Science.gov

Sample records for aerosol monitoring station

  1. The new Mediterranean background monitoring station of Ersa, Cape Corsica: A long term Observatory component of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)

    NASA Astrophysics Data System (ADS)

    Dulac, Francois

    2013-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) is a French initiative supported by the MISTRALS program (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The major stake is an understanding of the future of the Mediterranean region in a context of strong regional anthropogenic and climatic pressures. The target of ChArMEx is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry. In order to fulfill these objectives, important efforts have been put in 2012 in order to implement the infrastructure and instrumentation for a fully equipped background monitoring station at Ersa, Cape Corsica, a key location at the crossroads of dusty southerly air masses and polluted outflows from the European continent. The observations at this station began in June 2012 (in the context of the EMEP / ACTRIS / PEGASOS / ChArMEx campaigns). A broad spectrum of aerosol properties is also measured at the station, from the chemical composition (off-line daily filter sampling in PM2.5/PM10, on-line Aerosol Chemical Speciation Monitor), ground optical properties (extinction/absorption/light scattering coeff. with 1-? CAPS PMex monitor, 7-? Aethalometer, 3-? Nephelometer), integrated and vertically resolved optical properties (4-? Cimel sunphotometer and LIDAR, respective), size distribution properties (N-AIS, SMPS, APS, and OPS instruments), mass (PM1/PM10 by TEOM/TEOM-FDMS), hygroscopicity (CCN), as well as total insoluble deposition. So far, real-time measurement of reactive gases (O3, CO, NO, NO2), and off-line VOC measurements (cylinders, cartridges) are also

  2. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  3. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  4. Inter-annual and seasonal variability of the diurnal behavior of aureole scattering phase function at the aerosol monitoring station of LOA IAO SB RAS in 2010-2014

    NASA Astrophysics Data System (ADS)

    Polkin, Vas. V.; Polkin, Vic. V.

    2015-11-01

    Inter-annual and seasonal variability of diurnal variations of the aureole scattering phase functions is analyzed. The data obtained by means of the completely automated aureole photometer with a closed scattering volume. Regular round-the-clock hourly measurements of the aureole scattering phase function were carried out in 2010-2014 at the Aerosol monitoring station of LOA IAO SB RAS in the region of scattering angles φ = 1.2 - 20° at the wavelength of 650 nm.

  5. DGPS ground station integrity monitoring

    NASA Technical Reports Server (NTRS)

    Skidmore, Trent A.; Vangraas, Frank

    1995-01-01

    This paper summarizes the development of a unique Differential Global Positioning System (DGPS) ground station integrity monitor which can offer improved availability over conventional code-differential monitoring systems. This monitoring technique, called code/carrier integrity monitoring (CCIM), uses the highly stable integrated Doppler measurement to smooth the relatively noisy code-phase measurements. The pseudorange correction is therefore comprised of the integrated Doppler measurement plus the CCIM offset. The design and operational results of a DGPS ground station integrity monitor are reported. A robust integrity monitor is realized which is optimized for applications such as the Special Category I (SCAT-I) defined in the RTCA Minimum Aviation System Performance Standards.

  6. Space Station atmospheric monitoring systems.

    PubMed

    Buoni, C; Coutant, R; Barnes, R; Slivon, L

    1988-05-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs. PMID:11542838

  7. Space Station atmospheric monitoring systems

    NASA Technical Reports Server (NTRS)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    1988-01-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  8. Timber Mountain Precipitation Monitoring Station

    SciTech Connect

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  9. Three years of operational experience from Schauinsland CTBT monitoring station.

    PubMed

    Zähringer, M; Bieringer, J; Schlosser, C

    2008-04-01

    Data from three years of operation of a low-level aerosol sampler and analyzer (RASA) at Schauinsland monitoring station are reported. The system is part of the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The fully automatic system is capable to measure aerosol borne gamma emitters with high sensitivity and routinely quantifies 7Be and 212Pb. The system had a high level of data availability of 90% within the reporting period. A daily screening process rendered 66 tentative identifications of verification relevant radionuclides since the system entered IMS operation in February 2004. Two of these were real events and associated to a plausible source. The remaining 64 cases can consistently be explained by detector background and statistical phenomena. Inter-comparison with data from a weekly sampler operated at the same station shows instabilities of the calibration during the test phase and a good agreement since certification of the system. PMID:18053622

  10. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    NASA Technical Reports Server (NTRS)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  11. Investigation of atmospheric aerosols and gases at an East China Station. Technical memo

    SciTech Connect

    Parungo, F.; Nagamoto, C.; Kopcewicz, B.; Li, X.; Yang, D.

    1993-04-01

    From August to October of 1991, when the West Pacific Exploratory Mission (PEM-west) airborne expedition was conducted, ground-level measurements of gases and aerosols were carried out at Lin-an station near the east coast of China. Meteorological parameters such as temperature, pressure, humidity, solar radiation, wind direction, and wind speed were recorded continuously. Concentrations of SO[sub 2], NO[sub 2], O[sub 3], and black carbon were monitored in situ intermittently. Aerosol samples were collected and later analyzed in laboratories. A transmission electron microscope was used to analyze particle concentration, morphology, and size distribution. Elemental compositions of aerosol samples, collected on filters, were determined with an neutron activation analyzer and with a proton induced x-ray energy spectrometer. The water soluble portions of the aerosols were analyzed by ion chromatography.

  12. GSFC contamination monitors for Space Station

    NASA Technical Reports Server (NTRS)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  13. The Stratospheric Aerosol and Gas Experiment III - International Space Station: Extending Long-Term Ozone and Aerosol Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M.; Gasbarre, J.; Flittner, D. E.; Hill, C.; Roell, M.; Moore, J. R.; Hernandez, G.; McCormick, M. P.

    2013-12-01

    The Stratospheric Aerosol and Gas Experiment III - International Space Station (SAGE III on ISS) will extend the global measurements of vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases begun with SAGE I in 1979, enabling the detection of long-term trends. SAGE III on ISS is the fourth in a series of instruments developed for monitoring these constituents in the stratosphere and troposphere. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm, using the heritage occultation technique, utilizing both the sun and the moon. Launch to ISS is planned for early 2015 aboard a Falcon 9 spacecraft. SAGE III will investigate the spatial and temporal variability of the measured species in order to determine their role in climatological processes, biogeochemical cycles, the hydrologic cycle, and atmospheric chemistry. It will characterize tropospheric, as well as stratospheric aerosols and upper tropospheric and stratospheric clouds, and investigate their effects on the Earth's environment including radiative, microphysical, and chemical interactions. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Amongst its key objectives will be to assess the state of the recovery in the distribution of ozone, to reestablish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The ISS is ideal for Earth observing experiments; its mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. In this presentation, we describe the SAGE III on ISS mission, its implementation, current status, and concentrate on its key science objectives.

  14. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  15. LOCATING MONITORING STATIONS IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water undergoes changes in quality between the time it leaves the treatment plant and the time it reaches the customer's tap, making it important to select monitoring stations that will adequately monitor these changers. But because there is no uniform schedule or framework for ...

  16. Environmental monitoring for Space Station WP01

    NASA Technical Reports Server (NTRS)

    Zwiener, J. M.

    1988-01-01

    External contamination monitoring instrumentation for the Space Station work package one (WP01) elements, were imposed on the contractor as deliverable hardware. The monitoring instrumentation proposed by the WP01 contractor in response to the contract requirement includes both real time measurements and passive samples. Real time measurement instrumentation consists of quartz crystal microbalances for molecular deposition, ion gaseous species identification. Internal environmental contamination monitoring for particulates is included in both Lab and HAB modules. Passive samples consists of four sample mounting plates mounted external to the Space Station modules, two on the U.S. LAB, and two on the HAB module.

  17. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  18. Lidar monitoring of atmospheric ozone and aerosol

    NASA Astrophysics Data System (ADS)

    Chudzynski, Stanislaw; Czyzewski, A.; Ernst, Krzysztof; Skubiszak, Wojciech; Stacewicz, Tadeusz; Stelmaszczyk, K.; Szymanski, Artur

    2000-11-01

    The growth of aerosol and ozone concentrations in the troposphere stimulates development of monitoring techniques allowing their detection. DIAL (Differential Absorption Lidar) is one of the most promising methods. It allows the remote measurements of selected pollutants within the range of few kilometers and with spatial resolution of few meters. We introduce the basic principles of the DIAL method and describe shortly our mobile lidar system. We present and comment selected registrations of ozone and aerosol concentration distributions obtained during summer field campaigns of 1997 and 1998.

  19. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science

  20. Monitoring biological aerosols using UV fluorescence

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  1. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  2. LESSONS LEARNED IN AEROSOL MONITORING WITH THE RASA

    SciTech Connect

    Forrester, Joel B.; Bowyer, Ted W.; Carty, Fitz; Comes, Laura; Eslinger, Paul W.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Kirkham, Randy R.; Lepel, Elwood A.; Litke, Kevin E.; Miley, Harry S.; Morris, Scott J.; Schrom, Brian T.; Van Davelaar, Peter; Woods, Vincent T.

    2011-09-14

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory (PNNL) in the 1990's and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The RASA operates unattended, save for regularly scheduled maintenance, iterating samples through a three-step process on a 24-hour interval. In its 15-year history, much has been learned from the operation and maintenance of the RASA that can benefit engineering updates or future aerosol systems. On 11 March 2011, a 9.0 magnitude earthquake and tsunami rocked the eastern coast of Japan, resulting in power loss and cooling failures at the Daiichi nuclear power plants in Fukushima Prefecture. Aerosol collections were conducted with the RASA in Richland, WA. We present a summary of the lessons learned over the history of the RASA, including lessons taken from the Fukushima incident, regarding the RASA IMS stations operated by the United States.

  3. Aerosol monitoring program in Hong Kong

    SciTech Connect

    Lei, Heng-Chi; Tanner, P.A.

    1996-12-31

    The control of suspended particulate matter in the Hong Kong environment is currently an important issue, and in December 1995 a diesel-petrol switch plan was voted down by legislators. PM10 have been monitored at 5-minute intervals for the past year at rooftop level in central Kowloon, Hong Kong, together with selected measurements of TSP. Wind speed, wind direction, and the concentrations of SO{sub 2}, NO, NO{sub 2} and O{sub 3} have also been monitored. Measurements are currently in progress of relative contributions of the small particles (nominal aerodynamic diameter 0.3-2.5 gm), as well as of the PM{sub 10} fraction, to the total aerosol content, using two TEOMS. The chemical nature of selected different aerosol size fractions is also under investigation. Aerosol concentration exhibits a marked seasonal trend, being lower in the wet summer than in the dry winter. The diurnal variation shows two peaks which are linked to anthropogenic actions. Our measurements will be compared with the newly-established AQI of the Hong Kong EPD.

  4. Measurements of trace gas species and aerosols at three Siberian stations

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Davydov, Denis K.; Kozlov, Artem V.; Ivlev, Georgii A.; Pestunov, Dmitrii A.; Tolmachev, Gennadii N.; Fofonov, Alexander V.

    2014-05-01

    Siberia is of great importance to understand the climate change due to it covers about 10% of Earth's land surface and it has the largest area to be studied under the Pan-Eurasian Experiment (PEEX). In the overview done by Kulmala et al. (2011) authors arrived at a conclusion that continuous and comprehensive measurements of GHGs and aerosols over Siberia are still lacking. Understanding the importance of this problem, in recent years the Institute of Atmospheric Optics SB RAS established several monitoring stations for continuous measurements of aerosol and trace gas species to fill up this gap. In this paper we present some results of continuous measurements of trace gas species and aerosols carried out at three stations located in West Siberia. The first one is a so-called TOR-station located in the scientific campus of Tomsk (56° 28'41"N, 85° 03'15"E), the second one is the Base Experimental Complex (BEC, 56° 28'49"N, 85° 06'08"E) - in the eastern suburbs of Tomsk, and the third one is Fonovaya Observatory (56° 25'07"N, 84° 04'27"E) - in a rural area 60 km west of Tomsk. All equipment of the stations is fully automated and can be monitored via Internet. Gas analyzers are hourly calibrated against standard gas mixtures, micro-flux gas sources, or gas generators, depending on the instrument type and the gas to be detected. Aerosol measurements carried out continuously from March 2010 enabled a frequency and seasonal dependency of the new particle formation (NPF) events to be revealed. NPF events in Siberia are more often observed during spring (from March to May) and early autumn (secondary frequency peak in September). On average, NPF evens took place on 23-28 % of all days. This work was funded by Presidium of RAS (Program No. 4), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5), Interdisciplinary integration projects of Siberian Branch of RAS (No. 35, No. 70, No. 131), Russian Foundation for Basic Research (grants No 14

  5. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  6. Aerosol Monitoring Mission using an Advanced Nanosatellite

    NASA Astrophysics Data System (ADS)

    Pranajaya, Freddy; Zee, Robert E.

    The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) is currently developing a nanosatellite for the purpose of monitoring aerosol content in the atmosphere. The NEMO-AM (Nanosatellite for Earth Monitoring and Observation -Aerosol Monitoring) spacecraft is designed to perform multi-angle, dual-polarization observa-tions in three visible bands. The satellite is designed to detect aerosol content in the atmosphere over a specific region with a nominal ground resolution of up to 200 m and a minimum swath of 120 km. NEMO-AM is being built under a collaborative agreement between SFL and the Indian Space Research Organization (ISRO). SFL is responsible for the design, manufacturing and qualification of the spacecraft and the optical instrument. The NEMO-AM is based on the NEMO bus, which is the next evolution to the SFL Generic Nanosatellite Bus (GNB) technology. The NEMO bus has a primary structure measuring 20 cm by 20 cm by 40 cm and is capable of peak power generation up to 80W. A minimum of 30W is available to the payload. The high peak power generation enables the NEMO bus to support a dedicated state-of-the-art high speed transmitter. The NEMO bus is designed with a total mass of 15 kg, 9 kg of which is dedicated to the payload. It can be configured for full three-axis control with up to 1 arcmin pointing stability. NEMO spacecraft will be secured to launch vehicles using the XPOD Duo separation system. This paper will summarize the NEMO-AM mission and the innovative aspects of the NEMO bus.

  7. DESIGN AND PERFORMANCE OF AN AEROSOL MASS DISTRIBUTION MONITOR

    EPA Science Inventory

    An aerosol mass monitor has been built to measure the masses of non-volatile aerosols in the range of 0.05 to 5 micrometers aerodynamic particle diameter. The instrument consists of a newly designed spiral duct aerosol centrifuge equipped with highly sensitive quartz sensors for ...

  8. Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2016-06-01

    This work presents a Scheimpflug lidar system which was employed for atmospheric aerosol monitoring in southern Sweden. Atmospheric aerosol fluctuation was observed around rush-hour. The extinction coefficient over 6 km was retrieved, i.e., 0.15 km-1, by employing the slop-method during the time when the atmosphere was relatively homogenous. The measurements successfully demonstrate the potential of using a Scheimpflug lidar technique for atmospheric aerosol monitoring applications.

  9. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  10. Alternatives for Laboratory Measurement of Aerosol Samples from the International Monitoring System of the CTBT

    NASA Astrophysics Data System (ADS)

    Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.

    2013-12-01

    The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.

  11. Precipitation effects on aerosol concentration in the background EMEP station of Zarra (Valencia), Spain

    NASA Astrophysics Data System (ADS)

    Calvo, Ana Isabel; San Martín, Isabel; Castro, Amaya; Alonso-Blanco, Elisabeth; Alves, Célia; Duarte, Márcio; Fernández-González, Sergio; Fraile, Roberto

    2014-05-01

    Aerosols and precipitation are closely related, presenting a bidirectional influence and constituting an important source of uncertainties on climate change studies. However, they are usually studied independently and in general are only linked to one another for the development or validation of cloud models. The primary and secondary pollutants may be removed by wet and dry deposition. Wet deposition, including in-cloud and below-cloud scavenging processes, can efficiently remove atmospheric aerosols and it is considered a critical process for determining aerosol concentrations in the atmosphere. In this study, aerosols and precipitation data from a background Spanish EMEP (Cooperative Programme for the Monitoring and Evaluation of Long Range Transmission of Air Pollutants in Europe) station located in Zarra, Valencia (Spain) were analyzed (1° 06' W and 39° 05' N, 885 m asl). The effect of precipitation on aerosol concentration was studied and the correlation between the intensity of precipitation and scavenging effect was investigated. In order to evaluate the effects of precipitation on different aerosol size ranges three different aerosol fractions were studied: PM10, PM10-2.5 and PM2.5. In order to eliminate the influence of the air mass changes, only the days in which the air mass of the precipitation day and the previous day had the same origin were considered. Thus, from a total of 3586 rainy days registered from March 2001 to December 2010, 34 precipitation days satisfied this condition and were analyzed. During the period of study, daily precipitation ranged between 0.2 and 28.8 mm, with a mean value of 4 mm. Regarding the origin of the air masses, those from west were dominant at the three height levels investigated (500, 1500 and 3000 m). In order to obtain additional information, aerosol and precipitation chemical composition were also studied in relation to the days of precipitation and the previous days. Furthermore, in order to identify the type

  12. GPS Monitor Station Upgrade Program at the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Galysh, Ivan J.; Craig, Dwin M.

    1996-01-01

    One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.

  13. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  14. Carbonaceous aerosols observed at Ieodo Ocean Research Station and implication for the role of secondary aerosols in fog formation

    NASA Astrophysics Data System (ADS)

    Han, J.; Shin, B.; Hwang, G.; Kim, J.; Lee, M.; Shim, J.

    2014-12-01

    Carbonaceous components and soluble ions of PM2.5 were measured at Ieodo Ocean Research Station (IORS) from December 2004 to June 2008. IORS is a 40-m research tower and located in the East China Sea (32.07°N, 125.10°E). As IORS is distanced equally from South Korea, China, and Japan, it is an ideal place to monitor Asian outflows with the least influence of local emissions. The mean concentration of PM2.5 mass was 21.8 ± 14.9 μg/m3 with the maximum of 35.3 μg/m3 (March) and the minimum of 11.2 μg/m3 (September). The monthly variation of PM2.5 mass was similar to that of O3 due to meteorological conditions, which determines the degree of influence from nearby lands. Chinese outflows were mostly responsible for the enhancement of mass and major constituents of PM2.5 such as sulfate, OC, and EC. Their concentrations were the lowest in summer when aged marine air masses were dominant. It is noteworthy that sulfate was also enhanced when air mass passed through Japan, even though its concentration was not as high as that of Chinese outflows. In June, OC concentration was distinctively high with high OC/EC ratio of ~9.5. At IORS, June is characterized by the most frequent occurrence of fog and the lowest visibility with the highest relative humidity. In China, the clearing fire of agricultural residues is the major source of fine aerosols in June, leading to severe haze (e.g., Cheng et al., 2014). In addition, the aerosol optical depth was also observed to be the maximum over northeast Asia in June (Kim et al., 2007). Consequently, our results suggest that organic aerosol played a critical role in fog formation in the study region. References Cheng, Z., et al. (2014) Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011, Atmos. Chem. Phys., 14, 4573-4585, doi:10.5194/acp-14-4573-2014. Kim, S.-W., et al. (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from

  15. Overview of the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Flittner, David; Pitts, Michael; Zawodny, Joe; Hill, Charles; Damadeo, Robert; Moore, Randy; Cisewski, Michael

    2012-07-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Avaiation and Space Agency (now known as Roskosmos) Meteor-3M (M3M) platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the International Space Station (ISS) in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observations in the second half of this decade. This exciting mission utilizes contributions from both the Science Mission Directorate and the Human Exploration and Operations Mission Directorate within the National Aeronautics and Space Administration and the European Space Agency to enable scientific measurements that will provide the basis for the analysis of five of the nine critical constituents identified in the U.S. National Plan for Stratospheric Monitoring. A related paper by Anderson et al. discusses the. Presented here is an overview of the mission architecture, its implementation and the data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water

  16. Microbial Monitoring of the International Space Station

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Botkin, Douglas J.; Bruce, Rebekah J.; Castro, Victoria A.; Smith, Melanie J.; Oubre, Cherie M.; Ott, C. Mark

    2013-01-01

    microbial growth. Air filtration can dramatically reduce the number of airborne bacteria, fungi, and particulates in spacecraft breathing air. Waterborne bacteria can be reduced to acceptable levels by thermal inactivation of bacteria during water processing, along with a residual biocide, and filtration at the point of use can ensure safety. System design must include onboard capability to achieve recovery of the system from contamination. Robust housekeeping procedures that include periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Food for consumption in space must be thoroughly tested for excessive microbial content and pathogens before launch. Thorough preflight examination of flight crews, consumables, payloads, and the environment can greatly reduce pathogens in spacecraft. Many of the lessons learned from the Space Shuttle and previous programs were applied in the early design phase of the International Space Station, resulting in the safest space habitat to date. This presentation describes the monitoring program for the International Space Station and will summarize results from preflight and on-orbit monitoring.

  17. Portable Multigas Monitors for International Space Station

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.; Ruff, Gary A.

    2011-01-01

    The Environmental Health System (EHS) on International Space Station (ISS) includes portable instruments to measure various cabin gases that acutely impact crew health. These hand-held devices measure oxygen, carbon dioxide, carbon monoxide, hydrogen chloride and hydrogen cyanide. The oxygen and carbon dioxide units also serve to back up key functions of the Major Constituent Analyzers. Wherever possible, commercial off-the-shelf (COTS) devices are employed by EHS to save development and sustaining costs. COTS hardware designed for general terrestrial applications however has limitations such as no pressure compensation, limited life of the active sensor, calibration drift, battery issues, unpredictable vendor support and obsolescence. The EHS fleet (inflight and ground inventory) of instruments is both aging and dwindling in number. With the retirement of the US Space Shuttle, maintenance of on-orbit equipment becomes all the more difficult. A project is underway to search for gas monitoring technology that is highly reliable and stable for years. Tunable Diode Laser Spectroscopy (TDLS) seems to be the front-runner technology, but generally is not yet commercially available in portable form. NASA has fostered the development of TDLS through the Small Business Innovative Research (SBIR) program. A number of gases of interest to the aerospace and submarine communities can be addressed by TDLS including the list mentioned above plus hydrogen fluoride, ammonia and water (humidity). There are several different forms of TDLS including photoacoustic and direct absorption spectroscopy using various multipass cell geometries. This paper describes the history of portable gas monitoring on NASA spacecraft and provides a status of the development of TDLS based instruments. Planned TDLS flight experiments on ISS could lead both to operational use on ISS and important roles in future Exploration spacecraft and habitats.

  18. Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station.

    PubMed

    Emetere, Moses Eterigho; Akinyemi, Marvel Lola; Akin-Ojo, Omololu

    2015-12-01

    The size characteristics of atmospheric aerosol over the tropical region of Lagos, Southern Nigeria were investigated using two years of continuous spectral aerosol optical depth measurements via the AERONET station for four major bands i.e. blue, green, red and infrared. Lagos lies within the latitude of 6.465°N and longitude of 3.406°E. Few systems of dispersion model was derived upon specified conditions to solve challenges on aerosols size distribution within the Stokes regime. The dispersion model was adopted to derive an aerosol size distribution (ASD) model which is in perfect agreement with existing model. The parametric nature of the formulated ASD model shows the independence of each band to determine the ASD over an area. The turbulence flow of particulates over the area was analyzed using the unified number (Un). A comparative study via the aid of the Davis automatic weather station was carried out on the Reynolds number, Knudsen number and the Unified number. The Reynolds and Unified number were more accurate to describe the atmospheric fields of the location. The aerosols loading trend in January to March (JFM) and August to October (ASO) shows a yearly 15% retention of aerosols in the atmosphere. The effect of the yearly aerosol retention can be seen to partly influence the aerosol loadings between October and February. PMID:26452005

  19. Monitoring real-time aerosol distribution in the breathing zone.

    PubMed

    Martinelli, C A; Harley, N H; Lippmann, M; Cohen, B S

    1983-04-01

    A prototype air sampling, data recording, and data retrieval system was developed for monitoring aerosol concentrations in a worker's breathing zone. Three continuous-reading, light-scattering aerosol monitors and a tape recorder were incorporated into a specially designed and fabricated backpack for detailed field monitoring of both temporal and spatial variability in aerosol concentrations within the breathing zone. The backpack was worn by workers in a beryllium refinery. The aerosol which passed through each monitor was collected on a back-up filter for later chemical analysis for Be and Cu. The aerosol concentrations were recorded on magnetic tape as a function of time. The recorded signals were subsequently transcribed onto a strip chart recorder, then evaluated using a microcomputer with graphics capability. Field measurements made of the aerosol concentration at the forehead, nose, and lapel of operators during the melting and casting of beryllium-copper alloy demonstrated that there is considerable variability in concentration at different locations within the breathing zone. They also showed that operations resulting in worker exposure can be identified, and the precise time and duration of exposure can be determined. PMID:6858855

  20. FERMENTATION PROCESS MONITORING THROUGH MEASUREMENT OF AEROSOL RELEASE

    EPA Science Inventory

    Fermentation involves many complex biological processes some of which are sometimes difficult to monitor. n this study, aerosol measurement was explored as an additional technique for monitoring a batch aerobic fermentation process using Escherichia coli strain W3110. sing this t...

  1. A rationale for atmospheric monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.; Russo, Dane M.

    1989-01-01

    The atmosphere monitoring needs for the Space Station Freedom are identified by examining the monitoring requirements for supplied breathing air in confined spaces, as in the case of submarines and the Shuttle. Some other factors influencing the monitoring requirements for Space Station Freedom are also identified. These include: the experience of past missions and ground based tests; the proposed experimental and manufacturing processes and their hazards; and limitations of the life support systems.

  2. Evaluation of the discmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols

    NASA Astrophysics Data System (ADS)

    Mills, Jessica Breyan

    This work evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103-104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (+/-35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present.

  3. Comparison of aerosol extinction between lidar and SAGE II over Gadanki, a tropical station in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Ramachandran, S.

    2015-03-01

    An extensive comparison of aerosol extinction has been performed using lidar and Stratospheric Aerosol and Gas Experiment (SAGE) II data over Gadanki (13.5° N, 79.2° E), a tropical station in India, following coincident criteria during volcanically quiescent conditions from 1998 to 2005. The aerosol extinctions derived from lidar are higher than SAGE II during all seasons in the upper troposphere (UT), while in the lower-stratosphere (LS) values are closer. The seasonal mean percent differences between lidar and SAGE II aerosol extinctions are > 100% in the UT and < 50% above 25 km. Different techniques (point and limb observations) played the major role in producing the observed differences. SAGE II aerosol extinction in the UT increases as the longitudinal coverage is increased as the spatial aerosol extent increases, while similar extinction values in LS confirm the zonal homogeneity of LS aerosols. The study strongly emphasized that the best meteorological parameters close to the lidar measurement site in terms of space and time and Ba (sr-1), the ratio between aerosol backscattering and extinction, are needed for the tropics for a more accurate derivation of aerosol extinction.

  4. Certification of U.S. International Monitoring System Stations

    SciTech Connect

    HERRINGTON,PRESTON B.; REMBOLD,RANDY K.; HARRIS,JAMES M.; KROMER,RICHARD P.

    2000-07-31

    All stations planned for the International Monitoring System (IMS) must be certified by the Provisional Technical Secretariat (PTS) prior to acceptance to ensure that the monitoring stations initially meet the required specifications. Working Group B of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty has established requirements for the quality, availability, and surety of data received at the International Data Centre (IDC). These requirements are verified by the PTS during a 3-component process that includes initial station assessment, testing and evaluation, and certification. Sandia National Laboratories has developed procedures, facilities, and tools that can be used to assist in evaluating IMS stations for compliance with certification requirements. System evaluation includes station design reviews, component testing, and operational testing of station equipment. Station design is evaluated for security and reliability considerations, and to ensure that operational procedures and documentation are adequate. Components of the station are tested for compliance with technical specifications, such as timing and noise levels of sampled data, and monitoring of tamper detection equipment. Data sent from the station in an IMS-standard format (CD-1 or IMS-1) are analyzed for compliance with the specified protocol and to ensure that the station data (sensor and state-of-health) are accurately transmitted. Data availability and authentication statistics are compiled and examined for problems.

  5. Measuring the characteristics of stratospheric aerosol layer and total ozone concentration at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey

    2015-11-01

    We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5 °N, 85.0 °E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of TOMS satellite data for the period 1979- 1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk after a series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, researchers record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  6. Certain Results of Measurements of Characteristics of Stratospheric Aerosol Layer and Total Ozone Content at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey

    2016-06-01

    We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N, 85.0°E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of Total Ozone Mapping Spectrometer (TOMS) data for the period 1979-1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk aftera series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, we record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  7. Continuous air monitor for alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Ortiz, C.A. . Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. )

    1990-01-01

    A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

  8. DEVELOPMENT OF CRITERIA FOR SITING AIR MONITORING STATIONS

    EPA Science Inventory

    This paper reviews relevant research findings for the purpose of establishing a set of uniform national criteria for designating locations of air monitoring stations. Data first are presented showing the difficulty, in the absence of uniform criteria, of interpreting measurements...

  9. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  10. A study of aerosol optical properties at the global GAW station Bukit Kototabang, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurhayati, N.; Nakajima, Teruyuki

    2012-01-01

    There have been very few studies carried out in Indonesia on the atmospheric aerosol optical properties and their impact on the earth climate. This study utilized solar radiation and aerosol measurement results of Indonesian GAW station Bukit Kototabang in Sumatra. The radiation data of nine years were used as input to a radiation simulation code for retrieving optically equivalent parameters of aerosols, i.e., aerosol optical thickness (AOT), coarse particle to fine particle ratio ( γ-ratio), and soot fraction. Retrieval of aerosol properties shows that coarse particles dominated at the station due to high relative humidity (RH) reaching more than 80% throughout the year. AOT time series showed a distinct two peak structure with peaks in MJJ and NDJ periods. The second peak corresponds to the period of high RH suggesting it was formed by active particle growth with large RH near 90%. On the other hand the time series of hot spot number, though it is only for the year of 2004, suggests the first peak was strongly contributed by biomass burning aerosols. The γ-ratio took a value near 10 throughout the year except for November and December when it took a larger value. The soot fraction varies in close relation with the γ-ratio, i.e. low values when γ was large, as consistent with our proposal of active particle growth in the high relative periods.

  11. Early-spring aerosol characterization across multiple Arctic stations

    NASA Astrophysics Data System (ADS)

    Baibakov, Konstantin; O'Neill, Norm; Ivanescu, Liviu; Perro, Chris; Ritter, Christoph; Herber, Andreas; Duck, Tom J.; Schulz, Karl-Heinz; Schrems, Otto

    2013-04-01

    The Arctic region is characterized by complex interactions between aerosols, clouds and precipitation. Ground-based observations of atmospheric optical properties are usually comprised of photometric aerosol optical depth (AOD) measurements and lidar extinction and backscatter profiles. The night-time AODs obtained with star- and moonphotometry have been extremely limited in the Arctic region. The first part of the paper is based on the synchronous starphotometry and lidar measurements obtained at Eureka (Canada, 80°N, 86°W) and Ny Alesund (Spitsbergen, 79°N, 12°E) in late winter-early spring periods of 2011 and 2012. We present several examples of process-level events as well as the winter to spring climatological dynamics of cloud-screened optical depths. The particular cases include aerosol, thin-cloud, ice crystals and polar stratospheric cloud events. An integral part of the process-level analysis, which ultimately informs the seasonal analysis, is the synergistic interpretation of the spectral, temporal and spatial information content of the passive and active data. In the second part of the paper we present the preliminary results obtained from the intercomparison field campaign at Barrow (Alaska, 71°N,156°W) that took place in spring 2013. The instrumentation suit included high-spectral resolution lidar, a starphotometer and a moonphotometer.

  12. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing. PMID:26698808

  13. Sea-breeze front effects on boundary-layer aerosols at a tropical coastal station

    SciTech Connect

    Moorthy, K.K.; Murthy, B.V.K.; Nair, P.R. )

    1993-07-01

    The effects of sea breeze on optical depth, size distribution, and columnar loading of aerosols at the tropical coastal station of Trivandrum are studied. It has been observed that sea-breeze front activity results in a significant and short-lived enhancement in aerosol optical depth and columnar loading in contrast to the effects seen on normal sea-breeze days. Examination of the changes in columnar aerosol size distribution associated with sea-breeze activity revealed an enhancement of small-particle (size less than 0.28 [mu]m) concentration. The aerosol size distribution deduced from optical depth measurements generally show a pronounced bimodal structure associated with the frontal activity. 22 refs., 12 figs., 1 tab.

  14. Detection of anthropogenic radionuclides by the CA002 monitoring station for the comprehensive test ban treaty.

    PubMed

    Measday, D F; Stocki, T J; Mason, L R; Williams, D L

    2001-02-01

    A worldwide monitoring system for radioactive aerosols is being implemented for verification of the Comprehensive Test Ban Treaty. These 80 stations will detect airborne radioactivity not only from nuclear explosions but also from other anthropogenic and natural sources. A prototype unit has been in operation since April 1996 in Vancouver, British Columbia, Canada. It is a very sensitive system and reports clear signals for natural radioactivity, including cosmogenic 7Be, and the decay products from soil exhalation of 220Rn (thoron). In addition, there have been frequent detections of anthropogenic nuclides, probably coming from three distinct facilities-a medical isotope production center, a major university hospital, and a particle accelerator laboratory--all between 1 and 2 km away from the monitoring station. This experience is discussed to sensitize health physicists to the potential uses of this publicly available information. PMID:11197459

  15. Calibration of the On-Line Aerosol Monitor (OLAM) with ammonium chloride and sodium chloride aerosols

    SciTech Connect

    Brockmann, J.E.; Lucero, D.A.; Romero, T.; Pentecost, G.

    1993-12-01

    The On-Line Aerosol Monitor (OLAM) is a light attenuation device designed and built at the Idaho National Engineering Laboratory (INEL) by EG&G Idaho. Its purpose is to provide an on-line indication of aerosol concentration in the PHEBUS-FP tests. It does this by measuring the attenuation of a light beam across a tube through which an aerosol is flowing. The OLAM does not inherently give an absolute response and must be calibrated. A calibration has been performed at Sandia National Laboratories` (SNL) Sandia Aerosol Research Laboratory (SARL) and the results are described here. Ammonium chloride and sodium chloride calibration aerosols are used for the calibration and the data for the sodium chloride aerosol is well described by a model presented in this report. Detectable instrument response is seen over a range of 0.1 cm{sup 3} of particulate material per m{sup 3} of gas to 10 cm{sup 3} of particulate material per m{sup 3} of gas.

  16. The Stratospheric Aerosol and Gas Experiment III/International Space Station Mission: Science Objectives and Mission Status

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M. S.; Flittner, D. E.; McCormick, M. P.; Gasbarre, J. F.; Damadeo, R. P.; Hill, C. A.

    2015-12-01

    The Stratospheric Aerosol and Gas Experiment III/International Space Station (SAGE III/ISS) is a strategic climate continuity mission which was included in NASA's 2010 plan, "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space." SAGE III/ISS continues the long-term, global measurements of trace gases and aerosols begun in 1979 by SAGE I and continued by SAGE II and SAGE III on Meteor 3M. Using a well characterized occultation technique, the SAGE III instrument's spectrometer will measure vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases relevant to ozone chemistry. The mission will launch in 2016 aboard a Falcon 9 spacecraft.The primary objective of SAGE III/ISS is to monitor the vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere to enhance our understanding of ozone recovery and climate change processes in the stratosphere and upper troposphere. SAGE III/ISS will provide data necessary to assess the state of the recovery in the distribution of ozone, extend the SAGE III aerosol measurement record that is needed by both climate models and ozone models, and gain further insight into key processes contributing to ozone and aerosol variability. The multi-decadal SAGE ozone and aerosol data sets have undergone intense community scrutiny for accuracy and stability. SAGE ozone data have been used to monitor the effectiveness of the Montreal Protocol.The ISS inclined orbit of 51.6 degrees is ideal for SAGE III measurements because the orbit permits solar occultation measurement coverage to approximately +/- 70 degrees of latitude. SAGE III/ISS will make measurements using the solar occultation measurement technique, lunar occultation measurement technique, and the limb scattering measurement technique. In this presentation, we describe the SAGE III/ISS mission, its

  17. Identifying atmospheric monitoring needs for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.

    1989-01-01

    The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.

  18. Aerosol Chemistry over a High Altitude Station at Northeastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K.; Srivastava, Manoj K.; Ghosh, Sanjay K.; Tiwari, Suresh; Devara, Panuganti C. S.; Raha, Sibaji

    2010-01-01

    Background There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. Methodology/Principal Findings An extensive aerosol sampling program was conducted in Darjeeling (altitude ∼2200 meter above sea level (masl), latitude 27°01′N and longitude 88°15′E), a high altitude station in northeastern Himalayas, during January–December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5±20.8 µg m−3 and 19.6±11.1 µg m−3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH4NO3 in fine mode aerosol during winter and as NaNO3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO42− in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. Conclusions/Significance The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to

  19. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  20. Space Station Environmental Health System water quality monitoring

    NASA Technical Reports Server (NTRS)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  1. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  2. Multi-Wave Station of Solar Monitoring

    NASA Astrophysics Data System (ADS)

    Korokhin, V.; Akimov, L.; Beletsky, S.; Belkina, I.; Velikodsky, Y.; Marchenko, G.; Shaparenko, E.

    A technical description of the contemporary solar telescope of the Kharkov Astronomical Observatory (http://khassm.virtualave.net) is given, and the plan to future development is sketched. A wide range monitoring of solar activity including observations near UV range in Balmer continuum and the IR line of He 1083 nm is presented.

  3. Nitrogen and phosphorus trend analysis in Latvia agricultural monitoring stations

    NASA Astrophysics Data System (ADS)

    Dimanta, Z.; Vircavs, V.; Veinbergs, A.; Lauva, D.; Ambramenko, K.; Gailuma, A.; VÄ«tola, I.

    2012-04-01

    Water quality depends on human activity. Intensive agriculture is one of the main sources, that cause water quality pollution and eutrophication. The use of fertilizers not only improves soil fertility, crop yield and quality, but also causes water pollution. Human activities, including the use of fertilizer, promote nutrient (nitrogen and phosphorus) concentrations in water. Compared to the 90th agricultural production in Latvia has progressed. Vulnerable zones have been specified in the country. It is situated in the region of Zemgale's south site, within the border Lithuania. There are defined requirements for water and soil protection from agricultural activity that cause nitrate pollution. The EU Nitrates Directive aim is to protect water from nitrate pollution. In Latvia defined nitrate values are: 50 mg/l NO3 or 11.2 mg/l N/NO3 and Ptot - 0.2 mg/l. As agriculture has became intensive and the use of fertilizers has grown, results indicate that the leaching potential and values of N and P has increased. Nutrients leaching in agricultural areas have observed all year in vulnerable zones, but it's values changes depending on season. The highest nutrient concentrations observe in winter and spring periods, particularly in snow and ice melting periods. The lowest values are in summer. Nutrient leaching potencial depends on precipitation, plant vegetation, season, fertilization type and soil cultivation process. N and P leaching can decrease, taking consideration the use time of fertilizers and good agricultural practices. Research objects are monitoring stations Bērze and Mellupīte with tree research scales: drainage fields, small catchments and observation wells. The research analyses N and P concentrations in groundwater (2006-2010) and drain field and small catchment runoff (1995-2010). The aim of the research is to analyze nitrate and phosphorus concentration fluctuations in a time period. To determine nutrient concentrations, water samples were collected

  4. Mobile station for monitoring atmospheric emissions from industrial enterprises

    SciTech Connect

    Arshinov, Yu.F.; Belan, B.D.; Bobrovnikov, S.M.

    1996-12-31

    At present different types of mobile stations for ecological monitoring of the environment has been created at various environmental protection agencies. Mostly, such stations differ from each other by the set of equipment employed though they use, as a rule, the same measurement and sampling techniques. Basically, such mobile stations use sampling of air, water, and soil. The collected samples are then analyzed with the laboratory instrumentation. The mobile station we are going to discuss in this paper presents a new type of such systems. The matter is that it enables, in addition to traditional sampling, remote determination of the composition and intensity of the emissions at the mouth of a stack. To do this the station is equipped with a Raman lidar. This station has been tested in a number of field experiments at the territories of different plants and now it is presented for meteorological certification at the Scientific and Production Association {open_quotes}Dal`standart{close_quotes} in Khabarovsk. Thus, the mobile station discussed is capable of monitoring air quality near the ground surface using standard techniques of analysis and of performing air quality police functions, that is to control the emissions from industrial enterprises.

  5. A Framework for Aerosol-Cloud Interactions Monitoring

    NASA Astrophysics Data System (ADS)

    Russchenberg, H. W. J.; Sarna, K.

    2014-12-01

    A broad range of strategies have been used to study Aerosol-Cloud Interactions (ACI). However, the wide scope of methods and scales used makes it difficult to quantitatively compare result from different studies. In this paper, we propose a method of aerosol-cloud interaction monitoring based on widely available remote sensing instruments and easily applicable at many different observatories. This method provides a way of identifying cases where a change in the aerosol environment causes a change in the cloud. In this scheme we attempt to use (as far as possible) the observed signal from lidar and radar. For an aerosol proxy we use the attenuated backscatter (sensitive to aerosol concentration) and to obtain information about changes in the cloud we use the radar reflectivity factor (sensitive to cloud droplet size and concentration). Assuming a positive dependence between the number concentration of cloud droplets and the number concentration of aerosol we expect that an increase of the attenuated backscatter coefficient will correspond to a small increase of the radar reflectivity factor (due to the increase of cloud droplets concentration). However, the slope of this correlation will vary. A number of factors, such as meteorology or cloud drop microphysical properties, can influence changes in a cloud. For that reason we put a constraint on the liquid water content using liquid water path information from microwave radiometers. This limitation ensures that the variability in the cloud will be primarily due to changes in microphysical properties associated with the variation in aerosols. Further, we limit the cases only to non-precipitating, low-level stratiform and stratocumulus clouds without drizzle. Although this method is based on a synergy of instruments, we use widely available systems for an efficient evaluation of the aerosol influence on the cloud. The main advantages of this scheme are the use of direct observables from widely spread remote sensing

  6. Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin

    SciTech Connect

    Artaxo, P.; Gerab, F.; Yamasoe, M.A.; Martins, J.V.

    1994-11-01

    The Amazon Basin tropical rain forest is a key region to study processes that are changing the composition of the global atmosphere, including the large amount of fine mode aerosol particles emitted during biomass burning that might influence the global atmosphere. Three background monitoring stations, Alta Floresta, Cuiaba, and Serra do Navio, are operating continuously measuring aerosol composition. Fine (particle diameter less than 2.0 microns) and coarse (particle diameter greater than 2.0 microns and less than 10 microns) mode aerosol particles were collected using stacked filter units. Particle-induced X-ray emission was used to measure concentrations of up to 20 elements in the fine mode: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Soot carbon and gravimetric mass analysis were also performed. Absolute Principal Factor Analysis (APFA) has derived absolute elemental source profiles. APFA showed four aerosol particle components: soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, fine mode mass concentration, K, Cl), natural primary biogenic particles with gas-to-particle component (K, S, Ca, Mn, Zn), and marine aerosol (Cl). Biogenic and biomass burning aerosol particles dominate the fine mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and fine mode mass concentration (FPM). At the Alta Floresta and Cuiaba sites, during the dry season, a strong component of biomass burning is observed. Inhalable particulate matter (particle diameter less than 10 microns) mass concentration up to 700 micrograms/cu m was measured. Fine particle mass concentration alone can go as high as 400 micrograms/cu m for large regions.

  7. Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    Measurements carried out in Paris Magenta railway station in April-May 2006 underlined a repeatable diurnal cycle of aerosol concentrations and optical properties. The average daytime PM 10 and PM 2.5 concentrations in such a confined space were approximately 5-30 times higher than those measured in Paris streets. Particles are mainly constituted of dust, with high concentrations of iron and other metals, but are also composed of black and organic carbon. Aerosol levels are linked to the rate at which rain and people pass through the station. Concentrations are also influenced by ambient air from the nearby streets through tunnel ventilation. During daytime approximately 70% of aerosol mass concentrations are governed by coarse absorbing particles with a low Angström exponent (˜0.8) and a low single-scattering albedo (˜0.7). The corresponding aerosol density is about 2 g cm -3 and their complex refractive index at 355 nm is close to 1.56-0.035 i. The high absorption properties are linked to the significant proportion of iron oxides together with black carbon in braking systems. During the night, particles are mostly submicronic, thus presenting a greater Angström exponent (˜2). The aerosol density is lower (1.8 g cm -3) and their complex refractive index presents a lower imaginary part (1.58-0.013 i), associated to a stronger single-scattering albedo (˜0.85-0.90), mostly influenced by the ambient air. For the first time we have assessed the emission (deposition) rates in an underground station for PM 10, PM 2.5 and black carbon concentrations to be 3314 ± 781(-1164 ± 160), 1186 ± 358(-401 ± 66) and 167 ± 46(-25 ± 9) μg m -2 h -1, respectively.

  8. Atmosphere and water quality monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  9. Aerosol monitoring in the PBL over big cities using a mobile eye safe LIDAR

    NASA Astrophysics Data System (ADS)

    Sauvage, Laurent; Chazette, Patrick

    2005-10-01

    The Laboratory of Science of Climate and Environment (CEA/ CNRS) and LEOSPHERE Company have jointly developed an eye safe, rugged and unattended high resolution scanning lidar ("easy lidar", www.lidar.fr). This system has been used in the frame of the POVA program and has been used in a compact version during the LISAIR (LIdar to Survey the AIR) program in May 2005 in the Paris city, France. The mobile lidar has been used to follow aerosol particles in highways subject to heavy traffic. High spatial and temporal resolution data on the entire planetary boundary layer (1.5 m and 1s respectively) allowed to monitor for aerosol load variability on board a moving car and also to detect for local sources. We observed the doubling of the optical thickness in the morning when traffic is high in the city ring. We also have shown local effect of waste burning plants and train stations. This new type of eye safe lidar will allow to monitor continuously the entire area of a town and suburbs, in order to detect main sources of pollution (transport, traffic jams, industrial plants, natural dust), follow in real time the evolution of the PBL height and provide an estimation of the mass concentration of the aerosol in the PBL.

  10. Recent Research applications at the Athens Neutron Monitor Station

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Gerontidou, M.; Paschalis, P.; Papaioannou, A.; Paouris, E.; Papailiou, M.; Souvatzoglou, G.

    2015-08-01

    The ground based neutron monitor measurements play a key role in the field of space physics, solar-terrestrial relations, and space weather applications. The Athens cosmic ray group has developed several research applications such as an optimized automated Ground Level Enhancement Alert (GLE Alert Plus) and a web interface, providing data from multiple Neutron Monitor stations (Multi-Station tool). These services are actually available via the Space Weather Portal operated by the European Space Agency (http://swe.ssa.esa.int). In addition, two simulation tools, based on Geant4, have also been implemented. The first one is for the simulation of the cosmic ray showers in the atmosphere (DYASTIMA) and the second one is for the simulation of the 6NM-64 neutron monitor. The contribution of the simulation tools to the calculations of the radiation dose received by air crews and passengers within the Earth's atmosphere and to the neutron monitor study is presented as well. Furthermore, the accurate calculation of the barometric coefficient and the primary data processing by filtering algorithms, such as the well known Median Editor and the developed by the Athens group ANN Algorithm and Edge Editor which contribute to the provision of high quality neutron monitor data are also discussed. Finally, a Space Weather Forecasting Center which provides a three day geomagnetic activity report on a daily basis has been set up and has been operating for the last two years at the Athens Neutron Monitor Station.

  11. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Weidinger, Tamás; Maenhaut, Willy

    Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m -3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.

  12. Development of an atmospheric monitoring plan for space station

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.

    1989-01-01

    An environmental health monitoring plan for Space Station will ensure crew health during prolonged habitation. The Space Station, Freedom, will operate for extended periods, 90+ days, without resupply. A regenerative, closed loop life support system will be utilized in order to minimize resupply logistics and costs. Overboard disposal of wastes and venting of gases to space will be minimal. All waste material will be treated and recycled. The concentrated wastes will be stabilized and stored for ground disposal. The expected useful life of the station (decades) and the diversity of materials brought aboard for experimental or manufacturing purposes, increases the likelihood of cabin contamination. Processes by which cabin contamination can occur include: biological waste production, material off-gassing, process leakage, accidental containment breach, and accumulation due to poor removal efficiencies of the purification units. An industrial hygiene approach was taken to rationalize monitoring needs and to identify the substances likely to be present, the amount, and their hazard.

  13. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  14. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  15. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-09-01

    Finding the number and best locations of fixed air quality monitoring stations at street level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Data sets of such urban parameters as land use, building morphology and street geometry in high-resolution grid cells in combination with direct measurements of airborne pollutants at high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self-Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. This proof of concept study showed that the selected urban parameters proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e., group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  16. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-03-01

    Finding the number and significant locations of fixed air quality monitoring stations at ground level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Datasets of urban parameters such as land use, building morphology and street geometry in high resolution grid cells in combination with direct measurements of airborne pollutants in high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. The urban parameters used in this case proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e. group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  17. Long-term Observation of Aerosol Optical Properties at the SORPES station in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Shen, Yicheng; Ding, Aijun; Virkkula, Aki; Wang, Jiaping; Chi, Xuguang; Qi, Ximeng; Liu, Qiang; Zheng, Longfei; Xie, Yuning

    2016-04-01

    Atmospheric aerosols influence the earth's radiation budget by scattering and absorbing solar radiation and contribute substantial uncertainty in the estimation of climate forcing. Thorough and comprehensive measurements on different parameters including absorption and scattering coefficient, wavelength dependence and angular dependence along with their daily and seasonal variation help to understand the influence of aerosol on radiation. 2-years continuous measurement of aerosol optical properties has been conducted from June 2013 to May 2015 at the Station for Observing Regional Process of Earth System (SORPES) station, which is a regional background station located in downwind direction of Yangtze River Delta (YRD) urban agglomeration in China. A 7-wavelenths aethalometer and a 3-wavelenths nephelometer were used to measure absorption and scattering coefficient, and also other parameters like single scattering albedo (SSA), absorption angstrom Exponent (AAE), scattering angstrom exponent (SAE) and back-scattering refraction. In addtion, simultaneous measurements on chemical composition and particle size distribution were performed so as to investigate the dependencies of aerosol optical properties on chemical composition and size distribution. To get further insight on the influencing factors, Lagrangian particle dispersion modeling (LPDM) was employed for source identification in this study. The averages of absorption coefficient, scattering coefficient and SSA are 26.0±18.7 Mm-1, 426±327 Mm-1 , 0.936±0.3 at 520nm respectively for whole period. SAE between 450 and 635nm is 1.299±0.34 and have strong negative correlation with particle Surface Mean Diameter (SMD). AAE between 370 and 950nm is 1.043±0.15 for whole period but growth to more than 1.6 in all identified Biomass Burning (BB) events.

  18. ON THE IMPACT OF THE HUMAN (CHILD) MICROCLIMATE ON PASSIVE AEROSOL MONITOR PERFORMANCE

    EPA Science Inventory

    Research into the wind microclimate and its effect on the accuracy and effectiveness of passive aerosol monitors is expanding as the importance of personal monitoring versus regional monitoring increases. The important phenomena for investigation include thermal and dynamic eff...

  19. Integrated environmental quality monitoring around an underground methane storage station.

    PubMed

    Pieri, Linda; Vignudelli, Marco; Bartolucci, Fabrizio; Salvatorelli, Fiorenzo; Di Michele, Cesare; Tavano, Nicola; Rossi, Paola; Dinelli, Giovanni

    2015-07-01

    The study reports an integrated environmental quality monitoring of a 100 km2 area in central Italy mostly occupied by an underground station of methane storage, working since 1982. The nitrogen oxides, ozone and isoprene concentration detached with a network monitoring of passive filters were compared with the results of lichens biomonitoring. Data from the two monitorings were in accordance: there was an inversely correlation between lichen biodiversity index (IBL) and NOx (-0.96) and ozone (-0.80), and a positive correlation between IBL and isoprene (0.67). IBL indicated that the area ranged between medium naturalness and medium alteration status, values fully compatible with the medium-high level of eutrophication, caused by intensive agriculture. Only two areas were in high alteration status, due to their proximity to glass factories and to a quarries area. Despite almost thirty years of activity, the environment quality of the area around the station did not show signs of declining. PMID:25828802

  20. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  1. Identifying atmospheric monitoring needs for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.; Russo, Dane M.

    1990-01-01

    The monitoring needs for Space Station Freedom were identified by examining: the experiences of past missions; ground based tests of proposed life support systems; a contaminant load model; metabolic production from an 8-person crew; and a fire scenario. Continuous monitoring is recommended for components critical for life support, and that intermittent analysis be provided for all agents that may exceed one-half the spacecraft maximum allowable concentration. The minimum monitoring effort recommended includes continuous monitoring for: N2, O2, CO2, CO, H2O, H2, CH4, nonmethane hydrocarbons, aromatic hydrocarbons, refrigerants, and halons. Information on over 70 compounds is presented on the rationale for monitoring the frequency of analysis, and concentration ranges.

  2. Summary of monitoring station component evaluation project 2009-2011.

    SciTech Connect

    Hart, Darren M.

    2012-02-01

    Sandia National Laboratories (SNL) is regarded as a center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for ground-based nuclear explosion monitoring (GNEM) systems. This project will sustain and enhance our component evaluation capabilities. In addition, new sensor technologies that could greatly improve national monitoring system performance will be sought and characterized. This work directly impacts the Ground-based Nuclear Explosion Monitoring mission by verifying that the performance of monitoring station sensors and instrumentation is characterized and suitable to the mission. It enables the operational monitoring agency to deploy instruments of known capability and to have confidence in operational success. This effort will ensure that our evaluation capabilities are maintained for future use.

  3. An Environment Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, M. Ralph; Clifton, Kenneth S.

    1998-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  4. On the Stratospheric Aerosol and Gas Experiment III on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Zawodny, Joseph M.; Cisewski, Michael S.; Thornton, Brooke M.; Panetta, Andrew D,; Roell, Marilee M.; Vernier, Jean-Paul

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on International Space Station (SAGE3/ISS) is anticipated to be delivered to Cape Canaveral in the spring of 2015. This is the fourth generation, fifth instrument, of visible/near-IR solar occultation instruments operated by the National Aeronautics and Space Agency (NASA) to investigate the Earth's upper atmosphere. The instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. The SAGE3/ISS validation program will be based upon internal consistency of the measurements, detailed analysis of the retrieval algorithm, and comparisons with independent correlative measurements. The Instrument Payload (IP), mission architecture, and major challenges are also discussed.

  5. Continuous emission monitoring of metal aerosol concentrations in atmospheric air

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Sarrette, Jean-Philippe; Madon, Lydie; Almi, Abdenbi

    1996-11-01

    Improvements of an apparatus for continuous emission monitoring (CEM) by inductively coupled plasma atomic emission spectrometry (ICP-AES) of metal aerosols in air are described. The method simultaneously offers low operating costs, large volume of tested air for valuable sampling and avoids supplementary contamination or keeping of the air pollutant concentrations. Questions related to detection and calibration are discussed. The detection limits (DL) obtained for the eight pollutants studied are lower than the recommended threshold limit values (TLV) and as satisfactory as the results obtained with other CEM methods involving air-argon plasmas.

  6. Real-time trend monitoring of gas compressor stations

    SciTech Connect

    Van Hardeveld, T. )

    1991-02-01

    The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

  7. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  8. Aerosol Optical Properties Over the High Altitude Station Hanle in the Western Himalayas

    NASA Astrophysics Data System (ADS)

    Larson, E. J.; Bagare, S. P.; Ningombam, S. S.; Singh, R. B.; Sinha, N.

    2012-12-01

    As a part of an astronomical site characterization program, studies of atmospheric aerosols were carried-out at the Indian Astronomical Observatory (IAO) Hanle (32047' N and 78058' E, 4500 m amsl), Ladakh region in the Western Himalayas, using Skyradiometer (Prede, Japan) from direct solar and diffuse sky irradiance measurements at 400, 500, 675, 870, and 1020 nm. Aerosol optical properties are retrieved using Skyrad.pack to calculate the aerosol optical depth (AOD), single scattering albedo (SSA), volume size distribution, and phase function. The AOD at 500 nm was found to be between 0.02 and 0.10, which is consistent with reported values for high altitude stations across the globe. Value of the Angstrom exponent (α), which relates to size particles, fluctuates between 0.5 and 1.5. The SSA is close to 1.0 for each wavelength, indicating the dominance of scattered light in the observed spectral region. The estimated daily mean aerosol asymmetry parameter (g) from the retrieved phase function varies in between 0.68 and 0.72 for the different wavelengths, indicating predominantly forward scattering than the backward scattering. The value of g decreases at the visible region and slightly increases in the near-infrared region. The retrieved g parameter strongly depends on both the wavelength and the Angstrom parameter. We find that the AOD value peaks during the spring season, and this is likely to be due to aerosol transport from the deserts to the west. The HYSPLIT back Trajectory analysis indicates the passage of air mass transported predominantly from Sahara in the African region towards the observing station. There is a bimodal as well as tri-modal volume size distribution with particle population sizes in the range 0.15 to 10 microns. The bi-modal features are more common during winter and autumn seasons, while the tri-modal features are seen in all the seasons with a marginal predominance during spring and summer. The temporal response of the two populations of

  9. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  10. Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas

    2015-04-01

    In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar

  11. A dual-wavelength single particle aerosol fluorescence monitor

    NASA Astrophysics Data System (ADS)

    Kaye, Paul H.; Stanley, Warren R.; Foot, Virginia; Baxter, Karen; Barrington, Stephen J.

    2005-10-01

    Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

  12. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG&G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  13. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  14. Mini Neutron Monitors at Concordia Research Station, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Poluianov, Stepan; Usoskin, Ilya; Mishev, Alexander; Moraal, Harm; Kruger, Helena; Casasanta, Giampietro; Traversi, Rita; Udisti, Roberto

    2015-12-01

    Two mini neutron monitors are installed at Concordia research station (Dome C, Central Antarctica, 75° 06' S, 123° 23' E, 3,233 m.a.s.l.). The site has unique properties ideal for cosmic ray measurements, especially for the detection of solar energetic particles: very low cutoff rigidity < 0.01 GV, high elevation and poleward asymptotic acceptance cones pointing to geographical latitudes > 75° S. The instruments consist of a standard neutron monitor and a "bare" (lead-free) neutron monitor. The instrument operation started in mid-January 2015. The barometric correction coefficients were computed for the period from 1 February to 31 July 2015. Several interesting events, including two notable Forbush decreases on 17 March 2015 and 22 June 2015, and a solar particle event of 29 October 2015 were registered. The data sets are available at cosmicrays.oulu.fi and nmdb.eu.

  15. Analysis of Aerosols Climatology over Saudi Provinces Based on Satellites and Ground Stations Data

    NASA Astrophysics Data System (ADS)

    Farahat, A.; El-Askary, H. M.; Al-Shaibani, A.

    2014-12-01

    The Kingdom of Saudi Arabia is one of the major sources of aerosols in the world, including natural and anthropogenic components. This study presents a detailed climatological analysis of the optical, microphysical aerosol properties and absorption aerosol characteristics over four different regions of the Kingdom of Saudi Arabia using satellite and ground stations data including MODIS/Terra and Aqua, OMI, MISR/Terra, AERONET and CALIPSO for the period April 2003 - January 2013. Analysis shows an increase in the aerosol concentration during March 2009 which could be attributed to a Major dust storm during that time. Comparing the AOD time series over regions 1-3 and region 4 (desert) we observe monthly and annual variability with no recurrence pattern over the years. The results also show minimum precipitation rates during the summer and maximum during the winter over region 3. The Aqua deep blue AOD550 data over region 4 shows a single peak pattern that occurs during the spring season around the dust season. Aeronet observations at 440 nm show maxima of 0.71 in July and a minimum of 0.27 in March from MASDAR and maxima of 0.08 in November and a minimum of 0.05 in August from Solar Village. The non-spherical particles are significantly higher in the spring than the rest of the year based on MISR data. The AOD of non-spherical particles reaches a maximum in June with a value of ~ 0.3517±0.01. The maximum of the spherical fraction AOD occurs in July with a value of ~ 0.4867±0.01. Acknowledgment The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum and Minerals (KFUPM), for funding this work through project no. IN121064.

  16. Energy Management for Automatic Monitoring Stations in Arctic Regions

    NASA Astrophysics Data System (ADS)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  17. Baseline Environmental Monitoring Program at Toolik Field Station, Alaska

    NASA Astrophysics Data System (ADS)

    Kade, A.; Bret-Harte, M. S.

    2011-12-01

    The Environmental Data Center at the Toolik Field Station, Alaska established a baseline environmental monitoring program in 2007 to provide a long-term record of key biotic and abiotic variables to the scientific community. We maintain a weather station for a long-term climate record at the field station and monitor the timing of key plant phenological events, bird migration and mammal sightings. With regards to plant phenology, we record event dates such as emergence of first leaves, open flowers and seed dispersal for twelve select species typical of the moist acidic tundra, following the ITEX plant phenology protocol. From 2007 to 2011, we observed earlier emergence of first leaves by approximately one week for species such as the dwarf birch Betula nana, sedge Carex bigelowii and evergreen lingonberry Vaccinium vitis-idaea, while seed dispersal for some of these species was delayed by more than two weeks. We also monitor the arrival and departure dates of thirty bird species common to the Toolik area. Yearlong residents included species such as the common raven, rock and willow ptarmigan, and some migrants such as yellow-billed loons and American tree sparrows could be detected for about four months at Toolik, while long-distance traveling arctic terns stayed only two months during the summer. The timing of bird migration dates did not show any clear trends over the past five years for most species. For the past two decades, we recorded climate data such as air, soil and lake temperature, radiation, wind speed and direction, relative humidity and barometric pressure. During this time period, monthly mean air temperatures varied from -31.7 to -12.8 °C in January and from 8.3 to 13.1 °C in July, with no trend over time. Our baseline data on plant phenological changes, timing of bird migration and climate variables are valuable in the light of long-term environmental monitoring efforts as they provide the context for other seasonality projects that are

  18. New concept of enhanced monitoring station for urban air application

    NASA Astrophysics Data System (ADS)

    Allegrini, Ivo; Febo, Antonio; Giliberti, Claudia

    1995-05-01

    An advanced monitoring station was set up in the center of Milan, Italy. It is made up of several instruments for the measurement of atmospheric pollutants, including a DOAS system which is able to provide information of the time evolution of several primary and secondary atmospheric pollutants. A radioactivity monitor provides information about the time evolution of Radon daughters, thereby providing information about the evolution of the boundary layer. It is shown that pollution by primary pollutants can be described through a very simple model based on Radon observation. Secondary pollutants, like ozone and nitrogen dioxide can also be described by the same model. Observation in strong advective condition and during stability periods show that the presence of large concentration of nitrogen dioxide is due to radicalic processes which are also responsible for the formation of formaldehyde. The role of nitrous acid in the formation of radicals is also discussed.

  19. Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Renjian; Huan, Ning; Zhou, Xiuji; Zhang, Yangmei; Zhou, Huaigang; Zhang, Leiming

    2012-12-01

    In the summer and winter of 2004 and 2005, size-segregated atmospheric aerosols were sampled with modified Andersen KA200 Multi-stage impactor at two regional background stations in the eastern China, the Shangdianzi station (SDZ) in the suburb of Beijing and the Lin'An station (LA) in the Yangtze river delta region, both are WMO Global Atmospheric Watch station, which represent the regional background of air pollutions of the two rapid developing economical zone of China, the Yangtze River Delta region (YRD) and Beijing-Tianjin region. The aerosol mass size distributions, ionic compositions, organic and elemental carbon (OC and EC), and elemental components were analyzed. The mass concentrations for TSP (total suspend particle), PM11 (aerodynamic diameter less than 11 μm), and PM2.1 (aerodynamic diameter less than 2.1 μm) at both sites showed obviously different between the winter and summer, with higher mass concentrations measured in the winter time. All seasonal mean mass concentrations of PM2.1 accounted for over 50% of PM11 at both sites. The aerosol mass closure study indicated that the total mass concentration reconstructed from the aerosol chemical composition agreed well with the measured gravimetric mass at the two stations. The fine aerosol particles at the two stations were composed mainly of sulfate and organic matter. In the summer, more than half of the PM2.1 mass was sulfate, suggesting a dominant contribution of secondary aerosol to the fine particles in these two regions. In the winter, the contribution of nitrate to the fine particles increased significantly due to the lower volatile losses under the cold weather. The proportions of soil type components in the PM2.1 showed similar magnitude in the winter and summer at Lin'An station but significant seasonal differences with higher fractions in the winter at Shangdianzi station. On average EC accounted for about 2%-6% of the fine particle mass (PM2.1) at both sites with proportionally lower EC

  20. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  1. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    SciTech Connect

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.

  2. The Cloud-Aerosol Transport System (CATS): a technology demonstration on the International Space Station

    NASA Astrophysics Data System (ADS)

    McGill, Matthew J.; Yorks, John E.; Scott, V. S.; Kupchock, Andrew W.; Selmer, Patrick A.

    2015-09-01

    The Cloud-Aerosol Transport System (CATS) is a multi-wavelength lidar instrument developed to enhance Earth Science remote sensing capabilities from the International Space Station. The CATS project was chartered to be an experiment in all senses: science, technology, and management. As a low-cost project following a strict build-to-cost/ build-to-schedule philosophy, CATS is following a new management approach while also serving as a technology demonstration for future NASA missions. This presentation will highlight the CATS instrument and science objectives with emphasis on how the ISS platform enables the specific objectives of the payload. The development process used for CATS and a look at data being produced by the instrument will also be presented.

  3. A lidar system for remote sensing of aerosols and water vapor from NSTS and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Delorme, Joseph F.

    1989-01-01

    The Tropical Atmospheric Lidar Observing System (TALOS) is proposed to be developed as a Differential Absorption Lidar (DIAL) system for flight aboard the earth orbiting Space Station Freedom. TALOS will be capable of making high resolution vertical profile measurements of tropospheric water and tropospheric and stratospheric aerosols, clouds and temperature.

  4. Using IGS Clock Products to Monitor GPS Station Performance

    NASA Astrophysics Data System (ADS)

    Senior, K.; Ray, J.

    2005-12-01

    Since 22 Feb. 2004 the IGS official satellite and station clock products have been aligned to a new, highly stable timescale realized by an internal ensemble of the available frequency standards dynamically weighted based on their individual instabilities. (Comparable, unofficial clock products are archived starting 29 Oct. 2000.) All results and a variety of associated plots can be accessed at https://goby.nrl.navy.mil/IGStime/index.php. In addition to their value for clock diagnostics, these products can be used to monitor the general health of GPS tracking stations. This is only minimally true for stations not using H-maser external frequency standards since the large epoch-to-epoch clock variations limit the sensitivity to detect all but the most severe types of problems affecting data quality. With H-masers, though, many subtle effects on the pseudorange observables can be observed. This is because the overall clock bias for a given processing arc (normally 24 hours) is set by the average code data, while the higher frequency variations are determined by the carrier phase data. Assuming an average uncertainty of 1 m for code data and 5-min sampling, the formal accuracy of each clock estimate should be near 120 ps. A quantitative test of the actual clock accuracy can be made by comparing clock estimates at the boundaries between independent analysis arcs (i.e., at midnights between consecutive days). This is analogous to the classic geodetic repeatability test for a time series of positioning results. The test is only feasible when H-masers are used since the instabilities of lesser frequency standards dominate over the day-boundary jumps caused by code data quality. Applied to IGS clocks, we have found a very wide dispersion in station performances, from RMS clock jumps near the expected level of 120 ps to values >1 ns. Results are posted in plots available at https://goby.nrl.navy.mil/IGStime/daybdy/. In a number of cases, there are discrete changes in the

  5. Sources of PM10 and sulfate aerosol at McMurdo Station, Antarctica.

    PubMed

    Mazzera, D M; Lowenthal, D H; Chow, J C; Watson, J G

    2001-10-01

    Source contributions to PM10 and sulfate aerosol at McMurdo Station, Antarctica during the austral summers of 1995-1996 and 1996-1997 were estimated using Chemical Mass Balance (CMB) receptor modeling. The average PM10 (particles with aerodynamic diameters less than 10 microm) concentration at Hut Point, located less than 1 km downwind of downtown McMurdo, was 3.4 microg/m3. Emissions profiles were determined for potentially important aerosol source types in McMurdo: exposed soil, power generation, space heating, and surface vehicles. Soil dust, sea salt, combustion emissions, sulfates, marine biogenic emissions as methanesulfonate, and nitrates contributed 57%, 15%, 14%, 10%, 3%, and 1%, respectively, of average estimated PM10 at Hut Point (3.2 microg/m3). Soil dust, sea salt, and combustion sources contributed 12%, 8%, and 20%, respectively, of the average PM10 sulfate concentration of 0.46 microg/m3. Marine biogenic sources contributed 0.17 microg/m3 (37%). The remaining sulfate is thought to have come from emissions from Mt. Erebus or hemispheric pollution sources. PMID:11592425

  6. Sentinel-5 Precursor: Global Monitoring of Atmospheric Trace Gases & Aerosols

    NASA Astrophysics Data System (ADS)

    Nett, Herbert; McMullan, Kevin; Ingmann, Paul

    2013-04-01

    ESA's Sentinel 5 Precursor (S5P) Mission will form part of the Space Component under the Global Monitoring for Environment and Security (GMES) initiative. It represents a preparatory project for the GMES atmospheric missions that comprise both a geo-stationary (Sentinel-4 / part of MTG-S payload) and a polar orbiting (Sentinel-5 / MetOp Second Generation) component. In view of the planned launch date of around 2020 for the first S-4 MTG-S and MetOp-SG spacecrafts, respectively, S5P (launch: mid 2015) shall minimize gaps in the availability of global atmospheric data products as provided by its predecessor missions SCIAMACHY (Envisat) and OMI (AURA). The satellite's single payload instrument, TROPOMI (TROPOspheric Monitoring Instrument), is jointly developed by The Netherlands and ESA. Covering spectral channels located in the UV, visible, near- and short-wave infrared it will measure various key species including stratospheric ozone, as well as NO2, SO2, CO, CH4, CH2O and aerosols, specifically in the lower Troposphere. The envisaged formation flying with NASA's Suomi NPP satellite will allow use of high spatial resolution imager data for enhanced cloud clearing of the observational data specifically in the short-wave infrared range. An outline of the Sentinel-5P mission objectives will be given. The status of development activities, covering Spacecraft and the Ground Segment will be presented.

  7. Mie Lidar for Aerosols and Clouds Monitoring at Otlica Observatory

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Filipčič, A.; Veberič, D.; Forte, B.

    2009-04-01

    Aerosol and cloud densities are the most important atmospheric parameters, which significantly influence the atmospheric conditions. The study of their spatial and temporal properties can provide detailed information about the transport processes of the air masses. In recent years, lidar techniques for remote sensing of the atmospheric parameters have been greatly improved. Like the lidar systems of the Pierre Auger Observatory in Argentina (35.2S, 69.1W, 1400 m a.s.l.), the Mie lidar built at Otlica Observatory (45.93N, 13.91E, 945 m a.s.l.) in Slovenia employs the same hardware, including the transmitter, the receiver, and the DAQ system. Due to its high-power laser, large-diameter telescope, and photon-counting data-acquisition technique, the Mie lidar has the potential ability to measure the tropospheric and stratospheric atmospheric conditions, and is suitable for monitoring the changes of the cirrus clouds and atmospheric boundary layer. We have been performing routine atmospheric monitoring experiments with the Otlica Mie lidar since September 2008. Using the techniques of event-averaging, noise-elimination, and data-gluing, the far end of lidar probing range is extended from 30 km up to 40 km. The extinction profiles are calculated using the Klett method and the time-height-intensity plots were made. They clearly show the evolution of atmospheric conditions, especially the motion of the cirrus clouds above Otlica.

  8. A tactical, permanent telemetered volcano monitoring station design

    NASA Astrophysics Data System (ADS)

    Lockhart, A. B.; LaFevers, M.; Couchman, M. R.

    2012-12-01

    The USGS-USAID Volcano Disaster Assistance Program (VDAP) designs, constructs and installs telemetered volcano-monitoring stations for use in developing countries, at a wide range of latitudes and elevations, weather and environmental conditions. The stations typically house seismometers, GPS and webcams, singly or in combination. They are frequently installed quickly during a volcanic crisis, but are expected to function over the long term as permanent stations. The primary design goal is for a simple, highly portable station that can be installed in less than a day, but not require maintenance until the natural end of battery life, usually 2-5 years. The station consists of a pair of aluminum boxes (43x46x71cm, approx.) placed on the ground facing each other, 2-3m apart, forming the lower part of a metal framework made of 2" pipe to mount solar panels and antennae. Vertical sections of 2" pipe, 3-4m long, are clamped to each end of both the boxes, the lower ends buried into cement-filled holes. This makes 4 masts on a rectangular footprint of 1m X 3-4m. Two horizontal crosspieces of 2" pipe 3-4m long are clamped across the masts. Solar panels are laid across the crosspieces, mounted with 2" angle aluminum extending from the high crosspiece to the low one. Relative height of the crosspieces controls the angle of the solar panels. The crosspieces can be lengthened to increase mounting space for additional solar panels. Inside the aluminum boxes, the radios and electronics are housed in plastic boxes. All external cables are protected by flexible aluminum conduit. Important elements of the design include: -Redundant dual solar power supplies of expandable capacity for loads from 1W to 10W or more. -Robust lightning protection afforded by grounded metal footlockers and framework, and a built-in common grounding point. -Strongly resistant to ice loads. -Waterproof, insect-proof plastic boxes for radios and electronics. -Aluminum boxes are easily fabricated, fit within

  9. Concepts for continuous quality monitoring and station remote control

    NASA Astrophysics Data System (ADS)

    Ettl, M.; Neidhardt, A.; Rottmann, H.; Mühlbauer, M.; Plötz, C.; Himwich, E.; Beaudoin, C.; Szomoru, A.

    2011-07-01

    In the newly funded "Novel EXploration Pushing Robuste-VLBI Services", - project (NEXPReS) the Technische Universitaet Muenchen realize concepts for continuous quality monitoring and station remote control in cooperation with the Max-Planck-Institute for Radioastronomy, Bonn. NEXPReS is a three-year project aimed at further developing e-VLBI services of the European VLBI Network (EVN), with the goal of incorporating e-VLBI into every astronomical observation conducted by the EVN. This project focus on developments of an operational e-control system with authentication and authorization. It includes an appropriate role management with different remote access states for future observation strategies. To allow a flexible control of different systems in parallel sophisticated graphical user interfaces are designed and realized. It requires also a session oriented data management. Because of the higher degree of automation additional system parameters and information is collected with a new system monitoring. The whole system for monitoring and control is fully compatible to the NASA field system as extension. The concept will be proofed with regular tests between Wettzell and Effelsberg.

  10. Environmental monitoring around the power station in Altbach/Deizisau

    SciTech Connect

    Necker, P.; Lehmann, B.; Barton-Bieg, M.

    1998-07-01

    During the years 1984 to 1997, and in the context of the approval procedure for the two electricity/heat cogeneration power plants HKW1 (1986; 420 MW{sub el} or 375 MW{sub el} + 280 MW{sub th}) and HKW2 (1997; 380 MW{sub el} or 335 MW{sub el} + 280 MW{sub th}), a comprehensive environmental monitoring program was conducted in the area surrounding the Altbach/Deizisau Power Station of Neckarwerke Stuttgart AG (NWS). The program consisted of physical emission measurements of the following air pollutants: SO{sub 2}, NO, NO{sub 2}, O{sub 3}, CO, HF, HC, dustfall and floating dust; of a measurement program using biological indicators in order to detect reactions and accumulations; and of soil analyses. The present paper informs about implementation, results and experience gained with these different measurement methods.

  11. Climate Monitoring Network on Maunakea - Master Station at Summit and Lower Elevation Satellite Stations

    NASA Astrophysics Data System (ADS)

    McKenzie, M. M.; Klasner, F.; Giambelluca, T. W.; Businger, S.

    2014-12-01

    Maunakea, a dormant shield volcano on the Big Island of Hawai'i, rises 13,796 feet above sea level, making it the highest point in the Pacific Basin. From sea floor to summit, it's the tallest mountain in the world. The high elevation, low air and light pollution, as well as dry weather year round make it the best location in the world for astronomy observations. The summit is home to 13 ground based telescope facilities. Like all alpine regions, it is an extremely fragile and unique ecosystem because of the harsh conditions and short growing seasons located at high altitudes. The summit is home to several federal and/or state protected species. It supports 11 species of arthropods found nowhere else on Earth. Most noted of these is the Wēkiu bug, whose habitat has been altered by the infrastructural development on the mountain. Arthropod habitat model development has highlighted gaps in climate information, for example, lack of climate precipitation data, snow data and reliable temperature data. Furthermore, in tropical regions, precipitation is the most variable climate component due to topography and local winds. The telescopes collect weather data for the purpose of knowing when it is dry and clear for astronomical observation. Although existing weather stations associated with the telescopes meet some weather and climate monitoring needs, it cannot address the full range of issues needed due to technological limitation and site design. Precipitation does not occur often and is likely to be in the form of snow or ice. Snow cover data has not been directly recorded despite astronomical recording of other meteorological data that began in the1960s. Therefore, the need to monitor the weather and climate in a long-term and well-calibrated way is critical for management of the ecosystems on the slopes of Maunakea. Long-term weather and climate monitoring stations are the primary building blocks for research partnerships, which encourage collaboration and ultimately

  12. Local - Air Project: Tropospheric Aerosol Monitoring by CALIPSO Lidar Satellite and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Sarli, V.; Trippetta, S.; Bitonto, P.; Papagiannopoulos, N.; Caggiano, R.; Donvito, A.; Mona, L.

    2016-06-01

    A new method for the detection of the Planetary Boundary Layer (PBL) height from CALIPSO space-borne lidar data was developed and the possibility to infer the sub-micrometric aerosol particle (i.e., PM1) concentrations at ground level from CALIPSO observations was also explored. The comparison with ground-based lidar measurements from an EARLINET (European Aerosol Research LIdar Network) station showed the reliability of the developed method for the PBL. Moreover, empirical relationships between integrated backscatter values from CALIPSO and PM1 concentrations were found thanks to the combined use of the retrieved PBL heights, CALIPSO aerosol profiles and typing and PM1 insitu measurements.

  13. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  14. Optimized Arrangement of Constant Ambient Air Monitoring Stations in the Kanto Region of Japan

    PubMed Central

    Shirato, Shintaro; Iizuka, Atsushi; Mizukoshi, Atsushi; Noguchi, Miyuki; Yamasaki, Akihiro; Yanagisawa, Yukio

    2015-01-01

    Continuous ambient air monitoring systems have been introduced worldwide. However, such monitoring forces autonomous communities to bear a significant financial burden. Thus, it is important to identify pollutant-monitoring stations that are less efficient, while minimizing loss of data quality and mitigating effects on the determination of spatiotemporal trends of pollutants. This study describes a procedure for optimizing a constant ambient air monitoring system in the Kanto region of Japan. Constant ambient air monitoring stations in the area were topologically classified into four groups by cluster analysis and principle component analysis. Then, air pollution characteristics in each area were reviewed using concentration contour maps and average pollution concentrations. We then introduced three simple criteria to reduce the number of monitoring stations: (1) retain the monitoring station if there were similarities between its data and average data of the group to which it belongs; (2) retain the station if its data showed higher concentrations; and (3) retain the station if the monitored concentration levels had an increasing trend. With this procedure, the total number of air monitoring stations in suburban and urban areas was reduced by 36.5%. The introduction of three new types of monitoring stations is proposed, namely, mobile, for local non-methane hydrocarbon pollution, and Ox-prioritized. PMID:25764058

  15. The stratospheric aerosol particle measurement by balloon at Syowa Station (69.00 deg S, 39.35 deg E): Outline of special sonde (rubber) campaign JARE 24

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Morita, T.; Itoh, T.; Shibazaki, K.; Makino, Y.; Tanaka, T.; Tsukamura, K.; Yano, T.; Kondoh, K.; Iwashita, G.

    1985-01-01

    During the period of AMA (Antarctic Middle Atmosphere), various style balloons were used to measure atmospheric parameters at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica. The measurements which were made using balloons specially designed to monitor stratospheric aerosol particles are discussed. This type balloon was first used by JARE (Japan Antarctic Research Expedition) 24th Team in 1983. Until that time, the Japan Antarctic Research Expedition Team had been using only a large plastic balloon to monitor various minor constituents in the stratosphere. The plastic balloon was very useful, but it took a long time to arrange a balloon launching. Additionally, launching time strongly depended on weather conditions. A timely launching of the balloon was carried out with this specially designed sonde.

  16. Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011

    NASA Astrophysics Data System (ADS)

    Ryshkevich, T. I.; Mironov, G. N.; Mironova, S. Yu.; Vlasenko, S. S.; Chi, X.; Andreae, M. O.; Mikhailov, E. F.

    2015-09-01

    The results of measurements of hygroscopic properties and chemical analysis of atmospheric aerosol samples collected from June 10 to 20 and December 15 to 25, 2011, at the ZOTTO background stations (60.8° N, 89.35° E) in Central Siberia are presented. The sorption properties of aerosols are studied with the help of a differential analyzer of absorbed water mass in the relative humidity range of 5 to 99%. It has been found that the hygroscopic growth factor of aerosol particles collected during the winter campaign is on average 45% higher than that of the aerosol collected in the summer campaign, which leads to a 40% decrease in the critical supersaturation threshold of cloud activation of particles. The measurement data are analyzed and parameterized using a new approach that takes into account the concentration effects in the particle—water vapor system at low humidities. Based on the chemical analysis, the content of water-soluble substances in the winter sample is 2.5 times higher than in the summer sample. Here, the amount of sulfates and nitrates increases 20 and 88 times, respectively. A trajectory analysis of air mass motion shows that the increased content of inorganic ions in aerosols for the winter sample is caused by long-range transport of pollutants from industrial areas of Siberia. This difference in the chemical composition is the main source of the observed difference in hygroscopic and condensation properties of the aerosol particles.

  17. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  18. 40 CFR 52.2035 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Pennsylvania § 52.2035 Photochemical Assessment Monitoring Stations (PAMS) Program. On September 23, 1994... Clean Air Act. EPA approved the Photochemical Assessment Monitoring Stations (PAMS) Program on September 11, 1995 and made it part of Pennsylvania SIP. As with all components of the SIP, Pennsylvania...

  19. 40 CFR 52.2035 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Pennsylvania § 52.2035 Photochemical Assessment Monitoring Stations (PAMS) Program. On September 23, 1994... Clean Air Act. EPA approved the Photochemical Assessment Monitoring Stations (PAMS) Program on September 11, 1995 and made it part of Pennsylvania SIP. As with all components of the SIP, Pennsylvania...

  20. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    SciTech Connect

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-07-21

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors.

  1. Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites

    NASA Astrophysics Data System (ADS)

    Tuch, T. M.; Haudek, A.; Müller, T.; Nowak, A.; Wex, H.; Wiedensohler, A.

    2009-04-01

    Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% RH to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 weeks experiment. The lower 50% cut-off was found to be below 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One drier has been successfully deployed in the Amazonas river basin. From this monitoring site, we present data from the first 6 months of measurements (February 2008-August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/-7.5% RH compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions.

  2. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  3. 46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b)...

  4. 46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL. § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b)...

  5. 46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b)...

  6. 46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL. § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b)...

  7. 46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b)...

  8. The International Space Station Urine Monitoring System (UMS)

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Cibuzar, Branelle R.; Milstead, Jeffery R.; Pietrzyk,, Robert A.; Clark, Mark S.F.

    2009-01-01

    A device capable of making in-flight volume measurements of single void urine samples, the Urine Monitoring System (UMS), was developed and flown on seven U.S. Space Shuttle missions. This device provided volume data for each urine void from multiple crewmembers and allowed samples of each to be taken and returned to Earth for post-flight analysis. There were a number of design flaws in the original instrument including the presence of liquid carry-over producing invalid "actual" micturition volumes and cross-contamination between successive users from residual urine in "dead" spots". Additionally, high or low volume voids could not be accurately measured, the on-orbit calibration and nominal use sequence was time intensive, and the unit had to be returned and disassembled to retrieve the volume data. These problems have been resolved in a new version, the International Space Station (ISS) UMS, that has been designed to provide real-time in-flight volume data with accuracy and precision equivalent to measurements made on Earth and the ability to provide urine samples that are unadulterated by the device. Originally conceived to be interfaced with a U.S.-built Waste Collection System (WCS), the unit now has been modified to interface with the Russian-supplied Sanitary Hygiene Device (ASY). The ISS UMS provides significant advantages over the current method of collecting urine samples into Urine Collection Devices (UCDs), from which samples are removed and returned to Earth for analyses. A significant future advantage of the UMS is that it can provide an interface to analytical instrumentation that will allow real-time measurement of urine bioanalytes allowing monitoring of crewmember health status during flight and the ability to provide medical interventions based on the results of these measurements. Currently, the ISS UMS is scheduled to launch along with Node-3 on STS-130 (20A) in December 2009. UMS will be installed and scientific/functional verification

  9. Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Pósfai, Mihály; Kovács, Kristóf; Kuzmann, Ernő; Homonnay, Zoltán; Posta, József

    Aerosol samples in PM 10-2.0 and PM 2.0 size fractions were collected on the platform of a metropolitan underground railway station in central Budapest. Individual aerosol particles were studied using atomic force microscopy, scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectrometry and electron diffraction. The bulk aerosol samples were investigated by 57Fe Mössbauer spectroscopy, and they were subjected to chemical speciation analysis for Cr. The particles were classified into groups of iron oxides and iron, carbonates, silicates, quartz and carbonaceous debris. Electron micrographs showed that the Fe-rich particles in the PM 2.0 size fraction typically consisted of aggregates of nano-sized hematite crystals that were randomly oriented, had round shapes and diameters of 5-15 nm. In addition to hematite, a minor fraction of the iron oxide particles also contained magnetite. In addition, the PM 2.0-fraction particles typically had a rugged surface with layered or granular morphologies. Mössbauer spectroscopy suggested that hematite was a major Fe-bearing species in the PM 10-2.0 size fraction; its mass contribution to the Fe was 36%. Further constituents (ferrite, carbides and FeOOH) were also identified. The water soluble amounts of Cr for the underground railway station and city center were similar. In the PM 10-2.0 size fraction, practically all dissolved Cr had an oxidation state of three, which corresponds to ambient conditions. In the PM 2.0 size fraction, however, approximately 7% of the dissolved Cr was present as Cr(VI), which was different from that for the urban aerosol. It is suggested that the increased adverse health effects of aerosol particles in metros with respect to ambient outdoor particles is linked to the differences in the oxidation states, surface properties or morphologies.

  10. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 μg m -2) or no traffic conditions (3.73 × 10 5 μg m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

  11. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    NASA Astrophysics Data System (ADS)

    Jeong, Seongkyun; Lee, Jae-Eun; Park, Hanearl; Lee, Sanguk; Kim, Jaehoon

    2008-06-01

    GNSS (Global Navigation Satellite System) Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute) is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language) method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  12. Two years of aerosol pollution monitoring in Singapore: a review

    NASA Astrophysics Data System (ADS)

    Orlic, I.; Wen, X.; Ng, T. H.; Tang, S. M.

    1999-04-01

    An aerosol sampling campaign was initiated more than two years ago in Singapore. The aim was to determine the average elemental concentrations in fine and coarse aerosol fractions as well as to identify major pollution sources and their impact. For that purpose, two air samplers were employed at two different sampling locations; one sampler was a fine particulate aerosol sampler (PM2.5) located at the vicinity of a major industrial area. The other was a stacked filter unit (SFU) sampler designed for collection of fine and coarse fractions (PM2.5 and PM10) and installed in the residential area. Samples were taken typically twice a week and in several occasions daily. During the period of two years more than 700 aerosol samples were collected and analyzed using PIXE and RBS techniques. All samples were analyzed for 18 elements ranging between Na, Mg, Al, etc. up to As and Pb. Large daily and seasonal variations were found for most of the elements. These variations are attributed mainly to meteorological changes, in particular changes in wind speed and direction. On several occasions, short term sampling was performed to identify fingerprints of major pollution sources such as road traffic, refineries, as well as the rain-forest fires in neighboring countries. A summary of our findings is presented and discussed.

  13. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  14. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  15. Quantification of model uncertainty in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-09-01

    We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.

  16. Uncertainty quantification in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-10-01

    The space borne measurements provide global view of atmospheric aerosol distribution. The Ozone Monitoring Instrument (OMI) on board NASAs Earth Observing System (EOS) Aura satellite is a Dutch-Finnish nadir-viewing solar backscatter spectrometer measuring in the ultraviolet and visible wavelengths. OMI measures several trace gases and aerosols that are important in many air quality and climate studies. The OMI aerosol measurements are used, for example, for detecting volcanic ash plumes, wild fires and transportation of desert dust. We present a methodology for improving the uncertainty quantification in the aerosols retrieval algorithm. We have used the OMI measurements in this feasibility study. Our focus is on the uncertainties originating from the pre-calculated aerosol models. These models are never complete descriptions of the reality. This aerosol model uncertainty is estimated using Gaussian processes with computational tools from spatial statistics. Our approach is based on smooth systematic differences between the observed and modelled reflectances. When acknowledging this model inadequacy in the estimation of aerosol optical thickness (AOT), the uncertainty estimates are more realistic. We present here a real world example of applying the methodology.

  17. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  18. Three Dimensional Monitoring of Stack Plume Dynamics by a Scanning Mie Lidar System as a Plume Watchdog Station

    NASA Astrophysics Data System (ADS)

    Saito, Yasunori; Kurata, Hidehumi; Hara, Yuta; Kobayashi, Fumitoshi; Kawahara, Takuya; Nomura, Akio

    A scanning lidar system was developed to watch the nighttime diffusion process of plume from a smokestack of a large incinerator located around 3 km from the system. Observed data sets were visualized as three dimensional images in which could be seen the diffusion pattern from any direction, and this made it easy to investigate the exhaust dynamics. Observation results showed that the original plume extended at least 1.6 km, where there was a residential area, from the smokestack increasing in diameter to about 500 m. High density aerosols originating from the smokestack were measured in that area even at midnight. The lidar system performance as a plume watchdog station was discussed from the standpoint of publichealth-related plume monitoring.

  19. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  20. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  1. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  2. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  3. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Stations (PAMS) Program on September 11, 1995 and made it part of the Virginia SIP. As with all...

  4. Monitoring of space station life support systems with miniature mass spectrometry and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Yost, Richard A.; Johnson, Jodie V.; Wong, Carla M.

    1987-01-01

    The combination of quadrupole ion trap tandem mass spectroscopy with artificial intelligence is a promising approach for monitoring the performance of the life support systems in the space station. Such an analytical system can provide the selectivity, sensitivity, speed, small size, and decision making intelligence to detect, identify, and quantify trace toxic compounds which may accumulate in the space station habitat.

  5. 40 CFR 52.430 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Photochemical Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as... Stations (PAMS) Program on September 11, 1995 and made it part of the Delaware SIP. As with all components of the SIP, Delaware must implement the program as submitted and approved by EPA....

  6. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as required by... (PAMS) Program on September 11, 1995 and made it part of Maryland SIP. As with all components of the...

  7. Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam Co Station, 4730 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Wan, Xin; Kang, Shichang; Wang, Yuesi; Xin, Jinyuan; Liu, Bin; Guo, Yuhong; Wen, Tianxue; Zhang, Guoshuai; Cong, Zhiyuan

    2015-02-01

    The chemical composition and size distribution characteristics of atmospheric aerosols have important effects on the environment, human health and climate change. In this paper, we study the size distribution of carbonaceous aerosols at the remote and pristine site, Nam Co Monitoring and Research Station for Multisphere Interactions, in the inland Tibetan Plateau (TP) based on collected size-segregated aerosols during 2012. The samples were quantified using the thermal/optical (TOR) method. The overall average concentrations of OC and EC in TSP, PM9.0, PM2.1, and PM1.0 were 4.61 μg m- 3 and 0.19 μg m- 3, 4.52 μg m- 3 and 0.18 μg m- 3, 2.72 μg m- 3 and 0.11 μg m- 3, and 2.11 μg m- 3 and 0.09 μg m- 3, respectively. Generally, the highest concentration of OC and EC in different aerosol size occurred during winter. The low level of EC indicated that direct anthropogenic disturbances in the interior of the TP still remain insignificant. The size distributions of OC and EC concentrations presented bimodal variations. In winter, pre-monsoon, monsoon, and post-monsoon seasons, the peaks for OC were in droplet mode (0.43-0.65 μm) and coarse mode (4.7-5.8 μm); while in the monsoon period, the coarse mode shifted to a smaller size bin (3.3-4.7 μm). The coarse mode may be due to dust particles while the droplet mode may be due to the growth process of particles. For EC, the peaks variations in coarse mode were as same as OC, while the other peaks were complicated: the peaks during winter, pre-monsoon, and monsoon seasons exhibited in droplet mode (1.1-2.1 μm, 0.65-1.1 μm, and 0.43-0.65 μm, respectively), and in post-monsoon period, the peak located in condensation mode. The highest peak concentrations for OC and EC occurred in winter and the pre-monsoon period, while the lowest peak values in the monsoon and post-monsoon periods, respectively. The size distribution variations may be caused by deposition, gas/particles exchange, hygroscopic growth, external mixing

  8. Variability in radiative properties of major aerosol types: a year-long study over Delhi--an urban station in Indo-Gangetic Basin.

    PubMed

    Srivastava, A K; Yadav, V; Pathak, V; Singh, Sachchidanand; Tiwari, S; Bisht, D S; Goloub, P

    2014-03-01

    Aerosol measurements over an urban site at Delhi in the western Ganga basin, northern India, were carried out during 2009 using a ground-based automatic sun/sky radiometer to identify their different types and to understand their possible radiative implications. Differentiation of aerosol types over the station was made using the appropriate thresholds for size-distribution of aerosols (i.e. fine-mode fraction, FMF at 500 nm) and radiation absorptivity (i.e. single scattering albedo, SSA at 440 nm). Four different aerosol types were identified, viz., polluted dust (PD), polluted continent (PC), mostly black carbon (MBC) and mostly organic carbon (MOC), which contributed ~48%, 32%, 11% and 9%, respectively to the total aerosols. Interestingly, the optical properties for these aerosol types differed considerably, which were further used, for the first time, to quantify their radiative implications over this station. The highest atmospheric forcing was observed for PC aerosol type (about +40 W m(-2), along with the corresponding atmospheric heating rate of 1.10 K day(-1)); whereas the lowest was for MBC aerosol type (about +25 W m(-2), along with the corresponding atmospheric heating rate of 0.69 K day(-1)). PMID:24412733

  9. CURRENT FLOW DATA FOR SELECTED USGS STREAM MONITORING STATIONS

    EPA Science Inventory

    This data set contains recent and historical stream flow data for USGS stations. Flow data (cubic feet per second) are available for the most recent 5-6 day period and are compared with long-term average values. Flow data were collected approximately hourly. Flood stage and the m...

  10. Comparison of aerosol extinction profiles from lidar and SAGE II data at a tropical station

    NASA Technical Reports Server (NTRS)

    Parameswaran, K.; Rose, K. O.; Murthy, B. V. K.; Osborn, M. T.; Mcmaster, L. R.

    1991-01-01

    Aerosol extinction profiles obtained from lidar data at Trivandrum (8.6 deg N, 77 deg E) are compared with corresponding Stratospheric Aerosol and Gas Experiment II extinction profiles. The agreement between the two is found to be satisfactory. The extinction profiles obtained by both the experiments showed a prominent peak at 23-24 km altitude in the stratosphere. The study revealed large variability in upper tropospheric extinction with location (latitude).

  11. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  12. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  13. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, Karolina; Russchenberg, Herman W. J.

    2016-03-01

    A new method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius (re) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m-2 wide. For every LWP bin we present the correlation coefficient between ln re and ln ATB, as well as ACIr (defined as ACIr = -d ln re/d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACIr are in the range 0.01-0.1. We show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol-cloud interactions.

  14. Monitoring biomass burning and aerosol loading and transport using multispectral GOES data

    NASA Astrophysics Data System (ADS)

    Menzel, W. Paul; Prins, Elaine

    1996-10-01

    The successful launch of GOES-8 in 1994 introduced an enhanced capability for diurnal monitoring of subpixel fire activity and aerosol transport in the Western Hemisphere. The higher spatial and temporal resolution, greater radiometric sensitivity, and improved navigation of GOES-8 offer many advantages for monitoring fires and smoke in North, Central, and South America. In South America the GOES-8 automated biomass burning algorithm (ABBA) is being used to continue monitoring trends in biomass burning associated with agricultural practices and deforestation activities as well as documenting the extent and transport of associated aerosols. GOES-8 ABBA results obtained during the 1995 biomass burning season indicate a strong diurnal cycle in fire activity and associated aerosol transport regimes extending over millions of km2. Examples of GOES-8 diurnal monitoring of fire intensity and size in the United States, Canada, Mexico, Guatemala and Belize show the utility of using GOES-8 as an early warning mechanism for identifying and monitoring wildfires in these regions. The success of the GOES-8 ABBA in the Western Hemisphere suggests the utility of initiating a global geostationary fire monitoring effort.

  15. Assessment of aerosol optical and micro-physical features retrieved from direct and diffuse solar irradiance measurements from Skyradiometer at a high altitude station at Merak: Assessment of aerosol optical features from Merak.

    PubMed

    Ningombam, Shantikumar S; Srivastava, A K; Bagare, S P; Singh, R B; Kanawade, V P; Dorjey, Namgyal

    2015-11-01

    Optical and micro-physical features of aerosol are reported using Skyradiometer (POM-01L, Prede, Japan) observations taken from a high-altitude station Merak, located in north-eastern Ladakh of the western trans-Himalayas region during January 2011 to December 2013. The observed daily mean aerosol optical depth (AOD, at 500 nm) at the site varied from 0.01 to 0.14. However, 75 % of the observed AOD lies below 0.05 during the study period. Seasonal peaks of AOD occurred in spring as 0.06 and minimum in winter as 0.03 which represents the aged background aerosols at the site. Yearly mean AOD at 500 nm is found to be around 0.04 and inter-annual variations of AOD is very small (nearly ±0.01). Angstrom exponent (a) varied seasonally from 0.73 in spring to 1.5 in autumn. About 30 % of the observed a lies below 0.8 which are the indicative for the presence of coarse-mode aerosols at the site. The station exhibits absorbing aerosol features which prominently occurred during spring and that may be attributed by the transported anthropogenic aerosol from Indo-Gangatic Plain (IGP). Results were well substantiated with the air mass back-trajectory analysis. Furthermore, seasonal mean of single scattering albedo (SSA at 500 nm) varied from of 0.94 to 0.98 and a general increasing trend is noticed from 400 to 870 nm wavelengths. These features are apparently regional characteristics of the site. Aerosol asymmetry factor (AS) decreases gradually from 400 to 870 nm and varied from 0.66 to 0.69 at 500 nm across the seasons. Dominance of desert-dust aerosols, associated by coarse mode, is indicated by tri-modal features of aerosol volume size distribution over the station during the entire seasons. PMID:26081773

  16. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  17. Establishment of a Background Environmental Monitoring Station for the PNNL Campus

    SciTech Connect

    Fritz, Brad G.; Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.; Rishel, Jeremy P.

    2014-12-18

    The environmental surveillance of background levels of radionuclides and, in particular, the siting of a background environmental surveillance (monitoring) station are examined. Many published works identify and stress the need for background monitoring; however, little definitive and comprehensive information for siting a station exists. A definition of an ideal background monitoring location and the generic criteria recommended for use in establishing such a background monitoring location are proposed. There are seven primary (mandatory) criteria described with two additional, optional criteria. The criteria are applied to the Richland, Washington (WA), Pacific Northwest National Laboratory (PNNL) Campus, which currently uses background monitoring data from the nearby Hanford Site. Eleven potential background monitoring sites were identified, with one location in Benton City, WA found to meet all of the mandatory and optional criteria. It is expected that the new sampler will be installed and operating by the end of June, 2015.

  18. Impact of long-range transport on aerosol properties at a regional background station in Northern China

    NASA Astrophysics Data System (ADS)

    Pu, Weiwei; Zhao, Xiujuan; Shi, Xuefeng; Ma, Zhiqiang; Zhang, Xiaoling; Yu, Bo

    2015-02-01

    The impact of long-range transport on aerosol properties at SDZ regional background station in Northern China during 2005-2010, was analyzed using trajectory clustering method with 3-day, 6-hourly backward trajectories determined by using HYSPLIT 4 model. Eleven clusters were determined by using the two-stage cluster method. PM2.5 levels, aerosol scattering coefficient (σsp) and scattering efficiency (αsp_2.5) of PM2.5 associated with each cluster were calculated. Based on the levels of PM2.5 and σsp, eleven clusters were classified into a relatively "clean" group (group A) and a "polluted" group (group B). The PM2.5 concentration and σsp of group A were lower than that of group B. Group A was mainly composed of the trajectories from northwest, north and northeast, which originated and passed through the emission areas such as Mongolia and Inner Mongolia. Group B mostly consisted of the air masses from the south and southeast, and the ones from the northwest. It was characterized with short and low trajectories over major anthropogenic emission regions in North China Plain (NCP), northwestern Hebei province and Inner Mongolia. The trajectory pathway of the northwest cluster in group B was lowest and slowest among all clusters from northerly direction, which caused the accumulation of pollutants along this pathway. High PM hours were identified in each cluster for each month, and were found mainly in group B, especially during March to October. Except of the contribution of high PM2.5 emissions in NCP, the production of secondary aerosols with the increasing solar radiation and humidity from March to October, and the straw burning that usually occurs in June in NCP are responsible for the high PM2.5 as well. The characteristics of αsp_2.5 of each cluster indicated that the northerly clusters were affected by anthropogenic pollutants mixed with dust, but southerly clusters were only influenced by the pollution aerosols. The αsp_2.5 of dust and anthropogenic

  19. [Monitoring of microbial degraders in manned space stations].

    PubMed

    Alekhova, T A; Aleksandrova, A A; Novozhilova, T Iu; Lysak, L V; Zagustina, N A; Bezborodov, A M

    2005-01-01

    Samples of microorganisms from the surface of constructions of Mir Space Station (Mir SS) were taken and examined after 13 years of operation. The following microorganisms were isolated and identified: 12 fungal species belonging to the genera Penicillium, Aspergillus, Cladosporium, and Aureobasidium; 3 yeast species belonging to the genera Debaryomyces, Candida, and Rhodotorula; and 4 bacterial species belonging to the genera Bacillus, Myxococcus, and Rhodococcus. The predominant species in all samples was Penicillium chrisogenum. It was shown that the fungi isolated could damage polymers and induce corrosion of aluminum-magnesium alloys. We commenced a study of microbial degraders on constructions of the Russian section of the International Space Station (RS ISS). Twenty-six species of fungi, bacteria, yeasts, and actinomycetes, known as active biodegraders, were identified in three sample sets taken at intervals. We founded a collection of microorganisms surviving throughout space flights. This collection can be used to test spacecraft production materials, in order to determine their resistance to biodegradation. PMID:16212041

  20. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  1. Atmospheric station Křešín u Pacova, Czech Republic - a Central European research infrastructure for studying greenhouse gases, aerosols and air quality

    NASA Astrophysics Data System (ADS)

    Dvorská, A.; Sedlák, P.; Schwarz, J.; Fusek, M.; Hanuš, V.; Vodička, P.; Trusina, J.

    2015-05-01

    Long-lasting research infrastructures covering the research areas of atmospheric chemistry, meteorology and climatology are of highest importance. The Atmospheric Station (AS) Křešín u Pacova, central Czech Republic, is focused on monitoring of the occurence and long-range transport of greenhouse gases, atmospheric aerosols, selected gaseous atmospheric pollutants and basic meteorological characteristics. The AS and its 250 m tall tower was built according to the recommendations of the Integrated Carbon Observation System (ICOS) and cooperates with numerous national and international projects and monitoring programmes. First measurements conducted at ground started in 2012, vertical profile measurements were added in 2013. A seasonal variability with slightly higher autumn and winter concentrations of elemental and organic carbon was revealed. The suitability of the doubly left-censored Weibull distribution for modelling and interpretation of elemental carbon concentrations, which are often lower than instrumental quantification limits, was verified. Initial data analysis also suggests that in summer, the tower top at 250 m is frequently above the nocturnal surface inversions, thus being decoupled from local influences.

  2. African aerosol and trace-gas emissions from the Central-African Bujumbura station.

    NASA Astrophysics Data System (ADS)

    Gielen, Clio; Van Roozendael, Michel; Hendrick, Francois; Pinardi, Gaia; De Smet, Isabelle; Fayt, Caroline; Hermans, Christian; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel

    2015-04-01

    We present aerosol and trace-gas retrievals from the new Central-African measurement site of Bujumbura, where a new MAX-DOAS instrument and cimel sun photometer have been operational since late 2013. This is the first time that MAX-DOAS measurements are performed in Central Africa, which are critical to resolve the large uncertainties of satellite observations of trace gases and aerosols over this area. The Bujumbura region is a source of strong biogenic compounds and biomass burning products, and invaluable to study the export of African emissions to the Indian ocean. Using the bePRO radiative transfer tool, we retrieve aerosol optical depths (AODs) and vertical extinction profiles for aerosols and trace gases such as NO2 and HCHO. The AOD retrievals are compared to the co-located AERONET sun photometer measurements and further analysed to investigate seasonal and diurnal cycles in the observed variability or to detect biomass-burning events.For the trace gases NO2 and HCHO, the ground-based MAX-DOAS vertical columns and profiles are used for tropospheric trace-gas validation of the GOME-2 and OMI satellites. We further discuss the representativity of the site regarding satelitte comparisons and modelling efforts, given its specific orography.

  3. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  4. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  5. The Research and Implementation of Three Stages Traffic Stations Intelligent Monitor Systems Based on GIS

    NASA Astrophysics Data System (ADS)

    Hong-ying, Chen; Ting, Xiao; WangTao; Jin-yi, He

    This system used three stage intelligent traffic station subsystems to forecast the path on which vehicle will go. First stage subsystem can forecast road node which adjacented to traffic station. Second stage subsystem was designed for bigger area, for example city, the third stage subsystem was for the larger area between city. Second stage subsystem system used A* based on orientation to calculate shortest path, third stage subsystem calculated critical node of a large area. The system can compose dispersed monitor information, forecast vehicle path, dynamic analysis, hierarchical monitor .It played an important role in ITS.

  6. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  7. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  8. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  9. Aerosol model development for environmental monitoring in the coastal atmosphere surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady A.; Matvienko, Gennady G.

    2007-06-01

    Extinction of radiation in the marine boundary layer is dominated by scattering and absorption due to atmospheric aerosol. It is known, that the extinction of optical radiation visible and near IR spectra in the marine surface layer is determined mainly by scattering and absorption atmospheric aerosol. It influences on a dependence of spectral transmission and extinction both natural, and artificial light that is of interest for a wide range of problems, in particular for radiating problems at studying laws of climate formation, and for lines of the applications connected to the forecast of a signal power in coastal conditions at an estimation of EO systems characteristics. This is important to optical retrievals from satellite, remote sensing at environmental monitoring, backscatter of light to space (including climate forcing), cloud properties etc. In unpolluted regions the greatest effects on near shore scattering extinction will be a result of sea-salt from breaking waves and variations in relative humidity. The role of breaking waves appears to be modulated by wind, tide, swell, wave spectra and coastal conditions. These influences will be superimposed upon aerosol generated by open ocean sea-salt aerosol that varies with wind speed. The focus of our study is the extinction and optical effects due to aerosol in a specific coastal region. This involves linking coastal physical properties to oceanic and meteorological parameters in order to develop predictive algorithms that describe 3-D aerosol structure and variability. The aerosol microphysical model of the marine and coastal atmosphere surface layer is considered. The model distinctive feature is parameterization of amplitude and width of the modes as functions of fetch and wind speed. In the paper the dN/dr behavior depending at change meteorological parameters, heights above sea level, fetch, wind speed and RH is show. On the basis of the developed model with usage of Mie theory for spheres the

  10. New Chains of Space Weather Monitoring Stations in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhengkuan

    2016-07-01

    Chinese Meridian Project is a ground based space environment monitoring instrument network along 120 degree east meridian line, 30 degree latitude. The observation instruments include active and passive optical instruments: MST radars, Ionosphere digital sounders DSP-4, VHF Coherent Ionosphere Radar, Incoherent ionosphere radar, magnetometers, GPS receivers, and sounding rockets. The instrument network is now being extended to the north in Russian, to the south in Australia, and to the other side of the globe along 60 degree west. The new instrument chain is called the International Space Weather Meridian Circle Program (ISWMCP). NSSC is the leading institute of the program and has already reached agreements with many countries along this circle.

  11. Open hardware, low cost, air quality stations for monitoring ozone in coastal area

    NASA Astrophysics Data System (ADS)

    Lima, Marco; Donzella, Davide; Pintus, Fabio; Fedi, Adriano; Ferrari, Daniele; Massabò, Marco

    2014-05-01

    Ozone concentrations in urban and coastal area are a great concern for citizens and, consequently regulator. In the last 20 years the Ozone concentration is almost doubled and it has attracted the public attention because of the well know harmful impacts on human health and biosphere in general. Official monitoring networks usually comprise high precision, high accuracy observation stations, usually managed by public administrations and environmental agency; unfortunately due to their high costs of installation and maintenance, the monitoring stations are relatively sparse. This kind of monitoring networks have been recognized to be unsuitable to effectively characterize the high variability of air quality, especially in areas where pollution sources are various and often not static. We present a prototype of a low cost station for air quality monitoring, specifically developed for complementing the official monitoring stations improving the representation of air quality spatial distribution. We focused on a semi-professional product that could guarantee the highest reliability at the lowest possible cost, supported by a consistent infrastructure for data management. We test two type of Ozone sensor electrochemical and metal oxide. This work is integrated in the ACRONET Paradigm ® project: an open-hardware platform strongly oriented on environmental monitoring. All software and hardware sources will be available on the web. Thus, a computer and a small amount of work tools will be sufficient to create new monitoring networks, with the only constraint to share all the data obtained. It will so possible to create a real "sensing community". The prototype is currently able to measure ozone level, temperature and relative humidity, but soon, with the upcoming changes, it will be able also to monitor dust, carbon monoxide and nitrogen dioxide, always through the use of commercial sensors. The sensors are grouped in a compact board that interfaces with a data

  12. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).

  13. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    SciTech Connect

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  14. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  15. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  16. Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling

    PubMed Central

    Evans, Douglas E.; Ku, Bon Ki; Birch, M. Eileen; Dunn, Kevin H.

    2010-01-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations

  17. Detecting RFI Through Integrity Monitoring at a DGPS Reference Station

    NASA Astrophysics Data System (ADS)

    Yun, Youngsun; Kee, Changdon; Rife, Jason; Luo, Ming; Pullen, Sam; Enge, Per

    Because GPS is a radio navigation system which has a very low power level, it is vulnerable to RFI. Excessive RFI could cause receiver performance degradation, such as degradation of position accuracy, loss of lock and increased acquisition time. After GPS modernization plans introduce dual-frequency civil signals to mitigate ionospheric errors, RFI will remain as one of the dominant threats for differential GPS navigation systems. Examples of safety-critical civil aviation and military missions threatened by RFI include the Local Area Augmentation System (LAAS) and the Joint Precision Approach and Landing System (JPALS). This paper focuses on RFI mitigation through integrity monitoring for a DGPS system like LAAS or JPALS. The mitigation strategy consists of two parts. First, the paper develops a new RFI detection method, using a raw divergence statistic. Second, the paper investigates strategies for maintaining integrity in the case that RFI is detected.

  18. An Intelligent System for Monitoring the Microgravity Environment Quality On-Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Lin, Paul P.; Jules, Kenol

    2002-01-01

    An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.

  19. Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring

    NASA Astrophysics Data System (ADS)

    D'Anna, Giuseppe; D'Alessandro, Antonino; Fertitta, Gioacchino; Fraticelli, Nicola; Calore, Daniele

    2016-04-01

    From the early 1980's, Italian seismicity is monitored by the National Seismic Network (NSN). The network has been considerably enhanced by INGV since 2005 by 24-bit digital stations equipped with broad-band sensors. The NSN is nowadays constituted by about 300 on-land seismic station able to detect and locate also small magnitude earthquake in the whole Italian peninsula. However, the lack of offshore seismic stations does not allow the accurate estimation of hypocentral and focal parameters of small magnitude earthquakes occurring in offshore areas. As in the Mediterranean area there is an intense offshore seismic activity, an extension of the seismic monitoring to the sea would be beneficial. There are two types of stations that could be used to extend the network towards the sea: the first type is connected to the coast though a cable, the second type is isolated (or stand alone) and works autonomously. Both solutions have serious limitations: the first one, for several technical and economic problems, linked to the indispensable transmission/alimentation cable, cannot be installed far from the coast; the second one, allows access to the recorded data, only after they are recovered from the seabed. It is clear that these technical solutions are not suitable for the real time monitoring of the offshore seismicity or for the realization of a tsunami warning system. For this reason, in early 2010, the OBSLab of Gibilmanna begins the design of a submarine station able to overcome the limitations of the two systems above. The station isbuilt under the project EMSO-MedIT. The two stations built have already been tested in dock and ready for installation. One of this station will be installed, in few time, in the southern Tyrrhenian Sea, near the epicentre of the Palermo 2002 main shock. The sea bottom station will be equipped with 2 very broadband 3C seismometers, a broad band hydrophone, a differential and an absolute pressure gauge. The station includes a submarine

  20. Light scattering from sea-salt aerosols at Interagency Monitoring of Protected Visual Environments (IMPROVE) sites.

    PubMed

    Lowenthal, Douglas; Kumar, Naresh

    2006-05-01

    A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant. PMID:16739800

  1. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, K.; Russchenberg, H. W. J.

    2015-11-01

    A method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product-Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m-2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα) is not the best way of quantifying aerosol-cloud interactions.

  2. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  3. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2007-05-02

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  4. JMF-based video monitoring system for power station equipment

    NASA Astrophysics Data System (ADS)

    Qin, Jinlei; Li, Zheng; Niu, Yuguang

    2011-12-01

    A remote video monitoring system based on Java Media Framework (JMF) is put forward in this paper. It is of cross-platform, lower time-delay and lower bandwidth. The system is consisted of three layers that are data acquisition layer, service layer and client layer. The hardware of system is connected with local area network and various video devices can be identified in the system. The software based on Java and JMF is programmed to capture, compress, send, receive and play video data and can be run on different operating system without modification. H.263 compression algorithm is adopted and RTP protocol is used to transport video data with RTCP protocol in the system. The client layer can access to the system by Internet or 3G and has convenient and flexible features. Maintenance personnel can easily supervise the device status at any time so that the equipments are always in good condition. It is helpful to enhance the competitive power of power plants.

  5. JMF-based video monitoring system for power station equipment

    NASA Astrophysics Data System (ADS)

    Qin, Jinlei; Li, Zheng; Niu, Yuguang

    2012-01-01

    A remote video monitoring system based on Java Media Framework (JMF) is put forward in this paper. It is of cross-platform, lower time-delay and lower bandwidth. The system is consisted of three layers that are data acquisition layer, service layer and client layer. The hardware of system is connected with local area network and various video devices can be identified in the system. The software based on Java and JMF is programmed to capture, compress, send, receive and play video data and can be run on different operating system without modification. H.263 compression algorithm is adopted and RTP protocol is used to transport video data with RTCP protocol in the system. The client layer can access to the system by Internet or 3G and has convenient and flexible features. Maintenance personnel can easily supervise the device status at any time so that the equipments are always in good condition. It is helpful to enhance the competitive power of power plants.

  6. Remote Monitoring of Aerosol Layers over Sofia in the Frame of EARLINET-ASOS Project

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivan; Kolarov, Georgi; Stoyanov, Dimitar

    2010-01-01

    In this work we present some results of lidar remote sensing of aerosol layers in the atmosphere in Sofia region. The investigations were made using a lidar system equipped with a CuBr-vapor laser with high pulse repetition of 13 kHz and receiver in photon counting mode. These measurements were performed in frame of the project European Aerosol Research Lidar Network—Advanced Sustainable Observation System (EARLINET—ASOS). For some of presented results a conclusion about atmospheric aerosol's origins was made upon analyses of the information about the weather condition during the lidar measurements. Such information was obtained by the weather-forecast maps provided by the Atmospheric Modeling and Weather Forecasting Group of NTUA and the Forecast system of Barcelona Supercomputing Centre and accessible via Internet. Additional information is provided by calculations of the backward air mass trajectories, using online software of NOAA about HYSPLIT model (HYbrid Single-Particle Lagrangian Integrated Trajectory). A common database that automatically collects the data products provided by the individual lidar stations is build and makes data of measurements available to the scientific community.

  7. Microseismic Monitoring Using Surface and Borehole Seismic Stations in an Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Hashmi, S.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Toubi, K.; Al-Lazki, A.; Al-Kindy, F.

    2009-05-01

    Five shallow borehole seismic stations were installed to monitor microearthquake activities in a carbonate oil field in northern Oman since 1999. This shallow network of seismic station operated continuously until 2002 after which intermittent seismic recording took place due to lack of maintenance and failure of some stations. The objectives of the study are to determine the microseismic parameters in the oil field and to determine the spatial and temporal distribution of these events to evaluate possible triggering mechanism. Well over 400 microearthquakes per year were recorded in the first three years of operation and after that the level of seismic recording fell to less than 200 microearthquakes per year due to failure of some stations. In March 2008, temporary seismic experiment consisting of five near surface seismic stations were installed in the oil field to augment the shallow network station and to evaluate surface installment of seismic instrument to monitor microseismic activities. It has been recognized that microearthquakes data such as size, spatial, and temporal distribution provide information on the pressure waves initiated by either production of or injection of fluids into reservoirs. A total of 44 local microearthquake events were analyzed and located during the temporary seismic stations deployment using a non-linear location software that allows the use of variable accurate velocity model of the subsurface. The events location is confined to oil field reservoir boundary during the recording period and more events occurring at shallow depth. The correlation coefficient between gas production and number of events is the higher compared with the oil production or water injection. The focal plane solution for the largest event in the sequence indicates normal faulting with extensional stress consistent with the existing mapped normal faults in the oil field. Microseismic signal clearly detected by the collocated sensors of the near surface

  8. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  9. Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Querol, X.

    2013-10-01

    The analysis of aerosol size distributions is a useful tool for understanding the sources and the processes influencing particle number concentrations (N) in urban areas. Hence, during the one month SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies, EU Marie Curie Action) in autumn 2010 in Barcelona (Spain), four SMPS (Scanning Mobility Particle Sizers) were simultaneously deployed at four monitoring sites: a road side (RSsite), an urban background site located in the city (UBsite), an urban background located in the nearby hills of the city (Torre Collserola, TCsite) and a regional background site located about fifty km from the Barcelona urban areas (RBsite). The spatial distribution of sites allows study of the aerosol temporal variability as well as the spatial distribution, progressively moving away from urban aerosol sources. In order to interpret the datasets collected, a k-means cluster analysis was performed on the combined SMPS datasets. This resulted in nine clusters describing all aerosol size distributions from the four sites. In summary there were three main categories (with three clusters in each category): "Traffic" (Traffic 1 "Tclus1" - 8%, Traffic 2 "Tclus2" - 13%, Traffic 3, "Tclus3" - 9%), "Background Pollution" (Urban Background 1 "UBclus1" - 21%, Regional Background 1, "RBclus1" - 15%, Regional Background 2, "RBclus2" - 18%) and "Special cases" (Nucleation "NUclus" - 5%, Regional Nitrate, "NITclus" - 6%, and Mix "MIXclus" - 5%). As expected, the frequency of traffic clusters (Tclus1-3) followed the order RSsite, UBsite, TCsite, and RBsite. These showed typical traffic modes mainly distributed at 20-40 nm. The urban background sites (UBsite and TCsite) reflected also as expected urban background number concentrations (average values, N = 2.4×104 cm-3 relative to 1.2×105 cm-3 seen at RSsite). The cluster describing the urban background pollution (UBclus1) could be used to monitor the sea breeze circulation towards the

  10. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  11. Common View Time Transfer Using Worldwide GPS and DMA Monitor Stations

    NASA Technical Reports Server (NTRS)

    Reid, Wilson G.; McCaskill, Thomas B.; Oaks, Orville J.; Buisson, James A.; Warren, Hugh E.

    1996-01-01

    Analysis of the on-orbit Navstar clocks and the Global Positioning System (GPS) monitor station reference clocks is performed by the Naval Research Laboratory using both broadcast and postprocessed precise ephemerides. The precise ephemerides are produced by the Defense Mapping Agency (DMA) for each of the GPS space vehicles from pseudo-range measurements collected at five GPS and at five DMA monitor stations spaced around the world. Recently, DMA established an additional site co-located with the US Naval Observatory precise time site. The time reference for the new DMA site is the DoD Master Clock. Now, for the first time, it is possible to transfer time every 15 minutes via common view from the DoD Master Clock to the 11 GPS and DMA monitor stations. The estimated precision of a single common-view time transfer measurement taken over a 15-minute interval was between 1.4 and 2.7 nanoseconds. Using the measurements from all Navstar space vehicles in common view during the 15-minute interval, typically 3-7 space vehicles, improved the estimate of the precision to between 0.65 and 1.13 nanoseconds. The mean phase error obtained from closure of the time transfer around the world using the 11 monitor stations and the 25 space vehicle clocks over a period of 4 months had a magnitude of 31 picoseconds. Analysis of the low noise time transfer from the DoD Master Clock to each of the monitor stations yields not only the bias in the time of the reference clock, but also focuses attention on structure in the behaviour of the reference clock not previously seen. Furthermore, the time transfer provides a a uniformly sampled database of 15-minute measurements that make possible, for the first time, the direct and exhaustive computation of the frequency stability of the monitor station reference clocks. To lend perspective to the analysis, a summary is given of the discontinuities in phase and frequency that occurred in the reference clock at the Master Control Station during

  12. Temporal variability and radiative impact of black carbon aerosol over tropical urban station Hyderabad

    NASA Astrophysics Data System (ADS)

    Dumka, U. C.; Manchanda, R. K.; Sinha, P. R.; Sreenivasan, S.; Moorthy, K. Krishna; Suresh Babu, S.

    2013-12-01

    Time variability of black carbon (BC) aerosols over different timescales (daily, weekly and annual) is studied over a tropical urban location Hyderabad in India using seven channel portable Aethalometer. The results for the 2-year period (January 2009-December 2010) show a daily-mean BC variability from ~1.00±0.12 μg m-3 to 12.50±3.06 μg m-3, with a remarkable annual pattern of winter high and monsoon low. The BC values maximize during winter (December-January), ~6.67±0.22 μg m-3, and drop during summer (June-August), ~2.36±0.09 μg m-3, which establishes a large seasonal variation. Furthermore, the BC mass concentration exhibits a well-defined diurnal variation, with a morning peak and early afternoon minimum. The magnitude of the diurnal variations is seasonal dependent, which maximizes during the winter months. Air mass back trajectories indicated several different transport pathways, while the concentration weighted trajectory (CWT) analysis reveals that the most important potential sources for BC aerosols are the Indo-Gangetic plain (IGP), central India and some hot spots in Pakistan, Arabian Peninsula and Persian Gulf. The absorbing Ångström exponent (αabs) estimated from the spectral values of absorption coefficient (σabs) ranges from 0.9 to 1.1 indicating high BC/OC ratio typical of fossil fuel origin. The annual average BC mass fraction to composite aerosols is found to be (10±3) % contributing to the atmospheric forcing by (55±10) %. The BC radiative forcing at the atmosphere shows strong seasonal dependency with higher values in winter (33.49±7.01) and spring (31.78±12.89) and moderate in autumn (18.94±6.71) and summer (13.15±1.66). The BC radiative forcing at the top of the atmosphere (TOA) is positive in all months, suggesting an overall heating of the regional climate over Hyderabad.

  13. Lidar Monitoring of Clouds and Aerosols at the Facility for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    2000-01-01

    We report on findings from ongoing polarization lidar research at the University of Utah Facility for Atmospheric Remote Sensing (FARS). This facility was established in 1987, and the current total of lidar and radiometric measurements is approx. 2,900-h. Research at FARS has been applied to the climatological investigation of cirrus cloud properties for basic research and satellite measurement validation (currently in its 13th year), and studies of contrails, mixed phase clouds, and volcanic and Asian dust aerosols. Among the techniques utilized for monitoring cloud and aerosol properties are triple-wave length linear depolarization measurements, and high (1.5-m by 10-Hz) resolution scanning observations. The usefulness of extended time lidar studies for atmospheric and climate research is illustrated.

  14. Engineering Upgrades to the Radionuclide Aerosol Sampler/Analyzer for the CTBT International Monitoring System

    SciTech Connect

    Forrester, Joel B.; Carty, Fitz; Comes, Laura; Hayes, James C.; Miley, Harry S.; Morris, Scott J.; Ripplinger, Mike D.; Slaugh, Ryan W.; Van Davelaar, Peter

    2013-05-13

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory in the 1990’s and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The utility of such an automated system is the reduction of human intervention and the production of perfectly uniform results. However, maintainability and down time issues threaten this utility, even for systems with over 90% data availability. Engineering upgrades to the RASA are currently being pursued to address these issues, as well as Fukushima lessons learned. Current work includes a new automation control unit, and other potential improvements such as alternative detector cooling and sampling options are under review. This paper presents the current state of upgrades and improvements under investigation

  15. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  16. Monitoring Aerosol Optical Properties in the ABL, Using Lidar System and Sunphotometer in Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Pallotta, J.; Pawelko, E.; Otero, L.; Ristori, P.; D'Elia, R.; Gonzalez, F.; Dworniczak, J.; Vilar, O.; Quel, E.

    2009-03-01

    At the Lasers and Applications Research Center (CEILAP, CITEFA-CONICET, (34°33' S, 58°30' W), located in an industrial suburb of the metropolitan area (Villa Martelli, Buenos Aires, Argentina), operates a multiwavelength lidar, based on a Nd:Yag laser (Continuum Surelite III P-IV). This system emits in 1064, 532 and 355 nm simultaneously (10 Hz, 600 mJ @ 1064 nm) and allows the monitoring of the optical aerosols properties in the atmospheric boundary layer (ABL). On the same experimental site, an AERONET sunphotometer provides the AOT value. An analysis of boundary layer behaviour in some relevant days of March, from the years 2004 to 2006 is presented. On the days analyzed, no aerosols events and clouds were registered over the ABL. Evolutions of some characteristics of the ABL are presented, such as the height of the boundary layer, height of entrainment zone (EZ) and the entrainment flux ratio.

  17. Monitoring biomass burning and aerosol loading and transport from a geostationary satellite perspective

    SciTech Connect

    Prins, E.M.; Menzel, W.P.

    1996-12-31

    The topic of this paper is the use of geostationary operational environmental satellites (GOES) to monitor trends in biomass burning and aerosol production and transport in South America and through the Western Hemisphere. The GOES Automated Biomass Burning Algorithm (ABBA) was developed to provide diurnal information concerning fires in South America; applications demonstrating the ability to document long-term trends in fire activity are described. Analyses of imagery collected by GOES-8 is described; six biomass burning seasons in South America revealed many examples of large-scale smoke transport extending over several million square kilometers. Four major transport regimes were identified. Case studies throughout South America, Canada, the United States, Mexico, Belize, and Guatemala have successfully demonstrated the improved capability of GOES-8 for fire and smoke monitoring in various ecosystems. Global geostationary fire monitoring will be possible with the launch of new satellites. 12 refs., 4 figs., 1 tab.

  18. Transient variation of aerosol size distribution in an underground subway station.

    PubMed

    Kwon, Soon-Bark; Namgung, Hyeong-Gyu; Jeong, Wootae; Park, Duckshin; Eom, Jin Ki

    2016-06-01

    As the number of people using rapid transit systems (subways) continues to rise in major cities worldwide, increasing attention has been given to the indoor air quality of underground stations. This study intended to observe the change of PM distribution by size in an underground station with PSDs installed located near the main road in downtown Seoul, as well as to examine causes for the changes. The results indicate that the PM suspended in the tunnel flowed into the platform area even in a subway station where the effect of train-induced wind is blocked by installed PSDs, as this flow occurred when the PSDs were opened. The results also indicate that coarse mode particles generated by mechanical friction in the tunnel, such as that between wheels and rail, also flowed into the platform area. The PM either settled or was re-suspended according to size and whether the ventilation in the platform area was in operation or if the platform floor had been washed. The ventilation system was more effective in removing PM of smaller sizes (fine particles) while the wash-out performed after train operations had stopped reduced the suspension of coarse mode particles the next morning. Despite installation of the completely sealed PSDs, inflow of coarse mode particles from the tunnel seems unavoidable, indicating the need for measures to decrease the PM generated there to lower subway user exposure since those particles cannot be reduced by mechanical ventilation alone. This research implicate that coarse PM containing heavy metals (generated from tunnel side) proliferated especially during rush hours, during which it is very important to control those PM in order to reduce subway user exposure to this hazardous PM. PMID:27220501

  19. An automatic continuous monitoring station for groundwater geochemistry at an active fault zone in SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Wei; Yang, Tsanyao F.; Fu, Ching-Chou; Hilton, David R.; Liu, Tsung-Kwei; Walia, Vivek; Lai, Tzu-Hua

    2015-04-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shui, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station. From the SPARTAH samples, we can obtain detailed time series records of H-O isotopic compositions, DIC concentration and δ13C isotopic ratios, and anion concentration of the water samples at this station. After continuous monitoring for about one year, some anomalies occurred prior to some local earthquakes. It demonstrates that this automated system is feasible for long-term continuous seismo-geochemical research in this area. Keywords: monitoring; geochemistry; isotope; dissolved gases; pre-seismic signal.

  20. Long-term MAX-DOAS measurement of trace gases and aerosol in the Environmental Research Station Schneefernerhaus

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoru; Hao, Nan; Hendrick, François; Van Roozendael, Michel; Holla, Robert; Valks, Pieter

    2016-04-01

    The Environmental Research Station Schneefernerhaus (Umwelt Forschungsstation Schneefernerhaus, UFS) is located immediately under the summit of Zugspitze (2962 m), the highest mountain of Germany, at a height of 2650 m. The UFS is a rare observation site in Germany with mostly clean and unpolluted air. It is ideal for both stratospheric composition measurements and trace gas measurements in the free-troposphere. It is optimal for detecting pollution events in the free-troposphere, which are indications of short- or long-range transport of air pollutants. A MAX-DOAS instrument has been working in the UFS since February 2011. With the zenith spectrum of each cycle used as the reference, the differential slant column densities (DSCDs) of trace gases are calculated from the spectra with Differential Optical Absorption Spectroscopy (DOAS) method. The DSCDs of both O4 and NO2 are calculated in two different wavelength intervals, 338-370 nm in the UV region and 440-490 nm in the VIS region. For HCHO and HONO, optimal fitting windows have been determined in the UV region. A retrieval algorithm, based on the radiative transfer model LIDORT and the optimal estimation technique, is used to provide information on the vertical profiles and vertical column densities (VCDs) of aerosol and trace gases. Meanwhile, zenith-sky radiance spectra during twilight hours are analyzed using DOAS method to derive the total vertical column densities (VCDs) of O3 and NO2. A zenith spectrum measured in the noon of a summer day was chosen as the reference spectrum. The slant column densities (SCDs) of O3 and NO2, which are the direct product of the DOAS analysis, are then converted into VCDs using the air mass factors (AMFs) derived by radiative transfer calculations. This work presents the results of the MAX-DOAS measurement in the UFS from 2012 to 2015, including aerosol (derived from O4 measurement), NO2, HCHO, and HONO, etc. The vertical profiles as well as the seasonal and diurnal variation

  1. Absorbing aerosols: are they causing a delayed sunrise? A comparison between plain and plateau IGB stations

    NASA Astrophysics Data System (ADS)

    Kumari, Lipi

    2016-07-01

    Current study tries to compare black carbon radiative effects at densely populated plain station Varanasi and lesser populated plateau station Ranchi with large forest cover but with numerous open coal mines. While average black carbon mass density (BC) reduced from February to March at Ranchi following an increase in convective instability, it was observed to increase by 150% from Feb to March at Varanasi, as transport from NE forest fires increases. It is observed that absorption due to black carbon of non-fossil fuel origin is prevalent throughout the day at Varanasi, while this contribution is most significant during post sunset hours at Ranchi. Radiative forcing, estimated hourly using chemical model (to derive BC-aod ) and radiative transfer model, indicated that at least 5% of the incoming radiation is always cut-off during any time of the day at Varanasi while this is about 4% at Ranchi. BC effectively causes a delayed sunrise by reducing the incoming radiation at plains of IGB by around 25% which may be crucial for bionetwork.

  2. Understanding The Correlation of San Joaquin Air Quality Monitoring With Aerosol Optical Thickness Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ballard, M.; Newcomer, M.; Rudy, J.; Lake, S.; Sambasivam, S.; Strawa, A. W.; Schmidt, C.; Skiles, J.

    2007-12-01

    Air quality in the San Joaquin Valley (SJV) has failed to meet state and federal attainment standards for Particulate Matter (PM) for several years. Air quality agencies currently use ground monitoring sites to monitor air quality in the San Joaquin Valley. This method provides accurate information at specific points but does not provide a clear indication of what is occurring over large regions. Using measurements from satellite imagery has the potential to provide valuable air quality information in a timely manner across large regions. While previous studies show good correlations between satellite derived Aerosol Optical Thickness (AOT) and surface PM measurements on the East Coast of the United States, the data do not correlate well in the SJV. This paper compares PM2.5 ground data from the California Air Resources Board (CARB) and the Interagency Monitoring of Protected Environments (IMPROVE) sites with satellite data in an effort to understand this discrepancy. To verify satellite AOT value accuracy, ground AOT values were collected from the Aerosol Robotic Network (AERONET) and from measurements using the hand-held MicroTops II Sun Photometer field instrument. We found good correlation of the AOT values between MODIS, MISR and AERONET. However, we found poor correlations between satellite- based AOT values and PM2.5 values, and consideration of aerosol speciation did not improve the correlations. Further investigation is needed to determine the causes of the poor correlation. Acquiring detailed information on the meteorological conditions and vertical profiles of the atmosphere using ground-based LIDAR or data from CALIPSO may provide better results.

  3. Development of an Environmental Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph M., Jr.; Clifton, Kenneth S.; Vanhooser, Michael T.

    1999-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments and provide data and power from ISS. From the beginning of the space station program it has been recognized that external experiments will require knowledge of the external environment because it can affect the science being performed and may impact lifetime and operations of the experiments. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP) was started. This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  4. A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deirmendjian, D.

    1980-01-01

    A critical survey of the literature on the use of light-scattering mechanisms in the remote monitoring of atmospheric aerosols, their geographical and spatial distribution, and temporal variations was undertaken to aid in the choice of future operational systems, both ground based and air or space borne. An evaluation, mainly qualitative and subjective, of various techniques and systems is carried out. No single system is found to be adequate for operational purposes. A combination of earth surface and space-borne systems based mainly on passive techniques involving solar radiation with active (lidar) systems to provide auxiliary or backup information is tentatively recommended.

  5. Multiwavelength lidar node development and simulation for a regional tropospheric aerosol monitoring network

    NASA Astrophysics Data System (ADS)

    Pawelko, E. E.; Ristori, P. R.; Otero, L. A.; Pallotta, J. V.; Quel, E. J.

    2011-01-01

    This work studies multiwavelength lidar node operation requirements to operate in a regional aerosol monitoring network. Some of the parameters taken into account are simplicity and robustness of the system in continuous and remote operation conditions. Sub-system modularity and accessibility is also contemplated. A numerical simulation is performed on a synthetic atmospheric signal to analyze the behaviour of this system in a) the visible (532 nm) and infrared (1064 nm) spectral regions; b) the main atmospheric compound Raman spectral region (nitrogen, oxygen water vapor). Adding depolarization channels in the 532 nm spectral region is also contemplated.

  6. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  7. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning. PMID:26942452

  8. Global pollution aerosol monitoring (GPAM) in the atmospheric boundary layer using future earth observing satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Qu, Jianhe; Kafatos, Menas; Yang, Ruixin; Chiu, Long S.; Riebau, Allen R.

    2003-04-01

    Global pollution aerosol monitoring is a very important climatic and environmental problem. It affects not only human health but also ecological systems. Because most pollution aerosols are concentrated in the atmospheric boundary layer where human, animal and vegetation live, global pollution aerosol stuides have been an important topic since about a decade ago. Recently, many new chemistry remote sensing satellite systems, such as NASA's Aura (EOS-CHEM), have been established. However, pollution aerosols in the atmospheric boundary layer cannot be detected using current remote sensing technologies. George Mason University (GMU) proposes to design scientific algorithms and technologies to monitor the atmospheric boundary layer pollution aerosols, using both satellite remote sensing measurements and ground measurements, collaborating with NASA and the United States Department of Agriculture (USDA)/Forest Services (FS). Boundary layer pollution aerosols result from industrial pollution, desert dust storms, smoke from wildfires and biomass burning, volcanic eruptions, and from other trace gases. The current and next generation satellite instruments, such as The Ozone Mapping and Profiler Suite (OMPS), Ozone Monitoring Instrument (OMI), Thermal Emission Spectrometer (TES), and High Resolution Dynamics Limb Sounder (HIRDLS) can be used for this study. Some surface measurements from USDA/FS and other agencies may also be used in this study. We will discuss critical issues for GPAM in the boundary layer using Earth observing satellite remote sensing in detail in this paper.

  9. Requirements for developing a regional monitoring capacity for aerosols in Europe within EMEP.

    PubMed

    Kahnert, Michael; Lazaridis, Mihalis; Tsyro, Svetlana; Torseth, Kjetil

    2004-07-01

    The European Monitoring and Evaluation Programme (EMEP) has been established to provide information to Parties to the Convention on Long Range Transboundary Air Pollution on deposition and concentration of air pollutants, as well as on the quantity and significance of long-range transmission of pollutants and transboundary fluxes. To achieve its objectives with the required scientific credibility and technical underpinning, a close integration of the programme's main elements is performed. These elements are emission inventories, chemical transport modelling, and the monitoring of atmospheric chemistry and deposition fluxes, which further are integrated towards abatement policy development. A critical element is the air pollution monitoring that is performed across Europe with a focus not only on health effect aspects and compliance monitoring, but also on process studies and source receptor relationships. Without a strong observational basis a predictive modelling capacity cannot be developed and validated. Thus the modelling success strongly depends on the quality and quantity of available observations. Particulate matter (PM) is a relatively recent addition to the EMEP monitoring programme, and the network for PM mass observations is still evolving. This article presents the current status of EMEP aerosol observations, followed by a critical evaluation in view of EMEP's main objectives and its model development requirements. Specific recommendations are given for improving the PM monitoring programme within EMEP. PMID:15237297

  10. Simplified conversions between specific conductance and salinity units for use with data from monitoring stations

    USGS Publications Warehouse

    Schemel, Laurence E.

    2001-01-01

    This article presents a simplified conversion to salinity units for use with specific conductance data from monitoring stations that have been normalized to a standard temperature of 25 °C and an equation for the reverse calculation. Although these previously undocumented methods have been shared with many IEP agencies over the last two decades, the sources of the equations and data are identified here so that the original literature can be accessed.

  11. Applications of formal simulation languages in the control and monitoring subsystems of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lacovara, R. C.

    1990-01-01

    The notions, benefits, and drawbacks of numeric simulation are introduced. Two formal simulation languages, Simpscript and Modsim are introduced. The capabilities of each are discussed briefly, and then the two programs are compared. The use of simulation in the process of design engineering for the Control and Monitoring System (CMS) for Space Station Freedom is discussed. The application of the formal simulation language to the CMS design is presented, and recommendations are made as to their use.

  12. In situ monitoring of animal micronuclei before the operation of Daya Bay Nuclear Power Station

    SciTech Connect

    Y.N. Cai; H.Y. He; L.M. Qian; G.C. Sun; J.Y. Zhao

    1994-12-31

    Daya Bay Nuclear Power Station, a newly-built nuclear power station in southern mainland China, started its operation in 1993. We examined micro-nucleated cells of Invertibrate (Bivalves) and Vertibrate (Fish and Amphibia) in different spots within the 50km surroundings of the Power Station during 1986-1993. This paper reports the results of the investigation carried out in Dong Shan, a place 4.7km to the Power Station:Bivalves; Pteria martensil 5.1(1986),4.8(1988),4.8(1991),5,0(1993),Mytilus smardinus 4.7(1987),4.6(1988); Chamys nobilis 4.9(1987);4.9(1991),4.5(1992),4.5(1993). Fish; Therapon jarbua 0.48(1991),0.67(1992),0.47(1993). Amphibia; Bufo melanostictus 0.29 (1987), 0.34(1988),0.39(1992),0.39(1993). These results showed that the environmental situation, estimated by using the frequencies of micronucleated cells, was stable-there was no obvious chromosome damage in the animals studied. It was found that the incidence of micronucleated cells of Bivalves was higher than that of Fish and Amphibia, suggesting the epithelial cells to be more sensitive than peripheral erythrocytes to environmental genotoxic effects. The results of our studies for other spots will be reported afterward. These data can be used as the original background information to monitor the environment when the Nuclear Power Station is in operation.

  13. Design of a monitor and simulation terminal (master) for space station telerobotics and telescience

    NASA Technical Reports Server (NTRS)

    Lopez, L.; Konkel, C.; Harmon, P.; King, S.

    1989-01-01

    Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator.

  14. The role of Environmental Health System air quality monitors in Space Station Contingency Operations

    NASA Technical Reports Server (NTRS)

    Limero, Thomas F.; Wilson, Steve; Perlot, Susan; James, John

    1992-01-01

    This paper describes the Space Station Freedom (SSF) Environmental Health System's air-quality monitoring strategy and instrumentation. A two-tier system has been developed, consisting of first-alert instruments that warn the crew of airborne contamination and a volatile organic analyzer that can identify volatile organic contaminants in near-real time. The strategy for air quality monitoring on SSF is designed to provide early detection so that the contamination can be confined to one module and so that crew health and safety can be protected throughout the contingency event. The use of air-quality monitors in fixed and portable modes will be presented as a means of following the progress of decontamination efforts and ensuring acceptable air quality in a module after an incident. The technology of each instrument will be reviewed briefly; the main focus of this paper, however, will be the use of air-quality monitors before, during, and after contingency incidents.

  15. A study on the temporal and spatial variability of absorbing aerosols using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument Aerosol Index data

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2009-05-01

    Absorbing aerosols, especially mineral dust and black carbon, play key roles in climate change by absorbing solar radiation, heating the atmosphere, and contributing to global warming. In this paper, we first examine the consistency of the Aerosol Index (AI) product as measured by the Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) instruments and then analyze these AI data sets to investigate the temporal and spatial variability of UV absorbing aerosols. In contrast to the trend in aerosol optical depth found in the advanced very high-resolution radiometer data, no obvious long-term trend in absorbing aerosols is observed from the time series of AI records. The comparison between the mean annual cycle in the two data sets shows that the cycles agree very well both globally and regionally, indicating a consistency between the AI products from TOMS and OMI. Varimax rotated Empirical Orthogonal Function (EOF) analysis of detrended, deseasonalized AI data proves to be successful in isolating major dust and biomass burning source regions, as well as dust transport. Finally, we find that large, individual events, such as the Kuwait oil fire and Australian smoke plum, are isolated in individual higher-order principal components.

  16. The performance of the stations of the Romanian seismic network in monitoring the local seismic activity

    NASA Astrophysics Data System (ADS)

    Ardeleanu, Luminita Angela; Neagoe, Cristian

    2014-05-01

    The seismic survey of the territory of Romania is mainly performed by the national seismic network operated by the National Institute for Earth Physics of Bucharest. After successive developments and upgrades, the network consists at present of 123 permanent stations equipped with high quality digital instruments (Kinemetrics K2, Quantera Q330, Quantera Q330HR, PS6-24 and Basalt digitizers) - 102 real time and 20 off-line stations - which cover the whole territory of the country. All permanent stations are supplied with 3 component accelerometers (episenzor type), while the real time stations are in addition provided with broadband (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2) or short period (SH-1, S13, Mark l4c, Ranger, GS21, L22_VEL) velocity sensors. Several communication systems are currently used for the real time data transmission: an analog line in UHF band, a line through GPRS (General Packet Radio Service), a dedicated line through satellite, and a dedicated line provided by the Romanian Special Telecommunication Service. During the period January 1, 2006 - June 30, 2013, 5936 shallow depth seismic events - earthquakes and quarry blasts - with local magnitude ML ≥ 1.2 were localized on the Romanian territory, or in its immediate vicinity, using the records of the national seismic network; 1467 subcrustal earthquakes (depth ≥ 60 km) with magnitude ML ≥ 1.9 were also localized in the Vrancea region, at the bend of the Eastern Carpathians. The goal of the present study is to evaluate the individual contribution of the real time seismic stations to the monitoring of the local seismicity. The performance of each station is estimated by taking into consideration the fraction of events that are localised using the station records, compared to the total number of events of the catalogue, occurred during the time of station operation. Taking into account the nonuniform space distribution of earthquakes, the location of the site and the recovery

  17. Stratospheric Aerosol and Gas Experiment, SAGE III on ISS, An Earth Science Mission on the International Space Station, Schedule Risk Analysis, A Project Perspective

    NASA Technical Reports Server (NTRS)

    Bonine, Lauren

    2015-01-01

    The presentation provides insight into the schedule risk analysis process used by the Stratospheric Aerosol and Gas Experiment III on the International Space Station Project. The presentation focuses on the schedule risk analysis process highlighting the methods for identification of risk inputs, the inclusion of generic risks identified outside the traditional continuous risk management process, and the development of tailored analysis products used to improve risk informed decision making.

  18. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Prévôt, A. S. H.; Baltensperger, U.; Schneider, J.; Kimmel, J. R.; Gonin, M.; Rohner, U.; Worsnop, D. R.; Jayne, J. T.

    2013-11-01

    We present a new instrument for monitoring aerosol composition, the time-of-flight aerosol chemical speciation monitor (ToF-ACSM), combining precision state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS) technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM). Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of < 30 ng m-3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~ 8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation and calibration and analysis) provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS) measurements, performed during a first long-term deployment (> 10 months) on the Jungfraujoch mountain ridge (3580 m a.s.l.) in the Swiss Alps, agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th), as well as improving inorganic/organic separation.

  19. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Prévôt, A. S. H.; Baltensperger, U.; Schneider, J.; Kimmel, J. R.; Gonin, M.; Rohner, U.; Worsnop, D. R.; Jayne, J. T.

    2013-07-01

    We present a new instrument for monitoring aerosol composition, the economy time-of-flight-aerosol chemical speciation monitor (ToF-ACSM), combining precision of state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS) technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM). Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of <30 ng m-3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation & calibration and analysis) provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS) measurements, performed during a first long-term deployment (>6 months) on the Jungfraujoch mountain ridge (3580 m a.s.l.) in the Swiss Alps agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th), as well as improving inorganic/organic separation.

  20. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  1. Scintigraphic monitoring of mucociliary tracheo-bronchial clearance of technetium-99m macroaggregated albumin aerosol

    SciTech Connect

    Zwas, S.T.; Katz, I.; Belfer, B.; Baum, G.L.; Aharonson, E.

    1987-02-01

    A simple method for in vivo monitoring mucociliary tracheo-bronchial clearance is described. Eighteen healthy subjects and 13 patients with various chronic lung diseases were studied by this method. The principle of using an aerosol administration system similar to the system used for routine ventilation lung studies is stressed. Proximal large airway deposition of the radioaerosol was obtained by using relatively large particles (average diameter 2 microM) of (99mTc)MAA aerosol. Monitoring was performed by visual inspection of the tracheo-bronchial cinescintigraphic ascendence of the accumulated radioactive boli and by assessing their rate of clearance via automated computer analysis of the time-activity curves, following the movement of each bolus. The normal mean +/- s.d. clearance rate thus obtained was 4.7 +/- 1.3 mm/min. This rate appears to be more precise as compared with the range of results obtained by other radioisotopic methods. Significantly faster rates, mean 8.2 +/- 1.4 mm/min (p less than 0.001) were obtained in bronchiectatic patients while slower rates (2.8 mm/min) were seen in a patient with ciliary dyskinesia.

  2. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry.

    PubMed

    Bohne, J E; Cohen, B S

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension. PMID:3976498

  3. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry

    SciTech Connect

    Bohne, J.E. Jr.; Cohen, B.S.

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension.

  4. New classification scheme for ozone monitoring stations based on frequency distribution of hourly data.

    PubMed

    Tapia, O; Escudero, M; Lozano, Á; Anzano, J; Mantilla, E

    2016-02-15

    According to European Union (EU) legislation, ozone (O3) monitoring sites can be classified regarding their location (rural background, rural, suburban, urban) or based on the presence of emission sources (background, traffic, industrial). There have been attempts to improve these classifications aiming to reduce their ambiguity and subjectivity, but although scientifically sound, they lack the simplicity needed for operational purposes. We present a simple methodology for classifying O3 stations based on the characteristics of frequency distribution curves which are indicative of the actual impact of combustion sources emitting NO that consumes O3 via titration. Four classes are identified using 1998-2012 hourly data from 72 stations widely distributed in mainland Spain and the Balearic Islands. Types 1 and 2 present unimodal bell-shaped distribution with very low amount of data near zero reflecting a limited influence of combustion sources while Type 4 has a primary mode close to zero, showing the impact of combustion sources, and a minor mode for higher concentrations. Type 3 stations present bimodal distributions with the main mode in the higher levels. We propose a quantitative metric based on the Gini index with the objective of reproducing this classification and finding empirical ranges potentially useful for future classifications. The analysis of the correspondence with the EUROAIRNET classes for the 72 stations reveals that the proposed scheme is only dependent on the impact of combustion sources and not on climatic or orographic aspects. It is demonstrated that this classification is robust since in 87% of the occasions the classification obtained for individual years coincide with the global classification obtained for the 1998-2012 period. Finally, case studies showing the applicability of the new classification scheme for assessing the impact on O3 of a station relocation and performing a critical evaluation of an air quality monitoring network are

  5. Contributions of local sources, long-range and mountain wind transport for aerosols over an eastern Himalayan high-altitude station in India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Sarkar, Chirantan; Singh, Ajay; Ghosh, Sanjay; Raha, Sibaji; Das, Sanat

    A long-term study (2010-2013) on aerosols mass concentrations (PM2.5), number concentrations of size segregated aerosols and mass concentration of total suspended black carbon aerosols has been made over Darjeeling (27.01 N, 88.15 E), a high altitude (2200 m asl) station at eastern Himalaya in India. Seasonal and diurnal variation of all types of aerosols, their chemical composition and source apportionment revealed that aerosols over this part of Himalaya are mainly of two types; locally generated and long-range transported aerosols. The diurnal variation of aerosols including black carbon showed distinct feature of up-slope mountain wind transport mainly during premonsoon (Mar-May) which brings aerosol particles from low land regions. This present study focuses on the estimation of the individual contributions from local emissions (LE), long-range transport (LRT) and mountain wind transport (MWT) towards the total aerosol loading over Darjeeling. Several strike events (called by local political party) were observed at Darjeeling over the entire period of study (2008-2013) when all the local activities (schools, colleges, offices, vehicular, industrial etc) were stopped fully. Most of the strike events occurred during premonsoon. We have observed three types of events during premonsoon over the entire study period; 1) strike events with the contribution of LRT+MWT with zero local emissions (LE=0), 2) normal days with the contribution of LE+LRT+MWT, 3) normal days with the contribution of LE+MWT with zero long-range contribution (LRT=0). On normal days, the diurnal variation of aerosols during premonsoon showed sharp morning and evening peaks associated to local anthropogenic activities with the effect of up-slope mountain wind during afternoon. During strike events, the morning and evening peaks were absent but a broad peak was observed during afternoon associated to up-slope mountain wind. The increase in aerosol concentrations during afternoon on strike days

  6. COLD MAGICS - Continuous Local Deformation Monitoring of an Arctic Geodetic Fundamental Station

    NASA Technical Reports Server (NTRS)

    Haas, Ruediger; Bergstrand, Sten

    2010-01-01

    We describe the experience gained in a project to continuously monitor the local tie at the Geodetic Observatory Ny-Alesund. A PC-controlled robotic total station was used to monitor survey prisms that were attached to survey pillars of the local network and the monuments used for geodetic VLBI and GNSS measurements. The monitoring lasted for seven days and had a temporal resolution of six minutes. The raw angle and distance measurements show clear sinusoidal signatures with a daily period, most strongly for a four-day period with 24 hours of sunshine. The derived topocentric coordinates of the survey prisms attached to the GNSS monument and the VLBI radio telescope act as approximation for the local tie. We detect clear signatures at the mm-level. With the current approach we cannot distinguish between real motion of the prisms and potential thermal influences on the instrument used for the observations. However, the project shows that continuous local tie monitoring is feasible today and in the future can and should be used for all geodetic co-location stations.

  7. On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW - Spain)

    NASA Astrophysics Data System (ADS)

    Sorribas, M.; de La Morena, B. A.; Wehner, B.; López, J. F.; Prats, N.; Mogo, S.; Wiedensohler, A.; Cachorro, V. E.

    2011-11-01

    This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days). The mean total concentration (NT) was 8660 cm-3 and the mean concentrations in the nucleation (NNUC), Aitken (NAIT) and accumulation (NACC) particle size ranges were 2830 cm-3, 4110 cm-3 and 1720 cm-3, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm-3 and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean NNUC and NACC. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of NACC which suppressed the new particle formation (decreasing NNUC). Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles moved offshore due to the land breeze and had an impact on the particle burden at noon, especially when the wind was blowing from the NW sector in the morning during summer time. This increased NNUC and NAIT by factors of 3

  8. Micropulse lidar observations of the annual cycle of altitude profiles of aerosols and delineation of the effect of long-range transport over a tropical coastal Indian station

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj; Parameswaran, Krishnaswamy; Krishna Moorthy, K.; Rajeev, Kunjukrishnapillai; Nair, Anish Kumar M.; Vengasseril Thampi, Bijoy

    2012-07-01

    Atmospheric residence time, long-range transport and climate impact of aerosols are considerably modulated by their altitude of occurrence. Aerosol loading over Indian subcontinent and the surrounding oceanic regions are strongly influenced by long-range transport of aerosols. Altitude profiles of aerosol backscatter coefficient and linear depolarization ratio (LDR) observed using dual polarization Micropulse Lidar (MPL) provide a unique tool to investigate the vertical distribution of aerosols and unambiguously identify aerosol layers, especially when the aerosol-shape characteristics are distinctly different. The value of LDR increases with non-sphericity: it is below ˜0.04 for spherical aerosols while its value typically varies in the range of 0.1-0.3 for mineral dust. This paper presents the monthly, seasonal and interannual variations in the mean altitude profiles of aerosol backscatter coefficient (β a) and LDR over a tropical coastal station in the southwest Indian Peninsula, Trivandrum (8.5°N, 77°E), observed using dual polarization MPL during the period of 2008-2011. Prominent elevated layers of mineral dust caused by the long-range transport from the West Asian Deserts is a persistent feature in the altitude band of 1-4 km during the July-August period, while its interannual variability is considerable during the other summer monsoon months of June and September. Similar elevated layers are also observed during the pre-monsoon season (March-May), albeit with relatively smaller values of LDR (0.10-0.15) compared to the summer monsoon season (LDR in the range of 0.1-0.3). Aerosol amount in the 2-5 km altitude is substantially small during September-February compared to that in March-May and July-August. Annual cycle of the monthly mean values of integrated backscatter coefficient shows a peak-to-trough ratio varying in the range of 5 to 10 in the above region. Annual variation of LDR below 1 km altitude is less pronounced. Lowest values of β a and LDR

  9. Recent developments in water quality monitoring for Space Station reclaimed wastewaters

    NASA Technical Reports Server (NTRS)

    Small, John W.; Verostko, Charles E.; Linton, Arthur T.; Burchett, Ray

    1987-01-01

    This paper discusses the recent developments in water quality monitoring for Space Station reclaimed wastewaters. A preprototype unit that contains an ultraviolet absorbance organic carbon monitor integrated with pH and conductivity sensors is presented. The preprototype has provisions for automated operation and is a reagentless flow-through system without any gas/liquid interfaces. The organic carbon monitor detects by utraviolet absorbance the organic impurities in reclaimed wastewater which may be correlated to the organic carbon content of the water. A comparison of the preprototype organic carbon detection values with actual total organic carbon measurements is presented. The electrolyte double junction concept for the pH sensor and fixed electrodes for both the pH and conductivity sensors are discussed. In addition, the development of a reagentless organic carbon analyzer that incorporates ultraviolet oxidation and infrared detection is presented. Detection sensitivities, hardware development, and operation are included.

  10. Dark-cycle monitoring of biological subjects on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chuang, Sherry; Mian, Arshad

    1992-01-01

    The operational environment for biological research on Space Station Freedom will incorporate video technology for monitoring plant and animal subjects. The video coverage must include dark-cycle monitoring because early experiments will use rodents that are nocturnal and therefore most active during the dark part of the daily cycle. Scientific requirements for monitoring during the dark cycle are exacting. Infrared (IR) or near-IR sensors are required. The trade-offs between these two types of sensors are based on engineering constraints, sensitivity spectra, and the quality of imagery possible from each type. This paper presents results of a study conducted by the Biological Flight Research Projects Office in conjunction with the Spacecraft Data Systems Branch at ARC to investigate the use of charged-coupled-device and IR cameras to meet the scientific requirements. Also examined is the effect of low levels of near-IR illumination on the circadian rhythm in rats.

  11. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; Supper, W.

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  12. The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Dianic, Allan V.

    1994-01-01

    The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.

  13. Mini neutron monitor measurements at the Neumayer III station and on the German research vessel Polarstern

    NASA Astrophysics Data System (ADS)

    Heber, B.; Galsdorf, D.; Herbst, K.; Gieseler, J.; Labrenz, J.; Schwerdt, C.; Walter, M.; Benadé, G.; Fuchs, R.; Krüger, H.; Moraal, H.

    2015-08-01

    Neutron monitors (NMs) are ground-based devices to measure the variation of cosmic ray intensities, and although being reliable they have two disadvantages: their size as well as their weight. As consequence, [1] suggested the development of a portable, and thus much smaller and lighter, calibration neutron monitor that can be carried to any existing station around the world [see 2; 3]. But this mini neutron monitor, moreover, can also be installed as an autonomous station at any location that provides ’’office” conditions such as a) temperatures within the range of around 0 to less than 40 degree C as well as b) internet and c) power supply. However, the best location is when the material above the NM is minimized. In 2011 a mini Neutron Monitor was installed at the Neumayer III station in Antarctica as well as the German research vessel Polarstern, providing scientific data since January 2014 and October 2012, respectively. The Polarstern, which is in the possession of the Federal Republic of Germany represented by the Ministry of Education and Research and operated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research and managed by the shipping company Laeisz, was specially designed for working in the polar seas and is currently one of the most sophisticated polar research vessels worldwide. It spends almost 310 days a year at sea usually being located in the waters of Antarctica between November and March while spending the northern summer months in Arctic waters. Therefore, the vessel scans the rigidity range below the atmospheric threshold and above 10 GV twice a year. In contrast to spacecraft measurements NM data are influenced by variations of the geomagnetic field as well as the atmospheric conditions. Thus, in order to interpret the data a detailed knowledge of the instrument sensitivity with geomagnetic latitude (rigidity) and atmospheric pressure is essential. In order to determine the atmospheric response data from the

  14. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data

    NASA Astrophysics Data System (ADS)

    Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L.

    2014-11-01

    Spatial representativeness of air quality monitoring stations is a critical parameter when choosing location of sites and assessing effects on population to long term exposure to air pollution. According to literature, the spatial representativeness of a monitoring site is related to the variability of pollutants concentrations around the site. As the spatial distribution of primary pollutants concentration is strongly correlated to the allocation of corresponding emissions, in this work a methodology is presented to preliminarily assess spatial representativeness of a monitoring site by analysing the spatial variation of emissions around it. An analysis of horizontal variability of several pollutants emissions was carried out by means of Geographic Information System using a neighbourhood statistic function; the rationale is that if the variability of emissions around a site is low, the spatial representativeness of this site is high consequently. The methodology was applied to detect spatial representativeness of selected Italian monitoring stations, located in Northern and Central Italy and classified as urban background or rural background. Spatialized emission data produced by the national air quality model MINNI, covering entire Italian territory at spatial resolution of 4 × 4 km2, were processed and analysed. The methodology has shown significant capability for quick detection of areas with highest emission variability. This approach could be useful to plan new monitoring networks and to approximately estimate horizontal spatial representativeness of existing monitoring sites. Major constraints arise from the limited spatial resolution of the analysis, controlled by the resolution of the emission input data, cell size of 4 × 4 km2, and from the applicability to primary pollutants only.

  15. Chemical, physical and radiative properties of atmospheric aerosols measured at Mt. Lulin Atmospheric Background Station (LABS) in East Asia during biomass burning seasons (Invited)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Lee, C.; Wang, S.; Chuang, M.; Chia, E.; Andrews, E.; Ogren, J. A.; Lin, J.; Hung, H.; Hsiao, T.; Liang, S.

    2013-12-01

    This paper presents the chemical, physical and radiative properties of atmospheric aerosols measured at the Lulin Atmospheric Background Station (LABS) which is located at Mt. Lulin (2,862 m MSL; 23o 28'07"N, 120o52'25"E) in central Taiwan, East Asia, and has been operated since 13 April, 2006. LABS is unique because its location and altitude enhances the global network of GAW (Global Atmosphere Watch) in the Southeast Asian region, where no high-elevation baseline station is available. Our site is located between the GAW Waliguan station (3,810 m) on the Tibetan plateau and the Mauna Loa Observatory (3,397m) in Hawaii. We will particularly focus on the results obtained during the spring season, when biomass burning activities prevail in northern Southeast Asia. Chemical characterization of fine and coarse aerosol particles, including water-soluble ions, organic and elemental carbon, and trace elements, will be presented. Aerosol optical properties, including scattering, absorption, extinction, single scattering albedo, Ångström exponent, and aerosol optical depth, as well as the derived radiative forcing efficiency, will be discussed. Results of cloud condensation nuclei measurements, made intermittently, will also be presented. Trajectory studies indicate that this site experiences a variety of air masses originating from contaminated and clean source regions, giving a distinctive contrast of atmospheric changes. To summarize the results, the maximum values (and monthly means) of these chemical, physical and radiative parameters generally occurred during spring time, especially in March, corresponding to prevailing biomass burning activities in SE Asia. Besides, LABS is also one of the supersites during the 2010-2013 spring campaigns of the Seven South East Asian Studies (7-SEAS) for studying the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate over Southeast Asian region. Results of source (northern Thailand

  16. Application of index of biotic integrity (IBI) to fixed station water quality monitoring sites

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-09-01

    Biological monitoring aspects of Tennessee Valley Authority's (TVA) Surface Water Monitoring Strategy (SWMS) Fixed Station Ambient Monitoring Network include sampling and analysis of fish and benthic macroinvertebrate communities. The principal objective of the biological monitoring portions of SWMS is to assess the health'' or quality of the aquatic environment in given stream reaches. This report deals with two aspects of biological monitoring, structural and physical characteristics of fish and benthic macroinvertebrate communities. These are considered relative to physical and chemical aquatic environmental conditions in an attempt to identify likely causes of any recognizable perturbations of the aquatic biological communities. Specifically, fish are sampled to measure species richness, species composition, trophic structure, fish abundance, and condition. Benthic macroinvertebrates are sampled to allow an assessment of species richness, taxonomic composition, and community structure. Biological monitoring, incorporated into SWMS in 1986, was continued for the third year in 1988 with a repeat of 1986 sampling. This report presents 1988 findings and discusses differences between 1988 and 1987 findings. 21 refs., 1 fig., 17 tabs.

  17. Global monitoring at the United States baseline stations with emphasis on precipitation chemistry measurements.

    PubMed

    Artz, R S

    1989-07-01

    The National Oceanic and Atmospheric Administration Geophysical Monitoring for Climatic Change program has operated four remote precipitation chemistry stations at two polar and two tropical Pacific locations for over a decade. Station geography and meteorology is discussed and a summary of the hydrogen, sulfate, and nitrate ion data collected since 1980 is presented. Results show that at all four locations, the ions which have major anthropogenic sources were far less concentrated than in samples collected in heavily industrialized areas in the northeastern United States and Europe. Concentrations at American Samoa and the South Pole showed little variability over the year whereas concentrations at Point Barrow, Alaska and Mauna Loa, Hawaii were highly variable. PMID:24249191

  18. Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Querol, X.

    2014-03-01

    The analysis of aerosol size distributions is a useful tool for understanding the sources and the processes influencing particle number concentrations (N) in urban areas. Hence, during the one-month SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies, EU Marie Curie Action) in autumn 2010 in Barcelona (Spain), four SMPSs (Scanning Mobility Particle Sizer) were simultaneously deployed at four monitoring sites: a road side (RSsite), an urban background site located in the city (UBsite), an urban background site located in the nearby hills of the city (Torre Collserola, TCsite) and a regional background site located about 50 km from the Barcelona urban areas (RBsite). The spatial distribution of sites allows study of the aerosol temporal variability as well as the spatial distribution, progressively moving away from urban aerosol sources. In order to interpret the data sets collected, a k-means cluster analysis was performed on the combined SMPS data sets. This resulted in nine clusters describing all aerosol size distributions from the four sites. In summary there were three main categories (with three clusters in each category): "Traffic" (Traffic 1, "Tclus_1" - 8%; Traffic 2, "Tclus_2" - 13%; and Traffic 3, "Tclus_3" - 9%) "Background Pollution" (Urban Background 1, "UBclus_1" - 21%; Regional Background 1, "RBclus_1" - 15%; and Regional Background 2, "RBclus_2" - 18%) and "Special Cases" (Nucleation, "NUclus" - 5%; Regional Nitrate, "NITclus" - 6%; and Mix, "MIXclus" - 5%). As expected, the frequency of traffic clusters (Tclus_1-3) followed the order RSsite, UBsite, TCsite, and RBsite. These showed typical traffic modes mainly distributed at 20-40 nm. The urban background sites (UBsite and TCsite) reflected also as expected urban background number concentrations (average values, N = 1.0 × 104 cm-3 and N = 5.5 × 103 cm-3, respectively, relative to 1.3 × 104 cm-3 seen at RSsite). The cluster describing the urban background pollution (UBclus_1

  19. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  20. Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011.

    PubMed

    Kanai, Yutaka

    2012-09-01

    Artificial radionuclides were released into the atmosphere by the Fukushima Dai-ichi Nuclear Power Plant incident after a strong earthquake on 11 March 2011. Aerosol monitoring at the Geological Survey of Japan, Tsukuba, was started 20 d after the incident. Radionuclides such as (99)Mo/(99m)Tc, (132)Te/(132)I, (129 m)Te/(129)Te, (131)I, (137)Cs, (136)Cs, (134)Cs, (140)Ba/(140)La, (110 m)Ag, and (95)Nb were observed and, with the exception of (137)Cs and (134)Cs, these radionuclides decreased to below the limit of detection in the middle of June. The activity ratio of atmospheric (134)Cs/(137)Cs in aerosols decreased over time almost following physical decays. Therefore, the (134)Cs/(137)Cs activity ratio in the averaged air mass in this study could be regarded as homogeneous although those of several reactors in the Nuclear Power Plant were not ascertained. A further research on the released (137)Cs and (134)Cs would be necessary for the sedimentology of lake sediment. PMID:22071363

  1. A low cost micro-station to monitor soil water potential for irrigation management

    NASA Astrophysics Data System (ADS)

    Vannutelli, Edoardo; Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio; Renga, Filippo

    2014-05-01

    The RISPArMiA project (which stands for "reduction of water wastage through the continuous monitoring of agri-environmental parameters") won in 2013 the contest called "LINFAS - The New Ideas Make Sustainable Agriculture" and sponsored by two Italian Foundations (Fondazione Italiana Accenture and Fondazione Collegio Università Milanesi). The objective of the RISPArMiA project is to improve the irrigation efficiency at the farm scale, by providing the farmer with a valuable decision support system for the management of irrigation through the use of low-cost sensors and technologies that can easily be interfaced with Mobile devices. Through the installation of tensiometric sensors within the cropped field, the soil water potential can be continuously monitored. Using open hardware electronic platforms, a data-logger for storing the measured data will be built. Data will be then processed through a software that will allow the conversion of the monitored information into an irrigation advice. This will be notified to the farmer if the measured soil water potential exceed literature crop-specific tensiometric thresholds. Through an extrapolation conducted on the most recent monitored data, it will be also possible to obtain a simple soil water potential prevision in absence of rain events. All the information will be sent directly to a virtual server and successively on the farmer Mobile devices. Each micro-station is completely autonomous from the energy point of view, since it is powered by batteries recharged by a solar panel. The transmission modulus consists of a GSM apparatus with a SIM card. The use of free platforms (Arduino) and low cost sensors (Watermark 200SS tensiometers and soil thermocouples) will significantly reduce the costs of construction of the micro-station which are expected to be considerably lower than those required for similar instruments on the market today . Six prototype micro-stations are actually under construction. Their field testing

  2. THE TAPERED ELEMENT OSCILLATING MICROBALANCE: A MONITOR FOR SHORT-TERM MEASUREMENT OF FINE AEROSOL MASS CONCENTRATION

    EPA Science Inventory

    A new instrument for short-term monitoring of ambient aerosol fine mass concentration has been developed based on a unique device called a Tapered Element Oscillating Microbalance (TEOM). The detector consists of a tapered hollow tube fixed at the wide end and holding an exchange...

  3. Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product

    NASA Astrophysics Data System (ADS)

    Arvani, Barbara; Pierce, R. Bradley; Lyapustin, Alexei I.; Wang, Yujie; Ghermandi, Grazia; Teggi, Sergio

    2016-09-01

    In this work, the new 1 km-resolved Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is employed to characterize seasonal PM10 - AOD correlations over northern Italy. The accuracy of the new dataset is assessed compared to the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data, retrieved at 0.55 μm with spatial resolution of 10 km (MYD04_L2). We focused on evaluating the ability of these two products to characterize both temporal and spatial distributions of aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, spread across northern Italy, during a three-year period from 2010 to 2012. The Po Valley area (northern Italy) was chosen as the study domain because of its severe urban air pollution, resulting from it having the highest population and industrial manufacturing density in the country, being located in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found that the global correlations between the bin-averaged PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 and for MAIAC, respectively, suggesting a greater sensitivity of the high-resolution product to small-scale deviations. However, the introduction of Relative Humidity (RH) and Planetary Boundary Layer (PBL) depth corrections allowed for a significant improvement to the bin-averaged PM - AOD correlation, which led to a similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 values. The study allowed us to define four seasonal linear correlations that estimate PM10 concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the results show that

  4. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  5. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  6. Balloonborne measurements of ozone and aerosol profiles at McMurdo Station, Antarctica, during the austral spring of 1992

    SciTech Connect

    Johnson, B.J.; Deshler, T. )

    1993-01-01

    This paper reports some of the findings of an overall study of the ozone hole over Antarctica. Vertical profiles of ozone and aerosols were measured, and the inclusion of aerosols from the June 1991 eruption of Mount Pinatubo was of particular interest. 4 refs., 2 figs.

  7. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    SciTech Connect

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO{sub 2}), and nitrogen oxides (NO, NO{sub 2}, and NO{sub x}). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks.

  8. Continuous monitoring of a large active earth flow using an integrated GPS - automatic total station approach

    NASA Astrophysics Data System (ADS)

    Corsini, A.

    2009-04-01

    Landslide monitoring has evolved as a crucial tool in civil protection to mitigate and prevent disasters. The research presents an approach to continuous monitoring of a large-scale active earth flow using a system that integrates surface measurements obtained by a GPS and an automatic total station. With the data obtained from the system the landslide can be monitored in near-real-time and surface displacements can be directly utilized to provide early warning of slope movements and to study the behavior of the landslide, e.g. to predict timing and mechanisms of future failure. The Valoria landslide located in the northern Apennines of Italy was reactivated in 2001, 2005 and 2007 damaging roads and endangering houses. A monitoring system was installed in 2007-2008 in the frame of a civil protection plan aimed at risk mitigation. The system consists of an automatic total station measuring about 40 prisms located in the landslide to a maximum distance of 1.800 km; one double-frequency GPS receiver connects in streaming by wireless communication with 4 single-frequency GPS in side the flow. Until December 2007 the monitoring network was operated with periodic static surveying followed by the data post-processing. From September 2007 until March 2008 the landslide deformation was evaluated by periodic surveys with the total station and the GPS system. This first measure showed that the displacements were influenced by the rainfall events and by the snow melting. The total displacements measured vary from centimeter scale in the crown zone, where retrogressive movements were in progress, to over 50 m in the flow track zone. Starting in March 2008 data acquisition by the total station system and GPS were automated in order to allow continuous and near-real-time data processing. The displacement data collected in one and a half year of continuous operation show different acceleration and deceleration phases as a result of the pore water pressure distribution inside the

  9. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  10. Monitoring and Testing the Parts Cleaning Stations, Abrasive Blasting Cabinets, and Paint Booths

    NASA Technical Reports Server (NTRS)

    Jordan, Tracee M.

    2004-01-01

    I have the opportunity to work in the Environmental Management Office (EMO) this summer. One of the EMO's tasks is to make sure the Environmental Management System is implemented to the entire Glenn Research Center (GRC). The Environmental Management System (EMS) is a policy or plan that is oriented toward minimizing an organization's impact to the environment. Our EMS includes the reduction of solid waste regeneration and the reduction of hazardous material use, waste, and pollution. With the Waste Management Team's (WMT) help, the EMS can be implemented throughout the NASA Glenn Research Center. The WMT is responsible for the disposal and managing of waste throughout the GRC. They are also responsible for the management of all chemical waste in the facility. My responsibility is to support the waste management team by performing an inventory on parts cleaning stations, abrasive cabinets, and paint booths through out the entire facility. These booths/stations are used throughout the center and they need to be monitored and tested for hazardous waste and material. My job is to visit each of these booths/stations, take samples of the waste, and analyze the samples.

  11. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  12. Future Mission Concept for 3-D Aerosol Monitoring From Space Based on Fusion of Remote Sensing Approaches

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Kahn, R. A.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Cairns, B.; Torres, O.

    2006-05-01

    Fine airborne particles are implicated in adverse impacts on human health. In situ measurements are a critical component of any air quality monitoring system; however, they cover a small fraction of the globe and do not measure aerosols transported aloft or over water. Satellites provide a substantial complementary role, and great strides in aerosol characterization over land from spaceborne platforms are currently taking place. In the passive realm, multiangle sensors such as MISR have unique strengths in determining particle optical depths over land, constraining column-average particle size, shape, and single-scattering albedo, and providing stereoscopic layer-top heights for aerosol plumes and spatially heterogeneous layers. Multispectral information at ultraviolet (UV) wavelengths (e.g., from TOMS and OMI) and in the shortwave infrared (SWIR) (e.g., from MODIS), as well as polarimetry (e.g., from POLDER and in the future, APS) have complementary strengths for measuring aerosol microphysical properties. Active lidars bring added sensitivity to particle vertical distribution. Fusion of such capabilities, particularly at km-scale resolutions required for aerosol monitoring in urban settings, would further improve our ability to identify and track aerosol air mass types on regional and larger scales, giving added value and context to more detailed particle microphysical and chemical properties that can be measured in situ. In 2005 we submitted a mission concept called the Aerosol Global Interactions Satellite (AEGIS), consisting of a notional multiangle spectropolarimetric imager (MSPI) and high spectral resolution lidar (HSRL), to the National Academy of Sciences Decadal Survey. The MSPI instrument is an advanced version of MISR, improving upon current capabilities by adding near-UV, SWIR, and high-accuracy polarimetric imaging channels, and by widening the sensor swath. HSRL measurements are designed to provide vertical profiles of aerosol backscatter and

  13. Microseismic Monitoring of Strainburst Activities in Deep Tunnels at the Jinping II Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Xu, N. W.; Li, T. B.; Dai, F.; Zhang, R.; Tang, C. A.; Tang, L. X.

    2016-03-01

    Rockbursts were frequently encountered during the construction of deep tunnels at the Jinping II hydropower station, Southwest China. Investigations of the possibility of rockbursts during tunnel boring machine (TBM) and drilling and blasting (D&B) advancement are necessary to guide the construction of tunnels and to protect personnel and TBM equipment from strainburst-related accidents. A real-time, movable microseismic monitoring system was installed to forecast strainburst locations ahead of the tunnel faces. The spatiotemporal distribution evolution of microseismic events prior to and during strainbursts was recorded and analysed. The concentration of microseismic events prior to the occurrence of strainbursts was found to be a significant precursor to strainbursts in deep rock tunnelling. During a 2-year microseismic investigation of strainbursts in the deep tunnels at the Jinping II hydropower station, a total of 2240 strainburst location forecasts were issued, with 63 % correctly forecasting the locations of strainbursts. The successful forecasting of strainburst locations proved that microseismic monitoring is essential for the assessment and mitigation of strainburst hazards, and can be used to minimise damage to equipment and personnel. The results of the current study may be valuable for the construction management and safety assessment of similar underground rock structures under high in situ stress.

  14. Project of a Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring (NRTSSS)

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Calore, D.; Mangano, G.; D'Alessandro, A.; Favali, P.

    2011-12-01

    The INGV seismic network ensures reliable and continuous monitoring of the Italian territory. However, the peculiarity of the Italian peninsula, characterised by an intense offshore geodynamic and seismic activity, requires the extension of the seismic monitoring to the sea. The aim of this project is: - to identify bottleneck is related to the construction, installation and use of underwater seismic station; - to define the most appropriate and low-cost architecture to guarantee the minimum functionality required for a seismic station. In order to obtain reliable seafloor seismic signals integrated to land-based network, the requirements to be fulfill are: - an acceptable coupling with the seabed; - the orientation of the components with respect to the magnetic North and to the verticality; - the correct time stamp of the data; - the data transfer to the land for the integration. Currently, the optimal solution for offshore seismic station is a cable connection to power and real-time data transfer, like the case of Western Ionian Sea cabled observatory, one of the operative node of the EMSO research infrastructure (European Multidisciplinary Seafloor and water column Observatory, http://emso-eu.org). But in the Mediterranean many seismic areas are located a few tens-hundreds of miles from the coast and cabled solutions are not feasible essentially for economic reasons. For this kind of installations EMSO research infrastructure foresees no-cabled solution, that requires a surface buoy deployed in the vicinity seafloor modules.This project plans to develop a surface buoy equipped with autonomous power supply system to power also the seafloor platforms and two-way communication system enabling the data transfer through latest generation of broadband radio communication or satellite link (Fig. 1). All the components of the prototype system are described.

  15. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Crawford, I.; Lloyd, G.; Herrmann, E.; Hoyle, C. R.; Bower, K. N.; Connolly, P. J.; Flynn, M. J.; Kaye, P. H.; Choularton, T. W.; Gallagher, M. W.

    2016-02-01

    The fluorescent nature of aerosol at a high-altitude Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultraviolet - light-induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high-altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor increase in the fluorescent aerosol fraction during in-cloud cases compared to out-of-cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27 ± 0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosols were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1 ± 0.4 L-1. Given the low concentration of this cluster and the typically low ice-active fraction of studied PBAP (e.g. pseudomonas syringae), we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.

  16. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the Sphinx high Alpine research station, Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Crawford, I.; Lloyd, G.; Bower, K. N.; Connolly, P. J.; Flynn, M. J.; Kaye, P. H.; Choularton, T. W.; Gallagher, M. W.

    2015-09-01

    The fluorescent nature of aerosol at a high Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultra violet-light induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor but statistically insignificant increase in the fluorescent aerosol fraction during in-cloud cases compared to out of cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27±0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosol were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1±0.4 L-1. Given the low concentration of this cluster and the typically low ice active fraction of studied PBAP (e.g. pseudomonas syringae) we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.

  17. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  18. Research on bio-aerosol monitoring based on normalized fluorescence voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Zhao, Yongkai; Xiao, Yanfen; Cai, Shuyao; Huang, Huijie

    2011-12-01

    An optical detecting technique to identify bio-aerosol particles is proposed in this paper by normalized fluorescence value which correlates to its size and intrinsic fluorescence. With the bio-aerosol detecting system developed, we test and analyze three types of aerosols, while each of them contains fluorescent microspheres of a certain size. The result indicates that different fluorescent microspheres containing the same fluorescent substances have the same normalized fluorescence voltage to unit particle size in diameter. The normalized fluorescence value of other species aerosols is tested for comparing. The research results can be applied to identification of bio-aerosols preliminarily.

  19. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally

  20. Elimination of redundant thermoluminescent dosemeter monitoring at Oyster Creek nuclear generating station

    SciTech Connect

    Schwartz, P.E.

    1989-01-01

    The Oyster Creek direct radiation monitoring network has long been operating using several time-scale measurements. This network is used to assess the radiation levels during normal plant operations as well as to set the background radiation levels used to determine the radiological impact of a nonroutine release of radioactivity from the plant. Through analysis of the behavior of the monthly and quarterly activity of several types of direct radiation monitoring, the successful elimination of redundant and artificially high measurement techniques has been done in concert with providing the community with most efficient direct radiation monitoring methods. Dose rates from external radiation sources are measured around licensed U.S. Nuclear Regulatory Commission (NRC) facilities using passive detectors known as thermoluminescent dosimeters (TLDs). These detectors provide a quantitative measurement of the radiation levels in the are in which they are placed. The detected radiation could be the result of cosmic or naturally occurring origin in the air and on the ground, prior nuclear weapons testing, and activity from a nuclear facility. This paper describes the TLD network placed around the Oyster Creek nuclear generating station (OCNGS) and the comparisons between TLDs of different manufacturers and of different resident times and the successful elimination of the less accurate monthly TLD for the purpose of cost containment.

  1. Biofouling monitoring and control program at the Boston Edison Pilgrim Nuclear Station: A twelve year history

    SciTech Connect

    McDonald, D.J.; Armstrong, W.J.; Carucci, C.A.

    1996-08-01

    This paper reviews the history of the Biofouling Monitoring and Control Program at the Boston Edison Company Pilgrim Nuclear Power Station. The program was initially developed in 1982 in response to serious operations, maintenance and performance related problems due to biofouling in both the circulating and service water systems. Although implemented seven years prior to federal mandates under GL 89-13, this program also satisfies regulatory criteria for biofouling monitoring and control of nuclear service water systems. Since its inception, the impact of macrofouling on plant operation and availability has been significantly reduced. Stringent monitoring for blue mussels, installation of mechanical barriers to horseshoe crabs, improvements in screens, screenwash and debris removal systems, and an on-going commitment to biofouling control have reduced the number of condenser backwashes per year from > 40 (1989) to < 10. Depending on conditions and timing of a backwash, the resulting economic gain from this improvement alone can be 1.5 to more than 4 million dollars a year. Other improvements in related components and the service water system have also resulted in reduced maintenance related problems and an additional cost benefit to the plant. 13 refs., 6 figs., 1 tab.

  2. The JPL Electronic Nose: Monitoring Air in the US Lab on the International Space Station

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Manatt, K. S.; Gluck, S.; Shevade, A. V.; Kisor, A. K.; Zhou, H.; Lara, L. M.; Homer, M. L.

    2010-01-01

    An electronic nose with a sensor array of 32 conductometric sensors has been developed at the Jet Propulsion Laboratory (JPL) to monitor breathing air in spacecraft habitat. The Third Generation ENose is designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 oC, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The monitoring targets are anomalous events such as leaks and spills of solvents, coolants or other fluids. The JPL ENose operated as a technology demonstration for seven months in the U.S. Laboratory Destiny during 2008-2009. Analysis of ENose monitoring data shows that there was regular, periodic rise and fall of humidity and occasional releases of Freon 218 (perfluoropropane), formaldehyde, methanol and ethanol. There were also several events of unknown origin, half of them from the same source. Each event lasted from 20 to 100 minutes, consistent with the air replacement time in the US Lab.

  3. Adjustable control station with movable monitors and cameras for viewing systems in robotics and teleoperations

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor)

    1994-01-01

    Real-time video presentations are provided in the field of operator-supervised automation and teleoperation, particularly in control stations having movable cameras for optimal viewing of a region of interest in robotics and teleoperations for performing different types of tasks. Movable monitors to match the corresponding camera orientations (pan, tilt, and roll) are provided in order to match the coordinate systems of all the monitors to the operator internal coordinate system. Automated control of the arrangement of cameras and monitors, and of the configuration of system parameters, is provided for optimal viewing and performance of each type of task for each operator since operators have different individual characteristics. The optimal viewing arrangement and system parameter configuration is determined and stored for each operator in performing each of many types of tasks in order to aid the automation of setting up optimal arrangements and configurations for successive tasks in real time. Factors in determining what is optimal include the operator's ability to use hand-controllers for each type of task. Robot joint locations, forces and torques are used, as well as the operator's identity, to identify the current type of task being performed in order to call up a stored optimal viewing arrangement and system parameter configuration.

  4. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  5. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  6. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  7. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGESBeta

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  8. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ∼30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  9. Pilot study of real-time groundwater monitoring coupled to USGS streamgaging stations

    NASA Astrophysics Data System (ADS)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeler, J.; Barlow, J.

    2010-12-01

    Many USGS streamgages transmit real-time, 15-minute frequency, stage-derived streamflow, as well as stream temperature (plus other natural tracers/water-quality parameters as needed) via bi-hourly upload to the Web. Existing hardware/software have capacity to upload numerous additional parameters, affording opportunities to simultaneously report real-time near-stream groundwater (GW) levels and temperature (plus natural GW tracers/water-quality parameters as desired). A pilot study at 6 river reaches in Montana, Wyoming, and Mississippi is based on locating shallow piezometers (aka observations wells) near established USGS streamgaging stations to create real-time GW/streamgaging stations. All provisional data are immediately available as stream-stage elevation, streamflow, stream temperature, GW depth, GW elevation, and GW-temperature for all 6 study sites (URL below). The data are being used to evaluate the scientific value and cost impacts of maintaining coupled groundwater elevation and temperature data along with surface-water stage and temperature data continuously generated at the gaging station. Initial results are highly promising with respect to GW-infrastructure installation, continuous operating cost, and scientific value from insight of hydrologic processes at sites. Initial scientific insight ranges from: 1) contribution of decreased GW-discharge to winter ice jams at road crossings (WY), 2) variations in near-stream hydraulic gradients caused by local flood irrigation (MT), and 3) potential impacts of stream/GW exchanges on the fate and transport of nitrate (MS). Additional data collected as add-on to the pilot study include vertical GW temperature gradients, providing opportunities for future continuous streambed heat-tracer estimated water fluxes to monitor seasonal GW discharge/recharge trends.

  10. Estimation of parameters to monitor state of the ionosphere in a single station mode

    NASA Astrophysics Data System (ADS)

    Cokrlic, M.; Galas, R.

    2013-12-01

    Ionosphere is the dispersive medium and propagation of the electromagnetic waves depend on its frequency. In the Global Positioning System (GPS), after the Selected Availability (SA) has been turned off, ionospheric delay become one of the largest source of error. Relatively low cost of the GPS receivers makes it one of the cheapest tool for studying and monitoring of the ionosphere in a global scale. Especially because the GPS signals are carrying ionospheric characteristics that can be isolated and then studied. For real time applications, demanding high accuracy and availability, it is important to know variable, in time and space, state of the ionosphere in real-time. Ionospheric perturbations can degrade accuracy of the positioning for more than hundred meters and even make positioning impossible or false. Thus, information about state of the ionosphere must be available in real time to enhance availability and to improve navigation accuracy. The state of the ionosphere can be characterized by a couple of basic parameters such as: Total Electron Content (TEC), Rate of TEC (ROT), Rate of change of TEC (ROTI), amplitude scintillation (S4) and phase scintillation (σ_φ). This parameters can be estimated form GPS networks or from a single GPS station. We are developing software tools to measure those parameters in a very challenging single station mode. Some of the modules, like e.g. calculation of S4 and ROT, are validated and some others are still in the testing phase. The tools are needed in order to analyze ionospheric perturbation parameters in real- or near- real time and investigate if some new approaches for generation of corrections can be developed. Our main goal is provision of such corrections, or at least warnings about ionospheric perturbations, to single station PPP (Precise Point Positioning) users. In the poster the algorithms are described and preliminary results are presented.

  11. Measurements of aerosol physical properties at a high altitude station in central Himalayas during RAWEX-GVAX

    NASA Astrophysics Data System (ADS)

    Pant, Vimlesh; Sagar, Ram; Pant, P.; Krishna Moorthy, K.; Venkata Phanikumar, Devulapalli; Dumka, Umesh Chandra; Singh, Narendra; Sahai, Shivraj; Kotamarthi, V. R.; Satheesh, S. K.; Naja, Manish

    2012-07-01

    Physical properties of atmospheric aerosols are being measured at a high altitude site Manora Peak, Nainital (29.4°N, 79.5°E; 1950 m amsl) in central Himalaya under the Regional Aerosols Warming Experiment-Ganges Valley Aerosol Experiment (RAWEX-GVAX). The cloud condensation nuclei counter (single-column DMT Model 1) and condensation particle counter (TSI Model 3010) are operated round the clock since June 2011 during the first ARM Mobile Facility (AMF1) deployment. The preliminary analyses of data obtained from these instruments together with the meteorological observations during June-September, 2011 are reported here. Number concentrations of condensation nuclei (N _{CN}) and cloud condensation nuclei (N _{CCN}) show characteristic features of atmospheric aerosols in the Indo-Gangetic Plain (IGP) region in the northern India. Concentrations of N _{CCN} are measured at seven supersaturations between -0.01% to 0.75% in steps. The nominal concentration of N _{CN}, particularly during low wind speeds, was in the range of 500 -- 2000 cm ^{-3}. The concentrations of N _{CCN} are observed to increase with the increasing supersaturations. In most of the cases, the variations in both N _{CN} and N _{CCN} are similar. Rapid decrease in aerosol number concentrations was observed after the precipitation associated with southwest monsoon. The effects of regional sources as well as the long-range transport on the aerosol physical properties in the IGP region are studied. Further analysis of data expected to reveal crucial role of aerosols in cloud microphysical processes and regional climate over this region.

  12. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  13. International Space Station Urine Monitoring System Functional Integration and Science Testing

    NASA Technical Reports Server (NTRS)

    Cibuzar, Branelle R.; Broyan, James Lee, Jr.

    2009-01-01

    Exposure to microgravity during human spaceflight is required to be defined and understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Urine voids are capable of measuring the calcium and other metabolic byproducts in a constituent s urine. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross contamination (<0.7 ml urine) and has volume accuracy of +/-2% between 100 to 1000 ml urine voids.

  14. International Space Station Urine Monitoring System Functional Integration and Science Testing

    NASA Technical Reports Server (NTRS)

    Rodriguez, Branelle R.; Broyan, James Lee, Jr.

    2008-01-01

    Exposure to microgravity during human spaceflight is required to be defined and understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Urine voids are capable of measuring the calcium and other metabolic byproducts in a constituent s urine. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross contamination (<0.7 ml urine) and has volume accuracy of +/-2% between 100 to 1000 ml urine voids.

  15. Impact assessment report: R. Paul Smith Steam Electric Station aquatic monitoring program. Volume I. Text

    SciTech Connect

    Janicki, A.J.; Johnson, G.F.; Summers, J.K.; Smith, R.P.; Ross, R.N.

    1981-06-01

    This document is a summary and interpretation of findings from aquatic monitoring studies that have been conducted since 1976 at the site of the R. Paul Smith Steam Electric Station on the upper Potomac River. The report gives an overview of all the studies, summarizes major findings, and presents conclusions about the impact of plant operations on the lotic ecosystem. More detailed descriptions of individual studies (e.g., methods, analyses, results) are presented in Appendices A through D (Volume II), wherein studies are grouped by similar topics: A -- physical and chemical variables, B -- periphyton, C -- benthic macroinvertebrates, and D -- finfish. These appendices include all study findings deemed relevant to the assessment of plant impact.

  16. The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars.

    PubMed

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405

  17. The Atmosphere-Space Interactions Monitor (ASIM) for the International Space Station

    NASA Astrophysics Data System (ADS)

    Neubert, T.

    2006-12-01

    The Atmosphere-Space Interactions Monitor (ASIM) is an instrument suite to be mounted on one of the external platforms on the International Space Station (ISS). It will study the coupling of thunderstorms processes to the upper atmosphere, ionosphere and radiation belts, and energetic space particle precipitation effects in the mesosphere and thermosphere. The scientific objectives include (1) investigations into sprites, jets, elves and relativistic electron beams injected into the magnetosphere above thunderstorms, (2) studies of gravity waves in the thermosphere above severe thunderstorms, (3) auroral energetics, and (4) ozone and NOx concentrations in the upper atmosphere. The instruments are 6 TV frame-rate, narrow-band optical cameras, 6 100kHz-photometers, and one X-ray sensor. The mission includes instrument teams from Denmark, Spain, Norway and the US, and science teams from around the world. The mission is developed within the European Space Agency (ESA). ASIM is entering Phase B with expected launch in 2011.

  18. The atmosphere-space interactions monitor (ASIM) for the international space station

    NASA Astrophysics Data System (ADS)

    Neubert, T.; Kuvvetli, I.; Budtz-Jørgensen, C.; Østgaard, N.; Reglero, V.; Arnold, N.

    The Atmosphere-Space Interactions Monitor (ASIM) is an instrument suite to be mounted on an external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorms processes to the upper atmosphere, ionosphere and radiation belts and energetic space particle precipitation effects in the mesosphere and thermosphere. The scientific objectives include (1) investigations into sprites, jets, elves and relativistic electron beams injected into the magnetosphere above thunderstorms, (2) studies of gravity waves in the thermosphere above severe thunderstorms, (3) lightning-induced precipitation of radiation belt electrons, (4) auroral electron energetics, and (5) ozone and NOx concentrations in the upper atmosphere. The instruments are 4 TV frame-rate, narrow-band, optical cameras and 4 photometers viewing towards the limb, and an X-ray sensor, 2 cameras and 2 photometers viewing towards the nadir. ASIM is currently in Phase A.

  19. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    PubMed Central

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P.; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405

  20. New idea of geomagnetic monitoring through ENA detection from the International Space Station: ENAMISS project

    NASA Astrophysics Data System (ADS)

    Milillo, Anna; De Angelis, Elisabetta; Orsini, Stefano; Rubini, Alda; Evangelista, Yuri; Mura, Alessandro; Rispoli, Rosanna; Vertolli, Nello; Carrubba, Elisa; Donati, Alessandro; Di Lellis, Andrea Maria; Plainaki, Christina; Lazzarotto, Francesco

    2016-04-01

    Remote sensing of Energetic Neutral Atoms (ENA) in the Earth's environment has been proven to be a successful technique able to provide detailed information on the ring current plasma population at energies below 100 keV. Indeed, the existing space weather databases usually include a good coverage of Sun and solar wind monitoring. The global imaging of the Earth's magnetosphere/ ionosphere is usually obtained by the high-latitudes monitoring of aurorae, ground magnetic field variations and high-latitude radio emissions. The equatorial magnetic field variations on ground, from which the geomagnetic indices like Dst, Sym-H and Asym-H are derived, include the effects of all current systems (i.e. ring current, Chapman -Ferraro current, tails currents, etc...) providing a kind of global information. Nevertheless, the specific information related to the ring current cannot be easily derived from such indices. Only occasional local plasma data are available by orbiting spacecraft. ENA detection is the only way to globally view the ring current populations. Up-to-now this technique has been used mainly from dedicated high altitude polar orbiting spacecraft, which do not allow a continuous and systematic monitoring, and a discrimination of the particle latitude distribution. The Energetic Neutral Atoms Monitor on the International space Station (ENAMISS) project intends to develop an ENA imager and install it on the ISS for continuous monitoring of the spatially distributed ring current plasma population. ISS is the ideal platform to perform continuous ENA monitoring since its particular low altitude and medium/low latitude orbit allows wide-field ENA images of various magnetospheric regions. The calibrated ENA data, the deconvolved ion distributions and ad-hoc ENA-based new geomagnetic indices will be freely distributed to the space weather community. Furthermore, new services based on plasma circulation models, spacecraft surface charging models and radiation dose models

  1. Comparison of salinity and temperature at continuous monitoring stations and nearby monthly measurement sites in San Francisco Bay

    USGS Publications Warehouse

    Bergfeld, L.G.; Schoellhamer, D.H.

    2003-01-01

    Salinity and temperature are crucial state variables affecting estuarine habitat an d, thus, are measured by various San Francisco Estuary programs. This article presents a comparison of salinity and temperature data collected at seven continuo us monitoring stations throughout San Francisco Bay (Figure 1) with data collected monthly by the US Geological Survey (USGS) research vessel ( RV ) Polaris . The data comparison was done to determine if the continuous monitoring stations, which mostly are located near shore and always on structures in the water, are representative of water conditions in the main channel of the estuary where the RV Polaris collects measurements.

  2. Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt

    NASA Astrophysics Data System (ADS)

    Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa

    2015-04-01

    We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org

  3. Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station

    NASA Astrophysics Data System (ADS)

    Bindu, G.; Nair, Prabha R.; Aryasree, S.; Hegde, Prashant; Jacob, Salu

    2016-02-01

    Aerosol sampling was carried out at four locations in and around Cochin (9°58‧ N, 76°17‧ E), an urban area, located on the southwest coast of India. The gravimetric estimates of aerosol mass loading showed wide range from 78 μg m-3 to >450 μg m-3, occasionally reaching values >500 μg m-3, associated with regional source characteristics. Most of the values were above the air quality standard. Both boundary layer and synoptic scale airflow pattern play role in the temporal features in aerosol mass loading and chemical composition. Chemical analysis of the aerosol samples were done for anionic species viz; F-, Cl-, Br-, NO2-,   NO3-,   PO43-,   SO42- and metallic/cationic species viz; Na, Ca, K, Mg, NH4+, Fe, Al, Cu, Mg, Pb, etc using Ion Chromatography, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES). At all the locations, extremely high mass concentration of SO42- was observed with the mean value of 13±6.4 μg m-3 indicating the strong anthropogenic influence. Statistical analysis of the chemical composition data was carried out and the principal factors presented. Seasonal variation of these chemical species along with their percentage contributions and regional variations were also examined. Increase in level of Na in aerosol samples indicated the influence of monsoonal activity. Most of the species showed mass concentrations well above those measured over another coastal site Thiruvananthapuram (8°29‧ N, 76°57‧ E) situated ~220 km south of Cochin revealing the highly localized aerosol features.

  4. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC

  5. [Mathematical simulation support to the dosimetric monitoring on the Russian segment of the International Space Station].

    PubMed

    Mitrikas, V G

    2014-01-01

    To ensure radiation safety of cosmonauts, it is necessary not only to predict, but also to reconstruct absorbed dose dynamics with the knowledge of how long cosmonauts stay in specific space vehicle compartments with different shielding properties and lacking equipment for dosimetric monitoring. In this situation, calculating is one and only way to make a correct estimate of radiation exposure of cosmonaut's organism as a whole (tissue-average dose) and of separate systems and organs. The paper addresses the issues of mathematical simulation of epy radiation environment of standard dosimetric instruments in the Russian segments of the International Space Station (ISS RS). Results of comparing the simulation and experimental data for the complement of dosimeters including ionization chamber-based radiometer R-16, DB8 dosimeters composed of semiconductor detectors, and Pille dosimeters composed of thermoluminescent detectors evidence that the current methods of simulation in support of the ISS RS radiation monitoring provide a sufficiently good agreement between the calculated and experimental data. PMID:25163341

  6. A Camera and Multi-Sensor Automated Station Design for Polar Physical and Biological Systems Monitoring: AMIGOS

    NASA Astrophysics Data System (ADS)

    Bohlander, J. A.; Ross, R.; Scambos, T.; Haran, T. M.; Bauer, R. J.

    2012-12-01

    The Automated Meteorology - Ice/Indigenous species - Geophysics Observation System (AMIGOS) consists of a set of measurement instruments and camera(s) controlled by a single-board computer with a simplified Linux operating system and an Iridium satellite modem supporting two-way communication. Primary features of the system relevant to polar operations are low power requirements, daily data uploading, reprogramming, tolerance for low temperatures, and various approaches for automatic resets and recovery from low power or cold shut-down. Instruments include a compact weather station, C/A or dual-frequency GPS, solar flux and reflectivity sensors, sonic snow gages, simplified radio-echo-sounder, and resistance thermometer string in the firn column. In the current state of development, there are two basic designs. One is intended for in situ observations of glacier conditions. The other design supports a high-resolution camera for monitoring biological or geophysical systems from short distances (100 m to 20 km). The stations have been successfully used in several locations for operational support, monitoring rapid ice changes in response to climate change or iceberg drift, and monitoring penguin colony activity. As of June, 2012, there are 9 AMIGOS systems installed, all on the Antarctic continent. The stations are a working prototype for a planned series of upgraded stations, currently termed 'Sentinels'. These stations would carry further instrumentation, communications, and processing capability to investigate ice - ocean interaction from ice tongue, ice shelf, or fjord coastline areas.

  7. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    NASA Technical Reports Server (NTRS)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  8. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  9. Development of a mobile and high-precision atmospheric CO2 monitoring station

    NASA Astrophysics Data System (ADS)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  10. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    NASA Astrophysics Data System (ADS)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  11. Temporal variability of mineral dust in southern Tunisia: analysis of 2 years of PM10 concentration, aerosol optical depth, and meteorology monitoring

    NASA Astrophysics Data System (ADS)

    Bouet, Christel; Taieb Labiadh, Mohamed; Bergametti, Gilles; Rajot, Jean Louis; Marticorena, Béatrice; Sekrafi, Saâd; Ltifi, Mohsen; Féron, Anaïs; des Tureaux, Thierry Henry

    2016-04-01

    The south of Tunisia is a region very prone to wind erosion. During the last decades, changes in soil management have led to an increase in wind erosion. In February 2013, a ground-based station dedicated to the monitoring of mineral dust (that can be seen in this region as a proxy of the erosion of soils by wind) was installed at the Institut des Régions Arides (IRA) of Médenine (Tunisia) to document the temporal variability of mineral dust concentrations. This station allows continuous measurements of surface PM10 concentration (TEOM™), aerosol optical depth (CIMEL sunphotometer), and total atmospheric deposition of insoluble dust (CARAGA automatic sampler). The simultaneous monitoring of meteorological parameters (wind speed and direction, relative humidity, air temperature, atmospheric pressure, and precipitations) allows to analyse the factors controlling the variations of mineral dust concentration from the sub-daily to the annual scale. The results from the two first years of measurements of PM10 concentration are presented and discussed. In average on year 2014, PM10 concentration is 56 μg m‑3. However, mineral dust concentration highly varies throughout the year: very high PM10 concentrations (up to 1,000 μg m‑3 in daily mean) are frequently observed during wintertime and springtime, hardly ever in summer. These episodes of high PM10 concentration (when daily average PM10 concentration is higher than 240 μg m‑3) sometimes last several days. By combining local meteorological data, air-masses trajectories, sunphotometer measurements, and satellite imagery, the part of the high PM10concentration due to local emissions and those linked to an advection of dusty air masses by medium and long range transport from the Sahara desert is quantified.

  12. Ionosphere Plasma State Determination in Low Earth Orbit from International Space Station Plasma Monitor

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard

    2014-01-01

    A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km

  13. The spatial-temporal variations in optical properties of atmosphere aerosols over China and its application in remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, H.; Cheng, T.

    2013-12-01

    The atmospheric and climate response to the aerosol forcing are assessed by climate models regionally and globally under the past, present and future conditions. However, large uncertainties exist because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. Reduction in these uncertainties requires long-term monitoring of detailed properties of different aerosol types. China is one of the heavily polluted areas with high concentration of aerosols in the world. The complex source, composition of China aerosol led to the worse accuracy of aerosol radiative forcing assessment in the world, which urgently calls for improvements on the understanding of China regional aerosol properties. The spatial-temporal properties of aerosol types over China are studied using the radiance measurements and inversions data at 4 Aerosol Robotic Network (AERONET) stations. Five aerosol classes were identified including a coarse-size dominated aerosol type (presumably dust) and four fine-sized dominated aerosol types ranging from non-absorbing to highly absorbing fine aerosols. The mean optical properties of different aerosol types in China and their seasonal variations were also investigated. Based on the cluster analysis, the improved ground-based aerosol model is applied to the MODIS dark target inversion algorithm. Validation with MODIS official product and CE318 is also included.

  14. Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: physical and chemical properties.

    PubMed

    Bisht, D S; Srivastava, A K; Pipal, A S; Srivastava, M K; Pandey, A K; Tiwari, S; Pandithurai, G

    2015-04-01

    To understand the boundary layer characteristics and pathways of aerosol-cloud interaction, an Integrated Ground Observational Campaign, concurrent with Cloud Aerosol Interaction and Precipitation Enhancement Experiment, was conducted by the Indian Institute of Tropical Meteorology, Pune, under Ministry of Earth Sciences at Mahabubnagar (a rural environment, which is ~100 km away from an urban city Hyderabad in Andhra Pradesh), during the period of July-November 2011. Collected samples of PM2.5 and PM10 were analyzed for water-soluble ionic species along with organic carbon (OC) and elemental carbon (EC). During study period, the average mass concentrations of PM2.5 and PM10 were about 50(±10) and 69(±14) μg m(-3), respectively, which are significantly higher than the prescribed Indian National Ambient Air Quality Standards values. The chemical species such as sum of anions and cations from measured chemical constituents were contributed to be 31.27 and 38.49% in PM2.5 and 6.35 and 5.65% to the PM10, whereas carbonaceous species contributed ~17.3 and 20.47% for OC and ~3.0 and 3.10% for EC, respectively. The average ratio of PM2.5/PM10 during study period was ~0.73(±0.2), indicating that the dominance of fine size particles. Carbonaceous analysis results showed that the average concentration of OC was 14 and 8.7 μg m(-3), while EC was 2.1 and 1.5 μg m(-3) for PM10 and PM2.5, respectively. The ratios between OC and EC were estimated, which were 6.6 and 5.7 for PM10 and PM2.5, suggesting the presence of secondary organic aerosol. Total carbonaceous aerosol accounts 23% of PM10 in which the contribution of OC is 20% and EC is 3%, while 20% of PM2.5 mass in which the contribution of OC is 17% and EC is 3%. Out of the total aerosols mass, water-soluble constituents contributed an average of 45% in PM10 and 38% in PM2.5 including about 39% anions and 6% cations in PM10, while 31% anions and 7% cations in PM2.5 aerosol mass collectively at study site. PMID

  15. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    NASA Technical Reports Server (NTRS)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  16. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  17. Assesment of aerosol optical depth at UV wavelegths from Microtops II "ozone monitor

    NASA Astrophysics Data System (ADS)

    Gómez-Amo, J. L.; di Sarra, A.; Estellés, V.; Utrillas, M. P.; Martínez-Lozano, J. A.

    2009-04-01

    The aerosol optical depth (AOD) retrieval at ultraviolet spectral region (UV) has been of interest for the last few years, especially due to the important rule that the particles play in the Earth climate modifying the earth-atmosphere energy budget. That is the reason why a great number of methodologies have been developed to obtain AOD, usually by means of instruments aimed to ozone monitoring. Microtops II "ozone meter" is a small hand-held manually operated instrument designed for the measurement of ozone atmospheric columnar content. The instrument operates in five spectral channels centred at 305.5, 312.5, 320.0, 936 and 1020nm wavelengths. The firsts three channels (UV) are used to obtain the ozone content, the 936nm channel is used to water vapour retrieval and the last one permit to obtain the AOD at 1020nm. The aim of this work is to use the UV ozone channels to assess the capability of Microtops II "ozone monitor" to retrieve AOD at 312.5, 305.5 and 320nm. On this way we can improve substantially the performance of Microtops II for the characterization of important components present in the atmosphere using only its own measurements. The methodology used to carry out the AOD retrieval is based on the application of the Beer-Lambert-Bouguer law to the Microtops II UV channels. A very good calibration is needed to apply this kind of methodologies since they show an important dependence on the calibration factors. The AOD is calculated eliminating the ozone contribution (using the ozone content from the combination of 305.5 and 312.5 channels) and the molecular one (Rayleigh). The AOD retrieval has been tested in a 15-days field campaign carried out at Lampedusa Island (35.52°N, 12.63°E, 45m a.s.l.) in the framework of the GAMARF (Ground-based and Airborne Measurments of the Aerosol Radiative Forcing) project. The results obtained during the campaign show, for a background atmospheric situation, AOD values of 0.10 ± 0.03, 0.17 ± 0.03 and 0.05 ± 0.03 at

  18. Advanced high quality aerosol data: novel results from the EUSAAR in situ measurement network

    NASA Astrophysics Data System (ADS)

    Laj, P.; Philippin, S.; Putaud, J.-P.; Wiedensohler, A.; de Leeuw, G.; Fjaeraa, A. M.; Platt, U.; Baltensperger, U.; Fiebig, M.

    2009-04-01

    The EU-funded project EUSAAR (EUropean Supersites for Atmospheric Aerosol Research) aims at integrating measurements of atmospheric aerosol properties from a distributed network of 20 high-quality European ground-based stations. The objective is to ensure harmonization, validation and data diffusion of current measurements of particle optical, physical and chemical properties which are critical parameters for quantifying the key processes and the impact of aerosols on climate and air quality. We will present and discuss the results and highlights of the activities and achievements during the first 3 years of the project during which EUSAAR has contributed to improving the comparability of measurements for data users and to adopting best practices in aerosol monitoring procedures, and has started providing high quality aerosol data much needed in the atmospheric research community from the most advanced monitoring stations currently operational in Europe.

  19. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; Monaco, L.

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  20. The Antarctic permafrost as a testbed for REMS (Rover Environmental Monitoring Station-Mars Science Laboratory)

    NASA Astrophysics Data System (ADS)

    Esteban, B.; Ramos, M.; Sebastián, E.; Armiens, C.; Gómez-Elvira, J.; Cabos, W.; de Pablo, M. A.

    2009-04-01

    The present climatic characteristics of Mars favor the presence of extense permafrost areas in this lonely planet. Therefore environmental parameters that are included in Martian Rover missions are also used for monitoring thermal soil surface evolution in order to study the permafrost active layer thickness and the energy balance in the soil-atmosphere boundary limit layer. The REMS (Rover Environmental Monitoring Station) is an environmental station designed by the Centro de Astrobiología (CAB- Spain) with the collaboration of national and international partners (CRISA/EADS, UPC and FMI), which is part of the payload of the MSL (Mars Science Laboratory) NASA mission to Mars (http://mars.jpl.nasa.gov/msl/overview/). This mission is expected to be launched in the final months of 2009, and mainly consists of a Rover, with a complete set of scientific instruments; the Rover will carry the biggest, most advanced suite of instruments for scientific studies ever sent to the Martian surface. Five sensors compose the REMS instrument: ground (GT-REMS) and air temperatures, wind speed and direction, pressure, humidity and ultraviolet radiation (UV-REMS). A simplified setup of the REMS was deployed on Antarctica in the surroundings of the Spanish Antarctic Stations on Livingston and Deception Islands (Maritime Antarctica), where the permafrost distribution is well-known. The aim of the experiment was to check REMS's sensors response against hard environmental conditions and calibrates their measures with standard Antarctic devices. The experimental apparatuses included some standard meteorological and thermopiles sensors corresponding to the REMS. All the sensors are mounted in a 1.8 m mast and include a Pt100 air temperature sensor with shield solar protection on the mast top, a Kipp and Zonnen CNR1 net radiometer for measuring infrared (5-50 μm) and short wave solar (305-2800 nm) radiation at 1.5 m high, GT-REMS sensor and its amplification box at 0.7 m high and finally

  1. Balloon-borne measurements of aerosol, condensation nuclei, and cloud particles in the stratosphere at McMurdo Station, Antarctica, during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Harder, J. W.; Hereford, J. V.

    1989-01-01

    Measurements of the vertical profile of particles with condensation nuclei counters and eight channel aerosol detectors at McMurdo Station, Antarctica, in 1987 verified observations made in 1986 concerning the absence of upwelling in the polar vortex and the presence of a condensation nuclei layer in conjunction with the ozone hole region. New observations of a bimodal aerosol size distribution, consisting of a large-particle mode mixed in with the small-particle sulfate mode, at temperatures below -79 C are consistent with the presence of nitric acid-water particles at low concentrations. Higher concentrations of large particles were observed in association with nacreous clouds. An unusual particle layer which contained enhanced concentrations of both the small-particle (sulfate) mode and the large-particle (nitric acid) mode was detected at temperatures below -85 C, suggesting simultaneous nucleation and growth phenomena. The vortex condensation nuclei layer was observed to form at the same time as the ozone hole, indicating that formation of the layer is triggered by photochemical processes and may be important in controlling ozone depletion above 22 km.

  2. Microbial Air and Surface Monitoring Results from International Space Station Samples

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.

    2005-01-01

    Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.

  3. International Space Station Urine Monitoring System Functional Integration and Science Testing

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle R.; Broyan, James Lee, Jr.

    2011-01-01

    Exposure to microgravity during human spaceflight needs to be better understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Measuring the calcium and other metabolic byproducts in a crew member s urine can evaluate the effectiveness of bone loss countermeasures. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross-contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross-contamination (<0.7 mL urine) and has volume accuracy of 2% between 100 to 1000 mL urine voids. Designed to provide a non-invasive means to collect urine samples from crew members, the ISS UMS operates in-line with the Node 3 Waste and Hygiene Compartment (WHC). The ISS UMS has undergone modifications required to interface with the WHC, including material changes, science algorithm improvements, and software platform revisions. Integrated functional testing was performed to determine the pressure drop, air flow rate, and the maximum amount of fluid capable of being discharged from the UMS to the WHC. This paper will detail the results of the science and the functional integration tests.

  4. Evaluation of the Air Quality Monitor's Performance on the International Space Station

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Reese, Eric; Ballard, Ken; Durham, Tamara

    2010-01-01

    The Air Quality Monitor (AQM) was flown to the International Space Station (ISS) as an experiment to evaluate its potential to replace the aging Volatile Organic Analyzer (VOA), which ceased operations in August 2009. The AQM (Figure 1) is a small gas chromatography/differential mobility spectrometer (GC/DMS) manufactured by Sionex. Data was presented at last year s ISIMS conference that detailed the preparation of the AQM for flight, including instrument calibration. Furthermore, initial AQM data was compared to VOA results from simultaneous runs of the two instruments. Although comparison with VOA data provided a measure of confidence in the AQM performance, it is the comparison with results from simultaneously acquired air samples (grab sample containers-GSCs) that will define the success (or failure) of the AQM performance. This paper will update the progress in the AQM investigation by comparing AQM data to results from the analyses of GSC samples, returned from ISS. Additionally, a couple of example will illustrate the AQM s ability to detect disruptions in the spacecraft s air quality. Discussion will also focus upon a few unexpected issues that have arisen and how these will be a addressed in the final operational unit now being built.

  5. Results of TSP metals monitoring at McMurdo Station, Antarctica

    SciTech Connect

    Lugar, R.M.

    1994-04-01

    This report presents the results of ambient air monitoring of metals in total suspended particulate (TSP) matter performed during the 1992--1993 austral summer at McMurdo Station, Antarctica. Seven samples of TSP were collected from three different locations and analyzed for arsenic, beryllium, cadmium, chromium, lead, nickel, and mercury. Critical-flow high-volume air samplers with a sample flow rate of approximately 1.1 m{sup 3}/minute were used to collect the particulate matter on quartz fiber filters for subsequent laboratory analysis. Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks. The data indicate that McMurdo operations have a measurable impact on the qualitative toxic metals composition of suspended particulate matter in the ambient air; however a definitive quantitative impact could not be concluded. The levels measured are well below the US National Ambient Air Quality Standards and American Conference of Governmental Industrial Hygienists worker exposure levels. Lead was the most prevalent of the seven toxic metals and was detected in all samples at concentrations ranging from 1.4 ng/m{sup 3} to 38 ng/m{sup 3}. Data on the concentration of eleven other metal species are presented. Most notable was the relatively high abundance of titanium and copper, which were detectable at levels up to 2,100 ng/m{sup 3} and 230 ng/m{sup 3}, respectively.

  6. Automatic evaluation of progression angle and fetal head station through intrapartum echographic monitoring.

    PubMed

    Casciaro, Sergio; Conversano, Francesco; Casciaro, Ernesto; Soloperto, Giulia; Perrone, Emanuele; Di Renzo, Gian Carlo; Perrone, Antonio

    2013-01-01

    Labor progression is routinely assessed through transvaginal digital inspections, meaning that the clinical decisions taken during the most delicate phase of pregnancy are subjective and scarcely supported by technological devices. In response to such inadequacies, we combined intrapartum echographic acquisitions with advanced tracking algorithms in a new method for noninvasive, quantitative, and automatic monitoring of labor. Aim of this work is the preliminary clinical validation and accuracy evaluation of our automatic algorithm in assessing progression angle (PA) and fetal head station (FHS). A cohort of 10 parturients underwent conventional labor management, with additional translabial echographic examinations after each uterine contraction. PA and FHS were evaluated by our automatic algorithm on the acquired images. Additionally, an experienced clinical sonographer, blinded regarding the algorithm results, quantified on the same acquisitions of the two parameters through manual contouring, which were considered as the standard reference in the evaluation of automatic algorithm and routine method accuracies. The automatic algorithm (mean error ± 2SD) provided a global accuracy of 0.9 ± 4.0 mm for FHS and 4° ± 9° for PA, which is far above the diagnostic ability shown by the routine method, and therefore it resulted in a reliable method for earlier identification of abnormal labor patterns in support of clinical decisions. PMID:24106524

  7. Automatic Evaluation of Progression Angle and Fetal Head Station through Intrapartum Echographic Monitoring

    PubMed Central

    Casciaro, Ernesto; Di Renzo, Gian Carlo; Perrone, Antonio

    2013-01-01

    Labor progression is routinely assessed through transvaginal digital inspections, meaning that the clinical decisions taken during the most delicate phase of pregnancy are subjective and scarcely supported by technological devices. In response to such inadequacies, we combined intrapartum echographic acquisitions with advanced tracking algorithms in a new method for noninvasive, quantitative, and automatic monitoring of labor. Aim of this work is the preliminary clinical validation and accuracy evaluation of our automatic algorithm in assessing progression angle (PA) and fetal head station (FHS). A cohort of 10 parturients underwent conventional labor management, with additional translabial echographic examinations after each uterine contraction. PA and FHS were evaluated by our automatic algorithm on the acquired images. Additionally, an experienced clinical sonographer, blinded regarding the algorithm results, quantified on the same acquisitions of the two parameters through manual contouring, which were considered as the standard reference in the evaluation of automatic algorithm and routine method accuracies. The automatic algorithm (mean error ± 2SD) provided a global accuracy of 0.9 ± 4.0 mm for FHS and 4° ± 9° for PA, which is far above the diagnostic ability shown by the routine method, and therefore it resulted in a reliable method for earlier identification of abnormal labor patterns in support of clinical decisions. PMID:24106524

  8. Association between air pollution and hospital admission: Case study at three monitoring stations in Malaysia

    NASA Astrophysics Data System (ADS)

    Zahari, Marina; Zin@Ibrahim, Wan Zawiah Wan; Ismail, Noriszura; Ni, Tan Hui

    2014-06-01

    The relationships between the exposure of pollutants towards hospitalized admission and mortality have been identified in several studies on Asian cities such as Taipei, Bangkok and Tokyo. In Malaysia, evidence on the health risks associated with exposure to pollutants is limited. In this study, daily time-series data were analysed to estimate risks of cardiovascular and respiratory hospitalized admissions associated with particulate matter ≤ 10 μm (PM10), carbon monoxide (CO), nitrogen dioxide, sulphur dioxide, and ozone concentrations in Klang Valley during 2004-2009. Daily counts of hospital admissions for cardiovascular and respiratory outcomes were obtained from eleven hospitals while pollutants data were taken from several air quality monitoring stations located nearest to the hospitals. These data were fitted with Generalised Additive Poisson regression models. Additionally, temperature, humidity, and time data were also included to allow for potential effect of weather and time-varying influences on hospital admissions. CO showed the most significant (P < 0.05) relationship to cardiovascular admissions. An increment of 1 ppm in CO predicted an increase of 4% to 20% in cardiovascular admissions. Respiratory admissions were associated with PM10, which had about 1% increase in risk of admission per 10 ug/m3 increment in PM10. Exposure to CO and PM10 increases the risk of hospitalization for cardiovascular and respiratory illnesses in Klang Valley, Malaysia.

  9. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    PubMed

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment. PMID:22554097

  10. Long-term in situ observations of biomass burning aerosol at a high altitude station in Venezuela - sources, impacts and interannual variability

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; Matisāns, M.; Tunved, P.; Ström, J.; Calderon, S.; Hoffmann, P.; Hochschild, G.; Gross, J.; Schmeissner, T.; Wiedensohler, A.; Krejci, R.

    2013-10-01

    First long-term observations of South American biomass burning aerosol within the tropical lower free troposphere are presented. The observations were conducted between 2007 and 2009 at a high altitude station (4765 m a.s.l.) on the Pico Espejo, Venezuela. Sub-micron particle volume, number concentrations of primary particles and particle absorption were observed. Orographic lifting and shallow convection leads to a distinct diurnal cycle at the station. It enables measurements within the lower free troposphere during night-time and observations of boundary layer air masses during daytime and at their transitional regions. The seasonal cycle is defined by a wet rainy season and a dry biomass burning season. The particle load of biomass burning aerosol is dominated by fires in the Venezuelan savannah. Increases of aerosol concentrations could not be linked to long-range transport of biomass burning plumes from the Amazon basin or Africa due to effective wet scavenging of particles. Highest particle concentrations were observed within boundary layer air masses during the dry season. Ambient sub-micron particle volume reached 1.4±1.3 μm3 cm-3, refractory particle number concentrations (at 300 °C) 510±420 cm-3 and the absorption coefficient 0.91±1.2 Mm-1. The respective concentrations were lowest within the lower free troposphere during the wet season and averaged at 0.19±0.25 μm3 cm-3, 150±94 cm-3 and 0.15±0.26 Mm-1. A decrease of particle concentrations during the dry seasons from 2007-2009 could be connected to a decrease in fire activity in the wider region of Venezuela using MODIS satellite observations. The variability of biomass burning is most likely linked to the El Niño-Southern Oscillation (ENSO). Low biomass burning activity in the Venezuelan savannah was observed to follow La Niña conditions, high biomass burning activity followed El Niño conditions.

  11. Measurement and analysis of black carbon aerosols over a tropical semi-arid station in Kadapa, India

    NASA Astrophysics Data System (ADS)

    Begam, G. Reshma; Vachaspati, C. Viswanath; Ahammed, Y. Nazeer; Kumar, K. Raghavendra; Babu, S. Suresh; Reddy, R. R.

    2016-05-01

    This paper presents aerosol light absorption measurements using a seven channel Aethalometer (AE-42), recorded during September 2011-November 2012 over a tropical semi-arid site in Kadapa, India. The annual average black carbon (BC) mass concentration ([BC]) during the studied period was 2.20 ± 0.78 μg m- 3 which is in agreement when compared to other sites of similar environment. Strong seasonal variation was observed with high values during winter (2.87 ± 0.81 μg m- 3) and low in monsoon (1.30 ± 0.31 μg m- 3) season, which could be attributed to regional synoptic meteorology and long range transport. The two peaks in diurnal variations of [BC] were observed during morning between 06:00 and 08:00 h local time (LT) and in the evening around 19:00-21:00 h LT, with a minimum peak in the afternoon (~ 16:00 h LT) which is strongly correlated with the boundary layer dynamics, local and regional sources, and associated meteorology. The relationships between measured [BC] and the corresponding meteorological parameters for the studied region were also analysed. The estimated monthly mean spectral absorption coefficient values range from 0.56 to 1.15 with an average of 0.90, which suggests high BC/OC ratio and possible source of emission of aerosols is fossil fuel burning. Trajectory cluster analysis showed significant impact of long range transport of BC aerosols towards the observational site during the period of study.

  12. Measurements of aerosol-cloud interactions, including on-line particle chemical composition, at the Jungfraujoch Global Atmospheric Watch Station

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Alfarra, M. R.; Williams, P. I.; Bower, K. N.; Gallagher, M. W.; Choularton, T. W.; Weingartner, E.; Corrigan, C.; Baltensperger, U.

    2003-04-01

    The Global Atmospheric Watch research laboratory is located in the Sphinx building, 3580 m asl; 46.55oN, 7.98oE on the Jungfraujoch in the Swiss Alps. The site is exposed to a wide range of conditions and frequently samples long range transported lower free tropospheric air, and is exposed to cloudy conditions. The Paul Scherrer Institute have previously developed a dual inlet system that allows measurements of the total sub-micron aerosol population (dry residuals and interstitial particles) and interstitial particles alone to be made alternately every few minutes. During July 2002 an Aerodyne Aerosol Mass Spectrometer was coupled to the dual inlet and was used to sample the composition of both the total particle distribution and the interstitial fraction and hence derive the mass loadings of the dry droplet residuals. In out of cloud conditions the aerosol composition can be linked to air mass history and age of the air mass. Microphysical measurements include cloud droplet size distributions made using an FSSP and also a new phase Doppler anemometry system. A comparison between these probes will be made. Two different types of cloud droplet spectra were observed. In the first type a large number of cloud droplets were measured with a single, narrow drop size distribution and modal diameter of around 10 um. In the second type, a bimodal cloud droplet spectrum occurred with a smaller mode (by number) at around 20 um, in addition to the 10 um mode. The aerosol mass spectrometry shows that the composition of the residuals from the two spectrum types is very different, the former type being composed mainly of sulphate, the latter a combination of nitrate, sulphate and organic material. We have also shown that the organic material observed is highly oxidized. We argue that the bimodality arises as a result of mixing of cloud droplets below the site that have been activated separately: the larger a less numerous mode in the widespread strato-cumulus forming under low

  13. Characterization and quantification of aerosol chemical species present below and within cloud over an eastern Himalayan high altitude hill station in India

    NASA Astrophysics Data System (ADS)

    Roy, Arindam; Chatterjee, Abhijit; Sarkar, Chirantan; Ghosh, Sanjay; Raha, Sibaji

    2016-07-01

    There are two main processes through which aerosols and gases get scavenged by rain called below-cloud scavenging or "washout" and in-cloud scavenging or "rainout". The first process refers to the washout of the aerosols and gases present below the cloud during precipitation events by raindrops along their fall. The second process corresponds to the condensation of water vapor on aerosol particles during the formation of cloud droplets and incorporation of gases surrounding the droplets by aqueous-phase reactions. However, the most efficient pathway to remove the atmospheric pollutants is below cloud scavenging which is a major pointer of ecosystem, biogeochemical cycle as well as the climate change. A study has been conducted in 2014 and 2015 monsoon (June-September) in Darjeeling (27.01 ° N, 88.15 ° E), a high altitude (2200 m asl) hill station over eastern Himalaya in India. The study was focused on the below-cloud and in-cloud scavenging of various aerosol ionic species. Attempt was also made to estimate the contribution of in-cloud scavenging and below-cloud scavenging by collecting rain samples sequentially for different rain events. Sea-salt (Na+, sea-Mg2+, Cl- and sea-SO4 2-) and soil dust (non-sea Ca2+, non-sea-Mg2+) species show sharp decrease in concentration for each of the rain sample. This indicates that these species were mostly accumulated below the cloud and washed out during rain. Their concentrations were thus decreased sharply as rains progressed. On the other hand, non-SO4-2 and NH4+ showed different behavior. Their concentrations decreased sharply at the initial stage of the rain and then remained almost constant with rainfall. This explains wash out of these two species at the initial stage of the rain and their contribution from "within the cloud". NH4 + and non-sea-SO4 2- could thus act as cloud condensation nuclei over this part of Himalaya. A strong correlation between these two species indicates their association as (NH4)2SO4. Acidity

  14. Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

    2012-01-01

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes. PMID:22651886

  15. Remote monitoring of aerosol layers over Sofia during Sahara dust transport episode (April, 2012)

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar; Grigorov, Ivan; Deleva, Atanaska; Kolev, Nikolay; Peshev, Zahari; Kolarov, Georgi; Donev, Evgeni; Ivanov, Danko

    2013-03-01

    In this work we present results of lidar remote sensing of aerosol layers in the atmosphere above Sofia during an episode of Sahara dust transport, 02-07 April, 2012. The investigations were made using two lidar systems, one equipped with a CuBr-vapor laser, emitting at wavelength 510.6 nm, and a second one - with Nd:YAG laser, at wavelengths 1064 nm and 532 nm. The results of lidar measurements are presented in terms of vertical atmospheric backscatter coefficient profiles and color maps of the aerosol stratification evolution. The involved into discussions ceilometer data (CHM 15k ceilometer) and satellite data from CALIPSO lidar, enhance the synergy of observations. Conclusion about atmospheric aerosol's origin was made upon analyses of the information of weather-forecast maps provided by the Forecast system of Barcelona Supercomputing Centre, which are accessible via Internet. Additional information was provided by calculations of the backward air mass trajectories, using online software of NOAA about HYSPLIT model. The comparison between the data from the two lidars and the ceilometer showed similar behavior of aerosol layers development in the atmosphere above Sofia. All information about aerosol layers origin, their altitude above ground, persistence during lidar observations, confirmed the conclusion of observation of a long-distance Sahara dust transport beyond Balkans and Sofia. An interesting completion of CALIPSO lidar and ground based lidars results of measurement is presented in case of thick opaque cloud layer in the atmosphere, which slices the path of lidar sensing in both directions.

  16. Development of an In-line Urine Monitoring System for the International Space Station

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Cibuzar, Branelle R.

    2009-01-01

    Exposure to microgravity during space flight causes bone loss when calcium and other metabolic by-products are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is thus essential in determining crew bone loss and the effectiveness of the countermeasures that are taken to minimize this loss. Earlier space shuttle Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to the cross-contamination that took place between users, as well as to fluid system instabilities. Crew urine voids are currently collected manually in a flexible plastic bag that contains a known tracer quantity. A crew member must completely mix the contents of this bag before withdrawing a representative syringe sample for later ground analysis. The existing bag system accuracy is therefore highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures void volume, and allows for syringe sampling. After the ISS UMS has been used by a crew member, it delivers urine to the WHC for normal processing. The UMS plumbing is then flushed with a small volume of water. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, consequently greatly reducing cross-contamination among urine voids (less than 0.5 mL urine) while also providing accurate volume measurements (less than 2 percent error for 100 to 1,000 mL void volumes). ISS UMS performance has been validated through extensive ground tests and reduced-gravity aircraft flights. The locker-sized ISS UMS is currently undergoing a design modification that will permit it to interface with the ISS Node 3 WHC Russian toilet (ACY) hardware. The operating principles, characteristics, and results of this design modification are outlined here.

  17. Development of an Inline Urine Monitoring System for the International Space Station

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Cibuzar, Banelle R.

    2008-01-01

    Human exposure to microgravity during spaceflight causes bone loss. Calcium and other metabolic byproducts are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is essential to determining crew bone loss and the effectiveness of countermeasures. Previous US Space Shuttle (SS) Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to cross contamination between users and fluid system instabilities. Currently, urine voids must be collected manually in a flexible plastic bag containing a known tracer quantity. The crew member must completely mix the bag then withdraw a representative syringe sample for later ground analysis. The current bag system accuracy is highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures the void volume, and allows for syringe sampling. After operations, the ISS UMS delivers the urine to the WHC for normal processing then flushes its plumbing with a small water volume. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, greatly reduces cross contamination between urine voids (< 0.5 ml urine), and provides accurate volume measurements (< +/- 2% error for 100 to 1000 ml void volumes). The system performance has been validated with extensive ground tests and reduced gravity aircraft flights. The lockersized ISS UMS is currently being modified to interface with the ISS Node 3 WHC Russian ACY hardware. The operation principles, characteristics, and results are outlined in the paper.

  18. Radiation Monitoring System in Service Module of International Space Station. Eight Years of Functioning

    NASA Astrophysics Data System (ADS)

    Benghin, Victor; Petrov, Vladislav; Panasyuk, Mikhail; Volkov, Aleksey; Nikolaev, Igor; Nechaev, Oleg; Lishnevskii, Andrey; Tel, Mikhail

    Radiation monitoring system (RMS) installed on board the Russian module (RM) of the In-ternational Space Station (ISS) is an important part of radiation safety system of a spacecraft. RMS function practically continuously beginning from 1 August 2001 year. Integration the RMS with other systems of RM permits to transmit measured values to the Earth by the telemetry and to reflect the radiation environment data directly to crew by the personal com-puter. There is a possibility to correct the RMS software directly on board the ISS. It permits improve greatly a confidence, reliability and validity of an information obtaining. The report presents the data about the equipment functioning and results of dose rate measurements during the period from the August of 2001 up to the August of 2009 both for normal radiation environ-ment and during solar particle events (SPE). Comparison of an absorbed dose rate measured by the detectors located in various points of the RM showed that difference of doses measured in low and high shielded areas of the RM at undisturbed radiation conditions is notably stable and not exceeds a factor of 2. At the same time during the disturbances caused by SPE it can reach of 30. This fact confirms the efficiency of a crew passage in the high-shielded area for decreasing SCR dose. Comparison data obtained with the RMS silicon detectors with the R-16 ionizing chamber data showed that for equal shielding conditions the measured values coincide with accuracy rather then 20On the whole the dose rate dynamics for various solar cycle periods and during the SPE demonstrates reasonably high regularity of crewmembers dose. But it is clear that onboard and personal dosimetric control is necessary for implementation of ALARA principle and minimization of the crewmembers personal doses.

  19. Meteorological Circulations at Gale Environment Through Rover Environmental Monitoring Station (REMS) Observations and Mesoscale Modeling (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, J.; Rafkin, S.

    2015-10-01

    Gale Crater, in which the Mars Science Laboratory (MSL) landed in August 2012, is the most topographically complex area visited to date on Mars. The meteorology within the crater may also be one of the most dynamically complex meteorological environments, because topography is thought to strongly drive the near-surface atmospheric circulations. The Rover Environmental Monitoring Station (REMS) [5] has provided some clues on the nature of the local meteorology strongly influenced by the complex topography, as predicted by numerous previous studies. The types of perturbations of pressure, air and ground temperature and wind measured by REMS have never been observed at other locations and these data provide a great opportunity to test the models at the most meteorological interesting area measured to date. In an effort to better understand the atmospheric circulations of the Gale Crater, the Mars Regional Atmospheric Modeling System (MRAMS)[6]was applied to the landing site region using nested grids with a spacing of 330 meters on the innermost grid that is centered over the landing site. We provide a comparison of MRAMS predictions for pressure, air temperature, winds and ground temperature,to the REMS data available at the location of the Rover for sols 51-55 (Ls=180), sols 195-199 (Ls=270), sols 348-352 (Ls=0) and sols 541-545 (Ls=90), in order to provide a baseline of model performance.Pressure and ground temperature provide the most robust parameters with which to test the model predictions(Figures 2 and 3).

  20. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  1. Absolute calibration of the Jenoptik CHM15k-x ceilometer and its applicability for quantitative aerosol monitoring

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2014-05-01

    The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal

  2. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  3. Determining PM2.5 calibration curves for a low-cost particle monitor: common indoor residential aerosols.

    PubMed

    Dacunto, Philip J; Klepeis, Neil E; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2015-11-01

    Real-time particle monitors are essential for accurately estimating exposure to fine particles indoors. However, many such monitors tend to be prohibitively expensive for some applications, such as a tenant or homeowner curious about the quality of the air in their home. A lower cost version (the Dylos Air Quality Monitor) has recently been introduced, but it requires appropriate calibration to reflect the mass concentration units required for exposure assessment. We conducted a total of 64 experiments with a suite of instruments including a Dylos DC1100, another real-time laser photometer (TSI SidePak™ Model AM-510 Personal Aerosol Monitor), and a gravimetric sampling apparatus to estimate Dylos calibration factors for emissions from 17 different common indoor sources including cigarettes, incense, fried bacon, chicken, and hamburger. Comparison of minute-by-minute data from the Dylos with the gravimetrically calibrated SidePak yielded relationships that enable the conversion of the raw Dylos particle counts less than 2.5 μm (in #/0.01 ft(3)) to estimated PM2.5 mass concentration (e.g. μg m(-3)). The relationship between the exponentially-decaying Dylos particle counts and PM2.5 mass concentration can be described by a theoretically-derived power law with source-specific empirical parameters. A linear relationship (calibration factor) is applicable to fresh or quickly decaying emissions (i.e., before the aerosol has aged and differential decay rates introduce curvature into the relationship). The empirical parameters for the power-law relationships vary greatly both between and within source types, although linear factors appear to have lower uncertainty. The Dylos Air Quality Monitor is likely most useful for providing instantaneous feedback and context on mass particle levels in home and work situations for field-survey or personal awareness applications. PMID:26487426

  4. Impact assessment report: R. Paul Smith Steam Electric Station aquatic monitoring program. Volume II. Appendices. Final report

    SciTech Connect

    Janicki, A.J.; Johnson, G.F.; Summers, J.K.; Smith, R.P.; Ross, R.N.

    1981-06-01

    This document is a summary and interpretation of findings from aquatic monitoring studies that have been conducted since 1976 at the site of the R. Paul Smith Steam Electric Station on the upper Potomac River. Because the studies are very diverse and most of the findings are in numerous unpublished reports, this report serves as a compendium of results and also integrates the findings into a meaningful assessment of plant effects.

  5. Inflight Microbial Monitoring - An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Hummerick, Mary E.; Roman, Monsi; Smith, David J.

    2015-01-01

    Microorganisms including potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Current microbial monitoring methods require enrichment of microorganisms and a 48-hour incubation time resulting in an increase in microbial load, detecting a limited number of unidentified microorganisms. An expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted.

  6. Total suspended solids concentrations and yields for water-quality monitoring stations in Gwinnett County, Georgia, 1996-2009

    USGS Publications Warehouse

    Landers, Mark N.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Gwinnett County Department of Water Resources, established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. As of 2009, continuous streamflow and water-quality data as well as discrete water-quality samples were being collected for 14 watershed monitoring stations in Gwinnett County. This report provides statistical summaries of total suspended solids (TSS) concentrations for 730 stormflow and 710 base-flow water-quality samples collected between 1996 and 2009 for 14 watershed monitoring stations in Gwinnett County. Annual yields of TSS were estimated for each of the 14 watersheds using methods described in previous studies. TSS yield was estimated using linear, ordinary least-squares regression of TSS and explanatory variables of discharge, turbidity, season, date, and flow condition. The error of prediction for estimated yields ranged from 1 to 42 percent for the stations in this report; however, the actual overall uncertainty of the estimated yields cannot be less than that of the observed yields (± 15 to 20 percent). These watershed yields provide a basis for evaluation of how watershed characteristics, climate, and watershed management practices affect suspended sediment yield.

  7. Evaluation of a Gas Chromatograph-Differential Mobility Spectrometer for Potential Water Monitoring on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2015-01-01

    Environmental monitoring for manned spaceflight has long depended on archival sampling, which was sufficient for short missions. However, the longer mission durations aboard the International Space Station (ISS) have shown that enhanced, real-time monitoring capabilities are necessary in order to protect both the crewmembers and the spacecraft systems. Over the past several years, a number of real-time environmental monitors have been deployed on the ISS. Currently, volatile organic compounds (VOCs) in the station air are monitored by the Air Quality Monitor (AQM), a small, lightweight gas chromatograph-differential mobility spectrometer. For water monitoring, real-time monitors are used for total organic carbon (TOC) and biocide analysis. No information on the actual makeup of the TOC is provided presently, however. An improvement to the current state of environmental monitoring could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for VOCs in air samples, this instrument provides a logical starting point to evaluate the feasibility of this approach. The major hurdle for this effort lies in the liberation of the target analytes from the water matrix. In this presentation, we will discuss our recent studies, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target VOCs at the concentrations at which they are routinely detected in archival water samples from the ISS. We will compare the results of these studies with those obtained from the instrumentation routinely used to analyze archival water samples.

  8. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-03-01

    The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the

  9. A Brief History of the Collection amd Analysis of Data From Large Fixed-Station Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2005-12-01

    Since the early 20th century, a broad combination of state and federal fixed-station monitoring programs has served as the principle source of data for water quality assessments in the United States. Due to past limitations of data management and analysis, use of these data in studies of long-term water quality trends at regional and national scales did not begin until 1970, although examinations of water quality time-series from smaller numbers of sites were used in more localized assessments prior to that time. With the emergence in the early 1980s of statistical procedures specifically-designed for trend analysis of water-quality data, and rapid dissemination in the mid-1980s of GIS technology capable of integrating trend observations with spatially- and temporally-referenced explanatory variables, large-scale interpretation of water quality trend patterns met with notable successes. Also, development of more accurate statistical techniques for contaminant load estimation during this period, through correlation with continuous flow records, has proved valuable in a variety of water quality studies, especially those relating to coastal zone management. Beginning in the early 1990s, interpretation of large-scale water quality phenomena took a major step forward by moving from simple correlations between fixed-station water quality and explanatory data, to more complex analyses of the mass balance linking contaminant source-supply rates with in-stream flux measurements based on fixed-site monitoring records. The primary modeling technique used in these studies has been SPARROW (SPAtially-Referenced Regression On Watershed attributes), in which a detailed digital map of stream segments and their contributing watersheds is the spatial reference frame for all variables in the model. In recent calibrations, nutrient models based on hundreds of monitoring stations now include statistically-significant coefficients for more than 20 watershed attributes including

  10. Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network

    NASA Astrophysics Data System (ADS)

    Balaceanu, Cristina; Iorga, Gabriela

    2010-05-01

    City of Bucharest is the largest and most populated (about 2.8 million inhabitants) city in the Romanian Plain and encounters environmental problems and meteorology typical for several cities in southeastern Europe. City environment includes intense emissions arising from traffic (about 1 million cars per day), five thermo-electrical power-generation stations, that use both natural gas and oil derivatives for power generation and domestic heating, and from industrial sources (more than 800 small and medium plants). In the present work we performed an extensive analysis of the air pollution state for the Bucharest area (inside and outside the city) using filter measurement aerosol data PM10 and PM2.5. Data spanning over first year of continuous sampling (2005) were taken from the city Air Quality Monitoring Network, which consists of eight sampling stations: three industrial and two traffic, one EPA urban background, one suburban and one regional station located outside of Bucharest. The objective was to assess the PM10 recorded levels and their degree of compliance with the EU-legislated air quality standards and to provide a statistical investigation of the factors controlling seasonal and spatial variations of PM levels. PM10 relationships with other measured air pollutants (SO2, CO, NOx) and meteorological parameters (temperature, relative humidity, atmospheric pressure, wind velocity and direction) were investigated by statistical analysis. Back trajectory modeling and wind direction frequency distributions were used to identify the origin of the polluted air masses. Contribution of combustion (slopes) and non-combustion (intercepts) sources to PM10 recorded levels was quantified by linear analysis, for two seasonal periods: cold (15 October-14 April) and warm (15 April-14 October). PM10 and PM2.5 concentrations were compared with corresponding values in other European urban areas. Main conclusions are as follows: Traffic and industrial sites contribute to the

  11. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2004-03-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors

  12. The effect of local sources on particle size and chemical composition and their role in aerosol-cloud interactions at Puijo measurement station

    NASA Astrophysics Data System (ADS)

    Portin, H.; Leskinen, A.; Hao, L.; Kortelainen, A.; Miettinen, P.; Jaatinen, A.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.; Komppula, M.

    2014-06-01

    Interactions between aerosols and liquid water clouds were studied during autumns 2010-2011 at a semiurban measurement station on Puijo tower in Kuopio, Finland. Cloud interstitial and total aerosol size distributions, particle chemical composition and hygroscopicity and cloud droplet size distribution were measured, with a focus on comparing clean air masses with those affected by local sources. On average, the polluted air contained more particles than the clean air masses, and generally the concentrations decreased during cloud events. Cloud processing was found to take place, especially in the clean air masses, and to a lesser extent in the polluted air. Some, mostly minor, differences in the average particle chemical composition between the air masses were observed. The average size and number concentration of activating particles were quite similar for both air masses, producing average droplet populations with only minor distinctions. As a case study, a long cloud event was analyzed in detail, with a special focus on the emissions from local sources, including a paper mill and a heating plant. This revealed larger variations in particle and cloud properties than the analysis of the whole data set. Clear differences in the total (between 214 and 2200 cm-3) and accumulation mode particle concentrations (between 62 and 169 cm-3) were observed. Particle chemical composition, especially the concentrations of organics (between 0.42 and 1.28 μg m-3) and sulfate (between 0.16 and 4.43 μg m-3), varied considerably. This affected the hygroscopic growth factor: for example, for 100 nm particles the range was from 1.21 to 1.45 at 90% relative humidity. Particularly, large particles, high hygroscopicities and elevated amounts of inorganics were linked with the pollutant plumes. Moreover, the particle hygroscopicity distributions in the polluted air were clearly bimodal, indicating externally mixed aerosol. The variable conditions also had an impact on cloud droplet

  13. Characterization and monitoring of microbial species in the international space station drinking water

    NASA Technical Reports Server (NTRS)

    Duc, M. T. La; Vankateswaran, K.; Sumner, R.; Pierson, D.

    2003-01-01

    The focus of this study is to develop procedures to characterize the microbial quality of the drinking water for the International Space Station (ISS) and shuttle at various stages of water treatment.

  14. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  15. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  16. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  17. On the influence of biomass burning on the seasonal CO2 signal as observed at monitoring stations

    USGS Publications Warehouse

    Wittenberg, U.; Heimann, Martin; Esse, G.; McGuire, A.D.; Sauf, W.

    1998-01-01

    We investigated the role of biomass burning in simulating the seasonal signal in both prognostic and diagnostic analyses. The prognostic anaysis involved the High-Resolution Biosphere Model, a prognostic terrestrial biosphere model, and the coupled vegetation fire module, which together produce a prognostic data set of biomass burning. The diagnostic analysis invovled the Simple Diagnostic Biosphere Model (SDBM) and the Hao and Liu [1994] diagnostic data set of bimass burning, which have been scaled to global 2 and 4 Pg C yr-1, respectively. The monthly carbon exchange fields between the atmosphere and the biosphere with a spatial resolution of 0.5?? ?? 0.5??, the seasonal atmosphere-ocean exchange fields, and the emissions from fossil fuels have been coupled to the three-dimensional atmospheric transport model TM2. We have chosen eight monitoring stations of the National Oceanic and Atmospheric Administration network to compare the predicted seasonal atmospheric CO2 signals with those deduced from atmosphere-biosphere carbon exchange fluxes without any contribution from biomass burning. The prognostic analysis and the diagnostic analysis with global burning emissions of 4 Pg C yr-1 agree with respect to the change in the amplitude of the seasonal CO2 concentration introduced through biomass burning. We find that the seasonal CO2 signal at stations in higher northern latitudes (north of 30??N) is marginally influenced by biomass burning. For stations in tropical regions an increase in the CO2 amplitude of more an 1 oppmv (up to 50% with respect to the observed trough to peak amplitude) has been calculated. Biomass burning at stations farther south accounts for an increase in the CO2 amplitude of up to 59% (0.6 ppmv). A change in the phase of the seasonal CO2 signal at tropical and southern stations has been shown to be strongly influenced by the onset of biomass burning in southern tropical Africa and America. Comparing simulated and observed seasonal CO2 signals

  18. Analysis of coastal sea-level station records and implications for tsunami monitoring in the Adriatic Apulia region, southern Italy

    NASA Astrophysics Data System (ADS)

    Bressan, Lidia; Tinti, Stefano; Tallarico, Andrea

    2015-04-01

    The region of Apulia, southern Italy, was theater of one of the largest tsunami disaster in Italian history (the 30 July 1627 event) and is considered to be exposed to tsunami hazard coming from local Italian sources as well as from sources on the eastern side of the Adriatic and from the Ionian sea, including the Hellenic Arc earthquakes. Scientific interest for tsunami studies and monitoring in the region is only recent and this theme was specifically addressed by the international project OTRIONS, coordinated by the University of Bari. In the frame of this project the University of Bologna contributed to the analysis of the tsunami hazard and to the evaluation of the regional tide-gauge network with the scope of assessing its adequacy for tsunami monitoring. This latter is the main topic of the present work. In eastern Apulia, facing the Adriatic sea, the sea-level data network is sufficiently dense being formed of stations of the Italian tide-gauge network (Rete Mareografica Nazionale, RMN), of four additional stations operated by the Apulia Port Authority (in Brindisi, Ischitella, Manfredonia and Porto Cesareo) and of two more stations that were installed in the harbours of Barletta and Monopoli in the frame of the project OTRIONS with real-time data transmission and 1-sec sampling period. Pre-processing of the sea-level data of these stations included quality check and spectral analysis. Where the sampling rate was adequate, the records were also examined by means of the specific tools provided by the TEDA package. This is a Tsunami Early Detection Algorithm, developed by the Tsunami Research Team of the University of Bologna, that allows one to characterize the sea-level background signal in the typical tsunami frequency window (from 1 to several minutes) and consequently to optimize TEDA parameters for an efficient tsunami detection. The results of the analysis show stability of the spectral content and seasonal variations.

  19. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Astrophysics Data System (ADS)

    Morris, Robert A.

    1990-12-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  20. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1990-01-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  1. First Measurements of the Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Martín-Torres, F. J.; Zorzano-Mier, M.; Gomez-Elvira, J.

    2012-12-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) mission has sensors recording air and ground temperature, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided, daily, during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. The capability of multiple, consistent, and simultaneous data is essential for meaningful interpretation of near-surface processes including the characterization of soil thermal properties. The Martian atmosphere is generally transparent to solar radiation, but atmospheric dust absorbs solar radiation and heats the atmosphere, while UV radiation ionizes atmospheric gases and is harmful to any potential Martian organisms (past or present). For this reason, knowledge of the UV radiation flux at the surface of Mars is important for the understanding habitability conditions, one of the main goals of the MSL mission. Moreover UV radiation is a significant driver in the photochemistry of the atmosphere and surface. In this paper we present a first analysis of REMS measurements, the status of the different sensors and the potential of REMS for Mars environmental studies. REMS Team: C. Armiens, I. Carrasco, F. Gómez, A. Lepinette, J. Martín, J. Martínez-Frías, L. Mora, S. Navarro, V. Peinado, J. Rodríguez-Manfredi, J. Romeral, E. Sebastián, J. Torres, J. Verdasca (Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km. 4, 28850 Torrej

  2. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Saarnio, K.; Frey, A.; Saarikoski, S.; Teinilä, K.; Kulmala, M.; Hillamo, R.

    2011-10-01

    Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006-2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC), organic and elemental carbon (OC and EC) by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC), and PM2.5 mass with a tapered element oscillating microbalance (TEOM). Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM), EC) represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass) and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  3. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    NASA Astrophysics Data System (ADS)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a

  4. CURRENT FLOW DATA FOR SELECTED USGS STREAM MONITORING STATIONS IN WASHINGTON STATE

    EPA Science Inventory

    This data set contains recent stream flow data for USGS stations in Washington State. Flow data (cubic feet per second) are available for the most recent 5-6 day period and are compared with long-term average values. Flow data were collected approximately hourly. Flood stage and ...

  5. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel

  6. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  7. Characterization of Custom-Designed Charge-Coupled Devices for Applications to Gas and Aerosol Monitoring Sensorcraft Instrument

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Farnsworth, Glenn R.; Garcia, Christopher S.; Zawodny, Joseph M.

    2005-01-01

    Custom-designed charge-coupled devices (CCD) for Gas and Aerosols Monitoring Sensorcraft instrument were developed. These custom-designed CCD devices are linear arrays with pixel format of 512x1 elements and pixel size of 10x200 sq m. These devices were characterized at NASA Langley Research Center to achieve a full well capacity as high as 6,000,000 e-. This met the aircraft flight mission requirements in terms of signal-to-noise performance and maximum dynamic range. Characterization and analysis of the electrical and optical properties of the CCDs were carried out at room temperature. This includes measurements of photon transfer curves, gain coefficient histograms, read noise, and spectral response. Test results obtained on these devices successfully demonstrated the objectives of the aircraft flight mission. In this paper, we describe the characterization results and also discuss their applications to future mission.

  8. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    NASA Astrophysics Data System (ADS)

    Metternich, P.; Georgii, H.-W.; Groeneveld, K. O.

    1983-04-01

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  9. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  10. Data from the Woodland land-subsidence monitoring station, Yolo County, California, water years 1988-92

    USGS Publications Warehouse

    Ikehara, M.E.

    1995-01-01

    A land-subsidence monitoring study was initiated in 1985 for the purpose of collecting data in Sacramento Valley, California, to document land-surface subsidence and to measure sediment compaction in response to ground-water pumping. Lithologic and geophysical logs obtained from the deeper of two boreholes drilled in 1987 near Woodland, California, are presented. The results of geotechnical and hydraulic laboratory tests on four sediment core samples extracted at 137, 151, 301, and 474 feet below land surface from a third borehole, drilled in 1990, are also reported. Construction of the extensometer well and the piezometer wells and equipment installed in the boreholes are described and illustrated. Data measured or recorded at the Woodland land- subsidence monitoring station from December 1987 through September 1992 are presented in tabular and graphic formats. These data include water levels from five piezometers, barometric pressure, and cumulative net sediment compaction.

  11. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-08-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. A year into the life of this cooperative agreement, we note the following achievements: (1) Progress on the vertical line array (VLA) of sensors: (A) Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, (B) Cabling upgrade to allow installation of positioning sensors, (C) Adaptation of SDI's Angulate program to use acoustic slant ranges and DGPS data to compute and map the bottom location of the vertical array, (D) Progress in T''0'' delay and timing issues for improved control in data recording, (E) Successful deployment and recovery of the VLA twice during an October, 2003 cruise, once in 830m water, once in 1305m water, (F) Data collection and recovery from the DATS data logger, (G) Sufficient

  12. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-03-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART). The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.

  13. Coastal monitoring through video systems: best practices and architectural design of a new video monitoring station in Jesolo (Veneto, Italy)

    NASA Astrophysics Data System (ADS)

    Archetti, Renata; Vacchi, Matteo; Carniel, Sandro; Benetazzo, Alvise

    2013-04-01

    Measuring the location of the shoreline and monitoring foreshore changes through time represent a fundamental task for correct coastal management at many sites around the world. Several authors demonstrated video systems to be an essential tool for increasing the amount of data available for coastline management. These systems typically sample at least once per hour and can provide long-term datasets showing variations over days, events, months, seasons and years. In the past few years, due to the wide diffusion of video cameras at relatively low price, the use of video cameras and of video images analysis for environmental control has increased significantly. Even if video monitoring systems were often used in the research field they are most often applied with practical purposes including: i) identification and quantification of shoreline erosion, ii) assessment of coastal protection structure and/or beach nourishment performance, and iii) basic input to engineering design in the coastal zone iv) support for integrated numerical model validation Here we present the guidelines for the creation of a new video monitoring network in the proximity of the Jesolo beach (NW of the Adriatic Sea, Italy), Within this 10 km-long tourist district several engineering structures have been built in recent years, with the aim of solving urgent local erosion problems; as a result, almost all types of protection structures are present at this site: groynes, detached breakwaters.The area investigated experienced severe problems of coastal erosion in the past decades, inclusding a major one in the last November 2012. The activity is planned within the framework of the RITMARE project, that is also including other monitoring and scientific activities (bathymetry survey, waves and currents measurements, hydrodynamics and morphodynamic modeling). This contribution focuses on best practices to be adopted in the creation of the video monitoring system, and briefly describes the

  14. Radioecological monitoring in the zone of influence of liquid discharges of the Beloyarskii Nuclear Power Station

    SciTech Connect

    Karavaeva, E.N.; Molchanova, I.V.

    1995-12-01

    The radioecological state of the waterlogged part of the landscape receiving the discharge of slightly radioactive waters of the Beloyarskii nuclear power station is evaluated on the basis of long-term observations. According to calculations the bulk of {sup 60}Co, {sup 90}Sr, and {sup 137}Cs is concentrated in bottom sediments. At present they are the source of migration of radiators into the open drainage system and adjacent soil and vegetation cover.

  15. Open hardware air quality station for monitoring ozone in port area

    NASA Astrophysics Data System (ADS)

    Massabo, Marco; Lima, Marco; Fedi, Adriano; Ferrari, Daniele; Pintus, Fabio; Bruzzone, Gabriele

    2015-04-01

    Improve the quality of the air is one of the most important challenges we are facing especially in urban area. The open hardware paradigm can promote the positive connection of institution and scientific community with citizen. The goal of this work is to describe how a well-known pollution sensing technology, such as the electrochemical one, may be adopted in an open hardware paradigm in order to realize a ground level ozone sensor station. Our approach is to use this type of sensors to complement and empower traditional measuring networks in order to provide a better support to the models and to the identification of the pollution sources. The calibration methodology is based on the online coupling of new sensor measurements and observations of official network. Several linear calibration and a linear error correction algorithm based on temperature are performed and evaluated. The new air quality station allows to increase the frequency of sampling up to minutes and, due to the low cost, can stimulate the utilization by no-professionals. We test the air quality station in portal area and compare the results with traditional observations.

  16. Ionospheric delay gradient monitoring for GBAS by GPS stations near Suvarnabhumi airport, Thailand

    NASA Astrophysics Data System (ADS)

    Rungraengwajiake, Sarawoot; Supnithi, Pornchai; Saito, Susumu; Siansawasdi, Nattapong; Saekow, Apitep

    2015-10-01

    Ground-based augmentation system (GBAS) is an important augmentation system that provides the differential corrections and integrity information from the reference stations to the aircrafts for precision approach and landing. It is known that the nonuniform ionospheric characteristics called "ionospheric delay gradient" can cause the errors in differential corrections degrading the accuracy and safety level if they are undetected by the reference stations. Since the characteristics of the ionosphere are different for each region, the ionospheric delay gradient observations in equatorial and low-latitude regions are necessary for developing the suitable ionospheric threat models. The purpose of this work is to analyze the ionospheric delay gradients observed by three GPS stations near Suvarnabhumi airport in Bangkok, Thailand, which is located in the low-latitude region. The ionospheric irregularities in this region are mainly caused by the plasma bubble, which usually occurs after sunset. The GPS data with plasma bubble occurrence during the September equinox 2011 and 2012 are therefore analyzed. In addition, the data analysis procedure utilizing the rate of total electron content change index for this region is proposed. The results show that the ionospheric delay gradients observed in the west-east direction appear higher than the south-north direction, varying from 28 to 178 mm/km during plasma bubble occurrences.

  17. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  18. Set-up of debris-flow monitoring stations in the Eastern Pyrenees. Preliminary results and first experiences.

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; Abancó, Claudia; Moya, Jose; Chevalier, Guillaume; Raïmat, Carles; Luis-Fonseca, Roberto

    2010-05-01

    Direct observations of debris flows in the field by monitoring stations are of great importance to improve understandings of triggering, flow behaviour and accumulation of debris flows. Upon the knowledge of the authors, in Europe debris-flow monitoring stations are only situated in the Alps (Italy and Switzerland), while no test site is located in a catchment affected by Mediterranean climate. In 2005, the first monitoring system was set up by GEOBRUGG IBERICA SA in the Erill catchment, situated in the Axial Pyrenees. A flexible ring net VX160-H4 with load-cells was installed together with a video camera and four geophones. In addition, a meteorological station completed the instrumentation. During 2009, the monitoring of two additional catchments has been set up; Senet in the Axial Pyrenees and Ensija in the Pre-Pyrenees. Four geophones and one ultrasonic device are installed along the torrent in order to determine the flow velocity and flow depth/discharge of the events. As in Erill, a meteorological station completes the devices and measures rainfall and temperature. The main objective of the three monitoring stations is to get some insights on how the Mediterranean climate influences the critical rainfall for debris-flow initiation. The flow behaviour of debris flows is another major goal, while the Erill test site focuses basically on the effectiveness of flexible ring nets. In addition, the Erill installation also acts as protection for the village located on the fan. The calibration, installation and analysis during the testing phase showed that a correct implementation of the different sensors is not an easy task and needs knowledge in geophysics, electronics, telecommunications etc. Especially geophones and ultrasonic devices need special attentions. Geophone outputs are strongly affected by the type of underground and the distance to the torrent, while the measures of the ultrasonic sensor clearly depend on the temperature. To simplify the data storage

  19. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-07-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).

  20. Atmospheric aerosol monitoring and characterization: An emission control strategy to protect tropical forests

    NASA Astrophysics Data System (ADS)

    Mateus, V. L.; do Valles, T. V.; de Oliveira, T. B.; de Almeida, A. C.; Maia, L. F. P. G.; Saint'Pierre, T. D.; Gioda, A.

    2013-12-01

    Human activity represents one of the most harmful activities for biodiversity. Population growth has caused increasing interferences in natural areas suffering agriculture or urbanization. As a consequence, tropical forests are at risk, since they shelter more than half of the global biodiversity. In this context, protected areas are indeed important to preserve natural populations as well as threatened habitats. Aerosol samples were collected in two protected areas in Rio de Janeiro, Brazil, in order to quantify water-soluble species and evaluate anthropogenic influences considering secondary aerosol formation and organic compounds. Samplings were conducted at the National Park of Serra dos Orgãos (Parnaso) and the National Forest Mario Xavier (Flonamax) during 24 h every six days using a high-volume sampler from July 2010 to June 2012 (PM10) and from July 2011 to August 2012 (TSP), respectively. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (Br-, Cl-, F-, NO2-, NO3-, PO43-, SO42-) and cations (Li+, Ca2+, K+, Mg2+, Na+, NH4+); total water-soluble carbon (TWSC), water-soluble organic carbon (WSOC) were determined by a TOC analyzer and the elements were determined by Inductively Coupled Plasma Optical Emission Spectrometry. PM10 average concentrations ranged from 11.1 to 67.6 μg m-3 and TSP from 5.7 to 242.6 μg m-3. Regarding the ions, the highest cation concentration was measured for Na+ at both Parnaso and Flonamax sites, respectively, 2.9 and 6.1 μg m-3. Both sites are near to the coast, justifying these results. On the other hand, SO42- was the predominant anion measured at both sites with average concentrations ranged from 2.3 to 2.7 μg m-3. Around 50% of sulphate had a non-marine origin in the former site, while in the latter the percentage was of circa 40%. The correlation between NO3- and nss-SO42- was much stronger at Parnaso (r = 0

  1. [Spatial representativeness of monitoring stations for air quality in Florence (Tuscany Region, Central Italy) according to ARPAT e LaMMA. Critical observations].

    PubMed

    Grechi, Daniele

    2016-01-01

    On March 2015, the Environmental Protection Agency of Tuscany Region (Central Italy) and the Laboratory of monitoring and environmental modelling published a Report on spatial representativeness of monitoring stations for Tuscan air quality, where they supported the decommissioning of modelling stations located in the Florentine Plain. The stations of Signa, Scandicci, and Firenze-Bassi, located in a further South area, were considered representative Believing that air quality of the Plain could be evaluated by these stations is a stretch. In this text the author show the inconsistency of the conclusion of the Report through correlation graphs comparing daily means of PM10 detected in the disposed stations and in the active ones, showing relevant differences between the reported values and the days when the limits are exceeded. The discrepancy is due to the fact that uncertainty of theoretical estimates is greater than the differences recorded by the stations considered as a reference and the areas they may represent. The area of the Plain has a population of 150,000 individuals and it is subject to a heavy environmental pression, which will change for the urban works planned for the coming years. The population's legitimate request for the analytical monitoring of air pollution could be met through the organization of participated monitoring based on the use of low-cost innovative tools. PMID:27290885

  2. On the identification of representative in situ soil moisture monitoring stations for the validation of SMAP soil moisture products in Australia

    NASA Astrophysics Data System (ADS)

    Yee, Mei Sun; Walker, Jeffrey P.; Monerris, Alessandra; Rüdiger, Christoph; Jackson, Thomas J.

    2016-06-01

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in situ monitoring stations. Therefore, a standard methodology for selecting the most representative stations for the purpose of validating satellites and land surface models is essential. Based on temporal stability and geostatistical studies using long-term soil moisture records, intensive ground measurements and airborne soil moisture products, this study investigates the representativeness of soil moisture monitoring stations within the Yanco study area for the validation of NASA's Soil Moisture Active Passive (SMAP) products at 3 km for radar, 9 km for radar-radiometer and 36 km for radiometer pixels. This resulted in the identification of a number of representative stations according to the different scales. Although the temporal stability method was found to be suitable for identifying representative stations, stations based on the mean relative difference (MRD) were not necessarily the most representative of the areal average. Moreover, those identified from standard deviation of the relative difference (SDRD) may be dry-biased. It was also found that in the presence of heterogeneous land use, stations should be weighted based on proportions of agricultural land. Airborne soil moisture products were also shown to provide useful a priori information for identifying representative locations. Finally, recommendations are made regarding the design of future networks for satellite validation, and specifically the most representative stations for the Yanco area.

  3. Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey)

    NASA Astrophysics Data System (ADS)

    Yuce, G.; Ugurluoglu, D. Y.; Adar, N.; Yalcin, T.; Yaltirak, C.; Streil, T.; Oeserd, V. O.

    2010-04-01

    The objective of this study was to investigate the geochemical and hydrogeological effects of earthquakes on fluids in aquifers, particularly in a seismically active area such as Eskisehir (Turkey) where the Thrace-Eskisehir Fault Zone stretches over the region. The study area is also close to the North Anatolian Fault Zone generating devastating earthquakes such as the ones experienced in 1999, reactivating the Thrace-Eskisehir Fault. In the studied area, Rn and CO2 gas concentrations, redox potential, electrical conductivity, pH, water level, water temperature, and the climatic parameters were continuously measured in five stations for about a year. Based on the gathered data from the stations, some ambiguous anomalies in geochemical parameters and Rn concentration of groundwater were observed as precursors several days prior to an earthquake. According to the mid-term observations of this study, well-water level changes were found to be a good indicator for seismic estimations in the area, as it comprises naturally filtered anomalies reflecting only the changes due to earthquakes. Also, the results obtained from this study suggest that both the changes in well-water level and gas-water chemistry need to be interpretated together for more accurate estimations. Valid for the studied area, it can be said that shallow earthquakes with epicentral distances of <30 km from the observation stations have more influence on hydrochemical parameters of groundwater and well-water level changes. Although some hydrochemical anomalies were observed in the area, it requires further observations in order to be able to identify them as precursors.

  4. Relativistic electron precipitation at International Space Station: Space weather monitoring by Calorimetric Electron Telescope

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Asaoka, Yoichi; Torii, Shoji; Terasawa, Toshio; Ozawa, Shunsuke; Tamura, Tadahisa; Shimizu, Yuki; Akaike, Yosui; Mori, Masaki

    2016-05-01

    The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4 months, CALET CHD observed REP events mainly at the dusk to midnight sector near the plasmapause, where the trapped radiation belt electrons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves. Here we show that interesting 5-20 s periodicity regularly exists during the REP events at ISS, which is useful to diagnose the wave-particle interactions associated with the nonlinear wave growth of EMIC-triggered emissions.

  5. Observational Study and Parameterization of Aerosol-fog Interactions

    NASA Astrophysics Data System (ADS)

    Duan, J.; Guo, X.; Liu, Y.; Fang, C.; Su, Z.; Chen, Y.

    2014-12-01

    Studies have shown that human activities such as increased aerosols affect fog occurrence and properties significantly, and accurate numerical fog forecasting depends on, to a large extent, parameterization of fog microphysics and aerosol-fog interactions. Furthermore, fogs can be considered as clouds near the ground, and enjoy an advantage of permitting comprehensive long-term in-situ measurements that clouds do not. Knowledge learned from studying aerosol-fog interactions will provide useful insights into aerosol-cloud interactions. To serve the twofold objectives of understanding and improving parameterizations of aerosol-fog interactions and aerosol-cloud interactions, this study examines the data collected from fogs, with a focus but not limited to the data collected in Beijing, China. Data examined include aerosol particle size distributions measured by a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X), fog droplet size distributions measured by a Fog Monitor (FM-120), Cloud Condensation Nuclei (CCN), liquid water path measured by radiometers and visibility sensors, along with meteorological variables measured by a Tethered Balloon Sounding System (XLS-Ⅱ) and Automatic Weather Station (AWS). The results will be compared with low-level clouds for similarities and differences between fogs and clouds.

  6. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being

  7. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

    2007-03-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many

  8. The climate hazards infrared precipitation with stations--a new environmental record for monitoring extremes.

    PubMed

    Funk, Chris; Peterson, Pete; Landsfeld, Martin; Pedreros, Diego; Verdin, James; Shukla, Shraddhanand; Husak, Gregory; Rowland, James; Harrison, Laura; Hoell, Andrew; Michaelsen, Joel

    2015-01-01

    The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. PMID:26646728

  9. Evaluation of available analytical techniques for monitoring the quality of space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.

  10. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  11. Relationship between total Non-Methane Hydrocarbons (NMHC) and Speciated NMHCs by Photochemical Assessment Monitoring Station (PAMS)

    NASA Astrophysics Data System (ADS)

    Chen, S.; Ou Yang, C.; Chang, J.; Wang, J.

    2012-12-01

    Total NMHC observations were made in some of the EPA air quality stations (AQS) across Taiwan, along with measurements of ozone, CO, NOx, SO2 and PM10. This network is also complimented by another eight-station network, called photochemical assessment monitoring stations (PAMS), to provide hourly observations of 56 individual volatile organic compounds (VOCs). In this study, the relationship of the total NMHC and PAMS NMHC observations for the period of 2007-2011 at four sites were cross-examined. It was found that both the hourly mixing ratios and variations of the summed PAMS NMHC values were in excellent agreement with the total NMHC data, with the summed PAMS NMHC observations accounted for at least 80% of the total NMHC observations. However, when looking into the VOC emission database, the PAMS NMHC emissions only contributed 58% of the total NMHC emissions. This then leads to about 30% difference in the traditionally observed NMHCs and estimated emissions. The three-dimensional Eulerian air quality model (PAMS-AQM) was used to simulate both the total NMHC and individual PAMS NMHCs, which showed that the sum of the simulated PAMS NMHCs agreed well with the observed PAMS values. However, the modeled total VOC values were significantly higher than the observed total NMHC values, and such findings were consistent among all four stations. This and the above findings combine to suggest that the customarily labeled "total NMHC" reported by almost all air quality stations are underestimates by about 30%. This underestimate is rather uncertain for two reasons: One, both total NMHC and PAMS speciated NMHC measurements underestimate VOC levels in ambient air. Since both types of measurements use the same method of flame ionization detection, it is less sensitive to oxygen containing VOCs (OVOCs), e.g., aldehydes, esters, ketones, ether, acids, etc. than other VOCs. In contrast, the PAMS measurements only target 56 PAMS NMHCs although more directly, and OVOCs also are

  12. Multi-year investigations of aerosols from an island station, Port Blair, in the Bay of Bengal: climatology and source impacts

    NASA Astrophysics Data System (ADS)

    Naseema Beegum, S.; Krishna Moorthy, K.; Gogoi, Mukunda M.; Babu, S. Suresh; Pandey, S. K.

    2012-08-01

    Long-term measurements of spectral aerosol optical depth (AOD) using multi-wavelength solar radiometer (MWR) for a period of seven years (from 2002 to 2008) from the island location, Port Blair (11.63° N, 92.7° E, PBR) in the Bay of Bengal (BoB), along with the concurrent measurements of the size distribution of near-surface aerosols, have been analyzed to delineate the climatological features of aerosols over eastern BoB. In order to identity the contribution of different aerosol types from distinct sources, concentration weighted trajectory (CWT) analysis has been employed. Climatologically, AODs increase from January to reach peak value of ~0.4 (at 500 nm) in March, followed by a weak decrease towards May. Over this general pattern, significant modulations of intra-seasonal time scales, caused by the changes in the relative strength of distinctively different sources, are noticed. The derivative (α') of the Angstrom wavelength exponent α in the wavelength domain, along with CWT analysis, are used to delineate the different important aerosol types that influence this remote island. Corresponding changes in the aerosol size distributions are inferred from the numerical inversion of the spectral AODs as well from (surface) measurements. The analyses revealed that advection plays a major role in modifying the aerosol properties over the remote island location, the potential sources contributing to the accumulation mode (coarse mode) aerosols over eastern BoB being the East Asia and South China regions (Indian mainland and the oceanic regions).

  13. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    EPA Science Inventory

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. ...

  14. Monitor and control equipment for the MV-3 mobile very long baseline interferometry station

    NASA Technical Reports Server (NTRS)

    Sniffin, R. W.

    1982-01-01

    The system, designed around a commercially available process controller, is described. The hardware design, selection of the process control equipment, the design of the interface to other systems, and the analog monitor and process control assembly used to operate the equipment from the MV-3 central computer are discussed.

  15. LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station

    NASA Astrophysics Data System (ADS)

    Fraser, George W.; Brunton, Adam N.; Bannister, Nigel P.; Pearson, James F.; Ward, Martin; Stevenson, Tim J.; Watson, D. J.; Warwick, Bob; Whitehead, S.; O'Brian, Paul; White, Nicholas; Jahoda, Keith; Black, Kevin; Hunter, Stanley D.; Deines-Jones, Phil; Priedhorsky, William C.; Brumby, Steven P.; Borozdin, Konstantin N.; Vestrand, T.; Fabian, A. C.; Nugent, Keith A.; Peele, Andrew G.; Irving, Thomas H.; Price, Steve; Eckersley, Steve; Renouf, Ian; Smith, Mark; Parmar, Arvind N.; McHardy, I. M.; Uttley, P.; Lawrence, A.

    2002-01-01

    We describe the design of Lobster-ISS, an X-ray imaging all-sky monitor (ASM) to be flown as an attached payload on the International Space Station. Lobster-ISS is the subject of an ESA Phase-A study which will begin in December 2001. With an instantaneous field of view 162 x 22.5 degrees, Lobster-ISS will map almost the complete sky every 90 minute ISS orbit, generating a confusion-limited catalogue of ~250,000 sources every 2 months. Lobster-ISS will use focusing microchannel plate optics and imaging gas proportional micro-well detectors; work is currently underway to improve the MCP optics and to develop proportional counter windows with enhanced transmission and negligible rates of gas leakage, thus improving instrument throughput and reducing mass. Lobster-ISS provides an order of magnitude improvement in the sensitivity of X-ray ASMs, and will, for the first time, provide continuous monitoring of the sky in the soft X-ray region (0.1-3.5 keV). Lobster-ISS provides long term monitoring of all classes of variable X-ray source, and an essential alert facility, with rapid detection of transient X-ray sources such as Gamma-Ray Burst afterglows being relayed to contemporary pointed X-ray observatories. The mission, with a nominal lifetime of 3 years, is scheduled for launch on the Shuttle c.2009.

  16. Nitrogen dioxide monitoring with an automatic DOAS station at Terra Nova Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Ravegnani, Fabrizio; Kostadinov, Ivan K.; Giovanelli, Giorgio

    1998-08-01

    During the last few years UV-Vis spectrometers were developed at the FISBAT Institute and are used for application of differential optical absorption spectroscopy method to detect many atmospheric trace gases playing important roles in the stratospheric chemistry. After several test both in laboratory and in Antarctic region, one of the spectrometers, called GASCOD2/2, was modified in collaboration with ENEA for unattended and automatic measurement in extreme high-latitude environment. The instrument was installed in December 1995 in the Italian Station at Terra Nova Bay. The aim of this research is to study the dentrification processes during the formation of the so-called ozone hole over the Antarctic region. The preliminary results for the first year of nitrogen dioxide measurement are presented and discussed.

  17. An on-board TLD system for dose monitoring on the International Space Station.

    PubMed

    Apathy, I; Deme, S; Bodnar, L; Csoke, A; Hejja, I

    1999-01-01

    This institute has developed and manufactured a series of thermoluminescence dosemeter (TLD) systems for spacecraft, consisting of a set of bulb dosemeters and a small, compact, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A new implementation of the system will be placed on several segments of the ISS as the contribution of Hungary to this intemational enterprise. The well proven CaSO4:Dy dosemeters will be used for routine dosimetry of the astronauts and in biological experiments. The mean LET value will be measured by LiF dosemeters while doses caused by neutrons are planned to be determined by 6LiF/7LiF dosemeter pairs and moderators. A detailed description of the system is given. PMID:11542233

  18. Impact-assessment report: Chalk Point Steam Electric Station aquatic-monitoring program

    SciTech Connect

    Not Available

    1985-01-01

    The Chalk Point Steam Electric Station (SES), owned and operated by the Potomac Electric Power Company (PEPCO), is located in the estuarine portion of the Patuxent River just above the Benedict Bridge near Aquasco, Maryland. The plant's two coal-fired units use once-through cooling systems and pursuant to the Code of Maryland Regulations 10.50.01.13, which governs water-quality impact assessments for thermal discharges, PEPCO is required to: assess compliance with mixing-zone specifications that relate discharge flows and thermal-plume size to advective and diffusive properties of the receiving-water body; determine the magnitude and consequences of plant impacts on spawning and nursery areas for organisms that are representative of and important to the receiving body; and determine the magnitude and dollar value of impingement losses.

  19. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  20. Organization of monitoring the state of structures at the Sayano-Shushenskoe Hydroelectric Station

    SciTech Connect

    Bryzgalov, V.I.; Stafievskii, V.A.

    1994-06-01

    Engineering art when reference is to the reliability of an engineering structure should not depend on the political situation in the country. For example, in stagnant years it was decided to replace the type of dam at the Krasnoyarsk hydroelectric station (HES). Despite the insistence of the design organization for a so-called buttress dam, the engineering corps of like-minded persons - the construction engineers and customer headed by the chief of the construction project - categorically objected to the proposed design: in the construction industry the technology was not ready for openwork construction under harsh climatic conditions, and, what really matters, millions of people living downstream of the dam should be safeguarded against disasters. As a result a gravity dam was adopted.

  1. Recent Rainfall and Aerosol Chemistry From Bermuda

    NASA Astrophysics Data System (ADS)

    Landing, W. M.; Shelley, R.; Kadko, D. C.

    2014-12-01

    This project was devoted to testing the use of Be-7 as a tracer for quantifying trace element fluxes from the atmosphere to the oceans. Rainfall and aerosol samples were collected between June 15, 2011 and July 27, 2013 at the Bermuda Institute of Ocean Sciences (BIOS) located near the eastern end of the island of Bermuda. Collectors were situated near ground level, clear of surrounding vegetation, at a meteorological monitoring station in front of the BIOS laboratory, about 10 m above sea level. This is a Bermuda Air Quality Program site used for ambient air quality monitoring. To quantify the atmospheric deposition of Be-7, plastic buckets were deployed for collection of fallout over ~3 week periods. Wet deposition was collected for trace element analysis using a specially modified "GEOTRACES" N-CON automated wet deposition collector. Aerosol samples were collected with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed 47mm diameter Whatman-41 filters, using procedures identical to those used for the US GEOTRACES aerosol program (Morton et al., 2013). Aerosol and rainfall samples were analyzed for total Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr, Cd, Sb, Ba, La, Ce, Nd, Pb, Th, and U using ICPMS. Confirming earlier data from Bermuda, strong seasonality in rainfall and aerosol loading and chemistry was observed, particularly for aerosol and rainfall Fe concentrations when Saharan dust arrives in July/August with SE trajectories.

  2. Automated delineation and characterization of watersheds for more than 3,000 surface-water-quality monitoring stations active in 2010 in Texas

    USGS Publications Warehouse

    Archuleta, Christy-Ann M.; Gonzales, Sophia L.; Maltby, David R., II

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality, developed computer scripts and applications to automate the delineation of watershed boundaries and compute watershed characteristics for more than 3,000 surface-water-quality monitoring stations in Texas that were active during 2010. Microsoft Visual Basic applications were developed using ArcGIS ArcObjects to format the source input data required to delineate watershed boundaries. Several automated scripts and tools were developed or used to calculate watershed characteristics using Python, Microsoft Visual Basic, and the RivEX tool. Automated methods were augmented by the use of manual methods, including those done using ArcMap software. Watershed boundaries delineated for the monitoring stations are limited to the extent of the Subbasin boundaries in the USGS Watershed Boundary Dataset, which may not include the total watershed boundary from the monitoring station to the headwaters.

  3. Long-term monitoring of a marine geologic hydrocarbon source by a coastal air pollution station in Southern California

    NASA Astrophysics Data System (ADS)

    Bradley, Eliza; Leifer, Ira; Roberts, Dar

    2010-12-01

    Hourly total hydrocarbon (THC) data, spanning 1990-2008 from a California air pollution station located near the Coal Oil Point (COP) seep field, were analyzed and clearly showed geologic CH 4 emissions as the dominant local source. Annual COP emissions are conservatively estimated as 0.015 Tg CH 4 year -1 and represent a natural and concentrated geologic methane source (24 m 3 m -2 day -1 gas flux at some active seeps, Clark et al., 2010). For a sense of the scale and potential importance to the regional Southern California methane budget, COP emits an amount equivalent to 8% of the estimated Los Angeles County anthropogenic emissions. Station THC measurements near COP showed a strong wind dependency with elevated levels closely correlated with a sonar-derived spatial distribution of seep field emissions. THC varied seasonally, with a maximum in January and minimum in July and a peak-to-peak amplitude of 0.24 ppm. The seasonal signal was more readily apparent midday ( R2 = 0.69 harmonic fit), compared to nighttime and morning ( R2 < 0.45). The bimodal diel THC pattern consisted of seasonally-modulated peaks in the morning and evening. THC temporal and spatial trends were consistent with both transport and source emission variations. Long-term, annual seep field emissions consistently decreased on a field-wide basis until the late 1990s, before increasing consistently, most likely as a function of underlying geologic processes. This study demonstrates the value of municipal air quality monitoring stations for insight into local greenhouse gas sources and highlights the non-negligible and variable contribution from marine geologic seepage.

  4. LOCAD-PTS: Operation of a New System for Microbial Monitoring Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.; Monaco, L.

    2008-01-01

    Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of

  5. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-09-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements six months into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: Analysis and repair attempts of the VLA used in the deep water deployment during October 2003 have been completed; Definition of an interface protocol for the VLA DATS to the SFO has been established; Design modifications to allow integration of the VLA to the SFO have been made; Experience gained in the deployments of the first VLA is being applied to the design of the next VLAs; One of the two planned new VLAs being modified to serve as an Oceanographic Line Array (OLA). (2) Progress on the Sea Floor Probe: The decision to replace the Sea Floor Probe technology with the borehole emplacement of a geophysical array was reversed due to the 1300m water depth at the JIP

  6. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    NASA Astrophysics Data System (ADS)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main

  7. Results of monitoring for polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air at McMurdo station, Antarctica

    SciTech Connect

    Lugar, R.M.; Harles, R.L.

    1996-02-01

    This paper presents the results of ambient air monitoring for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) performed during the 1992-1993 and 1993-1994 austral summers in the vicinity of McMurdo Station, Antarctica. Twenty-eight air samples were collected from four different locations to determine the identity and concentration of PCDD/PCDF compounds. PCDD/PCDF compounds were not detected at either the predominantly upwind location or a more remote site on Black Island. Trace levels of only a few PCDD/PCDF congeners were detected sporadically at a location approximately 500 m downwind of the station. The most frequent, most varied, and highest levels of PCDDs/PCDFs were measured at a `downtown` location, where concentrations of total PCDDs ranged from 0.12 to 1.80 pg/m{sup 3} and total PCDDs ranged from less than 0.02 to 2.77 pg/m{sup 3}. The data indicate that there are combustion sources at McMurdo other than the solid waste incinerator (power plants, vehicles, heating furnaces, etc.) that contribute PCDD/PCDF compounds to the ambient air. The greatest variety and highest concentration of PCDD/PCDF congeners measured in 1992-1993 during incineration of selected solid wastes implicates the interim incinerator as the likely source of the increased presence of these compounds in air. 18 refs., 2 figs., 3 tabs.

  8. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    Carol Lutken

    2006-09-30

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period

  9. New methods for microbial contamination monitoring: an experiment on board the MIR orbital station

    NASA Astrophysics Data System (ADS)

    Guarnieri, V.; Gaia, E.; Battocchio, L.; Pitzurra, M.; Savino, A.; Pasquarella, C.; Vago, T.; Cotronei, V.

    1997-01-01

    Experiment T2, carried out during the Euromir'95 mission, was an important step toward innovative methods for spacecraft microbial contamination monitoring. A new standard sampling technique permitted samples to be analysed by different means. On board, two analysis methods were tested in parallel: Bioluminescence and Miniculture. In turn, downloaded samples are being analysed by polymerase chain reaction (PCR), a powerful and promising method for the rapid detection, identification and quantification of pathogens and biofouling agents in closed manned habitats.

  10. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  11. Validation of road traffic urban emission inventories by means of concentration data measured at air quality monitoring stations in Europe

    NASA Astrophysics Data System (ADS)

    Mellios, Giorgos; Van Aalst, Roel; Samaras, Zissis

    A method has been developed to validate inventories of urban emissions from road transport using air quality measurements. To this aim atmospheric concentration data for CO, NO x and PM 10 measured at urban traffic stations in five European countries, retrieved from the European Air Quality Information System AirBase, have been analysed. Traffic emission ratios as derived from this analysis were compared to estimates of emission ratios as provided by a suitable emissions model (TRENDS). The comparison shows a fair agreement for the CO over NO x ratio on a country level, suggesting that the measured concentrations indeed dominantly originate from traffic-related emissions. On the other hand, the NO x over PM 10 and PM 10 over CO emission ratios estimated by TRENDS are over- and underestimated, respectively, as compared to the respective average measured ratio. These discrepancies may be attributed to the fact that modelled PM 10 emissions do not account for particles originating from non-exhaust sources. Modelled ratios have confirmed the observed weekday and year dependence of the ratios. A sensitivity analysis on the CO over NO x ratio has shown that small changes in the share of mileage allocated to urban driving by different vehicle categories result in significant changes in the emission ratio. Appropriate re-allocations of the urban shares, especially for diesel vehicles, enabled the calibration of the TRENDS model against air quality data collected at various monitoring sites in different countries. In order to further improve the consistency of the method, more information on ambient air PM 2.5 mass concentrations needs to be collected from the monitoring stations and PM 10 emission factors from primary non-exhaust sources (including gasoline-fuelled vehicles) need to be incorporated into TRENDS.

  12. A European research infrastructure for the aerosol study on a continental scale: EARLINET-ASOS

    NASA Astrophysics Data System (ADS)

    Amodeo, Aldo; Pappalardo, Gelsomina; Bösenberg, Jens; Ansmann, Albert; Apituley, Arnoud; Alados-Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoly; Comeron, Adolfo; Freudenthaler, Volker; Gustaffson, Ove; Hansen, Georg; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Simeonov, Valentin; Spinelli, Nicola; Stoyanov, Dimitar; Trickl, Thomas; Wiegner, Matthias

    2007-10-01

    The present knowledge of the aerosol distribution is not sufficient to estimate the aerosol influence on global and regional environmental conditions and climate. This observational gap can be closed by using advanced laser remote sensing. EARLINET (European Aerosol Research Lidar Network) is the first aerosol lidar network, established in 2000, with the main goal to provide a comprehensive, quantitative, and statistically significant database for the aerosol distribution on a continental scale. EARLINET is a coordinated network of European stations (25 at present) using advanced lidar methods for the vertical profiling of aerosols. The network activity is based on simultaneous scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. Further observations are performed to monitor special events. EARLINET-ASOS (Advanced Sustainable Observation System) is a five year EC Project started in 2006, based on the EARLINET infrastructure. The main objectives are: to make EARLINET a world-leading instrument for the observation of the 4-D aerosol distribution on continental scale; to foster aerosol-related process studies, validation of satellite sensors, model development and validation, assimilation of aerosol data into operational models; and to build a comprehensive climatology of the aerosol distribution.

  13. Monitored plutonium aerosols at a soil cleanup site on Johnston Atoll

    SciTech Connect

    Shinn, J.H.; Fry, C.O.; Johnson, J.S.

    1996-01-23

    Suspended plutonium in air was monitored for four periods near the operation of a stationary sorting system used to {open_quotes}mine{close_quotes} contaminated soil on Johnston Atoll. The monitoring periods were 14 October-14 November 1992, 20 October-15 November 1993, 16 August-3 November 1994, and 17 February-27 February 1995. Pairs of high volume air samplers were located at each of four locations of the process stream: the {open_quotes}spoils pile{close_quotes} that was the feedstock, the {open_quotes}plant area{close_quotes} near the hot soil gate of the sorter, the {open_quotes}clean pile{close_quotes} conveyer area where sorted clean soil was moved, and the {open_quotes}oversize soil{close_quotes} crushing area. These locations were monitored only during the working hours, while air monitoring was also done at an upwind, {open_quotes}background{close_quotes} area 24-hours per day. The median concentrations of Pu in {open_quotes}workplace{close_quotes} air (combined spoils pile, plant area, and clean pile sites) in 1992 was 397 aCi/m{sup 3} (15 {mu}Bq/m{sup 3}), but increased to median values of 23000 aCi/m{sup 3} (852 {mu}Bq/m{sup 3}) in August-November 1994 and 29800 aCi/m{sup 3} (1100 {mu}Bq/m{sup 3}) in February 1995. The highest median value at the worksites (29800 aCi/m{sup 3}) was more than 200 times lower than the regulatory level. The highest observed value was 84200 aCi/m{sup 3} at the spoils pile site, and this was more than 70 times lower than the regulatory level. The conclusion was that, in spite of the dusty environment, and the increased level of specific activity, we did not find that the soil processing posed any significant risk to workers during the observation periods 1992-1995.

  14. South Asian Aerosols: Observations and regional scale modeling perspectives from the Nepal Himalayas

    NASA Astrophysics Data System (ADS)

    Adhikary, B.; Bonasoni, P.; Cristofanelli, P.; Marinoni, A.; Duchi, R.; Calzolari, F.; Landi, T.; Putero, D.; Fuzzi, S.; Decesari, S.; Vuillermoz, E.; Stocchi, P.; Verza, G.; Kulkarni, S.

    2012-12-01

    SHARE (Stations at High Altitude Research on the Environment) project is promoted by Ev-K2-CNR and funded by the Ministry of Education, University and Research (MIUR) through the Italian National Research Council (CNR). Today SHARE monitoring stations span four continents around the globe. This paper will present the results from the SHARE-Nepal Climate Observatory-Pyramid (NCO-P) monitoring station located in the foothills of Mount Everest at an altitude of 5079 m.a.s.l. NCO-P is also one of the Global AtmosphericWatch stations of the World Meteorological Organization (WMO-GAW) and is the only currently operating GAW station in South Asia and the highest station of the UNEP ABC (Atmospheric Brown Clouds) project. Results obtained from the monitoring of aerosols and trace gases for multi years starting from 2006 will be presented. Seasonal distribution, composition, case studies and events related to high aerosol loadings will be discussed. A regional scale meteorological / chemical transport modeling projecthas been initiated to help put the measurements in perspective and provide decision support for policy makers. The paper will also describe themodeling framework,modeled case studiesillustrating sectoral and regional contribution to the aerosol loading over the Himalayan region will be presented.

  15. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2013-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and

  16. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2011-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and

  17. Dynamic rating curve assessment in hydrometric stations and calculation of the associated uncertainties : Quality and monitoring indicators

    NASA Astrophysics Data System (ADS)

    Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine

    2013-04-01

    Whether we talk about safety reasons, energy production or regulation, water resources management is one of EDF's (French hydropower company) main concerns. To meet these needs, since the fifties EDF-DTG operates a hydrometric network that includes more than 350 hydrometric stations. The data collected allow real time monitoring of rivers (hydro meteorological forecasts at points of interests), as well as hydrological studies and the sizing of structures. Ensuring the quality of stream flow data is a priority. A rating curve is an indirect method of estimating the discharge in rivers based on water level measurements. The value of discharge obtained thanks to the rating curve is not entirely accurate due to the constant changes of the river bed morphology, to the precision of the gaugings (direct and punctual discharge measurements) and to the quality of the tracing. As time goes on, the uncertainty of the estimated discharge from a rating curve « gets older » and increases: therefore the final level of uncertainty remains particularly difficult to assess. Moreover, the current EDF capacity to produce a rating curve is not suited to the frequency of change of the stage-discharge relationship. The actual method does not take into consideration the variation of the flow conditions and the modifications of the river bed which occur due to natural processes such as erosion, sedimentation and seasonal vegetation growth. In order to get the most accurate stream flow data and to improve their reliability, this study undertakes an original « dynamic» method to compute rating curves based on historical gaugings from a hydrometric station. A curve is computed for each new gauging and a model of uncertainty is adjusted for each of them. The model of uncertainty takes into account the inaccuracies in the measurement of the water height, the quality of the tracing, the uncertainty of the gaugings and the aging of the confidence intervals calculated with a variographic

  18. The Space Station neutral gas environment and the concomitant requirements for monitoring

    NASA Technical Reports Server (NTRS)

    Carignan, George

    1988-01-01

    At 340 km, for typical conditions, the neutral atmospheric density is several times 10E8/cc and is thus more abundant than the ionized component by several factors of 10. At that altitude, the principal series is atomic oxygen with 10 percent N2, and 1 percent He, and trace amounts of O2, H, N, NO, and Ar. The constituent densities are highly variable with local time, latitude, and geophysical indices. The physical interaction with surfaces at orbital velocity leads to large buildup of density on forward faces and great depletions in the wakes of objects. Chemical reactions lead to major modifications in constituent densities as in the case of the conversion of most colliding oxygen atoms to oxygen bearing molecules. The neutral environment about an orbiting body is thus a complex product of many variables even without a source of neutral contaminants. The addition of fluxes of gases emanating from the orbiting vehicle, as will be the case for the Space Station, with the associated physical and chemical interactions adds another level of complexity to the character of the environment and mandates a sophisticated measurement capability if the neutral environment is to be quantitatively characterized.

  19. Monitoring atmospheric nitrous oxide background concentrations at Zhongshan Station, east Antarctica.

    PubMed

    Ye, Wenjuan; Bian, Lingen; Wang, Can; Zhu, Renbin; Zheng, Xiangdong; Ding, Minghu

    2016-09-01

    At present, continuous observation data for atmospheric nitrous oxide (N2O) concentrations are still lacking, especially in east Antarctica. In this paper, nitrous oxide background concentrations were measured at Zhongshan Station (69°22'25″S, 76°22'14″E), east Antarctica during the period of 2008-2012, and their interannual and seasonal characteristics were analyzed and discussed. The mean N2O concentration was 321.9nL/L with the range of 320.5-324.8nL/L during the five years, and it has been increasing at a rate of 0.29% year(-1). Atmospheric N2O concentrations showed a strong seasonal fluctuation during these five years. The concentrations appeared to follow a downtrend from spring to autumn, and then increased in winter. Generally the highest concentrations occurred in spring. This trend was very similar to that observed at other global observation sites. The overall N2O concentration at the selected global sites showed an increasing annual trend, and the mean N2O concentration in the Northern Hemisphere was slightly higher than that in the Southern Hemisphere. Our result could be representative of atmospheric N2O background levels at the global scale. This study provided valuable data for atmospheric N2O concentrations in east Antarctica, which is important to study on the relationships between N2O emissions and climate change. PMID:27593286

  20. Establishing an effective dose equivalent monitoring program for a commercial nuclear power station

    NASA Astrophysics Data System (ADS)

    Thompson, Barbara Jane

    The purpose of this thesis is to determine whether monitoring personnel with multiple dosimeter badges to determine effective dose equivalent (EDE) is both acceptable to the Nuclear Regulatory Commission (NRC) and practical for the nuclear power industry. Until now, most nuclear power plants have used a single dosimeter or occasionally multiple dosimeters to monitor the "deep dose equivalent (DDE)" as defined by the International Commission on Radiological Units (ICRU). The measurement of EDE, to replace DDE, is now deemed by international and regulatory agencies to better approximate a worker's dose related to long-term risks of occupational radiation exposure. The definition of DDE, and the formulation of EDE for use as a new indicator of occupational exposure, are presented in this thesis. Radiation exposure measurements using multiple dosimeters on each worker for certain tasks were collected for this thesis on workers at a Dominion/Virginia Company nuclear power plant. These multiple dosimeter measurements have been examined to determine how such a new personnel monitoring system compares to the former one at the Dominion plant, in which only one dosimeter reading was used predominately to calculated deep dose equivalent. This is based on the assumption that most workers were exposed to uniform radiation fields and that the single dosimeter reading was representative of the highest average exposure for the worker's task. These multiple dosimetry measurements show that it is both feasible and advantageous to provide such dosimetry in situations where exposures may be non-uniform and significant enough to approach yearly exposure limits in a single day, such as in the tasks required during refueling outages.

  1. Telemycology - A novel approach to monitoring environmental microbial load in Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mishra, S. K.; Brown, H. D.; Taylor, R. D.; Pierson, D. L.

    1989-01-01

    The currently available methods for monitoring environmental microbial load call for the cultivation of microbes on laboratory media, a time- and material-consuming task that is potentially hazardous. Telemycology proposed in this communication is designed to eliminate the need for growing microbes, especially fungi, on board the spacecraft and to shift the bulk of the work-load to the ground-based Microbiology Laboratory. The system is based on the principle of trapping microbial propagules on a membrane filter, treating it with a microbe-enhancing reagent, and examining under a microscope down-linked to the central laboratory equipped with a synchronized televideo, telerobotics, and image banking system.

  2. Trends of NOx, NO2 and O3 concentrations at three different types of air quality monitoring stations in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Mavroidis, I.; Ilia, M.

    2012-12-01

    This work presents a systematic analysis and evaluation of the historic and current levels of atmospheric pollution in the Athens metropolitan region, regarding nitrogen oxides (NOx = NO + NO2), ozone (O3) and the NO2/NOx and NO/NO2 concentration ratios. Hourly, daily, monthly, seasonal and annual pollutant variations are examined and compared, using the results of concentration time series from three different stations of the national network for air pollution monitoring, one urban-traffic, one urban-background and one suburban-background. Concentration data are also related to meteorological parameters. The results show that the traffic affected station of Patission Street presents the higher NOx values and the lower concentrations of O3, while it is the station with the highest number of NO2 limit exceedances. The monitoring data suggest, inter alia, that there is a change in the behaviour of the suburban-background station of Liossia at about year 2000, indicating that the exact location of this station may need to be reconsidered. Comparison of NOx concentrations in Athens with concentrations in urban areas of other countries reveal that the Patission urban-traffic station records very high NOx concentrations, while remarkably high is the ratio of NO2 concentrations recorded at the urban-traffic vs. the urban-background station in Athens, indicating the overarching role of vehicles and traffic congestion on NO2 formation. The NO2/NOx ratio in the urban-traffic station appears to be almost constant with time, while it has been increasing in other urban areas, such as London and Seoul, suggesting an increased effect of primary NO2 in these areas. Diesel passenger cars were only recently allowed in Athens and, therefore, NO2 trends should be carefully monitored since a possible increase in primary NO2 may affect compliance with NO2 air quality standards.

  3. Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols

    PubMed Central

    Birch, M. Eileen; Ku, Bon-Ki; Evans, Douglas E.; Ruda-Eberenz, Toni A.

    2015-01-01

    Production of carbon nanofibers and nanotubes (CNFs/CNTs) and their composite products is increasing globally. High volume production may increase the exposure risks for workers who handle these materials. Though health effects data for CNFs/CNTs are limited, some studies raise serious health concerns. Given the uncertainty about their potential hazards, there is an immediate need for toxicity data and field studies to assess exposure to CNFs/CNTs. An extensive study was conducted at a facility that manufactures and processes CNFs. Filter, sorbent, cascade impactor, bulk, and microscopy samples, combined with direct-reading instruments, provided complementary information on air contaminants. Samples were analyzed for organic carbon (OC) and elemental carbon (EC), metals, and polycyclic aromatic hydrocarbons (PAHs), with EC as a measure of CNFs. Transmission electron microscopy with energy-dispersive X-ray spectroscopy also was applied. Fine/ultrafine iron-rich soot, PAHs, and carbon monoxide were production byproducts. Direct-reading instrument results were reported previously [Evans DE et al. (Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 2010;54:514–31.)] Results for time-integrated samples are reported as companion papers in this Issue. OC and EC, metals, and microscopy results are reported here, in Part I, while results for PAHs are reported in Part II [Birch ME. (Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part II: Polycyclic Aromatic Hydrocarbons. Ann. Occup. Hyg 2011; 55: 1037–47.)]. Respirable EC area concentrations inside the facility were about 6–68 times higher than outdoors, while personal breathing zone samples were up to 170 times higher. PMID:21965464

  4. Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Boyle, Shannon R.; Hall, Patrice; Oddy, Donna M.; Hensley, Melissa A.; Stolen, Eric D.; Duncan, Brean W.

    1998-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition.

  5. Subsidence in geopressured geothermal resource test sites: Monitoring assessment combining geodetic leveling and tidal control stations in southwestern Louisiana

    SciTech Connect

    Ramsey, K.E.; John, C.J. ); Trahan, D.B. )

    1989-09-01

    The Louisiana Geological Survey has an ongoing environmental monitoring program, sponsored by the US Department of Energy, at geopressured geothermal prospect well sites in southwestern Louisiana. This paper presents the results from monitoring subsidence at some of these reservoir sites. Over 1,000 km of first-order surveys and data from several NOAA and US Army Corps of Engineers tidal control stations were examined to determine regional trends. Tidal records were used to examine the history of sea level with respect to the land surface. Relative rates of land subsidence can be determined by comparing rates of water level rise over time with rates of rise from a stable craton. Regional subsidence ranges from 3 to 5 mm/year. First-order bench-mark networks established at Parcperdue, Sweet Lake, and Gladys McCall prospects were used to determine local trends of subsidence. Repeated leveling surveys before, during, and after fluid withdrawal from Parcperdue and Gladys McCall indicate that an increase in subsidence was observed during the drilling of the wells. Data suggest subsidence was possibly due to surface loading by heavy drilling equipment. Historical leveling in the Sweet Lake region indicates differential compaction between sediments as a possible cause for subsidence. However, in all cases, virtually no increase in subsidence was observed during and after times of fluid withdrawal.

  6. Analysis of data from sensitive U.S. monitoring stations for the Fukushima Dai-ichi nuclear reactor accident.

    PubMed

    Biegalski, S R; Bowyer, T W; Eslinger, P W; Friese, J A; Greenwood, L R; Haas, D A; Hayes, J C; Hoffman, I; Keillor, M; Miley, H S; Moring, M

    2012-12-01

    The March 11, 2011 9.0 magnitude undersea megathrust earthquake off the coast of Japan and subsequent tsunami waves triggered a major nuclear event at the Fukushima Dai-ichi nuclear power station. At the time of the event, units 1, 2, and 3 were operating and units 4, 5, and 6 were in a shutdown condition for maintenance. Loss of cooling capacity to the plants along with structural damage caused by the earthquake and tsunami resulted in a breach of the nuclear fuel integrity and release of radioactive fission products to the environment. Fission products started to arrive in the United States via atmospheric transport on March 15, 2011 and peaked by March 23, 2011. Atmospheric activity concentrations of (131)I reached levels of 3.0×10(-2) Bqm(-3) in Melbourne, FL. The noble gas (133)Xe reached atmospheric activity concentrations in Ashland, KS of 17 Bqm(-3). While these levels are not health concerns, they were well above the detection capability of the radionuclide monitoring systems within the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty. PMID:22137556

  7. Analysis of data from sensitive U.S. monitoring stations for the Fukushima Dai-ichi nuclear reactor accident

    SciTech Connect

    Biegalski, Steven R.; Bowyer, Ted W.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Hoffman, Ian; Keillor, Martin E.; Miley, Harry S.; Morin, Marc P.

    2012-12-01

    The March 11, 2011 9.0 magnitude undersea megathrust earthquake off the coast of Japan and subsequent tsunami waves triggered a major nuclear event at the Fukushima Dai-ichi nuclear power station. At the time of the event, units 1, 2, and 3 were operating and units 4, 5, and 6 were in a shutdown condition for maintenance. Loss of cooling capacity to the plants along with structural damage caused by the earthquake and tsunami resulted in a breach of the nuclear fuel integrity and release of radioactive fission products to the environment. Fission products started to arrive in the United States via atmospheric transport on March 15, 2011 and peaked by March 23, 2011. Atmospheric activity concentrations of 131I reached levels of 3.0 * 10*2 Bqm*3 in Melbourne, FL. The noble gas 133Xe reached atmospheric activity concentrations in Ashland, KS of 17 Bqm*3. While these levels are not health concerns, they were well above the detection capability of the radionuclide monitoring systems within the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty.

  8. Comparison of the SidePak personal monitor with the Aerosol Particle Sizer (APS).

    PubMed

    Sánchez Jiménez, Araceli; van Tongeren, Martie; Galea, Karen S; Steinsvåg, Kjersti; MacCalman, Laura; Cherrie, John W

    2011-06-01

    The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 μm, 2.5 μm and 1 μm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist. PMID:21528134

  9. Seasonal cycle and source analyses of aerosol optical properties in a semi-urban environment at Puijo station in Eastern Finland

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Arola, A.; Komppula, M.; Portin, H.; Tiitta, P.; Miettinen, P.; Romakkaniemi, S.; Laaksonen, A.; Lehtinen, K. E. J.

    2012-02-01

    We introduce a four-year (2006-2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose averages over this period were 11.1 Mm-1 (at 550 nm), 1.5 Mm-1 (at 670 nm), 0.13, 1.9, and 0.83, respectively. The scattering coefficient peaked in the spring and autumn, being 2-4 times those in the summer and winter. An exception was the summer of 2010, when the the scattering coefficient was elevated to ~300 Mm-1 by the plumes from forest fires in Russia. The absorption coefficient peaked in the winter with values of 2-3 times those in the summer. The single scattering albedo was lowest in the winter when more biomass burning derived, soot-containing aerosols were present. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Changes in the single scattering albedo in the morning and afternoon in the summertime were linked to the increased traffic density at these hours. The scattering and absorption coefficients were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics. What happens to the aerosol optical properties during a cloud event when the air masses come from different directions with different local sources, is under a more detailed inspection

  10. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSm) and a multi-wavelength Aethalometer

    NASA Astrophysics Data System (ADS)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2014-09-01

    Aerosol Mass Spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaign. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artefact-free chemical information but for low-cost, and to perform robust monitoring over long-term period. When deployed in parallel with real-time Black Carbon (BC) measurements, the combined dataset allows for a quasi-comprehensive description of the whole PM1 fraction in near real-time. Here we present a 2 year long ACSM and BC datasets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite being representative of background PM levels of the region of Paris. This large dataset shows intense and time limited (few hours) pollution events observed during wintertime in the region of Paris pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2 year dataset for the major PM1 constituents (organic matter, nitrate, sulphate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions which information are mandatory for efficient mitigation strategies. While ammonium sulphate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but less expected, it also exhibits a significant contribution of regional and local emissions. Contribution of regional background OA is significant in spring and summer while a more pronounced local origin is evidenced during wintertime which pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main parameters controlling their temporal

  11. Expert Water Quality Panel Review of Responses to the NASA Request for Information for the International Space Station On-Board Environmental Monitoring System

    NASA Technical Reports Server (NTRS)

    Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II

    2005-01-01

    On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.

  12. Efficient method for optimal placing of water quality monitoring stations for an ungauged basin.

    PubMed

    Lee, Changhyoun; Paik, Kyungrock; Yoo, Do Guen; Kim, Joong Hoon

    2014-01-01

    A core problem in monitoring water quality of a river basin is identifying an optimal positioning of a limited number of water-sampling sites. Various optimality criteria have been suggested for this selection process in earlier studies. However, the search for sets of sampling sites that satisfy such criteria poses a challenging optimization problem, especially for a large basin. Here, we show that for particular types of objective functions, the optimization procedure can be dramatically simplified via an analogy with the formulation of Shannon entropy. On this basis, we propose an efficient algorithm that can easily determine the optimal location of water quality sampling sites in a river network. The proposed algorithm can be used standalone or in conjunction with a heuristic optimization algorithm such as a genetic algorithm. For the latter, the proposed algorithm filters only competitive candidates and makes a contribution to reducing the problem size significantly. The superior performance of the proposed method is demonstrated via its application to actual river networks examined in earlier studies, in which the proposed method determines more optimal solutions in a shorter computation time. The idea presented in this study can also be applied to other problems in which the objective function can be formulated in a similar functional form. PMID:24269932

  13. Space Station Freedom biomedical monitoring and countermeasures: Biomedical facility hardware catalog

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This hardware catalog covers that hardware proposed under the Biomedical Monitoring and Countermeasures Development Program supported by the Johnson Space Center. The hardware items are listed separately by item, and are in alphabetical order. Each hardware item specification consists of four pages. The first page describes background information with an illustration, definition and a history/design status. The second page identifies the general specifications, performance, rack interface requirements, problems, issues, concerns, physical description, and functional description. The level of hardware design reliability is also identified under the maintainability and reliability category. The third page specifies the mechanical design guidelines and assumptions. Described are the material types and weights, modules, and construction methods. Also described is an estimation of percentage of construction which utilizes a particular method, and the percentage of required new mechanical design is documented. The fourth page analyzes the electronics, the scope of design effort, and the software requirements. Electronics are described by percentages of component types and new design. The design effort, as well as, the software requirements are identified and categorized.

  14. A Review of Monitoring Technologies for Trace Air Contaminants in the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.; McCoy, J. Torin

    2004-01-01

    NASA issued a Request For Information (RFI) to identify technologies that might be available to monitor a list of air pollutants in the ISS atmosphere. After NASA received responses to the RFI, an expert panel was assembled to hear presentations from 9 technology proponents. The goal of the panel was to identify technologies that might be suitable for replacement of the current Volatile Organics Analyzer (VOA) within several years. The panelists consisted of 8 experts in analytical chemistry without any links to NASA and 7 people with specific expertise because of their roles in NASA programs. Each technology was scored using a tool that enabled rating of many specific aspects of the technology on a 4-point system. The maturity of the technologies ranged from well-tested instrument packages that had been designed for space applications and were nearly ready for flight to technologies that were untested and speculative in nature. All but one technology involved the use of gas chromatography for separation, and there were various detectors proposed including several mass spectrometers and ion mobility spectrometers. In general there was a tradeoff between large systems with considerable capability to address the target list and smaller systems that had much more limited capability.

  15. Evaluation of 25 y of environmental monitoring data around Madras Atomic Power Station (MAPS), Kalpakkam, India.

    PubMed

    Rajaram, S; Brindha, J Thulasi; Sreedevi, K R; Manu, Anitha; Thilakavathi, A; Ramkumar, S; Santhanakrishnan, V; Balagurunathan, M R; Jesan, T; Kannan, V; Hegde, A G

    2010-12-01

    The Environmental Survey Laboratory at Kalpakkam, India carries out elaborate monitoring programme involving atmospheric, terrestrial and aquatic samples for radioactivity to evaluate the impact of operating two pressurised heavy water reactors. This paper presents the evaluation of 25 y (1983-2008) data. Statistical analysis of the environmental data for different radionuclides showed that the data best fits log-normal distribution. The data analysed showed that fission products such as (137)Cs, (90)Sr and (131)I were due to global fallout only. A ratio of 0.2 was obtained for (90)Sr to (137)Cs in air filter samples, only during Chernobyl accident period. The transfer factor of (137)Cs and (90)Sr for rice was computed to be 0.23 and 0.03 and vegetables 0.25 and 0.10, respectively. Activation products (3)H and (41)Ar are the only radionuclides that are related to MAPS operation. A strong correlation (r = 0.9) was observed between (3)H activity in air and (3)H discharged to the atmosphere. A similar correlation (r = 0.8) was observed in (3)H concentration in seawater and (3)H discharged in the liquid waste. The annual internal dose due to (3)H and annual external dose due to (41)Ar evaluated in the last 25 y show that the members of the public received less than 2 % of the dose limit (1 mSv y(-1)) set by ICRP 72. PMID:20829204

  16. Development of a Portable Oxygen Monitoring System for Operations in the International Space Station Airlock

    NASA Technical Reports Server (NTRS)

    Graf, John

    2009-01-01

    NASA is currently engaged in an activity to facilitate effective operations on the International Space Station (ISS) after the Space Shuttle retires. Currently, the Space Shuttle delivers crew and cargo to and from ISS. The Space Shuttle provides the only large scale method of hardware return from ISS to the ground. Hardware that needs to be periodically repaired, refurbished, or recalibrated must come back from ISS on the Shuttle. One example of NASA flight hardware that is used on ISS and refurbished on the ground is the Compound Specific Analyzer for Oxygen (CSA-O2). The CSA-O2 is an electrochemical sensor that is used on orbit for about 12 months (depending on Shuttle launch schedules), then returned to the ground for sensor replacement. The shuttle is scheduled to retire in 2010, and the ISS is scheduled to operate until 2016. NASA needs a hand held sensor that measures oxygen in the ISS environment and has a 5-10 year service life. After conducting a survey of oxygen sensor systems, NASA selected a Tunable Diode Laser Absorption Spectrometer (TDLAS) as the method of measurement that best addresses the needs for ISS. These systems are compact, meet ISS accuracy requirements, and because they use spectroscopic techniques, the sensors are not consumed or altered after making a measurement. TDLAS systems have service life ratings of 5-10 years, based on the lifetime of the laser. NASA is engaged in modifying a commercially available sensor, the Vaisala OMT 355, for the ISS application. The Vaisala OMT 355 requires three significant modifications to meet ISS needs. The commercial sensor uses a wall mount power supply, and the ISS sensor needs to use a rechargeable battery as its source of power. The commercial sensor has a pressure correction setpoint: the sensor can be adjusted to operate at reduced pressure conditions, but the sensor does not self correct dynamically and automatically. The ISS sensor needs to operate in the airlock, and make accurate

  17. Monitoring drought using spi and z-score for different time scales for Shiraz Station in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.; Amin, S.; Nazemosadat, S. M. J.

    2003-04-01

    Standardized Precipitation Index (SPI) is a probability index for monitoring drought. This drought index was recently developed to detect drought and wet periods for different time scales in various regions of the world. By precipitation data transform different time scale could be made and Z-Score of the new data will be calculated to compare categories of the drought severity for a specified region. The form of Probability Density Function (PDF) which defined SPI is a very important factor because applying different PDFs will return different SPI values for the same precipitation data. In this research, thirty four years (1967 to 2001) monthly precipitation data of the agricultural weather station of Shiraz, was used to calculate SPI and Z-Score values for different time scales: 1, 3, 6, 9, 12, 24 and 36 months. The Kolmogorov-Smirinov (K-S) test was used to check the goodness of fit of every data set. The K-S statistical results showed that the data fitted Pearson type III and gamma probability density when the time scales were less than 12 months, in other cases the normal probability density best fits precipitation data and when the normal probability density was used SPI and Z-Score were in a close agreement. Therefore, the corresponding conclusion is that when the time scale is increasing a closer agreement between SPI and Z-Score of the data could be achieved. Time series plots of SPIs indicated that the time scales less than 12 months had enormous fluctuations such that identifying drought and wet periods were not so clear. However, plots of 24-months SPI and 36-months SPI plots obviously could identify drought and wet periods of the region clearly. The duration, attenuation and intensity for any particular month during our historical records were time scale depended. The results of this study also showed that long-term drought of early 1960s and last part of 1970s impacted Shiraz station. Based on our research results we recommend the agriculturist use

  18. HOUSTON AEROSOL CHARACTERIZATION STUDY

    EPA Science Inventory

    An intensive field study of ambient aerosols was conducted in Houston between September 14 and October 14, 1978. Measurements at 12 sites were made using (1) two relocatable monitoring systems instrumented for aerosol and gaseous pollutants, (2) a network of high volume samplers ...

  19. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  20. Monitoring surface-water quality in Arizona: the fixed-station network

    USGS Publications Warehouse

    Tadayon, Saeid

    2000-01-01

    Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).

  1. Hourly atmospheric concentrations of Cs-134 and Cs-137 at monitoring stations for suspended particulate matter in and south of Fukushima after the Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2013-04-01

    No data has been found of continuous monitoring of radioactive materials in the atmosphere in Fukushima area after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident on March 11, 2011, although it greatly contributes to accurate evaluation of the internal exposure dose, to reconstruction of emission time series of released radionuclides, and to validation of numerical simulations by atmospheric transport models. Then, we have challenged to retrieve the radioactivity in atmospheric aerosols collected every hour on a filter tape of Suspended Particulate Matter (SPM) monitoring system with beta ray attenuation method used at air pollution monitoring stations in east Japan. A test measurement for hourly atmospheric concentrations of Cs-134 and Cs-137 was successfully performed with a Ge detector for the used filter tapes during March 15-23, 2011, at three stations in Fukushima City 60 km northwest of the FD1NPP and four stations in southwest Ibaraki prefecture more than 150 km southwest of the FD1NPP. The data in Fukushima City revealed high Cs-137 concentrations of 10-30 Bq m-3 from the evening of March 15 to the early morning of March 16, when a large amount of radioactive materials was simultaneously deposited on the land surface by precipitation according to the measurement of radiation dose rate. Higher Cs-137 concentrations of 10-50 Bq m-3 were also found from the afternoon of March 20 to the morning of March 21, and which could not be detected by the radiation dose rate due to no precipitation. In contrast, much higher concentrations with the maximum of 320 Bq m-3 in southwest Ibaraki than in Fukushima City were found on the morning of March 15 and 21 under strong temperature inversion near the surface. The polluted air masses with high radioactive materials were passed away within a few hours as a plume in southwest Ibaraki, while the high Cs-137 concentrations lasted for 10-16 hours in Fukushima City where the polluted air masses after their transport

  2. Modern state of cycle chemistry monitoring systems at thermal power stations according to the experience gained at the moscow power engineering institute and Element research and production center

    NASA Astrophysics Data System (ADS)

    Egoshina, O. V.; Voronov, V. N.; Nazarenko, M. P.

    2014-03-01

    Information about the development history of cycle chemistry monitoring systems is presented. The first pilot monitoring system at the Ryazan district power station is briefly described including the characteristics of the analyzers used in the system. The main principles for constructing monitoring systems are formulated. The characteristics of the monitoring systems that were designed and put in operation in the period from 2008 to 2011 are given together with a list of instruments and sample preparation devices used in them. The main advantages of modern analyzers used for chemical monitoring purposes are pointed out. Some problems affecting the operation of monitoring system equipment in the startup and transient operating modes of main power-generating equipment are specially mentioned.

  3. In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; Hoffmann, T.

    2013-11-01

    The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland, is presented. The focus lies on online measurements of organic acids, which were achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by aerosol mass spectrometry (AMS) measurements and Fourier transform infrared spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas-phase measurements solely and measuring the sum of gas and particle phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2 mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene-derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol-1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia

  4. In-situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; Hoffmann, T.

    2013-07-01

    The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland is presented. The focus lies on online measurements of organic acids, which was achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by Aerosol Mass Spectrometry (AMS) measurements and Fourier-Transform Infrared Spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas phase measurements solely and measuring the sum of gas- and particle-phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2-mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol-1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia

  5. Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques.

    PubMed

    Smichowski, Patricia; Gómez, Dario R; Dawidowski, Laura E; Giné, María Fernanda; Bellato, Ana Claudia Sánchez; Reich, Silvia L

    2004-04-01

    A study was undertaken, within the framework of a 3 years national project, to assess the content of 13 elements in airborne particulate matter collected in representative zones of the metropolitan area of Buenos Aires. The sampling strategy followed consisted in collecting simultaneously 67 samples of PM10 particulate matter in 9 sampling sites covering an area of about 30 km2 during one week. The collection was performed on ash-free fibre-glass filters using high volume samplers. A combination of aqua regia and perchloric acid was used for leaching metals from filters. Key elements, namely Al, Ca, Cu, Fe, Mn, Mo, Ni, Pb, S, Sb, Sn, Zn and Zr, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at micro g g(-1) and ng g(-1) levels. Analyte concentration varied from 130 ng g(-1)(Mo) to over 30%(Ca). Multivariate statistical analysis was performed on the data set including the measured elemental compositions for the monitored period. The atmospheric concentration found for Pb confirms the decreasing levels of this element since the introduction of unleaded gasoline in 1995: 88 ng m(-3)(2001) < 220 ng m(-3)(1997) < 3900 ng m(-3)(1994). The average S concentration above 3 microg m(-3) is somehow unexpectedly high for Buenos Aires since the relatively low S content of liquid fuels and the massive usage of natural gas imply low emissions of this element from combustion activities. To the best of our knowledge, S concentrations are reported for the first time for this city. PMID:15054536

  6. Water Quality Signal of Animal Agriculture at USGS Monitoring Stations is Related to Animal Confinement and/or Farm Size

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2007-12-01

    US animal agriculture has undergone major structural changes over the past two decades, with the total number of livestock producers declining dramatically and the average size of the remaining operations increasing substantially. The result has been a pronounced trend towards greater spatial concentration and confinement of livestock. The change raises important questions about the water quality effects of animal agriculture in regions where livestock waste production has become more intensive but recovery, handling, and application of animal wastes to cropland more systematized. In previous research, we developed three separate national-level SPARROW models of surface water contaminants (total nitrogen, total phosphorus, and fecal coliform bacteria). Based on USGS monitoring and ancillary data from more than 400 US stream and river basins, the models include point and nonpoint sources of contaminants, land-to-water transport factors, and in-stream loss processes; parameter estimation is by non-linear regression. In this study we report on a pattern in the statistical results for the three models: The source coefficients (quantity of contaminant delivered to streams per unit of contaminant input) for unconfined animals are consistently larger and more statistically significant than those for confined animals. The implicit meaning is that something associated with waste management on large farms and/or animal confinement (e.g. retention period, recovery of manure for application to crops and subsequent crop uptake, and/or better waste treatment) reduces the average water quality signal of this scale of animal agriculture (per unit of manure input) to barely detectable at downstream monitoring stations, while the water quality signal from unconfined animal agriculture is more clear. The county-level data for confined and unconfined manure inputs (defined primarily by farm size) are from the USDA, and are spatially distributed in the model GIS by 1-km land use data

  7. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-11-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2

  8. Lidar and Laser Technology for NASA'S Cloud-Aerosol Transport System (CATS) Payload on The International Space Station (JEM-EF)

    NASA Astrophysics Data System (ADS)

    Storm, Mark; Stevenson, Gary; Hovis, Floyd; Gavert, William; Dang, Xung; Darab, Abe; Chuang, Ti; Burns, Patrick

    2016-06-01

    This paper describes the ISS lidar technology provided by Fibertek, Inc. in support of the NASA GSFC CATS mission and provides an assessment of the in-flight systems performance and lessons learned. During February the systems successfully operated in space for more than 300 hours using 25 W average power lasers and photon counting of aerosol atmospheric returns.

  9. The optical and physical properties of atmospheric aerosols over the Indian Antarctic stations during southern hemispheric summer of the International Polar Year 2007-2008

    NASA Astrophysics Data System (ADS)

    Chaubey, Jai Prakash; Krishna Moorthy, K.; Babu, S. Suresh; Nair, Vijayakumar S.

    2011-01-01

    The properties of background aerosols and their dependence on meteorological, geographical and human influence are examined using measured spectral aerosol optical depth (AOD), total mass concentration (MT) and derived number size distribution (NSD) over two distinct coastal locations of Antarctica; Maitri (70° S, 12° E, 123 m m.s.l.) and Larsemann Hills (LH; 69° S, 77° E, 48 m m.s.l.) during southern hemispheric summer of 2007-2008 as a part of the 27th Indian Scientific Expedition to Antarctica (ISEA) during International Polar Year (IPY). Our investigations showed comparable values for the mean columnar AOD at 500 nm over Maitri (0.034±0.005) and LH (0.032±0.006) indicating good spatial homogeneity in the columnar aerosol properties over the coastal Antarctica. Estimation of Angstrom exponent α showed accumulation mode dominance at Maitri (α~1.2±0.3) and coarse mode dominance at LH (0.7±0.2). On the other hand, mass concentration (MT) of ambient aerosols showed relatively high values (≈8.25±2.87 μg m-3) at Maitri in comparison to LH (6.03±1.33 μg m-3).

  10. Aerosol measurements at the South Pole

    NASA Astrophysics Data System (ADS)

    Bodhaine, Barry A.; Deluisi, John J.; Harris, Joyce M.; Houmere, Pamela; Bauman, Sene

    1986-09-01

    Some results are given regarding the aerosol measurement program conducted by the NOAA at their atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. A time series of sodium, chlorine, and sulfur concentrations shows that the sulfur and CN records are similar and that the sodium, chlorine, and extinction coefficient records are similar. Large episodes of sodium are measured at the ground in the austral winter and are apparently caused by large-scale warming and weakening of the surface temperature inversion. The CN data show an annual cycle with a maximum exceeding 100 per cubic centimeter in the austral summer and a minimum of about 10 per cubic centimeter in the winter. The extinction coefficient data show an anual cycle markedly different from that of CN with a maximum in late winter, a secondary maximum in summer, and a minimum in May.

  11. Size segregated mass concentration and size distribution of near surface aerosols over a tropical Indian semi-arid station, Anantapur: Impact of long range transport.

    PubMed

    Raghavendra Kumar, K; Narasimhulu, K; Balakrishnaiah, G; Suresh Kumar Reddy, B; Rama Gopal, K; Reddy, R R; Moorthy, K Krishna; Suresh Babu, S

    2009-10-15

    Regular measurements of size segregated as well as total mass concentration and size distribution of near surface composite aerosols, made using a ten-channel Quartz Crystal Microbalance (QCM) cascade impactor during the period of September 2007-May 2008 are used to study the aerosol characteristics in association with the synoptic meteorology. The total mass concentration varied from 59.70+/-1.48 to 41.40+/-1.72 microg m(-3), out of which accumulation mode dominated by approximately 50%. On a synoptic scale, aerosol mass concentration in the accumulation (submicron) mode gradually increased from an average low value of approximately 26.92+/-1.53 microg m(-3) during the post monsoon season (September-November) to approximately 34.95+/-1.32 microg m(-3) during winter (December-February) and reaching a peak value of approximately 43.56+/-1.42 microg m(-3) during the summer season (March-May). On the contrary, mass concentration of aerosols in the coarse (supermicron) mode increased from approximately 9.23+/-1.25 microg m(-3)during post monsoon season to reach a comparatively high value of approximately 25.89+/-1.95 microg m(-3) during dry winter months and a low value of approximately 8.07+/-0.76 microg m(-3) during the summer season. Effective radius, a parameter important in determining optical (scattering) properties of aerosol size distribution, varied between 0.104+/-0.08 microm and 0.167+/-0.06 microm with a mean value of 0.143+/-0.01 microm. The fine mode is highly reduced during the post monsoon period and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. It can be seen that among the two parameters measured, correlation of total mass concentration with air temperature is positive (R(2)=0.82) compared with relative humidity (RH) (R(2)=0.75). PMID:19640569

  12. The NOAA-NASA OMI/GOME-2 Near-Real-Time Monitoring System of Volcanic SO2 and Aerosol Clouds

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Schroeder, W.; Krueger, A. J.; Yang, K.; Carn, S. A.; Krotkov, N. A.; Guffanti, M.; Levelt, P.

    2009-12-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite and the Global Ozone Monitoring Experiment-2 (GOME-2) instrument on the Metop-A satellite allow measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 μm. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh volcanic eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. When detected in Near Real-Time (NRT) it can be used as aviation alerts to the Federal Aviation Administration (FAA) with reduced false alarm ratios and permit more robust detection and tracking of volcanic clouds. NRT observations of SO2 and volcanic ash using UV measurements (OMI and GOME-2) and well as IR measurements can be incorporated into data products compatible with Decision Support Tools (DSTs) in use at Volcanic Ash Advisory Centers (VAACs) in Washington and Anchorage, and the USGS Volcano Observatories. In this presentation we show the latest NASA and NOAA Office of Satellite Data Processing and Distribution (OSDPD) developments of an online NRT image and data product distribution system. The system generates eruption alerts, NRT global composite images and SO2, Aerosol Index and Cloud Reflectivity images for 28 volcano regions, as well as up to 15 days of digital data files in McIDAS, NetCDF, GeoTIFF and gif formats for the OMI and GOME-2 instruments. Products are infused into DSTs including the Volcanic Ash Coordination Tool (VACT), under development by the NOAA Forecast Systems Laboratory and the FAA’s Oceanic Weather Product Development Team (OWPDT), to monitor and track, drifting volcanic clouds and aerosol index.

  13. The AERONET network: atmospheric aerosol research in Ukraine

    NASA Astrophysics Data System (ADS)

    Milinevsky, G. P.

    2013-12-01

    The AERONET network is one of the most developed ground-based networks for aerosol monitoring. Solar radiance extinction, aureole brightness and sky light polarization measurements are used by the AERONET inversion retrieval algorithm to derive a variety of aerosol particle properties and parameters that are important for estimations of aerosol influences on air quality and climate change. In 2008 the AERONET has been extended in Ukraine: in addition to Sevastopol site (operated since 2006) the sunphotometer CIMEL CE318-2 has been installed at Kyiv site. New generation of sunphotometer (CE318N) has been used widely since 2011 in various sites of Ukraine as mobile station together with portable sunphotometer Microtops II. This article presents a short description of the AERONET, its development in Ukraine and prospects for future atmospheric research.

  14. Radioactive isotopes in atmospheric aerosols over Russia and the Sea of Japan following nuclear accident at Fukushima Nr. 1 Daiichi Nuclear Power Station in March 2011.

    PubMed

    Neroda, Andrey S; Mishukov, Vasily F; Goryachev, Vladimir A; Simonenkov, Denis V; Goncharova, Anna A

    2014-04-01

    Artificial radionuclides, such as iodine-131 ((131)I), cesium-134 ((134)Cs), and cesium-137 ((137)Cs), as well as natural isotopes of beryllium-7 ((7)Be) and potassium-40 ((40)K) have been registered in atmospheric aerosols over Vladivostok selected from 11 March to 17 June 2011. Additionally, (134)Cs and (137)Cs were detected in atmospheric aerosols over Tomsk selected from 16 March to 17 June 2011. Artificial radionuclides were also discovered in atmospheric wet depositions sampled in Vladivostok from 3 to 17 May 2011. Moreover, these radionuclides have been registered in atmospheric aerosols over the sea surface of the Sea of Japan selected from 3 to 31 May 2011 during an expedition of the "Nadezhda" sailing ship. From 18 March to 15 April, an increase in concentrations of atmospheric aerosols over Vladivostok from 108.8 to 321.5 μg/m(3) has been registered. It was accompanied by increased activity concentrations of (134)Cs, (137)Cs, and the (131)I. During the period from 18 March to 15 April, activity concentrations of (137)Cs and (134)Cs in atmospheric aerosols increased 100 times compared with the minimum detectable concentration (MDC) level and peaked in the weekly sample gathered from 8 to 15 April (145.0 and 105.3 μBq/m(3), respectively). Variability of concentrations of natural isotopes of (7)Be and (40)K was not greater than 1 order of magnitude throughout the sampling period. Maximal values of (137)Cs and (134)Cs concentrations (1,281.5 ± 141 and 384.4 ± 42.3 μBq/m(3), respectively) in Tomsk were reached in samples taken from 1 to 2 April. For the atmospheric aerosol samples from the Sea of Japan, the largest concentration of (131)I (392.3 ± 215.7 μBq/m(3)) was detected from 13 to 19 May, while all other samples had much lower concentration values. Synoptic analysis of back trajectories movement of air masses showed that the radioactive cloud came to Vladivostok from the regions of Siberia and northeastern part of China. Synoptic

  15. Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station - Part 1: Microphysical and optical properties

    NASA Astrophysics Data System (ADS)

    Krishna Moorthy, K.; Babu, S. Suresh; Satheesh, S. K.

    2007-11-01

    In Part 1 of this two-part paper, we present the results of extensive and collocated measurements of the columnar and near-surface (in the well mixed region) properties of atmospheric aerosol particles at a tropical coastal location, Trivandrum (8.55° N; 76.97° E), located close to the southwest tip of Indian peninsula. These are used to evolve average, climatological pictures of the optical and microphysical properties and to delineate the distinct changes associated with the contrasting monsoon seasons as well as the transition from one season to the other. Our observations show a dramatic change in the columnar aerosol optical depth (AOD) spectra, being steep during winter monsoon season (WMS, months of December through March) and becoming quite flat during summer monsoon season (SMS, June through September). The derived Ångström exponent (α) decreases from a mean value of 1.1±0.03 in WMS to 0.32±0.02 in SMS, signifying a change in columnar aerosol size spectrum from an accumulation mode dominance in WMS to a coarse mode dominance in SMS. The composite aerosols near the surface follow suit with the share of the accumulation mode to the total mass concentration decreasing from ~70% to 34% from WMS to SMS. The overall mass burden also decreases in tandem. The changes in α are well correlated to those in the accumulation fraction of the mass concentration. Long-term measurements of the concentration of aerosol black carbon (BC), show prominent annual variations, with its mean value decreasing from as high as 6 μg m-3 in WMS to 2 μg m-3 in SMS. Correspondingly, its mass mixing ratio to the composite aerosols comes down from 11% to 4%. The changes in AOD and α are significantly positively correlated to those of BC concentration. The columnar properties are, in general well associated with the features near the surface. The implications of these changes to the optical properties and single scattering albedo and the resulting impact on direct radiative

  16. Results of SO{sub 2}, NO{sub x}, and CO monitoring at McMurdo Station, Antarctica

    SciTech Connect

    Lugar, R.M.

    1993-05-01

    This report presents the results of ambient air monitoring of carbon monoxide (CO), sulfur dioxide (SO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), and total oxides of nitrogen (NO{sub x}) performed during the final weeks of the 1992-1993 austral summer in the vicinity of McMurdo Station, Antarctica. Commercially available, high sensitivity ambient air gas analyzers were used to continuously measure gas concentrations at two locations over a two and a three week time period respectively. Sampling site selection, sampling procedures and quality assurance procedures used for this effort were consistent with U.S. Environmental Protection Agency guidelines for local ambient air quality networks. CO, SO{sub 2}, and NO{sub 2} concentrations measured were below the associated U.S. National Ambient Air Quality Standards. Carbon monoxide levels measured at both locations were near or below the instrument detection limit of 0.1 part per million (ppm). Hourly average SO{sub 2} concentrations ranged from below the detection limit of 1 part per billion (ppb) to a single maximum hourly average value of 60 ppb. Hourly average NO{sub 2} concentrations ranged from below the detection limit of 1 ppb to a single maximum hourly average value of 26 ppb. The impact on local air quality of ships docked at an ice pier was observed and quantified. The initial baseline effort demonstrated that site selection and sampling equipment performance were satisfactory, and provided useful data for assessing the impact of McMurdo operations on the local ambient air quality.

  17. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).

    PubMed

    Martín-Redondo, M Paz; Martínez, Eduardo Sebastian; Sampedro, M Teresa Fernández; Armiens, Carlos; Gómez-Elvira, Javier; Martinez-Frias, Jesus

    2009-07-01

    The Rover Environmental Monitoring Station (REMS) is one of NASA/MSL's instruments, which has been designed for measuring ambient pressure, humidity, wind speed and direction, UV radiation, and air and ground temperature (GT). The GT-sensor is dedicated to measure the real temperature of the Martian surface, integrating the IR energy coming from the ground. The existing IR spectral data of Martian dust, rocks and sediments allow for comparing the Martian spectra with the spectra of different terrestrial minerals and lithologies, and those of their alteration and weathering products. The FTIR reflectance of a set of selected astrobiologically significant minerals (including oxides, oxi/hydroxides, sulfates, chlorides, opal and clays) and basalt (as the main and most widespread volcanic Martian rock) was measured, considering different mixing amounts, and covering the specific working wavelength range of the REMS' GT-sensor. The results obtained show important percentage increases or decreases of reflectance in the entire wavelength range (e.g. basalt-hematite vs. basalt-magnetite) and specific variations limited to some spectral bands (e.g. basalt-smectite vs. basalt-jasper). The basalt reflectance percentage increases or decreases, even up to 100%, depending on the mixing of the different minerals. This unequivocally confirms the need for considering the chemical-mineralogical assemblages (and their textures) for any investigation and interpretation of Mars surface environment. Some complementary applications of this research on our planet, either in relation to the specific performances and characteristics of the GT-sensor autonomous recalibration system, or those oriented to carrying out similar studies on different types of terrestrial environmental settings, are also described. PMID:20449234

  18. Geophysical monitoring for climatic change. Number 8. Summary report 1979

    SciTech Connect

    Herbert, G.A.

    1980-12-01

    The Geophysical Monitoring for Climatic Change (GMCC) program, which has operated for eight years, is described. The most significant change in the GMCC operational program in 1979 was the initiation of 10 additional CO2 flask sampling stations. Continuous measurement of CO2 and aerosol scattering at four wavelengths, using a nephelometer, was begun at the South Pole station at the end of 1978 and continued throughout 1979. A filter collection system was installed at the Barrow station to make possible the determination of the mass of the carbonaceous aerosols. Early results show that graphitic carbon makes up a significant part of the arctic haze, and because of its optical absorptivity, it may cause a significant contribution to the radiative energy budget. At the Mauna Loa Observatory a new cooperative measurement program to observe the chemical composition of aerosols was initiated.

  19. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2016-02-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300 to 1000 nm) on relative humidity up to almost 100 % was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80 %. The respective 4-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidity increase from 40 to 95 %. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.46 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found, indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yields good agreement. Also, time series of the particle extinction coefficient computed from in situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40 % relative humidity) were found in good overall consistency, which verifies the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30 % relative humidity) to 1.3 (at 95 % relative humidity) for the 4-year period.

  20. Comprehensive Retrieval of Spatio-temporal Variations in Atmospheric Radionuclides just after the Fukushima Accident by Analyzing Filter-tapes of Operational Air Pollution Monitoring Stations in Eastern Japan

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Moriguchi, Yuichi; Nakajima, Teruyuki

    2016-04-01

    After the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011, many datasets have been available of deposition density of radionuclides in soils in eastern Japan. By contrast, no time-series data of atmospheric radionuclides has been measured in the Fukushima prefecture (FP), although very limited data is available in the Tokyo metropolitan area (TMA) located more than 170 km southwest of the FD1NPS. As a result, atmospheric transport models simulating the atmospheric concentrations and surface deposition of radionuclides have large uncertainty, as well as the estimate of release rate of source terms and of internal exposure from inhalation. One year after the accident, we collected the used filter-tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated by local governments in the air pollution monitoring network of eastern Japan. The SPM monitoring stations are mostly located in the urban and/or industrial area to measure the hourly mass concentration of SPM less than 10 μm in diameter for health effect due to atmospheric aerosols. By measuring radionuclides in SPM on the filter-tapes, we retrieved hourly atmospheric Cs-134 and Cs-137 concentrations during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan. Until now, we measured hourly radiocesium at around 100 SPM sites in the southern Tohoku region (ST) including the FP and in the TMA. By analysing the dataset, about 10 plumes/polluted air masses with Cs-137 concentrations higher than 10 Bq m-3 were found, and some plumes were newly detected in this study. And the spatio-temporal distributions of atmospheric Cs-137 were clearly shown for all the plumes. The east coast area of the FP where the FD1NPS was located in the centre was attacked several times by the plumes, and suffered the highest time-integrated Cs-137 concentration during the period among the ST and TMA

  1. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known

  2. Trends, Distribution and Frequency Analyses of Ozone Data From Three Monitoring Stations in Baton Rouge, Louisiana for the Years 1995 to 2005

    NASA Astrophysics Data System (ADS)

    Klasinc, L.; Kezele, N.; Pompe, M.; McGlynn, S.

    2007-12-01

    Troposphere ozone concentrations exhibit pronounced, characteristic diurnal and seasonal cycles. These cycles are usually well-defined. However, additional oscillations can also occur; these are generally much smaller in amplitude than the 1-day or 1-year cycles and they might be attributable to anthropogenic influences (e.g., specific man-induced meteorological and chemical influences on an individual monitoring station, periodic maintenance activities, etc). Indeed, it is possible that the spectral analysis of photochemical pollution data could pinpoint hidden conditions that affect particular monitoring stations. Such an analysis, one based on Fourier transform methods, was applied to long-term data from 3 American monitoring stations. As would be expected, strong signals were found for the 1-day and 1-year periods; however, some weaker signals, ones probably associable with anthropogenic affairs, were also observed. A principal component analysis (PCA) was applied to the transformed data sets in order to identify these periods and make pollution ranking. Periods of 0.5, 3.5-days and 7-days, as well as a number of other cycles, were found and can be considered to be markers of anthropogenic influences. European and American data will be compared and the effects of Hurricane Katrina will be examined.

  3. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  4. Variability in rainfall at monitoring stations and derivation of a long-term rainfall intensity record in the Grand Canyon Region, Arizona, USA

    USGS Publications Warehouse

    Caster, Joshua; Sankey, Joel B.

    2016-01-01

    In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that

  5. Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    J. Robert Woolsey; Thomas McGee; Carol Lutken

    2008-05-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency

  6. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Cowen, K.; Kelly, T.; Hanft, E.; Mishoe, K.; Rogers, C.; Proost, R.; Lear, G.; Frelink, T.; Walker, J. T.

    2011-12-01

    Ambient air monitoring as part of the U.S. EPA's Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The U.S. EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to examine ecosystem exposure to nitrogen and sulfur compounds at higher time resolution and with greater accuracy than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the U.S. EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, NC from September 8th-October 8th, 2010. Precision of the MARGA was evaluated by comparing duplicate units and accuracy was evaluated by comparing duplicate MARGAs to duplicate reference denuder/filter packs. The MARGA utilizes a Wet Rotating Denuder (WRD) to collect gases, while aerosols are collected by a Steam Jet Aerosol Collector (SJAC). Both the WRD and the SJAC produce aqueous sample streams, which are analyzed by online ion chromatography for anions and cations. The reference denuder/filter pack consisted of sodium carbonate (Na2CO3) and phosphorous acid (H3PO3) coated denuders followed by a Teflon filter, a nylon filter, and a citric acid coated cellulose filter. The assessment of the MARGA units focused on gaseous SO2, HNO3 and NH3 and aerosol SO4-, NO3- and NH4+. To evaluate accuracy, hourly MARGA concentrations were averaged over 12 hours to match with 12-hour integrated concentrations from the reference system. The concentrations were compared using linear regression with performance goals of slope between 0.8-1.2 and y-intercept between -10 ppb and 10 ppb. Accuracy was further quantified as the median absolute relative percent difference (MARPD) between 12-hour MARGA and reference concentrations, with a performance goal of ≤ 40%. The precision of

  7. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  8. Observations in Lidar Station of St. Petersburg State University for Ecological Safety Studyies

    NASA Astrophysics Data System (ADS)

    Donchenko, Vladislav; Melnikova, Irina; Samulenkov, Dmitriy; Sapunov, Maksim

    2016-06-01

    The solution of many problems associated with the air pollution, radiative regime of the earth's surface and atmosphere, global and local environmental changes and climate, facing humanity in the early 21st century, require detailed and regular information on atmospheric aerosol and gaseous pollutants in the atmosphere. For monitoring atmospheric pollutants especially effective were the methods of laser sounding of the atmosphere, which provide a vertical profile of aerosol parameters to a height of 20 km In this regard, at the beginning of the 21st century created a continental networks of lidar sounding stations. Over Europe there is a network EARLINET. Laser station, built on the basis of St. Petersburg State University has become the first Russian station that acceded to the European research network. The article briefly presents the technical features of the equipment and demonstrates the first results of the observations.

  9. Distinct impact of different types of aerosols on surface solar radiation in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhao, Chuanfeng; Zhou, Lijing; Wang, Yang; Liu, Xiaohong

    2016-06-01

    Observations of surface direct solar radiation (DSR) and visibility, particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5), together with the aerosol optical thickness (AOT) taken from Moderate-Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer, were investigated to gain insight into the impact of aerosol pollution on surface solar radiation in China. The surface DSR decreased during 2004-2014 compared with 1993~2003 over eastern China, but no clear reduction was observed in remote regions with cleaner air. Significant correlations of visibility, PM2.5, and regionally averaged AOT with the surface DSR over eastern China indicate that aerosol pollution greatly affects the energy available at the surface. The net loss of surface solar radiation also reduces the surface ground temperature over eastern China. However, the slope of the linear variation of the radiation with respect to atmospheric visibility is distinctly different at different stations, implying that the main aerosol type varies regionally. The largest slope value occurs at Zhengzhou and indicates that the aerosol absorption in central China is the highest, and lower slope values suggest relatively weakly absorbing types of aerosols at other locations. The spatial distribution of the linear slopes agrees well with the geographical distribution of the absorbing aerosols derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and Ozone Monitoring Instrument over China. The regional correlation between a larger slope value and higher absorbance properties of aerosols indicates that the net effects of aerosols on the surface solar energy and corresponding climatic effects are dependent on both aerosol amount and optical properties.

  10. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  11. On the sensitivity of long-term magnetotelluric monitoring in Southern Italy and source-dependent robust single station transfer function variability

    NASA Astrophysics Data System (ADS)

    Romano, Gerardo; Balasco, Marianna; Lapenna, Vincenzo; Siniscalchi, Agata; Telesca, Luciano; Tripaldi, Simona

    2014-06-01

    Since 2007, a permanent magnetotelluric (MT) monitoring station has been working in the seismic area of the Agri Valley (Basilicata region, southern Italy) in order to investigate the stability of the MT transfer function. The station was installed in a rural area near the supposed seismogenic fault of the strong earthquake (Mw = 6.9) that struck the Agri Valley in 1857. Analysing about 4 yr of MT data characterized by a low seismic activity, the long-term systematic variations of robust single station MT transfer function estimates were observed in two different sounding period ranges. First, a significant seasonal component of variability for short periods was noted; these short periods were up to 16 s and were linked to variations in wetting/drying of soil moisture in the shallower layers. Second, a connection between the monitored estimates and global geomagnetic activity, Ap index, was found, particularly in the [20-100 s] period range. Analysing remote reference results and tipper estimates in shorter monitoring window, it was shown that such effect cannot be explained by a local or incoherent noise, and a large-scale coherent source should be claimed. We show that this effect is subtle because it produces smooth estimates, satisfying the dispersion relationship between apparent resistivity and phase, with small error bars. As the global geomagnetic activity level increases, robust estimators, like the median value, can be considered as a representative of the estimates due to the natural source, and they tend to stabilize when the Ap index approaches 10. It is also worth noting that our monitored time window includes the recent global minimum of solar activity which occurred in 2009, thus enhancing the estimate dependence on the Ap index.

  12. Particulate Matter 2.5 and Black Carbon concentrations in underground San Francisco Bay Area Rapid Transit stations

    NASA Astrophysics Data System (ADS)

    Gray, A.; Williams, N.; Quartey, R.; Quintana, M.; Bell, B.; Biswas, N.; Hunter, S.; Marks-Block, T.; Yu, X.

    2013-12-01

    A previous Particulate Matter (PM) 2.5 study within Bay Area Rapid Transit (BART) train stations found that concentrations of PM 2.5 at San Francisco's (SF) Embarcadero station were significantly high relative to within the rail system. To follow up on that study, PM 2.5 data was collected within other underground BART stations and the streets surrounding them using the DustTrak Aerosol monitor that measures concentrations every second. In addition, black carbon (BC) data was collected using a microAeth aerosol monitor that also measures concentrations every minute. During each day that measurements were made along three different train routes originating from West Oakland BART station: 1) toward the San Francisco Civic Center station: en route to the Lake Merritt station in Oakland; and toward the Downtown Berkeley station. All of these stations are located underground, and at each one the DustTrak instrument was taken from the train to the ticket level, and on each route data was collected outside of the stations. Black carbon (BC) concentrations were recorded only on the San Francisco route. The highest PM 2.5 concentrations were recorded at SF underground stations, particularly at Embarcadero where concentrations exceeded 100 μg/m3 at train level. These values were much greater than those obtained outside the station, which ranged between 10-20 μg/m3. Other stations along the route to Civic Center had values ranging from 30-64 μg/m3, higher than stations along the route to the Downtown Berkeley station (17-42 μg/m3 ) and the Lake Merritt station (10-38 μg/m3). PM concentrations outside of stations were lower, ranging from 14-33 μg/m3 and 8-27 μg/m3 outside 12th Street Oakland City Center and Lake Merritt stations respectively. Additionally, PM concentration was directly related to depth at all stations. For example, one day at Embarcadero the highest concentrations from train to middle to top level were 119, 84, and 59 μg/m3 respectively. We believe the

  13. Measurement of Fukushima Aerosol Debris in Sequim and Richland, WA and Ketchikan, AK

    SciTech Connect

    Miley, Harry S.; Bowyer, Ted W.; Engelmann, Mark D.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Keillor, Martin E.; Kiddy, Robert A.; Kirkham, Randy R.; Landen, Jonathan W.; Lepel, Elwood A.; Lidey, Lance S.; Litke, Kevin E.; Morris, Scott J.; Olsen, Khris B.; Thompson, Robert C.; Valenzuela, Blandina R.; Woods, Vincent T.; Biegalski, Steven R.

    2013-05-01

    Aerosol collections were initiated at several locations by PNNL shortly after the Great East Japan Earthquake of May 2011. Aerosol samples were transferred to laboratory high-resolution gamma spectrometers for analysis. Similar to treaty monitoring stations operating across the Northern hemisphere, iodine and other isotopes which could be volatilized at high temperature were detected. Though these locations are not far apart, they have significant variations with respect to water, mountain-range placement, and local topography. Variation in computed source terms will be shown to bound the variability of this approach to source estimation.

  14. Retrieval and monitoring of aerosol optical thickness over an urban area by spaceborne and ground-based remote sensing.

    PubMed

    Léon, J F; Chazette, P; Dulac, F

    1999-11-20

    We used an instrumental synergy of both ground-based (sunphotometer) and spaceborne [POLDER (polarization and directionality of the Earth's reflectances) and Meteosat] passive remote-sensing devices to determine the aerosol optical thickness over the suburban area of Thessaloniki, Greece, from April 1996 to June 1997. The POLDER spaceborne instrument measures the degree of polarization of the solar radiance reflected by the Earth-atmosphere system. Aerosol optical thickness (AOT) retrieval needs an accurate estimate of the contribution of the ground surface to the top of atmosphere's polarized radiance. We tested existing surface reflectance models and fitted their parameters to find the best model for the Thessaloniki area. The model was constrained and validated by use of independent data sets of coincident sunphotometer and POLDER measurements. The comparison indicated that the urban AOT over Thessaloniki was retrieved by the POLDER instrument with an accuracy of +/-0.05. From analysis of Meteosat data we found that approximately 40% of the days with high AOT (>0.18) are associated with African dust transport events, all observed in the period March-July. Excluding dust events, the 15-month AOT averages 0.12 +/- 0.04. During the 15-month period that the study was conducted, we observed aerosol pollution peaks with an AOT of >0.24 on 15 of the 164 days on which measurements were possible. PMID:18324235

  15. Continuous Gravity Monitoring in South America with Superconducting and Absolute Gravimeters: More than 12 years time series at station TIGO/Concepcion (Chile)

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Falk, Reinhard; Hase, Hayo; Armin, Böer; Andreas, Güntner; Rongjiang, Wang

    2016-04-01

    As part of the Transportable Integrated Geodetic Observatory (TIGO) of BKG, the superconducting gravimeter SG 038 was set up in December 2002 at station Concepcion / Chile to record temporal gravity variations with highest precision. Since May 2006 the time series was supported by weekly observations with the absolute gravimeter FG5-227, proving the large seasonal variations of up to 30 μGal and establishing a gravity reference station in South America. With the move of the whole observatory to the new location near to La Plata / Argentina the series was terminated. Results of almost continuously monitoring gravity variations for more than 12 years are presented. Seasonal variations are interpreted with respect of global and local water storage changes and the impact of the 8.8 Maule Earthquake in February 2010 is discussed.

  16. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Cowen, K. A.; Walker, J. T.; Kelly, T. J.; Hanft, E. A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G. M.; Lear, G.; Frelink, T.; Otjes, R. P.

    2014-06-01

    Ambient air m