Science.gov

Sample records for aerosol monitoring instruments

  1. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  2. Quantification of model uncertainty in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-09-01

    We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.

  3. Uncertainty quantification in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-10-01

    The space borne measurements provide global view of atmospheric aerosol distribution. The Ozone Monitoring Instrument (OMI) on board NASAs Earth Observing System (EOS) Aura satellite is a Dutch-Finnish nadir-viewing solar backscatter spectrometer measuring in the ultraviolet and visible wavelengths. OMI measures several trace gases and aerosols that are important in many air quality and climate studies. The OMI aerosol measurements are used, for example, for detecting volcanic ash plumes, wild fires and transportation of desert dust. We present a methodology for improving the uncertainty quantification in the aerosols retrieval algorithm. We have used the OMI measurements in this feasibility study. Our focus is on the uncertainties originating from the pre-calculated aerosol models. These models are never complete descriptions of the reality. This aerosol model uncertainty is estimated using Gaussian processes with computational tools from spatial statistics. Our approach is based on smooth systematic differences between the observed and modelled reflectances. When acknowledging this model inadequacy in the estimation of aerosol optical thickness (AOT), the uncertainty estimates are more realistic. We present here a real world example of applying the methodology.

  4. Monitoring Instruments

    ERIC Educational Resources Information Center

    Environmental Science and Technology (Environmental Control Issue), 1977

    1977-01-01

    This section contains a listing of the manufacturers of environmental monitoring instruments. The manufacturers are listed alphabetically under product headings. Addresses are included in a different section. (MA)

  5. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  6. A study on the temporal and spatial variability of absorbing aerosols using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument Aerosol Index data

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2009-05-01

    Absorbing aerosols, especially mineral dust and black carbon, play key roles in climate change by absorbing solar radiation, heating the atmosphere, and contributing to global warming. In this paper, we first examine the consistency of the Aerosol Index (AI) product as measured by the Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) instruments and then analyze these AI data sets to investigate the temporal and spatial variability of UV absorbing aerosols. In contrast to the trend in aerosol optical depth found in the advanced very high-resolution radiometer data, no obvious long-term trend in absorbing aerosols is observed from the time series of AI records. The comparison between the mean annual cycle in the two data sets shows that the cycles agree very well both globally and regionally, indicating a consistency between the AI products from TOMS and OMI. Varimax rotated Empirical Orthogonal Function (EOF) analysis of detrended, deseasonalized AI data proves to be successful in isolating major dust and biomass burning source regions, as well as dust transport. Finally, we find that large, individual events, such as the Kuwait oil fire and Australian smoke plum, are isolated in individual higher-order principal components.

  7. Characterization of Custom-Designed Charge-Coupled Devices for Applications to Gas and Aerosol Monitoring Sensorcraft Instrument

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Farnsworth, Glenn R.; Garcia, Christopher S.; Zawodny, Joseph M.

    2005-01-01

    Custom-designed charge-coupled devices (CCD) for Gas and Aerosols Monitoring Sensorcraft instrument were developed. These custom-designed CCD devices are linear arrays with pixel format of 512x1 elements and pixel size of 10x200 sq m. These devices were characterized at NASA Langley Research Center to achieve a full well capacity as high as 6,000,000 e-. This met the aircraft flight mission requirements in terms of signal-to-noise performance and maximum dynamic range. Characterization and analysis of the electrical and optical properties of the CCDs were carried out at room temperature. This includes measurements of photon transfer curves, gain coefficient histograms, read noise, and spectral response. Test results obtained on these devices successfully demonstrated the objectives of the aircraft flight mission. In this paper, we describe the characterization results and also discuss their applications to future mission.

  8. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  9. DESIGN AND PERFORMANCE OF AN AEROSOL MASS DISTRIBUTION MONITOR

    EPA Science Inventory

    An aerosol mass monitor has been built to measure the masses of non-volatile aerosols in the range of 0.05 to 5 micrometers aerodynamic particle diameter. The instrument consists of a newly designed spiral duct aerosol centrifuge equipped with highly sensitive quartz sensors for ...

  10. Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    de Vries, Johan

    The Ozone Monitoring Instrument is a trace gas monitoring instrument in the line of GOME (ERS-2) and Sciamachy (ENVISAT). Following these instruments, OMI provides UV-visible spectroscopy with a resolution sufficient to separate out the various absorbing trace gases (using DOAS or `Full' retrieval), but shaped as an imaging spectrometer. This means that a two dimensional detector is used where one dimension records the spectrum and the other images the swath. The scanning mechanism from the GOME and Sciamachy is not required anymore and there are considerable advantages with respect to simultaneous measurement of swath pixels, polarisation and obtainable swath width. The OMI consortium for a phase B is formed by Fokker Space & Systems and TPD in the Netherlands and VTT in Finland. In the presentation UV-visible atmospheric remote sensing will be placed in perspective and the OMI will be explaned.

  11. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  12. The TROPOspheric Monitoring Instrument (TROPOMI)

    NASA Astrophysics Data System (ADS)

    Veefkind, Pepijn; Kleipool, Quintus; Aben, Ilse; Levelt, Pieternel

    2015-04-01

    The Copernicus Sentinel 5 Precursor (S5P), scheduled for launch in 2016, is the first of the sentinels dedicated to monitoring of the atmospheric composition. The main application areas of the mission are air quality, climate and the ozone layer. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI). TROPOMI is a nadir viewing shortwave spectrometer that will measure in the UV-visible wavelength range (270-500 nm), the near infrared (710-770 nm) and the shortwave infrared (2314-2382 nm). TROPOMI will have an unprecedented spatial resolution of about 7x7 km2 at nadir. The spatial resolution is combined with a wide swath to allow for daily global coverage. The high spatial resolution serves two goals: (1) emissions sources can be detected with more accuracy and (2) the number of cloud-free ground pixels will increase substantially. The TROPOMI/S5P geophysical (Level 2) data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulphur dioxide, formaldehyde and aerosol and cloud parameters. In this contribution we will present the TROPOMI instrument performance and the new science opportunities that it will enable.

  13. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    ) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in

  14. Intercomparison of aerosol instruments: number concentration

    SciTech Connect

    Knutson, E O; Sinclair, D; Tu, K W; Hinchliffe, L; Franklin, H

    1982-05-01

    An intercomparison of aerosol instruments conducted February 23-27, 1981, at the Environmental Measurements Laboratory (EML) focused on five instruments: the Pollak and TSI condensation nucleus counters; the Active Scattering Aerosol Spectrometer (ASAS-X); and two aerosol electrometers. Test aerosols of sodium chloride and ammonium fluorescein generated by nebulization/electrostatic classification were used to obtain 195 lines of comparison data. Concentrations measured by the ASAS-X and the TSI aerosol electrometer averaged respectively 1.388 and 1.581 times that measured by the Pollak. These ratios were very stable during the week and there was little effect of particle size or material. Most other comparisons were equally stable. However, a review of past work at EML and elsewhere led to the disturbing conclusion that these ratios may change from year to year, or from season to season. A filter sample was taken from microscopy, concurrent with readings from the ASAS-X and the TSI condensation nucleus counters. In this sample, the two instruments differed by 20%. Within its 20% uncertainty, the filter result matched both the TSI and ASAS-X readings.

  15. Instruments for Water Quality Monitoring

    ERIC Educational Resources Information Center

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  16. Instrument comparison for Aerosolized Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration

  17. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  18. ACTRIS ACSM intercomparison - Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments

    NASA Astrophysics Data System (ADS)

    Crenn, V.; Sciare, J.; Croteau, P. L.; Verlhac, S.; Fröhlich, R.; Belis, C. A.; Aas, W.; Äijälä, M.; Alastuey, A.; Artiñano, B.; Baisnée, D.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Lunder, C.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petit, J.-E.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Estève, R.; Slowik, J. G.; Setyan, A.; Wiedensohler, A.; Baltensperger, U.; Prévôt, A. S. H.; Jayne, J. T.; Favez, O.

    2015-12-01

    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall - early-winter period (November-December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36 % for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some

  19. Aerosol Monitoring Mission using an Advanced Nanosatellite

    NASA Astrophysics Data System (ADS)

    Pranajaya, Freddy; Zee, Robert E.

    The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) is currently developing a nanosatellite for the purpose of monitoring aerosol content in the atmosphere. The NEMO-AM (Nanosatellite for Earth Monitoring and Observation -Aerosol Monitoring) spacecraft is designed to perform multi-angle, dual-polarization observa-tions in three visible bands. The satellite is designed to detect aerosol content in the atmosphere over a specific region with a nominal ground resolution of up to 200 m and a minimum swath of 120 km. NEMO-AM is being built under a collaborative agreement between SFL and the Indian Space Research Organization (ISRO). SFL is responsible for the design, manufacturing and qualification of the spacecraft and the optical instrument. The NEMO-AM is based on the NEMO bus, which is the next evolution to the SFL Generic Nanosatellite Bus (GNB) technology. The NEMO bus has a primary structure measuring 20 cm by 20 cm by 40 cm and is capable of peak power generation up to 80W. A minimum of 30W is available to the payload. The high peak power generation enables the NEMO bus to support a dedicated state-of-the-art high speed transmitter. The NEMO bus is designed with a total mass of 15 kg, 9 kg of which is dedicated to the payload. It can be configured for full three-axis control with up to 1 arcmin pointing stability. NEMO spacecraft will be secured to launch vehicles using the XPOD Duo separation system. This paper will summarize the NEMO-AM mission and the innovative aspects of the NEMO bus.

  20. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  1. Instrument Would Detect and Collect Biological Aerosols

    NASA Technical Reports Server (NTRS)

    Savoy, Steve; Mayo, Mike

    2006-01-01

    A proposed compact, portable instrument would sample micron-sized airborne particles, would discriminate between biological ones (e.g., bacteria) and nonbiological ones (e.g., dust particles), and would collect the detected biological particles for further analysis. The instrument is intended to satisfy a growing need for means of rapid, inexpensive collection of bioaerosols in a variety of indoor and outdoor settings. Purposes that could be served by such collection include detecting airborne pathogens inside buildings and their ventilation systems, measuring concentrations of airborne biological contaminants around municipal waste-processing facilities, monitoring airborne effluents from suspected biowarfare facilities, and warning of the presence of airborne biowarfare agents

  2. Miniaturized Environmental Monitoring Instrumentation

    SciTech Connect

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  3. Personal Computer Monitors Instrumentation Bus

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce L.

    1994-01-01

    IBM-compatible personal computer used instead of logic analyzer or other special instrument to monitor IEEE-488 interface data bus that interconnects various pieces of laboratory equipment. Needed is short program for computer, commercial general-purpose interface bus circuit card, and adapter cable to link card to bus. Software available in Ada or Quick Basic language.

  4. Evaluation of the discmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols

    NASA Astrophysics Data System (ADS)

    Mills, Jessica Breyan

    This work evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103-104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (+/-35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present.

  5. ACTRIS ACSM intercomparison - Part I: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with Time-of-Flight ACSM (ToF-ACSM), High Resolution ToF Aerosol Mass Spectrometer (HR-ToF-AMS) and other co-located instruments

    NASA Astrophysics Data System (ADS)

    Crenn, V.; Sciare, J.; Croteau, P. L.; Verlhac, S.; Fröhlich, R.; Belis, C. A.; Aas, W.; Äijälä, M.; Alastuey, A.; Artiñano, B.; Baisnée, D.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Lunder, C.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petit, J.-E.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Estève, R.; Slowik, J. G.; Setyan, A.; Wiedensohler, A.; Baltensperger, U.; Prévôt, A. S. H.; Jayne, J. T.; Favez, O.

    2015-07-01

    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for three weeks during the late fall-early winter period (November-December 2013). The first week was dedicated to tuning and calibration of each instrument whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual ACSM across all chemical families except for chloride for which three ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025) and were found to be of 9, 15, 19, 28 and 36 % for NR-PM1, nitrate, organic matter, sulfate and ammonium respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of ACSMs, detailed intercomparison results are presented as well as a discussion of some recommendations

  6. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  7. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO)

    NASA Technical Reports Server (NTRS)

    McCormick, M. Patrick; Winker, David M.

    1998-01-01

    This paper will describe the planned 3-year Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission, its instrumentation and implementation. It will use LITE and other data, plus analyses, to show the feasibility of such a mission. PICASSO is being proposed for NASA's Earth System Science Pathfinder (ESSP) program with launch predicted in 2003.

  8. Calibration of the On-Line Aerosol Monitor (OLAM) with ammonium chloride and sodium chloride aerosols

    SciTech Connect

    Brockmann, J.E.; Lucero, D.A.; Romero, T.; Pentecost, G.

    1993-12-01

    The On-Line Aerosol Monitor (OLAM) is a light attenuation device designed and built at the Idaho National Engineering Laboratory (INEL) by EG&G Idaho. Its purpose is to provide an on-line indication of aerosol concentration in the PHEBUS-FP tests. It does this by measuring the attenuation of a light beam across a tube through which an aerosol is flowing. The OLAM does not inherently give an absolute response and must be calibrated. A calibration has been performed at Sandia National Laboratories` (SNL) Sandia Aerosol Research Laboratory (SARL) and the results are described here. Ammonium chloride and sodium chloride calibration aerosols are used for the calibration and the data for the sodium chloride aerosol is well described by a model presented in this report. Detectable instrument response is seen over a range of 0.1 cm{sup 3} of particulate material per m{sup 3} of gas to 10 cm{sup 3} of particulate material per m{sup 3} of gas.

  9. A Framework for Aerosol-Cloud Interactions Monitoring

    NASA Astrophysics Data System (ADS)

    Russchenberg, H. W. J.; Sarna, K.

    2014-12-01

    A broad range of strategies have been used to study Aerosol-Cloud Interactions (ACI). However, the wide scope of methods and scales used makes it difficult to quantitatively compare result from different studies. In this paper, we propose a method of aerosol-cloud interaction monitoring based on widely available remote sensing instruments and easily applicable at many different observatories. This method provides a way of identifying cases where a change in the aerosol environment causes a change in the cloud. In this scheme we attempt to use (as far as possible) the observed signal from lidar and radar. For an aerosol proxy we use the attenuated backscatter (sensitive to aerosol concentration) and to obtain information about changes in the cloud we use the radar reflectivity factor (sensitive to cloud droplet size and concentration). Assuming a positive dependence between the number concentration of cloud droplets and the number concentration of aerosol we expect that an increase of the attenuated backscatter coefficient will correspond to a small increase of the radar reflectivity factor (due to the increase of cloud droplets concentration). However, the slope of this correlation will vary. A number of factors, such as meteorology or cloud drop microphysical properties, can influence changes in a cloud. For that reason we put a constraint on the liquid water content using liquid water path information from microwave radiometers. This limitation ensures that the variability in the cloud will be primarily due to changes in microphysical properties associated with the variation in aerosols. Further, we limit the cases only to non-precipitating, low-level stratiform and stratocumulus clouds without drizzle. Although this method is based on a synergy of instruments, we use widely available systems for an efficient evaluation of the aerosol influence on the cloud. The main advantages of this scheme are the use of direct observables from widely spread remote sensing

  10. Lidar monitoring of atmospheric ozone and aerosol

    NASA Astrophysics Data System (ADS)

    Chudzynski, Stanislaw; Czyzewski, A.; Ernst, Krzysztof; Skubiszak, Wojciech; Stacewicz, Tadeusz; Stelmaszczyk, K.; Szymanski, Artur

    2000-11-01

    The growth of aerosol and ozone concentrations in the troposphere stimulates development of monitoring techniques allowing their detection. DIAL (Differential Absorption Lidar) is one of the most promising methods. It allows the remote measurements of selected pollutants within the range of few kilometers and with spatial resolution of few meters. We introduce the basic principles of the DIAL method and describe shortly our mobile lidar system. We present and comment selected registrations of ozone and aerosol concentration distributions obtained during summer field campaigns of 1997 and 1998.

  11. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  12. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  13. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  14. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  15. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  16. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  17. Monitoring biological aerosols using UV fluorescence

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  18. The Stratospheric Aerosol and Gas Experiment III instrument proposed for EOS - A conceptual design

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E.; Mccormick, M. P.; Zawodny, J. M.; Mcmaster, L. R.; Chu, W. P.; Gustafson, J. C.; Maddrea, G. L.

    1989-01-01

    This paper describes the Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument proposed for the Earth Observing System (EOS), which is designed to monitor the vertical distribution of stratospheric aerosols, ozone, water vapor, nitrogen dioxide, and temperature by measuring the extinction and scattering of solar radiation in the 03 to 1.6 micron range through the atmosphere. The SAGE III employs proven concepts which have evolved from the SAM II, SAGE, and SAGE II programs. The launch is scheduled for the summer of 1996. The SAGE II block diagram is included.

  19. Ozone Monitoring Instrument geolocation verification

    NASA Astrophysics Data System (ADS)

    Kroon, M.; Dobber, M. R.; Dirksen, R.; Veefkind, J. P.; van den Oord, G. H. J.; Levelt, P. F.

    2008-08-01

    Verification of the geolocation assigned to individual ground pixels as measured by the Ozone Monitoring Instrument (OMI) aboard the NASA EOS-Aura satellite was performed by comparing geophysical Earth surface details as observed in OMI false color images with the high-resolution continental outline vector map as provided by the Interactive Data Language (IDL) software tool from ITT Visual Information Solutions. The OMI false color images are generated from the OMI visible channel by integration over 20-nm-wide spectral bands of the Earth radiance intensity around 484 nm, 420 nm, and 360 nm wavelength per ground pixel. Proportional to the integrated intensity, we assign color values composed of CRT standard red, green, and blue to the OMI ground pixels. Earth surface details studied are mostly high-contrast coast lines where arid land or desert meets deep blue ocean. The IDL high-resolution vector map is based on the 1993 CIA World Database II Map with a 1-km accuracy. Our results indicate that the average OMI geolocation offset over the years 2005-2006 is 0.79 km in latitude and 0.29 km in longitude, with a standard deviation of 1.64 km in latitude and 2.04 km in longitude, respectively. Relative to the OMI nadir pixel size, one obtains mean displacements of ˜6.1% in latitude and ˜1.2% in longitude, with standard deviations of 12.6% and 7.9%, respectively. We conclude that the geolocation assigned to individual OMI ground pixels is sufficiently accurate to support scientific studies of atmospheric features as observed in OMI level 2 satellite data products, such as air quality issues on urban scales or volcanic eruptions and its plumes, that occur on spatial scales comparable to or smaller than OMI nadir pixels.

  20. Aerosol observing system platform integration and AAF instrumentation

    SciTech Connect

    Springston, S.; Sedlacek, A.

    2010-03-15

    As part of the federal government’s 2009 American Recovery and Reinvestment Act (ARRA), the U.S. DOE Office of Science allocated funds for the capital upgrade of the Atmospheric Radiation Measurement (ARM) Climate Research Facility to improve and expand observational capabilities related to cloud and aerosol properties. The ARM Facility was established as a national user facility for the global scientific community to conduct a wide range of interdisciplinary science. Part of the ARRA-funded expansion of the ARM Facility includes four new Aerosol Observing Systems (AOS) to be designed, instrumented, and mentored by BNL. The enclosures will be customized SeaTainers. These new platforms ([AMF2]: ARM Mobile Facility-2; [TWP-D]: Tropical Western Pacific at Darwin; and [MAOS-A]/[MAOS-C]: Mobile Aerosol Observing System-Aerosol/-Chemistry) will provide a laboratory environment for fielding instruments to collect data on aerosol life cycle, microphysics, and optical/physical properties. The extensive instrument suite includes both established methods and initial deployments of new techniques to add breadth and depth to the AOS data sets. The platforms are designed: (1) to have all instruments pre-installed before deployment, allowing a higher measurement duty cycle; (2) with a standardized configuration improving the robustness of data inter-comparability; (3) to provide remote access capability for instrument mentors; and (4) to readily accommodate guest instrumentation. The first deployment of the AMF2 platform will be at the upcoming StormVEx campaign held at Steamboat Springs, Colorado, October 15, 2010–March 31, 2011 while the TWP-D AOS will be stationed at the ARM Darwin site. The maiden deployments of the MAOS-A and MAOS-C platforms will be during the Ganges Valley Experiment (GVAX) scheduled for April 2011–April 2012. In addition to the ground-based AOS platforms, thee major instrument builds for the AAF are also being undertaken (new trace gas package [NO

  1. Miniature instruments for aerosol extinction at ambient conditions

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.

    2015-12-01

    Aerosol extinction is a fundamental parameter for the direct forcing of climate, visibility, and comparisons to remote sensing. Bringing air into an instrument "box" almost always changes the relative humidity and loses some dust or other large particles. I will show two techniques for miniature instruments that measure extinction at ambient conditions. One is a miniature sun photometer for vertical profiles. In the last year it has successfully gathered data on test flights with excellent performance and signal to noise. The second instrument is a miniature cavity ring down instrument open to the air. In both cases, small instruments require decisions about just what is necessary for the measurement rather than just scaling down larger designs. I will explore the rationale for some of these design choices.

  2. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  3. New instruments for plant area and personnel monitoring

    SciTech Connect

    Gammage, R. B.; Hawthorne, A. R.; Vo-Dinh, T.; Schuresko, D. D.

    1980-01-01

    Advances in portable monitoring instruments and simple luminescence techniques for analyzing polynuclear aromatic hydrocarbons (PNAs) are reported. A small, derivative ultra-violet absorption spectrometer is suitable for multipollutant real-time monitoring of several mono- and bicyclic aromatic vapors. A non-compound selective fluorescence spill spotter and lightpipe luminoscope are active instruments for measuring general surface and skin contamination, respectively. A small passive integrating filter paper exposure device that responds to PNA vapors such a pyrene is a very promising and recent development. Synchronous luminescence and room temperature phosphoresence are two attractive and simple to use analytical methodologies for the rapid assaying of major PNA compounds. Their potential for analyzing the cyclohexane extract of particulate matter, or incorporation into a device for the continuous monitoring of select PNAs in aerosols in near-real-time, are discussed.

  4. Aerosol monitoring program in Hong Kong

    SciTech Connect

    Lei, Heng-Chi; Tanner, P.A.

    1996-12-31

    The control of suspended particulate matter in the Hong Kong environment is currently an important issue, and in December 1995 a diesel-petrol switch plan was voted down by legislators. PM10 have been monitored at 5-minute intervals for the past year at rooftop level in central Kowloon, Hong Kong, together with selected measurements of TSP. Wind speed, wind direction, and the concentrations of SO{sub 2}, NO, NO{sub 2} and O{sub 3} have also been monitored. Measurements are currently in progress of relative contributions of the small particles (nominal aerodynamic diameter 0.3-2.5 gm), as well as of the PM{sub 10} fraction, to the total aerosol content, using two TEOMS. The chemical nature of selected different aerosol size fractions is also under investigation. Aerosol concentration exhibits a marked seasonal trend, being lower in the wet summer than in the dry winter. The diurnal variation shows two peaks which are linked to anthropogenic actions. Our measurements will be compared with the newly-established AQI of the Hong Kong EPD.

  5. Instrumentation for Environmental Monitoring: Water, Volume 2.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Berkeley Lab.

    This volume is one of a series discussing instrumentation for environmental monitoring. Each volume contains an overview of the basic problems, comparisons among the basic methods of sensing and detection, and notes that summarize the characteristics of presently available instruments and techniques. The text of this survey discusses the…

  6. Properties of Carbonaceous Aerosols during CARDEX 2012: an Instrument Intercomparison

    NASA Astrophysics Data System (ADS)

    Beres, N. D.; Praveen, P. S.; Arnold, I. J.; Chakrabarty, R. K.; Arnott, W. P.; Moosmuller, H.; Schauer, J. J.; Gustafsson, O.; Ramanathan, V.

    2012-12-01

    Quantification of black carbon (BC) aerosol in the atmosphere is becoming increasingly important due to its role in radiative forcing. As advances in measurement techniques continue, BC measurements can be performed using a variety of instruments, employing optical, thermal, and photoacoustic methods. However, the relationship between data obtained with these methods is dependent on multiple properties of the ambient air sampled (e.g., aerosol composition, wavelength-dependence of light- and mass-absorbing efficiencies) and on the instruments and their data analysis algorithms (e.g., scattering correction factors for aethalometer data). Previous studies have utilized theoretical corrections to estimate BC concentrations and their corresponding radiative properties, but with limited confidence. In this study, we present comparisons of in-situ and filter-based measurements of aerosol light absorption, black carbon (BC) concentration, elemental carbon (EC), and organic carbon (OC) from the 2012 CARDEX (Clouds, Aerosol, Radiative forcing, and Dynamics EXperiment) campaign based on the island of Hanimaadhoo in the Republic of Maldives. The instruments used for this comparison study include two photoacoustic spectrometers (PAS, λ = 870 and 405 nm), a 7-wavelength aethalometer (λ = 370, 430, 470, 520, 590, 700, and 880 nm), and independent 12- and 24-hour integrated filter samples, analyzed for EC - OC using the NIOSH thermal evolution protocol. During the dry monsoon season (December to April), anthropogenic aerosols from India and Southeast Asia are characteristically transported to the Maldives at surface level. Data shown here were collected between February and April of 2012 at the Maldives Climate Observatory-Hanimaadhoo (MCOH). Using correction factors adopted from Corrigan et al., (2006), we show reasonable agreement between absorption coefficients obtained with the aethalometer and the photoacoustic spectrometer and between BC mass concentrations obtained with

  7. Pollution Analyzing and Monitoring Instruments.

    ERIC Educational Resources Information Center

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  8. Developments in the Aerosol Layer Height Retrieval Algorithm for the Copernicus Sentinel-4/UVN Instrument

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Sanders, Abram; Veefkind, Pepijn

    2016-04-01

    The Sentinel-4 mission is a part of the European Commission's Copernicus programme, the goal of which is to provide geo-information to manage environmental assets, and to observe, understand and mitigate the effects of the changing climate. The Sentinel-4/UVN instrument design is motivated by the need to monitor trace gas concentrations and aerosols in the atmosphere from a geostationary orbit. The on-board instrument is a high resolution UV-VIS-NIR (UVN) spectrometer system that provides hourly radiance measurements over Europe and northern Africa with a spatial sampling of 8 km. The main application area of Sentinel-4/UVN is air quality. One of the data products that is being developed for Sentinel-4/UVN is the Aerosol Layer Height (ALH). The goal is to determine the height of aerosol plumes with a resolution of better than 0.5 - 1 km. The ALH product thus targets aerosol layers in the free troposphere, such as desert dust, volcanic ash and biomass during plumes. KNMI is assigned with the development of the Aerosol Layer Height (ALH) algorithm. Its heritage is the ALH algorithm developed by Sanders and De Haan (ATBD, 2016) for the TROPOMI instrument on board the Sentinel-5 Precursor mission that is to be launched in June or July 2016 (tentative date). The retrieval algorithm designed so far for the aerosol height product is based on the absorption characteristics of the oxygen-A band (759-770 nm). The algorithm has heritage to the ALH algorithm developed for TROPOMI on the Sentinel 5 precursor satellite. New aspects for Sentinel-4/UVN include the higher resolution (0.116 nm compared to 0.4 for TROPOMI) and hourly observation from the geostationary orbit. The algorithm uses optimal estimation to obtain a spectral fit of the reflectance across absorption band, while assuming a single uniform layer with fixed width to represent the aerosol vertical distribution. The state vector includes amongst other elements the height of this layer and its aerosol optical

  9. Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2016-06-01

    This work presents a Scheimpflug lidar system which was employed for atmospheric aerosol monitoring in southern Sweden. Atmospheric aerosol fluctuation was observed around rush-hour. The extinction coefficient over 6 km was retrieved, i.e., 0.15 km-1, by employing the slop-method during the time when the atmosphere was relatively homogenous. The measurements successfully demonstrate the potential of using a Scheimpflug lidar technique for atmospheric aerosol monitoring applications.

  10. Optical Instrumentation for Bioprocess Monitoring

    NASA Astrophysics Data System (ADS)

    Lam, Hung; Kostov, Yordan

    In this chapter the optical sensors for oxygen, pH, carbondioxide and optical density (OD) which are essential for bioprocess monitoring are introduced, their measurement principles are explained and their realization and applications are shown. In addition sensors for ethanol and GFP are presented. With the exception of the optical density sensor all others employ certain fluorophores that are sensitive to the designated parameter. These fluorophores along with their optical properties, the sensing mechanisms and their mathematical formulations are described. An important part of this chapter covers the development of the optoelectronic hardware for low cost systems that are able to measure the fluorescence lifetime and fluorescence intensity ratio. The employment of these probes in the bioprocess monitoring is demonstrated in different fermentation examples.

  11. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  12. Water quality monitor (EMPAX instrument)

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Clark, Ben; Thornton, Mike

    1991-01-01

    The impetus of the Viking Mission to Mars led to the first miniaturization of a X-ray Fluorescence Spectrometer (XRFS). Two units were flown on the Viking Mission and successfully operated for two years analyzing the elemental composition of the Martian soil. Under a Bureau of Mines/NASA Technology Utilization project, this XRFS design was utilized to produce a battery powered, portable unit for elemental analysis of geological samples. This paper will detail design improvements and additional sampling capabilities that were incorporated into a second generation portable XRFS that was funded by the EPA/NASA Technology Utilization project. The unit, Environment Monitoring with Portable Analysis by X-ray (EMPAX), was developed specifically for quantitative determination of the need of EPA and and any industry affected by environmental concerns, the EMPAX fulfills a critical need to provide on-site, real-time analysis of toxic metal contamination. A patent was issued on EMPAX, but a commercial manufacturer is still being sought.

  13. Evaluation of a tractor cab using real-time aerosol counting instrumentation.

    PubMed

    Hall, Ronald M; Heitbrink, William A; Reed, Laurence D

    2002-01-01

    Aerosol instrumentation was used to evaluate air infiltration into tractor cabs that are used to protect the agricultural worker during pesticide applications. Preliminary surveys were conducted on three different manufactured agriculture enclosures. The results of these preliminary surveys indicated that aerosols are entering the cab through leak sources or are being generated inside the cab. These results identified the need for in-depth field evaluations of tractor cabs to identify any leak sources. To evaluate the ability of tractor cabs to reduce operator air contaminant exposure, field evaluations were conducted on two tractor cabs. Specifically, we evaluated: 1) the particle size distribution and the effectiveness of the filter system; and 2) air infiltration into the cab. These evaluations were also conducted to demonstrate the ease and practicality of using optical particle counters to evaluate the ability of cabin filtration systems. Pesticide particle size distribution during an air blast spray operation was also evaluated during the study. The field tests were conducted on a John Deere 7000 series tractor cab (tractor manufacturer's cab) and a Nelson spraycab (retrofit cab). Both cabs were equipped with high efficiency particulate air (HEPA) filter media which were assumed to be 99.97 percent efficient at removing the test aerosol, atmospheric condensation nuclei. Thus, the major source of aerosols inside the cab was assumed to be leakage around filters at the seals. Using a portable dust monitor (PDM), the ratio of the outside to inside aerosol measurements was used to calculate a cab protection factor. During the evaluations, one PDM was placed inside the tractor cab (near the tractor operator) and one PDM was placed outside (near the air intake) to count particles. During the evaluations, the instruments were switched to prevent instrument bias from affecting the findings. The ratio of the two measurements (i.e., protection factor = outside

  14. Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites

    NASA Astrophysics Data System (ADS)

    Tuch, T. M.; Haudek, A.; Müller, T.; Nowak, A.; Wex, H.; Wiedensohler, A.

    2009-04-01

    Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% RH to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 weeks experiment. The lower 50% cut-off was found to be below 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One drier has been successfully deployed in the Amazonas river basin. From this monitoring site, we present data from the first 6 months of measurements (February 2008-August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/-7.5% RH compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions.

  15. Sentinel-5 Precursor: Global Monitoring of Atmospheric Trace Gases & Aerosols

    NASA Astrophysics Data System (ADS)

    Nett, Herbert; McMullan, Kevin; Ingmann, Paul

    2013-04-01

    ESA's Sentinel 5 Precursor (S5P) Mission will form part of the Space Component under the Global Monitoring for Environment and Security (GMES) initiative. It represents a preparatory project for the GMES atmospheric missions that comprise both a geo-stationary (Sentinel-4 / part of MTG-S payload) and a polar orbiting (Sentinel-5 / MetOp Second Generation) component. In view of the planned launch date of around 2020 for the first S-4 MTG-S and MetOp-SG spacecrafts, respectively, S5P (launch: mid 2015) shall minimize gaps in the availability of global atmospheric data products as provided by its predecessor missions SCIAMACHY (Envisat) and OMI (AURA). The satellite's single payload instrument, TROPOMI (TROPOspheric Monitoring Instrument), is jointly developed by The Netherlands and ESA. Covering spectral channels located in the UV, visible, near- and short-wave infrared it will measure various key species including stratospheric ozone, as well as NO2, SO2, CO, CH4, CH2O and aerosols, specifically in the lower Troposphere. The envisaged formation flying with NASA's Suomi NPP satellite will allow use of high spatial resolution imager data for enhanced cloud clearing of the observational data specifically in the short-wave infrared range. An outline of the Sentinel-5P mission objectives will be given. The status of development activities, covering Spacecraft and the Ground Segment will be presented.

  16. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  17. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  18. Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept

    NASA Technical Reports Server (NTRS)

    Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David

    2015-01-01

    In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.

  19. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  20. Temperature monitor and alarm for cryogenic instruments

    NASA Astrophysics Data System (ADS)

    Thatcher, John B., Jr.; Keliher, Pat; Jeanpierre, Carlos

    1994-06-01

    Internal temperatures in filled cryostats must be continuously monitored to preserve the health and safety of hardware and personnel. The accidental response of cryogenic gases into the atmosphere pose a health threat and, if the gases are flammable, may lead to an explosion. One indication of an imminent cryogen release is the sudden increase in cryogen temperature. Although there are many data acquisition systems and temperature monitoring products commercially available, these systems lack the portability and safety features required during cryostat qualification tests and transport. This paper describes a temperature monitor and alarm circuit developed for the Spirit II solid hydrogen cryostat program. The instrument is battery-operated, accurate, portable, and intrinsically safe in an explosive atmosphere.

  1. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, Karolina; Russchenberg, Herman W. J.

    2016-03-01

    A new method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius (re) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m-2 wide. For every LWP bin we present the correlation coefficient between ln re and ln ATB, as well as ACIr (defined as ACIr = -d ln re/d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACIr are in the range 0.01-0.1. We show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol-cloud interactions.

  2. Monitoring real-time aerosol distribution in the breathing zone.

    PubMed

    Martinelli, C A; Harley, N H; Lippmann, M; Cohen, B S

    1983-04-01

    A prototype air sampling, data recording, and data retrieval system was developed for monitoring aerosol concentrations in a worker's breathing zone. Three continuous-reading, light-scattering aerosol monitors and a tape recorder were incorporated into a specially designed and fabricated backpack for detailed field monitoring of both temporal and spatial variability in aerosol concentrations within the breathing zone. The backpack was worn by workers in a beryllium refinery. The aerosol which passed through each monitor was collected on a back-up filter for later chemical analysis for Be and Cu. The aerosol concentrations were recorded on magnetic tape as a function of time. The recorded signals were subsequently transcribed onto a strip chart recorder, then evaluated using a microcomputer with graphics capability. Field measurements made of the aerosol concentration at the forehead, nose, and lapel of operators during the melting and casting of beryllium-copper alloy demonstrated that there is considerable variability in concentration at different locations within the breathing zone. They also showed that operations resulting in worker exposure can be identified, and the precise time and duration of exposure can be determined. PMID:6858855

  3. FERMENTATION PROCESS MONITORING THROUGH MEASUREMENT OF AEROSOL RELEASE

    EPA Science Inventory

    Fermentation involves many complex biological processes some of which are sometimes difficult to monitor. n this study, aerosol measurement was explored as an additional technique for monitoring a batch aerobic fermentation process using Escherichia coli strain W3110. sing this t...

  4. Evolving Synergy between UV and VIS instruments for Aerosol Remote Sensing- Implications for Suomi NPP and Future Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.

    2014-12-01

    Satellite remote sensing of aerosols started in 1979 using data from the AVHRR series of instruments on NOAA polar orbiters. Though limited to the oceans only, AVHRR clearly showed the basic latitudinal, longitudinal, and seasonal patterns in global aerosol fields that have been confirmed by more advanced instruments. In the early 90s a surprising discovery was made that UV instruments, such as TOMS, designed primarily to measure atmospheric ozone, can enhance this information by tracking the aerosol absorption signal of smoke and dust plumes over both land and water, as well as over bright surfaces covered by low level clouds, snow and ice. While more recent VIS/IR mapping instruments, such as SeaWIFS, MISR, MODIS, and VIIRS have greatly enhanced aerosol remote sensing capability compared to AVHRR, similar improvements have been made in UV remote sensing of aerosols, particularly with the launch of OMI on Aura in 2004. More recently, several successful approaches have been developed to combine MODIS and OMI data to estimate aerosol single scattering albedo over cloud-free areas and aerosol optical thickness over cloudy areas. I will discuss how these advanced techniques could be applied to combine VIIRS and OMPS data from Suomi NPP and what improvements are planned for JPSS-1. These techniques could also be applied to process data from the EPIC instrument, scheduled to be launched on the DSCOVR satellite next year. It will be located 1.5 million km from the Earth along the Sun-Earth axis at the first Lagrange point. Several other UV/VIS instruments are planned to be launched in LEO and GEO orbits in this decade that can take advantage of this synergy.

  5. Analysis of Fine-Mode Aerosol Retrieval Capabilities by Different Passive Remote Sensing Instrument Designs

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Cairns, Brian; Mishchenko, Michael; Chowdhary, Jacek; Tsigaridis, Kostas; van Diedenhoven, Bastiaan; Martin, William; Ottaviani, Matteo; Alexandrov, Mikhail

    2012-01-01

    Remote sensing of aerosol optical properties is difficult, but multi-angle, multi-spectral, polarimetric instruments have the potential to retrieve sufficient information about aerosols that they can be used to improve global climate models. However, the complexity of these instruments means that it is difficult to intuitively understand the relationship between instrument design and retrieval success. We apply a Bayesian statistical technique that relates instrument characteristics to the information contained in an observation. Using realistic simulations of fine size mode dominated spherical aerosols, we investigate three instrument designs. Two of these represent instruments currently in orbit: the Multiangle Imaging SpectroRadiometer (MISR) and the POLarization and Directionality of the Earths Reflectances (POLDER). The third is the Aerosol Polarimetry Sensor (APS), which failed to reach orbit during recent launch, but represents a viable design for future instruments. The results show fundamental differences between the three, and offer suggestions for future instrument design and the optimal retrieval strategy for current instruments. Generally, our results agree with previous validation efforts of POLDER and airborne prototypes of APS, but show that the MISR aerosol optical thickness uncertainty characterization is possibly underestimated.

  6. 17 years of aerosol and clouds from the ATSR Series of Instruments

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.

    2015-12-01

    Aerosols play a significant role in Earth's climate by scattering and absorbing incoming sunlight and affecting the formation and radiative properties of clouds. The extent to which aerosols affect cloud remains one of the largest sources of uncertainty amongst all influences on climate change. Now, a new comprehensive datasets has been developed under the ESA Climate Change Initiative (CCI) programme to quantify how changes in aerosol levels affect these clouds. The unique dataset is constructed from the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm used in (A)ATSR (Along Track Scanning Radiometer) retrievals of aerosols generated in the Aerosol CCI and the CC4CL ( Community Code for CLimate) for cloud retrieval in the Cloud CCI. The ATSR instrument is a dual viewing instrument with on board visible and infra red calibration systems making it an ideal instrument to study trends of Aerosol and Clouds and their interactions. The data set begins in 1995 and ends in 2012. A new instrument in the series SLSTR(Sea and Land Surface Temperature Radiometer) will be launch in 2015. The Aerosol and Clouds are retreived using similar algorithms to maximise the consistency of the results These state-of-the-art retrievals have been merged together to quantify the susceptibility of cloud properties to changes in aerosol concentration. Aerosol-cloud susceptibilities are calculated from several thousand samples in each 1x1 degree globally gridded region. Two-D histograms of the aerosol and cloud properties are also included to facilitate seamless comparisons between other satellite and modelling data sets. The analysis of these two long term records will be discussed individually and the initial comparisons between these new joint products and models will be presented.

  7. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  8. Continuous air monitor for alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Ortiz, C.A. . Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. )

    1990-01-01

    A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

  9. GLAST Burst Monitor Instrument Simulation and Modeling

    SciTech Connect

    Hoover, A. S.; Kippen, R. M.; Wallace, M. S.; Pendleton, G. N.; Fishman, G. J.; Meegan, C. A.; Kouveliotou, C.; Wilson-Hodge, C. A.; Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.

    2008-05-22

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset.

  10. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing. PMID:26698808

  11. Spatial Patterns of Climate Impact from Anthropogenic Aerosols in the Early Instrumental Period

    NASA Astrophysics Data System (ADS)

    Bollasina, M. A.; Undorf, S.; Hegerl, G. C.

    2015-12-01

    Anthropogenic aerosols have emerged as an important player affecting global and regional climate with significant impacts on both the energy and water cycles. The early instrumental period (1850-1950), characterized by the increase of North American and especially European aerosol emissions concurrently with negligible Asian emissions and relatively low carbon dioxide concentrations, is an interesting case study to isolate the aerosol impact.Observations and historical experiments with state-of-the-art CMIP5 models are used to identify regions affected by aerosols. We compare the spatial and temporal patterns of climate variables such as surface temperature and precipitation with those of aerosol emissions and aerosol optical depth (AOD). In addition to regions showing the expected relationship between increasing sulfate emissions and decreasing surface temperatures, we see regions and decades with a more complex temperature response, and the first third of the twentieth century stands out as an especially interesting period. The contribution of atmospheric circulation changes is also pointed out.

  12. THE TAPERED ELEMENT OSCILLATING MICROBALANCE: A MONITOR FOR SHORT-TERM MEASUREMENT OF FINE AEROSOL MASS CONCENTRATION

    EPA Science Inventory

    A new instrument for short-term monitoring of ambient aerosol fine mass concentration has been developed based on a unique device called a Tapered Element Oscillating Microbalance (TEOM). The detector consists of a tapered hollow tube fixed at the wide end and holding an exchange...

  13. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite

  14. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  15. Global pollution aerosol monitoring (GPAM) in the atmospheric boundary layer using future earth observing satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Qu, Jianhe; Kafatos, Menas; Yang, Ruixin; Chiu, Long S.; Riebau, Allen R.

    2003-04-01

    Global pollution aerosol monitoring is a very important climatic and environmental problem. It affects not only human health but also ecological systems. Because most pollution aerosols are concentrated in the atmospheric boundary layer where human, animal and vegetation live, global pollution aerosol stuides have been an important topic since about a decade ago. Recently, many new chemistry remote sensing satellite systems, such as NASA's Aura (EOS-CHEM), have been established. However, pollution aerosols in the atmospheric boundary layer cannot be detected using current remote sensing technologies. George Mason University (GMU) proposes to design scientific algorithms and technologies to monitor the atmospheric boundary layer pollution aerosols, using both satellite remote sensing measurements and ground measurements, collaborating with NASA and the United States Department of Agriculture (USDA)/Forest Services (FS). Boundary layer pollution aerosols result from industrial pollution, desert dust storms, smoke from wildfires and biomass burning, volcanic eruptions, and from other trace gases. The current and next generation satellite instruments, such as The Ozone Mapping and Profiler Suite (OMPS), Ozone Monitoring Instrument (OMI), Thermal Emission Spectrometer (TES), and High Resolution Dynamics Limb Sounder (HIRDLS) can be used for this study. Some surface measurements from USDA/FS and other agencies may also be used in this study. We will discuss critical issues for GPAM in the boundary layer using Earth observing satellite remote sensing in detail in this paper.

  16. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  17. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  18. Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which

  19. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  20. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  1. The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition

    NASA Astrophysics Data System (ADS)

    Docherty, K. S.; Aiken, A. C.; Huffman, J. A.; Ulbrich, I. M.; Decarlo, P. F.; Sueper, D.; Worsnop, D. R.; Snyder, D. C.; Grover, B. D.; Eatough, D. J.; Goldstein, A. H.; Ziemann, P. J.; Jimenez, J. L.

    2011-02-01

    Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR) to investigate sources and chemical composition of fine particles (PMf) in the inland region of Southern California. This paper briefly summarizes the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July-15 August) and provides detailed intercomparisons of complementary measurements and average PMf composition during this period. Daily meteorology and gas-phase species concentrations were highly repetitive with meteorological and gas-phase species concentrations displaying clear diurnal cycles and weekday/weekend contrast, with organic aerosol (OA) being the single largest component contributing approximately one-third of PMf mass. In contrast with historical characterizations of OA in the region, several independent source apportionment efforts attributed the vast majority (~80%) of OA mass during SOAR-1 to secondary organic aerosol (SOA). Given the collocation of complementary aerosol measurements combined with a dominance of SOA during SOAR-1, this paper presents new results on intercomparisons among several complementary measurements and on PMf composition during this period. Total non-refractory submicron (NR-PM1) measurements from a high-resolution aerosol mass spectrometer (HR-AMS) are compared with measurements by tapered element oscillating microbalances (TEOM) including a filter dynamics measurement system (TEOMFDMS). NR-PM1 is highly correlated with PM2.5 TEOMFDMS measurements and accounts for the bulk of PM2.5 mass with the remainder contributed primarily by refractory material. In contrast, measurements from a heated TEOM show substantial losses of semi-volatile material, including ammonium nitrate and semi-volatile organic material. Speciated HR-AMS measurements are also consistent and highly correlated with several complementary measurements, including those of a collocated compact AMS

  2. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation

    NASA Astrophysics Data System (ADS)

    Guerrero-Rascado, Juan Luis; Landulfo, Eduardo; Antuña, Juan Carlos; de Melo Jorge Barbosa, Henrique; Barja, Boris; Bastidas, Álvaro Efrain; Bedoya, Andrés Esteban; da Costa, Renata Facundes; Estevan, René; Forno, Ricardo; Gouveia, Diego Alvés; Jiménez, Cristofer; Larroza, Eliane Gonçalves; da Silva Lopes, Fábio Juliano; Montilla-Rosero, Elena; Arruda Moreira, Gregori de; Nakaema, Walker Morinobu; Nisperuza, Daniel; Alegria, Dairo; Múnera, Mauricio; Otero, Lidia; Papandrea, Sebastián; Pallota, Juan Vicente; Pawelko, Ezequiel; Quel, Eduardo Jaime; Ristori, Pablo; Rodrigues, Patricia Ferrini; Salvador, Jacobo; Sánchez, Maria Fernanda; Silva, Antonieta

    2016-02-01

    LALINET (Latin American Lidar Network), previously known as ALINE, is the first fully operative lidar network for aerosol research in South America, probing the atmosphere on regular basis since September 2013. The general purpose of this network is to attempt to fill the gap in the knowledge on aerosol vertical distribution over South America and its direct and indirect impact on weather and climate by the establishment of a vertically-resolved dataset of aerosol properties. Similarly to other lidar research networks, most of the LALINET instruments are not commercially produced and, consequently, configurations, capabilities and derived-products can be remarkably different among stations. It is a fact that such un-biased 4D dataset calls for a strict standardization from the instrumental and data processing point of view. This study has been envisaged to investigate the ongoing network configurations with the aim of highlighting the instrumental strengths and weaknesses of LALINET.

  3. Glyoxal retrieval from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Miller, C. C.; Abad, G. G.; Wang, H.; Liu, X.; Kurosu, T.; Jacob, D. J.; Chance, K.

    2014-06-01

    We present an algorithm for the retrieval of glyoxal from backscattered solar radiation, and apply it to spectra measured by the Ozone Monitoring Instrument (OMI). The algorithm is based on direct spectrum fitting, and adopts a two-step fitting routine to account for liquid water absorption. Previous studies have shown that glyoxal retrieval algorithms are highly sensitive to the position of the spectral fit window. This dependence was systematically tested on real and simulated OMI spectra. We find that a combination of errors resulting from uncertainties in reference cross sections and spectral features associated with the Ring effect are consistent with the fit-window dependence observed in real spectra. This implies an optimal fitting window of 435-461 nm, consistent with previous satellite glyoxal retrievals. The results from the retrieval of simulated spectra also support previous findings that have suggested that glyoxal is sensitive to NO2 cross section temperature. The retrieval window limits of the liquid water retrieval are also tested. A retrieval window 385-470 nm reduces interference with strong spectral features associated with sand. We show that cross track dependent offsets (stripes) present in OMI can be corrected using offsets derived from retrieved slant columns over the Sahara, and apply the correction to OMI data. Average glyoxal columns are on average lower than those of previous studies likely owing to the choice of reference sector for offset correction. OMI VCDs are lower compared to other satellites over the tropics and Asia during the monsoon season, suggesting that the new retrieval is less sensitive to water vapor abundance. Consequently we do not see significant glyoxal enhancements over tropical oceans. OMI derived glyoxal-to-formaldehyde ratios over biogenic and anthropogenic source regions are consistent with surface observations.

  4. Glyoxal retrieval from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Miller, C. Chan; Gonzalez Abad, G.; Wang, H.; Liu, X.; Kurosu, T.; Jacob, D. J.; Chance, K.

    2014-11-01

    We present an algorithm for the retrieval of glyoxal from backscattered solar radiation, and apply it to spectra measured by the Ozone Monitoring Instrument (OMI). The algorithm is based on direct spectrum fitting, and adopts a two-step fitting routine to account for liquid water absorption. Previous studies have shown that glyoxal retrieval algorithms are highly sensitive to the position of the spectral fit window. This dependence was systematically tested on real and simulated OMI spectra. We find that a combination of errors resulting from uncertainties in reference cross sections and spectral features associated with the Ring effect are consistent with the fit-window dependence observed in real spectra. This implies an optimal fitting window of 435-461 nm, consistent with previous satellite glyoxal retrievals. The results from the retrieval of simulated spectra also support previous findings that have suggested that glyoxal is sensitive to NO2 cross-section temperature. The retrieval window limits of the liquid water retrieval are also tested. A retrieval window 385-470 nm reduces interference with strong spectral features associated with sand. We show that cross-track dependent offsets (stripes) present in OMI can be corrected using offsets derived from retrieved slant columns over the Sahara, and apply the correction to OMI data. Average glyoxal columns are on average lower than those of previous studies likely owing to the choice of reference sector for offset correction. OMI VCDs (vertical column densities)are lower compared to other satellites over the tropics and Asia during the monsoon season, suggesting that the new retrieval is less sensitive to water vapour abundance. Consequently we do not see significant glyoxal enhancements over tropical oceans. OMI-derived glyoxal-to-formaldehyde ratios over biogenic and anthropogenic source regions are consistent with surface observations.

  5. Remote Monitoring of Instrumentation in Sealed Compartments

    SciTech Connect

    Landron, Clinton; Moser, John C.

    1999-05-20

    The Instrumentation and Telemetry Departments at Sandia National Laboratories have been exploring the instrumentation of sealed canisters where the flight application will not tolerate either the presence of a chemical power source or penetration by power supply wires. This paper will describe the application of a low power micro-controller based instrumentation system that uses magnetic coupling for both power and data to support a flight application.

  6. EOS-Aura's Ozone Monitoring Instrument (OMI): Validation Requirements

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; McPeters, R.; deHaan, J. F.; Levelt, P. F.; Hilsenrath, E.; Bhartia, P. K.

    2003-01-01

    OMI is an advanced hyperspectral instrument that measures backscattered radiation in the UV and visible. It will be flown as part of the EOS Aura mission and provide data on atmospheric chemistry that is highly synergistic with other Aura instruments HIRDLS, MLS, and TES. OMI is designed to measure total ozone, aerosols, cloud information, and UV irradiances, continuing the TOMS series of global mapped products but with higher spatial resolution. In addition its hyperspectral capability enables measurements of trace gases such as SO2, NO2, HCHO, BrO, and OClO. A plan for validation of the various OM1 products is now being formulated. Validation of the total column and UVB products will rely heavily on existing networks of instruments, like NDSC. NASA and its European partners are planning aircraft missions for the validation of Aura instruments. New instruments and techniques (DOAS systems for example) will need to be developed, both ground and aircraft based. Lidar systems are needed for validation of the vertical distributions of ozone, aerosols, NO2 and possibly SO2. The validation emphasis will be on the retrieval of these products under polluted conditions. This is challenging because they often depend on the tropospheric profiles of the product in question, and because of large spatial variations in the troposphere. Most existing ground stations are located in, and equipped for, pristine environments. This is also true for almost all NDSC stations. OMI validation will need ground based sites in polluted environments and specially developed instruments, complementing the existing instrumentation.

  7. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  8. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  9. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  10. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  11. LESSONS LEARNED IN AEROSOL MONITORING WITH THE RASA

    SciTech Connect

    Forrester, Joel B.; Bowyer, Ted W.; Carty, Fitz; Comes, Laura; Eslinger, Paul W.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Kirkham, Randy R.; Lepel, Elwood A.; Litke, Kevin E.; Miley, Harry S.; Morris, Scott J.; Schrom, Brian T.; Van Davelaar, Peter; Woods, Vincent T.

    2011-09-14

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory (PNNL) in the 1990's and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The RASA operates unattended, save for regularly scheduled maintenance, iterating samples through a three-step process on a 24-hour interval. In its 15-year history, much has been learned from the operation and maintenance of the RASA that can benefit engineering updates or future aerosol systems. On 11 March 2011, a 9.0 magnitude earthquake and tsunami rocked the eastern coast of Japan, resulting in power loss and cooling failures at the Daiichi nuclear power plants in Fukushima Prefecture. Aerosol collections were conducted with the RASA in Richland, WA. We present a summary of the lessons learned over the history of the RASA, including lessons taken from the Fukushima incident, regarding the RASA IMS stations operated by the United States.

  12. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  13. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, K.; Russchenberg, H. W. J.

    2015-11-01

    A method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product-Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m-2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα) is not the best way of quantifying aerosol-cloud interactions.

  14. Science Objectives of EOS-Aura's Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Levelt, P. F.; Veefkind, J. P.; Stammes, P.; Hilsenrath, E.; Bhartia, P. K.; Chance, K. V.; Leppelmeier, G. W.; Maelkki, A.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    OMI is a UV/VIS nadir solar backscatter spectrograph, which provides near global coverage in one day with a spatial resolution of 13 x 24 sq km. OMI is a new instrument, with a heritage from the European satellite instruments GOME, GOMOS and SCIAMACHY. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will measure solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with spectral resolution of about 0.5 nm and a spectral sampling of about 2-3 per FWHM. From these observations, total columns of O3, NO2, BrO and SO2 will be derived from the back-scattered solar radiance using differential absorption spectroscopy (DOAS). The TOMS total ozone record will also be continued by employing the well established TOMS algorithm. Because of the high accuracy and spatial resolution of the measurements, a good estimate of tropospheric amounts of ozone and NO2 are expected. Ozone profiles will be derived using the optimal estimation method. The spectral aerosol optical depth will be determined from measurements between 340 and 500 nm. This will provide information on aerosol concentration, aerosol size distribution and aerosol type. This wavelength range makes it possible to retrieve aerosol information over both land and sea. OMI observations will also allow retrievals of cloud coverage and cloud heights. From these products, the UV-B flux at the surface can then be derived with high spatial resolution.

  15. Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling

    PubMed Central

    Evans, Douglas E.; Ku, Bon Ki; Birch, M. Eileen; Dunn, Kevin H.

    2010-01-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations

  16. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles. PMID:22442935

  17. ON THE IMPACT OF THE HUMAN (CHILD) MICROCLIMATE ON PASSIVE AEROSOL MONITOR PERFORMANCE

    EPA Science Inventory

    Research into the wind microclimate and its effect on the accuracy and effectiveness of passive aerosol monitors is expanding as the importance of personal monitoring versus regional monitoring increases. The important phenomena for investigation include thermal and dynamic eff...

  18. Studies of aerosol at a coastal site using two aerosol mass spectrometry instruments and identification of biogenic particle types

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.; Furutani, H.; Prather, K. A.; Coe, H.; Allan, J. D.

    2005-10-01

    During August 2004 an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS Model 3800-100) and an Aerodyne Aerosol Mass Spectrometer (AMS) were deployed at Mace Head during the NAMBLEX campaign. Single particle data (size, positive and negative mass spectra) from the ATOFMS were imported into ART 2a, a neural network algorithm, which assigns individual particles to clusters on the basis of their mass spectral similarities. Results are very consistent with previous time consuming manual classifications (Dall'Osto et al., 2004). Three broad classes were found: sea-salt, dust and carbon-containing particles, with a number of sub-classes within each. The Aerodyne (AMS) instrument was also used during NAMBLEX, providing online, real time measurements of the mass of non-refractory components of aerosol particles as function of their size. The ATOFMS detected a type of particle not identified in our earlier analysis, with a strong signal at m/z 24, likely due to magnesium. This type of particle was detected during the same periods as pure unreacted sea salt particles and is thought to be biogenic, originating from the sea surface. AMS data are consistent with this interpretation, showing an additional organic peak in the corresponding size range at times when the Mg-rich particles are detected. The work shows the ATOFMS and AMS to be largely complementary, and to provide a powerful instrumental combination in studies of atmospheric chemistry.

  19. SIZE-SELECTING AEROSOL CHARACTERIZATION INSTRUMENT - PHASE II

    EPA Science Inventory

    Aerodyne Research, Inc., proposes to develop a new monitor that provides composition information of particles in the ultrafine (10-100 nm), fine (100 nm-2.5 µm) and coarse (2.5-10 µm) size modes in near real time. Particle monitoring technologies are important f...

  20. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  1. Spatial patterns of substantial climate impact from anthropogenic aerosols in the early instrumental period

    NASA Astrophysics Data System (ADS)

    Undorf, Sabine; Bollasina, Massimo; Hegerl, Gabriele

    2016-04-01

    While many aspects of climate variation in the early instrumental period (1860-1950) are still unexplained, for instance the early twentieth-century warming from the 1910s to the 1940s, the role of anthropogenic aerosols in this period has been overlooked. Yet, the period is also an interesting case study to isolate aerosol impacts since it is characterised by the increase of North American and especially European aerosol emissions concurrently with negligible Asian emissions and relatively low carbon dioxide concentrations. We thus analyse the spatial and temporal patterns of aerosol impact for this period in available observations (NOAA 20th-century reanalysis, etc.) and historical single-forcing and all-forcing experiments with state-of-the-art CMIP5 models. We make use of coupled empirical orthogonal functions (EOFs) applied to surface temperature -the most reliable variable in observations- and different aerosol indicating variables such as aerosol optical depth and short-wave downward radiation, some of which include aerosol indirect effects. The principal components of the most important EOFs are then regressed onto sea level pressure, winds, and other variables to identify associated circulation patterns. A decomposition into multi-decadal and longer time scales is performed by filtering the data prior to the analysis. Our analysis reveals both statistically significant local and non-local aerosol impact and identifies circulation states associated with the temperature response. The results are consistent across different aerosol variables, and show a strong non-local response as well as specific differences between time scales. We find a distinctive circulation pattern which strongly resembles observations and might explain the observed early twentieth century warming in the Arctic.

  2. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network

    NASA Astrophysics Data System (ADS)

    Che, Huizheng; Zhang, Xiaoye; Chen, Hongbin; Damiri, Bahaiddin; Goloub, Philippe; Li, Zhengqiang; Zhang, Xiaochun; Wei, Yao; Zhou, Huaigang; Dong, Fan; Li, Deping; Zhou, Tianming

    2009-02-01

    This paper introduced the calibration of the CE-318 sunphotometer of the China Aerosol Remote Sensing Network (CARSNET) and the validation of aerosol optical depth (AOD) by AOD module of ASTPWin software compared with the simultaneous measurements of the Aerosol Robotic Network (AERONET)/Photométrie pour le Traitement Opérationnel de Normalization Satellitaire (PHOTONS) and PREDE skyradiometer. The results show that the CARSNET AOD measurements have the same accuracy as the AERONET/PHOTONS. On the basis of a comparison between CARSNET and AERONET, the AODs from CARSNET at 1020, 870, 670, and 440 nm are about 0.03, 0.01, 0.01, and 0.01 larger than those from AERONET, respectively. The aerosol optical properties over Beijing acquired through the CE-318 sunphotometers of one AERONET/PHOTONS site and two CARSNET sites were analyzed on the basis of 4-year measurements. It was obvious that the AOD of the Shangdianzi site (rural site) was lower than that of the two urban sites (the Institute of Atmospheric Physics (IAP) site (north urban site) and the Beijing Meteorological Observatory (BJO) site (south urban site)). The AOD of BJO was about 0.05, 0.04, 0.05, and 0.06 larger than that of IAP at 1020, 870, 670, and 440 nm, respectively, indicating that there is more local pollution in the south part of Beijing. The highest AOD was found in summer because of the stagnation planetary boundary layer and transport of pollutants from large pollution centers south of Beijing. The high temperature and relative humidity in summer also favor the production of aerosol precursor and the hygroscopic growth of the existing particles locally, which results in high AOD. In contrast, the lowest AOD at the two urban sites and one rural site in Beijing occurred in winter as the frequent cold air masses help pollutants diffuse easily.

  3. Continuous emission monitoring of metal aerosol concentrations in atmospheric air

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Sarrette, Jean-Philippe; Madon, Lydie; Almi, Abdenbi

    1996-11-01

    Improvements of an apparatus for continuous emission monitoring (CEM) by inductively coupled plasma atomic emission spectrometry (ICP-AES) of metal aerosols in air are described. The method simultaneously offers low operating costs, large volume of tested air for valuable sampling and avoids supplementary contamination or keeping of the air pollutant concentrations. Questions related to detection and calibration are discussed. The detection limits (DL) obtained for the eight pollutants studied are lower than the recommended threshold limit values (TLV) and as satisfactory as the results obtained with other CEM methods involving air-argon plasmas.

  4. Air Quality Observations from Space: Results from the Ozone Monitoring Instrument (OMI) and Expected Results from the TROPOspheric Monitoring Instrument (TROPOMI)

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, K. F.; van der A, R.; Eskes, H.; Kleipool, Q.; Krotkov, N.; Aben, I.; de Vries, J.; Ingmann, P.; Tamminen, J.; Joiner, J.; Bhartia, P. K.; Levelt, P. F.

    2012-04-01

    Air quality is one of the largest societal challenges, especially in large urbanized and industrialized regions of the world. Reduced air quality has adverse health effects, and also results in reduced crop yields. In addition, there are strong links between air quality and climate change. Air quality has traditionally been monitored by ground-based networks. In the previous decade the observation capabilities have been extended with measurements from space, most notable from the Ozone Monitoring Instrument (OMI), the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) and the Global Ozone Monitoring Experiment (GOME-1/2). Whereas the satellite instruments do not provide concentrations at the surface level, they provide unique global information on the spatial distribution and transport of pollutants. Over the last decade the quality of the satellite data for tropospheric species like nitrogen dioxide, carbon monoxide, sulfur dioxide, formaldehyde and aerosols have matured rapidly. Several data products now contribute to the monitoring and forecasting of air quality through data assimilation techniques, as for example developed in the MACC (http://www.gmes-atmosphere.eu/) project. Apart from directly contributing through data assimilation, satellite data are also used for the top-down quantification of emission sources and understanding of atmospheric processes, thus improving chemistry transport models. The OMI instrument, which was launched in July 2004, was the first instrument that combined daily global coverage with high spatial resolution of 13x24 km2 at nadir. The OMI data have attracted many new users and have resulted in several new applications. The TROPOMI instrument on the ESA/GMES Sentinel 5 precursor satellite, planned for launch in 2015, will be the first in a series of European satellite sensors dedicated for monitoring atmospheric composition changes in the timeframe 2015-2030. The TROPOMI instrument has a heritage to

  5. Air Quality Observations from Space: Results from the Ozone Monitoring Instrument (OMI) and Expected Results from the TROPOspheric Monitoring Instrument (TROPOMI)

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, F. F.; van der A, R. J.; Eskes, H. J.; de Haan, J. F.; Kleipool, Q.; Krotkov, N. A.; Aben, I.; de Vries, J.; Ingmann, P.; Tamminen, J.; Joiner, J.; Bhartia, P. K.; Levelt, P.

    2011-12-01

    Air quality is one of the largest societal challenges, especially in large urbanized and industrialized regions of the world. Reduced air quality has adverse health effects, and also results in reduced crop yields. In addition, there are strong links between air quality and climate change. Traditionally, air quality has been monitored by ground-based networks. In the previous decade the observation capabilities have been extended with measurements from space, most notable from the Ozone Monitoring Instrument (OMI), the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) and the Global Ozone Monitoring Experiment (GOME-1/2). Whereas the satellite instruments do not provide concentrations at the surface level, they provide unique global information on the spatial distribution and transport of pollutants. Over the last decade the quality of the satellite data for tropospheric species like nitrogen dioxide, carbon monoxide, sulfur dioxide, formaldehyde and aerosols have matured rapidly. Several data products now contribute to the monitoring and forecasting of air quality through data assimilation techniques, most notably as developed in the EU GEMS and MACC (http://www.gmes-atmosphere.eu/) projects. Apart from directly contributing through data assimilation, satellite data is also used for the top-down quantification of emission sources and understanding of atmospheric processes, thus improving chemistry transport models. The OMI instrument, which was launched in July 2004, was the first instrument that combined daily global coverage with high spatial resolution of 13x24 km2 at nadir. The OMI data have attracted many new users and has resulted in several new applications. The TROPOMI instrument, planned for launch in late 2014, will be the first in a series of European satellite sensors dedicated for monitoring atmospheric composition changes in the timeframe 2015-2030. The TROPOMI instrument has a heritage to both OMI and SCIAMACHY. With a

  6. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A.-C.; Depiesse, C.; Gillotay, D.; Kochenova, S.; Montmessin, F.

    2012-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. We will show that such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), is a practical tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we will start with studying their opacity and its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties and their wavelength dependencies, using EPF data. The method will be illustrated by investigating SPICAM

  7. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Yannick; Carine Vandaele, Ann; Depiesse, Cedric; Gillotay, Didier; Kochenova, Svetlana; Montmessin, Franck

    2013-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. Part of such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), can be a tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we started studying their opacity and the influence of its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties using EPF data from SPICAM.

  8. National Oceanic and Atmospheric Administration /NOAA/ contamination monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Maag, C. R.

    1980-01-01

    The JPL has designed and built a plume contamination monitoring package to be installed on a NOAA environmental services satellite. The package is designed to monitor any condensible contamination that occurs during the ignition and burn of a TE-M-364-15 apogee kick motor. The instrumentation and system interface are described, and attention is given to preflight analysis and test.

  9. Long working distance autocollimating and microscope monitoring instrument

    NASA Astrophysics Data System (ADS)

    Liu, Bing-guo; Liu, Guo-dong; Gong, Na; Chen, Feng-dong; Zhuang, Zhi-tao

    2013-01-01

    In the laser inertial confinement fusion (ICF) experiment, the high accuracy target field coordinate system should be found to monitor the target by all kinds of physics diagnose instrument. Before the testing target is shot, the coordinate system should be transferred to the testing target, and recurrent the coordinate system before each shooting. In order to solve this problem, two set microscope optics vision instruments are designed which has autocollimating and target position monitoring functions, and its working distance is 3.8 meters,and its optic resolution is 8 micron. Firstly, the optical coordinate axis of the two instruments is adjusted orthogonally by each other, then the ICF range coordinate is transferred to a testing target by a sensor, and ensure testing target located at the center of ICF range coordinate. The instrument has already been used in Shen Guang III device, and also can be used for object monitoring and tracing in a kind of field.

  10. A dual-wavelength single particle aerosol fluorescence monitor

    NASA Astrophysics Data System (ADS)

    Kaye, Paul H.; Stanley, Warren R.; Foot, Virginia; Baxter, Karen; Barrington, Stephen J.

    2005-10-01

    Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

  11. Assessing hospitals' clinical risk management: Development of a monitoring instrument

    PubMed Central

    2010-01-01

    Background Clinical risk management (CRM) plays a crucial role in enabling hospitals to identify, contain, and manage risks related to patient safety. So far, no instruments are available to measure and monitor the level of implementation of CRM. Therefore, our objective was to develop an instrument for assessing CRM in hospitals. Methods The instrument was developed based on a literature review, which identified key elements of CRM. These elements were then discussed with a panel of patient safety experts. A theoretical model was used to describe the level to which CRM elements have been implemented within the organization. Interviews with CRM practitioners and a pilot evaluation were conducted to revise the instrument. The first nationwide application of the instrument (138 participating Swiss hospitals) was complemented by in-depth interviews with 25 CRM practitioners in selected hospitals, for validation purposes. Results The monitoring instrument consists of 28 main questions organized in three sections: 1) Implementation and organizational integration of CRM, 2) Strategic objectives and operational implementation of CRM at hospital level, and 3) Overview of CRM in different services. The instrument is available in four languages (English, German, French, and Italian). It allows hospitals to gather comprehensive and systematic data on their CRM practice and to identify areas for further improvement. Conclusions We have developed an instrument for assessing development stages of CRM in hospitals that should be feasible for a continuous monitoring of developments in this important area of patient safety. PMID:21144039

  12. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG&G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  13. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  14. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  15. CLOUDCLOUD : general-purpose instrument monitoring and data managing software

    NASA Astrophysics Data System (ADS)

    Dias, António; Amorim, António; Tomé, António

    2016-04-01

    An effective experiment is dependent on the ability to store and deliver data and information to all participant parties regardless of their degree of involvement in the specific parts that make the experiment a whole. Having fast, efficient and ubiquitous access to data will increase visibility and discussion, such that the outcome will have already been reviewed several times, strengthening the conclusions. The CLOUD project aims at providing users with a general purpose data acquisition, management and instrument monitoring platform that is fast, easy to use, lightweight and accessible to all participants of an experiment. This work is now implemented in the CLOUD experiment at CERN and will be fully integrated with the experiment as of 2016. Despite being used in an experiment of the scale of CLOUD, this software can also be used in any size of experiment or monitoring station, from single computers to large networks of computers to monitor any sort of instrument output without influencing the individual instrument's DAQ. Instrument data and meta data is stored and accessed via a specially designed database architecture and any type of instrument output is accepted using our continuously growing parsing application. Multiple databases can be used to separate different data taking periods or a single database can be used if for instance an experiment is continuous. A simple web-based application gives the user total control over the monitored instruments and their data, allowing data visualization and download, upload of processed data and the ability to edit existing instruments or add new instruments to the experiment. When in a network, new computers are immediately recognized and added to the system and are able to monitor instruments connected to them. Automatic computer integration is achieved by a locally running python-based parsing agent that communicates with a main server application guaranteeing that all instruments assigned to that computer are

  16. a Novel Instrument to Monitor Lanslides Deformation

    NASA Astrophysics Data System (ADS)

    Pasuto, A.; Mantovani, M.; Schenato, L.; Scherneck, H.

    2013-12-01

    Landslides are more widespread than any other geological event and have high ranking among the natural disasters in terms of casualties and economical damages. Deforestation and constructions of new settlements and infrastructures, as direct consequences of population growth, and the increasing frequency of extreme meteorological events, due to the global climatic changing, could lead to a more severe impact of landslides on human life and activities in the next future. Risk reduction generally comes through countermeasures, both structural and non-structural, that directly act on the developing process or tend to reduce the effects on the fabric of the city and of the environment. Nevertheless countermeasures have often shown their flimsiness especially if they are carried out on disruptions hard to stabilize for their dimensions, kinematics and morpho-evolutive conditions. In these cases there are basically two options: the relocation of the element at risk or the surveillance of the evolution of the instability process by means of a monitoring system. Monitoring therefore represents a powerful tool in both the surveillance of the territory and the management of the emergencies coming from geo-hydrological hazard. In this study we propose the development and testbedding of a novel, low-cost wireless smart sensor network for remote monitoring of land surface deformations. The purpose is to create a flexible and scalable monitoring system in order to overcome some of the limitations of the existing devices and to strongly reduce the costs. The system consists in a master station that works as a control and measuring unit, and a series of sensors (motes) placed over the unstable areas. The master station transmits a microwave signal and receives the response from each mote measuring their relative position and inferring any deformation occurred between successive interrogations. Moreover the motes can work as bridges so that even those that are not directly visible

  17. Deriving aerosol properties from measurements of the Atmosphere-Surface Radiation Automatic Instrument (ASRAI)

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Li, Donghui; Li, Zhengqiang; Zheng, Xiaobing; Li, Xin; Xie, Yisong; Liu, Enchao

    2015-10-01

    The Atmosphere-surface Radiation Automatic Instrument (ASRAI) is a newly developed hyper-spectral apparatus by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (AIOFM, CAS), measuring total spectral irradiance, diffuse spectral irradiance of atmosphere and reflected radiance of the land surface for the purpose of in-situ calibration. The instrument applies VIS-SWIR spectrum (0.4~1.0 μm) with an averaged spectral resolution of 0.004 μm. The goal of this paper is to describe a method of deriving both aerosol optical depth (AOD) and aerosol modes from irradiance measurements under free cloudy conditions. The total columnar amounts of water vapor and oxygen are first inferred from solar transmitted irradiance at strong absorption wavelength. The AOD together with total columnar amounts of ozone and nitrogen dioxide are determined by a nonlinear least distance fitting method. Moreover, it is able to infer aerosol modes from the spectral dependency of AOD because different aerosol modes have their inherent spectral extinction characteristics. With assumption that the real aerosol is an idea of "external mixing" of four basic components, dust-like, water-soluble, oceanic and soot, the percentage of volume concentration of each component can be retrieved. A spectrum matching technology based on Euclidean-distance method is adopted to find the most approximate combination of components. The volume concentration ratios of four basic components are in accordance with our prior knowledge of regional aerosol climatology. Another advantage is that the retrievals would facilitate the TOA simulation when applying 6S model for satellite calibration.

  18. The Shortwave Solar Spectroradiometer - Hemispheric: A New ARM Instrument for Aerosol and Cloud Research

    NASA Astrophysics Data System (ADS)

    Barnard, J.; Flynn, C.; Ermold, B.

    2012-12-01

    The Shortwave Array Spectroradiometer - Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures all three components of the shortwave irradiance: the total irradiance, the diffuse irradiance, and the direct normal irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) - an instrument that has been in the ACRF stable for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the SAS measures the shortwave spectrum, from about 325 nm to 1700 nm at a wavelength resolution of about 1 to several nanometers, while the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm in width. The markedly enhanced wavelength resolution and range of the SAS-He opens a new window of opportunity for studies that will significantly improve our understanding of cloud and aerosol optical properties in the shortwave spectrum. Additionally, the shadowband of the SAS-He is able to sweep across the irradiance sensor in small steps, and this permits the applications of new algorithms (Yin et al., 2011) that use the shape of the forward scattering lobe to infer the properties of aerosols and clouds. More specifically, these algorithms can remotely determine liquid/ice water path (LWP/IWP). Ground-based retrievals of LWP/IWP are particularly difficult for the important case of clouds with low optical thickness (Turner et al., 2007), and any advance in this area is significant. Moreover, the extended wavelength range of the SAS-He facilitates, for example, more reliable retrievals of aerosol size distributions, including the coarse mode. This is particularly important because the coarse mode is now gaining more prominence as an important factor in direct aerosol radiative forcing (Kassianov et al., 2012). Here we describe the key optical features of the SAS-He and data processing, including calibration of the instrument using

  19. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Carbon Aerosols and Implications for Atmospheric Oxidation

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-12-01

    Absorption of solar radiation by aerosols plays a major role in radiative forcing and atmospheric photochemistry. Many atmospheric chemistry models tend to overestimate tropospheric OH concentrations compared to observations. Accurately representing aerosol absorption in the UV could help rectify the discrepancies between simulated and observed OH concentrations. We develop a simulation of the Ultraviolet Aerosol Index (UVAI), using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI). Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.4 to -1.0) exists between simulated and observed values in biomass burning regions. We implement optical properties for absorbing organic aerosol, known as brown carbon (BrC), into GEOS-Chem and evaluate the simulation with observed UVAI values over biomass burning regions. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.7 in the UV to 1.3 across the UV-Near IR spectrum. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.60 to -0.08 over North Africa in January, from -0.40 to -0.003 over South Asia in April, from -1.0 to -0.24 over southern Africa in July, and from -0.50 to +0.34 over South America in September. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining ozone photolysis frequencies (J(O(1D))) and tropospheric OH concentrations in GEOS-Chem. The inclusion of BrC decreases J(O(1D)) and OH by up to 35% over biomass burning regions, and reduces the global bias in OH.

  20. Understanding The Correlation of San Joaquin Air Quality Monitoring With Aerosol Optical Thickness Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ballard, M.; Newcomer, M.; Rudy, J.; Lake, S.; Sambasivam, S.; Strawa, A. W.; Schmidt, C.; Skiles, J.

    2007-12-01

    Air quality in the San Joaquin Valley (SJV) has failed to meet state and federal attainment standards for Particulate Matter (PM) for several years. Air quality agencies currently use ground monitoring sites to monitor air quality in the San Joaquin Valley. This method provides accurate information at specific points but does not provide a clear indication of what is occurring over large regions. Using measurements from satellite imagery has the potential to provide valuable air quality information in a timely manner across large regions. While previous studies show good correlations between satellite derived Aerosol Optical Thickness (AOT) and surface PM measurements on the East Coast of the United States, the data do not correlate well in the SJV. This paper compares PM2.5 ground data from the California Air Resources Board (CARB) and the Interagency Monitoring of Protected Environments (IMPROVE) sites with satellite data in an effort to understand this discrepancy. To verify satellite AOT value accuracy, ground AOT values were collected from the Aerosol Robotic Network (AERONET) and from measurements using the hand-held MicroTops II Sun Photometer field instrument. We found good correlation of the AOT values between MODIS, MISR and AERONET. However, we found poor correlations between satellite- based AOT values and PM2.5 values, and consideration of aerosol speciation did not improve the correlations. Further investigation is needed to determine the causes of the poor correlation. Acquiring detailed information on the meteorological conditions and vertical profiles of the atmosphere using ground-based LIDAR or data from CALIPSO may provide better results.

  1. Simultaneous retrieval of total ozone column amounts and cloud/aerosol optical depths from multi-channel, moderate bandwidth filter instruments

    NASA Astrophysics Data System (ADS)

    Stamnes, Knut; Fan, Lingling; Li, Wei; Dahlback, Arne; Stamnes, Jakob; Stamnes, Snorre

    2015-04-01

    A new method is presented based on using neural networks (NN) to analyze ultraviolet (UV) irradiance data recorded by multi-channel, moderate bandwidth filter instruments. Application of the NN method to three years of data obtained by a NILU-UV multi-channel, moderate bandwidth filter instrument, revealed that compared to a traditional look-up table (LUT) method, the NN method yielded better agreement against the Ozone Monitoring Instrument (OMI) with a 1% decrease in relative difference and a significant increase in the correlation of total ozone column (TOC) values. Furthermore, this new method resulted in larger number of valid retrievals (daily average values within a meaningful range of 200-500 DU) than the LUT method. Compared with NN retrievals based on NILU-UV irradiance measurements, TOC values obtained from OMI were underestimated under cloudy conditions. Cloud optical depth (COD) values derived by the NN method were more reliable than corresponding results derived by the LUT method, the latter results were less accurate for heavy cloud cover, broken cloud situations or snow-covered ground. The potential for retrieving aerosol optical depth (AOD) values under cloud-free conditions will be discussed. The cloud-aerosol information obtained by irradiance instruments such as the NILU-UV can be used in conjunction with a radiative transfer model to estimate cloud/aerosol radiative forcing and hence the impact of clouds and aerosols on the radiative energy balance. Deployment of multi-channel, moderate bandwidth filter instruments at AERONET sites and analysis of such data in conjunction with AERONET and satellite remote sensing data can provide crucial information needed for the assessment of the influence of ozone, clouds, and aerosols on climate.

  2. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, Edward L.; Ziemba, L. D.

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  3. Spectral Aerosol Extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-06-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström Exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  4. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  5. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  6. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven; Bunch, Kyle; Good, Morris; Waltar, Alan E.

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP) will require the development of actinide transmutation, which can most effectively be accomplished in a fast-spectrum reactor. To achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required-- during both fabrication and operation. This paper reports parts of a knowledge capture and technology state-of-the-art assessment for fast-reactor instrumentation and controls, monitoring and diagnostics. (authors)

  7. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  8. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K.; Moore, Ronald J.

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  9. HOUSTON AEROSOL CHARACTERIZATION STUDY

    EPA Science Inventory

    An intensive field study of ambient aerosols was conducted in Houston between September 14 and October 14, 1978. Measurements at 12 sites were made using (1) two relocatable monitoring systems instrumented for aerosol and gaseous pollutants, (2) a network of high volume samplers ...

  10. Quality assurance of ultrasound imaging instruments by monitoring the monitor.

    PubMed

    Walker, J B; Thorne, G C; Halliwell, M

    1993-11-01

    Ultrasound quality assurance (QA) is a means of assuring the constant performance of an ultrasound instrument. A novel 'ultrasound image analyser' has been developed to allow objective, accurate and repeatable measurement of the image displayed on the ultrasound screen, i.e. as seen by the operator. The analyser uses a television camera/framestore combination to digitize and analyse this image. A QA scheme is described along with the procedures necessary to obtain a repeatable measurement of the image so that comparisons with earlier good images can be made. These include repositioning the camera and resetting the video display characteristics. The advantages of using the analyser over other methods are discussed. It is concluded that the analyser has distinct advantages over subjective image assessment methods and will be a valuable addition to current ultrasound QA programmes. PMID:8272435

  11. Instrumentation for full-year plot-scale runoff monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicated 0.34 ha cropping systems plots have been in place since 1991 at the USDA-ARS Goodwater Creek Experimental Watershed in central Missouri. Recently, instrumentation has been installed at 18 of those plots for continuous runoff water quality and quantity monitoring. That installation require...

  12. 4. Interior view of instrumentation, controls, and monitoring equipment on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Interior view of instrumentation, controls, and monitoring equipment on east wall of the equipment room on the east side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. 3. Interior view of instrumentation, controls, and monitoring equipment on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Interior view of instrumentation, controls, and monitoring equipment on north wall of the equipment room on the east side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. 5. Interior view of instrumentation, controls, and monitoring equipment on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Interior view of instrumentation, controls, and monitoring equipment on north and east walls of the signal transfer room on the west side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  16. Future Mission Concept for 3-D Aerosol Monitoring From Space Based on Fusion of Remote Sensing Approaches

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Kahn, R. A.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Cairns, B.; Torres, O.

    2006-05-01

    Fine airborne particles are implicated in adverse impacts on human health. In situ measurements are a critical component of any air quality monitoring system; however, they cover a small fraction of the globe and do not measure aerosols transported aloft or over water. Satellites provide a substantial complementary role, and great strides in aerosol characterization over land from spaceborne platforms are currently taking place. In the passive realm, multiangle sensors such as MISR have unique strengths in determining particle optical depths over land, constraining column-average particle size, shape, and single-scattering albedo, and providing stereoscopic layer-top heights for aerosol plumes and spatially heterogeneous layers. Multispectral information at ultraviolet (UV) wavelengths (e.g., from TOMS and OMI) and in the shortwave infrared (SWIR) (e.g., from MODIS), as well as polarimetry (e.g., from POLDER and in the future, APS) have complementary strengths for measuring aerosol microphysical properties. Active lidars bring added sensitivity to particle vertical distribution. Fusion of such capabilities, particularly at km-scale resolutions required for aerosol monitoring in urban settings, would further improve our ability to identify and track aerosol air mass types on regional and larger scales, giving added value and context to more detailed particle microphysical and chemical properties that can be measured in situ. In 2005 we submitted a mission concept called the Aerosol Global Interactions Satellite (AEGIS), consisting of a notional multiangle spectropolarimetric imager (MSPI) and high spectral resolution lidar (HSRL), to the National Academy of Sciences Decadal Survey. The MSPI instrument is an advanced version of MISR, improving upon current capabilities by adding near-UV, SWIR, and high-accuracy polarimetric imaging channels, and by widening the sensor swath. HSRL measurements are designed to provide vertical profiles of aerosol backscatter and

  17. Mie Lidar for Aerosols and Clouds Monitoring at Otlica Observatory

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Filipčič, A.; Veberič, D.; Forte, B.

    2009-04-01

    Aerosol and cloud densities are the most important atmospheric parameters, which significantly influence the atmospheric conditions. The study of their spatial and temporal properties can provide detailed information about the transport processes of the air masses. In recent years, lidar techniques for remote sensing of the atmospheric parameters have been greatly improved. Like the lidar systems of the Pierre Auger Observatory in Argentina (35.2S, 69.1W, 1400 m a.s.l.), the Mie lidar built at Otlica Observatory (45.93N, 13.91E, 945 m a.s.l.) in Slovenia employs the same hardware, including the transmitter, the receiver, and the DAQ system. Due to its high-power laser, large-diameter telescope, and photon-counting data-acquisition technique, the Mie lidar has the potential ability to measure the tropospheric and stratospheric atmospheric conditions, and is suitable for monitoring the changes of the cirrus clouds and atmospheric boundary layer. We have been performing routine atmospheric monitoring experiments with the Otlica Mie lidar since September 2008. Using the techniques of event-averaging, noise-elimination, and data-gluing, the far end of lidar probing range is extended from 30 km up to 40 km. The extinction profiles are calculated using the Klett method and the time-height-intensity plots were made. They clearly show the evolution of atmospheric conditions, especially the motion of the cirrus clouds above Otlica.

  18. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Prévôt, A. S. H.; Baltensperger, U.; Schneider, J.; Kimmel, J. R.; Gonin, M.; Rohner, U.; Worsnop, D. R.; Jayne, J. T.

    2013-11-01

    We present a new instrument for monitoring aerosol composition, the time-of-flight aerosol chemical speciation monitor (ToF-ACSM), combining precision state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS) technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM). Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of < 30 ng m-3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~ 8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation and calibration and analysis) provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS) measurements, performed during a first long-term deployment (> 10 months) on the Jungfraujoch mountain ridge (3580 m a.s.l.) in the Swiss Alps, agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th), as well as improving inorganic/organic separation.

  19. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Prévôt, A. S. H.; Baltensperger, U.; Schneider, J.; Kimmel, J. R.; Gonin, M.; Rohner, U.; Worsnop, D. R.; Jayne, J. T.

    2013-07-01

    We present a new instrument for monitoring aerosol composition, the economy time-of-flight-aerosol chemical speciation monitor (ToF-ACSM), combining precision of state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS) technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM). Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of <30 ng m-3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation & calibration and analysis) provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS) measurements, performed during a first long-term deployment (>6 months) on the Jungfraujoch mountain ridge (3580 m a.s.l.) in the Swiss Alps agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th), as well as improving inorganic/organic separation.

  20. Instrumented Shoes for Real-Time Activity Monitoring Applications.

    PubMed

    Moufawad El Achkar, Christopher; Lenoble-Hoskovec, Constanze; Major, Kristof; Paraschiv-Ionescu, Anisoara; Büla, Christophe; Aminian, Kamiar

    2016-01-01

    Activity monitoring in daily life is gaining momentum as a health assessment tool, especially in older adults and at-risk populations. Several research-based and commercial systems have been proposed with varying performances in classification accuracy. Configurations with many sensors are generally accurate but cumbersome, whereas single sensors tend to have lower accuracies. To this end, we propose an instrumented shoes system capable of accurate activity classification and gait analysis that contains sensors located entirely at the level of the shoes. One challenge in daily activity monitoring is providing punctual and subject-tailored feedback to improve mobility. Therefore, the instrumented shoe system was equipped with a Bluetooth® module to transmit data to a smartphone and perform detailed activity profiling of the monitored subjects. The potential applications of such a system are numerous in mobility and fall risk-assessment as well as in fall prevention. PMID:27332298

  1. Improved effectiveness of performance monitoring in amateur instrumental musicians.

    PubMed

    Jentzsch, Ines; Mkrtchian, Anahit; Kansal, Nayantara

    2014-01-01

    Here we report a cross-sectional study investigating the influence of instrumental music practice on the ability to monitor for and respond to processing conflicts and performance errors. Behavioural and electrophysiological indicators of response monitoring in amateur musicians with various skill levels were collected using simple conflict tasks. The results show that instrumental musicians are better able than non-musicians to detect conflicts and errors as indicated by systematic increases in the amplitude of the error-related negativity and the N200 with increasing levels of instrumental practice. Also, high levels of musical training were associated with more efficient and less reactive responses after experience of conflicts and errors as indicated by reduced post-error interference and post-conflict processing adjustments. Together, the present findings suggest that playing a musical instrument might improve the ability to monitor our behavior and adjust our responses effectively when needed. As these processes are amongst the first to be affected by cognitive aging, our evidence could promote musical activity as a realistic intervention to slow or even prevent age-related decline in frontal cortex mediated executive functioning. PMID:24056298

  2. Improved effectiveness of performance monitoring in amateur instrumental musicians☆

    PubMed Central

    Jentzsch, Ines; Mkrtchian, Anahit; Kansal, Nayantara

    2014-01-01

    Here we report a cross-sectional study investigating the influence of instrumental music practice on the ability to monitor for and respond to processing conflicts and performance errors. Behavioural and electrophysiological indicators of response monitoring in amateur musicians with various skill levels were collected using simple conflict tasks. The results show that instrumental musicians are better able than non-musicians to detect conflicts and errors as indicated by systematic increases in the amplitude of the error-related negativity and the N200 with increasing levels of instrumental practice. Also, high levels of musical training were associated with more efficient and less reactive responses after experience of conflicts and errors as indicated by reduced post-error interference and post-conflict processing adjustments. Together, the present findings suggest that playing a musical instrument might improve the ability to monitor our behavior and adjust our responses effectively when needed. As these processes are amongst the first to be affected by cognitive aging, our evidence could promote musical activity as a realistic intervention to slow or even prevent age-related decline in frontal cortex mediated executive functioning. PMID:24056298

  3. Note: A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon-containing aerosols

    NASA Astrophysics Data System (ADS)

    McLaughlin, R. P.; Mason, G. S.; Miller, A. L.; Stipe, C. B.; Kearns, J. D.; Prier, M. W.; Rarick, J. D.

    2016-05-01

    A portable instrument has been developed for measuring silicon-containing aerosols in near real-time using laser-induced breakdown spectroscopy (LIBS). The instrument uses a vacuum system to collect and deposit airborne particulate matter onto a translatable reel of filter tape. LIBS is used to analyze the deposited material, determining the amount of silicon-containing compounds present. In laboratory testing with pure silica (SiO2), the correlation between LIBS intensity for a characteristic silicon emission and the concentration of silica in a model aerosol was determined for a range of concentrations, demonstrating the instrument's plausibility for identifying hazardous levels of silicon-containing compounds.

  4. Note: A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon-containing aerosols.

    PubMed

    McLaughlin, R P; Mason, G S; Miller, A L; Stipe, C B; Kearns, J D; Prier, M W; Rarick, J D

    2016-05-01

    A portable instrument has been developed for measuring silicon-containing aerosols in near real-time using laser-induced breakdown spectroscopy (LIBS). The instrument uses a vacuum system to collect and deposit airborne particulate matter onto a translatable reel of filter tape. LIBS is used to analyze the deposited material, determining the amount of silicon-containing compounds present. In laboratory testing with pure silica (SiO2), the correlation between LIBS intensity for a characteristic silicon emission and the concentration of silica in a model aerosol was determined for a range of concentrations, demonstrating the instrument's plausibility for identifying hazardous levels of silicon-containing compounds. PMID:27250478

  5. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  6. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  7. Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Papathakos, L. C.

    1977-01-01

    The Global Atmospheric Sampling Program (GASP) by NASA is collecting and analyzing data on gaseous and aerosol trace species in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Advances were made in airborne sampling instrumentation. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei and mass concentrations of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to uniquely identify the source of the air mass as being typically tropospheric or stratospheric. A quantitative understanding of the tropospheric-stratospheric exchange processes leads to better knowledge of the atmospheric impact of pollution through the development of improved simulation models of the atmosphere.

  8. Ultrasonic wave-based structural health monitoring embedded instrument

    SciTech Connect

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  9. Ultrasonic wave-based structural health monitoring embedded instrument

    NASA Astrophysics Data System (ADS)

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  10. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests. PMID:24387467

  11. Remote monitoring of instrumented structures using the Internet information superhighway

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.; Ambrose, Timothy P.

    1994-09-01

    The requirements of sensor monitoring associated with instrumented civil structures poses potential logistical constraints on manpower, training, and costs. The need for frequent or even continuous data monitoring places potentially severe constraints on overall system performance given real-world factors such as available manpower, geographic separation of the instrumented structures, and data archiving as well as the training and cost issues. While the pool of available low wage, moderate skill workers available to the authors is sizable (undergraduate engineering students), the level of performance of such workers is quite variable leading to data acquisition integrity and continuity issues - matters that are not acceptable in the practical field implementation of such developed systems. In the case of acquiring data from the numerous sensors within the civil structures which the authors have instrumented (e.g., a multistory building, roadway/railway bridges, and a hydroelectric dam), we have found that many of these concerns may be alleviated through the use of an automated data acquisition system which archives the acquired information in an electronic location remotely accessible through the Internet global computer network. It is therefore a possible for the data monitoring to be performed at a remote location with the only requirements for data acquisition being Internet accessibility. A description of the developed scheme is presented as well as guiding philosophies.

  12. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  13. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  14. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  15. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years

  16. Interpreting the Ultraviolet Aerosol Index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-10-01

    Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 35 % over South America in September, up to 25 % over southern Africa in July, and up to 20 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  17. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  18. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  19. Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia

    USGS Publications Warehouse

    Lavigne, F.; Thouret, J.-C.; Voight, B.; Young, K.; LaHusen, R.; Marso, J.; Suwa, H.; Sumaryono, A.; Sayudi, D.S.; Dejean, M.

    2000-01-01

    More than 50 volcanic debris flows or lahars were generated around Mt Merapi during the first rainy season following the nuees ardentes of 22 November 1994. The rainfalls that triggered the lahars were analyzed, using such instruments as weather radar and telemetered rain gauges. Lahar dynamics were also monitored, using new non-contact detection instrumentation installed on the slopes of the volcano. These devices include real-time seismic amplitude measurement (RSAM), seismic spectral amplitude measurement (SSAM) and acoustic flow monitoring (AFM) systems. Calibration of the various systems was accomplished by field measurements of flow velocities and discharge, contemporaneously with instrumental monitoring. The 1994–1995 lahars were relatively short events, their duration in the Boyong river commonly ranging between 30 min and 1 h 30 min. The great majority (90%) of the lahars was recognized at Kaliurang village between 13:00 and 17:30 h, due to the predominance of afternoon rainfalls. The observed mean velocity of lahar fronts ranged between 1.1 and 3.4 m/s, whereas the peak velocity of the flows varied from 11 to 15 m/s, under the Gardu Pandang viewpoint location at Kaliurang, to 8–10 m/s at a section 500 m downstream from this site. River slopes vary from 28 to 22 m/km at the two sites. Peak discharges recorded in various events ranged from 33 to 360 m3/s, with the maximum value of peak discharge 360 m3/s, on 20 May 1995. To improve the lahar warning system along Boyong river, some instrumental thresholds were proposed: large and potentially hazardous lahars may be detected by RSAM units exceeding 400, SSAM units exceeding 80 on the highest frequency band, or AFM values greater than 1500 mV on the low-gain, broad-band setting.

  20. Added value of a geostationary thermal infrared and visible instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, Emeric; Attié, Jean-Luc; Tourneur, Cyrille; Ricaud, Philippe; Coret, Laurent; Lahoz, William; El Amraoui, Laaziz; Josse, Béatrice; Hamer, Paul; Warner, Juying; Liu, Xiong; Chance, Kelly; Höpfner, Michael; Spurr, Robert; Natraj, Vijay; Kulawik, Susan; Eldering, Annmarie; Orphal, Johannes

    2014-05-01

    Air quality concerns the atmospheric composition of the lowermost troposphere between the ground and 500 m; it depends on chemical and transport processes and emissions. Air quality has a strong impact on human health, and protecting society from its adverse effects has a high cost (Lahoz et al., 2012). It is thus important to monitor species that are key for air quality - these include ozone, carbon monoxide, NOx and aerosols. In this study we focus on ozone, and compare the capability of two instrument configurations onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and 0-1 km column): 1) in the thermal infrared (GEO TIR), and 2) in the thermal infrared and the visible (GEO TIR+VIS). We consider one week during the Northern Hemisphere summer simulated by the chemical transport model MOCAGE, and use the two GEO instrument configurations to measure ozone. The GEO TIR instrument is described in Claeyman et al. (2011a, b). The GEO TIR+VIS instrument is the GEO TIR instrument with an additional visible Chappuis band to improve the sensitivity of the instrument in the lowermost troposphere. We compare these configurations against each other, and against an ozone reference state and a priori ozone information, to evaluate the benefit of the TIR+VIS in comparison to the TIR in the lowermost troposphere. The results from this work will inform an Observing System Simulation Experiment (OSSE) performed to quantify the added value of the GEO TIR+VIS configuration for forecasting air quality conditions.

  1. The Automated Instrumentation and Monitoring System (AIMS) reference manual

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Hontalas, Philip; Listgarten, Sherry

    1993-01-01

    Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).

  2. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Bunch, Kyle J.; Good, Morris S.; Waltar, Alan E.

    2007-07-28

    The Global Nuclear Energy Partnership (GNEP) has been proposed as a viable system in which to close the fuel cycle in a manner consistent with markedly expanding the global role of nuclear power while significantly reducing proliferation risks. A key part of this system relies on the development of actinide transmutation, which can only be effectively accomplished in a fast-spectrum reactor. The fundamental physics for fast reactors is well established. However, to achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required--during both fabrication and operation. Since the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor – II (EBR-II) reactors were operational in the USA, there have been major advances in instrumentation, not the least being the move to digital systems. Some specific capabilities have been developed outside the USA, but new or at least re-established capabilities will be required. In many cases the only available information is in reports and papers. New and improved sensors and instrumentation will be required. Advanced instrumentation has been developed for high-temperature/high-flux conditions in some cases, but most of the original researchers and manufacturers are retired or no longer in business.

  3. Optoelectronic Instrument Monitors pH in a Culture Medium

    NASA Technical Reports Server (NTRS)

    Anderson, Melody M.; Pellis, Neal; Jeevarajan, Anthony S.; Taylor, Thomas D.

    2004-01-01

    An optoelectronic instrument monitors the pH of an aqueous cell-culture medium in a perfused rotating-wall-vessel bioreactor. The instrument is designed to satisfy the following requirements: It should be able to measure the pH of the medium continuously with an accuracy of 0.1 in the range from 6.5 to 7.5. It should be noninvasive. Any material in contact with the culture medium should be sterilizable as well as nontoxic to the cells to be grown in the medium. The biofilm that inevitably grows on any surface in contact with the medium should not affect the accuracy of the pH measurement. It should be possible to obtain accurate measurements after only one calibration performed prior to a bioreactor cell run. The instrument should be small and lightweight. The instrument includes a quartz cuvette through which the culture medium flows as it is circulated through the bioreactor. The cuvette is sandwiched between light source on one side and a photodetector on the other side. The light source comprises a red and a green light-emitting diode (LED) that are repeatedly flashed in alternation with a cycle time of 5 s. The responses of the photodiode to the green and red LEDs are processed electronically to obtain a quantity proportional to the ratio between the amounts of green and red light transmitted through the medium.

  4. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  5. Hanford double shell tank corrosion monitoring instrument tree prototype

    SciTech Connect

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.

  6. Compact Raman instrumentation for process and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Carrabba, Michael M.; Spencer, Kevin M.; Rauh, R. D.

    1991-04-01

    Raman spectroscopy is a powerful noninvasive tool for elucidating chemical structure. Like infrared spectroscopy, it has many potential practical applications, such as process monitoring, environmental sensing, clinical analysis, forensic identification, and as a detector for use with analytical instruments. Until recently, however, Raman has been considered mainly in the context of basic research. The present generation of high performance Raman instruments tend to be large, complex and expensive, and thus have been of primary interest only to specialists in the field. This paper will discuss the development of a compact Raman spectrometer system consisting of a diode laser, fiber optics of excitation and collection, and a compact spectrograph with charge coupled device (CCD) detection.

  7. Validation of GOMOS-Envisat vertical profiles of O3, NO2, NO3, and aerosol extinction using balloon-borne instruments and analysis of the retrievals

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenaël; Brogniez, Colette; Catoire, Valery; Fussen, Didier; Goutail, Florence; Oelhaf, Hermann; Pommereau, Jean-Pierre; Roscoe, Howard K.; Wetzel, Gerald; Chartier, Michel; Robert, Claude; Balois, Jean-Yves; Verwaerde, Christian; Auriol, Frédérique; François, Philippe; Gaubicher, Bertrand; Wursteisen, Patrick

    2008-02-01

    The UV-visible Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard Envisat performs nighttime measurements of ozone, NO2, NO3 and of the aerosol extinction, using the stellar occultation method. We have conducted a validation exercise using various balloon-borne instruments in different geophysical conditions from 2002 to 2006, using GOMOS measurements performed with stars of different magnitudes. GOMOS and balloon-borne vertical columns in the middle stratosphere are in excellent agreement for ozone and NO2. Some discrepancies can appear between GOMOS and balloon-borne vertical profiles for the altitude and the amplitude of the concentration maximum. These discrepancies are randomly distributed, and no bias is detected. The accuracy of individual profiles in the middle stratosphere is 10 % for ozone and 25 % for NO2. On the other hand, the GOMOS NO3 retrieval is difficult and no direct validation can be conducted. The GOMOS aerosol content is also well estimated, but the wavelength dependence can be better estimated if the aerosol retrieval is performed only in the visible domain. We can conclude that the GOMOS operational retrieval algorithm works well and that GOMOS has fully respected its primary objective for the study of the trends of species in the middle stratosphere, using the profiles in a statistical manner. Some individual profiles can be partly inaccurate, in particular in the lower stratosphere. Improvements could be obtained by reprocessing some GOMOS transmissions in case of specific studies in the middle and lower stratosphere when using the individual profiles.

  8. Pomino: An Improved Satellite NO2 Product for the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Lin, J.; Martin, R.; Boersma, K. F.; Sneep, M.; Stammes, P.; Spurr, R. J. D.; Wang, P.; Van Roozendael, M.; Clemer, K.; Irie, H.

    2014-12-01

    Tropospheric NO2 columns retrieved from satellite instruments are useful to infer NOx pollution, NOx emissions and atmospheric chemistry. Current satellite products are subject to limitations in assumptions of aerosol optical effects, surface reflectance anisotropy, vertical profiles of NO2, and/or cloud optical properties. Here we develop an improved Peking University Ozone Monitoring Instrument NO2 product (POMINO) for China, complementing the popular DONIMO v2 product. POMINO explicitly accounts for aerosol optical effects, angular dependence of surface reflectance, and dynamically varying atmospheric profiles of air pressure, air temperature and NO2 at a high horizontal resolution (50 km). Prior to the NO2 retrieval, we retrieve cloud top pressure and cloud fraction using consistent assumptions about the states of the atmosphere and surface. For our NO2 and cloud retrievals, we adopt from KNMI (via www.temis.nl) the SCDs of tropospheric NO2 (DOMINO v2) and O2-O2 dimer (OMCLDO2 v1.1.1.3), the TOA reflectance, and some other ancillary information. We develop the AMFv6 code for radiative transfer calculation, based on LIDORT v3.6. Radiative transfer is calculated explicitly for each satellite pixel with no need to use a look-up table. The calculation of AMFv6 is parallelized and is sufficiently fast so that one day of retrieval with global coverage would only take about three hours using 16 CPU cores. POMINO is consistent with MAX-DOAS NO2 data in China, with a R2of 0.96 as compared to the value at 0.72 for DOMINO v2. The improved consistency is related to explicit pixel-by-pixel radiative transfer calculation (instead of using a look-up table), consistent treatments of all parameters in retrieving clouds and NO2, explicit consideration of aerosol optical effects (rather than adjusting 'effective' clouds to implicitly account for aerosols), and consideration of surface reflectance anisotropy. Additional analyses are being conducted on the daily, seasonal and

  9. Validation of the GLAST Burst Monitor Instrument Response Simulation Software

    SciTech Connect

    Hoover, A. S.; Klimenko, A.; Kippen, R. M.; Wallace, M. S.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.; Wilson-Hodge, C. A.; Kouveliotou, C.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Paciesas, W. S.; Bhat, P. N.

    2007-07-12

    The GLAST Burst Monitor (GBM) comprises 12 NaI and 2 BGO detectors dispersed about the GLAST spacecraft. The GBM instrument simulation software must generate an accurate response function database for all detectors in their flight configuration to optimize the mission science return. Before science analysis codes use the response database, we must confirm that our simulation codes and models can reproduce laboratory observations. To validate the simulation effort, Monte Carlo results are compared to calibrated laboratory measurements collected with a variety of radiation sources.

  10. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  11. Validation of SO2 Retrievals from the Ozone Monitoring Instrument over NE China

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; McClure, Brittany; Dickerson, Russell R.; Carn, Simon A.; Li, Can; Bhartia, Pawan K.; Yang, Kai; Krueger, Arlin J.; Li, Zhanqing; Levelt, Pieternel F.; Chen, Hongbin; Wang, Pucai; Lu, Daren

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) launched on the NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space-based UV measurements of sulfur dioxide (SO2). We present a first validation of the OMI SO2 data with in situ aircraft measurements in NE China in April 2005. The study demonstrates that OMI can distinguish between background SO2 conditions and heavy pollution on a daily basis. The noise (expressed as the standard deviation,sigma) is approximately 1.5 DU (Dobson units; 1 DU = 2.69 10 (exp 16) molecules/cm (exp 2)) for instantaneous field of view boundary layer (PBL) SO2 data. Temporal and spatial averaging can reduce the noise to sigma approximetly 0.3 DU over a remote region of the South Pacific; the long-term average over this remote location was within 0.1 DU of zero. Under polluted conditions collection 2 OMI data are higher than aircraft measurements by a factor of two. Improved calibrations of the radiance and irradiance data (collection 3) result in better agreement with aircraft measurements on polluted days. The air mass corrected collection 3 data still show positive bias and sensitivity to UV absorbing aerosols. The difference between the in situ data and the OMI SO2 measurements within 30 km of the aircraft profiles was about 1 DU, equivalent to approximately 5 ppb from 0 to 3000 m altitude. Quantifying the SO2 and aerosol profiles and spectral dependence of aerosol absorption between 310 and 330 nm are critical for an accurate estimate of SO2 from satellite UV measurements.

  12. Atmospheric Aerosol Sampling with Unmanned Aircraft Systems (UAS) in Alaska: Instrument Development, Payload Integration, and Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Barberie, S. R.; Saiet, E., II; Hatfield, M. C.; Cahill, C. F.

    2014-12-01

    Atmospheric aerosols remain one of biggest variables in understanding global climate. The number of feedback loops involved in aerosol processes lead to nonlinear behavior at the systems level, making confident modeling and prediction difficult. It is therefore important to ground-truth and supplement modeling efforts with rigorous empirical measurements. To this end, the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) at the University of Alaska Fairbanks has developed a new cascade DRUM-style impactor to be mounted aboard a variety of unmanned aircraft and work in tandem with an optical particle counter for the routine collection of atmospheric aerosols. These UAS-based aerosol samplers will be employed for measurement campaigns in traditionally hazardous conditions such as volcanic plumes and over forest fires. Here we report on the development and laboratory calibration of the new instrument, the integration with UAS, and the vertical profiling campaigns being undertaken.

  13. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    PubMed

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment. PMID:22554097

  14. Two years of aerosol pollution monitoring in Singapore: a review

    NASA Astrophysics Data System (ADS)

    Orlic, I.; Wen, X.; Ng, T. H.; Tang, S. M.

    1999-04-01

    An aerosol sampling campaign was initiated more than two years ago in Singapore. The aim was to determine the average elemental concentrations in fine and coarse aerosol fractions as well as to identify major pollution sources and their impact. For that purpose, two air samplers were employed at two different sampling locations; one sampler was a fine particulate aerosol sampler (PM2.5) located at the vicinity of a major industrial area. The other was a stacked filter unit (SFU) sampler designed for collection of fine and coarse fractions (PM2.5 and PM10) and installed in the residential area. Samples were taken typically twice a week and in several occasions daily. During the period of two years more than 700 aerosol samples were collected and analyzed using PIXE and RBS techniques. All samples were analyzed for 18 elements ranging between Na, Mg, Al, etc. up to As and Pb. Large daily and seasonal variations were found for most of the elements. These variations are attributed mainly to meteorological changes, in particular changes in wind speed and direction. On several occasions, short term sampling was performed to identify fingerprints of major pollution sources such as road traffic, refineries, as well as the rain-forest fires in neighboring countries. A summary of our findings is presented and discussed.

  15. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  16. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  17. The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition

    NASA Astrophysics Data System (ADS)

    Docherty, K. S.; Aiken, A. C.; Huffman, J. A.; Ulbrich, I. M.; Decarlo, P. F.; Sueper, D.; Worsnop, D. R.; Snyder, D. C.; Peltier, R. E.; Weber, R. J.; Grover, B. D.; Eatough, D. J.; Williams, B. J.; Goldstein, A. H.; Ziemann, P. J.; Jimenez, J. L.

    2011-12-01

    Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR) to investigate the chemical composition and potential sources of fine particles (PMf) in the inland region of Southern California. In this paper, we briefly summarize the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July-15 August), provide detailed intercomparisons of high-resolution aerosol mass spectrometer (HR-AMS) measurements against complementary measurements, and report the average composition of PMf including the composition of the organic fraction measured by the HR-AMS. Daily meteorology and gas-phase species concentrations were highly consistent, displaying clear diurnal cycles and weekday/weekend contrast. HR-AMS measurements of non-refractory submicron (NR-PM1) mass are consistent and highly correlated with those from a filter dynamics measurement system tapered-element oscillating microbalance (TEOM), while the correlation between HR-AMS and heated TEOM measurements is lower due to loss of high volatility species including ammonium nitrate from the heated TEOM. Speciated HR-AMS measurements are also consistent with complementary measurements as well as with measurements from a collocated compact AMS while HR-AMS OC is similar to standard semi-continuous Sunset measurements within the combined uncertainties of both instruments. A correction intended to account for the loss of semi-volatile OC from the Sunset, however, yields measurements ~30% higher than either HR-AMS or standard Sunset measurements. On average, organic aerosol (OA) was the single largest component of PMf. OA composition was investigated using both elemental analysis and positive matrix factorization (PMF) of HR-AMS OA spectra. Oxygen is the main heteroatom during SOAR-1, with O/C exhibiting a diurnal minimum of 0.28 during the morning rush hour and maximum of 0.42 during the afternoon. O/C is broadly anti

  18. FTIR instrumentation to monitor vapors from Shuttle tile waterproofing materials

    NASA Astrophysics Data System (ADS)

    Mattson, C. B.; Schwindt, C. J.

    1995-11-01

    The Space Shuttle Thermal Protection System (TPS) tiles and blankets are waterproofed using DimethylEthoxySilane (DMEX) in the Orbiter Processing Facilities (OPF). DMES has a Threshold Limit Value (TLV) for exposure of personnel to vapor concentration in air of 0.5 ppm. The OPF high bay cannot be opened for normal work after a waterproofing operation until the DMES concentration is verified by measurement to be below the TLV. On several occasions the high bay has been kept closed for up to 8 hours following waterproofing operations due to high DMES measurements. In addition, the Miran 203 and Miran 1 BX infrared analyzers calibrated at different wavelengths gave different readings under the same conditions. There was reason to believe that some of the high DMES concentration readings were caused by interference form water and ethanol vapors. The Toxic Vapor Detection Laboratory (TVDL) was asked to test the existing DMES instruments and identify the best qualified instrument. In addition the TVDL was requested to develop instrumentation to ensure the OPF high bay could be opened safely as soon as possible after a waterproofing operation. A Fourier Transform Infrared (FTIR) spectrophotometer instrument developed for an earlier project was reprogrammed to measure DMES vapor along with ethanol, water, and several common solvent vapors. The FTIR was then used to perform a series of laboratory and field tests to evaluate the performance of the single wavelength IR instruments in use. The results demonstrated that the single wavelength IR instruments did respond to ethanol and water vapors, more or less depending on the analytical IR wavelength selected. The FTIR was able to separate the responses to DMES, water and ethanol, and give consistent readings for the DMES vapor concentration. The FTIR was then deployed to the OPF to monitor real waterproofing operations. The FTIR was also used to measure the time for DMES to evaporate from TPS tile under a range of humidity

  19. FTIR instrumentation to monitor vapors from Shuttle tile waterproofing materials

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Schwindt, C. J.

    1995-01-01

    The Space Shuttle Thermal Protection System (TPS) tiles and blankets are waterproofed using DimethylEthoxySilane (DMEX) in the Orbiter Processing Facilities (OPF). DMES has a Threshold Limit Value (TLV) for exposure of personnel to vapor concentration in air of 0.5 ppm. The OPF high bay cannot be opened for normal work after a waterproofing operation until the DMES concentration is verified by measurement to be below the TLV. On several occasions the high bay has been kept closed for up to 8 hours following waterproofing operations due to high DMES measurements. In addition, the Miran 203 and Miran 1 BX infrared analyzers calibrated at different wavelengths gave different readings under the same conditions. There was reason to believe that some of the high DMES concentration readings were caused by interference form water and ethanol vapors. The Toxic Vapor Detection Laboratory (TVDL) was asked to test the existing DMES instruments and identify the best qualified instrument. In addition the TVDL was requested to develop instrumentation to ensure the OPF high bay could be opened safely as soon as possible after a waterproofing operation. A Fourier Transform Infrared (FTIR) spectrophotometer instrument developed for an earlier project was reprogrammed to measure DMES vapor along with ethanol, water, and several common solvent vapors. The FTIR was then used to perform a series of laboratory and field tests to evaluate the performance of the single wavelength IR instruments in use. The results demonstrated that the single wavelength IR instruments did respond to ethanol and water vapors, more or less depending on the analytical IR wavelength selected. The FTIR was able to separate the responses to DMES, water and ethanol, and give consistent readings for the DMES vapor concentration. The FTIR was then deployed to the OPF to monitor real waterproofing operations. The FTIR was also used to measure the time for DMES to evaporate from TPS tile under a range of humidity

  20. Aquarius: An Instrument to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S .E.; Colomb, R.; Yueh, S.; Pellerano, F.

    2007-01-01

    Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/SAC-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (CONAE). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  1. The Fermi Gamma-ray Burst Monitor Instrument

    SciTech Connect

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-05-25

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing {gamma}-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view ({>=}8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  2. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  3. Assesment of aerosol optical depth at UV wavelegths from Microtops II "ozone monitor

    NASA Astrophysics Data System (ADS)

    Gómez-Amo, J. L.; di Sarra, A.; Estellés, V.; Utrillas, M. P.; Martínez-Lozano, J. A.

    2009-04-01

    The aerosol optical depth (AOD) retrieval at ultraviolet spectral region (UV) has been of interest for the last few years, especially due to the important rule that the particles play in the Earth climate modifying the earth-atmosphere energy budget. That is the reason why a great number of methodologies have been developed to obtain AOD, usually by means of instruments aimed to ozone monitoring. Microtops II "ozone meter" is a small hand-held manually operated instrument designed for the measurement of ozone atmospheric columnar content. The instrument operates in five spectral channels centred at 305.5, 312.5, 320.0, 936 and 1020nm wavelengths. The firsts three channels (UV) are used to obtain the ozone content, the 936nm channel is used to water vapour retrieval and the last one permit to obtain the AOD at 1020nm. The aim of this work is to use the UV ozone channels to assess the capability of Microtops II "ozone monitor" to retrieve AOD at 312.5, 305.5 and 320nm. On this way we can improve substantially the performance of Microtops II for the characterization of important components present in the atmosphere using only its own measurements. The methodology used to carry out the AOD retrieval is based on the application of the Beer-Lambert-Bouguer law to the Microtops II UV channels. A very good calibration is needed to apply this kind of methodologies since they show an important dependence on the calibration factors. The AOD is calculated eliminating the ozone contribution (using the ozone content from the combination of 305.5 and 312.5 channels) and the molecular one (Rayleigh). The AOD retrieval has been tested in a 15-days field campaign carried out at Lampedusa Island (35.52°N, 12.63°E, 45m a.s.l.) in the framework of the GAMARF (Ground-based and Airborne Measurments of the Aerosol Radiative Forcing) project. The results obtained during the campaign show, for a background atmospheric situation, AOD values of 0.10 ± 0.03, 0.17 ± 0.03 and 0.05 ± 0.03 at

  4. An efficient network for interconnecting remote monitoring instruments and computers

    SciTech Connect

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-08-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs.

  5. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  6. Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS

    NASA Technical Reports Server (NTRS)

    Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    We present views and analysis of the execution of several PVM (Parallel Virtual Machine) codes for Computational Fluid Dynamics on a networks of Sparcstations, including: (1) NAS Parallel Benchmarks CG and MG; (2) a multi-partitioning algorithm for NAS Parallel Benchmark SP; and (3) an overset grid flowsolver. These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains: (1) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (2) Monitor, a library of runtime trace-collection routines; (3) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (4) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran 77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses XIIR5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (1) the impact of long message latencies; (2) the impact of multiprogramming overheads and associated load imbalance; (3) cache and virtual-memory effects; and (4) significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (1) ConfigView, showing the physical topology

  7. Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS

    NASA Technical Reports Server (NTRS)

    Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Tucker, Deanne (Technical Monitor)

    1994-01-01

    We present views and analysis of the execution of several PVM codes for Computational Fluid Dynamics on a network of Sparcstations, including (a) NAS Parallel benchmarks CG and MG (White, Alund and Sunderam 1993); (b) a multi-partitioning algorithm for NAS Parallel Benchmark SP (Wijngaart 1993); and (c) an overset grid flowsolver (Smith 1993). These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains (a) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (b) Monitor, a library of run-time trace-collection routines; (c) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (d) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses X11R5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (a) the impact of long message latencies; (b) the impact of multiprogramming overheads and associated load imbalance; (c) cache and virtual-memory effects; and (4significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (a) Config

  8. Multisensor Instrument for Real-Time Biological Monitoring

    NASA Technical Reports Server (NTRS)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  9. INSTRUMENTATION FOR MONITORING THE OPACITY OF PARTICULATE EMISSIONS CONTAINING CONDENSED WATER

    EPA Science Inventory

    On-stack instrumentation and methodology were developed to monitor the opacity of particulate pollutants in stationary source emissions containing condensed water. The instrument continuously extracts and measures the opacity of representative samples of particulate effluent. It ...

  10. Determining PM2.5 calibration curves for a low-cost particle monitor: common indoor residential aerosols.

    PubMed

    Dacunto, Philip J; Klepeis, Neil E; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2015-11-01

    Real-time particle monitors are essential for accurately estimating exposure to fine particles indoors. However, many such monitors tend to be prohibitively expensive for some applications, such as a tenant or homeowner curious about the quality of the air in their home. A lower cost version (the Dylos Air Quality Monitor) has recently been introduced, but it requires appropriate calibration to reflect the mass concentration units required for exposure assessment. We conducted a total of 64 experiments with a suite of instruments including a Dylos DC1100, another real-time laser photometer (TSI SidePak™ Model AM-510 Personal Aerosol Monitor), and a gravimetric sampling apparatus to estimate Dylos calibration factors for emissions from 17 different common indoor sources including cigarettes, incense, fried bacon, chicken, and hamburger. Comparison of minute-by-minute data from the Dylos with the gravimetrically calibrated SidePak yielded relationships that enable the conversion of the raw Dylos particle counts less than 2.5 μm (in #/0.01 ft(3)) to estimated PM2.5 mass concentration (e.g. μg m(-3)). The relationship between the exponentially-decaying Dylos particle counts and PM2.5 mass concentration can be described by a theoretically-derived power law with source-specific empirical parameters. A linear relationship (calibration factor) is applicable to fresh or quickly decaying emissions (i.e., before the aerosol has aged and differential decay rates introduce curvature into the relationship). The empirical parameters for the power-law relationships vary greatly both between and within source types, although linear factors appear to have lower uncertainty. The Dylos Air Quality Monitor is likely most useful for providing instantaneous feedback and context on mass particle levels in home and work situations for field-survey or personal awareness applications. PMID:26487426

  11. Monitoring Disasters by Use of Instrumented Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Sullivan, Donald V.; Dunagan, Steven E.; Brass, James A.; Ambrosia, Vincent G.; Buechel, Sally W.; Stoneburner, Jay; Schoenung, Susan M.

    2009-01-01

    Efforts are under way to develop data-acquisition, data-processing, and data-communication systems for monitoring disasters over large geographic areas by use of uninhabited aerial systems (UAS) robotic aircraft that are typically piloted by remote control. As integral parts of advanced, comprehensive disaster- management programs, these systems would provide (1) real-time data that would be used to coordinate responses to current disasters and (2) recorded data that would be used to model disasters for the purpose of mitigating the effects of future disasters and planning responses to them. The basic idea is to equip UAS with sensors (e.g., conventional video cameras and/or multispectral imaging instruments) and to fly them over disaster areas, where they could transmit data by radio to command centers. Transmission could occur along direct line-of-sight paths and/or along over-the-horizon paths by relay via spacecraft in orbit around the Earth. The initial focus is on demonstrating systems for monitoring wildfires; other disasters to which these developments are expected to be applicable include floods, hurricanes, tornadoes, earthquakes, volcanic eruptions, leaks of toxic chemicals, and military attacks. The figure depicts a typical system for monitoring a wildfire. In this case, instruments aboard a UAS would generate calibrated thermal-infrared digital image data of terrain affected by a wildfire. The data would be sent by radio via satellite to a data-archive server and image-processing computers. In the image-processing computers, the data would be rapidly geo-rectified for processing by one or more of a large variety of geographic-information- system (GIS) and/or image-analysis software packages. After processing by this software, the data would be both stored in the archive and distributed through standard Internet connections to a disaster-mitigation center, an investigator, and/or command center at the scene of the fire. Ground assets (in this case

  12. Optical properties of aerosols obtained from airborne lidar and several in-situ instruments during RACE

    NASA Astrophysics Data System (ADS)

    Strawbridge, Kevin B.; Li, Shao-Meng

    1997-05-01

    Two aircraft, the National Research Council of Canada (NRCC) Convair 580 (CV580) and NRCC DHC-6 Twin Otter, along with the Yarmouth and Digby Ferries, a ground site near Yarmouth and coordination with satellite overpasses (AVHRR and LANDSAT) provided an exceptionally well rounded compliment of observing platforms to meet the project objectives for the radiation, aerosols and cloud experiment (RACE) (refer to http://www.on.doe.ca/armp/RACE/RACE.html for a complete list of instrumentation and investigators involved). The general flight plans involved upwind measurements of a selected target by the CV580 lidar, followed by coincident flights allowing the Twin Otter to perform in-situ measurements while the Convair used a variety of remote sensors from above. The CV580 then descended to perform in-situ measurements including size segregated samples through the use of a micro-orifice uniform deposit impactor (MOUDI). This paper focuses on the airborne lidar results during RACE and in particular introduces two case studies comparing the lidar with a MOUDI impactor and ASASP particle probe using Mie theory.

  13. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  14. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  15. Monitoring biomass burning and aerosol loading and transport using multispectral GOES data

    NASA Astrophysics Data System (ADS)

    Menzel, W. Paul; Prins, Elaine

    1996-10-01

    The successful launch of GOES-8 in 1994 introduced an enhanced capability for diurnal monitoring of subpixel fire activity and aerosol transport in the Western Hemisphere. The higher spatial and temporal resolution, greater radiometric sensitivity, and improved navigation of GOES-8 offer many advantages for monitoring fires and smoke in North, Central, and South America. In South America the GOES-8 automated biomass burning algorithm (ABBA) is being used to continue monitoring trends in biomass burning associated with agricultural practices and deforestation activities as well as documenting the extent and transport of associated aerosols. GOES-8 ABBA results obtained during the 1995 biomass burning season indicate a strong diurnal cycle in fire activity and associated aerosol transport regimes extending over millions of km2. Examples of GOES-8 diurnal monitoring of fire intensity and size in the United States, Canada, Mexico, Guatemala and Belize show the utility of using GOES-8 as an early warning mechanism for identifying and monitoring wildfires in these regions. The success of the GOES-8 ABBA in the Western Hemisphere suggests the utility of initiating a global geostationary fire monitoring effort.

  16. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. I - Theory and instrumentation

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Tracy, D. H.; Eloranta, E. W.; Roesler, F. L.; Weinman, J. A.; Trauger, J. T.; Sroga, J. T.

    1983-01-01

    A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator-amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

  17. Instrument Response Modeling and Simulation for the GLAST Burst Monitor

    SciTech Connect

    Kippen, R. M.; Hoover, A. S.; Wallace, M. S.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.; Wilson-Hodge, C. A.; Kouveliotou, C.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Paciesas, W. S.; Bhat, P. N.

    2007-07-12

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset, and is being extensively validated against calibrated experimental GBM data. We discuss the architecture of the GBM simulation and modeling system and describe how its products will be used for analysis of observed GBM data. Companion papers describe the status of validating the system.

  18. Observations over Hurricanes from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Yang, K.; Bhartia, P. K.

    2006-01-01

    There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.

  19. Decadal Regional Trends in Trace Gases and Reflectance As Measured with the Ozone Monitoring Instrument (OMI) on Eos Aura

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, F. F.; Kleipool, Q.; Desmedt, I.; Levelt, P.

    2014-12-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) is a UV-visible spectrometer on board of the NASA EOS Aura mission. Due to its innovative design, OMI combines a high spatial resolution (13x24km2 at nadir) with a wide swath of 2600 km that enables daily global coverage. The OMI science data record started in October 2004 and already spans a decade. The instrument shows very low optical degradation: after 10 years in orbit the throughput at its shortest UV wavelengths has only been reduced by a few percent and at longer wavelengths this degradation is about 1%. This stability makes the instrument extremely valuable for trend analysis, although due to the so-called "row anomaly" part of the swath is no longer providing science-quality data since 2009. Both the optical degradation and the row anomaly are well characterized. The OMI data record shows that in the past decade the emissions of trace gases have changed considerably. Over most of the industrialized countries in Europe, North America and Asia emissions of NOx and SO2 have been reduced, whereas in the developing countries the emissions have generally increased. These changes in emissions directly affect the air quality, including the concentration of secondary aerosol particles. Due to the direct and indirect effect of aerosols, it is expected that the radiation balance is also affected, resulting in changes in shortwave radiance at the surface and at the top of the atmosphere. In this contribution we will present time series analysis of tropospheric NO2 and formaldehyde columns from OMI, in combination with aerosol optical depth time series from MODIS on EOS Aqua. We concentrate on mega-cities in India, China and the U.S.A., because in these densely populated regions the effects of air quality are the largest. To quantify the local effects of aerosols on the radiation balance, we combine the trends in the aerosol optical depth with trends of the reflectance at the top of the atmosphere, as measured by OMI.

  20. Status of the Multi-Angle Imaging SpectroRadiometer Instrument for EOS-AM1 and Its Application to Remote Sensing of Aerosols

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Abdou, W. A.; Bruegge, C. J.; Conel, J. E.; Kahn, R. A.; Maronchik, J. V.; Paradise, S. R.; West, R. A.

    1995-01-01

    The Multi-Angle Imaging SpectroRadiometer (MISR) instrument is being developed at JPL for the EOS AM1 spacecraft, scheduled for launch in June 1998. The development status and strategy for observing atmospheric aerosols are described.

  1. DEVELOPMENT AND FABRICATION OF A PROTOTYPE FIBROUS AEROSOL MONITOR (FAM)

    EPA Science Inventory

    This report describes a program whose objective was to develop, design, fabricate and laboratory-test two prototype instruments capable of real-time selective detection and measurement of airborne fibrous-shaped particles. The selective detection of the fibers is effected by sync...

  2. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 1: Principle of measurements and instrument evaluation

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Duverger, V.; Dupont, J.-C.; Mesmin, S.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-09-01

    The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, aerosol particles counters provide the size distribution in diameter range from few hundreds of nm to few tens of μm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter (OPC) named LOAC (Light Optical Aerosol Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the nature of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve accurately the size distribution and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) in several size classes. This topology is based on calibration charts obtained in the laboratory. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The topology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations. All these tests indicate that no bias is present in the LOAC measurements and in the corresponding data processing.

  3. Measurement of aerosol organic compounds during TexAQS 2006 using a novel collection/thermal-desorption PTR-ITMS instrument

    NASA Astrophysics Data System (ADS)

    Thornberry, T.; Murphy, D. M.; Thomson, D. S.; Welsh-Bon, D.; Warneke, C.; Bates, T. S.; Coffman, D.; Lerner, B.; Williams, E. J.

    2007-12-01

    Knowledge of the organic species present in atmospheric aerosols is needed in order to understand their effect on aerosol microphysical and optical properties, to resolve outstanding questions about important organic aerosol sources and formation mechanisms, and to elucidate the role of aerosols in the chemistry of the atmosphere through their interaction with gas-phase compounds. The measurement of aerosol organic compounds poses a significant experimental challenge due to the complexity and large number of organic species and the low concentration at which individual species are present. A new instrument that utilizes proton- transfer-reaction mass spectrometry (PTR-MS) to probe the organic composition of atmospheric aerosols has been developed to investigate semi-volatile and condensed-phase organic species in the atmosphere. Aerosols are collected by impaction and then thermally desorbed into a carrier gas that transports the organic analyte molecules into a drift tube where they are ionized by reaction with H3O+ ions. Analyte ions are detected using an ion trap mass spectrometer. The instrument was deployed for the first time during summer 2006 in the Texas Air Quality Study (TexAQS 2006) aboard NOAA R.V. Ronald H. Brown. Signals significantly above detection limit were observed at a number of masses during periods of elevated photochemical activity when aerosol loading increased in the 0.5-1 μm size range and aerosol mass spectrometer (AMS) measurements indicated increased organic mass. Different masses exhibited different temporal behaviors, indicating varying composition of the aerosol organic fraction even during periods when the AMS organic mass (OA) loading was relatively constant. Plumes of aerosol-phase pyridine were observed during sampling near the entrance to the Houston Ship Channel, indicating a relatively local source and rapid partitioning to the aerosol phase. These field results and results of laboratory instrument performance experiments

  4. Remote Sensing of Aerosol and their Radiative Properties from the MODIS Instrument on EOS-Terra Satellite: First Results and Evaluation

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Holben, Brent; Lau, William K.-M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct., the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse aerosol particles. The information is more precise over the ocean where we derive also the effective radius and scattering asymmetry parameter of the aerosol. New methods to derive the aerosol single scattering albedo are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. The AErosol RObotic NETwork of ground based radiometers is used for global validation of the satellite derived optical thickness, size parameters and single scattering albedo and measure additional aerosol parameters that cannot be derived from space.

  5. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  6. A detailed study of the 2010 fires in Russia by multiple satellite instruments: what can we learn from the UV Aerosol Indices?

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J.; Wagner, T.; Fromm, M. D.

    2010-12-01

    For almost a month in July and August 2010, an exceptionally high number of fires occurred across western Russia. Varying fire characteristics and intensity due to differences in fuel composition and meteorological conditions caused smoke plumes to vary in color, altitude and optical density. Peat bog fires around Moscow tended to produce low-lying, whitish smoke layers, whereas some severe forest fires were found to have caused so-called pyro-Cbs: thick, mostly dark smoke plumes on top of large convective clouds that reached as high as the stratosphere. In situations where an aerosol layer overlays a cloud, many remote sensing aerosol retrievals break down due to the brightness of the “surface”. The UV Aerosol Indices (UVAI) do not suffer from this drawback, and in fact are more sensitive to absorbing aerosols if the underlying surface is bright, therefore making them very suitable for our type of investigation. However, aerosol plumes are very complex and the UVAI are only semi-quantitative measures that are determined by aerosol extinction and absorption, but also by the altitude of the aerosol plume. We therefore chose to combine our UVAI measurements from the instruments SCIAMACHY, OMI, and GOME-2 with observations by other satellite instruments, such as MODIS, MISR, MERIS, and CALIOP. We also compared the measurements to radiative transfer model calculations of many different aerosol scenarios to draw conclusions about what specific aerosol characteristics cause the variation in pyro-Cb appearances.

  7. CALIPSO: Global Aerosol and Cloud Observations from Lidar and Passive Instruments

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Winker, D. M.; Pelon, J. R.; McCormick, M. P.

    2002-01-01

    CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Spaceborne Observations) is an approved satellite mission being developed through collaboration between NASA and the French space agency CNES. The mission is scheduled for launch in 2004 and will operate for 3 years as part of a five-satellite formation called the Aqua constellation. This constellation will provide a unique data set on aerosol and cloud optical and physical properties and aerosol-cloud interactions that will substantially increase our understanding of the climate system and the potential for climate change.

  8. Aerosol model development for environmental monitoring in the coastal atmosphere surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady A.; Matvienko, Gennady G.

    2007-06-01

    Extinction of radiation in the marine boundary layer is dominated by scattering and absorption due to atmospheric aerosol. It is known, that the extinction of optical radiation visible and near IR spectra in the marine surface layer is determined mainly by scattering and absorption atmospheric aerosol. It influences on a dependence of spectral transmission and extinction both natural, and artificial light that is of interest for a wide range of problems, in particular for radiating problems at studying laws of climate formation, and for lines of the applications connected to the forecast of a signal power in coastal conditions at an estimation of EO systems characteristics. This is important to optical retrievals from satellite, remote sensing at environmental monitoring, backscatter of light to space (including climate forcing), cloud properties etc. In unpolluted regions the greatest effects on near shore scattering extinction will be a result of sea-salt from breaking waves and variations in relative humidity. The role of breaking waves appears to be modulated by wind, tide, swell, wave spectra and coastal conditions. These influences will be superimposed upon aerosol generated by open ocean sea-salt aerosol that varies with wind speed. The focus of our study is the extinction and optical effects due to aerosol in a specific coastal region. This involves linking coastal physical properties to oceanic and meteorological parameters in order to develop predictive algorithms that describe 3-D aerosol structure and variability. The aerosol microphysical model of the marine and coastal atmosphere surface layer is considered. The model distinctive feature is parameterization of amplitude and width of the modes as functions of fetch and wind speed. In the paper the dN/dr behavior depending at change meteorological parameters, heights above sea level, fetch, wind speed and RH is show. On the basis of the developed model with usage of Mie theory for spheres the

  9. Development of Real-Time Coal Monitoring Instrument

    SciTech Connect

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  10. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  11. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosol

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the third year of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this one-year grant consisted in analysis and publication of field studies using a new in-situ capability for measuring aerosol 180 deg backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Analyzed data consisted of measurements made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with target in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator.

  12. Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin

    SciTech Connect

    Artaxo, P.; Gerab, F.; Yamasoe, M.A.; Martins, J.V.

    1994-11-01

    The Amazon Basin tropical rain forest is a key region to study processes that are changing the composition of the global atmosphere, including the large amount of fine mode aerosol particles emitted during biomass burning that might influence the global atmosphere. Three background monitoring stations, Alta Floresta, Cuiaba, and Serra do Navio, are operating continuously measuring aerosol composition. Fine (particle diameter less than 2.0 microns) and coarse (particle diameter greater than 2.0 microns and less than 10 microns) mode aerosol particles were collected using stacked filter units. Particle-induced X-ray emission was used to measure concentrations of up to 20 elements in the fine mode: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Soot carbon and gravimetric mass analysis were also performed. Absolute Principal Factor Analysis (APFA) has derived absolute elemental source profiles. APFA showed four aerosol particle components: soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, fine mode mass concentration, K, Cl), natural primary biogenic particles with gas-to-particle component (K, S, Ca, Mn, Zn), and marine aerosol (Cl). Biogenic and biomass burning aerosol particles dominate the fine mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and fine mode mass concentration (FPM). At the Alta Floresta and Cuiaba sites, during the dry season, a strong component of biomass burning is observed. Inhalable particulate matter (particle diameter less than 10 microns) mass concentration up to 700 micrograms/cu m was measured. Fine particle mass concentration alone can go as high as 400 micrograms/cu m for large regions.

  13. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  14. Development and Validation of a Parental Monitoring Instrument: Measuring How Parents Monitor Adolescents' Activities and Risk Behaviors

    ERIC Educational Resources Information Center

    Cottrell, Scott A.; Branstetter, Steven; Cottrell, Lesley; Harris, Carole V.; Rishel, Carrie; Stanton, Bonita F.

    2007-01-01

    The aim of this article is to describe the development and validation of the Parental Monitoring Instrument (PMI). The PMI was administered to a sample of 518 parent-adolescent (aged 12 to 17 years) dyads. Initial findings provide evidence of instrument reliability and validity. The exploratory factor analysis results suggested a seven-factor…

  15. The NOAA-NASA OMI/GOME-2 Near-Real-Time Monitoring System of Volcanic SO2 and Aerosol Clouds

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Schroeder, W.; Krueger, A. J.; Yang, K.; Carn, S. A.; Krotkov, N. A.; Guffanti, M.; Levelt, P.

    2009-12-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite and the Global Ozone Monitoring Experiment-2 (GOME-2) instrument on the Metop-A satellite allow measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 μm. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh volcanic eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. When detected in Near Real-Time (NRT) it can be used as aviation alerts to the Federal Aviation Administration (FAA) with reduced false alarm ratios and permit more robust detection and tracking of volcanic clouds. NRT observations of SO2 and volcanic ash using UV measurements (OMI and GOME-2) and well as IR measurements can be incorporated into data products compatible with Decision Support Tools (DSTs) in use at Volcanic Ash Advisory Centers (VAACs) in Washington and Anchorage, and the USGS Volcano Observatories. In this presentation we show the latest NASA and NOAA Office of Satellite Data Processing and Distribution (OSDPD) developments of an online NRT image and data product distribution system. The system generates eruption alerts, NRT global composite images and SO2, Aerosol Index and Cloud Reflectivity images for 28 volcano regions, as well as up to 15 days of digital data files in McIDAS, NetCDF, GeoTIFF and gif formats for the OMI and GOME-2 instruments. Products are infused into DSTs including the Volcanic Ash Coordination Tool (VACT), under development by the NOAA Forecast Systems Laboratory and the FAA’s Oceanic Weather Product Development Team (OWPDT), to monitor and track, drifting volcanic clouds and aerosol index.

  16. Report on monitoring and support instruments for solar physics research from Spacelab

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Quick Reaction and Special Purpose Facility Definition Team for Solar Physics Spacelab Payloads examined a variety of instruments to fulfill the following functions: (1) solar physics research appropriate to Spacelab, (2) correlative data for research in such fields as aeronomy, magnetospheric physics, ionospheric physics, meteorology and climatology, (3) target selection for activity alert monitoring and (4) pointing accuracy monitoring of Spacelab platforms. In this examination the team accepted a number of restrictions and qualifications: (1) the cost of such instruments must be low, so as not to adversely impact the development of new, research class instrumentation in the early Spacelab era; (2) the instruments should be of such a size that they each would occupy a small fraction of a pointing system, and (3) the weight and power consumption of the instruments should also be small. With these restrictions, the instruments chosen are: the visible light telescope and magnetograph, the extreme-ultraviolet telescope, and the solar irradiance monitor.

  17. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  18. ISSARS Aerosol Database : an Incorporation of Atmospheric Particles into a Universal Tool to Simulate Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Goetz, Michael B.

    2011-01-01

    The Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) entered its third and final year of development with an overall goal of providing a unified tool to simulate active and passive space borne atmospheric remote sensing instruments. These simulations focus on the atmosphere ranging from UV to microwaves. ISSARS handles all assumptions and uses various models on scattering and microphysics to fill the gaps left unspecified by the atmospheric models to create each instrument's measurements. This will help benefit mission design and reduce mission cost, create efficient implementation of multi-instrument/platform Observing System Simulation Experiments (OSSE), and improve existing models as well as new advanced models in development. In this effort, various aerosol particles are incorporated into the system, and a simulation of input wavelength and spectral refractive indices related to each spherical test particle(s) generate its scattering properties and phase functions. These atmospheric particles being integrated into the system comprise the ones observed by the Multi-angle Imaging SpectroRadiometer(MISR) and by the Multiangle SpectroPolarimetric Imager(MSPI). In addition, a complex scattering database generated by Prof. Ping Yang (Texas A&M) is also incorporated into this aerosol database. Future development with a radiative transfer code will generate a series of results that can be validated with results obtained by the MISR and MSPI instruments; nevertheless, test cases are simulated to determine the validity of various plugin libraries used to determine or gather the scattering properties of particles studied by MISR and MSPI, or within the Single-scattering properties of tri-axial ellipsoidal mineral dust particles database created by Prof. Ping Yang.

  19. Real-time seismic monitoring of instrumented hospital buildings

    USGS Publications Warehouse

    Kalkan, Erol; Fletcher, Jon Peter B.; Leith, William S.; McCarthy, William S.; Banga, Krishna

    2012-01-01

    In collaboration with the Department of Veterans Affairs (VA), the U.S. Geological Survey's National Strong Motion Project has recently installed sophisticated seismic monitoring systems to monitor the structural health of two hospital buildings at the Memphis VA Medical Center in Tennessee. The monitoring systems in the Bed Tower and Spinal Cord Injury buildings combine sensing technologies with an on-site computer to capture and analyze seismic performance of buildings in near-real time.

  20. Light scattering from sea-salt aerosols at Interagency Monitoring of Protected Visual Environments (IMPROVE) sites.

    PubMed

    Lowenthal, Douglas; Kumar, Naresh

    2006-05-01

    A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant. PMID:16739800

  1. Size-spectra of trace elements in urban aerosol particles by instrumental neutron activation analysis

    SciTech Connect

    Ondov, J.M.; Divita, F. Jr.; Suarez, A.

    1994-12-31

    Knowledge of composition and size of atmospheric aerosol particles is needed to elucidate their sources, atmospheric transformation processes, contributions to visibility reduction, and respiratory and environmental deposition. In a previous communication, we described size spectra and hygroscopic growth of arsenic, selenium, antimony, and zinc in College Park, Maryland, an urban, nonindustrial area located near Washington, D.C., wherein, concentrations of these elements are influenced largely by sulfate-containing aerosol transported from the Ohio River valley region, more than 200 km west of the area, and local coal utility plants and incinerators located 20 to 50 km from the sampling site. At College Park, mass median aerodynamic diameters (mmad) versus relative humidity (RH) data for these elements fell along different curves for samples influenced by local and distant aerosols; i.e., the curve for distant sources lay below the curve for local sources, at larger mmads for the same RH. In this paper we discuss size spectra, distribution parameters, and hygroscopic growth of aerosol particles bearing trace elements in aerosol collected in Camden, New Jersey, a heavily industrial area in which major sources, including an antimony roaster and municipal incinerator, lie in close proximity (i.e., 5 to 15 km) to the site.

  2. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-09-01

    Finding the number and best locations of fixed air quality monitoring stations at street level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Data sets of such urban parameters as land use, building morphology and street geometry in high-resolution grid cells in combination with direct measurements of airborne pollutants at high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self-Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. This proof of concept study showed that the selected urban parameters proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e., group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  3. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-03-01

    Finding the number and significant locations of fixed air quality monitoring stations at ground level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Datasets of urban parameters such as land use, building morphology and street geometry in high resolution grid cells in combination with direct measurements of airborne pollutants in high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. The urban parameters used in this case proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e. group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  4. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  5. Aerosol monitoring in the PBL over big cities using a mobile eye safe LIDAR

    NASA Astrophysics Data System (ADS)

    Sauvage, Laurent; Chazette, Patrick

    2005-10-01

    The Laboratory of Science of Climate and Environment (CEA/ CNRS) and LEOSPHERE Company have jointly developed an eye safe, rugged and unattended high resolution scanning lidar ("easy lidar", www.lidar.fr). This system has been used in the frame of the POVA program and has been used in a compact version during the LISAIR (LIdar to Survey the AIR) program in May 2005 in the Paris city, France. The mobile lidar has been used to follow aerosol particles in highways subject to heavy traffic. High spatial and temporal resolution data on the entire planetary boundary layer (1.5 m and 1s respectively) allowed to monitor for aerosol load variability on board a moving car and also to detect for local sources. We observed the doubling of the optical thickness in the morning when traffic is high in the city ring. We also have shown local effect of waste burning plants and train stations. This new type of eye safe lidar will allow to monitor continuously the entire area of a town and suburbs, in order to detect main sources of pollution (transport, traffic jams, industrial plants, natural dust), follow in real time the evolution of the PBL height and provide an estimation of the mass concentration of the aerosol in the PBL.

  6. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  7. Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Querol, X.

    2013-10-01

    The analysis of aerosol size distributions is a useful tool for understanding the sources and the processes influencing particle number concentrations (N) in urban areas. Hence, during the one month SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies, EU Marie Curie Action) in autumn 2010 in Barcelona (Spain), four SMPS (Scanning Mobility Particle Sizers) were simultaneously deployed at four monitoring sites: a road side (RSsite), an urban background site located in the city (UBsite), an urban background located in the nearby hills of the city (Torre Collserola, TCsite) and a regional background site located about fifty km from the Barcelona urban areas (RBsite). The spatial distribution of sites allows study of the aerosol temporal variability as well as the spatial distribution, progressively moving away from urban aerosol sources. In order to interpret the datasets collected, a k-means cluster analysis was performed on the combined SMPS datasets. This resulted in nine clusters describing all aerosol size distributions from the four sites. In summary there were three main categories (with three clusters in each category): "Traffic" (Traffic 1 "Tclus1" - 8%, Traffic 2 "Tclus2" - 13%, Traffic 3, "Tclus3" - 9%), "Background Pollution" (Urban Background 1 "UBclus1" - 21%, Regional Background 1, "RBclus1" - 15%, Regional Background 2, "RBclus2" - 18%) and "Special cases" (Nucleation "NUclus" - 5%, Regional Nitrate, "NITclus" - 6%, and Mix "MIXclus" - 5%). As expected, the frequency of traffic clusters (Tclus1-3) followed the order RSsite, UBsite, TCsite, and RBsite. These showed typical traffic modes mainly distributed at 20-40 nm. The urban background sites (UBsite and TCsite) reflected also as expected urban background number concentrations (average values, N = 2.4×104 cm-3 relative to 1.2×105 cm-3 seen at RSsite). The cluster describing the urban background pollution (UBclus1) could be used to monitor the sea breeze circulation towards the

  8. Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Curci, G.; Palmer, P. I.; Kurosu, T. P.; Chance, K.; Visconti, G.

    2010-12-01

    Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere stems from biogenic and human activities, and their estimation is difficult because of the many and not fully understood processes involved. In order to narrow down the uncertainty related to VOC emissions, which negatively reflects on our ability to simulate the atmospheric composition, we exploit satellite observations of formaldehyde (HCHO), an ubiquitous oxidation product of most VOCs, focusing on Europe. HCHO column observations from the Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a summer maximum and winter minimum. In summer, the oxidation of methane and other long-lived VOCs supply a slowly varying background HCHO column, while HCHO variability is dominated by most reactive VOC, primarily biogenic isoprene followed in importance by biogenic terpenes and anthropogenic VOCs. The chemistry-transport model CHIMERE qualitatively reproduces the temporal and spatial features of the observed HCHO column, but display regional biases which are attributed mainly to incorrect biogenic VOC emissions, calculated with the Model of Emissions of Gases and Aerosol from Nature (MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected through a Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or a-posteriori isoprene emissions are lower than "bottom-up" by 40% over the Balkans and by 20% over Southern Germany, and higher by 20% over Iberian Peninsula, Greece and Italy. We conclude that OMI satellite observations of HCHO can provide a quantitative "top-down" constraint on the European "bottom-up" VOC inventories.

  9. Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Curci, G.; Palmer, P. I.; Kurosu, T. P.; Chance, K.; Visconti, G.

    2010-08-01

    Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere stems from biogenic and human activities, and their estimation is difficult because of the many and not fully understood processes involved. In order to narrow down the uncertainty related to VOC emissions, which negatively reflects on our ability to simulate the atmospheric composition, we exploit satellite observations of formaldehyde (HCHO), an ubiquitous oxidation product of most VOCs, focusing on Europe. HCHO column observations from the Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a summer maximum and winter minimum. In summer, the oxidation of methane and other long-lived VOCs supply a slowly varying background HCHO column, while HCHO variability is dominated by most reactive VOC, primarily biogenic isoprene followed in importance by biogenic terpenes and anthropogenic VOCs. The chemistry-transport model CHIMERE qualitatively reproduces the temporal and spatial features of the observed HCHO column, but display regional biases which are attributed mainly to incorrect biogenic VOC emissions, calculated with the Model of Emissions of Gases and Aerosol from Nature (MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected through a Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or a-posteriori isoprene emissions are lower than "bottom-up" by 40% over the Balkans and by 20% over Southern Germany, and higher by 20% over Iberian Peninsula, Greece and Italy. The inversion is shown to be robust against assumptions on the a-priori and the inversion parameters. We conclude that OMI satellite observations of HCHO can provide a quantitative "top-down" constraint on the European "bottom-up" VOC inventories.

  10. Solar energy assessment in the Alpine area: satellite data and ground instruments integration for studying the radiative forcing of aerosols.

    NASA Astrophysics Data System (ADS)

    Castelli, M.; Petitta, M.; Emili, E.

    2012-04-01

    The primary objective of this work is to purpose an approach for estimating the effect of aerosols on surface incoming shortwave radiation (SIS) in the Alpine region, which is based on the integration of different instruments: we develop a GIS model, whose output is corrected by monthly atmospheric coefficients, and then we progressively add details by daily updated atmospheric information. The assessment of solar energy availability at the earth's surface over a specific geographic area is crucial for planning photovoltaic panels installation. When modeling SIS with GIS instruments or retrieving it from satellites measurements, we have to account for terrain shadowing and atmospheric extinction, both of which are difficult to describe in the Alpine area, because of the topographic complexity and the local atmospheric circulation influence on the atmospheric composition. While advanced methods were developed to carefully describe the effect of topography, the atmospheric attenuation was considered so far only through monthly turbidity values, and the question remains whether it be possible to develop a time-effective routine to model the atmospheric effect on SIS at daily scale. As a first step we produced a WebGIS for the town of Bressanone, Italy, showing a classification of the roofs of the buildings according to the yearly amount of global irradiance. Furthermore we provide the annual electricity production based on the efficiency of the most common PV technologies. At this stage clear sky irradiance was computed with a GIS based model, and afterwards monthly correction coefficients were applied to add real sky conditions to the merely geometrical computations, which were obtained from 20 years of measurement collected by the pyranometer in the closest meteorological station. As a second step we investigate the influence of aerosol optical properties on SIS by running the radiative transfer model libRadtran by using as input the aerosol model defined for the

  11. The new Mediterranean background monitoring station of Ersa, Cape Corsica: A long term Observatory component of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)

    NASA Astrophysics Data System (ADS)

    Dulac, Francois

    2013-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) is a French initiative supported by the MISTRALS program (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The major stake is an understanding of the future of the Mediterranean region in a context of strong regional anthropogenic and climatic pressures. The target of ChArMEx is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry. In order to fulfill these objectives, important efforts have been put in 2012 in order to implement the infrastructure and instrumentation for a fully equipped background monitoring station at Ersa, Cape Corsica, a key location at the crossroads of dusty southerly air masses and polluted outflows from the European continent. The observations at this station began in June 2012 (in the context of the EMEP / ACTRIS / PEGASOS / ChArMEx campaigns). A broad spectrum of aerosol properties is also measured at the station, from the chemical composition (off-line daily filter sampling in PM2.5/PM10, on-line Aerosol Chemical Speciation Monitor), ground optical properties (extinction/absorption/light scattering coeff. with 1-? CAPS PMex monitor, 7-? Aethalometer, 3-? Nephelometer), integrated and vertically resolved optical properties (4-? Cimel sunphotometer and LIDAR, respective), size distribution properties (N-AIS, SMPS, APS, and OPS instruments), mass (PM1/PM10 by TEOM/TEOM-FDMS), hygroscopicity (CCN), as well as total insoluble deposition. So far, real-time measurement of reactive gases (O3, CO, NO, NO2), and off-line VOC measurements (cylinders, cartridges) are also

  12. Lidar Monitoring of Clouds and Aerosols at the Facility for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    2000-01-01

    We report on findings from ongoing polarization lidar research at the University of Utah Facility for Atmospheric Remote Sensing (FARS). This facility was established in 1987, and the current total of lidar and radiometric measurements is approx. 2,900-h. Research at FARS has been applied to the climatological investigation of cirrus cloud properties for basic research and satellite measurement validation (currently in its 13th year), and studies of contrails, mixed phase clouds, and volcanic and Asian dust aerosols. Among the techniques utilized for monitoring cloud and aerosol properties are triple-wave length linear depolarization measurements, and high (1.5-m by 10-Hz) resolution scanning observations. The usefulness of extended time lidar studies for atmospheric and climate research is illustrated.

  13. Engineering Upgrades to the Radionuclide Aerosol Sampler/Analyzer for the CTBT International Monitoring System

    SciTech Connect

    Forrester, Joel B.; Carty, Fitz; Comes, Laura; Hayes, James C.; Miley, Harry S.; Morris, Scott J.; Ripplinger, Mike D.; Slaugh, Ryan W.; Van Davelaar, Peter

    2013-05-13

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory in the 1990’s and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The utility of such an automated system is the reduction of human intervention and the production of perfectly uniform results. However, maintainability and down time issues threaten this utility, even for systems with over 90% data availability. Engineering upgrades to the RASA are currently being pursued to address these issues, as well as Fukushima lessons learned. Current work includes a new automation control unit, and other potential improvements such as alternative detector cooling and sampling options are under review. This paper presents the current state of upgrades and improvements under investigation

  14. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  15. Monitoring Aerosol Optical Properties in the ABL, Using Lidar System and Sunphotometer in Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Pallotta, J.; Pawelko, E.; Otero, L.; Ristori, P.; D'Elia, R.; Gonzalez, F.; Dworniczak, J.; Vilar, O.; Quel, E.

    2009-03-01

    At the Lasers and Applications Research Center (CEILAP, CITEFA-CONICET, (34°33' S, 58°30' W), located in an industrial suburb of the metropolitan area (Villa Martelli, Buenos Aires, Argentina), operates a multiwavelength lidar, based on a Nd:Yag laser (Continuum Surelite III P-IV). This system emits in 1064, 532 and 355 nm simultaneously (10 Hz, 600 mJ @ 1064 nm) and allows the monitoring of the optical aerosols properties in the atmospheric boundary layer (ABL). On the same experimental site, an AERONET sunphotometer provides the AOT value. An analysis of boundary layer behaviour in some relevant days of March, from the years 2004 to 2006 is presented. On the days analyzed, no aerosols events and clouds were registered over the ABL. Evolutions of some characteristics of the ABL are presented, such as the height of the boundary layer, height of entrainment zone (EZ) and the entrainment flux ratio.

  16. Alternatives for Laboratory Measurement of Aerosol Samples from the International Monitoring System of the CTBT

    NASA Astrophysics Data System (ADS)

    Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.

    2013-12-01

    The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.

  17. USE OF PORTABLE INSTRUMENTATION FOR THE MONITORING OF FUGITIVE ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    The report gives results of evaluations and tests of currently available portable instrumentation used to monitor fugitive organic emissions generated by the transfer and storage of liquid wastes during the operation of hazardous waste incinerators. Relevant current methodologies...

  18. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A.; Raspet, R.; Slaton, W. V.; Hand, J. L.; Kreidenweis, S. M.; Collett, J. L.

    2003-01-01

    Ambient measurements are reported of aerosol light absorption from photoacoustic and filter-based instruments (aethalometer and a particle soot absorption photometer (PSAP)) to provide insight on the measurement science. Measurements were obtained during the Big Bend Regional Aerosol and Visibility Observational Study at the Big Bend National Park in South Texas. The aethalometer measurements of black carbon concentration at this site correlate reasonably well with photoacoustic measurements of aerosol light absorption, with a slope of 8.1 m2/g and a small offset. Light absorption at this site never exceeded 2.1 Mm-1 during the month of collocated measurements. Measurements were also obtained, as a function of controlled relative humidity between 40% and 90%, during the Photoacoustic IOP in 2000 at the Department of Energy Southern Great Plains Cloud and Radiation Testbed site (SGP). PSAP measurements of aerosol light absorption correlated very well with photoacoustic measurements, but the slope of the correlation indicated the PSAP values were larger by a factor of 1.61. The photoacoustic measurements of light absorption exhibited a systematic decrease when the RH increased beyond 70%. This apparent decrease in light absorption with RH may be due to the contribution of mass transfer to the photoacoustic signal. Model results for the limiting case of full water saturation are used to evaluate this hypothesis. A second PSAP measured the light absorption for the same humidified samples, and indicated very erratic response as the RH changed, suggesting caution when interpreting PSAP data under conditions of rapid relative humidity change.

  19. OPTICAL INSTRUMENT FOR IN-STACK MONITORING OF PARTICLE SIZE

    EPA Science Inventory

    A new light scattering instrument for in-situ measurements of particulates in the 0.2 to 10.0 micrometer diameter size range is described. Two modes of scattering are used, each with two wavelengths of light, to generate five size fractions by volume from a distribution of partic...

  20. Monitoring the scale factor of the PICARD SODISM instrument

    NASA Astrophysics Data System (ADS)

    Assus, P.; Irbah, A.; Bourget, P.; Corbard, T.; PICARD Team

    2008-06-01

    The SODISM Telescope of the PICARD Space mission will perform diameter measurements by directly imaging the Sun on a CCD camera. An internal calibration system allows us to follow scale factor variations induced by instrument deformations resulting from temperature fluctuations on orbit or from others causes. We present this calibration system in this paper as well as some simulations on how to correct observations.

  1. ASSESSMENT OF INSTRUMENTATION FOR MONITORING COAL FLOWRATE AND COMPOSITION

    EPA Science Inventory

    The report gives results of an assessment of instrumentation for the measurement of coal flowrate (either as a dry solid or in a coal/water slurry) and composition. Also investigated was the appropriateness of EPA/IERL-RTP involvement in the development or evaluation of such devi...

  2. DEVELOPMENT OF INSTRUMENTATION FOR MONITORING CARBON FIBER EMISSION

    EPA Science Inventory

    This document reports the design of an electrical instrument which utilizes a variable capacitance in one leg of an R-C feedback network to provide discriminatory information regarding the air stream particulate materials. Sufficient testing was performed on the breadboard to val...

  3. CALIPSO Observations of Volcanic Aerosol in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Pitts, Michael C.

    2008-01-01

    In the stratosphere, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) has observed the presence of aerosol plumes associated with the eruptions several volcanoes including Montserrat (May 2006), Chaiten (May 2008), and Kasatochi (August 2008). While the dense ash plumes from these eruptions dissipate relatively quickly, CALIPSO continued to detect an enhanced aerosol layer from the Montserrat eruption from the initial observations in June 2006 well into 2008. Solar occultation missions were uniquely capable of monitoring stratospheric aerosol. However, since the end of long-lived instruments like the Stratospheric Aerosol and Gas Experiment (SAGE II), there has been no clear space-based successor instrument. A number of active instruments, some employing new techniques, are being evaluated as candidate sources of stratospheric aerosol data. Herein, we examine suitability of the CALIPSO 532-nm aerosol backscatter coefficient measurements.

  4. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    SciTech Connect

    Polagye, B. L.; Copping, A. E.; Brown-Saracino, J.; Suryan, R.; Kramer, S.; Smith, C.

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  5. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  6. Monitoring biomass burning and aerosol loading and transport from a geostationary satellite perspective

    SciTech Connect

    Prins, E.M.; Menzel, W.P.

    1996-12-31

    The topic of this paper is the use of geostationary operational environmental satellites (GOES) to monitor trends in biomass burning and aerosol production and transport in South America and through the Western Hemisphere. The GOES Automated Biomass Burning Algorithm (ABBA) was developed to provide diurnal information concerning fires in South America; applications demonstrating the ability to document long-term trends in fire activity are described. Analyses of imagery collected by GOES-8 is described; six biomass burning seasons in South America revealed many examples of large-scale smoke transport extending over several million square kilometers. Four major transport regimes were identified. Case studies throughout South America, Canada, the United States, Mexico, Belize, and Guatemala have successfully demonstrated the improved capability of GOES-8 for fire and smoke monitoring in various ecosystems. Global geostationary fire monitoring will be possible with the launch of new satellites. 12 refs., 4 figs., 1 tab.

  7. Instrumentation of bridges for long-term performance monitoring

    NASA Astrophysics Data System (ADS)

    Feng, Maria Q.; Kim, Doo-Kie; Sheng, Li-Hong; Fiji, Leonard M.; Kim, Yoo J.

    2001-08-01

    As the state of the art in bridge design is advancing toward the performance-based design, it becomes increasingly important to monitor and evaluate the long-term structural performance of bridges, including strains in critical structural members, soil pressures on the abutment back walls and footings, accelerations on the decks and bents, etc. Such information is essential in developing new performance criteria for design. In this research, sensor systems for long-term structural performance monitoring have been installed on two new highway bridges on Orange County, California: the Jamboree Road Overcrossing and the West Street On-Ramp.

  8. The System of the Calibration for Visibility Measurement Instrument Under the Atmospheric Aerosol Simulation Environment

    NASA Astrophysics Data System (ADS)

    Shu, Zhifeng; Yang, ShaoChen; Xu, Wenjing

    2016-06-01

    Visibility is one of the most important parameters for meteorological observation and numerical weather prediction (NWP).It is also an important factor in everyday life, mainly for surface and air traffic especially in the Aeronautical Meteorology. The visibility decides the taking off and landing of aircraft. If the airport visibility is lower than requirement for aircraft taking off stipulated by International Civil Aviation Administration, then the aircraft must be parked at the airport. So the accurate measurement of visibility is very important. Nowadays, many devices can be measured the visibility or meteorological optical range (MOR) such as Scatterometers, Transmissometers and visibility lidar. But there is not effective way to verify the accuracy of these devices expect the artificial visual method. We have developed a visibility testing system that can be calibration and verification these devices. The system consists of laser transmitter, optical chopper, phase-locking amplifier, the moving optic receiving system, signal detection and data acquisition system, atmospheric aerosol simulation chamber. All of them were placed in the atmosphere aerosol simulation chamber with uniform aerosol concentration. The Continuous wave laser, wavelength 550nm, has been transmitted into the collimation system then the laser beam expanded into 40mm diameter for compressing the laser divergence angle before modulated by optical chopper. The expanding beam transmitting in the atmosphere aerosol cabin received by the optic receiving system moving in the 50m length precision guide with 100mm optical aperture. The data of laser signal has been acquired by phase-locking amplifier every 5 meter range. So the 10 data points can be detected in the 50 meters guide once. The slope of the fitting curve can be obtained by linear fitting these data using the least square method. The laser extinction coefficient was calculated from the slope using the Koschmieder formula, then it been

  9. A telemedicine instrument for home monitoring of patients with chronic respiratory diseases.

    PubMed

    Tura, Andrea; Santini, Paolo; Longo, Davide; Quareni, Luca

    2007-01-01

    We developed a telemedicine instrument for home monitoring of subjects with respiratory diseases. The instrument directly measures blood oxygen saturation and pulse rate, but the most relevant aspect is that it also acts as digital recorder of parameters coming from several external instruments (spirometer, capnometer, NIBP device, etc.). It also connects to all pulmonary ventilators. The instrument main board includes five slots, which are used to insert the measuring boards (saturation and ventilation boards) and the interface boards (connecting the external instruments). Depending on patient's needs, only the proper measuring/interface boards are mounted, thus allowing maximum flexibility and cost saving. The instrument has several I/O units, and especially an internal modem for direct connection to the Internet through TCP/IP protocol. The instrument was extensively tested, and preliminary trials were performed over fifteen patients with amyotrophic lateral sclerosis. PMID:17536160

  10. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 1: Principle of measurements and instrument evaluation

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-04-01

    instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The typology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, sea spray, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations.

  11. INSTRUMENTATION TO MONITOR LOCATION OF FISH CONTINUOUSLY IN EXPERIMENTAL CHANNELS

    EPA Science Inventory

    This study resulted in the development and construction of equipment to continuously monitor the position and temperature of up to 20 fish in a water channel 486 meters long, 3 meters wide, and 1 meter deep. The system uses miniature sonic transmitters (tags) operating in the 51 ...

  12. NOX/NOY MONITORING USING MODIFIED/UNMODIFIED COMMERCIAL INSTRUMENTATION

    EPA Science Inventory

    Three systems were used for monitoring oxides of nitrogen (NO, NO2, Noy, at the Cornelia Fort Airpark site in the 1999 Southern Oxidant Study near Nashville, TN during the months of June and July. Of the three systems, one was an unmodified ultraviolet differential optical abs...

  13. Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols

    PubMed Central

    Birch, M. Eileen; Ku, Bon-Ki; Evans, Douglas E.; Ruda-Eberenz, Toni A.

    2015-01-01

    Production of carbon nanofibers and nanotubes (CNFs/CNTs) and their composite products is increasing globally. High volume production may increase the exposure risks for workers who handle these materials. Though health effects data for CNFs/CNTs are limited, some studies raise serious health concerns. Given the uncertainty about their potential hazards, there is an immediate need for toxicity data and field studies to assess exposure to CNFs/CNTs. An extensive study was conducted at a facility that manufactures and processes CNFs. Filter, sorbent, cascade impactor, bulk, and microscopy samples, combined with direct-reading instruments, provided complementary information on air contaminants. Samples were analyzed for organic carbon (OC) and elemental carbon (EC), metals, and polycyclic aromatic hydrocarbons (PAHs), with EC as a measure of CNFs. Transmission electron microscopy with energy-dispersive X-ray spectroscopy also was applied. Fine/ultrafine iron-rich soot, PAHs, and carbon monoxide were production byproducts. Direct-reading instrument results were reported previously [Evans DE et al. (Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 2010;54:514–31.)] Results for time-integrated samples are reported as companion papers in this Issue. OC and EC, metals, and microscopy results are reported here, in Part I, while results for PAHs are reported in Part II [Birch ME. (Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part II: Polycyclic Aromatic Hydrocarbons. Ann. Occup. Hyg 2011; 55: 1037–47.)]. Respirable EC area concentrations inside the facility were about 6–68 times higher than outdoors, while personal breathing zone samples were up to 170 times higher. PMID:21965464

  14. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) through (b)(6) of this section. (1) Monitoring method. Monitoring shall comply with Method 21 of 40 CFR... 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  15. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) through (b)(6) of this section. (1) Monitoring method. Monitoring shall comply with Method 21 of 40 CFR... 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  16. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a...) through (b)(6) of this section. (1) Monitoring method. Monitoring shall comply with Method 21 of 40 CFR... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  17. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a...) through (b)(6) of this section. (1) Monitoring method. Monitoring shall comply with Method 21 of 40 CFR... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  18. A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deirmendjian, D.

    1980-01-01

    A critical survey of the literature on the use of light-scattering mechanisms in the remote monitoring of atmospheric aerosols, their geographical and spatial distribution, and temporal variations was undertaken to aid in the choice of future operational systems, both ground based and air or space borne. An evaluation, mainly qualitative and subjective, of various techniques and systems is carried out. No single system is found to be adequate for operational purposes. A combination of earth surface and space-borne systems based mainly on passive techniques involving solar radiation with active (lidar) systems to provide auxiliary or backup information is tentatively recommended.

  19. Multiwavelength lidar node development and simulation for a regional tropospheric aerosol monitoring network

    NASA Astrophysics Data System (ADS)

    Pawelko, E. E.; Ristori, P. R.; Otero, L. A.; Pallotta, J. V.; Quel, E. J.

    2011-01-01

    This work studies multiwavelength lidar node operation requirements to operate in a regional aerosol monitoring network. Some of the parameters taken into account are simplicity and robustness of the system in continuous and remote operation conditions. Sub-system modularity and accessibility is also contemplated. A numerical simulation is performed on a synthetic atmospheric signal to analyze the behaviour of this system in a) the visible (532 nm) and infrared (1064 nm) spectral regions; b) the main atmospheric compound Raman spectral region (nitrogen, oxygen water vapor). Adding depolarization channels in the 532 nm spectral region is also contemplated.

  20. Preliminary results of aerosols' optical properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A.-C.; Depiesse, C.; Gillotay, D.; Kochenova, S.; Montmessin, F.

    2011-10-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their phase function, single scattering albedo and opacity. We will show that such information can be accessed by using EPF observations.

  1. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning. PMID:26942452

  2. MAUVE/SWIPE: an imaging instrument concept with multi-angular, -spectral, and -polarized capability for remote sensing of aerosols, ocean color, clouds, and vegetation from space

    NASA Astrophysics Data System (ADS)

    Frouin, Robert; Deschamps, Pierre-Yves; Rothschild, Richard; Stephan, Edward; Leblanc, Philippe; Duttweiler, Fred; Ghaemi, Tony; Riedi, Jérôme

    2006-12-01

    The Monitoring Aerosols in the Ultraviolet Experiment (MAUVE) and the Short-Wave Infrared Polarimeter Experiment (SWIPE) instruments have been designed to collect, from a typical sun-synchronous polar orbit at 800 km altitude, global observations of the spectral, polarized, and directional radiance reflected by the earth-atmosphere system for a wide range of applications. Based on the heritage of the POLDER radiometer, the MAUVE/SWIPE instrument concept combines the merits of TOMS for observing in the ultra-violet, MISR for wide field-of-view range, MODIS, for multi-spectral aspects in the visible and near infrared, and the POLDER instrument for polarization. The instruments are camera systems with 2-dimensional detector arrays, allowing a 120-degree field-of-view with adequate ground resolution (i.e., 0.4 or 0.8 km at nadir) from satellite altitude. Multi-angle viewing is achieved by the along-track migration at spacecraft velocity of the 2-dimensional field-of-view. Between the cameras' optical assembly and detector array are two filter wheels, one carrying spectral filters, the other polarizing filters, allowing measurements of the first three Stokes parameters, I. Q, and V, of the incident radiation in 16 spectral bands optimally placed in the interval 350-2200 nm. The spectral range is 350-1050 nm for the MAUVE instrument and 1050-2200 nm for the SWIPE instrument. The radiometric requirements are defined to fully exploit the multi-angular, multi-spectral, and multi-polarized capability of the instruments. These include a wide dynamic range, a signal-to-noise ratio above 500 in all channels at maximum radiance level, i.e., when viewing a surface target of albedo equal to 1, and a noise-equivalent-differential reflectance better than 0.0005 at low signal level for a sun at zenith. To achieve daily global coverage, a pair of MAUVE and SWIPE instruments would be carried by each of two mini-satellites placed on interlaced orbits. The equator crossing time of the

  3. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument

    SciTech Connect

    Ermold, B; Flynn, CJ; Barnard, J

    2013-11-27

    The Shortwave Array Spectroradiometer – Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures the direct and diffuse solar irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) – an instrument that has been in the ARM suite of instruments for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm width from 415 to 940 nm. The SAS-He, in contrast, incorporates two fiber-coupled grating spectrometers: a Si CCD spectrometer with over 2000 pixels covering the range from 325-1040 nm with ~ 2.5 nm resolution ,and an InGaAs array spectrometer with 256 pixels covering the wavelength range from 960-1700 nm with ~ 6 nm resolution.

  4. Physical and performance characteristics of instruments selected for global change monitoring

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.

  5. Power plant performance monitoring and improvement. Volume 3. Power plant performance instrumentation systems

    SciTech Connect

    Crim, H.G.; Westcott, J.C.; de Mello, R.W.; Brandon, R.E.; Parkinson, D.W.; Czuba, J.S.

    1986-02-01

    PEPCO's Morgantown Unit 2 and the PJM system control center are serving as the test facilities for this project. This first phase of the project utilizes currently (or soon to be) available instrumentation for monitoring and analyzing plant and system performance on a continuous basis. The overall approach is to demonstrate in one facility all sensors, monitoring devices, and necessary computer hardware and software for on-line performance monitoring and dispatch purposes. Significant developments include turbine packing leakage measurement, condenser back-pressure measurement, power cycle testing, and studies of the application of advanced instrumentation to system dispatch.

  6. The atmospheric monitoring system of the JEM-EUSO instrument

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The JEM-EUSO telescope will detect Ultra-High Energy Cosmic Rays (UHECRs) from space, detecting the UV Fluorescence Light produced by Extensive Air Showers (EAS) induced by the interaction of the cosmic rays with the earth's atmosphere. The capability to reconstruct the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring (AM) system of JEM-EUSO will host a LIDAR, operating in the UV band, and an Infrared camera to monitor the cloud cover in the JEM-EUSO Field of View, in order to be sensitive to clouds with an optical depth τ ≥ 0.15 and to measure the cloud top altitude with an accuracy of 500 m and an altitude resolution of 500 m.

  7. Requirements for developing a regional monitoring capacity for aerosols in Europe within EMEP.

    PubMed

    Kahnert, Michael; Lazaridis, Mihalis; Tsyro, Svetlana; Torseth, Kjetil

    2004-07-01

    The European Monitoring and Evaluation Programme (EMEP) has been established to provide information to Parties to the Convention on Long Range Transboundary Air Pollution on deposition and concentration of air pollutants, as well as on the quantity and significance of long-range transmission of pollutants and transboundary fluxes. To achieve its objectives with the required scientific credibility and technical underpinning, a close integration of the programme's main elements is performed. These elements are emission inventories, chemical transport modelling, and the monitoring of atmospheric chemistry and deposition fluxes, which further are integrated towards abatement policy development. A critical element is the air pollution monitoring that is performed across Europe with a focus not only on health effect aspects and compliance monitoring, but also on process studies and source receptor relationships. Without a strong observational basis a predictive modelling capacity cannot be developed and validated. Thus the modelling success strongly depends on the quality and quantity of available observations. Particulate matter (PM) is a relatively recent addition to the EMEP monitoring programme, and the network for PM mass observations is still evolving. This article presents the current status of EMEP aerosol observations, followed by a critical evaluation in view of EMEP's main objectives and its model development requirements. Specific recommendations are given for improving the PM monitoring programme within EMEP. PMID:15237297

  8. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    NASA Astrophysics Data System (ADS)

    Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique

    2011-07-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak™ 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al. [2]. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  9. Estimating ground-level PM2.5 in Eastern China using aerosol optical depth determined from the GOCI Satellite Instrument

    NASA Astrophysics Data System (ADS)

    Xu, J.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-06-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in East China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean Geostationary Ocean Color Imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5/AOD ratio exhibits high consistency with ground-based measurements (MFB = -0.52-8.0 %). We evaluate the satellite-derived PM2.5 vs. the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in-situ observations in both annual averages (r = 0.81, N = 494) and monthly averages (MFB = 13.1 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical speciation of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating are responsible for an increase in the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over East China for 2013 is 53.8 μg m-3, threatening the health and life expectancy of its 600 million residents.

  10. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument

    NASA Astrophysics Data System (ADS)

    Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-11-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.

  11. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  12. Scintigraphic monitoring of mucociliary tracheo-bronchial clearance of technetium-99m macroaggregated albumin aerosol

    SciTech Connect

    Zwas, S.T.; Katz, I.; Belfer, B.; Baum, G.L.; Aharonson, E.

    1987-02-01

    A simple method for in vivo monitoring mucociliary tracheo-bronchial clearance is described. Eighteen healthy subjects and 13 patients with various chronic lung diseases were studied by this method. The principle of using an aerosol administration system similar to the system used for routine ventilation lung studies is stressed. Proximal large airway deposition of the radioaerosol was obtained by using relatively large particles (average diameter 2 microM) of (99mTc)MAA aerosol. Monitoring was performed by visual inspection of the tracheo-bronchial cinescintigraphic ascendence of the accumulated radioactive boli and by assessing their rate of clearance via automated computer analysis of the time-activity curves, following the movement of each bolus. The normal mean +/- s.d. clearance rate thus obtained was 4.7 +/- 1.3 mm/min. This rate appears to be more precise as compared with the range of results obtained by other radioisotopic methods. Significantly faster rates, mean 8.2 +/- 1.4 mm/min (p less than 0.001) were obtained in bronchiectatic patients while slower rates (2.8 mm/min) were seen in a patient with ciliary dyskinesia.

  13. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry.

    PubMed

    Bohne, J E; Cohen, B S

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension. PMID:3976498

  14. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry

    SciTech Connect

    Bohne, J.E. Jr.; Cohen, B.S.

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension.

  15. Electrical aerosol spectrometer of Tartu University

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Mirme, A.; Tamm, E.

    The electrical aerosol spectrometer (EAS) of the parallel measuring principle at Tartu University is an efficient instrument for rapid measurement of the unstable size spectrum of aerosol particles. The measuring range from 10 nm to 10 μm is achieved by simultaneously using a pair of differential mobility analyzers with two different particle chargers. The particle spectrum is calculated and measurement errors are estimated in real time by using a least-squares method. Experimental calibration ensures reliability of measurement. The instrument is well suited for continuous monitoring of atmospheric aerosol.

  16. Field test of a new instrument to measure UV/Vis (300-700 nm) ambient aerosol extinction spectra in Colorado during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Dibb, J. E.; Greenslade, M. E.; Martin, R.; Scheuer, E. M.; Shook, M.; Thornhill, K. L., II; Troop, D.; Winstead, E.; Ziemba, L. D.

    2014-12-01

    An optical instrument has been developed to investigate aerosol extinction spectra in the ambient atmosphere. Based on a White-type cell design and using a differential optical approach, aerosol extinction spectra over the 300-700 nm ultraviolet and visible (UV/Vis) wavelength range are obtained. Laboratory tests conducted at NASA Langley Research Center (NASA LaRC) in March 2014 showed good agreement with Cavity Attenuated Phase Shift (CAPS PMex, Aerodyne Research) extinction measurements (at 450, 530, and 630 nm) for a variety of aerosols, e.g., scatterers such as polystyrene latex spheres and ammonium sulfate; absorbers such as dust (including pigmented minerals), smoke (generated in a miniCAST burning propane) and laboratory smoke analogs (e.g., fullerene soot and aquadag). The instrument was field tested in Colorado in July and August 2014 aboard the NASA mobile laboratory at various ground sites during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. A description of the instrument, results from the laboratory tests, and summer field data will be presented. The instrument provides a new tool for probing in situ aerosol optical properties that may help inform remote sensing approaches well into the UV range.

  17. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  18. The Use of MODIS Instrument on the EOS-Terra Satellite to Assess the Impact of Aerosol on Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: 1) From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. 2) Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. 3) Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  19. 47 CFR 73.3549 - Requests for extension of time to operate without required monitors, indicating instruments, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... without required monitors, indicating instruments, and EAS encoders and decoders. 73.3549 Section 73.3549... required monitors, indicating instruments, and EAS encoders and decoders. Requests for extension of... decoders for monitoring and generating the EAS codes and Attention Signal should be made to the FCC...

  20. 47 CFR 73.3549 - Requests for extension of time to operate without required monitors, indicating instruments, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... without required monitors, indicating instruments, and EAS encoders and decoders. 73.3549 Section 73.3549... required monitors, indicating instruments, and EAS encoders and decoders. Requests for extension of... decoders for monitoring and generating the EAS codes and Attention Signal should be made to the FCC...

  1. 47 CFR 73.3549 - Requests for extension of time to operate without required monitors, indicating instruments, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... without required monitors, indicating instruments, and EAS encoders and decoders. 73.3549 Section 73.3549... required monitors, indicating instruments, and EAS encoders and decoders. Requests for extension of... decoders for monitoring and generating the EAS codes and Attention Signal should be made to the FCC...

  2. 47 CFR 73.3549 - Requests for extension of time to operate without required monitors, indicating instruments, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... without required monitors, indicating instruments, and EAS encoders and decoders. 73.3549 Section 73.3549... required monitors, indicating instruments, and EAS encoders and decoders. Requests for extension of... decoders for monitoring and generating the EAS codes and Attention Signal should be made to the FCC...

  3. 47 CFR 73.3549 - Requests for extension of time to operate without required monitors, indicating instruments, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... without required monitors, indicating instruments, and EAS encoders and decoders. 73.3549 Section 73.3549... required monitors, indicating instruments, and EAS encoders and decoders. Requests for extension of... decoders for monitoring and generating the EAS codes and Attention Signal should be made to the FCC...

  4. Development of a Distributed In Situ Instrument for Snowpack Monitoring

    NASA Astrophysics Data System (ADS)

    Skalka, C.; Frolik, J.; Walker, M. J.; Moeser, C. D.

    2009-12-01

    Wireless sensor networks (WSNs) are formed by micro-stations, each of which can be deployed independently to characterize spatially distributed variables, such as snow water equivalent (SWE). Snowcloud is a novel WSN-based system featuring application specific technologies specialized for studying variations in snowpack in harsh alpine environments. The Snowcloud WSN system makes use of low-cost, very portable hardware architectures. Unlike fixed based data acquisition systems, Snowcloud can be easily repositioned to gather intensive information about specific locations, and the low cost allows more data points to be monitored. Power consumption in Snowcloud is regulated by a network software protocol that optimizes both radio and sensor actuation, extending operating life. Snowcloud also exploits a multi-tiered architecture to provide data reliability despite traditional volatility of WSN nodes. This includes in-network data replication, and an on-site "smart" network gateway allowing remote data retrieval over cell- or radio-modem while buffering data on local massive storage in case of modem failure. Snowcloud complements information about snowpack depth and SWE currently collected from fixed-base systems, such as the 750 SNOTEL sites that form the primary network for water supply forecasting in the western United States, and data collected manually from snow courses. Snowcloud is particularly useful for temporary seasonal deployment in steep alpine environments or areas with landcover (such as forested areas) that inhibits acquisition of snowpack information by fixed-base stations, manual surveys and satellites. The highly portable framework of Snowcloud creates an ideal utility for augmenting manual measurements in areas that have established snow courses and in areas that are excessively difficult or dangerous to measure manually. Snowcloud is also useful for enhancing SWE approximations at basin scales. SWE is highly variable spatially and temporally and

  5. Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Querol, X.

    2014-03-01

    The analysis of aerosol size distributions is a useful tool for understanding the sources and the processes influencing particle number concentrations (N) in urban areas. Hence, during the one-month SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies, EU Marie Curie Action) in autumn 2010 in Barcelona (Spain), four SMPSs (Scanning Mobility Particle Sizer) were simultaneously deployed at four monitoring sites: a road side (RSsite), an urban background site located in the city (UBsite), an urban background site located in the nearby hills of the city (Torre Collserola, TCsite) and a regional background site located about 50 km from the Barcelona urban areas (RBsite). The spatial distribution of sites allows study of the aerosol temporal variability as well as the spatial distribution, progressively moving away from urban aerosol sources. In order to interpret the data sets collected, a k-means cluster analysis was performed on the combined SMPS data sets. This resulted in nine clusters describing all aerosol size distributions from the four sites. In summary there were three main categories (with three clusters in each category): "Traffic" (Traffic 1, "Tclus_1" - 8%; Traffic 2, "Tclus_2" - 13%; and Traffic 3, "Tclus_3" - 9%) "Background Pollution" (Urban Background 1, "UBclus_1" - 21%; Regional Background 1, "RBclus_1" - 15%; and Regional Background 2, "RBclus_2" - 18%) and "Special Cases" (Nucleation, "NUclus" - 5%; Regional Nitrate, "NITclus" - 6%; and Mix, "MIXclus" - 5%). As expected, the frequency of traffic clusters (Tclus_1-3) followed the order RSsite, UBsite, TCsite, and RBsite. These showed typical traffic modes mainly distributed at 20-40 nm. The urban background sites (UBsite and TCsite) reflected also as expected urban background number concentrations (average values, N = 1.0 × 104 cm-3 and N = 5.5 × 103 cm-3, respectively, relative to 1.3 × 104 cm-3 seen at RSsite). The cluster describing the urban background pollution (UBclus_1

  6. Diode laser based photoacoustic instrument for ammonia concentration and flux monitoring

    NASA Astrophysics Data System (ADS)

    Pogány, A.; Mohácsi, Á.; Bozóki, Z.; Weidinger, T.; Horváth, L.; Szabó, G.

    2009-04-01

    A diode laser based near infrared (1532 nm) photoacoustic ammonia monitoring instrument was combined with a preconcentration unit in order to reach sub-ppb detection limit with a compact, automatic measuring instrument. The system has no measurable cross-sensitivity to common atmospheric gases, most importantly to water vapor and carbon dioxide. The minimum detectable amount of ammonia is 2.9 ng, which means a minimum detectable concentration of 0.5 ppb with a 30-minute measurement time. The instrument was calibrated with the widely accepted, wet-chemical AMANDA instrument, and was tested in several inter-comparison campaigns with various instruments. Results of the inter-comparison campaigns show that the instrument is highly reliable even under harsh field conditions and accurate enough for environmental ammonia concentration monitoring. The instrument can be operated with three sampling inlets and thus can be used for ammonia flux measurements with the gradient method. The instrument was successfully tested in a flux measurement campaign on an agricultural field near a cattle farm, the purpose of which was to quantify ammonia load to the field originating from the cattle farm, taking advantage of the wide dynamic range of the instrument. In a second campaign, long term flux measurements were carried out for several months above semi-natural grassland, where the stability of the instrument was tested. In this campaign, ammonia emission was observed during the day (with a typical maximum of about 220 μgN/m2ṡh) and deposition during the night (-10 μgN/m2ṡh on average), and the measured flux values were within the theoretically estimated range.

  7. Software and instrumentation to monitor the performance of natural gas pipeline turbine systems

    SciTech Connect

    Levine, P.; Patanjo, D.; Lam, W.P.

    1987-01-01

    Software for monitoring and evaluating the performance of gas turbines is being developed under the auspices of Gas Research Institute (GRI). This paper describes the PEGASUS software and monitoring system. PEGASUS is an acronym for Performance Evaluation of GAS Users Systems. Field test results, on multi-shaft turbines used in the gas pipeline industry, have demonstrated the potential of the software. The software and instrumentation, can help identify maintenance and upgrade actions to improve performance.

  8. Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011.

    PubMed

    Kanai, Yutaka

    2012-09-01

    Artificial radionuclides were released into the atmosphere by the Fukushima Dai-ichi Nuclear Power Plant incident after a strong earthquake on 11 March 2011. Aerosol monitoring at the Geological Survey of Japan, Tsukuba, was started 20 d after the incident. Radionuclides such as (99)Mo/(99m)Tc, (132)Te/(132)I, (129 m)Te/(129)Te, (131)I, (137)Cs, (136)Cs, (134)Cs, (140)Ba/(140)La, (110 m)Ag, and (95)Nb were observed and, with the exception of (137)Cs and (134)Cs, these radionuclides decreased to below the limit of detection in the middle of June. The activity ratio of atmospheric (134)Cs/(137)Cs in aerosols decreased over time almost following physical decays. Therefore, the (134)Cs/(137)Cs activity ratio in the averaged air mass in this study could be regarded as homogeneous although those of several reactors in the Nuclear Power Plant were not ascertained. A further research on the released (137)Cs and (134)Cs would be necessary for the sedimentology of lake sediment. PMID:22071363

  9. Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Formenti, Paolo

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution or aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18'N, 16 deg 30'W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and in analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO. and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 + 0.007 per sr. Comparisons of the MPL data with data from other co-located instruments showed good agreement during the dust episode.

  10. Ground-Based Lidar Measurements of Aerosols During ACE-2: Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18 min N, 16 deg 30 min W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and an analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO, and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 +/- 0.007 sr(exp -1). Comparisons of the MPL data with data from other collocated instruments showed good agreement during the dust episode.

  11. Evaluation of the performance of the N95-companion: effects of filter penetration and comparison with other aerosol instruments.

    PubMed

    Rengasamy, Samy; Eimer, Benjamin C; Shaffer, Ronald E

    2012-01-01

    Fit factor is the ratio of the particle concentration outside (C(out)) to the inside (C(in)) of the respirator and assumes that filter penetration is negligible. For Class-95 respirators, concerns were raised that filter penetration could bias fit test measurements. The TSI N95-Companion was designed to overcome this limitation by measuring only 40-60 nm size particles. Recent research has shown that particles in this size range are the most penetrating for respirators containing electrostic filter media. The goal of this study was to better understand the performance of the N95-Companion by assessing the impact of filter penetration and by comparing C(out)/C(in) ratios measured by other aerosol instruments (nano-Differential Mobility Analyzer/Ultrafine Condensation Particle Counter (nano-DMA/UCPC) and the TSI PortaCount Plus) using N95 filtering facepiece respirators sealed to a manikin and with intentionally created leaks. Results confirmed that 40-60 nm-diameter size room air particles were most penetrating for the respirators tested. A nonlinear relationship was found between the N95-Companion-measured C(out)/C(in) ratios and the other instruments at the sealed condition and at the small leak sizes because the N95-Companion measures only charged particles that are preferentially captured by the electrostic filter media, while the other instrument configurations also measure uncharged particles, which are captured less efficiently. The C(out)/C(in) ratios from the N95-Companion for experiments conducted under sealed condition suggest that filter penetration of negatively charged 40-60 nm size particles was less than 0.05%. Thus, the N95-Companion measured C(out)/C(in) ratios are due primarily to particle penetration through leakage, not through filter media, while the C(out)/C(in) ratios for the PortaCount, nano-DMA/UCPC, and UCPC result from a combination of face seal leakage and filter penetration. PMID:22642759

  12. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Instrument and sensory monitoring for leaks. 63.1004 Section 63.1004 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards...

  13. 40 CFR 63.1023 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Instrument and sensory monitoring for leaks. 63.1023 Section 63.1023 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards...

  14. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  15. Improved instrumentation for monitoring the diurnal and seasonal cycles in the dielectric properties of forest canopies

    NASA Technical Reports Server (NTRS)

    Guerra, Abel G.; Mcdonald, Kyle C.; Way, Jobea

    1992-01-01

    The design and implementation of a dielectric measurement system that facilitates the automated and continuous in situ monitoring of the dielectric properties of several canopy constituents is presented. This system utilizes the same coaxial line reflection coefficient measurement technique as the portable dielectric probe (PDP) while incorporating several features that facilitate the automated monitoring of canopy dielectric properties. The new system is capable of continuously monitoring the dielectric properties of the canopy constituents in a near-simultaneous fashion. The implementation of a data logger as a user interface has increased the number of measurements that the instrument is able to store in memory while significantly improving system reliability.

  16. An Overview of Striking Scientific Applications of Nitrogen Dioxide Retrievals from the Ozone Monitoring Instrument Between 2004 and 2014

    NASA Astrophysics Data System (ADS)

    Boersma, K. F.

    2014-12-01

    Nitrogen oxides are involved in many atmospheric processes relevant to air pollution, climate change, and environmental stress. Gaseous nitrogen oxides are toxic, regulated by regional authorities and the WHO, and their emissions and chemistry are important for the formation of ozone and aerosols. Nitrogen oxides are thought to act as a net climate cooler, mostly via enhancing the oxidative capacity of the global troposphere resulting in CH4 lifetime reductions, and via the formation of light-scattering particles. In this paper I will discuss how tropospheric NO2 column retrievals from the Ozone Monitoring Instrument on board EOS-Aura have pushed the envelope in various scientific applications over the last decade. A categorization of these applications shows that OMI NO2 data have been used for (1) high-resolution monitoring of NOx emissions, (2) monitoring trends in NO2 air pollution levels, (3) evaluating mid-day NOx chemistry, (4) evaluating secondary pollutant formation, (5) estimating surface NO2 concentrations, (6) improving forecasting skills of air quality and chemistry transport models, (7) estimating nitrogen deposition to ecosystems, and (8) outreach activities to the general public. I will show some intriguing examples of the above applications, and pay close attention to the steps necessary to arrive at these successful applications. These steps include advanced filtering of the data for e.g. wind direction or speed, spatial pattern recognition to isolate specific emission categories, and more generally improving the description of NOx emission categories and chemistry in models at spatial and temporal scales relevant to OMI and upcoming TROPOMI and geostationary sensors.

  17. New in-line, on-line instrument for monitoring of particulates in flue gas

    SciTech Connect

    Jonas, O.; Mathur, R.

    1998-07-01

    A new non-optical instrument based on particle impact principles, which does not require sampling of flue gas, is described, and results of monitoring in a coal-fired utility unit using electrostatic precipitators and in an industrial hazardous waste incinerator are presented. The instrument is capable of detecting submicron particles and gives the total particle mass and number of particles per second, and particle size or mass distributions. The detecting probes can be traversed or a multiple probe arrangement can be used to determine the particle flow profiles across the duct. The instrument provides accurate monitoring of particle flow and its spatial variations and requires little maintenance. The particle removal efficiency can be measured by simultaneous monitoring of particle flows before and after precipitators or bag filters. There is an indication that the particle monitoring methods which require sample withdrawal, including EPA Method 5, are not suitable for monitoring micron sizes because of the particle attachment to the sampling apparatus and tubing.

  18. On-road black carbon instrument intercomparison and aerosol characteristics by driving environment

    NASA Astrophysics Data System (ADS)

    Holder, Amara L.; Hagler, Gayle S. W.; Yelverton, Tiffany L. B.; Hays, Michael D.

    2014-05-01

    Large spatial variations of black carbon (BC) concentrations in the on-road and near-road environments necessitate measurements with high spatial resolution to assess exposure accurately. A series of measurements was made comparing the performance of several different BC instruments (Single Particle Soot Photometer, Photo-Acoustic Soot Spectrometer, and Aethalometer) for high time resolution mobile measurements, capable of mapping spatial gradients. All instruments were highly correlated at high time resolution (r2 = 0.80-0.89 at a 2-s resolution), however the slope ranged from 0.52 to 1.03, with the Single Particle Soot Photometer (SP2) consistently reporting the lowest BC concentrations. BC and ultrafine particle (UFP) concentrations were two-fold higher on the highway compared to surrounding roads with lower traffic counts. The BC size distribution had a mass median diameter of approximately 120 nm, which was smaller and less coated than aged urban BC. Mean UFP and BC concentrations were 2 and 1.4 times greater, respectively, during free flowing traffic on the highway compared with times when there was stop-and-go congestion, providing evidence that transit time is not a good predictor of BC or UFP exposure.

  19. Instrumentation for controlling and monitoring environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Advanced Instrumentation concepts for improving performance of manned spacecraft Environmental Control and Life Support Systems (EC/LSS) have been developed at Life Systems, Inc. The difference in specific EC/LSS instrumentation requirements and hardware during the transition from exploratory development to flight production stages are discussed. Details of prior control and monitor instrumentation designs are reviewed and an advanced design presented. The latter features a minicomputer-based approach having the flexibility to meet process hardware test programs and the capability to be refined to include the control dynamics and fault diagnostics needed in future flight systems where long duration, reliable operation requires in-flight hardware maintenance. The emphasis is on lower EC/LSS hardware life cycle costs by simplicity in instrumentation and using it to save crew time during flight operation.

  20. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  1. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  2. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Aben, I.; Tol, P.; Krijger, J. M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J.

    2015-03-01

    Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675-775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning.

  3. Retrieval and monitoring of aerosol optical thickness over an urban area by spaceborne and ground-based remote sensing.

    PubMed

    Léon, J F; Chazette, P; Dulac, F

    1999-11-20

    We used an instrumental synergy of both ground-based (sunphotometer) and spaceborne [POLDER (polarization and directionality of the Earth's reflectances) and Meteosat] passive remote-sensing devices to determine the aerosol optical thickness over the suburban area of Thessaloniki, Greece, from April 1996 to June 1997. The POLDER spaceborne instrument measures the degree of polarization of the solar radiance reflected by the Earth-atmosphere system. Aerosol optical thickness (AOT) retrieval needs an accurate estimate of the contribution of the ground surface to the top of atmosphere's polarized radiance. We tested existing surface reflectance models and fitted their parameters to find the best model for the Thessaloniki area. The model was constrained and validated by use of independent data sets of coincident sunphotometer and POLDER measurements. The comparison indicated that the urban AOT over Thessaloniki was retrieved by the POLDER instrument with an accuracy of +/-0.05. From analysis of Meteosat data we found that approximately 40% of the days with high AOT (>0.18) are associated with African dust transport events, all observed in the period March-July. Excluding dust events, the 15-month AOT averages 0.12 +/- 0.04. During the 15-month period that the study was conducted, we observed aerosol pollution peaks with an AOT of >0.24 on 15 of the 164 days on which measurements were possible. PMID:18324235

  4. Research on bio-aerosol monitoring based on normalized fluorescence voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Zhao, Yongkai; Xiao, Yanfen; Cai, Shuyao; Huang, Huijie

    2011-12-01

    An optical detecting technique to identify bio-aerosol particles is proposed in this paper by normalized fluorescence value which correlates to its size and intrinsic fluorescence. With the bio-aerosol detecting system developed, we test and analyze three types of aerosols, while each of them contains fluorescent microspheres of a certain size. The result indicates that different fluorescent microspheres containing the same fluorescent substances have the same normalized fluorescence voltage to unit particle size in diameter. The normalized fluorescence value of other species aerosols is tested for comparing. The research results can be applied to identification of bio-aerosols preliminarily.

  5. 47 CFR 1.549 - Requests for extension of authority to operate without required monitors, indicating instruments...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Requests for extension of authority to operate without required monitors, indicating instruments, and EBS Attention Signal devices. 1.549 Section 1.549... required monitors, indicating instruments, and EBS Attention Signal devices. See § 73.3549....

  6. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES)

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.

    2002-01-01

    Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.

  7. Applications of UV Scattering and Absorbing Aerosol Indices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Beirle, S.; Wagner, T.

    2009-04-01

    Aerosols cause a substantial amount of radiative forcing, but quantifying this amount is difficult: determining aerosol concentrations in the atmosphere and, especially, characterizing their (optical) properties, has proved to be quite a challenge. A good way to monitor aerosol characteristics on a global scale is to perform satellite remote sensing. Most satellite aerosol retrieval algorithms are based on fitting of aerosol-induced changes in earth reflectance, which are usually subtle and have a smooth wavelength dependence. In such algorithms certain aerosol models are assumed, where optical parameters such as single scattering albedo, asymmetry parameter and size parameter (or Angstrom exponent) are defined. Another, semi-quantitative technique for detecting aerosols is the calculation of UV Aerosol Indices (UVAI). The Absorbing and Scattering Aerosol Indices detect "UV-absorbing" aerosols (most notably mineral dust, black and brown carbon particles) and "scattering" aerosols (sulfate and secondary organic aerosol particles), respectively. UVAI are essentially a measure of the contrast between two wavelengths in the UV range. The advantages of UVAI are: they can be determined in the presence of clouds, they are rather insensitive to surface type, and they are very sensitive to aerosols. The Absorbing Aerosol Index (AAI) has been in use for over a decade, and the Scattering Aerosol Index (SAI) was recently introduced by our group. Whereas the AAI is mainly used to detect desert dust and biomass burning plumes, the SAI can be used to study regions with high concentrations of non-absorbing aerosols, either anthropogenic (e.g. sulfate aerosols in eastern China) or biogenic (e.g. secondary organic aerosols formed from VOCs emitted by plants). Here we will present our recent UVAI results from SCIAMACHY: we will discuss the seasonal trend of SAI, and correlate our UVAI data with other datasets such as trace gases (HCHO, NO2, CO) and fire counts from the (A

  8. Laser Based Instruments Using Differential Absorption Detection for Above and Below Ground Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Barr, J. L.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2008-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. A field experiment was conducted at the ZERT field site beginning July 9th, 2008 and ending August 7th, 2008 to test the performance of several CO2 detection instruments. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. A flow rate of 0.3 tons CO2/day was used for the entirety of this experiment. This paper describes the results from two laser based instruments that use differential absorption techniques to determine CO2 concentrations in real time both above and below the ground surface. Both instruments use a continuous wave (cw) temperature tunable distributed feedback (DFB) laser capable of tuning across several CO2 and water vapor absorption features between at 2003 nm and 2006 nm. The first instrument uses the DFB laser to measure path integrated atmospheric concentrations of CO2. The second instrument uses the temperature tunable DFB laser to monitor underground CO2 concentrations using a buried photonic bandgap optical fiber. The above ground instrument operated nearly continuously during the CO2 release experiment and an increase in atmospheric CO2 concentration above the release pipe of approximately 2.5 times higher than the background was observed. The underground instrument also operated continuously during the experiment and saw an increase in underground CO2 concentration of approximately 15 times higher than the background. These results from the 2008 ZERT field experiment demonstrate

  9. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  10. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGESBeta

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  11. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ∼30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  12. Combining data from lidar and in situ instruments to characterize the vertical structure of aerosol optical properties

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Browell, E. V.; Grant, W. B.

    1998-01-01

    Over the last decade, the quantification of tropospheric aerosol abundance, composition and radiative impacts has become an important research endeavor. For the most part, the interest in tropospheric aerosols is derived from questions related to the global and local (instantaneous) radiative forcing of climate due to these aerosols. One approach is to study local forcing under well-defined conditions, and to extrapolate such results to global scales. To estimate local aerosol forcing, appropriate radiative transfer models can be employed (e.g., the Fu-Liou radiative transfer code, [Fu and Liou, 1993]). In general, such models require information on derived aerosol properties [Toon, 1994]; namely the aerosol optical depth, single-scattering albedo, and asymmetry factor (phase function), all of which appear in the equations of radiative transfer. In this paper, we report on a method that utilizes lidar data and in situ aerosol size distribution measurements to deduce the vertical structure of the aerosol complex index of refraction in the near IR, thus identifying the aerosol type. Together with aerosol size distributions obtained in situ, the aerosol refractive index can be used to calculate the necessary derived aerosol properties. The data analyzed here were collected during NASA's PEM West-B (Pacific Exploratory Mission) experiment, which took place in February/March 1994. The platform for the measurements was the NASA DC-8 aircraft. The primary goal of the PEM West missions [Browell et al., 1996] was the assessment of potential anthropogenic perturbations of the chemistry in the Pacific Basin troposphere. For this purpose the timing of PEM West-B corresponded to the seasonal peak in transport from the Asian continent into the Pacific basin [Merrill et al., in press]. This period normally occurs during Northern Hemisphere spring, when the Japan jet is well developed.

  13. Automated Identification of Volcanic Plumes using the Ozone Monitoring Instrument (OMI)

    NASA Astrophysics Data System (ADS)

    Flower, V. J. B.; Oommen, T.; Carn, S. A.

    2015-12-01

    Volcanic eruptions are a global phenomenon which are increasingly impacting human populations due to factors such as the extension of population centres into areas of higher risk, expansion of agricultural sectors to accommodate increased production or the increasing impact of volcanic plumes on air travel. In areas where extensive monitoring is present these impacts can be moderated by ground based monitoring and alert systems, however many volcanoes have little or no monitoring capabilities. In many of these regions volcanic alerts are generated by local communities with limited resources or formal communication systems, however additional eruption alerts can result from chance encounters with passing aircraft. In contrast satellite based remote sensing instruments possess the capability to provide near global daily monitoring, facilitating automated volcanic eruption detection. One such system generates eruption alerts through the detection of thermal anomalies, known as MODVOLC, and is currently operational utilising moderate resolution MODIS satellite data. Within this work we outline a method to distinguish SO2 eruptions from background levels recorded by the Ozone Monitoring Instrument (OMI) through the identification and classification of volcanic activity over a 5 year period. The incorporation of this data into a logistic regression model facilitated the classification of volcanic events with an overall accuracy of 80% whilst consistently identifying plumes with a mass of 400 tons or higher. The implementation of the developed model could facilitate the near real time identification of new and ongoing volcanic activity on a global scale.

  14. A Multi-Instrument Approach for Characterizing the Vertical Structure of Aerosol Properties: Case Studies in the Pacific Basin Troposphere

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Fenn, M. A.; Browell, E. V.; Grant, W. B.

    1998-01-01

    During February/March 1994, a series of aircraft-based aerosol measurements were carried out in the Pacific Basin troposphere using a differential absorption lidar system deployed by NASA Langley, and optical spectrometer probes and a wire-impactor system operated by NASA Ames. A modified Klett inversion algorithm was applied to extract altitude profiles of aerosol backscattering from the IR lidar signal. The algorithm that we have designed for this purpose utilizes the in situ aerosol measurements to normalize the lidar profile at the aircraft altitude and to supply the lidar ratio as a function of height. The lidar-derived aerosol backscattering coefficients were then compared to the backscattering coefficients calculated from the in situ measurements. During several local aircraft descents, we found good agreement between the remote lidar and in situ results for the absolute value of the aerosol backscattering coefficient and its altitude variation only when we allowed for several layers with different aerosol refractive indices. The agreement validates our lidar calibration method and provides an indication of the variation in aerosol refractive index as a function of altitude. Two of the three case studies performed in this paper reveal layers of anthropogenic aerosols transported long distances into the Pacific Basin troposphere. A third case implies the existence of a layer of dustlike aerosol particles in the lower troposphere, most likely of Asian origin.

  15. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  16. Design of a instrumentation module for monitoring ingestive behavior in laboratory studies.

    PubMed

    Fontana, Juan M; Lopez-Meyer, Paulo; Sazonov, Edward S

    2011-01-01

    The development of accurate and objective tools for monitoring of ingestive behavior (MIB) is one of the most important needs facing studies of obesity and eating disorders. This paper presents the design of an instrumentation module for non-invasive monitoring of food ingestion in laboratory studies. The system can capture signals from a variety of sensors that characterize ingestion process (such as acoustical and other swallowing sensors, strain sensor for chewing detection and self-report buttons). In addition to the sensors, the data collection system integrates time-synchronous video footage that can be used for annotation of subject's activity. Both data and video are simultaneously and synchronously acquired and stored by a LabVIEW-based interface specifically developed for this application. This instrumentation module improves a previously developed system by eliminating the post-processing stage of data synchronization and by reducing the risks of operator's error. PMID:22254698

  17. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  18. An instrument system for monitoring and sampling suspended sediment in the benthic boundary layer

    USGS Publications Warehouse

    Sternberg, R.W.; Johnson, R.V., II; Cacchione, D.A.; Drake, D.E.

    1986-01-01

    An instrument system has been constructed that can monitor and sample suspended sediment distributions in the benthic boundary layer. It consists of miniature nephelometers and suspended sediment samplers placed within one meter of the seabed. The system is capable of continuously monitoring suspended sediment profiles at eight levels between 14 and 100 cm above the seabed and collecting suspended sediment samples at four levels (20, 50, 70 and 100 cm) at three times during a deployment period. The suspended sediment system is designed to fit onto the instrumented tripod GEOPROBE which contains four electromagnetic current meters, pressure sensor, bottom stereo camera, two temperature sensors, transmissometer, and a Savonius rotor current meter. Sensor operation, data recording, and sediment sampling events are synchronized. Thus detailed measurements of the near-bottom flow conditions are made concurrently with suspended sediment measurements. The combined system has been used in sediment transporting environments within San Francisco Bay, California, and Puget Sound, Washington. ?? 1986.

  19. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    NASA Astrophysics Data System (ADS)

    Coggiola, M. J.; Becker, C. H.; Witham, C. L.

    1994-10-01

    An instrument is being developed that will be capable of providing real-time (less than 1 minute), quantitative, chemical analysis of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument can detect and identify volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup. It consists of an isokinetic sampler operable up to 500 K and wide flow rate range, a high- to low-pressure transition and sampling region separating particles from vapors for separate analysis, two small mass spectrometers (one for organic analysis by field ionization and one for particulate analysis by thermal pyrolysis and electron-impact ionization), and a powerful PC for control/data acquisition. Initially, the instrument will used with the K-1435 Toxic Substances Control Act (TSCA) incinerator at K-25; other applications are also possible, e.g., vitrification monitoring, storage tank offgassing analysis, etc. It will be easily transportable.

  20. Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Shettle, Eric P.; Levelt, Pieternel F.; Kowalewski, Matthew G.

    2010-01-01

    Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis.

  1. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  2. Near Two-Decade Instrument Performance for Hydrological Monitoring at the Prototype Hanford Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Clayton, R. E.

    2012-12-01

    Surface barriers have been proposed for use at the Department of Energy's Hanford Site as a means to isolate certain radioactive waste sites that, for reasons of cost or worker safety, may not be exhumed. The Hanford Prototype Barrier was constructed in 1994 using mostly natural materials to demonstrate its long-term performance. The barrier is expected to perform for at least 1000 years by limiting water, plant, animal, and human intrusion and minimizing erosion. Extensive instrumentation is used to monitor the hydrological regime above, within, below, and around the barrier. Specifically, natural precipitation and irrigation are measured with rain gauges, runoff water with a runoff flume, soil water content within the barrier at 12 stations with a neutron probe, a capacitance probe, and time-domain-reflectometry probes, and soil water pressure with gypsum blocks and heat-dissipation-units. Drainage through the barrier and the side slopes is measured with 12 water collection vaults, respectively, for 12 zones. Each drainage vault is equipped with a dosing siphon, a dose counter, a pressure transducer to measure the water level, and a tipping bucket to measure the inflow. During the near two-decade monitoring period, some of the instruments stopped functioning, while others still function normally till present. This presentation will summarize the performance of these instruments. Recommendations for future barrier monitoring will be given.

  3. Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt

    NASA Astrophysics Data System (ADS)

    Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa

    2015-04-01

    We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org

  4. Evaluation of 1047-nm photoacoustic instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound PAHs from gasoline and diesel powered vehicles.

    PubMed

    Arnott, W P; Zielinska, B; Rogers, C F; Sagebiel, J; Park, Kihong; Chow, Judith; Moosmüller, Hans; Watson, John G; Kelly, K; Wagner, D; Sarofim, A; Lighty, J; Palmer, G

    2005-07-15

    A series of measurements have been performed at Hill Air Force Base to evaluate real-time instruments for measurements of black carbon aerosol and particle-bound PAHs emitted from spark and ignition compression vehicles. Vehicles were operated at idle or fast idle in one set of measurements and were placed under load on a dynamometer during the second series. Photoacoustic instruments were developed that operated at a wavelength of 1047 nm where gaseous interference is negligible, although sensitivity to black carbon is good. Compact, efficient, solid-state lasers with direct electronic modulation capabilities are used in these instruments. Black carbon measurements are compared with samples collected on quartz fiber filters that were evaluated using the thermal optical reflectance method. A measure of total particle-bound PAH was provided by photoelectric aerosol sensors (PAS) and is evaluated against a sum of PAH mass concentrations obtained with a filter-denuder combination. The PAS had to be operated with a dilution system held at approximately 150 degrees C for most of the source sampling to prevent spurious behavior, thus perhaps compromising detection of lighter PAHs. PA and PAS measurements were found to have a high degree of correlation, perhaps suggesting that the PAS can respond to the polycyclic nature of the black carbon aerosol. The PAS to PA ratio for ambient air in Fresno, CA is 3.7 times as large in winter than in summer months, suggesting that the PAS clearly does respond to compounds other than BC when the instrument is used without the heated inlet. PMID:16082972

  5. Use of high-performance instrumentation in blast furnace computer monitoring

    SciTech Connect

    Lueckers, J.; Ramelot, D.; Desplanques, C.; Dodet, C. )

    1993-01-01

    Computerized monitoring and control systems are part of the tools commonly in use to improve the stability of the blast furnace operation and to minimize the hot metal cost. The rapidly increasing power of these systems is used to execute growing numbers of specific monitoring and management tasks. More and more sophisticated mathematical models that better describe the complexity of the phenomena involved in the blast furnace process are being run on-line. This evolution, has two very practical consequences: (1) improved software tools are required to ease the use of all the models and functions implemented in the computer systems. In particular, the massive amount of data available has to be converted into a practical diagnostic tool for the operator. Expert systems recently have been shown to provide the basis for a solution to this problem. (2) more and better instrumentation has to be implemented in order to supply the data required by the models. The integrity of these data is a major issue. As the sensors have to operate under extreme hostile environmental conditions, their performances have to be closely monitored. The only practical solution to this problem is a computer monitoring with automatic drift and failure diagnostics (maintenance assistant). Extensive research and development efforts have resulted in instrumentation systems and software tools that are well adapted to the assessment of the measurement quality and are currently in commercial operation on several blast furnaces around the world.

  6. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Cowen, K.; Kelly, T.; Hanft, E.; Mishoe, K.; Rogers, C.; Proost, R.; Lear, G.; Frelink, T.; Walker, J. T.

    2011-12-01

    Ambient air monitoring as part of the U.S. EPA's Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The U.S. EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to examine ecosystem exposure to nitrogen and sulfur compounds at higher time resolution and with greater accuracy than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the U.S. EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, NC from September 8th-October 8th, 2010. Precision of the MARGA was evaluated by comparing duplicate units and accuracy was evaluated by comparing duplicate MARGAs to duplicate reference denuder/filter packs. The MARGA utilizes a Wet Rotating Denuder (WRD) to collect gases, while aerosols are collected by a Steam Jet Aerosol Collector (SJAC). Both the WRD and the SJAC produce aqueous sample streams, which are analyzed by online ion chromatography for anions and cations. The reference denuder/filter pack consisted of sodium carbonate (Na2CO3) and phosphorous acid (H3PO3) coated denuders followed by a Teflon filter, a nylon filter, and a citric acid coated cellulose filter. The assessment of the MARGA units focused on gaseous SO2, HNO3 and NH3 and aerosol SO4-, NO3- and NH4+. To evaluate accuracy, hourly MARGA concentrations were averaged over 12 hours to match with 12-hour integrated concentrations from the reference system. The concentrations were compared using linear regression with performance goals of slope between 0.8-1.2 and y-intercept between -10 ppb and 10 ppb. Accuracy was further quantified as the median absolute relative percent difference (MARPD) between 12-hour MARGA and reference concentrations, with a performance goal of ≤ 40%. The precision of

  7. Borehole Seismic Monitoring at Otway Using the Naylor-1 Instrument String

    SciTech Connect

    Daley, T.M.; Sharma, Sandeep; Dzunic, Aleksander; Urosevic, Milovan; Kepic, Anton; Sherlock, Don

    2009-06-01

    The Naylor-1 monitoring completion, a unique and innovative instrumentation package, was designed and fabricated in FY 2007 at Berkeley Laboratory. Tom Daley, Barry Freifeld and Duo Wang (all from Berkeley Lab) were on site at the Otway Project between September 26 and October 14, 2007, working with CO2CRC and their subcontractors, AGR Asia Pacific and Eastern Well Services to complete Naylor-1 and initiate baseline data collection. Figure 1 shows a schematic of Naylor-1's sensor layout. There are three U-tube geochemical samplers, with one located near the top of the residual CH{sub 4} gas cap and two located beneath the gas-water contact. The 21 geophones are used for performing three distinct seismic measurements, high resolution travel time (HRTT), walkaway vertical seismic profiling (WVSP), and microseismic monitoring. These activities are separated in to active source seismic and microseismic monitoring, and will be described separately.

  8. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  9. The new MERLIN Instrument for Atmospheric CH4: Quality and Performance Monitoring

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Trautmann, T.; Gottwald, M.; Lichtenberg, G.

    2015-12-01

    After water vapor and carbon dioxide, methane is the most abundant greenhouse gas in the Earthatmosphere. The new generation space borne Lidar mission MERLIN (Methane Remote Sensing LidarMission) will make very sensitive measurements of the Methane distribution with unprecedented quality,i.e. 50km averaged methane columns with an accuracy of ~ 1%. After its launch in 2020, MERLIN willtrack down sources and sinks of CH4 on a global scale.We will present our approach and strategy to perform one of the key ground segment work componentsthat support MERLIN scientific activities which is the long-term monitoring of the instrument and itsmeasurements. This function includes tracking the behavior of the instrument and its subsystemsovertime as well as verification and validation of the scientific data during the entire lifetime of themission. It mainly monitors the instrument's performance in response to expected or unexpected naturalevents or technical situations. These are achieved by analyzing the measurement data and housekeepinginformation over different time frames. We will additionally show how our expertise on SCIAMACHY canbe applied to MERLIN.

  10. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information

  11. Evaluating the capabilities of aerosol-to-liquid particle extraction system (ALPXS)/ICP-MS for monitoring trace metals in indoor air.

    PubMed

    Jayawardene, Innocent; Rasmussen, Pat E; Chenier, Marc; Gardner, H David

    2014-09-01

    This study investigates the application of the Aerosol-to-Liquid Particle Extraction System (ALPXS), which uses wet electrostatic precipitation to collect airborne particles, for multi-element indoor stationary monitoring. Optimum conditions are determined for capturing airborne particles for metal determination by inductively coupled plasma-mass spectrometry (ICP-MS), for measuring field blanks, and for calculating limits of detection (LOD) and quantification (LOQ). Due to the relatively high flow rate (300 L min(-1)), a sampling duration of 1 hr to 2 hr was adequate to capture airborne particle-bound metals under the investigated experimental conditions. The performance of the ALPXS during a building renovation demonstrated signal-to-noise ratios appropriate for sampling airborne particles in environments with elevated metal concentrations, such as workplace settings. The ALPXS shows promise as a research tool for providing useful information on short-term variations (transient signals) and for trapping particles into aqueous solutions where needed for subsequent characterization. As the ALPXS does not provide size-specific samples, and its efficiency at different flow rates has yet to be quantified, the ALPXS would not replace standard filter-based protocols accepted for regulatory applications (e.g., exposure measurements), but rather would provide additional information if used in conjunction with filter based methods. Implications: This study investigates the capability of the Aerosol-to-Liquid Particle Extraction System (ALPXS) for stationary sampling of airborne metals in indoor workplace environments, with subsequent analysis by ICP-MS. The high flow rate (300 L/min) permits a short sampling duration (< 2 hr). Results indicated that the ALPXS was capable of monitoring short-term changes in metal emissions during a renovation activity. This portable instrument may prove to be advantageous in occupational settings as a qualitative indicator of elevated

  12. Raman Spectroscopy for In-Line Water Quality MonitoringInstrumentation and Potential

    PubMed Central

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  13. Advanced earthquake monitoring system for U.S. Department of Veterans Affairs medical buildings--instrumentation

    USGS Publications Warehouse

    Kalkan, Erol; Banga, Krishna; Ulusoy, Hasan S.; Fletcher, Jon Peter B.; Leith, William S.; Reza, Shahneam; Cheng, Timothy

    2012-01-01

    In collaboration with the U.S. Department of Veterans Affairs (VA), the National Strong Motion Project (NSMP; http://nsmp.wr.usgs.gov/) of the U.S. Geological Survey has been installing sophisticated seismic systems that will monitor the structural integrity of 28 VA hospital buildings located in seismically active regions of the conterminous United States, Alaska, and Puerto Rico during earthquake shaking. These advanced monitoring systems, which combine the use of sensitive accelerometers and real-time computer calculations, are designed to determine the structural health of each hospital building rapidly after an event, helping the VA to ensure the safety of patients and staff. This report presents the instrumentation component of this project by providing details of each hospital building, including a summary of its structural, geotechnical, and seismic hazard information, as well as instrumentation objectives and design. The structural-health monitoring component of the project, including data retrieval and processing, damage detection and localization, automated alerting system, and finally data dissemination, will be presented in a separate report.

  14. Performance assessment of future thermal infrared geostationary instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Gaubert, B.; Flaud, J.-M.

    2012-04-01

    Air quality (AQ) has a recognized onerous impact on human health and the environment, and then on society. It is more and more clear that constantly and efficiently monitoring AQ from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in this field have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations [1]. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a general simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAfit inversion module [2]. Note that to assess the

  15. Local - Air Project: Tropospheric Aerosol Monitoring by CALIPSO Lidar Satellite and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Sarli, V.; Trippetta, S.; Bitonto, P.; Papagiannopoulos, N.; Caggiano, R.; Donvito, A.; Mona, L.

    2016-06-01

    A new method for the detection of the Planetary Boundary Layer (PBL) height from CALIPSO space-borne lidar data was developed and the possibility to infer the sub-micrometric aerosol particle (i.e., PM1) concentrations at ground level from CALIPSO observations was also explored. The comparison with ground-based lidar measurements from an EARLINET (European Aerosol Research LIdar Network) station showed the reliability of the developed method for the PBL. Moreover, empirical relationships between integrated backscatter values from CALIPSO and PM1 concentrations were found thanks to the combined use of the retrieved PBL heights, CALIPSO aerosol profiles and typing and PM1 insitu measurements.

  16. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; de Graaf, M.; Stammes, P.

    2012-10-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.

  17. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  18. The 'Weekend Effect' in Tropospheric NO2 Seen from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Bucsela, E.; Wenig, M.; Celarier, E.; Gleason, J.

    2007-01-01

    The Ozone Monitoring Instrument has gathered daily global data on NO2 and other atmospheric trace gases since its launch on the EOS Aura satellite in 2004. The large accumulated data set makes it possible to monitor changes of both meteorological and anthropogenic origin in tropospheric NOz amounts. In particular, averages on time scales on the order of a year show a distinct 'weekend effect' in NO2 variation, with smaller NO2 amounts seen on Saturday and/or Sunday than on the remaining weekdays. Using the OMI NO2 Standard Product (SP), we examine this effect in relation to geopolitical boundaries and investigate implications for identifying sources. We also use the SP data to find evidence for other short-term anthropogenic changes in NO2 emissions over heavily polluted regions including the United States, Europe and China.

  19. Model-based monitoring and diagnosis of a satellite-based instrument

    NASA Technical Reports Server (NTRS)

    Bos, Andre; Callies, Jorg; Lefebvre, Alain

    1995-01-01

    For about a decade model-based reasoning has been propounded by a number of researchers. Maybe one of the most convincing arguments in favor of this kind of reasoning has been given by Davis in his paper on diagnosis from first principles (Davis 1984). Following their guidelines we have developed a system to verify the behavior of a satellite-based instrument GOME (which will be measuring Ozone concentrations in the near future (1995)). We start by giving a description of model-based monitoring. Besides recognizing that something is wrong, we also like to find the cause for misbehaving automatically. Therefore, we show how the monitoring technique can be extended to model-based diagnosis.

  20. The Global Ozone and Aerosol Profiles and Aerosol Hygroscopic Effect and Absorption Optical Depth (GOA2HEAD) Network Initiative

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.

    2014-12-01

    Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.

  1. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Marchenko, S.; Krotkov, N. A.; Lamsal, L. N.; Celarier, E. A.; Swartz, W. H.; Bucsela, E. J.

    2015-06-01

    Nitrogen dioxide retrievals from the Aura/Ozone Monitoring Instrument (OMI) have been used extensively over the past decade, particularly in the study of tropospheric air quality. Recent comparisons of OMI NO2 with independent data sets and models suggested that the OMI values of slant column density (SCD) and stratospheric vertical column density (VCD) in both the NASA OMNO2 and Royal Netherlands Meteorological Institute DOMINO products are too large, by around 10-40%. We describe a substantially revised spectral fitting algorithm, optimized for the OMI visible light spectrometer channel. The most important changes comprise a flexible adjustment of the instrumental wavelength shifts combined with iterative removal of the ring spectral features; the multistep removal of instrumental noise; iterative, sequential estimates of SCDs of the trace gases in the 402-465 nm range. These changes reduce OMI SCD(NO2) by 10-35%, bringing them much closer to SCDs retrieved from independent measurements and models. The revised SCDs, submitted to the stratosphere-troposphere separation algorithm, give tropospheric VCDs ˜10-15% smaller in polluted regions, and up to ˜30% smaller in unpolluted areas. Although the revised algorithm has been optimized specifically for the OMI NO2 retrieval, our approach could be more broadly applicable.

  2. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    NASA Astrophysics Data System (ADS)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  3. Geoazur's contribution in instrumentation to monitor seismic activity of the Earth

    NASA Astrophysics Data System (ADS)

    Yates, B.; Hello, Y.; Anglade, A.; Desprez, O.; Ogé, A.; Charvis, P.; Deschamps, A.; Galve, A.; Nolet, G.; Sukhovich, A.

    2011-12-01

    Seismic activity in the earth is mainly located near the tectonic plate boundaries, in the deep ocean (expansion centers) or near their margins (subduction zones). Travel times and waveforms of recorded seismograms can be used to reconstruct the three-dimensional wave speed distribution in the earth with seismic tomography or to image specific boundaries in the deep earth. Because of the lack of permanent sea-bottom seismometers these observation are conducted over short period of time using portable ocean bottom seismometers. Geaozur has a long experience and strong skills in designing and deploying Ocean Bottom Seismometers all over the world. We have developed two types of ocean bottom instruments. The "Hippocampe" for long deployment and "Lady bug" for aftershock monitoring or for fast overlaps during wide angle experiments. Early warning systems for tsunamis and earthquakes have been developed in recent years but these need real time data transmission and direct control of the instrument. We have developed a permanent real time Broad Band instrument installed in the Mediterranean Sea and connected to the Antares Neutrinos telescope. This instrument offers all the advantages of a very heavy and costly installation, such as the ability to do real-time seismology on the seafloor. Such real-time seafloor monitoring is especially important for seismic hazard. Major earthquakes cause human and economic losses directly related to the strong motion of the ground or by induced phenomena such as tsunamis and landslides. Fiber optical cables provide a high-capacity lightweight alternative to traditional copper cables. Three-component sensors analyze permanently the noise signal and detect the events to record. Major events can force the network to transmit data with almost zero lag time. The optical link also allows us to retrieve events at a later date. However, OBSs alone can never provide the density and long term, homogeneous data coverage needed for local and global

  4. Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites

    SciTech Connect

    William Goddard

    2008-09-30

    In the past 48 months of the project, we have accomplished all objectives outlined in the proposal. In the first year, we demonstrated the technology for remote sensing on a bench top scale. The core electronics are designed and fabricated. We achieved results that will safely deliver the specifications outlined in the proposal. In the 2nd year, 2 major technical tasks outlined in the Statement of Objectives, i.e. Build a field test ready prototype of a long-range CO2 monitor, and characterize its performance in the short term and demonstrate that the monitor characteristics meet the goals set in the initial proposal, have been accomplished. We also conducted simulation work that defines the different deployment strategies for our sensors at sequestration sites. In the 3rd year, Specifications and Testing protocols have been developed for the CO2 monitor. 1% accuracy had been demonstrated in short period tests ({approx}1 hour). Unattended system operation and stability over a period of a week has been demonstrated with and without EDFA (laser power amplifier). The sensitivity of the instrument to CO2 leaks has been demonstrated. In the 4th no-cost extension year, we further field tested the system and the experience we accumulated give us a clear picture of what else are needed for final field deployment. These results have shown all the objectives of the project have been fulfilled. In July 2008, along with our commercial partner we won the DOE STTR phase I award to commercialize the instrument developed in this project - a testimony to the achievement of this research.

  5. Comparison of the SidePak personal monitor with the Aerosol Particle Sizer (APS).

    PubMed

    Sánchez Jiménez, Araceli; van Tongeren, Martie; Galea, Karen S; Steinsvåg, Kjersti; MacCalman, Laura; Cherrie, John W

    2011-06-01

    The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 μm, 2.5 μm and 1 μm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist. PMID:21528134

  6. Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

    2012-01-01

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes. PMID:22651886

  7. Remote monitoring of aerosol layers over Sofia during Sahara dust transport episode (April, 2012)

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar; Grigorov, Ivan; Deleva, Atanaska; Kolev, Nikolay; Peshev, Zahari; Kolarov, Georgi; Donev, Evgeni; Ivanov, Danko

    2013-03-01

    In this work we present results of lidar remote sensing of aerosol layers in the atmosphere above Sofia during an episode of Sahara dust transport, 02-07 April, 2012. The investigations were made using two lidar systems, one equipped with a CuBr-vapor laser, emitting at wavelength 510.6 nm, and a second one - with Nd:YAG laser, at wavelengths 1064 nm and 532 nm. The results of lidar measurements are presented in terms of vertical atmospheric backscatter coefficient profiles and color maps of the aerosol stratification evolution. The involved into discussions ceilometer data (CHM 15k ceilometer) and satellite data from CALIPSO lidar, enhance the synergy of observations. Conclusion about atmospheric aerosol's origin was made upon analyses of the information of weather-forecast maps provided by the Forecast system of Barcelona Supercomputing Centre, which are accessible via Internet. Additional information was provided by calculations of the backward air mass trajectories, using online software of NOAA about HYSPLIT model. The comparison between the data from the two lidars and the ceilometer showed similar behavior of aerosol layers development in the atmosphere above Sofia. All information about aerosol layers origin, their altitude above ground, persistence during lidar observations, confirmed the conclusion of observation of a long-distance Sahara dust transport beyond Balkans and Sofia. An interesting completion of CALIPSO lidar and ground based lidars results of measurement is presented in case of thick opaque cloud layer in the atmosphere, which slices the path of lidar sensing in both directions.

  8. Absolute calibration of the Jenoptik CHM15k-x ceilometer and its applicability for quantitative aerosol monitoring

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2014-05-01

    The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal

  9. The Ancona Early Warning Centre, Instrumentation and Continuous Monitoring of the Landslide

    NASA Astrophysics Data System (ADS)

    Cardellini, S.

    2013-12-01

    The 'Grande frana di Ancona' is an deep-seated landslide reactivated in 1982 after a long period of precipitation. The landslide involves clay and silty clay layers (Pliocene-Pleistocene), fractured with different OCR parameter, alternated with thin sand levels. Overlapped sliding zones are active (maximum depth: 100-120 m, maximum depth 1982 event is 75 m bgl). All the investigations aimed at the consolidation preliminary design in 2000, but the plan concluded that a final consolidation was impossible. Ancona Administration decided then to 'live with the landslide' reducing nevertheless the risk for the people living there. In 2002 a regional law was specifically issued for the people living in the landslide, to give Ancona Administration the responsibility of creating an Early Warning System and an Emergency Plan for people. It's active a surface monitoring system based on 7 total stations and 33 geodetic GPS integrated by a subsurface in place geotechnical system based on 3 DMS multiparametric columns installed down to 95 m depth. Surface Monitoring system The combination of the different instruments: GPS, Automatic Robotic Stations and the clinometric sensors allows us to monitor in the 3D (3D, X, Y, Z) a great number of points previously identified, to keep them under supervision with different measuring technical and from different control positions. The adoption of the geodetic GPS at dual frequency assure an high quality of the GPS measures, and a greater versatility at all the system. The measuring cycle is set up on 30 minutes, but in emergency or after a long rainy period, the system can operate on every points of the dual frequency GPS net also in Real Time RTK, and with the 7 Automatic Robotic Stations. Geotechnical monitoring (DMS) The in place Geotechnical Monitoring System DMS (patents and trade mark CSG srl -Italy) was installed in February 2009. It is made by n°3 Modular Dynamic System columns positioned inside borehole 100 m depth. DMS columns

  10. Aerosol Measurements from Current and Future EUMETSAT Satellites

    NASA Astrophysics Data System (ADS)

    Lang, Ruediger; Munro, Rosemary; Kokhanovsky, Alexander; Grzegorski, Michael; Poli, Gabriele; Holdak, Andriy; Retscher, Christian; Marbach, Thierry

    2014-05-01

    EUMETSAT supports the operational monitoring and forecasting of atmospheric composition including various aerosol optical properties through specific products from its geostationary and polar-orbiting satellites. Meteosat imagery is used to characterise aerosols in the atmosphere, including volcanic ash and dust storms at high temporal resolution, while the GOME-2, AVHRR and IASI and instruments on Metop observe aerosol optical properties from the UV/vis to the infra-red spectral region from a polar morning orbit. The role of EUMETSAT in observing aerosol optical properties will expand further towards the 2020 timeframe when EUMETSAT also becomes the operator of the Copernicus Sentinel-3, 4 and 5 missions. This expanding role will be realised through additional atmospheric composition sounding instruments such as the UVN/Sentinel-4 on the Meteosat Third Generation (MTG) geostationary platforms and the 3MI, METimage, and Sentinel-5 instruments on the EPS Second Generation (EPS-SG) satellites. The synergistic use of imager, spectrometer and interferometer data will, with the availability of this new generation of instrumentation and with the need for measuring aerosol optical properties at short-time scales, high spatial resolution and over a broad spectra region, play and increasingly important role in the field of aerosol remote sensing. With its new Polar Multi-mission Aerosol optical properties (PMAp) product, providing aerosol and cloud optical depth information, as well as fine mode, dust and volcanic ash characterisation over ocean and in the future also over land, EUMETSAT has recently been implementing the first framework for such synergistic retrievals for the remote sensing of aerosol optical properties from GOME-2, AVHRR and IASI instruments on Metop. We will present an overview of the ongoing and the future developments at EUMETSAT concerning aerosol remote sensing from Metop as well as from the current MSG geostationary platforms and from the future

  11. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  12. Near-real Time Monitoring of Global Biomass Burning Emissions from Multiple Geostationary Instruments

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Ram, J.; Schmidt, C. C.

    2010-12-01

    Biomass burning from wildland fires releases a significant amount of trace gases and aerosols into the atmosphere. These emissions and their long-range transports significantly affect air quality, climate change, and carbon budget. We present the use of fire radiative power (FRP) to derive biomass burning emissions in near-real time. The instantaneous FRP at an interval of 15-30 minutes is retrieved using WF_ABBA_V65 (Wildfire Automated Biomass Burning Algorithm) from a network of geostationary satellites. This network consists of two Geostationary Operation Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration(NOAA), the Meteosat Second Generation satellites (MET-09) operated by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and the Multi-functional Transport Satellite (MTSAT-1R) operated by the Japan Meteorological Agency (JMA). The spatial consistence of FRP values retrieved from different geostationary instruments are investigated and compared with MODIS FRP retrievals. Further, the consistency of temporal pattern in instantaneous FRP is simulated because the continuous observations from satellites are impeded by sensor saturation, cloud cover, and background surface effects. The gaps in observations are filled using simulated values which are calculated by combing the observed instantaneous FRP values within a day and a set of representative diurnal patterns of half-hourly FRPs for various ecosystems. Furthermore, the diurnal variation in FRP is applied to quantify emissions of PM2.5 (particulate mass for particles with diameter < 2.5 µm), CH4, CO2, N2O, NH3, NOX, and TNMHC. This algorithm has been applied to produce global biomass emissions with one-day latency since January 2010. Results from the analysis of global patterns in hourly biomass burning emissions for 2009-2010 will be presented.

  13. Instrumentation for a next-generation x-ray all-sky monitor

    SciTech Connect

    Peele, A. G.

    1999-12-15

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors--long-term all-sky archive and watchdog alert to new events--will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  14. Instrumentation for a next-generation x-ray all-sky monitor

    NASA Astrophysics Data System (ADS)

    Peele, A. G.

    1999-12-01

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors-long-term all-sky archive and watchdog alert to new events-will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  15. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    hello, yann; Charvis, Philippe; Yegikyan, Manuk; verfaillie, Romain; Rivet, Diane

    2016-04-01

    Real time monitoring of seismic activity is a major issue for early warning of earthquakes and tsunamis. It can be done using regional scale wired nodes, such as Neptune in Canada and in the U.S, or DONET in Japan. Another approach to monitor seismic activity at sea is to deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four time 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight time 6-months deployments) and the Osisec program in Ecuador (four time 6-months deployments). These autonomous OBSs are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data. Among the most recent alternative we developed a 3/4 years autonomy ocean bottom system with 9 channels (?) allowing the acquisition of different seismic or environmental parameters. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a crisis) using one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years, it is a perfect tool to monitor large seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. For remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two-way Iridium satellite communication. After a period of 3 years the main station is self-recovered by

  16. Tools and strategies for instrument monitoring, data mining and data access

    NASA Astrophysics Data System (ADS)

    van Hees, R. M., ,, Dr

    2009-04-01

    The ever growing size of data sets produced by various satellite instruments creates a challenge in data management. Three main tasks were identified: instrument performance monitoring, data mining by users and data deployment. In this presentation, I will discuss the three tasks and our solution. As a practical example to illustrate the problem and make the discussion less abstract, I will use Sciamachy on-board the ESA satellite Envisat. Since the launch of Envisat, in March 2002, Sciamachy has performed nearly a billion science measurements and performed daily calibrations measurements. The total size of the data set (not including reprocessed data) is over 30 TB, distributed over 150,000 files. [Instrument Monitoring] Most instruments produce house-keeping data, which may include time, geo-location, temperature of different parts of the instrument and instrument settings and configuration. In addition, many instruments perform calibration measurements. Instrument performance monitoring requires automated analyzes of critical parameters for events, and the option to off-line inspect the behavior of various parameters in time. We choose to extract the necessary information from the SCIAMACHY data products, and store everything in one file, where we separated house-keeping data from calibration measurements. Due to the large volume and the need to have quick random-access, the Hierarchical Data Format (HDF5) was our obvious choice. The HDF5 format is self describing and designed to organize different types of data in one file. For example, one data set may contain the meta data of the calibration measurements: time, geo-location, instrument settings, quality parameters (temperature of the instrument), while a second large data set contains the actual measurements. The HDF5 high-level packet table API is ideal for tables that only grow (by appending rows), while the HDF5 table API is better suited for tables where rows need to be updated, inserted or replaced. In

  17. Uveka: a UV exposure monitoring system using autonomous instruments network for Reunion Island citizens

    NASA Astrophysics Data System (ADS)

    Sébastien, Nicolas; Cros, Sylvain; Lallemand, Caroline; Kurzrock, Frederik; Schmutz, Nicolas

    2016-04-01

    Reunion Island is a French oversea territory located in the Indian Ocean. This tropical Island has about 840,000 inhabitants and is visited every year by more than 400,000 tourists. On average, 340 sunny days occurs on this island in a whole year. Beyond these advantageous conditions, exposure of the population to ultraviolet radiation constitutes a public health issue. The number of hospitalisations for skin cancer increased by 50% between 2005 and 2010. Health insurance reimbursements due to ophthalmic anomalies caused by the sun is about two million Euros. Among the prevention measures recommended by public health policies, access to information on UV radiation is one of the basic needs. Reuniwatt, supported by the Regional Council of La Reunion, is currently developing the project Uveka. Uveka is a solution permitting to provide in real-time and in short-term forecast (several hours), the UV radiation maps of the Reunion Island. Accessible via web interface and smartphone application, Uveka informs the citizens about the UV exposure rate and its risk according to its individual characteristics (skin phototype, past exposure to sun etc.). The present work describes this initiative through the presentation of the UV radiation monitoring system and the data processing chain toward the end-users. The UV radiation monitoring system of Uveka is a network of low cost UV sensors. Each instrument is equipped with a solar panel and a battery. Moreover, the sensor is able to communicate using the 3G telecommunication network. Then, the instrument can be installed without AC power or access to a wired communication network. This feature eliminates a site selection constraint. Indeed, with more than 200 microclimates and a strong cloud cover spatial variability, building a representative measurement site network in this island with a limited number of instruments is a real challenge. In addition to these UV radiation measurements, the mapping of the surface solar radiation

  18. Greenhouse Gases in the South Atlantic: Testing and Automation of Instrumentation for Long-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R.; Sriskantharajah, S.; Lanoisellé, M.; Etchells, A.; Manning, A.; Nisbet, E.

    2009-04-01

    Understanding ocean uptake of atmospheric CO2 by the Southern Ocean is important for modelling of future global warming scenarios, particularly since it was recently proposed that this sink was reducing (Le Quéré, et al., 2007). To help our understanding of this problem a new project aims to flask sample air from 5 South Atlantic sites and set up continuous monitoring at the 2 most accessible of these: Ascension Island and the Falklands. Flask sample measurements will include CO2 and CH4 mixing ratios and the ^13C measurement of both of these gases using the rapid continuous flow trace gas analysis system at Royal Holloway, University of London (RHUL). Routine precisions are ±0.03 per mil and ±0.05 per mil for CO2 and CH4, respectively (Fisher et al., 2006). A time series of ^13C in CH4 was maintained for Ascension Island from 2000-2005 and a time series for methane isotopes commenced for the Falkland Islands in autumn 2007. To meet the continuous monitoring requirements of the new project, three Picarro G1301 CO2 / CH4 / H2O Cavity Ring Down Spectrometers (CRDS) were installed at RHUL in October 2008 for testing, calibration and the development of an automated air inlet system suitable for analysis of calibration gases at the remote sites. Initial testing included calibration with NOAA calibrated and target gases, validation of the Picarro-defined H2O-correction of CO2, and derivation of an H2O-correction for CH4. Continuing checks on the H2O correction are made by having 2 instruments side-by-side taking air from the same inlet, but one having a combined Nafion / Mg-perchlorate drying system that utilizes the analysis system exhaust gas for the reverse flow through the Nafion and maintains water-levels at 0.05% for more than 2 weeks. These instruments are connected to the same air inlet as a GC measuring CH4 mixing ratio and a LiCor 6252 measuring CO2 mixing ratio at 30-minute and 1-minute intervals respectively. The third CRDS instrument is connected to a

  19. A lidar instrument to measure H2O and aerosol profiles from the NASA ER-2 aircraft

    NASA Technical Reports Server (NTRS)

    Vaughan, W. R.; Browell, E. V.; Hall, W. M.; Averill, R. D.; Wells, J. G.; Hinton, D. E.; Goad, J. H.; Degnan, J. J.

    1986-01-01

    Plans to develop the Lidar Atmospheric Sensing Experiment (LASE) instrument to conduct scientific experiments aboard a NASA U-2 (ER-2) aircraft are described. The LASE measurement objectives are listed, and the design of the LASE instrument is discussed, including performance criteria for the laser transmitter, wavemeter, telescope, optical receiver, and associated electronics. The instrument function is depicted with a block diagram, and layouts of various components are presented.

  20. Software systems for operation, control, and monitoring of the EBEX instrument

    NASA Astrophysics Data System (ADS)

    Milligan, Michael; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grainger, Will; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Hyland, Peter; Jaffe, Andrew; Johnson, Bradley; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Miller, Amber; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Tran, Huan; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-07-01

    We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3 GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.

  1. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    NASA Astrophysics Data System (ADS)

    Williams, David E.; Henshaw, Geoff S.; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A.

    2013-06-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution.

  2. Cosmic ray dose monitoring using RadFET sensors of the Rosetta instruments SESAME and COSIMA

    NASA Astrophysics Data System (ADS)

    Falke, Peter; Fischer, Hans-Herbert; Seidensticker, Klaus J.; Thiel, Klaus; Fischer, Henning; Hilchenbach, Martin; Henkel, Hartmut; Koch, Andreas

    2016-08-01

    On its more than 10 years journey to comet 67P/Churyumov-Gerasimenko, Rosetta carried RadFET ionising dose monitors in the central electronics of the orbiter instrument COSIMA and the lander instrument SESAME. The readings of the dosimeters were corrected for the temperature of the devices during measurements. Because the sensitivity of RadFETs depends on the energy of impinging charged particles, a mean efficiency factor for the prevalent proton radiation was determined by applying nine efficiency models to proton energy spectra of Rosetta's radiation environment. The resulting dose profiles show linear increases of the accumulated dose with time, mainly caused by galactic cosmic radiation, and the arrival of two solar particle events in 2005. The accumulated dose (in Silicon) during 3909 days in space from 2004-03-02 to 2014-11-14 was 3.2 ± 0.6 Gy in case of COSIMA and 1.9 ± 0.4 Gy for SESAME. The deviation of the two measurements is mainly due to the solar particle event in September 2005, which had a 5.3 ± 1.0 times stronger impact on the COSIMA RadFET. Measured dose levels are one order of magnitude lower than those expected before launch for not being exceeded on the 90% confidence level, which is mainly due to the low solar activity during the mission so far.

  3. Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.

    2003-10-01

    The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.

  4. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  5. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  6. AEROSOL CHARACTERIZATION WITH CENTRIFUCAL AEROSOL SPECTROMETERS: THEORY AND EXPERIMENT

    EPA Science Inventory

    A general mathematical model describing the motion of particles in aerosol centrifuges has been developed. t has been validated by comparisons of theoretically predicted calibration sites with experimental data from tests sizing aerosols in instruments of three different spiral d...

  7. Field trial of a multi-parameters' monitoring network using FBGs adapted directly in the conventional instruments of dams

    NASA Astrophysics Data System (ADS)

    Rosolem, Joao B.; Hortencio, Claudio A.; Floridia, Claudio; Dini, Danilo C.; Penze, Rivael S.; Aires, Bruno N.; Bassan, Fabio R.; Morbach, Rodrigo A.; da Costa, Eduardo F.; Salgado, Felipe C.; Peres, Rodrigo; Fracarolli, João. Paulo V.; Santana, Marcus Vinícius F.; Gregatti, Augusto Cezar M.; Muniz, Guilherme; Amadeo, Gerson L.; Carvalho, Gilson M.; Pertile, Fernando; Melegari, Luis Fernando P.; Herreros, Heloisa O.; Kurokawa, Marcelo Y.; de Avila, Luis F.

    2016-05-01

    This paper presents the results of a field test of a multi-parameters' monitoring network using FBGs adapted directly in the conventional instruments of two dams which are in full operational capability. We presented the details of the design and tests of the sensor's network, such as, the sensors adaptation, the resolution comparison between the conventional instruments and the FBGs, the network topology, the spectral occupancy distribution considering the parameters optical bandwidth and also the temperature compensation for FBGs, the number of sensors by fiber and the performance of the FBGs sensors compared with the conventional instruments used in the Dams.

  8. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  9. Remote Monitoring of Aerosol Layers over Sofia in the Frame of EARLINET-ASOS Project

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivan; Kolarov, Georgi; Stoyanov, Dimitar

    2010-01-01

    In this work we present some results of lidar remote sensing of aerosol layers in the atmosphere in Sofia region. The investigations were made using a lidar system equipped with a CuBr-vapor laser with high pulse repetition of 13 kHz and receiver in photon counting mode. These measurements were performed in frame of the project European Aerosol Research Lidar Network—Advanced Sustainable Observation System (EARLINET—ASOS). For some of presented results a conclusion about atmospheric aerosol's origins was made upon analyses of the information about the weather condition during the lidar measurements. Such information was obtained by the weather-forecast maps provided by the Atmospheric Modeling and Weather Forecasting Group of NTUA and the Forecast system of Barcelona Supercomputing Centre and accessible via Internet. Additional information is provided by calculations of the backward air mass trajectories, using online software of NOAA about HYSPLIT model (HYbrid Single-Particle Lagrangian Integrated Trajectory). A common database that automatically collects the data products provided by the individual lidar stations is build and makes data of measurements available to the scientific community.

  10. Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter

    NASA Astrophysics Data System (ADS)

    Marais, E. A.; Jacob, D. J.; Guenther, A.; Chance, K.; Kurosu, T. P.; Murphy, J. G.; Reeves, C. E.; Pye, H. O. T.

    2014-08-01

    We use a 2005-2009 record of isoprene emissions over Africa derived from Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission in the continent and evaluate the impact on atmospheric composition. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (Model of Emissions of Gases and Aerosols from Nature, version 2.1) global isoprene emission model reproduces this seasonality but is biased high, particularly for equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and activity factors dependent on environmental variables. We use the OMI-derived emissions to provide improved estimates of Eo that are in good agreement with direct leaf measurements from field campaigns (r = 0.55, bias = -19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over western Africa from the African Monsoon Multidisciplinary Analysis (AMMA) aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C a-1, compared to 104 Tg C a-1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in western Africa by up to 8 ppbv, and particulate matter by up to 1.5 μg m-3, due to coupling with anthropogenic influences.

  11. The Calibration and Characterization of Earth Remote Sensing and Environmental Monitoring Instruments. Chapter 10

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Barnes, Robert A.

    2005-01-01

    The use of remote sensing instruments on orbiting satellite platforms in the study of Earth Science and environmental monitoring was officially inaugurated with the April 1, 1960 launch of the Television Infrared Observation Satellite (TIROS) [1]. The first TIROS accommodated two television cameras and operated for only 78 days. However, the TIROS program, in providing in excess of 22,000 pictures of the Earth, achieved its primary goal of providing Earth images from a satellite platform to aid in identifying and monitoring meteorological processes. This marked the beginning of what is now over four decades of Earth observations from satellite platforms. reflected and emitted radiation from the Earth using instruments on satellite platforms. These measurements are input to climate models, and the model results are analyzed in an effort to detect short and long-term changes and trends in the Earth's climate and environment, to identify the cause of those changes, and to predict or influence future changes. Examples of short-term climate change events include the periodic appearance of the El Nino-Southern Oscillation (ENSO) in the tropical Pacific Ocean [2] and the spectacular eruption of Mount Pinatubo on the Philippine island of Luzon in 1991. Examples of long term climate change events, which are more subtle to detect, include the destruction of coral reefs, the disappearance of glaciers, and global warming. Climatic variability can be both large and small scale and can be caused by natural or anthropogenic processes. The periodic El Nino event is an example of a natural process which induces significant climatic variability over a wide range of the Earth. A classic example of a large scale anthropogenic influence on climate is the well-documented rapid increase of atmospheric carbon dioxide occurring since the beginning of the Industrial Revolution [3]. An example of the study of a small-scale anthropogenic influence in climate variability is the Atlanta Land

  12. Towards the retrieval of tropospheric ozone with the Ozone Monitoring Instrument (OMI)

    NASA Astrophysics Data System (ADS)

    Mielonen, T.; de Haan, J. F.; van Peet, J. C. A.; Eremenko, M.; Veefkind, J. P.

    2015-02-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved ozone profile. Then, we studied how to modify the algorithm to improve the retrieval of tropospheric ozone. We found that stray light corrections have a significant effect on the retrieved ozone profile but mainly at high altitudes. Surface albedo assumptions, on the other hand, have the largest impact at the lowest layers. Choice of an ozone profile climatology which is used as a priori information has small effects on the retrievals at all altitudes. However, the usage of climatological a priori covariance matrix has a significant effect. Based on these sensitivity tests, we made several modifications to the retrieval algorithm: the a priori ozone climatology was replaced with a new tropopause-dependent climatology, the a priori covariance matrix was calculated from the climatological ozone variability values, and the surface albedo was assumed to be linearly dependent on wavelength in the 311.5-330 nm channel. As expected, we found that the a priori covariance matrix basically defines the vertical distribution of degrees of freedom for a retrieval. Moreover, our case study over Europe showed that the modified version produced over 10% smaller ozone abundances in the troposphere which reduced the systematic overestimation of ozone in the retrieval algorithm and improved correspondence with Infrared Atmospheric Sounding Instrument (IASI) retrievals. The comparison with ozonesonde measurements over North America showed that the operational retrieval performed better in the upper troposphere/lower stratosphere (UTLS), whereas the modified version improved the retrievals in the lower troposphere and upper stratosphere. These comparisons showed that the systematic biases

  13. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  14. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR...

  15. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR...

  16. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR...

  17. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR...

  18. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR...

  19. Curriculum-Based Measurement: Developing a Computer-Based Assessment Instrument for Monitoring Student Reading Progress on Multiple Indicators

    ERIC Educational Resources Information Center

    Forster, Natalie; Souvignier, Elmar

    2011-01-01

    The purpose of this study was to examine the technical adequacy of a computer-based assessment instrument which is based on hierarchical models of text comprehension for monitoring student reading progress following the Curriculum-Based Measurement (CBM) approach. At intervals of two weeks, 120 third-grade students finished eight CBM tests. To…

  20. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    NASA Astrophysics Data System (ADS)

    Metternich, P.; Georgii, H.-W.; Groeneveld, K. O.

    1983-04-01

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  1. Design and validation of a fiber optic point probe instrument for therapy guidance and monitoring

    NASA Astrophysics Data System (ADS)

    Xie, Haiyan; Xie, Zhiyuan; Mousavi, Monirehalsadat; Bendsoe, Niels; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan

    2014-07-01

    Optical techniques for tissue diagnostics currently are experiencing tremendous growth in biomedical applications, mainly due to their noninvasive, inexpensive, and real-time functionality. Here, we demonstrate a hand-held fiber optic probe instrument based on fluorescence/reflectance spectroscopy for precise tumor delineation. It is mainly aimed for brain tumor resection guidance with clinical adaptation to minimize the disruption of the standard surgical workflow and is meant as a complement to the state-of-the-art fluorescence surgical microscopy technique. Multiple light sources with fast pulse modulation and detection enable precise quantification of protoporphyrin IX (PpIX), tissue optical properties, and ambient light suppression. Laboratory measurements show the system is insensitive to strong ambient light. Validation measurements of tissue phantoms using nonlinear least squares support vector machines (LS-SVM) regression analysis demonstrate an error of <5% for PpIX concentration ranging from 400 to 1000 nM, even in the presence of large variations in phantom optical properties. The mean error is 3% for reduced scattering coefficient and 5% for blood concentration. Diagnostic precision of 100% was obtained by LS-SVM classification for in vivo skin tumors with topically applied 5-aminolevulinic acid during photodynamic therapy. The probe could easily be generalized to other tissue types and fluorophores for therapy guidance and monitoring.

  2. Design and validation of a fiber optic point probe instrument for therapy guidance and monitoring.

    PubMed

    Xie, Haiyan; Xie, Zhiyuan; Mousavi, Monirehalsadat; Bendsoe, Niels; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan

    2014-07-01

    Optical techniques for tissue diagnostics currently are experiencing tremendous growth in biomedical applications, mainly due to their noninvasive, inexpensive, and real-time functionality. Here, we demonstrate a hand-held fiber optic probe instrument based on fluorescence/reflectance spectroscopy for precise tumor delineation. It is mainly aimed for brain tumor resection guidance with clinical adaptation to minimize the disruption of the standard surgical workflow and is meant as a complement to the state-of-the-art fluorescence surgical microscopy technique. Multiple light sources with fast pulse modulation and detection enable precise quantification of protoporphyrin IX (PpIX), tissue optical properties, and ambient light suppression. Laboratory measurements show the system is insensitive to strong ambient light. Validation measurements of tissue phantoms using nonlinear least squares support vector machines (LS-SVM) regression analysis demonstrate an error of <5% for PpIX concentration ranging from 400 to 1000 nM, even in the presence of large variations in phantom optical properties. The mean error is 3% for reduced scattering coefficient and 5% for blood concentration. Diagnostic precision of 100% was obtained by LS-SVM classification for in vivo skin tumors with topically applied 5-aminolevulinic acid during photodynamic therapy. The probe could easily be generalized to other tissue types and fluorophores for therapy guidance and monitoring. PMID:24623193

  3. A new approach for field instrumentation in grouted rock bolt monitoring using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zou, D. H.; Cui, Y.

    2011-11-01

    A rock bolt installed in the field for ground support has only one short exposed end on the rock surface. This condition has posed challenges in field instrumentation. In this paper, a new approach for field monitoring of grouted rock bolts using guided ultrasonic waves is proposed with the receiving transducer on the grout surface near the exposed end of the bolt. The effects of the receiver location are studied with numerical modeling. A location correction factor is introduced to correlate the amplitude ratio along the bolt and that on the grout surface. Experiments are conducted to verify the modeling results. This research indicates that it is practically possible to receive meaningful signals with the receiver on the grout surface and that with the recorded data the attenuation and wave velocity of guided waves in grouted rock bolts can be determined with reasonable accuracy. The proper receiver location is found to be 27 to 32 mm from the bolt center for the test condition.

  4. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska.

    PubMed

    Castellote, Manuel; Small, Robert J; Lammers, Marc O; Jenniges, Justin J; Mondragon, Jeff; Atkinson, Shannon

    2016-05-01

    As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described. PMID:27250163

  5. Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval

    NASA Astrophysics Data System (ADS)

    González Abad, G.; Liu, X.; Chance, K.; Wang, H.; Kurosu, T. P.; Suleiman, R.

    2015-01-01

    We present and discuss the Smithsonian Astrophysical Observatory (SAO) formaldehyde (H2CO) retrieval algorithm for the Ozone Monitoring Instrument (OMI) which is the operational retrieval for NASA OMI H2CO. The version of the algorithm described here includes relevant changes with respect to the operational one, including differences in the reference spectra for H2CO, the fit of O2-O2 collisional complex, updates in the high-resolution solar reference spectrum, the use of a model reference sector over the remote Pacific Ocean to normalize the retrievals, an updated air mass factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical H2CO profile in the level 2 products. The setup of the retrieval is discussed in detail. We compare the results of the updated retrieval with the results from the previous SAO H2CO retrieval. The improvement in the slant column fit increases the temporal stability of the retrieval and slightly reduces the noise. The change in the AMF calculation has increased the AMFs by 20%, mainly due to the consideration of the radiative cloud fraction. Typical values for retrieved vertical columns are between 4 × 1015 and 4 × 1016 molecules cm-2, with typical fitting uncertainties ranging between 45 and 100%. In high-concentration regions the errors are usually reduced to 30%. The detection limit is estimated at 1 × 1016 molecules cm-2.

  6. Algorithm for NO2 Vertical Column Retrieval from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Bucsela, Eric J.; Celarier, Edward A.; Wenig, Mark O.; Gleason, James F.; Veefkind, J. Pepijn; Boersma, K. Folkert; Brinksma, Ellen J.

    2006-01-01

    We describe the operational algorithm for the retrieval of stratospheric, tropospheric, and total column densities of nitrogen dioxide NO2 from earthshine radiances measured by the Ozone Monitoring Instrument (OMI), aboard the EOS-Aura satellite. The algorithm uses the DOAS method for the retrieval of slant column NO densities. Air mass factors (AMFs) calculated from a stratospheric NO2 profile are used to make initial estimates of the vertical column density. Using data collected over a 24-h period, a smooth estimate of the global stratospheric field is constructed. Where the initial vertical column densities exceed the estimated stratospheric field, we infer the presence of tropospheric NO2, and recalculate the vertical column density (VCD) using an AMF calculated from an assumed tropospheric NO2 profile. The parameters that control the operational algorithm were selected with the aid of a set of data assembled from stratospheric and tropospheric chemical transport models. We apply the optimized algorithm to OMI data and present global maps of NO2 VCDs for the first time.

  7. Retrieval of Aerosol Height with TROPOMI

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Veefkind, J. P.

    2012-04-01

    The Tropospheric Monitoring Instrument (TROPOMI), to be launched in 2015, will feature a new aerosol product providing the height of aerosol layers. Aerosol Layer Height will be one of two aerosol products, the other one being the Absorbing Aerosol Index. TROPOMI is a UV-VIS-NIR imaging spectrometer with daily global coverage. It will be part of ESA's Sentinel-5 Precursor mission. Algorithm development for the aerosol height product is currently underway at KNMI. In this presentation we will introduce the algorithm, highlight some of the development issues and discuss possible applications and example aerosol cases. Aerosol height observations from the near-infrared wavelength range will improve retrieval of other aerosol properties, particularly retrieval of absorption optical thickness. An increase in absorption in the ultraviolet wavelength range can be due to a higher imaginary part of the refractive index or to the aerosol layer being at a higher altitude. Independent height observations will therefore further constrain retrieval of the single scattering albedo. Furthermore, aerosol profile information is an important parameter when estimating radiative forcings and climate impacts of aerosol, it is a significant source of uncertainty in trace gas retrieval and it helps in understanding atmospheric transport mechanisms. Finally, timely available, global observations of aerosol height will be of interest to aviation safety agencies. The retrieval algorithm for aerosol height will be based on absorption by oxygen in the A-band (759-770 nm). Aerosols are assumed to be contained in a single layer. A spectral fit of reflectance (resolution 0.5 nm) across the absorption band provides layer height. The retrieval method will be optimal estimation to ensure a proper error analysis. Sensitivity studies have indicated that accuracy and precision of retrieved height for cloud-free scenes will be well below the TROPOMI science requirements (1 km). They have also shown that

  8. Instrumentation, monitoring and hydrology of an experimental small catchment in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Roosevelt, Antonio; Marioti, Juliana; Wallender, Wesley; Steenhuis, Tammo

    2010-05-01

    Long-term watershed studies are critical in designing intervention procedures for proper resources planning and management. The objective of this paper is to describe one of these watershed studies. Instrumentation, monitoring activities and generated data base in the Buriti Vermelho experimental watershed, a sub-catchment of the São Francisco basin, in Brazil is discussed. The basin has a drainage area of 940 hectares and, is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols and several types of land use and crop cover can be observed in the basin. A socioeconomic survey undertaken showed the existence of both small and large scale farming enterprises. Irrigation is needed to prevent yield loss due to insufficient rain. Water usage conflicts are already occurring. The basin was instrumented to study the watershed behavior in detail and to assess the risk of water scarcity in the next twenty years by modeling using the observed data for validation. Evaluations of irrigation efficiencies, leaf area index (LAI) and root depth of crops and natural vegetation, small reservoirs evaporation and infiltration and water table depth are being carried out. The analysis of the results of the first two years showed that air temperature varied from 18 °C in July to 25 °C in October 2008, while the relative humidity varied from 84% in February to 47% in August of 2008. Wind speed was between, from 18 m/s, in November 2008, to 7.0 m/s, in February 2009, and solar radiation from 450 W/m, in October 2008, to 258 W/m in February 2009. There was no precipitation in the basin during May, June and July 2008. The greatest precipitation observed in the basin was equal to 190 mm, in January 2009. The average monthly river discharge measure in a point closed to the middle length of the river varied from 16 L/s to 138 L/s. Water table depth varied from 6.3 m to 11.8 m. LAI varied

  9. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Yegikyan, M.; Charvis, P.; Verfaillie, R.; Philippe, O.

    2015-12-01

    There are several attempts to monitor real time seismic activity, using regional scale wired nodes, such as Neptune in Canada and in the U.S, Antares in France or DONET in Japan.On another hand there are also initiatives in deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight 6-months deployments) and the Osisec program in Ecuador (four 6-months deployments). These OBSs are autonomous, they are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data.Among the most recent alternative we developed a 3-years autonomy OBS equipped with a Nanometrics Trillium 120 s, a triaxial accelerometer, a differential, an absolute pressure gauge, and a hydrophone. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a seismic crisis) utilizing one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years (when an OBS is redeployed on the same site, it will not land in the same place), it is a perfect tool to monitor slow seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. A new version is being developed; for remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two- way Iridium

  10. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Livingston, J. M.; Redemann, J.; Dubovik, O.; Strawa, A.

    2010-02-01

    Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (often expressed as Absorption Angstrom Exponent, or AAE). Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The main purpose of this paper is to show that AAE values for an Aerosol Robotic Network (AERONET) set of retrievals from Sun-sky measurements describing full aerosol vertical columns are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. These AERONET results are consistent with results from other, very different, techniques, including solar flux-aerosol optical depth (AOD) analyses and airborne in situ analyses examined in this paper, as well as many other previous results. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE), which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS), which seeks to provide retrievals of multiwavelength single-scattering albedo (SSA) and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD) and AAE), as well as shape and other aerosol properties. Multidimensional cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI) to add AAOD in the near

  11. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Saarnio, K.; Frey, A.; Saarikoski, S.; Teinilä, K.; Kulmala, M.; Hillamo, R.

    2011-10-01

    Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006-2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC), organic and elemental carbon (OC and EC) by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC), and PM2.5 mass with a tapered element oscillating microbalance (TEOM). Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM), EC) represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass) and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  12. A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Brown, Steven S.; Dinesan, Hemanth; Dubé, William P.; Goulette, Marc; Hübler, Gerhard; Orphal, Johannes; Zahn, Andreas

    2016-04-01

    The chemistry of NO3 and N2O5 is important to the regulation of both tropospheric and stratospheric ozone. In situ detection of NO3 and N2O5 in the upper troposphere lower stratosphere (UTLS) represents a new scientific direction as the only previous measurements of these species in this region of the atmosphere has been via remote sensing techniques. Because both the sources and the sinks for NO3 and N2O5 are potentially stratified spatially, their mixing ratios, and their influence on nitrogen oxide and ozone transport and loss at night can show large variability as a function of altitude. Aircraft-based measurements of heterogeneous N2O5 uptake in the lower troposphere have uncovered a surprising degree of variability in the uptake coefficient [1], but there are no corresponding high altitude measurements.The UTLS is routinely sampled by the IAGOS-CARIBIC program (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com), a European infrastructural program with the aim of studying the chemistry and transport across this part of the atmosphere. An airfreight container with 15 different automated instruments from 8 European research partners is utilized on board a commercial Lufthansa airbus 340-600 to monitor ~ 100 atmospheric species (trace gases and aerosol parameters) in the UTLS. The instrumentation in the CARIBIC container is now to be supplemented by a new cavity ring-down device for monitoring nitrogen oxides, jointly developed by researchers from Cork (Ireland), Boulder (USA) and Karlsruhe (Germany). The compact and light-weight instrument is designed to monitor not only NO3 and N2O5, but also NO2 and O3. The detection is based on 4 high-finesse optical cavities (cavity length ~ 44 cm). Two cavities are operated at 662 nm (maximum absorption of NO3), the other two at 405 nm (maximum absorption of NO2). The inlet to one of the (662)-cavities is heated in order to thermally decompose N2O5

  13. A neutron detector to monitor the intensity of transmitted neutrons for small-angle neutron scattering instruments

    NASA Astrophysics Data System (ADS)

    De Lurgio, Patrick M.; Klann, Raymond T.; Fink, Charles L.; McGregor, Douglas S.; Thiyagarajan, Pappannan; Naday, Istvan

    2003-06-01

    A semiconductor-based neutron detector was developed at Argonne National Laboratory (ANL) for use as a neutron beam monitor for small-angle neutron scattering instruments. The detector is constructed using a coating of 10B on a gallium-arsenide semiconductor detector and is mounted directly within a cylindrical (2.2 cm dia. and 4.4 cm long) enriched 10B 4C beam stop in the time-of-flight Small Angle Neutron Diffractometer (SAND) instrument at the Intense Pulsed Neutron Source (IPNS) facility at ANL. The neutron beam viewed by the SAND is from a pulsed spallation source moderated by a solid methane moderator that produces useful neutrons in the wavelength range of 0.5-14 Å. The SAND instrument uses all detected neutrons in the above wavelength range sorted by time-of-flight into 68 constant Δ T/ T=0.05 channels. This new detector continuously monitors the transmitted neutron beam through the sample during scattering measurements and takes data concurrently with the other detectors in the instrument. The 10B coating on the GaAs detector allows the detection of the cold neutron spectrum with reasonable efficiency. This paper describes the details of the detector fabrication, the beam stop monitor design, and includes a discussion of results from preliminary tests using the detector during several run cycles at the IPNS.

  14. Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Shin, C. S.

    2011-11-01

    NiTi endodontic rotary instruments subjected to alternating tension and compression stress in root canals may fracture without prior warning. Once broken, extracting the fractured part from the canal is a difficult job and is annoying to both the patient and the dentist. Warning of an imminent fracture during clinical use will be a great help to avoid medical and legal complications. A monitoring system employing Fiber Bragg Grating (FBG) sensors has been attempted. The reason of using FBG is its small size which is very promising in integrating with the handpiece of the endodontic equipment. When cracking developed in an rotary instrument, we expect the natural vibration frequency of the instrument changes. If we can pick up the stress wave transmitted through the structural components of the rotary instruments, we may be able to detect the occurrence of a crack. In the current work, we found that we can successfully locate the operation period in the time domain by picking up and analyzing the sound wave using FBG. Furthermore, by employing Fast Fourier Transform (FFT) on the signal, we can reveal the energy variation and the frequency shifting phenomenon in specific section of frequency domain. For some characteristic frequencies, it was found that the energy and frequency varied in a well-defined pattern during the period of crack growth. It is hoped that with these information, the fatigue failure of rotary instruments can be closely monitored to avoid/alleviate the occurrence of unexpected fracture during clinical use.

  15. Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Shin, C. S.

    2012-04-01

    NiTi endodontic rotary instruments subjected to alternating tension and compression stress in root canals may fracture without prior warning. Once broken, extracting the fractured part from the canal is a difficult job and is annoying to both the patient and the dentist. Warning of an imminent fracture during clinical use will be a great help to avoid medical and legal complications. A monitoring system employing Fiber Bragg Grating (FBG) sensors has been attempted. The reason of using FBG is its small size which is very promising in integrating with the handpiece of the endodontic equipment. When cracking developed in an rotary instrument, we expect the natural vibration frequency of the instrument changes. If we can pick up the stress wave transmitted through the structural components of the rotary instruments, we may be able to detect the occurrence of a crack. In the current work, we found that we can successfully locate the operation period in the time domain by picking up and analyzing the sound wave using FBG. Furthermore, by employing Fast Fourier Transform (FFT) on the signal, we can reveal the energy variation and the frequency shifting phenomenon in specific section of frequency domain. For some characteristic frequencies, it was found that the energy and frequency varied in a well-defined pattern during the period of crack growth. It is hoped that with these information, the fatigue failure of rotary instruments can be closely monitored to avoid/alleviate the occurrence of unexpected fracture during clinical use.

  16. Monitoring the Health and Safety of the ACIS Instrument On-Board the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Virani, Shanil N.; Ford, Peter G.; DePasquale, Joseph M.; Plucinsky, Paul P.

    2002-12-01

    The Chandra X-ray Observatory (CXO), NASA's latest "Great Observatory", was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km × 10,000 km, and has a period of approximately 63.5 hours (≍2.65 days). Communication with the CXO nominally consists of 1-hour contacts spaced 8-hours apart. Thus, once a communication link has been established, it is very important that the health and safety status of the scientific instruments as well as the Observatory itself be determined as quickly as possible. In this paper, we focus exclusively on the automated health and safety monitoring scripts developed for the Advanced CCD Imaging Spectrometer (ACIS) during those 1-hour contacts. ACIS is one of the two focal plane instruments on-board the CXO. We present an overview of the real-time ACIS Engineering Data Web Page and the alert schemes developed for monitoring the instrument status during each communication contact. A suite of HTML and PERL scripts monitors the instrument hardware house-keeping electronics (i.e., voltages and currents) and temperatures during each contact. If a particular instrument component is performing either above or below pre- established operating parameters, a sequence of email and alert pages are spawned to the Science Operations Team of the Chandra X-ray Observatory Center so that the anomaly can be quickly investigated and corrective actions taken if necessary. We also briefly discuss the tools used to monitor the real-time science telemetry reported by the ACIS flight software. The authors acknowledge support for this research from NASA contract NAS8-39073.

  17. Atmospheric aerosol monitoring and characterization: An emission control strategy to protect tropical forests

    NASA Astrophysics Data System (ADS)

    Mateus, V. L.; do Valles, T. V.; de Oliveira, T. B.; de Almeida, A. C.; Maia, L. F. P. G.; Saint'Pierre, T. D.; Gioda, A.

    2013-12-01

    Human activity represents one of the most harmful activities for biodiversity. Population growth has caused increasing interferences in natural areas suffering agriculture or urbanization. As a consequence, tropical forests are at risk, since they shelter more than half of the global biodiversity. In this context, protected areas are indeed important to preserve natural populations as well as threatened habitats. Aerosol samples were collected in two protected areas in Rio de Janeiro, Brazil, in order to quantify water-soluble species and evaluate anthropogenic influences considering secondary aerosol formation and organic compounds. Samplings were conducted at the National Park of Serra dos Orgãos (Parnaso) and the National Forest Mario Xavier (Flonamax) during 24 h every six days using a high-volume sampler from July 2010 to June 2012 (PM10) and from July 2011 to August 2012 (TSP), respectively. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (Br-, Cl-, F-, NO2-, NO3-, PO43-, SO42-) and cations (Li+, Ca2+, K+, Mg2+, Na+, NH4+); total water-soluble carbon (TWSC), water-soluble organic carbon (WSOC) were determined by a TOC analyzer and the elements were determined by Inductively Coupled Plasma Optical Emission Spectrometry. PM10 average concentrations ranged from 11.1 to 67.6 μg m-3 and TSP from 5.7 to 242.6 μg m-3. Regarding the ions, the highest cation concentration was measured for Na+ at both Parnaso and Flonamax sites, respectively, 2.9 and 6.1 μg m-3. Both sites are near to the coast, justifying these results. On the other hand, SO42- was the predominant anion measured at both sites with average concentrations ranged from 2.3 to 2.7 μg m-3. Around 50% of sulphate had a non-marine origin in the former site, while in the latter the percentage was of circa 40%. The correlation between NO3- and nss-SO42- was much stronger at Parnaso (r = 0

  18. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  19. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions.

    PubMed

    Coffey, Christopher C; Pearce, Terri A; Lawrence, Robert B; Hudnall, Judith B; Slaven, James E; Martin, Stephen B

    2009-01-01

    The performance of field portable direct-reading organic vapor monitors (DROVMs) was evaluated under a variety of experimental conditions. Four of the DROVMs had photoionization detectors (ppbRAE, IAQRAE, MultiRAE, and Century Toxic Vapor Analyzer), one had a flame ionization detector (Century Toxic Vapor Analyzer), and one was a single-beam infrared spectrophotometer (SapphIRe). Four of each DROVM (two Century Toxic Vapor Analyzers and SapphIRes) were tested. The DROVMs were evaluated at three temperatures (4 degrees C, 21 degrees C, and 38 degrees C), three relative humidities (30%, 60%, and 90%), and two hexane concentrations (5 ppm and 100 ppm). These conditions were selected to provide a range within the operational parameters of all the instruments. At least four replicate trials were performed across the 18 experimental conditions (3 temperatures x 3 relative humidities x 2 concentrations). To evaluate performance, the 4-hr time-weighted average readings from the DROVMs in a given trial were compared with the average of two charcoal tube concentrations using pairwise comparison. The pairwise comparison criterion was +/-25% measurement agreement between each individual DROVM and the DROVMs as a group and the average charcoal tube concentration. The ppbRAE group performed the best with 40% of all readings meeting the comparison criterion followed by the SapphIRe group at 39%. Among individual DROVMs, the best performer was a SapphIRe, with 57% of its readings meeting the criterion. The data was further analyzed by temperature, humidity, and concentration. The results indicated the performance of some DROVMs may be affected by temperature, humidity, and/or concentration. The ppbRAE group performed best at 21 degrees C with the percentage of readings meeting the criterion increasing to 63%. At the 5 ppm concentration, 44% of the ppbRAE group readings met the criterion, while at 100 ppm, only 35% did. The results indicate that monitors can be used as survey tools

  20. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  1. Testing the Archivas Cluster (Arc) for Ozone Monitoring Instrument (OMI) Scientific Data Storage

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2005-01-01

    The Ozone Monitoring Instrument (OMI) launched on NASA's Aura Spacecraft, the third of the major platforms of the EOS program on July 15,2004. In addition to the long term archive and distribution of the data from OM1 through the Goddard Earth Science Distributed Active Archive Center (GESDAAC), we are evaluating other archive mechanisms that can archive the data in a more immediately available method where it can be used for futher data production and analysis. In 2004, Archivas, Inc. was selected by NASA s Small Business Innovative Research (SBIR) program for the development of their Archivas Cluster (ArC) product. Arc is an online disk based system utilizing self-management and automation on a Linux cluster. Its goal is to produce a low cost solution coupled with the ease of management. The OM1 project is an application partner of the SBIR program, and has deployed a small cluster (5TB) based on the beta Archwas software. We performed extensive testing of the unit using production OM1 data since launch. In 2005, Archivas, Inc. was funded in SBIR Phase II for further development, which will include testing scalability with the deployment of a larger (35TB) cluster at Goddard. We plan to include Arc in the OM1 Team Leader Computing Facility (TLCF) hosting OM1 data for direct access and analysis by the OMI Science Team. This presentation will include a brief technical description of the Archivas Cluster, a summary of the SBIR Phase I beta testing results, and an overview of the OMI ground data processing architecture including its interaction with the Phase II Archivas Cluster and hosting of OMI data for the scientists.

  2. Arctic Observing Experiment - An Assessment of Instruments Used to Monitor the Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Johnson, J.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Valentic, T. A.; Henderson, G. R.; Marshall, C.; Gallage, C.; Zook, J.; Davis, Z.

    2014-12-01

    To understand and predict weather and climate require an accurate observing network that measures the fundamental meteorological parameters: temperature, air pressure, and wind. Measuring these parameters autonomously in the polar regions is especially challenging. To assess the accuracy of polar measurement networks, we established the Arctic Observing Experiment (AOX) test site in March 2013 at the Department of Energy (DOE) Atmospheric Radiation and Meteorology (ARM) site in Barrow, Alaska. We deployed a myriad of data loggers and autonomous buoys, which represent most of the instruments that are commonly deployed by the International Arctic Buoy Programme (IABP) to measure temperature, air pressure and wind. Estimates of temperature over this area have also been analyzed from satellites (e.g., using the Moderate-resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST)) product, and can complement data from in-situ sensors and provide consistent measurements under clear-sky conditions. Preliminary results reveal that some of the buoys are susceptible to solar heating, icing can block barometers for short periods, and frosting may insulate air temperature sensors and freeze-lock anemometers. Some of these issues may be addressed by simply painting the buoys white to reduce solar heating of the buoys, and using better temperature shields and barometer ports. Nevertheless, frosting of ultrasonic and mechanical anemometers remains a significant challenge. These results will be useful to initiate a protocol to obtain accurate and consistent measurements from the IABP, the Arctic Observing Network (AON), the International Program for Antarctic Buoys, and the Southern Ocean Observing System to monitor polar environments.

  3. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  4. A European research infrastructure for the aerosol study on a continental scale: EARLINET-ASOS

    NASA Astrophysics Data System (ADS)

    Amodeo, Aldo; Pappalardo, Gelsomina; Bösenberg, Jens; Ansmann, Albert; Apituley, Arnoud; Alados-Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoly; Comeron, Adolfo; Freudenthaler, Volker; Gustaffson, Ove; Hansen, Georg; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Simeonov, Valentin; Spinelli, Nicola; Stoyanov, Dimitar; Trickl, Thomas; Wiegner, Matthias

    2007-10-01

    The present knowledge of the aerosol distribution is not sufficient to estimate the aerosol influence on global and regional environmental conditions and climate. This observational gap can be closed by using advanced laser remote sensing. EARLINET (European Aerosol Research Lidar Network) is the first aerosol lidar network, established in 2000, with the main goal to provide a comprehensive, quantitative, and statistically significant database for the aerosol distribution on a continental scale. EARLINET is a coordinated network of European stations (25 at present) using advanced lidar methods for the vertical profiling of aerosols. The network activity is based on simultaneous scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. Further observations are performed to monitor special events. EARLINET-ASOS (Advanced Sustainable Observation System) is a five year EC Project started in 2006, based on the EARLINET infrastructure. The main objectives are: to make EARLINET a world-leading instrument for the observation of the 4-D aerosol distribution on continental scale; to foster aerosol-related process studies, validation of satellite sensors, model development and validation, assimilation of aerosol data into operational models; and to build a comprehensive climatology of the aerosol distribution.

  5. Satellite Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Robles Gonzalez, C.; Kusmierczyk-Michulec, J.; Decae, R.

    SATELLITE RETRIEVAL of AEROSOL PROPERTIES G. de Leeuw, C. Robles Gonzalez, J. Kusmierczyk-Michulec and R. Decae TNO Physics and Electronics Laboratory, The Hague, The Netherlands; deleeuw@fel.tno.nl Methods to retrieve aerosol properties over land and over sea were explored. The dual view offered by the ATSR-2 aboard ERS-2 was used by Veefkind et al., 1998. The retrieved AOD (aerosol optical depth) values compare favourably with collocated sun photometer measurements, with an accuracy of 0.06 +/- 0.05 in AOD. An algorithm developed for GOME on ERS-2 takes advantage of the low surface reflection in the UV (Veefkind et al., 2000). AOD values retrieved from ATSR-2 and GOME data over western Europe are consistent. The results were used to produce a map of mean AOD values over Europe for one month (Robles-Gonzalez et al., 2000). The ATSR-2 is al- gorithm is now extended with other aerosol types with the aim to apply it over the In- dian Ocean. A new algorithm is being developed for the Ozone Monitoring Instrument (OMI) to be launched in 2003 on the NASA EOS-AURA satellite. It is expected that, based on the different scattering and absorption properties of various aerosol types, five major aerosol classes can be distinguished. The experience with the retrieval of aerosol properties by using several wavelength bands is used to develop an algorithm for Sciamachy to retrieve aerosol properties both over land and over the ocean which takes advantage of the wavelengths from the UV to the IR. The variation of the AOD with wavelength is described by the Angstrom parameter. The AOD and the Angstrom parameter together yield information on the aerosol size distribution, integrated over the column. Analysis of sunphotometer data indicates a relation between the Angstrom parameter and the mass ratio of certain aerosols (black carbon, organic carbon and sea salt) to the total particulate matter. This relation has been further explored and was applied to satellite data over land to

  6. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    SciTech Connect

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.; Reeves, Kirk Patrick

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  7. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    DOE PAGESBeta

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; Lantz, Kathy; Michalsky, Joseph; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-08-23

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ∼ 0.19, and that over oceans is ∼ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations tomore » show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3  <  AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), −0.012 ± 0.024 (MFRSR), −0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD − MFRSRAOD) and yields the following expressions for correlations between different instruments

  8. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Livingston, J. M.; Redemann, J.; Holben, B.; Dubovik, O.; Strawa, A.

    2009-10-01

    Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (expressed as Absorption Angstrom Exponent, or AAE). Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The purpose of this paper is to show that AAE values for Aerosol Robotic Network (AERONET) retrievals from Sun-sky measurements describing the full aerosol vertical column are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE), which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS), which promises retrievals of multiwavelength single-scattering albedo (SSA) and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD) and AAE), as well as shape and other aerosol properties. Cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI) to add AAOD in the near ultraviolet and CALIPSO aerosol layer heights to reduce height-absorption ambiguity.

  9. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V; Lukenyuk, A.; Shymkiv, A.

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  10. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    NASA Astrophysics Data System (ADS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  11. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring. Final report, September 1992--August 1994

    SciTech Connect

    Coggiola, M.J.; Becker, C.H.; Witham, C.L.

    1994-10-01

    An instrument is being developed that will be capable of providing real-time (<1 minute), quantitative, chemical analysis of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument can detect and identify volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup. It consists of an isokinetic sampler operable up to 500 K and wide flow rate range, a high- to low-pressure transition and sampling region separating particles from vapors for separate analysis, two small mass spectrometers (one for organic analysis by field ionization and one for particulate analysis by thermal pyrolysis and electron-impact ionization), and a powerful PC for control/data acquisition. Initially, the instrument will used with the K-1435 Toxic Substances Control Act (TSCA) incinerator at K-25; other applications are also possible, eg, vitrification monitoring, storage tank offgassing analysis, etc. It will be easily transportable. This report details the technical accomplishments of Phase I.

  12. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section, the detection instrument shall meet the performance criteria of Method 21 of appendix A of 40 CFR... use by the procedures specified in Method 21 of appendix A of 40 CFR part 60. (4) Detection instrument... with Method 21 of appendix A of 40 CFR part 60, except as otherwise provided in this section....

  13. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section, the detection instrument shall meet the performance criteria of Method 21 of appendix A of 40 CFR... use by the procedures specified in Method 21 of appendix A of 40 CFR part 60. (4) Detection instrument... with Method 21 of appendix A of 40 CFR part 60, except as otherwise provided in this section....

  14. Vapor-aerosol physicochemical laboratory

    SciTech Connect

    Lore, J.D.; Skeen, L.M.

    1985-10-01

    A laboratory capable of generating and characterizing vapors and aerosols at typical ambient concentration levels observed in chemical processing operations has been established at the ORGD Plant, operated by Martin Marietta Energy Systems, Inc. for the USDOE. A three-stage generation system (TSGS), originally developed by SRI, International, for the analytical methods validation studies sponsored by NIOSH, has been installed. Several aerosol/particulate monitors, controlled by microcomputers, provide the means for semi-real-time particle size and mass concentration measurements over the size range 0.1 to 10 ..mu..m. A full complement of chemical analysis instrumentation including laser Raman spectroscopy and gas chromatography-mass spectrometry is available for in-situ or sequential measurements of TSGS diluents. 2 refs., 7 figs., 2 tabs.

  15. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS)

    PubMed Central

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  16. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    PubMed

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  17. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  18. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    NASA Astrophysics Data System (ADS)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main

  19. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Jin, Xiaomeng; Holloway, Tracey

    2015-07-01

    Surface ozone (O3) air pollution in populated regions has been attributed to emissions of nitrogen oxides (NO + NO2 = NOx) and reactive volatile organic compounds (VOCs). These constituents react with hydrogen oxide radicals (OH + HO2 = HOx) in the presence of sunlight and heat to produce O3. The question of whether to reduce NOx emissions, VOC emissions, or both is complicated by spatially and temporally heterogeneous ozone-NOx-VOC sensitivity. This study characterizes spatial and temporal variations in O3 sensitivity by analyzing the ratio of formaldehyde (HCHO, a marker of VOCs) to nitrogen dioxide (NO2), a metric known as the formaldehyde nitrogen ratio (FNR). Level 3 gridded retrievals from the Ozone Monitoring Instrument (OMI) aboard the NASA Aura satellite were used to calculate FNR, with our analysis focusing on China. Based on previous studies, we take FNR < 1.0 as indicating VOC-limited regimes, FNR > 2.0 as indicating NOx-limited regime, and FNR between 1.0 and 2.0 as indicating transitional regime (where either NOx reductions or VOC reductions would be expected to reduce O3). We find that the transitional regime is widespread over the North China Plain (NCP), the Yangtze River Delta, and the Pearl River Delta during the ozone season (defined as having near-surface air temperatures >20°C at the early afternoon OMI overpass time). Outside of these regions, the NOx-limited regime is dominant. Because HCHO and NO2 have distinct seasonal patterns, FNR also has a pronounced seasonality, consistent with the seasonal cycle of surface O3. Examining trends from 2005 to 2013 indicates rapid growth in NO2, especially over less-developed areas where O3 photochemistry is NOx limited. Over this time period, HCHO decreased in southern China, where VOC emissions are dominated by biogenic sources, but increased slightly over the NCP, where VOC emissions are dominated by anthropogenic sources. A linear regression approach suggests that most of China (70% of grid cells

  20. Seismic monitoring instrumentation needs of a building owner and the solution - A cooperative effort

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.; Sinclair, M.; Gallant, S.; Radulescu, D.

    2003-01-01

    A specific case whereby the owner of a building, in collaboration with another federal agency with expertise in seismic monitoring of buildings, private consulting engineers, and a supplier, facilitated development of a seismic monitoring system for a 24-story building in San Francisco, California. The unique aspects of this monitoring systems include: the monitoring system must relate to rapid assessment of the building following an earthquake and the monitoring system must deliver the data in relatively short time, if not in real-time. The system has the standard recording capability at the site server PC. It has the capability to calculate select number of drift ratios, specific to the building.

  1. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  2. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.; Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver, M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420-465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.84, slope = 0.94). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  3. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  4. Monitored plutonium aerosols at a soil cleanup site on Johnston Atoll

    SciTech Connect

    Shinn, J.H.; Fry, C.O.; Johnson, J.S.

    1996-01-23

    Suspended plutonium in air was monitored for four periods near the operation of a stationary sorting system used to {open_quotes}mine{close_quotes} contaminated soil on Johnston Atoll. The monitoring periods were 14 October-14 November 1992, 20 October-15 November 1993, 16 August-3 November 1994, and 17 February-27 February 1995. Pairs of high volume air samplers were located at each of four locations of the process stream: the {open_quotes}spoils pile{close_quotes} that was the feedstock, the {open_quotes}plant area{close_quotes} near the hot soil gate of the sorter, the {open_quotes}clean pile{close_quotes} conveyer area where sorted clean soil was moved, and the {open_quotes}oversize soil{close_quotes} crushing area. These locations were monitored only during the working hours, while air monitoring was also done at an upwind, {open_quotes}background{close_quotes} area 24-hours per day. The median concentrations of Pu in {open_quotes}workplace{close_quotes} air (combined spoils pile, plant area, and clean pile sites) in 1992 was 397 aCi/m{sup 3} (15 {mu}Bq/m{sup 3}), but increased to median values of 23000 aCi/m{sup 3} (852 {mu}Bq/m{sup 3}) in August-November 1994 and 29800 aCi/m{sup 3} (1100 {mu}Bq/m{sup 3}) in February 1995. The highest median value at the worksites (29800 aCi/m{sup 3}) was more than 200 times lower than the regulatory level. The highest observed value was 84200 aCi/m{sup 3} at the spoils pile site, and this was more than 70 times lower than the regulatory level. The conclusion was that, in spite of the dusty environment, and the increased level of specific activity, we did not find that the soil processing posed any significant risk to workers during the observation periods 1992-1995.

  5. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories. PMID:26133876

  6. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  7. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    SciTech Connect

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  8. A telemedicine instrument for Internet-based home monitoring of thoracoabdominal motion in patients with respiratory diseases

    NASA Astrophysics Data System (ADS)

    da Silva Junior, Evert Pereira; Esteves, Guilherme Pompeu; Dames, Karla Kristine; Melo, Pedro Lopes de

    2011-01-01

    Changes in thoracoabdominal motion are highly prevalent in patients with chronic respiratory diseases. Home care services that use telemedicine techniques and Internet-based monitoring have the potential to improve the management of these patients. However, there is no detailed description in the literature of a system for Internet-based monitoring of patients with disturbed thoracoabdominal motion. The purpose of this work was to describe the development of a new telemedicine instrument for Internet-based home monitoring of thoracoabdominal movement. The instrument directly measures changes in the thorax and abdomen circumferences and transfers data through a transmission control protocol/Internet protocol connection. After the design details are described, the accuracy of the electronic and software processing units of the instrument is evaluated by using electronic signals simulating normal subjects and individuals with thoracoabdominal motion disorders. The results obtained during in vivo studies on normal subjects simulating thoracoabdominal motion disorders showed that this new system is able to detect a reduction in abdominal movement that is associated with abnormal thoracic breathing (p < 0.0001) and the reduction in thoracic movement during abnormal abdominal breathing (p < 0.005). Simulated asynchrony in thoracoabdominal motion was also adequately detected by the system (p < 0.0001). The experimental results obtained for patients with respiratory diseases were in close agreement with the expected values, providing evidence that this instrument can be a useful tool for the evaluation of thoracoabdominal motion. The Internet transmission tests showed that the acquisition and analysis of the thoracoabdominal motion signals can be performed remotely. The user can also receive medical recommendations. The proposed system can be used in a spectrum of telemedicine scenarios, which can reduce the costs of assistance offered to patients with respiratory diseases.

  9. Stratospheric aerosol and gas experiment III (SAGE III) aerosol and trace gas measurements for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Zawodny, J. M.; Mauldin, L. E.; Mcmaster, L. R.

    1991-01-01

    The SAGE III instrument, the latest in a series of satellite-based instruments employing the self-calibrating solar occultation technique to monitor aerosols and trace gases in the atmosphere, and potential contributions to monitoring global change and other EOS objectives are described. Uses of these data are illustrated with SAGE I and II long-term ozone, aerosol, and water vapor data. The SAGE III instrument will improve the SAM II and SAGE data products with greater overall accuracy, and will provide the ability to extend these measurements over a greater height range. SAGE III will provide long-term self-calibrating global data sets from the midtroposphere to mesosphere, which will contribute greatly to the quantification and understanding of global change.

  10. Comparative Study of Aerosol and Cloud Detected by CALIPSO and OMI

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Torres, Omar; McCormick, M. Patrick; Smith, William; Ahn, Changwoo

    2012-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura Satellite detects the presence of desert dust and smoke particles (also known as aerosols) in terms of a parameter known as the UV Aerosol Index (UV AI). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission measures the vertical distribution of aerosols and clouds. Aerosols and clouds play important roles in the atmosphere and climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a very important task. This paper presents a comparative analysis of the CALIPSO Version 2 Vertical Feature Mask (VFM) product with the (OMI) UV Aerosol Index (UV AI) and reflectivity datasets for a full year of 2007. The comparison is done at regional and global scales. Based on CALIPSO arid OMI observations, the vertical and horizontal extent of clouds and aerosols are determined and the effects of aerosol type selection, load, cloud fraction on aerosol identification are discussed. It was found that the spatial-temporal correlation found between CALIPSO and OMI observations, is strongly dependent on aerosol types and cloud contamination. CALIPSO is more sensitivity to cloud and often misidentifies desert dust aerosols as cloud, while some small scale aerosol layers as well as some pollution aerosols are unidentified by OMI UV AI. Large differences in aerosol distribution patterns between CALIPSO and OMI are observed, especially for the smoke and pollution aerosol dominated areas. In addition, the results found a significant correlation between CALIPSO lidar 1064 nm backscatter and the OMI UV AI over the study regions.

  11. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; Stammes, P.

    2011-12-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud-free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressures contain information on aerosol layer pressure. For cloud-free scenes, the derived FRESCO cloud pressures are close to those of the aerosol layer for optically thick aerosols. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressures may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO cloud data and AAI, an estimate for the aerosol layer pressure can be given, which can be beneficial for aviation safety and operations in case of e.g. volcanic ash plumes.

  12. A multi-instrument approach to monitoring turbidity currents: Case study from the Squamish Delta, British Columbia (Canada)

    NASA Astrophysics Data System (ADS)

    Hage, Sophie; Cartigny, Matthieu; Clare, Michael; Talling, Peter; Sumner, Esther; Vardy, Mark; Hughes Clarke, John

    2016-04-01

    Turbidity currents are volumetrically the most important process for moving sediment in submarine environments. They may travel at high speeds, thereby posing a threat to important and expensive seafloor infrastructure. Despite their importance, we still know little about their flow dynamics because direct monitoring is challenging and consequently rare. Additionally, the few settings in which monitoring has been feasible, have generally involved a single instrument approach, either measuring flow velocity, sediment concentration or grain size. Here we present results issued from a multi-instrument study where a single turbidity current was observed with several instruments at the same location and time using different measuring frequencies. Three types of geophysical sensors were deployed from a single vessel moored over a turbidity current channel on the Squamish Delta in British Colombia, Canada. First, two 500 kHz multibeam sonars suspended from the bow of the ship imaged the incoming turbidity current and documented its interaction with the crescentic bedforms on the channel thalweg. Second, a 600 kHz downward-looking Acoustic Doppler Current Profiler (ADCP) lowered from the back of the ship provided vertical profiles of velocity through time. Third, a 1.0-24.0 kHz Chirp profiler enabled for the first time imaging of the dense near-bed zone of the turbidity current, which has so far been largely impenetrable using higher frequency sonar and ADCP instruments. Besides the stationary deployment, a repetitive multibeam survey was also performed using a moving vessel in order monitor temporal evolution of the seafloor morphology resulting from turbidity currents. By combining the measurements from each system, a single turbidity current was characterised in unusually high resolution. This current was 6 to 8 meters thick and at least 40 meters wide according to the multibeam sonars. The ADCP measured a front speed of around 1.5 m/s, higher than the internal

  13. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman.

    PubMed

    Nawahda, Amin

    2015-08-01

    Ground level ozone (O3) concentrations were measured across Sohar highway in Oman during a four-month period from September to December 2014 by using an open-path deferential optical absorption spectroscopy (DOAS) instrument. The monthly average concentrations of O3 varied from 19.6 to 29.4 ppb. The measurements of O3 are compared with the measurements of a non-open-path UV photometry analyzer (UVP). The percent difference (PD) concept and linear regression methods were used to compare the readings of the two instruments. The findings show high correlation coefficients between the measurements of the DOAS and UVP instruments. The DOAS measurements of O3 are found to be less than those measured by the UVP instrument; the correlation coefficients between absolute PD values and meteorological parameters and PM2.5 were very low indicating a minor effect; therefore, titrations of O3 by traffic emissions and difference in elevation could be the reason for the difference in the measurements of the two instruments. PMID:26138853

  14. Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product

    NASA Astrophysics Data System (ADS)

    Arvani, Barbara; Pierce, R. Bradley; Lyapustin, Alexei I.; Wang, Yujie; Ghermandi, Grazia; Teggi, Sergio

    2016-09-01

    In this work, the new 1 km-resolved Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is employed to characterize seasonal PM10 - AOD correlations over northern Italy. The accuracy of the new dataset is assessed compared to the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data, retrieved at 0.55 μm with spatial resolution of 10 km (MYD04_L2). We focused on evaluating the ability of these two products to characterize both temporal and spatial distributions of aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, spread across northern Italy, during a three-year period from 2010 to 2012. The Po Valley area (northern Italy) was chosen as the study domain because of its severe urban air pollution, resulting from it having the highest population and industrial manufacturing density in the country, being located in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found that the global correlations between the bin-averaged PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 and for MAIAC, respectively, suggesting a greater sensitivity of the high-resolution product to small-scale deviations. However, the introduction of Relative Humidity (RH) and Planetary Boundary Layer (PBL) depth corrections allowed for a significant improvement to the bin-averaged PM - AOD correlation, which led to a similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 values. The study allowed us to define four seasonal linear correlations that estimate PM10 concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the results show that

  15. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSm) and a multi-wavelength Aethalometer

    NASA Astrophysics Data System (ADS)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2014-09-01

    Aerosol Mass Spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaign. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artefact-free chemical information but for low-cost, and to perform robust monitoring over long-term period. When deployed in parallel with real-time Black Carbon (BC) measurements, the combined dataset allows for a quasi-comprehensive description of the whole PM1 fraction in near real-time. Here we present a 2 year long ACSM and BC datasets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite being representative of background PM levels of the region of Paris. This large dataset shows intense and time limited (few hours) pollution events observed during wintertime in the region of Paris pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2 year dataset for the major PM1 constituents (organic matter, nitrate, sulphate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions which information are mandatory for efficient mitigation strategies. While ammonium sulphate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but less expected, it also exhibits a significant contribution of regional and local emissions. Contribution of regional background OA is significant in spring and summer while a more pronounced local origin is evidenced during wintertime which pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main parameters controlling their temporal

  16. Space Weather Monitors -- A Global Education and Small Instruments Program for the IHY 2007

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Mitchell, R.; Cohen, M.; Clark, W.; Styner, R.; Roche, A.; Scherrer, P.; Inan, U.; Lee, S.; Winegarden, S.; Tan, J.; Khanal, S.

    2005-12-01

    Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students around the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a receiver to monitor the signal strength from distant VLF transmitters, and noting unusual changes as the waves bounce off the ionosphere. Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive ionospheric disturbance monitors that students can install and use at their local schools. Students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis is handled by a local PC. Stanford is providing a centralized data repository where students can exchange and discuss data. Two versions of the monitors exist -- a low-cost version (nicknamed "SID") designed to detect solar flares, and a more sensitive version ("AWESOME") that provides both solar and nighttime research-quality data. Both monitors are currently being placed in high schools and community colleges around the US. Students will have the opportunity to work with a researcher "mentor" to collect and interpret data. Our space weather monitors have been chosen as educational and small intruments projects for deployment to 191 countries around the world for the International Heliophysical Year, 2007. Our presentation will focus on the educational aspects of the Space Weather Monitor program.

  17. Improving retrievals of regional fine particulate matter concentrations from moderate resolution imaging spectroradiometer (MODIS) and ozone monitoring instrument (OMI) multisatellite observations.

    PubMed

    Strawa, A W; Chatfield, R B; Legg, M; Scarnato, B; Esswein, R

    2013-12-01

    A combination of multiplatform satellite observations and statistical data analysis are used to improve the correlation between estimates of PM2.5 (particulate mass with aerodynamic diameter less that 2.5 microm) retrieved from satellite observations and ground-level measured PM2.5. Accurate measurements of PM2.5 can be used to assess the impact of air pollution levels on human health and the environment and to validate air pollution models. The area under study is California's San Joaquin Valley (SJV) that has a history of poor particulate air quality. Attempts to use simple linear regressions to estimate PM2.5 from satellite-derived aerosol optical depth (AOD) have not yielded good results. The period of study for this project was from October 2004 to July 2008 for six sites in the SJV. A simple linear regression between surface-measured PM2.5 and satellite-observed AOD (from MODIS [Moderate Resolution Imaging Spectroradiometer]) yields a correlation coefficient of about 0.17 in this region. The correlation coefficient between the measured PM2.5 and that retrieved combining satellite observations in a generalized additive model (GAM) resulted in an improved correlation coefficient of 0.77. The model used combinations of MODIS AOD, OMI (Ozone Monitoring Instrument) AOD, NO2 concentration, and a seasonal variable as parameters. Particularly noteworthy is the fact that the PM2.5 retrieved using the GAM captures many of the PM2.5 exceedances that were not seen in the simple linear regression model. PMID:24558706

  18. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  19. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    NASA Astrophysics Data System (ADS)

    Coggiola, M. J.

    1993-04-01

    SRI International will develop a unique new instrument that will be capable of providing real-time (less than one minute), quantitative, chemical characterization of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument will be capable of detecting and identifying volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup activities. The instrument will be unique in its ability to detect and quantify in real-time these diverse pollutants in both vapor and particulate form. The instrument to be developed under this program will consist of several major components: an isokinetic sampler capable of operating over a wide range of temperatures (up to 500 K) and flow rates; a high pressure to low pressure transition and sampling region that efficiently separates particles from vapor-phase components for separate, parallel analyses; two small mass spectrometers, one optimized for organic analysis using a unique field ionization source and one optimized for particulate characterization using thermal pyrolysis and electron-impact ionization (EI); and a powerful personal computer for control and data acquisition.

  20. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with Method 21 of appendix A of 40 CFR part 60, except as otherwise provided in this section. (2... section, the detection instrument shall meet the performance criteria of Method 21 of appendix A of 40 CFR... use by the procedures specified in Method 21 of appendix A of 40 CFR part 60. (4) Detection...

  1. 40 CFR 63.1023 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... comply with Method 21 of 40 CFR part 60, appendix A, except as otherwise provided in this section. (2... section, the detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  2. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with Method 21 of appendix A of 40 CFR part 60, except as otherwise provided in this section. (2... section, the detection instrument shall meet the performance criteria of Method 21 of appendix A of 40 CFR... use by the procedures specified in Method 21 of appendix A of 40 CFR part 60. (4) Detection...

  3. 40 CFR 63.1023 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... comply with Method 21 of 40 CFR part 60, appendix A, except as otherwise provided in this section. (2... section, the detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  4. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  5. 40 CFR 63.1023 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section, the detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60... comply with Method 21 of 40 CFR part 60, appendix A, except as otherwise provided in this section. (2... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  6. 40 CFR 63.1023 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section, the detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60... comply with Method 21 of 40 CFR part 60, appendix A, except as otherwise provided in this section. (2... calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part...

  7. Plots of ground coverage achieveable by global change monitoring instruments and spacecraft

    NASA Technical Reports Server (NTRS)

    Knight, Heather R.; Foernsler, Lynda

    1991-01-01

    Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) satellite plots are given. All satellites are in an 800 km circular orbit at an inclination of 98.6 deg (sun synchronous). Specifics of the instrument package are given. Additionally, the time period of the plot and the percentage of the Earth covered during the time period are listed.

  8. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with Method 21 of appendix A of 40 CFR part 60, except as otherwise provided in this section. (2... section, the detection instrument shall meet the performance criteria of Method 21 of appendix A of 40 CFR... use by the procedures specified in Method 21 of appendix A of 40 CFR part 60. (4) Detection...

  9. ONLINE WATER MONITORING UTILIZING AN AUTOMATED MICROARRAY BIOSENSOR INSTRUMENT - PHASE I

    EPA Science Inventory

    Constellation Technology Corporation (Constellation) proposes the use of an integrated recovery and detection system for online water supply monitoring.  The integrated system is designed to efficiently capture and recover pathogens such as bacteria, viruses, parasites, an...

  10. Analysis of Instrumentation to Monitor the Hydrologic Performance of Green Infrastructure at the Edison Environmental Center

    EPA Science Inventory

    Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture and water level sensors to monitor surface infiltration and infiltration into the underlying soil for per...

  11. Distributing space weather monitoring instruments and educational materials worldwide for IHY 2007: The AWESOME and SID project

    NASA Astrophysics Data System (ADS)

    Scherrer, Deborah; Cohen, Morris; Hoeksema, Todd; Inan, Umran; Mitchell, Ray; Scherrer, Philip

    2008-12-01

    The International Heliophysical Year (IHY) aims to advance our understanding of the fundamental processes that govern the Sun, Earth, and heliosphere. The IHY Education and Outreach Program is dedicated to inspiring the next generation of space and Earth scientists as well as spreading the knowledge, beauty, and relevance of our solar system to the people of the world. In our Space Weather Monitor project we deploy a global network of sensors to high schools and universities to provide quantitative diagnostics of solar-induced ionospheric disturbances, thunderstorm intensity, and magnetospheric activity. We bring real scientific instruments and data in a cost-effective way to students throughout the world. Instruments meet the objectives of being sensitive enough to produce research-quality data, yet inexpensive enough for placement in high schools and universities. The instruments and data have been shown to be appropriate to, and usable by, high school age and early university students. Data contributed to the Stanford data center is openly shared and partnerships between groups in different nations develop naturally. Students and teachers have direct access to scientific expertise. The result is a world-wide collaboration of scientists, teachers, and students to investigate the variability of the ionosphere. The research-quality AWESOME (Atmospheric Weather Electromagnetic System of Observation, Modeling, and Education) instruments have been selected as a participating program by the United Nations Basic Space Science Initiative (UNBSSI). The IHY Committee for International Education and Public Outreach has designated the simpler SID (Sudden Ionospheric Disturbance) monitors to be provided to teacher/student teams in each of the 192 countries of the world.

  12. Global Retrieval of BrO, HCHO, and OClO for the EOS--Aura Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Kurosu, T. P.; Chance, K.

    2003-12-01

    The Ozone Monitoring Instrument (OMI) is scheduled for launch on the EOS--Aura platform in March 2004. OMI is a nadir viewing UV/Vis instrument observing continuously from 270 to 500 nm, and thus similar to the European Space Agency's Global Ozone Monitoring Experiment (GOME), from which it derives much of its heritage. Compared to GOME, OMI has about 3--5 times coarser spectral resolution but a more than 40 times smaller ground footprint of 13x24 km2, and it achieves global coverage within one day. Stratospheric bromine oxide (BrO) and chlorine dioxide (OClO) are key elements in the destruction of stratospheric ozone and the formation of the Antarctic ozone hole; in the troposphere, BrO is released from the snow and ice-pack during high-latitude Spring. Tropospheric formaldehyde (HCHO), a volatile organic compound (VOC), is an indicator of isoprene emissions and a byproduct of forest fires; it is a key measure for air quality determination from space. We present results from the operational algorithms for BrO, HCHO, and OClO, as well as auxiliary retrievals of ozone, which we are currently developing for OMI. Global retrievals of BrO and HCHO, and OClO within the polar vortex, have been performed by applying the OMI algorithms to existing GOME data. The trace gas algorithms developed for OMI are scientifically mature since they are able to fully exploit their heritage from GOME. Key elements in the retrieval are the non-linear least squares minimization procedure to derive trace gas slant columns and the conversion from slant to vertical columns using cloud information and a shape factor analysis. This poster demonstrates the capabilities of atmospheric chemistry monitoring with the OMI instrument.

  13. Fast solar wind measurements from the Bright Monitor of the Solar Wind instrument on Spektr-R

    NASA Astrophysics Data System (ADS)

    Zerbo, J. L.; Safrankova, J.; Nemecek, Z.; Zastenker, G. N.; Kasper, J. C.; Stevens, M. L.; Richardson, J. D.

    2014-12-01

    Fast solar wind measurements from the Bright Monitor of the Solar Wind instrumentonboard the Spektr-R spacecraft are presented. This instrument measures plasmaparameters with time resolution as high as 30 ms. These measurements provide a preview of what the fast Faraday cup detectors on Triana and Solar Probe Plus will observe. We will compare solar wind structures observed at Spektr-R at high time-resolution with lower cadence observations from Wind. We will describe the small-scale plasma parameters in these solar wind structures.

  14. Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques.

    PubMed

    Smichowski, Patricia; Gómez, Dario R; Dawidowski, Laura E; Giné, María Fernanda; Bellato, Ana Claudia Sánchez; Reich, Silvia L

    2004-04-01

    A study was undertaken, within the framework of a 3 years national project, to assess the content of 13 elements in airborne particulate matter collected in representative zones of the metropolitan area of Buenos Aires. The sampling strategy followed consisted in collecting simultaneously 67 samples of PM10 particulate matter in 9 sampling sites covering an area of about 30 km2 during one week. The collection was performed on ash-free fibre-glass filters using high volume samplers. A combination of aqua regia and perchloric acid was used for leaching metals from filters. Key elements, namely Al, Ca, Cu, Fe, Mn, Mo, Ni, Pb, S, Sb, Sn, Zn and Zr, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at micro g g(-1) and ng g(-1) levels. Analyte concentration varied from 130 ng g(-1)(Mo) to over 30%(Ca). Multivariate statistical analysis was performed on the data set including the measured elemental compositions for the monitored period. The atmospheric concentration found for Pb confirms the decreasing levels of this element since the introduction of unleaded gasoline in 1995: 88 ng m(-3)(2001) < 220 ng m(-3)(1997) < 3900 ng m(-3)(1994). The average S concentration above 3 microg m(-3) is somehow unexpectedly high for Buenos Aires since the relatively low S content of liquid fuels and the massive usage of natural gas imply low emissions of this element from combustion activities. To the best of our knowledge, S concentrations are reported for the first time for this city. PMID:15054536

  15. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  16. The modern instrumentation used for monitoring and controlling the main parameters of the regenerative electro-mechano-hydraulic drive systems

    NASA Astrophysics Data System (ADS)

    Cristescu, Corneliu; Drumea, Petrin; Krevey, Petrica

    2009-01-01

    In this work is presented the modern instrumentation used for monitoring and controlling the main parameters for one regenerative drive system, used to recovering the kinetic energy of motor vehicles, lost in the braking phase, storing and using this energy in the starting or accelerating phases. Is presented a Romanian technical solution for a regenerative driving system, based on a hybrid solution containing a hydro-mechanic module and an existing thermal motor drive, all conceived as a mechatronics system. In order to monitoring and controlling the evolution of the main parameters, the system contains a series of sensors and transducers that provide the moment, rotation, temperature, flow and pressure values. The main sensors and transducers of the regenerative drive system, their principal features and tehnical conecting solutions are presented in this paper, both with the menaging electronic and informational subsystems.

  17. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-02-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider one week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  18. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-07-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider 1 week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  19. Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries

    SciTech Connect

    Bamberger, Judith A.; Enderlin, Carl W.

    2013-11-15

    Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.

  20. Point-of-care instrument for monitoring tissue health during skin graft repair

    NASA Astrophysics Data System (ADS)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  1. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring.

    PubMed

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-01-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than -15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than -30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393

  2. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring

    PubMed Central

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-01-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than −15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than −30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393

  3. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  4. Process monitoring and control with CHEMIN, a miniaturized CCD-based instrument for simultaneous XRD/XRF analysis

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Bish, D.; Guthrie, G.; Chipera, S.; Blake, David E.; Collins, S. Andy; Elliott, S. T.; Sarrazin, P.

    1999-10-01

    There is a large variety of mining and manufacturing operations where process monitoring and control can benefit from on-site analysis of both chemical and mineralogic constituents. CHEMIN is a CCD-based instrument capable of both X-ray fluorescence (XRF; chemical) and X-ray diffraction (XRD; mineralogic) analysis. Monitoring and control with an instrument like CHEMIN can be applied to feedstocks, intermediate materials, and final products to optimize production. Examples include control of cement feedstock, of ore for smelting, and of minerals that pose inhalation hazards in the workplace. The combined XRD/XRF capability of CHEMIN can be used wherever a desired commodity is associated with unwanted constituents that may be similar in chemistry or structure but not both (e.g., Ca in both gypsum and feldspar, where only the gypsum is desired to make wallboard). In the mining industry, CHEMIN can determine mineral abundances on the spot and enable more economical mining by providing the means to assay when is being mined, quickly and frequently, at minimal cost. In manufacturing, CHEMIN could be used to spot-check the chemical composition and crystalline makeup of a product at any stage of production. Analysis by CHEMIN can be used as feedback in manufacturing processes where rates of heating, process temperature, mixture of feedstocks, and other variables must be adjusted in real time to correct structure and/or chemistry of the product (e.g., prevention of periclase and alkali sulfate coproduction in cement manufacture).

  5. Implementation of an Integrated, Portable Transformer Condition Monitoring Instrument in the Classroom and On-Site

    ERIC Educational Resources Information Center

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2010-01-01

    The development of integrated, portable, transformer condition monitoring (TCM) equipment for classroom demonstrations as well as for student exercises conducted in the field is discussed. Demonstrations include experimentation with real-world transformers to illustrate concepts such as polarization and depolarization current through oil-paper…

  6. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    S