and document that the monitor and control system comprised of PICS SALW-6001B PLC, 242S PLC, Operator Control Station, and communication network is functioning per operational requirements.

  1. Measuring of urban ultrafine aerosol as a part of regular air pollution monitoring activities

    NASA Astrophysics Data System (ADS)

    Hejkrlík, Libor; Plachá, Helena

    2015-04-01

    Number size distribution of UFP has been measured since June 2012 to present time (end of 2014) at a background urban site in Northern Bohemia in the frame of UltraSchwarz Project. The project sustainability guarantees at least five years further measuring thus this highly specific activity already becomes part of existing air pollution monitoring system of Czech Hydrometeorological Institute. Number concentrations of UFP were measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of 10 minutes. For the purposes of this study the data were re-arranged into series of one-hour means in three size categories: nucleation mode (10-30 nm), Aitken mode (30-100 nm) and accumulation mode (100-800 nm). At the same measuring site 7 other air pollutants (PM1-BC, NO, NOX, NO2, O3, PM10 and SO2) were measured with identical time resolution. The successive daily courses of submicron particles in three size modes as well as of seven other ambient air pollutants were drawn in the form of 3D surface diagrams expressing different behavior of specific substances in the course of 26 months of continuous measuring campaign, allowing for analysis of both diurnal and seasonal changes. The three modes of UFP manifest diverse pictures, the nucleation mode is apparent mainly during warm seasons, the particles in Aitken mode behave rather indifferently to the period of the year and the accumulation mode has close relationship to coarse particles. Month by month correlation analysis indicate that nucleation mode nanoparticles are positively correlated especially with increasing O3 and SO2 concentration and that there exists connection between Aitken and accumulation modes and nitrogen oxides. In order to better understand fine time patterns we plan to calculate moving correlation indices over shorter time periods. Good idea would also be to make use of large database of data from nearby stations of CHMI to analyze the role of meteorological conditions.

  2. Information Content of Bistatic Lidar Observations of Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Mishchenko, Michael I.

    2017-01-01

    We present, for the first time, a quantitative retrieval error-propagation study for a bistatic high spectral resolution lidar (HSRL) system intended for detailed quasi-global monitoring of aerosol properties from space. Our results demonstrate that supplementing a conventional monostatic HSRL with an additional receiver flown in formation at a scattering angle close to 165 degrees dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols. We conclude that a bistatic HSRL system would far exceed the capabilities of currently flown or planned orbital instruments in monitoring global aerosol effects on the environment and on the Earth's climate. We also demonstrate how the commonly used a priori 'regularization' methodology can artificially reduce the propagated uncertainties and can thereby be misleading as to the real retrieval capabilities of a measurement system.

  3. Information content of bistatic lidar observations of aerosols from space.

    PubMed

    Alexandrov, Mikhail D; Mishchenko, Michael I

    2017-02-20

    We present, for the first time, a quantitative retrieval error-propagation study for a bistatic high spectral resolution lidar (HSRL) system intended for detailed quasi-global monitoring of aerosol properties from space. Our results demonstrate that supplementing a conventional monostatic HSRL with an additional receiver flown in formation at a scattering angle close to 165° dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols. We conclude that a bistatic HSRL system would far exceed the capabilities of currently flown or planned orbital instruments in monitoring global aerosol effects on the environment and on the Earth's climate. We also demonstrate how the commonly used a priori "regularization" methodology can artificially reduce the propagated uncertainties and can thereby be misleading as to the real retrieval capabilities of a measurement system.

  4. Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of VIIRS, OMPS, and CALIOP Observations

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-01-01

    Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.

  5. Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahn, C.; Zhong, C.

    2014-01-01

    The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.

  6. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-02-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider one week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  7. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-07-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider 1 week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  8. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  9. The modern instrumentation used for monitoring and controlling the main parameters of the regenerative electro-mechano-hydraulic drive systems

    NASA Astrophysics Data System (ADS)

    Cristescu, Corneliu; Drumea, Petrin; Krevey, Petrica

    2009-01-01

    In this work is presented the modern instrumentation used for monitoring and controlling the main parameters for one regenerative drive system, used to recovering the kinetic energy of motor vehicles, lost in the braking phase, storing and using this energy in the starting or accelerating phases. Is presented a Romanian technical solution for a regenerative driving system, based on a hybrid solution containing a hydro-mechanic module and an existing thermal motor drive, all conceived as a mechatronics system. In order to monitoring and controlling the evolution of the main parameters, the system contains a series of sensors and transducers that provide the moment, rotation, temperature, flow and pressure values. The main sensors and transducers of the regenerative drive system, their principal features and tehnical conecting solutions are presented in this paper, both with the menaging electronic and informational subsystems.

  10. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  11. Monitoring a liquid waste stream with a delayed-neutron instrument

    SciTech Connect

    Rinard, P.M.; Van Lyssel, T.; Kroncke, K.E.; Schneider, C.M.; Bourret, S.C.

    1989-01-01

    A flowing raffinate stream is to be continuously assayed by a delayed-neutron instrument to detect concentrations of {sup 235}U that could cause a criticality problem in a holding tank. The instrument is to assay a concentration of 0.034 (g {sup 235}U)/L in 100 s with a precision of 10% (1 {sigma}) and to operate unattended for a few months at a time, so it can detect and adjust for changes in the neutron background, the flow rate, and for electronic drifts and malfunctions. In laboratory tests with conditions slightly different from what may be found in the plant, repeated assays on a solution with 0.034 (g {sup 235}U)/L flowing at 80 L/h through the 2-L assay tank had relative precisions of 9-11%. 5 refs., 5 figs.

  12. Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring

    PubMed Central

    Leitao, Jordana; Chandramohan, Daniel; Byass, Peter; Jakob, Robert; Bundhamcharoen, Kanitta; Choprapawon, Chanpen; de Savigny, Don; Fottrell, Edward; França, Elizabeth; Frøen, Frederik; Gewaifel, Gihan; Hodgson, Abraham; Hounton, Sennen; Kahn, Kathleen; Krishnan, Anand; Kumar, Vishwajeet; Masanja, Honorati; Nichols, Erin; Notzon, Francis; Rasooly, Mohammad Hafiz; Sankoh, Osman; Spiegel, Paul; AbouZahr, Carla; Amexo, Marc; Kebede, Derege; Alley, William Soumbey; Marinho, Fatima; Ali, Mohamed; Loyola, Enrique; Chikersal, Jyotsna; Gao, Jun; Annunziata, Giuseppe; Bahl, Rajiv; Bartolomeus, Kidist; Boerma, Ties; Ustun, Bedirhan; Chou, Doris; Muhe, Lulu; Mathai, Matthews

    2013-01-01

    Objective Verbal autopsy (VA) is a systematic approach for determining causes of death (CoD) in populations without routine medical certification. It has mainly been used in research contexts and involved relatively lengthy interviews. Our objective here is to describe the process used to shorten, simplify, and standardise the VA process to make it feasible for application on a larger scale such as in routine civil registration and vital statistics (CRVS) systems. Methods A literature review of existing VA instruments was undertaken. The World Health Organization (WHO) then facilitated an international consultation process to review experiences with existing VA instruments, including those from WHO, the Demographic Evaluation of Populations and their Health in Developing Countries (INDEPTH) Network, InterVA, and the Population Health Metrics Research Consortium (PHMRC). In an expert meeting, consideration was given to formulating a workable VA CoD list [with mapping to the International Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) CoD] and to the viability and utility of existing VA interview questions, with a view to undertaking systematic simplification. Findings A revised VA CoD list was compiled enabling mapping of all ICD-10 CoD onto 62 VA cause categories, chosen on the grounds of public health significance as well as potential for ascertainment from VA. A set of 221 indicators for inclusion in the revised VA instrument was developed on the basis of accumulated experience, with appropriate skip patterns for various population sub-groups. The duration of a VA interview was reduced by about 40% with this new approach. Conclusions The revised VA instrument resulting from this consultation process is presented here as a means of making it available for widespread use and evaluation. It is envisaged that this will be used in conjunction with automated models for assigning CoD from VA data, rather than involving physicians. PMID

  13. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring.

    PubMed

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-05-20

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than -15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than -30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics.

  14. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring

    PubMed Central

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-01-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than −15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than −30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393

  15. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  16. Temporal characterization of atmospheric turbulence with the Generalized Seeing Monitor instrument

    NASA Astrophysics Data System (ADS)

    Ziad, A.; Borgnino, J.; Dali Ali, W.; Berdja, A.; Maire, J.; Martin, F.

    2012-04-01

    The temporal behavior of atmospheric turbulence has been analyzed by means of angle-of-arrival (AA) fluctuation measurements. The temporal evolution of the main atmospheric optical parameters (AOP) have been studied in order to determine their stability. This is of interest because these AOP are necessary for the optimization of high angular resolution techniques. A new method of coherence time τ0 monitoring with the Generalized Seeing Monitor (GSM) is presented and the measurements obtained at major sites over the world are presented (La Silla, Cerro Pachon, Paranal, San Pedro Mártir, Mt Palomar, Mauna Kea, La Palma, Oukaïmeden, Maydanak).

  17. Implementation of an Integrated, Portable Transformer Condition Monitoring Instrument in the Classroom and On-Site

    ERIC Educational Resources Information Center

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2010-01-01

    The development of integrated, portable, transformer condition monitoring (TCM) equipment for classroom demonstrations as well as for student exercises conducted in the field is discussed. Demonstrations include experimentation with real-world transformers to illustrate concepts such as polarization and depolarization current through oil-paper…

  18. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../vapor service and in light liquid service shall be monitored pursuant to § 65.108(b). (iv) Agitators in... service shall be observed pursuant to § 65.107(b)(4) and (e)(1)(v). (ii) Agitators in gas/vapor...

  19. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../vapor service and in light liquid service shall be monitored pursuant to § 65.108(b). (iv) Agitators in... service shall be observed pursuant to § 65.107(b)(4) and (e)(1)(v). (ii) Agitators in gas/vapor...

  20. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../vapor service and in light liquid service shall be monitored pursuant to § 65.108(b). (iv) Agitators in... service shall be observed pursuant to § 65.107(b)(4) and (e)(1)(v). (ii) Agitators in gas/vapor...

  1. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../vapor service and in light liquid service shall be monitored pursuant to § 65.108(b). (iv) Agitators in... service shall be observed pursuant to § 65.107(b)(4) and (e)(1)(v). (ii) Agitators in gas/vapor...

  2. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../vapor service and in light liquid service shall be monitored pursuant to § 65.108(b). (iv) Agitators in... service shall be observed pursuant to § 65.107(b)(4) and (e)(1)(v). (ii) Agitators in gas/vapor...

  3. An Exploratory Investigation of Various Assessment Instruments as Correlates of Complex Visual Monitoring Performance,

    DTIC Science & Technology

    1980-10-01

    Inventory (15) and an intelligence test, the Wonderlic Personnel Test (36), to subjects who subsequently performed a simple visual monitoring task...1962. 36. Wonderlic , E. F.: Wonderlic Personnel Test. Glencoe, Illinois: Author, 1922. 37. Zuckerman, M.: Manual and Research Report for the Sensation Seeking Scale (SSS). Newark, New Jersey: University of Delaware, 1972. 17 IATE

  4. Development of a portable instrument for the continuous analysis of volatile organic compounds (VOCs) and its application to environmental monitoring.

    PubMed

    Yamada, Etsu; Matsushita, Kazumasa; Nakamura, Mitsuaki; Fuse, Yasuro; Miki, Sadao; Fujimoto, Kiyoomi; Morita, Hiroyoshi; Shimada, Osamu

    2006-01-01

    A small, time efficient and sensitive instrument for the continuous analysis of very volatile organic compounds (VOCs) with a boiling point lower than 100 degrees C in addition to the analysis of VOCs with a boiling point in the range of 100-150 degrees C was developed and applied to the measurement of VOCs in the course of university research and environmental monitoring. VOCs, such as n-hexane, acetone, ethyl acetate, alcohols, benzene, toluene and xylene, were continuously measured once every 30 min. The detection limits of hexane, ethyl acetate, benzene and toluene at a preconcentration time of 10 min were 0.41 microg/m(3) (0.12 ppb), 0.67 microg/m(3) (0.19 ppb), 0.22 microg/m(3) (0.07 ppb) and 0.22 microg/m(3) (0.06 ppb), respectively. The relative standard deviations of VOCs were less than 5%. The sensitivities of the present method VOCs were higher than those of the conventional method. The temporal changes in VOC concentrations in several laboratories and at a plant for the disposal of organic liquid wastes were measured, and the behavior of VOCs was analyzed. All the VOC concentrations, except that of ethyl acetate, determined using the portable instrument were slightly lower than those determined using a passive sampler. The portable instrument developed in the course of this study can be used for the risk assessment and management of chemicals.

  5. A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Enya, K.; Abe, L.; Takeuchi, S.; Kotani, T.; Yamamuro, T.

    2011-09-01

    This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of SPICA is planned to take place in FY2018. The SPICA mission provides us with a unique opportunity to make high dynamic-range observations because of its large telescope aperture, high stability, and the capability for making infrared observations from deep space. The SCI is a high dynamic-range instrument proposed for SPICA. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in the infrared region, while the monitoring of transiting planets is another important target owing to the non-coronagraphic mode of the SCI. Then, recent technical progress and ideas in conceptual studies are presented, which can potentially enhance the performance of the instrument: the designs of an integral 1-dimensional binary-shaped pupil mask coronagraph with general darkness constraints, a concentric ring mask considering the obscured pupil for surveying a wide field, and a spectral disperser for simultaneous wide wavelength coverage, and the first results of tests of the toughness of MEMS deformable mirrors for the rocket launch are introduced, together with a description of a passive wavefront correction mirror using no actuator.

  6. A New Submersible Imaging-in-flow Instrument to Monitor Nano- and Microplankton: Imaging FlowCytobot

    NASA Astrophysics Data System (ADS)

    Olson, R. J.; Sosik, H. M.; Shalapyonok, A.

    2004-12-01

    Understanding of how coastal plankton communities are regulated has traditionally been limited by undersampling, but cabled observatories now provide opportunities to deploy submersible sensors that have high power and data transmission requirements. We have developed an in situ instrument to carry out high-resolution, long term monitoring of phytoplankton and microzooplankton in the size range 10 to100 micrometers, to be deployed at cabled research facilities such as the Martha's Vineyard Coastal Observatory (MVCO). The new instrument is designed to complement FlowCytobot, a submersible flow cytometer currently deployed at MVCO that uses fluorescence and light scattering signals from a laser beam to characterize the smallest phytoplankton cells (less than 10 micrometers). Imaging FlowCytobot uses a combination of flow cytometric and video technology to capture images of organisms for identification and to measure chlorophyll fluorescence associated with each image. Images will be classified using neural net software, while the measurements of chlorophyll fluorescence will allow us to discriminate heterotrophic from phototrophic cells. The new instrument, like the original FlowCytobot is autonomous but remotely programmable. It utilizes a computer controlled syringe pump and distribution valve that allows periodic anti-fouling treatment and analysis of standard beads. Samples are analyzed continuously (0.25 to 2.5 ml per min) and data is sent over a fiber optic link to a remote computer for analysis. Preliminary results indicate that we can detect cells as small as 5 micrometers and discriminate several taxa of diatoms and dinoflagellates.

  7. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    SciTech Connect

    Verbeeck, Jens; Cao, Ying; Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz; De Cock, Wouter; Vermeeren, Ludo; Steyaert, Michiel; Leroux, Paul

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  8. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  9. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  10. Resolving mesoscale variation in aerosol fields from satellite: Is fine resolution worth the hassle? (Invited)

    NASA Astrophysics Data System (ADS)

    Remer, L. A.; Munchak, L. A.; Huang, J.; Levy, R. C.; Mattoo, S.

    2013-12-01

    In early 2000 we began receiving global aerosol products from the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) at nominal 10 km and 17.5 km resolution, respectively. Aerosol products derived from other satellite sensors such as the Ozone Monitoring Instrument (OMI) with spatial resolution nominally at 13 x 12 km later joined these data. Suddenly the global aerosol system popped into focus. For global-scale science, a 10 km product appeared to be adequate. Questions concerning the adequacy of this moderate resolution data set began to arise as the community's interest in satellite-derived aerosol products branched towards more local questions. As of Collection 6, the MODIS aerosol product will now include a fine resolution product at nominal 3 km resolution. What can we learn about mesoscale variation in aerosol fields from this new product? Was the effort worth it? We take advantage of the AERONET DRAGON networks in the mid-Atlantic region of the U.S., in Korea and in California to compare the accuracy of the MODIS 3 km product with the MODIS 10 km product, and just for fun, with the 6 km Visible Infrared Imager Suite (VIIRS) aerosol product. Do the finer resolution aerosol products show us aerosol features unobtainable by the coarser resolution products? Are the finer resolution products worth the hassle?

  11. A commentary on the instrumentation for building energy monitoring and control systems (EMCS). Final report

    SciTech Connect

    Kao, J.Y.; Baker, D.W.

    1980-09-01

    This paper reviews sensors generally used for building energy monitoring and control systems (EMCS). The sensor operating principles, performances, calibration, maintenance, installation precautions, failure modes and their suitability for building EMCS use are discussed. Sensors covered in the paper include orifices, flow nozzles, Venturis, vortex shedding meters, and turbine meters for flow measurements, liquid-in-glass thermometers, resistance thermometers, and thermocouples for temperature measurements, and salt-phase transition hygrometers, impedance hygrometers, and dimensional change hygrometers for humidity measurements.

  12. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    NASA Technical Reports Server (NTRS)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  13. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  14. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  15. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2016-02-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300 to 1000 nm) on relative humidity up to almost 100 % was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80 %. The respective 4-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidity increase from 40 to 95 %. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.46 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found, indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yields good agreement. Also, time series of the particle extinction coefficient computed from in situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40 % relative humidity) were found in good overall consistency, which verifies the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30 % relative humidity) to 1.3 (at 95 % relative humidity) for the 4-year period.

  16. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    NASA Technical Reports Server (NTRS)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  17. Fluorescence instrument for in situ monitoring of viral abundance in water, wastewater and recycled water.

    PubMed

    Pollard, Peter C

    2012-04-01

    In a world of advanced molecular methods quantifying viruses in water remains one of the most inefficient and costly. Using a general molecular DNA/RNA probe - SYBR Gold combined with differential filtration a fast, cost effective and sensitive method is presented to determine the concentration of viruses in water in situ or on-line. The approach differentiates the nucleotide size fractions that are stained with SYBR Gold to show only those associated with Viral DNA and RNA. There was a linear relationship between the fluorescence maxima for SYBR Gold added to wastewater and viral numbers determined with direct counting using epifluorescent microscopy (r(2)=0.97) and for a range of diverse natural water samples (r(2)=0.86). The method was applied to water from the tropics and Antarctica, marine and freshwater environments where natural viral abundances ranged from 10(6) to 10(8) virusesmL(-1). The method takes into account the background fluorescence that represented 70% of total fluorescence and any auto-fluorescence due to other dissolved organic carbon. While DNAse II lowered the background fluorescence associated with free DNA and RNA it could not be eliminated. The technique presented is suitable for monitoring in situ viral numbers in natural water bodies and engineered water treatment processes. This on-line viral monitoring design has the potential to replace human viral pathogen indicators.

  18. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    PubMed Central

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  19. Development of Monitoring & Verification Technology (MVT) for Carbon Sequestration in Terrestrial Ecosystems: Instrumentation and Protocols

    SciTech Connect

    Wielopolski, Lucian

    2008-09-29

    The objective of this CRADA is to further develop the Multiple Elemental Soil Analysis (MESA) system, based on inelastic neutron scattering technology that was originally developed by Dr. Lucian Wielopolski at BNL. The scope of this CRADA will center on the quantification and monitoring of non-destructive in situ carbon loading in soils to evaluate land application emission reduction activities. To accomplish this objective, the CRADA will center on three main joint activities as described below: A. To further develop and characterize a prototype, field deployable MESA system for static and scanning purposes. B. To develop applicable protocols for agricultural land applications; system validation and field sampling schemes. C. To implement field experiments for independent systems validation, verification, and acceptance by third parties for use in the market segment and commercialization. The technical approach involves a system for monitoring characteristic gamma rays emitted from carbon nuclei stimulated by inelastic neutron scattering from a carbon nucleus. The system consists of a neutron generator emitting fast, 14 MeV, neutrons, shielding materials, and a detection system with nuclear electronics for data acquisition. Following standard system calibration, the results are produced immediately at the end of the counting period.

  20. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    PubMed

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes.

  1. Can Aerosol Direct Radiative Effects Account for Analysis Increments of Temperature in the Tropical Atlantic?

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Alpert, Pinhas

    2016-01-01

    In the late 1990's, prior to the launch of the Terra satellite, atmospheric general circulation models (GCMs) did not include aerosol processes because aerosols were not properly monitored on a global scale and their spatial distributions were not known well enough for their incorporation in operational GCMs. At the time of the first GEOS Reanalysis (Schubert et al. 1993), long time series of analysis increments (the corrections to the atmospheric state by all available meteorological observations) became readily available, enabling detailed analysis of the GEOS-1 errors on a global scale. Such analysis revealed that temperature biases were particularly pronounced in the Tropical Atlantic region, with patterns depicting a remarkable similarity to dust plumes emanating from the African continent as evidenced by TOMS aerosol index maps. Yoram Kaufman was instrumental encouraging us to pursue this issue further, resulting in the study reported in Alpert et al. (1998) where we attempted to assess aerosol forcing by studying the errors of a the GEOS-1 GCM without aerosol physics within a data assimilation system. Based on this analysis, Alpert et al. (1998) put forward that dust aerosols are an important source of inaccuracies in numerical weather-prediction models in the Tropical Atlantic region, although a direct verification of this hypothesis was not possible back then. Nearly 20 years later, numerical prediction models have increased in resolution and complexity of physical parameterizations, including the representation of aerosols and their interactions with the circulation. Moreover, with the advent of NASA's EOS program and subsequent satellites, atmospheric aerosols are now monitored globally on a routine basis, and their assimilation in global models are becoming well established. In this talk we will reexamine the Alpert et al. (1998) hypothesis using the most recent version of the GEOS-5 Data Assimilation System with assimilation of aerosols. We will

  2. Development of a novel sweeping Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    NASA Astrophysics Data System (ADS)

    Ranvier, Sylvain; De Keyser, Johan; Cardoen, Pepijn; Pieroux, Didier

    2014-05-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Belgian Institute for Space Aeronomy. PICASSO was initiated to join the QB50 project as scientific in-orbit demonstrator. The sweeping Langmuir probe (SLP) instrument is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e6/m³ at high latitude and high altitude up to 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1000 K and 3000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, and 5) ionospheric dynamics via coordinated observations with EISCAT's heating radar. To achieve the scientific objectives described above, the instrument includes four thin cylindrical probes whose electrical potential is swept in such a way that both plasma density and electron temperature can be derived. In addition, since at least two probes will be out of the spacecraft's wake at any given time, differential measurements can be performed to increase the accuracy. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive

  3. Monitoring of Refractory Wall recession using high temperature impact echo instrumentation

    SciTech Connect

    University of Dayton

    2004-04-30

    Regression of refractory linings of furnaces occurs due to a variety of mechanisms. The specific mechanism selected for investigation during this program is the regression of refractories which are in direct contact with a liquid corrodant. Examples include the melting of glass, the production of pig iron and steel, and the melting of aluminum. The rates of regression to a wall thickness which requires reline or extensive reconstruction vary widely, from less than a year to over ten years depending on the specific service environment. This program investigated the feasibility of measuring refractory wall thickness with an impact-echo method while at operating temperature (wall temperatures exceeding 500 C). The impact-echo method uses the impact of a small sphere with the surface of the test object to send a stress wave into the object. In a plate-like structure, the stress wave reflects back to the front surface, reverberating in the structure and causing a periodic surface displacement whose frequency is inversely proportional to the thickness of the test object. Impact-echo testing was chosen because it requires access to only one side of the test object and could be performed during the operation of a refractory structure. Commercially-available impact-echo instrumentation is available for room temperature use for a variety of tests on concrete. The enabling technology for this work was to use a high-temperature piezoelectric material, aluminum nitride, as the receiving sensor for the stress waves, allowing its use on refractories during furnace operation.

  4. A portable instrument for continuous glucose monitoring by the integration of microfluidic chip and micro-glucose sensor

    NASA Astrophysics Data System (ADS)

    Li, Dachao; Ji, Yongjie; Liang, Wenshuai; Zhang, Xiaoli; Yu, Haixia; Xu, Kexin

    2013-03-01

    Interstitial fluid (ISF) can be transdermally extracted using low-frequency ultrasound and continuous vacuum pressure on skin surface. But the tiny volume of transdermally extracted ISF makes the transdermal extraction, collection, transport, volumetric detection and glucose concentration measurement of the ISF very difficult. Based on a microfluidic chip for transdermally extraction of interstitial fluid and a micro glucose sensor for glucose concentration measurement, a continuous glucose monitoring instrumentby ISF transdermal extraction with minimally invasive way is developed. In the paper, various parts of the device and their interface circuits are designed; the hardware and software of the instrument are built; the simulating experiments of transdermal ISF extraction, collection and volume measurement with full-thickness pig skin are performed using this integrated system; and the functionalities of this device is verified for future clinical application.

  5. The impact of the 2005 Gulf hurricanes on pollution emissions as inferred from Ozone Monitoring Instrument (OMI) nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasuko; Duncan, Bryan N.; Retscher, Christian; Pickering, Kenneth E.; Celarier, Edward A.; Joiner, Joanna; Boersma, K. Folkert; Veefkind, J. Pepijn

    2010-04-01

    The impact of Hurricanes Katrina and Rita in 2005 on pollution emissions in the Gulf of Mexico region was investigated using tropospheric column amounts of nitrogen dioxide (NO 2) from the Ozone Monitoring Instrument (OMI) on the NASA Aura satellite. Around New Orleans and coastal Mississippi, we estimate that Katrina caused a 35% reduction in NO x emissions on average in the three weeks after landfall. Hurricane Rita caused a significant reduction (20%) in NO x emissions associated with power generation and intensive oil refining activities near the Texas/Louisiana border. We also found a 43% decrease by these two storms over the eastern Gulf of Mexico Outer Continental Shelf mainly due to the evacuation of and damage to platforms, rigs, and ports associated with oil and natural gas production.

  6. Passive Detection of Biological Aerosols in the Atmosphere with a Fourier Transform Instrument (FTIR)—the Results of the Measurements in the Laboratory and in the Field

    NASA Astrophysics Data System (ADS)

    Błęcka, M. I.; Rataj, M.; Szymański, G.

    2012-06-01

    Fourier Transform Infrared Radiation (FTIR) spectroscopy is one of the most powerful methods for the detection of gaseous constituents, aerosols, and dust in planetary atmospheres. Infrared spectroscopy plays an important role in searching for biomarkers, organics and biological substances in the Universe. The possibility of detection and identifications with FTIR spectrometer of bio-aerosol spores ( Bacillus atrophaeus var. globigii=BG) in the atmosphere is discussed in this paper. We describe the results of initial spectral measurements performed in the laboratory and in the field. The purpose of these experiments was to detect and to identify bio-aerosol spores in two conditions: 1) In a closed chamber where the thermal contrast between the background and aerosols was large, and 2) In open air where the thermal contrast between the background and aerosols was small. The extinction spectrum of BG spores was deduced by comparing our measurements with models, and other measurements known from the literature. Our theoretical and experimental studies indicate that, during passive remote sensing measurements, it is difficult—but possible to detect and to identify bio-aerosol clouds by their spectral signatures. The simple spectral analysis described in the paper can be useful for the detection of various kinds of trace aerosols—not only in the Earth's atmosphere, but also during planetary missions in the environments of other astronomical objects such as planets, comets etc. We expect that the interpretation of data from spectrometric sounding of Venus and Mars during the current missions Mars and Venus Express, and later during the Rosetta mission will benefit from our experimental work and numerical modelling.

  7. Satellite Multiangle Spectropolarimetric Imaging of Aerosols

    NASA Technical Reports Server (NTRS)

    Diner, David; Macenka, Steven; Scherr, Lawrence; Seshadri, Suresh; Chipman, Russell; Keller, Christoph

    2006-01-01

    A proposed remote-sensing instrument, to be carried aboard a spacecraft in orbit around the Earth, would gather data on the spatial distribution and radiative characteristics of tropospheric aerosols. These data are needed for better understanding of the natural and anthropogenic origins of aerosols, and of the effects of aerosols on climate and atmospheric chemistry.

  8. Instrumental monitoring of the birth and development of truffles in a Tuber melanosporum orchard.

    PubMed

    Pacioni, G; Leonardi, M; Di Carlo, P; Ranalli, D; Zinni, A; De Laurentiis, G

    2014-04-01

    Mycorrhizal symbiotic plants, soil suitability, temperature, and humidity are, by general consensus, considered decisive factors in truffle production. However, experimental approaches to define the environmental conditions that stimulate formation of truffle primordia and promote their growth to maturity have been lacking. By analysis of data of many atmospheric and soil parameters collected since 2009 within a Tuber melanosporum orchard, the trends of metabolic activity, detected as CO2 production in the soil, have been identified as the most reliable parameter to indicate the 'birth' of the truffle primordia. They seem to be produced when mycelial activity is intense and undergoes water stress, after which it resumes. About 6-18 days after recovery of metabolic activity, we could collect primordia of T. melanosporum. Many die or develop too early and consequently rot or are eaten by insect larvae. These events occur several times during summer and autumn, those that 'sprout' in late summer or later grow steadily and reach maturity. Using a particular ground-penetrating radar (GPR) setup to discriminate truffles, we could identify individual truffles in the soil after they have enlarged to at least 6 mm in diameter and follow their growth in volume and diameter over time. These two instrumental methods (CO2 sensor and GPR), although yet to be improved, open new important perspectives to better understand truffle biology and manage truffle orchards to support the newly acquired demonstration of the fundamental role of host plants for the nutrient transfer to the ectomycorrhiza-mycelium-fruiting body complex of T. melanosporum.

  9. Volcanic aerosol layer formed in the tropical upper troposphere by the eruption of Mt. Merapi, Java, in November 2010 observed by the spaceborne lidar CALIOP

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kinoshita, Taro

    2016-02-01

    Mt. Merapi in Java, Indonesia, erupted in November 2010. The eruption was proved to be the source of the aerosol layer observed by a ground-based lidar at Biak, Indonesia, in January 2011 using data on the global distribution of aerosols observed by the spaceborne cloud-aerosol lidar with orthogonal polarization (CALIOP). These data were used to describe how the volcanic aerosols produced by the volcanic eruption diffused throughout the tropical tropopause layer (TTL). The equivalent maximum total amount of volcanic SO2 estimated from the spatially integrated total amount of aerosols was 0.09 Tg, which is one-third to half that of gaseous SO2 after the eruption was observed by the ozone monitoring instrument satellite. The obtained cirrus-cloud-appearance frequency data exhibit a seasonal cycle having its maximum in winter and no detectable variations that are synchronized with the increase in TTL volcanic aerosols.

  10. Aerosol contributions to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R.; Woodhead, J. D.; Hellstrom, J.

    2011-12-01

    The term "aerosols" encompasses the suspension of both fine solid or liquid particles within a gaseous medium. Aerosols become suspended into the earth's atmosphere through a multitude of processes both natural and anthropogenic. Atmospheric aerosols enter cave networks as a result of cave ventilation processes and are either deposited, or cycled and removed from the system. Speleothem offer a multiproxy palaeoclimate resource; many of the available proxies have been extensively investigated and utilised for palaeoclimatic reconstructions in a range of studies. The potential contribution of aerosols to speleothem chemistry and their applicability for palaeoenvironmental reconstructions remains untested and the extent of their value as an addition to palaeoclimate sciences unknown. Aerosols through incorporation into speleothem may provide a novel palaeoenvironmental resource. The aerosol component of interest is that which is transported into the cave atmosphere and deposited and are available for incorporation into precipitated calcite. Aerosol deposition and therefore distribution in the cave has shown to be a complex function of ventilation and changing environmental factors. Through detailed monitoring aerosols have been detected, identified, characterised and quantified to determine their prominence in the cave system. Investigations are on a case study basis, searching for suitable aerosol proxies of environmentally significant emission processes. Case studies include: Palaeofires at Yarrangobilly Caves, Australia; anthropogenic emissions at St Michaels Cave, Gibraltar and Cheddar gorge, UK; and drip water aerosol production and geochemical addition in Obir cave, Austria. Monitoring has allowed for the temporal and spatial determination of aerosols in karst networks. Speleothem samples will be analysed in combination with in-situ monitoring to determine incorporation factors and record preservation. By understanding how aerosols are transmitted within the

  11. Monitoring of volcanic SO2 emissions using the GOME-2 instrument

    NASA Astrophysics Data System (ADS)

    Hedelt, Pascal; Valks, Pieter; Loyola, Diego

    2014-05-01

    This contribution focusses on the GOME-2 SO2 column products from the METOP-A and B satellites. The GOME-2 SO2 column product has been developed in the framework of EUMETSAT's Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). Satellite-based remote sensing measurements of volcanic SO2 provide critical information for reducing volcanic hazards. Volcanic eruptions may bring ash and gases (e.g. SO2) high up into the atmosphere, where a long-range transport can occur. SO2 is an important indicator for volcanic activity and an excellent tracer for volcanic eruption clouds, especially if ash detection techniques fail. SO2 can affect aviation safety: In the cabin it can cause disease and respiratory symptoms, whereas in its hydrogenated form H2SO4 it is highly corrosive and can cause damage to jet engines as well as pitting of windscreens. We will present results for volcanic events retrieved from GOME-2 solar backscattered measurements in the UV wavelength region around 320nm using the Differential Optical Absorption Spectroscopy (DOAS) method. SO2 columns are generated operationally by DLR with the GOME Data Processor (GDP) version 4.7 and are available in near-real-time, i.e. within two hours after sensing. Using data from both MetOp satellites allows for a daily global coverage. We will furthermore present current improvements to the GOME-2 SO2 column product.

  12. Proceedings of the Federal Interagency Sediment Monitoring Instrument and Analysis Research Workshop, September 9-11, 2003, Flagstaff, Arizona

    USGS Publications Warehouse

    Gray, John R.

    2005-01-01

    The Advisory Committee on Water Information's Subcommittee on Sedimentation sponsored the Federal Interagency Sediment Monitoring Instrument and Analysis Research Workshop on September 9-11, 2003, at the U.S. Geological Survey Flagstaff Field Center, Arizona. The workshop brought together a diverse group representing most Federal agencies whose mission includes fluvial-sediment issues; academia; the private sector; and others with interests and expertise in fluvial-sediment monitoring ? suspended sediment, bedload, bed material, and bed topography ? and associated data-analysis techniques. The workshop emphasized technological and theoretical advances related to measurements of suspended sediment, bedload, bed material and bed topography, and data analyses. This workshop followed and expanded upon part of the 2002 Federal Interagency Workshop on Turbidity and Other Sediment Surrogates (http://water.usgs.gov/pubs/circ/2003/circ1250/), which initiated a process to provide national standards for measurement and use of turbidity and other sediment-surrogate data. This report provides a description of the salient attributes of the workshop and related information, major deliberations and findings, and principal recommendations. This information is available for evaluation by the Subcommittee on Sedimentation, which may opt to develop an action plan based on the recommendations that it endorses for consideration by the Advisory Committee on Water Information.

  13. Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression.

    PubMed

    Lee, Hyung Joo; Koutrakis, Petros

    2014-02-18

    Although ground measurements have contributed to revealing the association between ambient air pollution and health effects in epidemiological studies, exposure measurement errors are likely to be caused because of the sparse spatial distribution of ground monitors. In this study, we estimate daily ground NO2 concentrations in the New England region, U.S., for the period 2005-2010 using satellite remote sensing data in combination with land use regression. To estimate ground-level NO2 concentrations, we constructed a mixed effects model by taking advantage of spatial and temporal variability in satellite Ozone Monitoring Instrument (OMI) tropospheric column NO2 densities. Using fine-scale land use parameters, we derived NO2 concentrations at point locations, which can be further used for subject-specific exposure estimates in epidemiological studies. A mixed effects model showed a reasonably high predictive power for daily NO2 concentrations (cross-validation R(2) = 0.79). We observed that the model performed similarly in each season, year, and state. The spatial patterns of model estimates reflected emission source areas (such as high populated/traffic areas) in the study region and revealed the seasonal characteristics of NO2. This study suggests that a combination of satellite remote sensing and land use regression can be useful for both spatially and temporally resolved exposure assessments of NO2.

  14. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  15. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  16. Monitoring Air Quality from Space using AURA Data

    NASA Technical Reports Server (NTRS)

    Gleason, James F.; Chance, Kelly V.; Fishman, Jack; Torres, Omar; Veefkind, Pepijn

    2003-01-01

    Measurements from the Earth Observing System (EOS) AURA mission will provide a unique perspective on air quality monitoring. Ozone, nitrogen dioxide, formaldehyde and aerosols from the Ozone Monitoring Instrument (OMI) and carbon monoxide from the Tropospheric Emission Spectrometer (TES) will be simultaneously measured with the spatial resolution and coverage needed for improving our understanding of air quality. AURA data products useful for air quality monitoring will be given.

  17. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with

  18. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  19. Study of clouds and dust aerosols in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Chen-Chen, H.; Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2017-03-01

    Observation of Mars’ atmosphere has evolved to a state of permanent monitoring of its main components. In this work, we focus on the study of clouds and dust aerosols in the Martian atmosphere by means of spacecraft observations, particularly VMC on-board Mars Express, and surface vehicles, mainly cameras on the MSL rover. Orbiting instrument observations provide a general view of the planet, which allows covering a huge area in a short time. This is very interesting, for example, to study global dust events in Mars. On the other hand, ground-based instruments are better suited to analyse local properties of dust particles from in-situ acquired first hand data.

  20. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  1. The Stratospheric Aerosol and Gas Experiment III - International Space Station: Extending Long-Term Ozone and Aerosol Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M.; Gasbarre, J.; Flittner, D. E.; Hill, C.; Roell, M.; Moore, J. R.; Hernandez, G.; McCormick, M. P.

    2013-12-01

    The Stratospheric Aerosol and Gas Experiment III - International Space Station (SAGE III on ISS) will extend the global measurements of vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases begun with SAGE I in 1979, enabling the detection of long-term trends. SAGE III on ISS is the fourth in a series of instruments developed for monitoring these constituents in the stratosphere and troposphere. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm, using the heritage occultation technique, utilizing both the sun and the moon. Launch to ISS is planned for early 2015 aboard a Falcon 9 spacecraft. SAGE III will investigate the spatial and temporal variability of the measured species in order to determine their role in climatological processes, biogeochemical cycles, the hydrologic cycle, and atmospheric chemistry. It will characterize tropospheric, as well as stratospheric aerosols and upper tropospheric and stratospheric clouds, and investigate their effects on the Earth's environment including radiative, microphysical, and chemical interactions. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Amongst its key objectives will be to assess the state of the recovery in the distribution of ozone, to reestablish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The ISS is ideal for Earth observing experiments; its mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. In this presentation, we describe the SAGE III on ISS mission, its implementation, current status, and concentrate on its key science objectives.

  2. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Cowen, K. A.; Walker, J. T.; Kelly, T. J.; Hanft, E. A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G. M.; Lear, G.; Frelink, T.; Otjes, R. P.

    2014-06-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at an hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina, from 8 September to 8 October 2010 and focused on gaseous SO2, HNO3, and NH3 and aerosol SO42-, NO3-, and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of ≤ 25%. The accuracy of the MARGA was evaluated by calculating the MARPD for each MU relative to the average of the duplicate denuder/filter pack concentrations, with a performance goal of ≤ 40%. Accuracy was also evaluated by using linear regression, where MU concentrations were plotted against the average of the duplicate denuder/filter pack concentrations. From this, a linear least squares line of best fit was applied. The goal was for the slope of the line of best fit to be between 0.8 and 1.2. The MARGA performed well in comparison to the denuder/filter pack for SO2, SO42-, and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3- could not be evaluated due to the different sampling efficiency of coarse NO3- by the MUs and the filter pack. Estimates of "fine" NO3- were calculated for the MUs and the filter pack

  3. A novel assessment of odor sources using instrumental analysis combined with resident monitoring records for an industrial area in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyung-Don; Jeon, Soo-Bin; Choi, Won-Joon; Lee, Sang-Sup; Lee, Min-Ho; Oh, Kwang-Joong

    2013-08-01

    The residents living nearby the Sa-sang industrial area (SSIA) continuously were damaged by odorous pollution since 1990s. We determined the concentrations of reduced sulfur compounds (RSCs) [hydrogen sulfide (H2S), methyl mercaptan (CH3SH), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS)], nitrogenous compounds (NCs) [ammonia (NH3) and trimethylamine (TMA)], and carbonyl compounds (CCs) [acetaldehyde and butyraldehyde] by instrumental analysis in the SSIA in Busan, Korea from Jun to Nov, 2011. We determined odor intensity (OI) based on the concentrations of the odorants and resident monitoring records (RMR). The mean concentration of H2S was 10-times higher than NCs, CCs and the other RSC. The contribution from RSCs to the OI was over 50% at all sites excluding the A-5 (chemical production) site. In particular, A-4 (food production) site showed more than 8-times higher the sum of odor activity value (SOAV) than the other sites. This suggested that the A-4 site was the most malodorous area in the SSIA. From the RMR analysis, the annoyance degree (OI ≥ 2) was 51.9% in the industrial area. The 'Rotten' smell arising from the RSCs showed the highest frequency (25.3%) while 'Burned' and 'Other' were more frequent than 'Rotten' in the residential area. The correlation between odor index calculated by instrumental analysis and OI from the RMR was analyzed. The Pearson correlation coefficient (r) of the SOAV was the highest at 0.720 (P < 0.05), and overall results of coefficient showed a moderately high correlation distribution range (from 0.465 to 0.720). Therefore, the overall results of this research confirm that H2S emitted from A-4 site incl