Science.gov

Sample records for aerosol network man

  1. Maritime Aerosol Network (MAN) as a component of AERONET - first results

    NASA Astrophysics Data System (ADS)

    Smirnov, A.

    2009-04-01

    The paper presents a concept and the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). The proposed activity includes deployment of hand-held sunphotometers at sea and measurements from various ships of opportunity. Overall MAN will complement island-based AERONET measurements and will expand AERONET program to acquire additional data over the oceans. Scientific objectives of this kind of activity are primarily climate change studies (direct and indirect forcing); satellite retrievals validation; validation of global aerosol transport model simulations; and atmospheric correction in ocean color studies. MAN deploys Microtops hand-held sunphotometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site (http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html) dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. Accomplished cruises included transects from Northern to Southern Atlantic, from Northern to Southern Pacific, from New Zealand to Japan, measurements in Southern Indian Ocean, in the Tropical Atlantic, along the western coast of South America, near the coast of Antarctica, in the Mediterranean, Arabian, Beafort, Bering, Barents, Greenland Seas and in the Bay of Bengal. First results are presented. MAN ship-based aerosol optical depth compare well to simultaneous island and near-coastal AERONET site AOD. We believe that the Maritime Aerosol Network will provide the scientific community with valuable information on aerosol optical properties over the oceans. Employing simple, standard and commercially available instrumentation, traceable calibration, a scientifically sound processing scheme and easily accessible web-based public data archive, the network has strong growth potential. Expanded spatial coverage will contribute

  2. Maritime Aerosol Network (MAN) as a Component of AERONET

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; Quinn, P. K.

    2008-01-01

    The World Ocean produces a large amount of natural aerosols that have all impact on the Earth's albedo and climate. Sea-salt is the major contributor to aerosol optical depth over the oceans. [Mahowald et al. 2006; Chin et al. 2002; Satheesh et al. 1999; Winter and Chylek, 1997] and therefore affects the radiative balance over the ocean through the direct [Haywood et al. 1999] and indirect aerosol effect [O'Dowd et al. 1999]. Aerosols over the oceans (produced marine and advected from land sources) are important for various atmospheric processes [Lewis and Schwartz, 2004] and remote sensing studies [Gordon, 1997].

  3. Maritime Aerosol Network as a component of Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; Quinn, P. K.; Sciare, J.; Kinne, S.; Harvey, M.; Smyth, T. J.; Piketh, S.; Zielinski, T.; Proshutinsky, A.; Goes, J. I.; Nelson, N. B.; Larouche, P.; Radionov, V. F.; Goloub, P.; Krishna Moorthy, K.; Matarrese, R.; Robertson, E. J.; Jourdin, F.

    2009-03-01

    The paper presents the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). MAN deploys Microtops handheld Sun photometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. A short summary of the existing data, collected on board ships of opportunity during the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is presented. Globally averaged oceanic aerosol optical depth (derived from island-based AERONET measurements) at 500 nm is ˜0.11 and Angstrom parameter (computed within spectral range 440-870 nm) is calculated to be ˜0.6. First results from the cruises contributing to the Maritime Aerosol Network are shown. MAN ship-based aerosol optical depth compares well to simultaneous island and near-coastal AERONET site AOD.

  4. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  5. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  6. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    NASA Technical Reports Server (NTRS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  7. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Remer, L. A.; Kahn, R. A.; Kleidman, R. G.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  8. Neural networks in support of manned space

    NASA Technical Reports Server (NTRS)

    Werbos, Paul J.

    1989-01-01

    Many lobbyists in Washington have argued that artificial intelligence (AI) is an alternative to manned space activity. In actuality, this is the opposite of the truth, especially as regards artificial neural networks (ANNs), that form of AI which has the greatest hope of mimicking human abilities in learning, ability to interface with sensors and actuators, flexibility and balanced judgement. ANNs and their relation to expert systems (the more traditional form of AI), and the limitations of both technologies are briefly reviewed. A Few highlights of recent work on ANNs, including an NSF-sponsored workshop on ANNs for control applications are given. Current thinking on ANNs for use in certain key areas (the National Aerospace Plane, teleoperation, the control of large structures, fault diagnostics, and docking) which may be crucial to the long term future of man in space is discussed.

  9. Neural network computer simulation of medical aerosols.

    PubMed

    Richardson, C J; Barlow, D J

    1996-06-01

    Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.

  10. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  11. [Microorganisms distribution in the aerosol of a manned sealed cabin and the effect of artificial air ionization on this process].

    PubMed

    Zaloguev, S N; Anisimov, B V; Viktorov, A N; Gorshkov, V P

    1981-01-01

    In a manned enclosure the distribution of bacterial aerosol with respect to the size of particles is bimodal. Artificial bipolar ionization of the air may decrease the content of relatively large particles of bacterial aerosol, leaving particles with 2.0-0.6/micrometer in diameter in predominance. These properties of the bacterial aerosol structure may be of importance in the prophylaxis of aerogenic infections of cosmonauts.

  12. Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)

    2001-01-01

    Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.

  13. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  14. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  15. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments.

    PubMed

    Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  16. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  17. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-08-01

    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the

  18. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  19. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-03-01

    The European Aerosol Research Lidar Network, EARLINET was founded in 2000 as a research project for establishing a quantitative, comprehensive and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET is continuing to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last thirteen years. Since 2000, EARLINET has strongly developed in terms of number of stations and spatial distribution, from 17 stations in 10 countries in 2000, to 27 stations in 16 countries in 2013. EARLINET has strongly developed also in terms of technological advances with the spread of advanced multi-wavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing and dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase of the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions and for model evaluation and satellite data validation and integration. Future plans are in the direction of continuous measurements and near real time data delivery in close cooperation with other ground-based networks, as in the ACTRIS research infrastructure, and with the modelling and satellite community, bridging the research community with the

  20. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  1. Neural networks for aerosol particles characterization

    NASA Astrophysics Data System (ADS)

    Berdnik, V. V.; Loiko, V. A.

    2016-11-01

    Multilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.

  2. Ukrainian network of Optical Stations for man-made space objects observation

    NASA Astrophysics Data System (ADS)

    Sybiryakova, Yevgeniya

    2016-07-01

    The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.

  3. Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.

  4. Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-11-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  5. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  6. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    NASA Technical Reports Server (NTRS)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  7. GSM Network Employment on a Man-Portable UAS

    DTIC Science & Technology

    2012-09-01

    displayed on a powerful ground station ” (ArduCopter, 2012). ArduCopter is the actual name of the “ Arduino - based autopilot for mulitrotor craft...C.  GSM NETWORK ARCHITECTURE ........................................................29  1.   Mobile Station (MS...30  2.   Base Station Subsystem (BSS) ..........................................................31  a.   BSC

  8. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks

    PubMed Central

    Schrum, Jacob; Miikkulainen, Risto

    2015-01-01

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games. PMID:27030803

  9. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.

    PubMed

    Schrum, Jacob; Miikkulainen, Risto

    2016-03-12

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.

  10. Relationship between column aerosol optical properties and surface aerosol gravimetric concentrations during the Distributed Regional Aerosol Gridded Observation Network - Northeast ASIA 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Seo, S.; Choi, M.; Kim, W. V.; Holben, B. N.; Lee, S.; Kim, J.

    2012-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. This study aims to identify the important parameters that affecting the relationship between those variables during the DRAGON - northeast Asia 2012 campaign. Column aerosol optical properties from ten Cimel sun photometers at DRAGON sites in Seoul, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOCI (Geostationary Ocean Color Imager) and particulate matter (PM10) sampling from 40 NIER (National Institute of Environmental Research of South Korea) measurement sites in Seoul during the period of 1st March - 31th May 2012 were employed in this study. The key parameters in relationship between aerosol optical depth (AOD) and PM are reported to be aerosol vertical profile and hygroscopicity of the aerosols. The meteorological conditions including relative humidity, surface temperature, and wind speed that could affect those parameters were investigated.

  11. Chronic inhalation studies of man-made vitreous fibres: characterization of fibres in the exposure aerosol and lungs.

    PubMed

    Hesterberg, T W; Miiller, W C; Thevenaz, P; Anderson, R

    1995-10-01

    Inhalation studies were conducted to determine the chronic biological effects in rodents of respirable fractions of different man-made vitreous fibres (MMVFs), including refractory ceramic fibre (RCF), fibrous glass, rock (stone) wool and slag wool. Animals were exposed nose-only, 6 h per day, 5 days per week, for 18 months (hamsters) or 24 months (rats). Exposure to 10 mg m-3 of crocidolite or chrysotile asbestos induced pulmonary fibrosis, lung tumours and mesothelioma in rats, thus validating the inhalation model with known human carcinogenic fibres. Exposure of rats to 30 mg m-3 of refractory ceramic fibres (RCF) also resulted in pulmonary fibrosis as well as significant increases in lung tumours and mesothelioma. In hamsters, 30 mg m-3 of RCF induced a 41% incidence of mesotheliomas. Exposure of rats to 30 mg m-3 of fibre glasses (MMVF 10 or 11) or of slag wool (MMVF 22) was associated with an inflammatory response, but no mesotheliomas or significant increase in the lung tumours were observed. Rock wool (stone wool: MMVF 21) at the same exposure level resulted in minimal lung fibrosis, but no mesotheliomas or significant increase in the lung tumours were observed. Fibre numbers (WHO fibres) and dimensions in the aerosols and lungs of exposed animals were comparable in this series of inhalation studies. Differences in lung fibre burdens and lung clearance rates could not explain the differences observed in the toxicologic effects of the MMVFs. These findings indicate that dose, dimension and durability may not be the only determinants of fibre toxicity. Chemical composition and the surface physico-chemical properties of the fibres may also play an important role.

  12. Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Vasilescu, Jeni

    2015-04-01

    Aerosols can influence the microphysical and macrophysical properties of clouds and hence impact the energy balance, precipitation and the hydrological cycle. They have different scattering and absorption properties depending on their origin, therefore measured optical properties can be used to retrieve their physical properties, as well as to estimate their chemical composition. Due to the measurement limitations (spectral, uncertainties, range) and high variability of the aerosol properties with environmental conditions (including mixing during transport), the identification of the aerosol type from lidar data is still not solved. However, ground, airborne and space-based lidars provide more and more observations to be exploited. Since 2000, EARLINET collected more than 20,000 aerosol vertical profiles under various meteorological conditions, concerning local or long-range transport of aerosols in the free troposphere. This paper describes the basic algorithm for aerosol typing from optical data using the benefits of artificial neural networks. A relevant database was built to provide sufficient training cases for the neural network, consisting of synthetic and measured aerosol properties. Synthetic aerosols were simulated starting from the microphysical properties of basic components, internally mixed in various proportions. The algorithm combines the GADS database (Global Aerosol DataSet) to OPAC model (Optical Properties of Aerosol and Clouds) and T-Matrix code in order to compute, in an iterative way, the intensive optical properties of each aerosol type. Both pure and mixed aerosol types were considered, as well as their particular non-sphericity and hygroscopicity. Real aerosol cases were picked up from the ESA-CALIPSO database, as well as EARLINET datasets. Specific selection criteria were applied to identify cases with accurate optical data and validated sources. Cross-check of the synthetic versus measured aerosol intensive parameters was performed in

  13. The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and Progress

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Higurashi, Akiko; Jin, Yoshitaka

    2016-06-01

    We have operated a ground-based lidar network AD-Net using dual wavelength (532, 1064nm) depolarization Mie lidar continuously and observed movement of Asian dust and air pollution aerosols in East Asia since 2001. This lidar network observation contributed to understanding of the occurrence and transport mechanisms of Asian dust, validation of chemical transport models, data assimilation and epidemiologic studies. To better understand the optical and microphysical properties, externally and internally mixing states, and the movements of Asian dust and airpollution aerosols, we go forward with introducing a multi-wavelength Raman lidar to the AD-Net and developing a multi-wavelength technique of HSRL in order to evaluate optical concentrations of more aerosol components. We will use this evolving AD-Net for validation of Earth-CARE satellite observation and data assimilation to evaluate emissions of air pollution and dust aerosols in East Asia. We go forward with deploying an in-situ instrument polarization optical particle counter (POPC), which can measure size distributions and non-sphericity of aerosols, to several main AD-Net sites and conducting simultaneous observation of POPC and lidar to clarify internally mixed state of Asian dust and air pollution aerosols transported from the Asian continent to Japan.

  14. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  15. Aerosol optical depth measurements by means of a Sun photometer network in Switzerland

    NASA Astrophysics Data System (ADS)

    Ingold, T.; MäTzler, C.; KäMpfer, N.; Heimo, A.

    2001-11-01

    Within the Swiss Atmospheric Radiation Monitoring program (CHARM) the Swiss Meteorological Institute - MeteoSwiss operates a network of presently six Sun photometer stations. Aerosol optical depths (AOD) at 368, 500, and 778 nm were determined from measurements of the relative direct solar irradiance, primarily to provide climatological information relevant in particular to climate change studies. The six instruments are located at various sites representative of high and low altitudes at the north and south part of the Alps in areas free from urban pollution in Switzerland. AOD time series of recordings back to 1991 are discussed, when data were first collected at Davos. An important aerosol layer is often present over stations at lower sites, showing seasonal variability and regional differences for the observed tropospheric aerosols. A classification scheme for synoptic weather types was applied to separate the AOD data into groups corresponding to different atmospheric transport conditions. On average, lower AODs are measured within advective weather situations than within convective ones. However, at the high Alpine sites such a classification is incomplete for AOD characterization due to orographically induced vertical motion. Monthly averaged values of AOD at 500 nm ranged from 0.05 during winter up to 0.3 in summer. The scale height of the aerosol optical depth is found to be 1-2 km depending on season. The high mountain sites are more suitable to the study stratospheric aerosols, for example, the change of the aerosol content and of its size distribution due to Mount Pinatubo eruption was clearly identified at Davos. In 1996 the aerosol optical depth returned to pre-Pinatubo values. Minimum AODs of ≈0.004-0.007 measured at 500 nm in 1997 are in good agreement with widely reported aerosol optical depth measurements of the stratospheric background aerosols. Besides the Pinatubo-affected period aerosol characterization by means of the Angström power law

  16. Neural Network Recognition and Classification of Aerosol Particle Size Distributions

    DTIC Science & Technology

    1990-01-01

    and the ADALINE developed by WVidrow [3]. However, interest in neural network research waned in the 1970s after Minsky and Papert [,4] demonstrated the...Storage in Networks of Adaline Neurons", in Self- Organizing Systems, Yovitz, M.C., Jacobi, G. T. and Goldstein, G. (eds.), Spartan Books, Wash- ington

  17. Influence of natural radioactive aerosols on artificial radioactivity detection in the Spanish surveillance networks.

    PubMed

    Vargas, A; Arnold, D; Ortega, X; Parages, C

    2008-11-01

    The device used for continuous measurements of artificial alpha and beta activity in Spanish radiological surveillance networks is the LB BAI 9850 monitor from the Berthold Company. The temporal variation of radon decay product equilibrium introduces a varying background signal in the artificial radioactivity in these monitors. This unwanted background signal can be significantly reduced by analyzing natural radioactive aerosols and their influence on the monitor.

  18. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  19. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters

    NASA Astrophysics Data System (ADS)

    Snik, Frans; Rietjens, Jeroen H. H.; Apituley, Arnoud; Volten, Hester; Mijling, Bas; Di Noia, Antonio; Heikamp, Stephanie; Heinsbroek, Ritse C.; Hasekamp, Otto P.; Smit, J. Martijn; Vonk, Jan; Stam, Daphne M.; Harten, Gerard; Boer, Jozua; Keller, Christoph U.

    2014-10-01

    To assess the impact of atmospheric aerosols on health, climate, and air traffic, aerosol properties must be measured with fine spatial and temporal sampling. This can be achieved by actively involving citizens and the technology they own to form an atmospheric measurement network. We establish this new measurement strategy by developing and deploying iSPEX, a low-cost, mass-producible optical add-on for smartphones with a corresponding app. The aerosol optical thickness (AOT) maps derived from iSPEX spectropolarimetric measurements of the daytime cloud-free sky by thousands of citizen scientists throughout the Netherlands are in good agreement with the spatial AOT structure derived from satellite imagery and temporal AOT variations derived from ground-based precision photometry. These maps show structures at scales of kilometers that are typical for urban air pollution, indicating the potential of iSPEX to provide information about aerosol properties at locations and at times that are not covered by current monitoring efforts.

  20. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    SciTech Connect

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  1. iSPEX: the creation of an aerosol sensor network of smartphone spectropolarimeters

    NASA Astrophysics Data System (ADS)

    Snik, F.; Heikamp, S.; de Boer, J.; Keller, C. U.; van Harten, G.; Smit, J. M.; Rietjens, J. H. H.; Hasekamp, O.; Stam, D. M.; Volten, H.; iSPEX Team

    2012-04-01

    An increasing amount people carry a mobile phone with internet connection, camera and large computing power. iSPEX, a spectropolarimetric add-on with complementary app, instantly turns a smartphone into a scientific instrument to measure dust and other aerosols in our atmosphere. A measurement involves scanning the blue sky, which yields the angular behavior of the degree of linear polarization as a function of wavelength, which can unambiguously be interpreted in terms of size, shape and chemical composition of the aerosols in the sky directly above. The measurements are tagged with location and pointing information, and submitted to a central database where they will be interpreted and compiled into an aerosol map. Through crowdsourcing, many people will thus be able to contribute to a better assessment of health risks of particulate matter and of whether or not volcanic ash clouds are dangerous for air traffic. It can also contribute to the understanding of the relationship between atmospheric aerosols and climate change. To set the scene for iSPEX, we present data from our new ground-based SPEX instrument that will be deployed at the Cabauw meteorological site, which is also host to complementary aerosol measurement equipment (e.g. sunphotometers and LIDARs). We interpret the data using a modified version of the POLDER algorithm. The data from a ground-based SPEX instrument add significantly to the current suite of aerosol measurement equipment, but the data are necessarily very localized. By distributing many iSPEX units, a measurement network can be created that has both large coverage and the potential for detecting localized effects. Obviously, such a smartphone spectropolarimeter is less accurate than its official counterpart at a meteorological site, but we show how many measurements allow for suppression of errors through averaging. At the poster, we will give a live presentation of the first iSPEX prototype. We hope to convince you that iSPEX is not

  2. Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; O'Connor, E. J.; Komppula, M.; Korhonen, K.; Pfüller, A.; Giannakaki, E.; Wood, C. R.; Bauer-Pfundstein, M.; Poikonen, A.; Karppinen, T.; Lonka, H.; Kurri, M.; Heinonen, J.; Moisseev, D.; Asmi, E.; Aaltonen, V.; Nordbo, A.; Rodriguez, E.; Lihavainen, H.; Laaksonen, A.; Lehtinen, K. E. J.; Laurila, T.; Petäjä, T.; Kulmala, M.; Viisanen, Y.

    2014-05-01

    The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish

  3. Retrieval of dust storm aerosols using an integrated Neural Network model

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Wong, Man Sing; Lee, Kwon Ho; Campbell, James R.; Shea, Yu-kai

    2015-12-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modeling as it is known to have a significant impact on the radiation budget and atmospheric stability. This study develops an integrated model for dust storm detection and retrieval based on the combination of geostationary satellite images and forward trajectory model. The proposed model consists of three components: (i) a Neural Network (NN) model for near real-time detection of dust storms; (ii) a NN model for dust Aerosol Optical Thickness (AOT) retrieval; and (iii) the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to analyze the transports of dust storms. These three components are combined using an event-driven active geo-processing workflow technique. The NN models were trained for the dust detection and validated using sunphotometer measurements from the AErosol RObotic NETwork (AERONET). The HYSPLIT model was applied in the regions with high probabilities of dust locations, and simulated the transport pathways of dust storms. This newly automated hybrid method can be used to give advance near real-time warning of dust storms, for both environmental authorities and public. The proposed methodology can be applied on early warning of adverse air quality conditions, and prediction of low visibility associated with dust storm events for port and airport authorities.

  4. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2013-03-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar

  5. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2012-11-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network

  6. Use of a Neural Network to Identify Man-made Structure in Millimeter-Wave Images for Security Screening Applications

    SciTech Connect

    Keller, Paul E.; McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.

    2006-06-01

    Events in the past few years have heightened security concerns necessitating the development of more advanced methods for detecting potential threats being carried on individuals. One approach is to use imaging methods that see through clothing to find potentially threatening objects being concealed by individuals on their person. This sparks obvious privacy concerns. This paper describes one technique based on neural networks and Fourier features applied to active millimeter-wave imagery that finds man-made structure potentially indicating a threat without compromising personal privacy.

  7. Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Kim, Y. J.

    2010-06-01

    Satellite-based aerosol observation is a useful tool for the estimation of microphysical and optical characteristics of aerosol during more than three decades. Until now, a lot of satellite remote sensing techniques have been developed for aerosol detection. In East Asian region, the role of satellite observation is quite important because aerosols originating from natural and man-made pollution in this region have been recognized as an important source for regional and global scale air pollution. However, it is still difficult to retrieve aerosol over land because of the complexity of the surface reflection and complex aerosol composition, in particular, aerosol absorption. In this study, aerosol retrievals using Look-up Table (LUT) based method was applied to MODerate Resolution Imaging Spectroradiometer (MODIS) Level 1 (L1) calibrated reflectance data to retrieve aerosol optical thickness (AOT) over East Asia. Three case studies show how the methodology works to identify those differences to obtain a better AOT retrieval. The comparison between the MODIS and Aerosol Robotic Network (AERONET) shows better results when the suggested methodology using the cluster based LUTs is applied (linear slope=0.94, R=0.92) than when operational MODIS aerosol products are used (linear slope=0.78, R=0.87). In conclusion, the suggested methodology is shown to work well with aerosol models acquired by statistical clustering the observation data in East Asia.

  8. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  9. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  10. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    PubMed

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance.

  11. Airborne, Balloon-borne and ground network measurements of aerosol BC over Indian region: Current understanding and possible implications

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Krishna Moorthy, K.; Babu, Suresh, S.; Manoj, M. R.; Gogoi, Mukunda

    2012-07-01

    Though the role of BC aerosols in direct and indirect aerosol climate forcing is now well accepted and being extensively investigated, there is a large knowledge gap on its vertical distribution. Large amounts of BC, if present above and within the clouds, could significantly modify the atmospheric heating due to aerosol absorption. In the back drop of some of the recent measurements of strong BC layers in the middle and upper troposphere and even in the stratosphere, the knowledge of vertical distribution of BC becomes all the more relevant, especially over the tropics, with significant solar heating, cloud cover and BC hotspots. With a view to addressing this issue from comprehensive measurements over Indian region, extensive measurements using aircrafts, balloons, and a large network of ground-based observatories have been made as a part of the Regional Aerosol Warming Experiment (RAWEX). These measurements were examined in the light of simulations made using the regional climate model (RegCM of ICTP) to understand the ability and biases of climate models. While the aircraft measurements revealed presence of strong BC layers above the atmospheric boundary layer, within which the BC concentration often exceeded those near the surface. These layers were more elevated and strong along the eastern coast and over Bay of Bengal, rather than on the west. The RegCM simulations were found to underestimate the BC concentrations, especially during the daytime probably owing to inadequate representation of ABL dynamics. The details would be presented and implications would be discussed

  12. Comparison of GOES and MODIS aerosol optical depth (AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville, Illinois.

    PubMed

    Green, Mark; Kondragunta, Shobha; Ciren, Pubu; Xu, Chuanyu

    2009-09-01

    Collocated Interagency Monitoring of Protected Visual Environments (IMPROVE) particulate matter (PM) less than 2.5 microm in aerodynamic diameter (PM2.5) chemically speciated data, mass of PM less than 10 microm in aerodynamic diameter (PM10), and Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and size distribution at Bondville, IL, were compared with satellite-derived AOD. This was done to evaluate the quality of the Geostationary Operational Environmental Satellite (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data and their potential to predict surface PM2.5 concentrations. MODIS AOD correlated better to AERONET AOD (r = 0.835) than did GOES AOD (r = 0.523). MODIS and GOES AOD compared better to AERONET AOD when the particle size distribution was dominated by fine mode. For all three AOD methods, correlation between AOD and PM2.5 concentration was highest in autumn and lowest in winter. The AERONET AOD-PM2.5 relationship was strongest with moderate relative humidity (RH). At low RH, AOD attributable to coarse mass degrades the relationship; at high RH, added AOD from water growth appears to mask the relationship. For locations such as many in the central and western United States with substantial coarse mass, coarse mass contributions to AOD may make predictions of PM2.5 from AOD data problematic. Seasonal and diurnal variations in particle size distributions, RH, and seasonal changes in boundary layer height need to be accounted for to use satellite AOD to predict surface PM2.5.

  13. Historics of the Space Tracking And Data Acquisition Network (STADAN), the Manned Space Flight Network (MSFN), and the NASA Communications Network (NASCOM)

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1974-01-01

    The historical and technical aspects of the major networks which comprise the NASA tracking and data acquisition system are considered in a complete reference work which traces the origin and growth of STADAN, MSFN, and NASCOM up to mid-1971. The roles of these networks in both the Gemini and Apollo programs are discussed, and the separate developmental trends are identified for each network.

  14. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  15. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  16. Measurement of the seasonal and annual variability of total column aerosol in a northeastern U.S. network

    SciTech Connect

    Michalsky, J.J.; Schlemmer, J.A.; Harrison, L.C.; Berkheiser, W.E. III; Larson, N.R.; Laulainen, N.S.

    1994-09-01

    A network of multi-filter rotating shadowband radiometers has operated since late 1991 in the northeastern US. The data acquired are simultaneous measurements of total and diffuse horizontal irradiances in six narrowband filtered detectors and one broadband shortwave detector. The direct normal irradiances are calculated from these measurements. These direct data are corrected for cosine response and used to calculate extraterrestrial irradiance (I{sub o}) using the Langley method of regressing the natural logarithm of direct irradiance versus air mass. With frequent determinations of I{sub o}, changes in I{sub o} caused by soiling and filter degradation, for example, can be tracked. Using these I{sub o}`s, total optical depth is calculated for every clear 30-minute period in the record. Consequently, total optical depth may be obtained on a fair number of days throughout the year. Using daily average total optical depth the authors have calculated aerosol optical depths for five wavelengths by subtracting Rayleigh scattering optical depths and Chappuis ozone absorption optical depths at each wavelength. The aerosol pattern at nearly every site is an annual cycle superimposed on a decaying stratospheric loading associated with the Mount Pinatubo volcanic eruption. An attempt is made to remove the volcanic signal using data from another site.

  17. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  18. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  19. Contribution of Primary and Secondary Sources to Organic Aerosol and PM2.5 at SEARCH Network Sites

    EPA Science Inventory

    Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. La...

  20. Generalized Logical Network Modeling of Interactions Among Bacteria in Aerosols Under Meteorological Factors Using High Density Phylogenetic Microarrays

    NASA Astrophysics Data System (ADS)

    Song, J.; Luce, C.; Desantis, T.; Arkin, A.; Brodie, E.; Andersen, G.

    2007-12-01

    The generalized logical network model utilizes temporal information in the 16S rRNA gene concentration time- course to examine interactions of bacteria within a microbial community under meteorological factors. The Biowatch aerosol bacterial community data set (Brodie et al., PNAS 104[1]:299-304, 2007) of 8,763 taxa intensities was generated using 237 16S rRNA oligonucleotide phylogenetic microarrays at 30 locations throughout the U.S. over time-courses of up to 20 weeks at each location. Each microarray contains about 9,000 probe sets, with an average of 24 probes per set. Seventy-two meteorological factors were measured at the time each microarray was analyzed. In a generalized logical network, a generalized truth table, associated with every node representing either a bacterial taxon or a meteorological factor, describes the represented bacterial behavior dictated by some environmental factors in addition to associations with other bacterial taxa. The optimal generalized logics at each bacterial node in the network will be searched so that they best explain the observed time-course data. Determination of an optimal logic will involve parent node selection and generalized truth-table generation. The maximum number of parents is set to a given number. If the current node shows consistent behavior during transition from one state to another given the parent nodes, then the parent nodes are kept. The actual goodness of the transition is calculated using the chi-square test. In addition to the dependency of the concentrations of bacteria on meteorological factors, with various time delays, the initial generalized logical network modeling results indicate that the concentrations of specific bacterial taxa are also associated with concentrations of other bacteria.

  1. The MODIS Aerosol Algorithm: Critical Evaluation and Plans for Collection 6

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine

    2010-01-01

    For ten years the MODIS aerosol algorithm has been applied to measured MODIS radiances to produce a continuous set of aerosol products, over land and ocean. The MODIS aerosol products are widely used by the scientific and applied science communities for variety of purposes that span operational air quality forecasting in estimates o[ clear-sky direct radiative effects over ocean and aerosol-cloud interactions. The products undergo continual evaluation, including self-consistency checks and comparisons with highly accurate ground-based instruments. The result of these evaluation exercises is a quantitative understanding of the strengths and weaknesses of the retrieval, where and when the products are accurate and the situations where and when accuracy degrades. We intend 10 present results of the most recent critical evaluations including the first comparison of the over ocean products against the shipboard aerosol optical depth measurements of the Marine Aerosol Network (MAN), the demonstration of the lack of sensitivity to size parameter in the over land products and identification of residual problems and regional issues. While the current data set is undergoing evaluation, we are preparing for the next data processing, labeled Collection 6. Collection 6 will include transparent Quality Flags, a 3 km aerosol product and the 500m resolution cloud mask used within the aerosol n:bicvu|. These new products and adjustments to algorithm assumptions should provide users with more options and greater control, as they adapt the product for their own purposes.

  2. An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O2 - O2 spectral band using a neural network approach

    NASA Astrophysics Data System (ADS)

    Chimot, Julien; Pepijn Veefkind, J.; Vlemmix, Tim; de Haan, Johan F.; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Levelt, Pieternel F.

    2017-03-01

    This paper presents an exploratory study on the aerosol layer height (ALH) retrieval from the OMI 477 nm O2 - O2 spectral band. We have developed algorithms based on the multilayer perceptron (MLP) neural network (NN) approach and applied them to 3-year (2005-2007) OMI cloud-free scenes over north-east Asia, collocated with MODIS Aqua aerosol product. In addition to the importance of aerosol altitude for climate and air quality objectives, our long-term motivation is to evaluate the possibility of retrieving ALH for potential future improvements of trace gas retrievals (e.g. NO2, HCHO, SO2) from UV-visible air quality satellite measurements over scenes including high aerosol concentrations. This study presents a first step of this long-term objective and evaluates, from a statistic point of view, an ensemble of OMI ALH retrievals over a long time period of 3 years covering a large industrialized continental region. This ALH retrieval relies on the analysis of the O2 - O2 slant column density (SCD) and requires an accurate knowledge of the aerosol optical thickness, τ. Using MODIS Aqua τ(550 nm) as a prior information, absolute seasonal differences between the LIdar climatology of vertical Aerosol Structure for space-based lidar simulation (LIVAS) and average OMI ALH, over scenes with MODIS τ(550 nm) ≥ 1. 0, are in the range of 260-800 m (assuming single scattering albedo ω0 = 0. 95) and 180-310 m (assuming ω0 = 0. 9). OMI ALH retrievals depend on the assumed aerosol single scattering albedo (sensitivity up to 660 m) and the chosen surface albedo (variation less than 200 m between OMLER and MODIS black-sky albedo). Scenes with τ ≤ 0. 5 are expected to show too large biases due to the little impact of particles on the O2 - O2 SCD changes. In addition, NN algorithms also enable aerosol optical thickness retrieval by exploring the OMI reflectance in the continuum. Comparisons with collocated MODIS Aqua show agreements between -0. 02 ± 0. 45 and -0. 18 ± 0

  3. Solutions Network Formulation Report. Integration of OMI and TES Aerosol Products into the EPA Regional Planning Organizations' FASTNET Aerosol Tracking and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.

    2006-01-01

    Every year, more than 280 million visitors tour our Nation s most treasured parks and wilderness areas. Unfortunately, many visitors are unable to see the spectacular vistas they expect because of white or brown haze in the air. Most of this haze is not natural; it is air pollution, carried by the wind often hundreds of miles from its origin. Some of the pollutants have been linked to serious health problems, such as asthma and other lung disorders, and even premature death. In addition, nitrates and sulfates contribute to acid rain formation, which contaminates rivers and lakes and erodes buildings and historical monuments. The U.S. Environmental Protection Agency RPOs (Regional Planning Organizations) have been tasked with monitoring and determining the nature and origin of haze in Class I scenic areas, and finding ways to reduce haze in order to improve visibility in these areas. The RPOs have developed an Internet-based air quality DST (Decision Support Tool) called FASTNET (Fast Aerosol Sensing Tools for Natural Event Tracking). While FASTNET incorporates a few satellite datasets, most of the data utilized by this DST comes from ground-based instrument networks. The problem is that in many areas the sensors are sparsely located, with long distances between them, causing difficulties in tracking haze over the United States, determining its source, and analyzing its content. Satellite data could help to fill in the data gaps and to supplement and verify ground-recorded air quality data. Although satellite data are now being used for air quality research applications, such data are not routinely used for environmental decision support, in part because of limited resources, difficulties with interdisciplinary data interpretation, and the need for advanced inter-agency partnerships. As a result, the validation and verification of satellite data for air quality operational system applications has been limited This candidate solution evaluates the usefulness of OMI

  4. Rocket man

    NASA Astrophysics Data System (ADS)

    Becklake, John

    2008-06-01

    In the 1950s and 1960s, Wernher von Braun was famous as the man who led the West's journey into space. Some also remember him as the German engineer who developed the V-2 missile that bombarded Antwerp and London at the end of the Second World War. However, many still celebrate Von Braun, who died in 1977, as the man who put the astronauts on the Moon. While this is not strictly true, there is no doubt that Von Braun was one of the most influential engineers, lobbyists and personalities in the Moon-landing project.

  5. Southeast Asian Summer Burning: A Micro Pulse Lidar Network Study of Aerosol Particle Physical Properties near Fires in Borneo and Sumatra

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Welton, E. J.; Holben, B. N.; Campbell, J. R.

    2013-12-01

    In August and September 2012, as part of the continuing Seven South East Asian Studies (7-SEAS) project, three autonomous elastic-scattering 355 nm lidars were deployed by the NASA Micro Pulse Lidar Network (MPLNET) to Sumatra and Borneo, measuring the vertical profile of aerosol particle scattering during peak burning season. In coordination with the Aerosol Robotic Network (AERONET), a regional characterization of aerosol particle physical properties and distribution was performed. In addition to a permanent regional network site at Singapore, the three temporary sites established for this research include Jambi (Sumatra, Indonesia), Kuching (northwest Borneo, Malaysia) and Palangkaraya (south-central Borneo, Indonesia). In this paper, we discuss the mission and instruments, and introduce data products available to the community through the MPLNET online website. We further describe initial results of the study, including a contrast of mean vertical scattering profiles versus those observed near active fire sources at Jambi and Palangkaraya, and resolve longer-range particle evolution at receptor sites, like Kuching, that are most commonly 1-2 days downwind of larger fire complexes.

  6. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  7. Satellite assessment of sea spray aerosol productivity: Southern Ocean case study

    NASA Astrophysics Data System (ADS)

    Witek, Marcin L.; Diner, David J.; Garay, Michael J.

    2016-01-01

    Despite many years of observations by multiple sensors, there is still substantial ambiguity regarding aerosol optical depths (AOD) over remote oceans, in particular, over the pristine Southern Ocean. Passive satellite retrievals (e.g., Multiangle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS)) and global aerosol transport models show a distinct AOD maximum around the 60°S latitude band. Sun photometer measurements performed by the Maritime Aerosol Network (MAN), on the other hand, indicate no increased AODs over the Southern Ocean. In this study elevated Southern Ocean AODs are examined from the modeling perspective. The primary aerosol component over the Southern Ocean is sea spray aerosol (SSA). Multiple simulations of SSA concentrations and optical depths are carried out using a single modeling framework, the Navy Aerosol Analysis and Prediction System (NAAPS) model. Several SSA emission functions are examined, including recently proposed formulations with sea surface temperature corrections. The differences between NAAPS simulations are primarily due to different SSA emission formulations. The results are compared against satellite-derived AODs from the MISR and MODIS instruments. MISR and MODIS AOD retrievals are further filtered to eliminate retrievals potentially affected by cloud contamination and cloud adjacency effects. The results indicate a very large impact of SSA emission parameterization on the simulated AODs. For some scenarios, the Southern Ocean AOD maximum almost completely disappears. Further MISR and MODIS AOD quality screening substantially improves model/satellite agreement. Based on these comparisons, an optimal SSA emission function for global aerosol transport models is recommended.

  8. Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    García, R. D.; García, O. E.; Cuevas, E.; Cachorro, V. E.; Barreto, A.; Guirado-Fuentes, C.; Kouremeti, N.; Bustos, J. J.; Romero-Campos, P. M.; de Frutos, A. M.

    2016-01-01

    This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July-August-September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984-2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004-2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.

  9. Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    García, R. D.; García, O. E.; Cuevas, E.; Cachorro, V. E.; Barreto, A.; Guirado-Fuentes, C.; Kouremeti, N.; Bustos, J. J.; Romero-Campos, P. M.; de Frutos, A. M.

    2015-09-01

    This paper presents the reconstruction of the 73 year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July-August-September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984-2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004-2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analyzed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations larger than 85 %. Therefore, we can conclude the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks at short-term and long-term time scales and, thus, it is suitable to be used in climate analysis.

  10. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)

    NASA Astrophysics Data System (ADS)

    Birmili, Wolfram; Weinhold, Kay; Rasch, Fabian; Sonntag, André; Sun, Jia; Merkel, Maik; Wiedensohler, Alfred; Bastian, Susanne; Schladitz, Alexander; Löschau, Gunter; Cyrys, Josef; Pitz, Mike; Gu, Jianwei; Kusch, Thomas; Flentje, Harald; Quass, Ulrich; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ries, Ludwig; Gerwig, Holger; Wirtz, Klaus; Fiebig, Markus

    2016-08-01

    The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).

  11. Discrimination Analysis of Earthquakes and Man-Made Events Using ARMA Coefficients Determination by Artificial Neural Networks

    SciTech Connect

    AllamehZadeh, Mostafa

    2011-12-15

    A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neural system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0-6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.

  12. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  13. Aerosol contributions to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R.; Woodhead, J. D.; Hellstrom, J.

    2011-12-01

    The term "aerosols" encompasses the suspension of both fine solid or liquid particles within a gaseous medium. Aerosols become suspended into the earth's atmosphere through a multitude of processes both natural and anthropogenic. Atmospheric aerosols enter cave networks as a result of cave ventilation processes and are either deposited, or cycled and removed from the system. Speleothem offer a multiproxy palaeoclimate resource; many of the available proxies have been extensively investigated and utilised for palaeoclimatic reconstructions in a range of studies. The potential contribution of aerosols to speleothem chemistry and their applicability for palaeoenvironmental reconstructions remains untested and the extent of their value as an addition to palaeoclimate sciences unknown. Aerosols through incorporation into speleothem may provide a novel palaeoenvironmental resource. The aerosol component of interest is that which is transported into the cave atmosphere and deposited and are available for incorporation into precipitated calcite. Aerosol deposition and therefore distribution in the cave has shown to be a complex function of ventilation and changing environmental factors. Through detailed monitoring aerosols have been detected, identified, characterised and quantified to determine their prominence in the cave system. Investigations are on a case study basis, searching for suitable aerosol proxies of environmentally significant emission processes. Case studies include: Palaeofires at Yarrangobilly Caves, Australia; anthropogenic emissions at St Michaels Cave, Gibraltar and Cheddar gorge, UK; and drip water aerosol production and geochemical addition in Obir cave, Austria. Monitoring has allowed for the temporal and spatial determination of aerosols in karst networks. Speleothem samples will be analysed in combination with in-situ monitoring to determine incorporation factors and record preservation. By understanding how aerosols are transmitted within the

  14. Remeasuring man.

    PubMed

    Weisberg, Michael

    2014-05-01

    Samuel George Morton (1799-1851) was the most highly regarded American scientist of the early and middle 19th century. Thanks largely to Stephen Jay Gould's book The Mismeasure of Man, Morton's cranial capacity measurements of different races is now held up as a prime example of and cautionary tale against scientific racism. A team of anthropologists recently reevaluated Morton's work and argued that it was Gould, not Morton, who was biased in his analysis. This article is a reexamination of the Morton and Gould controversy. It argues that most of Gould's arguments against Morton are sound. Although Gould made some errors and overstated his case in a number of places, he provided prima facia evidence, as yet unrefuted, that Morton did indeed mismeasure his skulls in ways that conformed to 19th century racial biases. Gould's critique of Morton ought to remain as an illustration of implicit bias in science.

  15. Poor man`s parallelism in environmental management

    SciTech Connect

    Johnson, V.M.; Rogers, L.L.

    1995-02-01

    Poor man`s parallelism is a term to describe the harnessing of commonly available computational approaches containing a high degree of implicit or explicit parallelism with distributed computer resources to produce a large gain in processing time. The distinguishing features of poor man`s techniques are their accessibility and relatively low cost. In some circumstances, the clever exploitation of existing hardware and software may achieve as much improvement in the timely completion of tasks as do high-end, state-of-the-art parallel technologies. The ANN-GA approach to the optimization of environmental remediation strategies is an example of poor man`s parallelism: it integrates two well-known computational technologies, artificial neural networks (ANNs) and the genetic algorithm (GA), with a simple scheme for exploiting a network of Unix workstations to solve a nonlinear combinatorial optimization problem. Although this work has been motivated by the need to tame a computational tiger rather than to experiment with different flavors of parallelism, the approach has reached a level of maturity where it is instructive to examine how parallelism is embodied in its various components. It also stands as a demonstration of how even resource-lean organizations can take advantage of parallelism to solve problems.

  16. Organic aerosols in the southeastern United States: Speciated particulate carbon measurements from the SEARCH network, 2006-2010

    NASA Astrophysics Data System (ADS)

    Blanchard, C. L.; Chow, J. C.; Edgerton, E. S.; Watson, J. G.; Hidy, G. M.; Shaw, S.

    2014-10-01

    This study describes and analyzes measurements of 119 non-polar organic compounds in PM2.5 samples from three urban sites in the Southeastern Aerosol Research and Characterization (SEARCH) network: Jefferson Street in Atlanta, Georgia (JST), Birmingham, Alabama (BHM), and Hinton, Texas (HIN). Daily 24-h PM2.5 samples were collected on quartz-fiber filters from January 2006 through 2007 at HIN and from March 2006 through 2010 at JST and BHM. PM2.5 sampling at BHM and JST is ongoing. The measured species are associated with directly emitted particles and potentially serve as tracers of specific types of emissions. PM2.5 organic measurements include 28 n-alkanes (C15-C42), 18 iso-/anteiso-alkanes (C29-C37), 2 methyl alkanes, 3 branched alkanes, 5 cycloalkanes, 32 PAH compounds, 18 hopanes, 12 steranes, and 1 alkene, many of which are constituents of motor-vehicle exhaust and other anthropogenic PM2.5 emissions. Predominantly anthropogenic origins of the measured compounds are indicated by weekly and seasonal cycles that are identified with known emission patterns, especially for motor vehicle usage. Annual mean concentrations of each class of compounds declined by 60-90% from 2006 through 2009, then increased in 2010 to concentrations comparable to 2008. These changes are similar to 40% reductions of on-road and non-road motor-vehicle exhaust PM2.5 emissions between 2006 and 2010. Year-to-year variations in OC correlated with year-to-year variations in measured non-polar compound concentrations. Regression of OC against the sums of measured n-alkanes, iso-/anteiso-alkanes, PAHs, hopanes, and steranes indicates that 32 ± 7% of OC at BHM and 35 ± 4% of OC at JST derived from sources emitting the measured non-polar compounds. The reductions in measured concentrations of EC, OC, and non-polar OC species represent an important improvement in air quality in the southeastern U.S. that can be attributed by the long-term measurement program to PM2.5 emission reductions.

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  19. Deep space network support of the manned space flight network for Apollo, volume 3. [support for Apollo 14, 15, 16, and 17 flights

    NASA Technical Reports Server (NTRS)

    Hartley, R. B.

    1974-01-01

    The Deep Space Network (DSN) activities in support of Project Apollo during the period of 1971 and 1972 are reported. Beginning with the Apollo 14 mission and concluding with the Apollo 17 mission, the narrative includes, (1) a mission description, (2) the NASA support requirements placed on the DSN, and, (3) a comprehensive account of the support activities provided by each committed DSN deep space communication station. Associated equipment and activities of the three elements of the DSN (the Deep Space Instrumentation Facility (DSIF), the Space Flight Operations Facility (SFOF), and the Ground Communications Facility (GCF)) used in meeting the radio-metric and telemetry demands of the missions are documented.

  20. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  1. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    NASA Technical Reports Server (NTRS)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  2. Spatial and temporal evolution of the optical thickness of the Pinatubo aerosol cloud in the Northern Hemisphere from a network of ship-borne and stationary lidars

    NASA Astrophysics Data System (ADS)

    Avdyushi, S. I.; Tulinov, G. F.; Ivanov, M. S.; Kuzmenko, B. N.; Mezhuev, I. R.; Nardi, B.; Hauchecorne, A.; Chanin, M.-L.

    1993-09-01

    The vertical profiles of the extinction coefficient and the total optical thickness of the Pinatubo aerosol layer obtained from a network of 5 Rayleigh-Mie lidars are presented here. Three ship-borne lidars (Professor Zubov, Professor Vize, Henri Poincare) and two fixed lidar stations (OHP and CEL) are operated respectively by the Roscomhydromet of Russia and of the Service d'Aeronomie du CNRS of France. The measurements presented are in the altitude range 15-35 km. They were obtained between July 1991 - April 1992 and cover 8 deg S-60 deg N latitude and 80 deg W-6 deg E longitude. This represents extensive coverage of the western sector of the Northern Hemisphere, which is partly coincident with UARS satellite coverage. Optical depths of up to 0.2 were observed and maximum extinction coefficient values of 0.08/km were obtained at 24 km and 18 deg N latitude.

  3. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  4. Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network

    NASA Astrophysics Data System (ADS)

    Balaceanu, Cristina; Iorga, Gabriela

    2010-05-01

    City of Bucharest is the largest and most populated (about 2.8 million inhabitants) city in the Romanian Plain and encounters environmental problems and meteorology typical for several cities in southeastern Europe. City environment includes intense emissions arising from traffic (about 1 million cars per day), five thermo-electrical power-generation stations, that use both natural gas and oil derivatives for power generation and domestic heating, and from industrial sources (more than 800 small and medium plants). In the present work we performed an extensive analysis of the air pollution state for the Bucharest area (inside and outside the city) using filter measurement aerosol data PM10 and PM2.5. Data spanning over first year of continuous sampling (2005) were taken from the city Air Quality Monitoring Network, which consists of eight sampling stations: three industrial and two traffic, one EPA urban background, one suburban and one regional station located outside of Bucharest. The objective was to assess the PM10 recorded levels and their degree of compliance with the EU-legislated air quality standards and to provide a statistical investigation of the factors controlling seasonal and spatial variations of PM levels. PM10 relationships with other measured air pollutants (SO2, CO, NOx) and meteorological parameters (temperature, relative humidity, atmospheric pressure, wind velocity and direction) were investigated by statistical analysis. Back trajectory modeling and wind direction frequency distributions were used to identify the origin of the polluted air masses. Contribution of combustion (slopes) and non-combustion (intercepts) sources to PM10 recorded levels was quantified by linear analysis, for two seasonal periods: cold (15 October-14 April) and warm (15 April-14 October). PM10 and PM2.5 concentrations were compared with corresponding values in other European urban areas. Main conclusions are as follows: Traffic and industrial sites contribute to the

  5. Uncertainty Analysis And Synergy Of Aerosol Products From Multiple Satellite Sensors For Advanced Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Petrenko, M.

    2013-05-01

    Aerosols are tiny particles suspended in the air, and can be made up of wind-blown dust, smoke from fires, and particulate emissions from automobiles, industries, and other natural and man-made sources. Aerosols can have significant impacts on the air quality, and can interact with clouds and solar radiation in such a way as to affect the water cycle and climate. However, the extent and scale of these impacts are still poorly understood, and this represents one of the greatest uncertainties in climate research to date. To fill this gap in our knowledge, the global and local properties of atmospheric aerosols are being extensively observed and measured, especially during the last decade, using both satellite and ground-based instruments, including such spaceborne sensors as MODIS on the Terra and Aqua satellites, MISR on Terra, OMI on Aura, POLDER on PARASOL, CALIOP on CALIPSO, SeaWiFS on SeaStar, and the ground-based Aerosol Robotic Network (AERONET) of sunphotometers. The aerosol measurements collected by these instruments over the last decade contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. Still, to be able to utilize these measurements synergistically, they have to be carefully and uniformly analyzed and inter-compared, in order to understand the uncertainties and limitations of the products - a process that is greatly complicated by the diversity of differences that exist among them. In this presentation, we will show results of a coherent comparative uncertainty analysis of aerosol measurements from the above-named satellite sensors relative to AERONET. We use these results to demonstrate how these sensors perform in different parts of the world over different landcover types as well as their performance relative to one another, thereby facilitating product selection and integration for specific research and applications needs.

  6. Aerosol disturbances of the stratosphere after eruption of Grimsvötn volcano (Iceland, May 21, 2011) according to observations at lidar network stations of CIS countries CIS-LiNet in Minsk, Tomsk, and Vladivostok

    NASA Astrophysics Data System (ADS)

    Dolgii, Sergey I.; Burlakov, Vladimir D.; Makeev, Andrey P.; Nevzorov, Aleksey V.; Shmirko, Konstantin A.; Pavlov, Andrey N.; Stolyarchuk, Sergey Y.; Bukin, Oleg A.; Chaykovskii, Anatoly P.; Osipenko, Fyodor P.; Trifonov, Dimitar A.

    2012-11-01

    In 2010 and first half of 2011, a background aerosol content was observed in the atmosphere of the Northern Hemisphere midlatitudes. The report presents the observations of aerosol disturbances of the stratosphere in the second half of 2011, which were performed at lidar network stations of CIS countries CIS-LiNet in Minsk (53.9°N 27.6°E), Tomsk (56.5°N; 85.0°E), and Vladivostok (43.0°N 131.9°E). Data of lidar measurements at the sensing wavelengths of 353, 355, and 532 nm indicate that increased aerosol content was observed since June - July almost until the end of 2011 in the lower stratosphere up to the altitudes ~ 18 km. A well-defined, temporally stable aerosol layer was observed until October 2011 in the altitude interval ~ (13-17) km. The trajectory analysis of air mass transport in the stratosphere according to NOAA HYSPLIT MODEL with employment of CALIPSO satellite data shows that the increased aerosol content observed was most likely due to transport of eruption products of Grimsvötn volcano (May 21, 2011, Iceland: 64.4°N 17.3°W).

  7. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  8. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  9. Manned lunar exploration missions

    NASA Astrophysics Data System (ADS)

    Takano, Yutaka

    1992-08-01

    The objectives, major missions, outlines of the systems, system structures, system configurations of the manned lunar surface site, and manned lunar transportation system are presented. Environmental Control and Life Support System (ECLSS), pressurized environment conditions, and operation schedule of manned lunar surface site are also outlined. This report is represented in viewgraphs only.

  10. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  11. The MODIS Aerosol Algorithm, Products, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) currently aboard both the Terra and Aqua satellites produces a suite of products designed to characterize global aerosol distribution, optical thickness and particle size. Never before has a space-borne instrument been able to provide such detailed information, complementing field and modeling efforts to produce a comprehensive picture of aerosol characteristics. The three years of Terra-MODIS data have been validated by comparing with co-located AERONET observations of aerosol optical thickness and derivations of aerosol size parameters. Some 8000 comparison points located at 133 AERONET sites around the globe show that the MODIS aerosol optical thickness retrievals are accurate to within the pre-launch expectations. MODIS-derived size parameters are also compared with AERONET retrievals and found to agree well for fine-mode dominated aerosol regimes. Aerosol regimes dominated by dust aerosol are less accurate, attributed to what is thought to be nonsphericity. Errors due to nonsphericity will be reduced by introducing a new set of empirical phase functions, derived without any assumptions of particle shape. The major innovation that MODIS bring to the field of remote sensing of aerosol is the measure of particle size and the separation of finemode and coarsemode dominated aerosol regimes. Particle size can separate finemode man-made aerosols created during combustion, from larger natural aerosols originating from salt spray or wind erosion. This separation allows for the calculation of aerosol radiative effect and the estimation of the man-made aerosol radiative forcing. MODIS can also be used in regional studies of aerosol-cloud interaction that affect the global radiative and hydrological cycles.

  12. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  13. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  14. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  15. A satellite view of aerosols in the climate system.

    PubMed

    Kaufman, Yoram J; Tanré, Didier; Boucher, Olivier

    2002-09-12

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  16. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land

    NASA Astrophysics Data System (ADS)

    Levy, Robert C.; Remer, Lorraine A.; Dubovik, Oleg

    2007-07-01

    As more information about global aerosol properties has become available from remotely sensed retrievals and in situ measurements, it is prudent to evaluate this new information, both on its own and in the context of satellite retrieval algorithms. Using the climatology of almucantur retrievals from global Aerosol Robotic Network (AERONET) Sun photometer sites, we perform cluster analysis to determine aerosol type as a function of location and season. We find that three spherical-derived types (describing fine-sized dominated aerosol) and one spheroid-derived types (describing coarse-sized dominated aerosol, presumably dust) generally describe the range of AERONET observed global aerosol properties. The fine-dominated types are separated mainly by their single scattering albedo (ω0), ranging from nonabsorbing aerosol (ω0 ˜ 0.95) in developed urban/industrial regions, to moderately absorbing aerosol (ω0 ˜ 0.90) in forest fire burning and developing industrial regions, to absorbing aerosol (ω0 ˜ 0.85) in regions of savanna/grassland burning. We identify the dominant aerosol type at each site, and extrapolate to create seasonal 1° × 1° maps of expected aerosol types. Each aerosol type is bilognormal, with dynamic (function of optical depth) size parameters (radius, standard deviation, volume distribution) and complex refractive index. Not only are these parameters interesting in their own right, they can also be applied to aerosol retrieval algorithms, such as to aerosol retrieval over land from Moderate Resolution Imaging Spectroradiometer. Independent direct-Sun AERONET observations of spectral aerosol optical depth (τ) are consistent the spectral dependence of the models, indicating that our derived aerosol models are relevant.

  17. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  18. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  19. Microorganisms and Man.

    ERIC Educational Resources Information Center

    Noble, W. C.

    1983-01-01

    Provides information to update Institute of Biology's Studies in Biology No. 111, "Microorganisms and Man," by W. C. Noble and Jay Naidoo (Edward Arnold, 1979). Topics include: (1) food poisoning; (2) airborn infections in man; (3) infection in animals and plants; and (4) biodegradation and biosynthesis. (JN)

  20. Man's Role in Nature

    ERIC Educational Resources Information Center

    Peterson, Roger Tory

    1975-01-01

    Presents a viewpoint that the civilized man, the humane man, accepts not only the humane ethic but also the conservationist's philosophy and the environmentalist's point of view because all these views are overlapping, interlocking and essential to a better and more civilized world. (BR)

  1. The Green Man

    ERIC Educational Resources Information Center

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  2. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Technical Reports Server (NTRS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  3. Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Várnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; O'Connor, E. J.; Knyazikhin, Y.; Wiscombe, W. J.

    2012-11-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m-2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8 μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m-2 at the ARM Oklahoma site during 2007-2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  4. Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Várnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; O'Connor, E. J.; Knyazikhin, Y.; Wiscombe, W. J.

    2012-08-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m-2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8 μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m-2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5 min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  5. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  6. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  7. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of

  8. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  9. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  10. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    materials determine the range of applicability of each method. A useful microencapsulation method, based on coagulation by inertial force was developed...The generation apparatus, consisting of two aerosol generators in series, was utilized to produce many kinds of microcapsules . A fluid energy mill...was found useful for the production of some microcapsules . The permeability of microcapsule films and the effect of exposure time and humidity were

  11. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  12. Manned systems technology discipline

    NASA Technical Reports Server (NTRS)

    Bretoi, Remus

    1990-01-01

    Viewgraphs on manned systems technology discipline for Space Station Freedom are presented. Topics covered include: crew-systems interfaces and interactions; crew training; on-board systems maintenance and support; habitability and environment; and computational human factors.

  13. Filming The Man Hunters

    ERIC Educational Resources Information Center

    Hockings, Paul

    1976-01-01

    "The Man Hunters" is a film about paleoanthropology. This article is a personal account of how the film was put together using anthropological knowledge and numerous anthropologists and how the film was received by the American public. (Author)

  14. Manned engineering test satellites

    NASA Astrophysics Data System (ADS)

    Seko, Hiromi; Satou, Masao; Tomoeda, Hisao; Obara, Hiroaki; Oomura, Katsutoshi

    1992-07-01

    An overview of the conceptual design of manned engineering satellites is presented. The mission scenarios for developing manned engineering satellites involve: (1) selecting mission equipment to enable preferential development and validation of mandatory technologies among those for Environmental Control and Life Support System (ECLSS); (2) selecting mission equipment to enable development and validation of independent domestic technologies as well as utilizing to the utmost the manned space technology acquired through the Japanese Experimental Module (JEM); and (3) installing the most effective mission on the basis of relationships with Extravehicular Activity (EVA), robot, and retrieval-type spacecraft technologies, and trends of overseas manned space technology. The results of reviews on the system and subsystems, such as attitude and orbit control, structure, thermal control, electric power, communication, and data processing subsystems are outlined. The results of reviews on the structure, weight, and reentry phase operation are presented.

  15. Type of Aerosols Determination Over Malaysia by AERONET Data

    NASA Astrophysics Data System (ADS)

    Lim, H.; Tan, F.; Abdullah, K.; Holben, B. N.

    2013-12-01

    Aerosols are one of the most interesting studies by the researchers due to the complicated of their characteristic and are not yet well quantified. Besides that there still have huge uncertainties associated with changes in Earth's radiation budget. The previous study by other researchers shown a lot of difficulties and challenges in quantifying aerosol influences arise. As well as the heterogeneity from the aerosol loading and properties: spatial, temporal, size, and composition. In this study, we were investigated the aerosol characteristics over two regions with different environmental conditions and aerosol sources contributed. The study sites are Penang and Kuching, Malaysia where ground-based AErosol RObotic NETwork (AERONET) sun-photometer was deployed. The types of the aerosols for both study sites were identified by analyzing aerosol optical depth, angstrom parameter and spectral de-convolution algorithm product from sun-photometer. The analysis was carried out associated with the in-situ meteorological data of relative humidity, visibility and air pollution index. The major aerosol type over Penang found in this study was hydrophobic aerosols. Whereas the hydrophilic type of the aerosols was highly distributed in Kuching. The major aerosol size distributions for both regions were identified in this study. The result also shows that the aerosol optical properties were affected by the types and characteristic of aerosols. Therefore, in this study we generated an algorithm to determine the aerosols in Malaysia by considered the environmental factors. From this study we found that the source of aerosols should always being consider in to retrieve the accurate information of aerosol for air quality study.

  16. Use of IPsec by Manned Space Missions

    NASA Technical Reports Server (NTRS)

    Pajevski, Michael J.

    2009-01-01

    NASA's Constellation Program is developing its next generation manned space systems for missions to the International Space Station (ISS) and the Moon. The Program is embarking on a path towards standards based Internet Protocol (IP) networking for space systems communication. The IP based communications will be paired with industry standard security mechanisms such as Internet Protocol Security (IPsec) to ensure the integrity of information exchanges and prevent unauthorized release of sensitive information in-transit. IPsec has been tested in simulations on the ground and on at least one Earth orbiting satellite, but the technology is still unproven in manned space mission situations and significant obstacles remain.

  17. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  18. Glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) metabolism computational network analysis between chimpanzee and human left cerebrum.

    PubMed

    Sun, Lingjun; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Lin, Hong

    2011-12-01

    We identified significantly higher expression of the genes glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) from human left cerebrums versus chimpanzees. Yet the distinct low- and high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism networks between chimpanzee and human left cerebrum remain to be elucidated. Here, we constructed low- and high-expression activated and inhibited upstream and downstream AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network between chimpanzee and human left cerebrum in GEO data set by gene regulatory network inference method based on linear programming and decomposition procedure, under covering AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 pathway and matching metabolism enrichment analysis by CapitalBio MAS 3.0 integration of public databases, including Gene Ontology, KEGG, BioCarta, GenMapp, Intact, UniGene, OMIM, etc. Our results show that the AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network has more activated and less inhibited molecules in chimpanzee, but less activated and more inhibited in the human left cerebrum. We inferred stronger carbohydrate, glutathione and proteoglycan metabolism, ATPase activity, but weaker base excision repair, arachidonic acid and drug metabolism as a result of inducing cell growth in low-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of chimpanzee left cerebrum; whereas stronger lipid metabolism, amino acid catabolism, DNA repair but weaker inflammatory response, cell proliferation, glutathione and carbohydrate metabolism as a result of inducing cell differentiation in high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of human left cerebrum. Our inferences are consistent with recent reports and computational activation and inhibition gene number patterns, respectively.

  19. Man-systems integration and the man-machine interface

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1990-01-01

    Viewgraphs on man-systems integration and the man-machine interface are presented. Man-systems integration applies the systems' approach to the integration of the user and the machine to form an effective, symbiotic Man-Machine System (MMS). A MMS is a combination of one or more human beings and one or more physical components that are integrated through the common purpose of achieving some objective. The human operator interacts with the system through the Man-Machine Interface (MMI).

  20. Seasonality of Aerosols the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Ford, B. J.; Heald, C. L.

    2012-12-01

    Previous studies have suggested that increases in atmospheric aerosols of biogenic origin may have caused regional cooling over the southeastern United States in recent decades. Understanding the sources and behaviors of these aerosols is important for determining their role in a changing climate and managing their air quality impacts. In this study, we investigate the strong seasonality in aerosol optical depth (AOD) observed by MODIS, MISR, and CALIOP instruments over the southeastern United States and show that this is not simulated by a chemical transport model (GEOS-Chem). However, the model does reproduce surface PM 2.5 concentrations in the region as reported by the IMPROVE and Southeastern Aerosol Research and Characterization (SEARCH) networks, as well as the muted seasonality of these concentrations. In addition, these surface measurements show that organic aerosol makes up a small fraction of total PM 2.5 and has relatively little seasonality, which calls into question the importance of biogenic aerosol as a driver for climate change in the region. Sounding profiles and ground observations of relative humidity suggest that the magnitude of seasonality in AOD cannot be explained by seasonal differences in the hygroscopic growth of aerosols. CALIOP measurements of the vertical profile of aerosol extinction confirm that the likely reconciliation of the differences in seasonality between the surface PM 2.5 and AOD observations is the formation of aerosol aloft, a process not captured by the model. These findings provide initial insights for the Southern Oxidant and Aerosol Study (SOAS) campaign in 2013 which aims to investigate the anthropogenic influence on biogenic aerosol formation in the Southeastern US and elucidate the impact on regional climate and air quality.

  1. Overview of atmospheric aerosol studies in Malaysia: Known and unknown

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi Devi; Kaskaoutis, Dimitris G.; San Lim, Hwee; Latif, Mohd Talib; Kamarul Zaman, Nurul Amalin Fatihah; Liew, Juneng

    2016-12-01

    Atmospheric aerosols particularly those originated from anthropogenic sources can affect human health, air quality and the regional climate system of Southeast Asia (SEA). Population growth, and rapid urbanization associated with economic development in the SEA countries including Malaysia have resulted in high aerosol concentrations. Moreover, transboundary smoke plumes add more aerosols to the atmosphere in Malaysia. Nevertheless, the aerosol monitoring networks and/or field studies and research campaigns investigating the various aerosol properties are not so widespread over Malaysia. In the present work, we summarize and discuss the results of previous studies that investigated the aerosol properties over Malaysia by means of various instrumentation and techniques, focusing on the use of remote sensing data to examine atmospheric aerosols. Furthermore, we identify gaps in this research field and recommend further studies to bridge these knowledge gaps. More specifically gaps are identified in (i) monitoring aerosol loading and composition over urban areas, (ii) examining the influence of dust, (iii) assessing radiative effects of aerosols, (iv) measuring and modelling fine particles and (v) quantifying the contribution of long range transport of aerosols. Such studies are crucial for understanding the optical, physical and chemical properties of aerosols and their spatio-temporal characteristics over the region, which are useful for modelling and prediction of aerosols' effects on air quality and climate system.

  2. Symbolism in prehistoric man.

    PubMed

    Facchini, F

    2000-12-01

    The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.

  3. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    Sea (SEVA). The purpose of the SEVA project is to perform this kind of analyses using variety of methods of measurements (three measuring devices -MICROTOPS, Shadowband, CIMEL), using data from the Baltic's AERONET NASA stations. For the analyzes are also used the results of measurements made on board the R/V Oceania within the Maritime Aerosol Network (MAN). In order to obtain a complete picture of the seasonal variability of atmospheric aerosol properties over the Baltic Sea, analyses of air mass back-trajectories and wind fields are also taken into consideration. The final step of the analyses will involve the comparison with satellite data from MODIS model. Such a comprehensive and innovative range of research will provide the necessary information on the phenomenon of the impact of aerosols on the climate of the Baltic Sea. Acknowledgments: The support for this study was provided by the POLAND-AOD network and the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

  4. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  5. Estimation of the spatial validity of local aerosol measurements in Europe using MODIS data

    NASA Astrophysics Data System (ADS)

    Marcos, Carlos; Gómez-Amo, J. Luis; Pedrós, Roberto; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    (R ? -log(r)). Among all the factors studied, the aerosol load is the most influential one in the aerosol spatial variability: for averaging radii smaller than 40 km, the RMSD increases with AODloc. Another important factor is the latitude and longitude: the variation of the RMSD in the AOD with regard to the averaging radius can differ up to a 60%, depending on the location. On the contray, the proximity to the sea and the amount of population surrounding each reference point do not have a noticeable influence compared to the above mentioned factors. Holben, B. N., Eck, T. F., Slutsker, I., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., and Smirnov, A.: AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1-16, 1998. IPCC (2007). S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK & New York, USA. Remer, L. A., y co-authors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947-973. doi: http://dx.doi.org/10.1175/JAS3385.1

  6. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  7. AUTO PARTS MAN, WORKBOOK.

    ERIC Educational Resources Information Center

    DOVER, BUEL H.

    THE INFORMATION IN THIS STUDY GUIDE WAS DEVELOPED FOR USE IN THE RELATED TECHNICAL CLASSROOM INSTRUCTION PHASE OF THE AUTO PARTS MAN APPRENTICE TRAINING PROGRAM. THE MATERIAL WAS PLANNED UNDER THE DIRECTION OF THE STATE EDUCATIONAL ADVISORY COMMITTEE FOR THE AUTOMOTIVE TRADE. THE UNITS ARE (1) SCOPE AND OPPORTUNITY, (2) AREAS OF RESPONSIBILITY,…

  8. Man--Society--Technology.

    ERIC Educational Resources Information Center

    Taxis, Linda A., Ed.

    The 32nd annual American Industrial Arts Association (AIAA) Convention was held in Louisville in 1970. Topics for the AIAA general session addresses were: (1) "Industrial Arts--The Blender Between Social Form and Technical Function," (2) "Technology and Society: Present and Future Challenges," (3) "A Student-Oriented Industrial Arts," (4) "Man:…

  9. Eskimo Medicine Man.

    ERIC Educational Resources Information Center

    George, Otto

    "Eskimo Medicine Man" is a record of primitive Alaskan life in the 1930's. It records the experiences in Alaska's remote areas of Dr. Otto George, the last "traveling physician" for the Department of Interior's Indian Service, when in all the territory (an area one-fifth that of the contiguous United States) there were fewer…

  10. Reference Man anatomical model

    SciTech Connect

    Cristy, M.

    1994-10-01

    The 70-kg Standard Man or Reference Man has been used in physiological models since at least the 1920s to represent adult males. It came into use in radiation protection in the late 1940s and was developed extensively during the 1950s and used by the International Commission on Radiological Protection (ICRP) in its Publication 2 in 1959. The current Reference Man for Purposes of Radiation Protection is a monumental book published in 1975 by the ICRP as ICRP Publication 23. It has a wealth of information useful for radiation dosimetry, including anatomical and physiological data, gross and elemental composition of the body and organs and tissues of the body. The anatomical data includes specified reference values for an adult male and an adult female. Other reference values are primarily for the adult male. The anatomical data include much data on fetuses and children, although reference values are not established. There is an ICRP task group currently working on revising selected parts of the Reference Man document.

  11. Man as a Species.

    ERIC Educational Resources Information Center

    Solem, Alan; And Others

    Written in 1964, the document represents experimental material of the Anthropology Curriculum Study Project. The objectives of the project were to discuss the evolution of man as distinguished from the evolution of other species and as related to culture, and to emphasize human diversity. Three brief essays are presented. The first, "The…

  12. Why Man Explores

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This NASA Educational Publication was prepared from a transcript of a panel discussion held on July 2, 1976, in conjunction with the Viking Missions to Mars. The members of the Why Man Explores panel were selected as authorities in classical disciplines relating to exploration.

  13. Landing A Man Downtown

    ERIC Educational Resources Information Center

    Waters, W. G., II

    1973-01-01

    Analyzes the urban transport problems in comparison with those involved in a journey to the Moon. Indicates that the problem of enabling man to travel through the inner space of conurbations may prove to be more difficult than the transport problem of space travel. (CC)

  14. Ethology and Man

    ERIC Educational Resources Information Center

    Biology and Human Affairs, 1971

    1971-01-01

    Reviews four texts and compilations of papers in an effort to assess the relevance of animal behavior studies to anthropology and sociology. Concludes that where a basic element of behavior occurs widely throughout the animal kingdom, especially in the higher mammals and primates, we may expect to find a manifestation in man." Limitations of the…

  15. The Ascent of Man

    ERIC Educational Resources Information Center

    Rein, Martin

    1975-01-01

    Miami-Dade Community College (Florida) and the University of California at San Diego have developed an educational package, consisting of a study guide and two books, to complement Jacob Bronowski's"Ascent of Man" series on national television. This educational package allows colleges to offer courses based on the television broadcasts.…

  16. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  17. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  18. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  19. Man's future in space

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1975-01-01

    Studies evaluating potential operational and commercial uses of space are being conducted, taking into account astronomy, astrophysics, manned bases and laboratories in earth orbit, space colonization, terrestrial communications, space processing and manufacturing, interstellar probes, planetary exploration, and the use of space for terrestrial energy supply. The present status in the exploration of the solar system is examined, giving attention to Jupiter, Venus, Mars, and Mercury. A brief outline of the development of human colonies on Mars is presented.

  20. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  1. Typhoon Man-Yi

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Typhoon Man-Yi was pummeling the Japanese island of Okinawa with winds between 230 and 295 kilometers per hour (125-160 knots, 144-184 miles per hour) and heavy rain on the morning of July 13, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. The immense storm covered hundreds of kilometers with spiraling bands of thunderstorms, though it had lost the distinctive cloud-free eye it exhibited the day before. Typhoons are common in Japan, but powerful typhoons usually strike the island nation later in the year. The Japan Meteorological Agency said that Man-Yi is the fourth typhoon of the 2007 season and may be the most powerful ever observed in the northwest Pacific in July, reported Kyodo News. The Joint Typhoon Warning Center expected the typhoon to strike Kyushu, a southern Japanese island, on July 14, and then curve northeast along the eastern shore of Japan. By the time the storm reaches Tokyo on July 15, it should be degraded to a tropical storm. As of July 13, Typhoon Man-Yi had injured eight and flooded twenty houses in Okinawa, and forced airlines to cancel hundreds of flights, said Kyodo News. The storm was expected to bring heavy rain to Japan's Pacific coast. NASA image created by Jesse Allen, using data provided courtesy of the MODIS Rapid Response team.

  2. Internet Protocol-Hybrid Opto-Electronic Ring Network (IP-HORNET): A Novel Internet Protocol-Over-Wavelength Division Multiplexing (IP-Over-WDM) Multiple-Access Metropolitan Area Network (MAN)

    DTIC Science & Technology

    2003-04-01

    components and the W photonic receivers make the design impractical for a metro network. . . . . . . . . . . . . . . . 70 2.28 Functional block diagram...data to send to a particular destination node, the corresponding TDM slots will go unused, even if another could make use of the extra bandwidth...channel makes the MAC protocol ideal for small, fixed-sized packets. However, Internetworking Protocol (IP) packets are inherently variable in size. Figure

  3. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  4. Global Aerosol Remote Sensing from MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration

  5. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    MILAGRO, 2008 ISDAC, 2008 VOCALS, 2010 CARES, and 2010 CalNex campaigns, have been incorporated into the AMT as testbed cases. Data from operational networks (e.g. air quality, meteorology, satellite) are also included in the testbed cases to supplement the field campaign data. The CARES and CalNex testbed cases are used to demonstrate how the AMT can be used to assess the strengths and weaknesses of simple and complex representations of aerosol processes in relation to computational cost. Anticipated enhancements to the AMT and how this type of testbed can be used by the scientific community to foster collaborations and coordinate aerosol modeling research will also be discussed.

  6. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  7. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. The auditory neural network in man

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1975-01-01

    The principles of anatomy and physiology necessary for understanding brain wave recordings made from the scalp are briefly discussed. Brain waves evoked by sounds are then described and certain of their features are related to the physical aspects of the stimulus and the psychological state of the listener. It is proposed that data obtained through probes located outside the head can reveal a large amount of detail about brain activity. It is argued that analysis of such records enables one to detect the response of the nervous system to an acoustic message at the moment of its inception at the ear, and to follow the progress of the acoustic message up through the various brain levels as progressively more complex operations are performed upon it. Even those brain events responsible for the highest level of signal processing - distinguishing between similar signals and making decisions about them - seem to generate characteristic and identifiable electrical waves.

  11. The auditory neural network in man

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1975-01-01

    The principles of anatomy and physiology necessary for understanding brain wave recordings made from the scalp of normal people are briefly discussed. Brain waves evoked by sounds are described and certain of their features are related to the physical aspects of the stimulus and to the psychological state of the listener. The position is taken that data obtained through scalp probes can reveal a large amount of detail about brain functioning and that analysis of such records enable detection of the response of the nervous system to an acoustic message at the moment of its inception and to the progress of the message through the brain. Brain events responsible for distinguishing between similar signals and making decisions about them appear to generate characteristic and identifiable electrical waves. Some theoretical speculation about these data are introduced with the aim of generating a more heuristic model of the functioning brain.

  12. Distributed Beamforming in Man Portable Communication Networks

    DTIC Science & Technology

    2007-12-01

    to transmit images, files , reports, etc. As PRRs operate at low power and high frequencies, there are significant constraints in communications...should be able to provide reliable communications at all time for the commander and his soldiers executing missions in different weather conditions...2 04 2 t EPW rπ η = = (3-2) where 4πr2 is the surface area of a sphere of radius r and E is the electric field

  13. Aerosols of Mongolian arid area

    NASA Astrophysics Data System (ADS)

    Golobokova, L.; Marinayte, I.; Zhamsueva, G.

    2012-04-01

    Sampling was performed in July-August 2005-2010 at Station Sain Shand (44°54'N, 110°07'E) in the Gobi desert (1000 m a.s.l.), West Mongolia. Aerosol samples were collected with a high volume sampler PM 10 (Andersen Instruments Inc., USA) onto Whatman-41 filters. The substance was extracted from the filters by de-ionized water. The solution was screened through an acetate-cellulose filter with 0.2 micron pore size. Ions of ammonium, sodium, potassium, magnesium, and calcium, as well as sulphate ions, nitrate ions, hydrocarbonate, chloride ions were determined in the filtrate by means of an atomic adsorption spectrometer Carl Zeiss Jena (Germany), a high performance liquid chromatographer «Milichrome A-02» (Russia), and an ionic chromatographer ICS-3000 (Dionex, USA). The PAH fraction was separated from aerosol samples using hexane extraction at room temperature under UV environment. The extract was concentrated to 0.1-0.2 ml and analysed by a mass-spectrometer "Agilent, GC 6890, MSD 5973 Network". Analysis of concentrations of aerosols components, their correlation ratios, and meteorological modeling show that the main factor affecting chemical composition of aerosols is a flow of contaminants transferred by air masses to the sampling area mainly from the south and south-east, as well as wind conditions of the area, dust storms in particular. Sulphate, nitrate, and ammonium are major ions in aerosol particles at Station Sain Shand. Dust-borne aerosol is known to be a sorbent for both mineral and organic admixtures. Polycyclic aromatic hydrocarbons (PAH) being among superecotoxicants play an important role among resistant organic substances. PAH concentrations were determined in the samples collected in 2010. All aerosol samples contained dominant PAHs with 5-6 benzene rings ( (benze(k)fluoranthen, benze(b)flouranthen, benze(a)pyren, benze(?)pyren, perylene, benze(g,h,i)perylene, and indene(1,2,3-c,d)pyrene). Their total quantity varied between 42 and 90

  14. Information Content of Aerosol Retrievals in the Sunglint Region

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  15. Manned Venus Orbiting Mission

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1967-01-01

    Manned orbiting stopover round trips to Venus are studied for departure dates between 1975 and 1986 over a range of trip times and stay times. The use of highly elliptic parking orbits at Venus leads to low initial weights in Earth orbit compared with circular orbits. For the elliptic parking orbit, the effect of constraints on the low altitude observation time on the initial weight is shown. The mission can be accomplished with the Apollo level of chemical propulsion, but advanced chemical or nuclear propulsion can give large weight reductions. The Venus orbiting mission weights than the corresponding Mars mission.

  16. Man and his spaceships

    PubMed Central

    Siefert, Janet L.

    2012-01-01

    The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization. PMID:23481263

  17. Does the Madden-Julian Oscillation influence aerosol variability?

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Waliser, Duane E.; Kahn, Ralph A.; Li, Qinbin; Yung, Yuk L.; Tyranowski, Tomasz; Geogdzhayev, Igor V.; Mishchenko, Michael I.; Torres, Omar; Smirnov, Alexander

    2008-06-01

    We investigate the modulation of aerosols by the Madden-Julian Oscillation (MJO) using multiple, global satellite aerosol products: aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, and aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites. A composite MJO analysis indicates that large variations in the TOMS AI and MODIS/AVHRR AOT are found over the equatorial Indian and western Pacific Oceans where MJO convection is active, as well as the tropical Africa and Atlantic Ocean where MJO convection is weak but the background aerosol level is high. A strong inverse linear relationship between the TOMS AI and rainfall anomalies, but a weaker, less coherent positive correlation between the MODIS/AVHRR AOT and rainfall anomalies, were found. The MODIS/AVHRR pattern is consistent with ground-based Aerosol Robotic Network data. These results indicate that the MJO and its associated cloudiness, rainfall, and circulation variability systematically influence the variability in remote sensing aerosol retrieval results. Several physical and retrieval algorithmic factors that may contribute to the observed aerosol-rainfall relationships are discussed. Preliminary analysis indicates that cloud contamination in the aerosol retrievals is likely to be a major contributor to the observed relationships, although we cannot exclude possible contributions from other physical mechanisms. Future research is needed to fully understand these complex aerosol-rainfall relationships.

  18. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  19. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    NASA Astrophysics Data System (ADS)

    Pye, Havala O. T.; Murphy, Benjamin N.; Xu, Lu; Ng, Nga L.; Carlton, Annmarie G.; Guo, Hongyu; Weber, Rodney; Vasilakos, Petros; Wyat Appel, K.; Hapsari Budisulistiorini, Sri; Surratt, Jason D.; Nenes, Athanasios; Hu, Weiwei; Jimenez, Jose L.; Isaacman-VanWertz, Gabriel; Misztal, Pawel K.; Goldstein, Allen H.

    2017-01-01

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM / OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM / OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM / OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model-measurement gap. When taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from

  20. Mars manned transportation vehicle

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Faymon, Karl A.

    1987-01-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  1. The manned space station

    NASA Astrophysics Data System (ADS)

    Kovit, B.

    The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.

  2. Mars manned transportation vehicle

    SciTech Connect

    Perez-Davis, M.E.; Faymon, K.A.

    1987-07-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  3. Solutions Network Formulation Report. Aerosol Polarimetry Sensor Measurements of Diffuse-to-Global Irradiance Ratio for Improved Forecasting of Plant Productivity and Health

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Studies have shown that vegetation is directly sensitive to changes in the diffuse-to-global irradiance ratio and that increased percentage of diffuse irradiation can accelerate photosynthesis. Therefore, measurements of diffuse versus global irradiance could be useful for monitoring crop productivity and overall vegetative health as they relate to the total amount of particulates in the air that result from natural disasters or anthropogenic (manmade) causes. While the components of solar irradiance are measured by satellite and surface sensors and calculated with atmospheric models, disagreement exists between the results, creating a need for more accurate and comprehensive retrievals of atmospheric aerosol parameters. Two satellite sensors--APS and VIIRS--show promise for retrieving aerosol properties at an unprecedented level of accuracy. APS is expected to be launched in December 2008. The planned launch date for VIIRS onboard NPP is September 2009. Identified partners include the USDA s ARS, North Carolina State University, Purdue Climate Change Research Center, and the Cooperative Institute for Research in the Atmosphere at Colorado State University. Although at present no formal DSSs (decision support systems) require accurate values of diffuse-to-global irradiance, this parameter is sufficiently important that models are being developed that will incorporate these measurements. This candidate solution is aligned with the Agricultural Efficiency and Air Quality National Applications.

  4. Lightning activity and aerosols over the Mediterranean

    NASA Astrophysics Data System (ADS)

    Proestakis, Emmanouil; Kazadzis, Stelios; Kotroni, Vassiliki; Lagouvardos, Kostas; Kazantzidis, Andreas

    2015-04-01

    Lightning activity has received extended scientific attention over the past decades. Several international studies on lightning activity and initiation mechanisms have related the increased aerosol concentrations to lightning enhancement. In the frame of TALOS project, we investigated the effect of aerosols on lightning activity over the Mediterranean Sea. Cloud to ground lightning activity data from ZEUS lightning detection network operated and maintained by the National Observatory of Athens, were used along with atmospheric optical depth (AOD) data retrieved by MODIS, on board Aqua satellite. The analysis covers a period of nine years, spanning from 2005 up to 2013. The results show the importance of aerosols in lightning initiation and enhancement. It is shown that the mean AOD of the days with lightning activity per season is larger than the mean seasonal AOD in 90% of the under study domain. Furthermore, lightning activity increase with increasing aerosol loading was found to be more pronounced during summertime and for atmospheric optical depth values up to 0.4. Additionally, during summertime, the spatial analysis showed that the percentage of days with lightning activity is increasing with increasing aerosol loading. Finally, time series for the period 2005-2013 of the days with lightning activity and AOD differences showed similar temporal behavior. Overall, both the spatial and temporal analysis showed that lightning activity is correlated to aerosol loading and that this characteristic is consistent for all seasons.

  5. The Nature of Man and Its Implications.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Gregory, Lura N.

    The many problems presented by the nature of man and in studying man are the focus of this paper which attempts to place these problems in perspective in terms of the past and future. The enigma facing man, that man must study man, is related in an introduction. Freud's, Adler's, and Jung's developments in the study of the nature of man are…

  6. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  7. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    the consistency of EarthCARE retrievals, to support aerosol description in the EarthCARE simulator ECSIM, and to facilitate a uniform specification of broad-band aerosol optical properties, a hybrid end-to-end aerosol classification model (HETEAC) is developed which serves as a baseline for EarthCARE algorithm development and evaluation procedures. The model's theoretical description of aerosol microphysics (bi-modal size distribution, spectral refractive index, and particle shape distribution) is adjusted to experimental data of aerosol optical properties, i.e. lidar ratio, depolarization ratio, Ångström exponents (hybrid approach). The experimental basis is provided by ground-based observations with sophisticated multi-wavelength, polarization lidars applied in the European Aerosol Research Lidar Network (EARLINET) and in dedicated field campaigns in the Sahara (SAMUM-1), Cape Verde (SAMUM-2), Barbados (SALTRACE), Atlantic Ocean (Polarstern and Meteor cruises), and Amazonia. The model is designed such that it covers the entire loop from aerosol microphysics via aerosol classification to optical and radiative properties of the respective types and allows consistency checks of modeled and measured parameters (end-to-end approach). Optical modeling considers scattering properties of spherical and non-spherical particles. A suitable set of aerosol types is defined which includes dust, clean marine, clean continental, pollution, smoke, and stratospheric aerosol. Mixtures of these types are included as well. The definition is consistent with CALIPSO approaches and will thus enable the establishment of a long-term global four-dimensional aerosol dataset.

  8. Aerosol climate time series from ESA Aerosol_cci (Invited)

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  9. Columnar aerosol characterization over Scandinavia and Svalbard

    NASA Astrophysics Data System (ADS)

    Toledano, C.; Cachorro, V. E.; Ortiz de Galisteo, J. P.; Bennouna, Y.; Berjón, A.; Torres, B.; Fuertes, D.; González, R.; de Frutos, A. M.

    2013-05-01

    An overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard was provided by Toledano et al. (2012) thanks to the collaborative effort of various research groups from different countries that maintain a number of observation sites in the European Arctic and sub-Arctic regions. The spatial coverage of this kind of data has remarkably improved in the last years, thanks, among other things, to projects carried out within the framework of the International Polar Year 2007-08. The data from a set of operational sun photometer sites belonging either to national or international measurement networks (AERONET, GAW-PFR) were evaluated. The direct sun observations provided spectral aerosol optical depth (AOD) and Ångström exponent (AE), that are parameters with sufficient long-term records for a first characterization at all sites. At the AERONET sites, microphysical properties derived from inversion of sun-sky radiance data were also examined. AOD (500nm) ranged from 0.08 to 0.10 in Arctic and sub-Arctic sites whereas the aerosol load was higher in more populated areas in Southern Scandinavia (average AOD about 0.10-0.12 at 500 nm). On the Norwegian coast, aerosols showed larger mean size than in continental areas. Columnar particle size distributions and related parameters were used to evaluate aerosol volume efficiencies. The aerosol optical depth characterization revealed that the seasonal patterns in the high Arctic (with the typical hazy spring), in the sub-Arctic region and Southern Scandinavia are all different. The clean continental, polluted continental and maritime aerosols constitute the three main aerosol types, although persistent (Asian) dust was also detected in Svalbard.

  10. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-11-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ˜ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ˜ 51, ˜ 34 and ˜ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ˜ 40, ˜ 34 and ˜ 26 % of the total AOD550 over the sea, based on

  11. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  12. It's a Sooty Problem: Black Carbon and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.

  13. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    ERIC Educational Resources Information Center

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  14. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  15. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  16. Aerosol, radiation, and climate

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1983-01-01

    Airborne, spaceborne, and ground-based measurements are used to study the radiative and climatic effects of aerosols. The data, which are modelled with a hierarchy of radiation and climate models, and their implications are summarized. Consideration is given to volcanic aerosols, polar stratospheric clouds, and the Arctic haze. It is shown that several types of aerosols (volcanic particles and the Arctic haze) cause significant alterations to the radiation budget of the regions where they are located.

  17. Does the Madden-Julian Oscillation Influence Aerosol Variability?

    NASA Astrophysics Data System (ADS)

    Tian, B.; Waliser, D. E.; Kahn, R. A.; Li, Q.; Yung, Y. L.; Tyranowski, T.; Geogdzhayev, I. V.; Mishchenko, M. I.; Torres, O.; Smirnov, A.

    2007-12-01

    We investigate the modulation of aerosols by the Madden-Julian Oscillation (MJO) using satellite-based global aerosol products, including aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, and aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites. A composite analysis is performed for boreal winter, and the global pentad rainfall data from the NOAA Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) are used to identify MJO events. The MJO composites exhibit large variations in the TOMS AI and MODIS/AVHRR AOT over the equatorial Indian and western Pacific Oceans where MJO convection is active, as well as the tropical Africa and Atlantic Ocean where MJO convection is relatively weak but the background aerosol level is relatively high. A strong inverse linear relationship between the TOMS AI and rainfall anomalies, but a weaker, less coherent positive correlation between the MODIS/AVHRR AOT and rainfall anomalies, were found. The Aerosol Robotic Network AOT pattern at Kaashidoo (73.5°E, 4.9°N) and Nauru (167°E, 0.5°S) is more consistent with MODIS and AVHRR. These results indicate a connection between the MJO, its associated rainfall and circulation variability, and the observed aerosol variations. Several physical and non-physical factors that may contribute to the observed aerosol-rainfall relationship, such as aerosol humidification effect, wet deposition, surface wind speed, phytoplankton, different sensor sensitivities (absorbing versus non-absorbing aerosols and upper versus lower tropospheric aerosols), sampling issue, and cloud contamination, are discussed. However, a clear causal explanation for the observed patterns remains elusive. Further investigation is needed to unravel this complex aerosol-rainfall relationship.

  18. History of Manned Space Flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    U.S. manned space projects from Mercury Redstone 3 through Skylab 4 are briefly described including dates, flight duration, crew, and number of earth/moon orbits. The flight costs of each project are itemized. Highlights in the history of the manned space program from 1957 to February, 1974 are included.

  19. Stellar map of neolithic man

    NASA Technical Reports Server (NTRS)

    Pskovskiy, Y. P.

    1978-01-01

    Observations made by ancient man are of great interest to present day astronomers. Drawings made by neolithic man in caves show a surprising sense of perspective. The discoveries in the Fern Grotto in California are of special interest. Photographs of cave drawings are included.

  20. Man in a Changing World.

    ERIC Educational Resources Information Center

    Fairfax County Schools, VA.

    The sixth level of the social studies curriculum (Fairfax County Public Schools, Virginia), "Man in a Changing World," is designed to maintain a balance between the study of concepts and the development of inquiry skills. Emphasis is given to the role of individual man in several social settings, past and present, Western and non-Western. The…

  1. Jerking stiff-man syndrome.

    PubMed Central

    Alberca, R; Romero, M; Chaparro, J

    1982-01-01

    A female patient had permanent axial muscular rigidity similar to the "stiff-man syndrome", together with axial myoclonus triggered by stretch reflexes and by supramaximal stimulation of the supraorbital nerve. The disorder responded to treatment with diazepam and baclofen. This disorder bore a marked similarity to the so-called "jerking stiff-man syndrome". PMID:7161612

  2. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  3. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  4. Parameter sensitivity study of Arctic aerosol vertical distribution in CAM5

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Flanner, M.

    2015-12-01

    Arctic surface temperature response to light-absorbing aerosols (black carbon, brown carbon and dust) depends strongly on their vertical distributions. Improving model simulations of three dimensional aerosol fields in the remote Arctic region will therefore lead to improved projections of the climate change caused by aerosol emissions. In this study, we investigate how different physical parameterizations in the Community Atmosphere Model version 5 (CAM5) influence the simulated vertical distribution of Arctic aerosols. We design experiments to test the sensitivity of the simulated aerosol fields to perturbations of selected aerosol process-related parameters in the Modal Aerosol Module with seven lognormal modes (MAM7), such as those govern aerosol aging, in-cloud and below-cloud scavenging, aerosol hygroscopicity and so on. The simulations are compared with observed aerosol vertical distributions and total optical depth to assess model performance and quantify uncertainties associated with these model parameterizations. Observations applied here include Arctic aircraft measurements of black carbon and sulfate vertical profiles, along with Aerosol Robotic Network (AERONET) optical depth measurements. We also assess the utility of using High Spectral Resolution Lidar (HSRL) measurements from the ARM Barrow site to infer vertical profiles of aerosol extinction. The sensitivity study explored here will provide guidance for optimizing global aerosol simulations.

  5. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  6. Light in man's environment

    PubMed Central

    Marshall, J

    2016-01-01

    Light in the form of solar radiation influenced early civilisations and resulted in the independent development of a number of sun-worshipping dieties. These were of particular importance as hunter gatherers transformed into settled agricultural societies. All artificial light sources were synonymous with fire, and early civilisations began to expand their visual day by burning brands, oil, and candles. Fire-based light sources extended for thousands of years and were still present in the era of gas lighting. Light meant fire risk. The advent of incandescent bulbs and the era of electric lighting really only expanded in the early part of the twentieth century. Fluorescent lighting became available in the 1940s, and today the drive for low energy has resulted in a plethora of novel light sources—in particular, light-emitting diodes (LEDs). Evolution governed the development of the eye in relation to roughly 12 h of light gradually changing to 12 h of darkness. Today almost daylight levels can be achieved abruptly at the flick of a switch. Many studies have demonstrated the spectral dependence of eye health, with the retinal hazard zone associated with wavelengths in the blue, peaking at 441 nm— many of today's low-energy sources peak in this region. Given the increased longevity and artificial light sources emitting at biologically unfriendly wavelengths, attention has to be directed towards light in man's environment as a risk factor in age-related ocular diseases. PMID:26742864

  7. Light in man's environment.

    PubMed

    Marshall, J

    2016-02-01

    Light in the form of solar radiation influenced early civilisations and resulted in the independent development of a number of sun-worshipping dieties. These were of particular importance as hunter gatherers transformed into settled agricultural societies. All artificial light sources were synonymous with fire, and early civilisations began to expand their visual day by burning brands, oil, and candles. Fire-based light sources extended for thousands of years and were still present in the era of gas lighting. Light meant fire risk. The advent of incandescent bulbs and the era of electric lighting really only expanded in the early part of the twentieth century. Fluorescent lighting became available in the 1940s, and today the drive for low energy has resulted in a plethora of novel light sources-in particular, light-emitting diodes (LEDs). Evolution governed the development of the eye in relation to roughly 12 h of light gradually changing to 12 h of darkness. Today almost daylight levels can be achieved abruptly at the flick of a switch. Many studies have demonstrated the spectral dependence of eye health, with the retinal hazard zone associated with wavelengths in the blue, peaking at 441 nm- many of today's low-energy sources peak in this region. Given the increased longevity and artificial light sources emitting at biologically unfriendly wavelengths, attention has to be directed towards light in man's environment as a risk factor in age-related ocular diseases.

  8. Improved global aerosol datasets for 2008 from Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, Thomas; de Leeuw, Gerrit

    2013-04-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project has meanwhile produced and validated global datasets from AATSR, PARASOL, MERIS, OMI and GOMOS for the complete year 2008. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the three nadir sensors. For AATSR three algorithms were applied. AOD validation was conducted against AERONET sun photometer observations also in comparison to MODIS and MISR datasets. Validation included level2 (pixel level) and level3 (gridded daily) datasets. Several validation metrices were used and in some cases developed further in order to comprehensively evaluate the capabilities and limitations of the datasets. The metrices include standard statistical quantities (bias, rmse, Pearson correlation, linear regression) as well as scoring approaches to quantitatively assess the spatial and temporal correlations against AERONET. Over open ocean also MAN data were used to better constrain the aerosol background, but in 2008 had limited coverage. The validation showed that the PARASOL (ocean only) and AATSR (land and ocean) datasets have improved significantly and now reach the quality level and sometimes even go beyond the level of MODIS and MISR. However, the coverage of these European datasets is weaker than the one of the NASA datasets due to smaller instrument swath width. The MERIS dataset provides better coverage but has lower quality then the other datasets. A detailed regional and seasonal analysis revealed the strengths and weaknesses of each algorithm. Also, Angstrom coefficient was validated and showed encouraging results (more detailed aerosol type information provided in particular from PARASOL was not yet evaluated further). Additionally, pixel uncertainties contained in each dataset were statistically assessed which showed some remaining issues but also the added value

  9. Networking.

    ERIC Educational Resources Information Center

    Duvall, Betty

    Networking is an information giving and receiving system, a support system, and a means whereby women can get ahead in careers--either in new jobs or in current positions. Networking information can create many opportunities: women can talk about how other women handle situations and tasks, and previously established contacts can be used in…

  10. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  11. Polarimetric Remote Sensing of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Hasekamp, O. P.; Stap, A.; di Noia, A.; Rietjens, J.; Smit, M.; van Harten, G.; Snik, F.

    2014-12-01

    To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. Satellite instruments that perform multi-angle photopolarimetric measurements have the capability to provide these aerosol properties with sufficient accuracy. The only satellite instrument that provided a multi-year data set of multi-angle photopolarimetric measurements is the POLDER-3 instrument onboard the PARASOL microsatellite that operated between 2005-2013. PARASOL provides measurements of a ground scene under (up to) 16 viewing geometries in 9 spectral bands (3 for polarization). In order to make full use of the capability of PARASOL measurements of intensity and polarization properties of reflected light at multiple viewing angles and multiple wavelengths, we developed a retrieval algorithm that considers a continuous parameter space for aerosol microphysical properties (size distribution and refractive index) and properly accounts for land or ocean reflection by retrieving land and ocean parameters simultaneously with aerosol properties. Here, we present the key aspects of our PARASOL retrievals (inverse method, forward model, information content, cloud screening, computational aspects) as well as a validation of retrieved aerosol properties with ground-based measurements of the AERONET network. Also, we discuss required improvements for the next generation of polarimetric instruments dedicated to aerosol remote sensing and introduce a new spectropolarimetric instrument named SPEX. We will demonstrate the capabilities of SPEX based on ground based field measurements and characterization measurements in the labatory.

  12. Evaluating secondary inorganic aerosols in three dimensions

    NASA Astrophysics Data System (ADS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-08-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3 / NH4+ partitioning which affects the HNO3 / NO3- partitioning.

  13. Evaluating Secondary Inorganic Aerosols in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-01-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3/NH4(+) partitioning which affects the HNO3/NO3(-) partitioning.

  14. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  15. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  16. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  17. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  18. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  19. A Manned Orbital Space Laboratory

    NASA Technical Reports Server (NTRS)

    Schnitzer, Emanuel

    1960-01-01

    A study is under way of a manned orbital space laboratory, some of the purposes of which would be to determine man's adaptability to space and to study structures and systems in space before committing manned spacecraft to long-range missions. It uses an inflatable torus as laboratory and living quarters and has an erectable solar collector as the source of heat for the power plant. The station rotates six times per minute in order to provide some artificial gravity together with stabilization. An escape taxi, which is not shown, is attached to the bottom of the station.

  20. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  1. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Albayrak, A.; Wei, J. C.; Petrenko, M.; Lary, D. J.; Leptoukh, G. G.

    2011-12-01

    Over the past decade, global aerosol observations have been conducted by space-borne sensors, airborne instruments, and ground-base network measurements. Unfortunately, quite often we encounter the differences of aerosol measurements by different well-calibrated instruments, even with a careful collocation in time and space. The differences might be rather substantial, and need to be better understood and accounted for when merging data from many sensors. The possible causes for these differences come from instrumental bias, different satellite viewing geometries, calibration issues, dynamically changing atmospheric and the surface conditions, and other "regressors", resulting in random and systematic errors in the final aerosol products. In this study, we will concentrate on the subject of removing biases and the systematic errors from MODIS (both Terra and Aqua) aerosol product, using Machine Learning algorithms. While we are assessing our regressors in our system when comparing global aerosol products, the Aerosol Robotic Network of sun-photometers (AERONET) will be used as a baseline for evaluating the MODIS aerosol products (Dark Target for land and ocean, and Deep Blue retrieval algorithms). The results of bias adjustment for MODIS Terra and Aqua are planned to be incorporated into the AeroStat Giovanni as part of the NASA ACCESS funded AeroStat project.

  2. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  3. Manned Mars mission cost estimate

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph; Smith, Keith

    1986-01-01

    The potential costs of several options of a manned Mars mission are examined. A cost estimating methodology based primarily on existing Marshall Space Flight Center (MSFC) parametric cost models is summarized. These models include the MSFC Space Station Cost Model and the MSFC Launch Vehicle Cost Model as well as other modes and techniques. The ground rules and assumptions of the cost estimating methodology are discussed and cost estimates presented for six potential mission options which were studied. The estimated manned Mars mission costs are compared to the cost of the somewhat analogous Apollo Program cost after normalizing the Apollo cost to the environment and ground rules of the manned Mars missions. It is concluded that a manned Mars mission, as currently defined, could be accomplished for under $30 billion in 1985 dollars excluding launch vehicle development and mission operations.

  4. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  5. Man, space flight and medicine.

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1972-01-01

    Review of experience obtained from space flight to evaluate man's physiological capability to function in space. Results of the Mercury, Gemini, and Apollo programs are presented, with emphasis on the latter. The space medicine requirements which were necessary for assuring man's safe journey into and return from space have resulted in hardware and techniques of great value to terrestrial medicine. The need to monitor the physiologic function of crewmen led to the development of miniaturized, nonirritating, and highly reliable sensors.

  6. Aerosol remote sensing in polar regions

    SciTech Connect

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i) a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  7. Aerosol remote sensing in polar regions

    DOE PAGES

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; ...

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  8. Aerosol Remote Sensing in Polar Regions

    NASA Technical Reports Server (NTRS)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph

    2014-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent alpha were calculated. Analyzing these data, the monthly mean values of tau(0.50 micrometers) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter-spring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 micrometers) showed: (i) a considerable increase in tau(0.50 micrometers) for the Arctic aerosol from summer to winter-spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 micrometer) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterize vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were

  9. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  10. Proceedings of the 1987 IEEE international conference on systems, man, and cybernetics. Volume 1

    SciTech Connect

    Not Available

    1987-01-01

    This book contains the proceedings of the IEE international conference on systems Man, and cybernetics. Topics include the following: robotics; knowledge base simulation; software systems, image and pattern recognition; neural networks; and image processing.

  11. Online Simulations and Forecasts of the Global Aerosol Distribution in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2006-01-01

    We present an analysis of simulations of the global aerosol system in the NASA GEOS-5 transport, radiation, and chemistry model. The model includes representations of all major tropospheric aerosol species, including dust, sea salt, black carbon, particulate organic matter, and sulfates. The aerosols are run online for the period 2000 through 2005 in a simulation driven by assimilated meteorology from the NASA Goddard Data Assimilation System. Aerosol surface mass concentrations are compared with existing long-term surface measurement networks. Aerosol optical thickness is compared with ground-based AERONET sun photometry and space-based retrievals from MODIS, MISR, and OMI. Particular emphasis is placed here on consistent sampling of model and satellite aerosol optical thickness to account for diurnal variations in aerosol optical properties. Additionally, we illustrate the use of this system for providing chemical weather forecasts in support of various NASA and community field missions.

  12. Infrared spectroscopy of aerosols

    NASA Astrophysics Data System (ADS)

    Mentel, Th.; Sebald, H.

    2003-04-01

    In our large Aerosol Chamber at the FZ Jülich we apply HR FTIR absorption spectroscopy for the determination of trace gases. In the FTIR spectra we also observe broad absorptions of several 10 to a few 100 cm-1 widths that arise from species in the condensed aerosol phase: liquid H_2O, NO_3^-, SO_42-, HSO_4^-, or dicarboxylic acids. Moreover, the aerosol droplets caused extinctions over several 1000 cm-1 by IR scattering. This allows for in-situ observation of changes in the condensed aerosol phase e.g. on HNO_3 uptake, like the shift of the sulfate/bisulfate equilibrium or the growth by water condensation. The IR absorptions of the condensed aerosol phase provide useful extra information in process studies, if they can be quantified. Therefore the absorption cross section, respective, the absorption index which is the imaginary part of the complex refractive index is needed. We set up an aerosol flow tube in which IR spectroscopy on a 8 m light path and aerosol size distribution measurements in the range from 20 nm - 10 μm can be performed simultaneously. We measured sulfate aerosols at several relative humidities (dry, metastable, deliquescent). We will demonstrate an iterative procedure based on Mie calculations and Kramers Kronig transformation to retrieve the absorption index from the observed IR spectra and the corresponding size distribution (for dry ammonium sulfate). We will compare resulting absorption indices for aqueous sodium bisulfate aerosols at several relative humidties with thermodynamic model calculations for the Na^+/H^+/HSO_4^-/SO_42-/H_2O system.

  13. The midlatitude North American background aerosol and global aerosol variation.

    PubMed

    Hidy, George M; Blanchard, Charles L

    2005-11-01

    Protocols for the particulate matter (PM) National Ambient Air Quality Standards (NAAQS), and the Regional Haze Rule (RHR) give two complementary definitions for "natural" background airborne particle concentrations in the United States. The definition for the NAAQS derives largely from reported annual averages, whereas the definition for the RHR takes into account the frequency of occurrence of a range of visibility conditions estimated using fine particle composition. These definitions are simple, static representations of background or "unmanageable" aerosol conditions in the United States. An accumulation of data from rural-remote sites representing global conditions indicates that the airborne particle concentrations are highly variable. Observational campaigns show weather-related variations, including incidents of regional or intercontinental transport of pollution that influence background aerosol levels over midlatitude North America. Defining a background in North America based on long-term observations relies mainly on the remote-rural IMPROVE network in the United States, with a few additional measurements from Canada. Examination of the frequency of occurrence of mass concentrations and particle components provides insight not only about annual median conditions but also the variability of apparent background conditions. The results of this analysis suggest that a more elaborate approach to defining an unmanageable background could improve the present approach taken for information input into the U.S. regulatory process. An approach interpreting the continental gradients in fine PM (PM2.5) concentrations and composition may be warranted.

  14. Simulation of South Asian aerosols for regional climate studies

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Solmon, Fabien; Giorgi, Filippo; Mariotti, Laura; Babu, S. Suresh; Moorthy, K. Krishna

    2012-02-01

    Extensive intercomparison of columnar and near-surface aerosols, simulated over the South Asian domain using the aerosol module included in the regional climate model (RegCM4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) have been carried out using ground-based network of Sun/sky Aerosol Robotic Network (AERONET) radiometers, satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR), and ground-based black carbon (BC) measurements made at Aerosol Radiative Forcing over India (ARFI) network stations. In general, RegCM4 simulations reproduced the spatial and seasonal characteristics of aerosol optical depth over South Asia reasonably well, particularly over west Asia, where mineral dust is a major contributor to the total aerosol loading. In contrast, RegCM4 simulations drastically underestimated the BC mass concentrations over most of the stations, by a factor of 2 to 5, with a large spatial variability. Seasonally, the discrepancy between the measured and simulated BC tended to be higher during winter and periods when the atmospheric boundary layer is convectively stable (such as nighttime and early mornings), while during summer season and during periods when the boundary layer is convectively unstable (daytime) the discrepancies were much lower, with the noontime values agreeing very closely with the observations. A detailed analysis revealed that the model does not reproduce the nocturnal high in BC, observed at most of the Indian sites especially during winter, because of the excessive vertical transport of aerosols under stable boundary layer conditions. As far as the vertical distribution was concerned, the simulated vertical profiles of BC agreed well with airborne measurements during daytime. This comprehensive validation exercise reveals the strengths and weaknesses of the model in simulating the spatial and temporal heterogeneities of the aerosol fields over

  15. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  16. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  17. Detecting Thin Cirrus in Multiangle Imaging Spectroradiometer Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Kahn, Ralph A.; Davis, Matt R.; Comstock, Jennifer M.

    2010-01-01

    Thin cirrus clouds (optical depth (OD) < 03) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Mu]tiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05 1 20%l, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cinus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >-0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm..

  18. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  19. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  20. The Black Man in American Society.

    ERIC Educational Resources Information Center

    Framingham Public Schools, MA.

    GRADE OR AGES: Junior high school. SUBJECT MATTER: The black man in American society. ORGANIZATION AND PHYSICAL APPEARANCE: There are four major parts each with an overview. The four parts concern a) the African heritage of the black man, b) the American exploitation of the black man, c) the black man's contribution to American society, d) the…

  1. Man-caused seismicity of Kuzbas

    NASA Astrophysics Data System (ADS)

    Emanov, Dr.; Emanov, A. A.; Leskova, E. V.; Fateyev, A. V.

    2009-04-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining account for activations nascent in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, and damages of workings themselves do not register, but intensive shaking felt on surface calls for intent study of so dangerous phenomena.

  2. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  3. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  4. Atmospheric aerosols from Mauna Loa Observatory, Hawaii

    SciTech Connect

    Zoller, W.H.; Holmes, J.L. )

    1993-01-01

    Atmospheric aerosols have been collected for chemical analysis at the Mauna Loa Observatory in Hawaii since 1979. The samples were collected in two wind quadrants, a clean [open quotes]down-slope[close quotes] quadrant and a more contaminated [open quotes]up-slope[close quotes] quadrant. Some of the findings of this work have been the identification of Asian dust traveling to the Hawaiian Islands every spring of the year, and this dust dominates the yearly record because it is very intense and contains predominantly crustal dust along with pollutants from the Asian mainland, such as coal combustion in China. Additional interpretation of the data set of weekly samples has shown the presence of pollutants from both North and South America as well as different areas of Asia that are transported by wind systems to the central Pacific Ocean. By subtracting these episodic transport events, one can look at the oceanic background aerosols that are originating from the ocean and look at the occurrence of the natural aerosol generating systems in the oceanic region that are related to climatic change. One of the important groups of elements are the sulfur and halogen families and the naturally occurring volatile elements (selenium, arsenic, antimony, etc.) that are produced by biogenic activity in the world's oceans and affect the chemistry of the atmosphere, particularly clouds in remote marine areas. Investigations such as this work allow one to evaluate the importance of natural versus anthropogenic sources of the volatile elements to the atmosphere, allowing us to have a much better understanding of man's impact on climate. The nuclear analytical techniques are particularly well suited to this type of sample because it consists of aerosols deposited on a clean Teflon or cellulose substrate, which normally offers very little interference with the analysis.

  5. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  6. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  7. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-09-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (τ) and single scattering albedo (ωo) from Aerosol Robotic Network (AERONET) measurements are used to form absorption (i.e., ωo and absorption Ångström exponent (αabs)) and size (i.e., extinction Ångström exponent (αext) and fine mode fraction of τ) relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to (1) determine the averageωo and αabs at each site (expanding upon previous work), (2) perform a sensitivity study on αabs by varying the spectral ωo, and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral ωo averages indicate slightly more aerosol absorption (i.e., a 0.0 < δωo ≤ 0.02 decrease) than in previous work, and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of αabs show significant overlap among aerosol type categories, and at least 10% of the αabs retrievals in each category are below 1.0. Perturbing the spectral ωo by ±0.03 induces significant αabs changes from the unperturbed value by at least ˜±0.6 for Dust, ˜±0.2 for Mixed, and ˜±0.1 for Urban/Industrial and Biomass Burning. The ωo440nm and αext440-870nmrelationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  8. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  9. Toward a Coherent Detailed Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2011-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood, there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource, an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, TerraMISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MASS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  10. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  11. History of manned space flight

    SciTech Connect

    Baker, D.

    1981-01-01

    This book is the history of all the great moments of failure, tension, drama, euphoria, and success that characterized the beginning of man's adventure in space. It covers the technology and scientific knowledge, the vision, the politics, and the dedication of all those involved in the space program. One chapter is devoted to the experiments and observations of the astronauts as they explored the moon. An integral part of the history of space exploration is the race between Russia and the US to establish man in space. This is included. The book vividly portrays the experiences of the astronauts from Mercury, Gemini, Apollo, Skylab, and the Apollo-Soyuz missions. (SC)

  12. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  13. Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Kim, Y. J.

    2010-12-01

    In East Asia, satellite observation is important because aerosols from natural and anthropogenic sources have been recognized as a major source of regional and global air pollution. However, retrieving aerosols properties from satellite observations over land can be difficult because of the surface reflection, complex aerosol composition, and aerosol absorption. In this study, a new aerosol retrieval method called as the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol retrieval (MSTAR) was developed and applied to three different aerosol event cases over East Asia. MSTAR uses a separation technique that can distinguish aerosol reflectance from top-of-atmosphere (TOA) reflectance. The aerosol optical thickness (AOT) was determined by comparing this aerosol reflectance with pre-calculated values. Three case studies show how the methodology identifies discrepancies between measured and calculated values to retrieve more accurate AOT. The comparison between MODIS and the Aerosol Robotic Network (AERONET) showed improvement using the suggested methodology with the cluster-based look-up-tables (LUTs) (linear slope = 0.94, R = 0.92) than using operational MODIS collection 5 aerosol products (linear slope = 0.78, R = 0.87). In conclusion, the suggested methodology is shown to work well with aerosol models acquired by statistical clustering of the observation data in East Asia.

  14. In-depth discrimination of aerosol types using multiple clustering techniques over four locations in Indo-Gangetic plains

    NASA Astrophysics Data System (ADS)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2016-11-01

    Discrimination of aerosol types is essential over the Indo-Gangetic plain (IGP) because several aerosol types originate from different sources having different atmospheric impacts. In this paper, we analyzed a seasonal discrimination of aerosol types by multiple clustering techniques using AERosol RObotic NETwork (AERONET) datasets for the period 2007-2013 over Karachi, Lahore, Jaipur and Kanpur. We discriminated the aerosols into three major types; dust, biomass burning and urban/industrial. The discrimination was carried out by analyzing different aerosol optical properties such as Aerosol Optical Depth (AOD), Angstrom Exponent (AE), Extinction Angstrom Exponent (EAE), Abortion Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Real Refractive Index (RRI) and their interrelationship to investigate the dominant aerosol types and to examine the variation in their seasonal distribution. The results revealed that during summer and pre-monsoon, dust aerosols were dominant while during winter and post-monsoon prevailing aerosols were biomass burning and urban industrial, and the mixed type of aerosols were present in all seasons. These types of aerosol discriminated from AERONET were in good agreement with CALIPSO (the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) measurement.

  15. Exploration and Reflection on Teachers' Self-Growth under Network Environment

    ERIC Educational Resources Information Center

    Li, Shuang

    2010-01-01

    As is well known, it is network that has turned the traditional "man-man" educational system made up of by only teachers and students into a new system of "man-machine-man" composed of network as well as teachers and students. In the new system, teachers' authority has been lowered sharply because students also have access to…

  16. Aerosol Optical Depth over Africa retrieved from AATSR

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; de Leeuw, Gerrit; Kolmonen, Pekka; Sundström, Anu-Maija; Rodriques, Edith

    2010-05-01

    Aerosols produced over the African continent have important consequences for climate. In particular, large amounts of desert dust are produced over the Sahara and transported across the North Atlantic where desert dust deposition influences the eco system by iron fertilization, and further North over Europe with outbreaks as far as Scandinavia. Biomass burning occurs in most of the African continent south of the Sahara and causes a net positive radiating forcing resulting in local warming of the atmosphere layers. These effects have been studied during large field campaigns. Satellites can systematically provide information on aerosols over a large area such as Africa and beyond. To this end, we retrieved the Aerosol Optical Depth (AOD) at three wavelengths (555nm, 670nm, and 1600nm) over Africa from the reflectance measured at the top of the atmosphere by the AATSR (Advances Along Track Scanning Radiometer) flying on ENVISAT, for one year (1 May 2008 to 30 April 2009) to obtain information on the seasonal and spatial behaviour of the AOD, episodes of high AOD events and connect the retrieved AOD with the ground-based aerosol measurements. The AOD retrieval algorithm, which is applied to cloud-free pixels over land, is based on the comparison of the measured and modeled reflectance at the top of the atmosphere (TOA). The algorithm uses look-up-tables (LUTs) to compute the modeled TOA reflectance. For AOD retrieval, an aerosol in the atmosphere is assumed to be an external mixture of fine and coarse mode particles. The two aerosol types are mixed such that the spectral behavior of the reflectance due to aerosol best fits the measurements. Comparison with AERONET (Aerosol Roboric NETwork), which is a network of ground-based sun photometers which measure atmospheric aerosol properties, shows good agreement but with some overestimation of the AATSR retrieved AOD. Different aerosol models have been used to improve the comparison. The lack of AERONET stations in Africa

  17. Man-caused seismicity of Kuzbass

    NASA Astrophysics Data System (ADS)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  18. Classification of Aerosol over Central Europe by Cluster Analysis of Aerosol Columnar Optical Properties and Backward Trajectory Statistics

    NASA Astrophysics Data System (ADS)

    Szkop, Artur; Pietruczuk, Aleksander; Posyniak, Michał

    2016-12-01

    A cluster analysis is applied to the Aerosol Robotic Network (AERONET) data obtained at Belsk, Poland, as well as three nearby Central European stations (Leipzig, Minsk and Moldova) for estimation of atmospheric aerosol types. Absorption Ångstrom exponent (AAE), aerosol optical thickness (AOT) and extinction Ångstrom exponent (EAE) parameters are used. Clustering in both 2D (AOT, EAE) and 3D (AOT, EAE, AAE) is investigated. A method of air mass backward trajectory analysis is then proposed, with the receptor site at Belsk, to determine possible source regions for each cluster. Four dominant aerosol source regions are identified. The biomass burning aerosol source is localized in the vicinity of Belarusian-Ukrainian border. Slovakia and northern Hungary are found to be the source of urban/industrial pollutants. Western Poland and eastern Germany are the main sources of polluted continental aerosols. The most differentiated source region of Scandinavia, Baltic Sea and Northern Atlantic, associated with lowest values of AOT, corresponds to clean continental and possibly maritime type aerosols.

  19. How Well Can Aerosol Measurements from the Terra Morning Polar Orbiting Satellite Represent the Daily Aerosol Abundance and Properties?

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Holben, B. N.; Tanre, D.; Slutzker, I.; Eck, T. F.; Smirnov, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Terra mission, launched at the dawn of 1999, and Aqua mission to be launched soon, will possess innovative measurements of the aerosol daily spatial distribution, distinguish between dust, smoke and regional pollution and measure aerosol radiative forcing of climate. Their polar orbit gives daily global coverage, however measurements are acquired at specific time of the day. To what degree can present measurements from Terra taken between 10:00 and 11:30 AM local time, represent the daily average aerosol forcing of climate? Here we answer this question using 7 years of data from the distributed ground based 50-70 instrument Aerosol Robotic Network (AERONET) This (AERONET) half a million measurement data set shows that Terra aerosol measurements represent the daily average values within 5%. The excellent representation is found for large dust particles or small aerosol particles from Fires or regional pollution and for any range of the optical thickness, a measure of the amount of aerosol in the atmosphere.

  20. Insects Affecting Man. MP-21.

    ERIC Educational Resources Information Center

    Lawson, Fred A.; Spackman, Everett

    The insects discussed in this document are those which have a direct effect upon humans either through a permanent association, as with lice, or a temporary association in the case of flies, bees, wasps, and spiders. In each case, life cycles and identifying characteristics are presented with remarks about the specific effect incurred by man. (CS)

  1. Humanities II: Man and Revolution.

    ERIC Educational Resources Information Center

    Stanton School District, Wilmington, DE.

    "Man and Revolution," the second syllabus in a sequential program, provides 11th grade students with a humanities course that deals heavily in political theory. The rationale, objectives, guidelines, methods, and arrangement are the same as those described in SO 004 030. The introductory unit, followed by further units, helps students define and…

  2. Man, Controller of the Universe

    NASA Astrophysics Data System (ADS)

    Olowin, R. P.

    2011-06-01

    The Man, Controller of the Universe painted by the renowned Mexican artist Diego Rivera in the gigantic mural of the Palace of Fine Arts in Mexico City is overlooked by a telescope. We acknowledge this instrument as the Plaskett Telescope at the Dominion Astrophysical Observatory in Victoria, Canada.

  3. SPEECH--MAN'S NATURAL COMMUNICATION.

    ERIC Educational Resources Information Center

    DUDLEY, HOMER; AND OTHERS

    SESSION 63 OF THE 1967 INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS INTERNATIONAL CONVENTION BROUGHT TOGETHER SEVEN DISTINGUISHED MEN WORKING IN FIELDS RELEVANT TO LANGUAGE. THEIR TOPICS INCLUDED ORIGIN AND EVOLUTION OF SPEECH AND LANGUAGE, LANGUAGE AND CULTURE, MAN'S PHYSIOLOGICAL MECHANISMS FOR SPEECH, LINGUISTICS, AND TECHNOLOGY AND…

  4. Man...An Endangered Species?

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC.

    The general theme of this 1968 yearbook is that man is a threatened species, facing overpopulation and unbridled technology - both self induced. The presentation is broad, relating to many aspects of conservation and natural resources in the United States in a descriptive, non-technical style. The yearbook is divided into major topics: Land…

  5. Man-Made Climatic Changes

    ERIC Educational Resources Information Center

    Landsberg, Helmut E.

    1970-01-01

    Reviews environmental studies which show that national climatic fluctuations vary over a wide range. Solar radiation, earth temperatures, precipitation, atmospheric gases and suspended particulates are discussed in relation to urban and extraurban effects. Local weather modifications and attempts at climate control by man seem to have substantial…

  6. Man in the Marine Environment.

    ERIC Educational Resources Information Center

    Hogg, Thomas C.; And Others

    The program, Man in the Marine Environment, conducted by the Department of Anthropology, Oregon State University, between July, 1970 and June, 1971, consisted of two major components: (1) research, and (2) direct educational outputs in the form of a series of credit seminars and a public speaker's program. Research, as described in the procedures…

  7. Man and Machines: Three Criticisms.

    ERIC Educational Resources Information Center

    Schneider, Edward F.

    As machines have become a more common part of daily life through the passage of time, the idea that the line separating man and machine is slowly fading has become more popular as well. This paper examines three critics of change through their most famous works. One of the most popular views of Mary Shelley's "Frankenstein" is that it is a…

  8. New Manning System Field Evaluation

    DTIC Science & Technology

    1986-03-01

    our Analytic hodel (see Chapter 5, New Manning Svestem Field Evaluacion . Technical Revore No. I, RAJL-, November c t, e number or soldiers retaking...and meaningful performance measures are not only crucial to the WRAIR N Field Evaluacion but also to the Army. To know which unit does betzer than

  9. Man-Machine Communication Research.

    DTIC Science & Technology

    1977-02-01

    communication difficulty for the computer-naive; discovery of major communication structures in human communication that have been left out of man-machine...processes; creation of a new overview of how human communication functions in cooperative task-oriented activity; and assistance in ARPA policy formation on CAI equipment development.

  10. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  11. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  12. Palaeoclimate: Aerosols shift lake ecosystem

    NASA Astrophysics Data System (ADS)

    Dowsett, Harry J.

    2017-02-01

    Anthropogenic aerosols over the Chinese Loess Plateau have diminished monsoon precipitation and concomitant soil erosion that plagues the region. Now, a reconstruction documents the differences between historical warming events and the present, highlighting the paradoxical implications of decreasing atmospheric aerosols.

  13. Generation of aerosolized drugs.

    PubMed

    Wolff, R K; Niven, R W

    1994-01-01

    The expanding use of inhalation therapy has placed demands on current aerosol generation systems that are difficult to meet with current inhalers. The desire to deliver novel drug entities such as proteins and peptides, as well as complex formulations including liposomes and microspheres, requires delivery systems of improved efficiency that will target the lung in a reproducible manner. These efforts have also been spurred by the phase out of chlorofluorocarbons (CFCs) and this has included a directed search for alternative propellants. Consequently, a variety of new aerosol devices and methods of generating aerosols are being studied. This includes the use of freon replacement propellants, dry powder generation systems, aqueous unit spray systems and microprocessor controlled technologies. Each approach has advantages and disadvantages depending upon each principle of action and set of design variables. In addition, specific drugs may be better suited for one type of inhaler device vs. another. The extent to which aerosol generation systems achieve their goals is discussed together with a summary of selected papers presented at the recent International Congress of Aerosols in Medicine.

  14. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  15. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2011-12-01

    We present the implementation and evaluation of a sectional aerosol microphysics model SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by keeping the number of variables needed to describe the size and composition distribution to the minimum. The aerosol size distribution is described using 20 size sections with 10 size sections in size space which cover diameters ranging from 3 nm to 10 μm divided to three subranges each having distinct optimised process and compound selection. The ability of the module to describe the global aerosol properties was evaluated by comparison against (1) measured continental and marine size distributions, (2) observed variability of continental modal number concentrations, (3) measured sulphate, organic carbon, black carbon and sea salt mass concentrations, (4) observations of AOD and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7 which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using the coarse resolution of 10 size sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sea salt, sulphate and carbonaceous species have an annual mean within a factor of five of the observations, while the simulated sea salt concentrations reproduce the observations less accurately and show high variability. Regionally, AOD is in relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modeled AOD is

  16. Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.; Liu, Zhaoyan; Liu, Gin-Rong; Campbell, James R.; Liew, Soo Chin; Barnes, John E.

    2012-08-01

    Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to screen in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to systematically examine the susceptibility of operational aerosol products to cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask (VFM) and the Moderate Resolution Imaging Spectroradiometer (MODIS) thin cirrus screening parameters for the purpose of evaluating cirrus contamination. Key results of this study include: (1) quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted; although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons; (2) challenges in matching up different data for analysis are highlighted and corresponding solutions proposed; and (3) estimates of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  17. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  18. Chemical aerosol Raman detector

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  19. Characteristics and Global Impact of Aerosols from Southern Africa and Eastern Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    Supported mainly by the NASA GACP and ACMAP, we have made significant progress in the global modeling of tropospheric aerosols and their precursors in the past few years, especially in the development of the GOCART model, simulation of anthropogenic and natural aerosols, data analysis of field observations and satellite retrievals, assessment of global and regional budgets, estimate of aerosol direct radiative forcing, and aerosol forecasting and data analysis for the ACE-Asia field experiment. Our results and findings are summarized in Chin et al. Model calculated multiple-year optical thickness for individual and total aerosols are at internet. These results have been frequently used by other groups, for example, to impose initial conditions for regional models, provide dust source functions for other global models, supply aerosol fields for chemistry and climate models, help data group interpret their measurements, select monitoring sites for ground observation network, and assist satellite retrievals.

  20. Retrieval of aerosol climatology from Sun-Photometer measurements at Andenes, Norway.

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Hamre, B.; Stamnes, S.; Frette, Ø.; Stamnes, K.; Stamnes, J. J.

    2012-04-01

    The chemical composition and loading of aerosols along the Norwegian coast are expected to be highly varying, making accurate remote sensing of coastal waters difficult. As a first step to remedy this shortcoming, we used a coupled atmosphere-ocean discrete ordinate radiative transfer model (C-DISORT) to investigate the sensitivity of the spectral and angular radiance distributions at the surface to variations in the concentration, size distribution, spectral refractive index of aerosols as well as to variations in the surface albedo. Secondly, we used Aerosol Robotic Network (AERONET) data from Andenes, Norway (69N, 16E) in combination with C-DISORT computations to retrieve a set of aerosol physical parameters which, when varied, caused significant variations in the surface radiances. The goal is to apply this retrieval method to long-term AERONET time series at Andenes in order to classify aerosol physical properties and build up an aerosol climatology database.

  1. Climatology of aerosol optical properties near the New England coast: preparation for the Two Column Aerosol Program (TCAP) field campaign

    NASA Astrophysics Data System (ADS)

    Berkowitz, C. M.; Chand, D.; Berg, L.; Kassianov, E.; Chapman, E.

    2011-12-01

    A key objective of the U.S. Department of Energy's Two Column Aerosol Project (TCAP) is to provide observations with which to evaluate the uncertainty in model simulations of aerosol optical depth (AOD) and their relation to estimates of aerosol radiative forcing and hence, to climate. To meet this objective, detailed ground-based aerosol measurements will be made via deployment of the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) at Cape Cod, Massachusetts for a 12-month period starting in the summer of 2012. These measurements will be supported by two scheduled aircraft campaigns using the ARM Aerial Facility's (AAF) G-1 aircraft and the NASA B-200 aircraft in July 2012 and again in February 2013. Each campaign will include sampling within two atmospheric columns using the aircrafts; one column will be located directly over, or very close to, Cape Cod, while the second will be over a relatively remote maritime location. This preliminary study presented here is designed to select the optimum location of the second, remote maritime atmospheric column using the mean and standard deviation of previously observed AODs from surface and space. An area with the large variability in AOD will be considered as a potential location for evaluation of the outputs from atmospheric models. In this study, we present regional climatological values of (1) AOD from the Moderate Resolution Imaging Spectrometer (MODIS) on Terra and Aqua satellite platforms; (2) single scattering albedo from the Multi-angle Imaging SpectroRadiometer (MISR) satellite; (3) the vertical distribution of aerosol layers from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite; and (4) the long term aerosol optical properties from the Aerosol Robotic Network (AERONET) surface sunphotometer at Martha's Vineyard, MA. Seasonal and geographical variations in these quantities will be analyzed and possible explanations will be presented based on

  2. Validation of Retrieved Aerosol Optical Properties over Northeast Asia for Five Years from GOSAT TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, S.; KIM, M.; Choi, M.; Go, S.; Lim, H.; Goo, T. Y.; Nakajima, T.; Kuze, A.; Shiomi, K.; Yokota, T.

    2015-12-01

    An aerosol retrieval algorithm was developed from Thermal And Near infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT). The algorithm retrieves aerosol optical depth (AOD), size distribution of aerosol, and aerosol type in 0.1 degree grid resolution by look-up tables, which is used in retrieving optical properties of aerosol using inversion products from Aerosol Robotic NETwork (AERONET) sun-photometer observation. To improve the accuracy of aerosol algorithm, first, this algorithm considered the annually estimated radiometric degradation factor of TANSO-CAI suggested by Kuze et al. (2014). Second, surface reflectance was determined by two methods: one using the clear sky composite method from CAI measurements and the other the database from MODerate resolution Imaging Sensor (MODIS) surface reflectance data. At a given pixel, the surface reflectance is selected by using normalized difference vegetation index (NDVI) depending on season (Hsu et al., 2013). In this study, the retrieved AODs were compared with those of AERONET and MODIS dataset for different season over five years. Comparisons of AODs between AERONET and CAI show reasonable agreement with correlation coefficients of 0.65 ~ 0.97 and regression slopes between 0.7 and 1.2 for the whole period, depending on season and sites. Moreover, those between MODIS and CAI for the same period show agreements with correlation coefficients of 0.7 ~ 0.9 and regression slopes between 0.7 and 1.0, depending on season and regions. The results show reasonably good correlation, however, the largest error source in aerosol retrieval has been surface reflectance of TANSO-CAI due to its 3-days revisit orbit characteristics.

  3. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  4. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  5. Highly stable aerosol generator

    SciTech Connect

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  6. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  7. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    NASA Astrophysics Data System (ADS)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  8. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2012-06-01

    We present the implementation and evaluation of a sectional aerosol microphysics module SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by minimising the number of variables needed to describe the size and composition distribution. The aerosol size distribution is described using 10 size classes with parallel sections which can have different chemical compositions. Thus in total, the module tracks 20 size sections which cover diameters ranging from 3 nm to 10 μm and are divided into three subranges, each with an optimised selection of processes and compounds. The implementation of SALSA into ECHAM5-HAM includes the main aerosol processes in the atmosphere: emissions, removal, radiative effects, liquid and gas phase sulphate chemistry, and the aerosol microphysics. The aerosol compounds treated in the module are sulphate, organic carbon, sea salt, black carbon, and mineral dust. In its default configuration, ECHAM5-HAM treats aerosol size distribution using the modal method. In this implementation, the aerosol processes were converted to be used in a sectional model framework. The ability of the module to describe the global aerosol properties was evaluated by comparing against (1) measured continental and marine size distributions, (2) observed variability of continental number concentrations, (3) measured sulphate, organic carbon, black carbon and sea-salt mass concentrations, (4) observations of aerosol optical depth (AOD) and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7, which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well

  9. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  10. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  11. Lymphocytic hypophysitis in a man.

    PubMed

    Guay, A T; Agnello, V; Tronic, B C; Gresham, D G; Freidberg, S R

    1987-03-01

    Fewer than 20 patients with lymphocytic adenohypophysitis have been reported, all of them women, and it usually occurs during pregnancy or the postpartum period. We report the recognition of lymphocytic adenohypophysitis in a man. The patient presented with anterior hypopituitarism and an intrasellar mass on computed tomography. Antipituitary antibodies, found in only one of the previous patients, were not present in this man, although low titer antinuclear antibodies were found. The implications of this latter finding are unclear. The patient's histocompatibility antigen (HLA) types were A2, B8, Bw58, DR1, and DR5. The degree of pituitary failure seemed out of proportion to the size of the mass seen on computed tomographic scan.

  12. RenderMan design principles

    NASA Technical Reports Server (NTRS)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  13. Manned Mars Mission program concepts

    NASA Technical Reports Server (NTRS)

    Hamilton, E. C.; Johnson, P.; Pearson, J.; Tucker, W.

    1988-01-01

    This paper describes the SRS Manned Mars Mission and Program Analysis study designed to support a manned expedition to Mars contemplated by NASA for the purposes of initiating human exploration and eventual habitation of this planet. The capabilities of the interactive software package being presently developed by the SRS for the mission/program analysis are described, and it is shown that the interactive package can be used to investigate the impact of various mission concepts on the sensitivity of mass required in LEO, schedules, relative costs, and risk. The results, to date, indicate the need for an earth-to-orbit transportation system much larger than the present STS, reliable long-life support systems, and either advanced propulsion or aerobraking technology.

  14. Obesity in the ageing man.

    PubMed

    Michalakis, K; Goulis, D G; Vazaiou, A; Mintziori, G; Polymeris, A; Abrahamian-Michalakis, A

    2013-10-01

    As the population is ageing globally, both ageing and obesity are recognized as major public health challenges. The aim of this narrative review is to present and discuss the current evidence on the changes in body composition, energy balance and endocrine environment that occur in the ageing man. Obesity in the ageing man is related to changes in both body weight and composition due to alterations in energy intake and total energy expenditure. In addition, somatopenia (decreased GH secretion), late-onset hypogonadism (LOH), changes in thyroid and adrenal function, as well as changes in appetite-related peptides (leptin, ghrelin) and, most importantly, insulin action are related to obesity, abnormal energy balance, redistribution of the adipose tissue and sarcopenia (decreased muscle mass). A better understanding of the complex relationship of ageing-related endocrine changes and obesity could lead to more effective interventions for elderly men.

  15. Telecommunications and radio-metric support for a manned mission to Mars

    NASA Technical Reports Server (NTRS)

    Ruskin, Arnold M.; Layland, James W.; Reid, Macgregor S.

    1986-01-01

    Some general characteristics of the Deep Space Network are described and related to services needed by a manned mission to Mars. Specific details of the current Network capabilities and those planned for the near future may be found in the reference.

  16. Searching for the ideal MAN tool

    SciTech Connect

    Herron, B.L.

    1995-09-01

    The quantity of online documentation and viewing tools is overwhelming, with the World Wide Web, vendor-supported and local-site documentation and tools, etc. Maintaining the information and tools is equally overwhelming. However, statistics show that MAN usage far exceeds usage of other online documentation tools. But as one knows, MAN has its own problems, and at the forefront are MAN`S many inconsistencies. MAN is the standard Unix (and POSIX) tool which provides good summary information for those already familiar with a command. Well-written manual pages provide a good overall documentation. However, when a particular manual becomes too long, it becomes a cumbersome method to use for reading documentation. The paper describes MAN`s problems and the National Energy Research Supercomputer Center requirements for MAN.

  17. Manned maneuvering unit latching mechanism

    NASA Technical Reports Server (NTRS)

    Allton, C. S.

    1980-01-01

    The astronaut/Manned Maneuvering Unit interface, which presented a challenging set of requirements for a latching mechanism, is described. A spring loaded cam segment with variable ratio pulley release actuator was developed to meet the requirements. To preclude jamming of the mechanism, special precautions were taken such as spring loaded bearing points and careful selection of materials to resist cold welding. The mechanism successfully passed a number of tests which partially simulated orbital conditions.

  18. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  19. Evaluation of AERONET Aerosol Retrievals

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Dubovik, O.; Rutledge, C. K.

    2001-12-01

    The aerosol robotic network (AERONET) program provides aerosol retrievals at ground-based sunphotometer sites throughout the world. The aerosol size distributions and refractive index retrievals at two locations have been converted to phase functions and single-scattering albedo using Mie theory. These optical properties are incorporated into a discrete-ordinates radiative transfer model and calculations are compared to independent measurements obtained at the surface. The independent measurements include principle plane radiances from sunphotometer data and narrowband irradiances from multi-filter rotating shadowband radiometer (MFRSR) and rotating shadowband spectroradiometer (RSS) data. The two locations represent radically different environments. The Atmospheric Radiation Measurement (ARM) program Central Facility (CF) represents a rural continental environment, while the CERES (Clouds and the Earth's Radiant Energy System) Ocean Validation Experiment (COVE) site represents a coastal marine environment. Both sites exhibit good agreement between the model calculations and the principle plane radiances for the year 2000 (generally better than 15 percent at optical depths greater than 0.1). A comparison with RSS measurements in July 2000 at the ARM Central Facility shows an irradiance error of 12 percent or better at tested wavelenghs longer than 500 nm. Comparisons with MFRSR data fared less well, however, indicating a discrepancy between the instruments. Inspection of 28 whole-sky imager (WSI) files coincidental with all AERONET quality-controlled retrievals during 7 days reveals that no clouds were obstructing the almucantar field of view and that indeed the whole sky was clear during this period, indicating a degree of robustness in the AERONET cloud screening. Additionally, the size distributions were evaluated at COVE with hourly-averaged wind speed and direction. Linear regression indicates that the coarse mode column-integrated surface area increases from

  20. Editorial Research Reports on Modern Man.

    ERIC Educational Resources Information Center

    Dickinson, William B., Jr., Ed.

    Nine reports published in this volume study the uneasy coexistence of modern man and the complex society he has wrought. Man's apparent disorganized behavior is attributed to his inability to adapt readily to the charged pace of technological change. To combat the advancement of machine over man, he must, therefore, insist that moral and…

  1. 46 CFR 151.45-3 - Manning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Manning. 151.45-3 Section 151.45-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Operations § 151.45-3 Manning. Except as provided for in this section, barges need not be manned unless in the...

  2. 46 CFR 151.45-3 - Manning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Manning. 151.45-3 Section 151.45-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Operations § 151.45-3 Manning. Except as provided for in this section, barges need not be manned unless in the...

  3. 46 CFR 151.45-3 - Manning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Manning. 151.45-3 Section 151.45-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Operations § 151.45-3 Manning. Except as provided for in this section, barges need not be manned unless in the...

  4. 46 CFR 151.45-3 - Manning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Manning. 151.45-3 Section 151.45-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Operations § 151.45-3 Manning. Except as provided for in this section, barges need not be manned unless in the...

  5. 46 CFR 151.45-3 - Manning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Manning. 151.45-3 Section 151.45-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Operations § 151.45-3 Manning. Except as provided for in this section, barges need not be manned unless in the...

  6. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect

    Zaveri, Rahul

    2014-03-28

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  7. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema

    Zaveri, Rahul

    2016-07-12

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  8. PARAGON: A Systematic, Integrated Approach to Aerosol Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Kahn, Ralph A.; Braverman, Amy J.; Davies, Roger; Martonchik, John V.; Menzies, Robert T.; Ackerman, Thomas P.; Seinfeld, John H.; Anderson, Theodore L.; Charlson, Robert J.; Bosenberg, Jens; Collins, William D.; Rasch, Philip J.; Holben, Brent N.; Hostetler, Chris A.; Wielicki, Bruce A.; Miller, Mark A.; Schwartz, Stephen E.; Ogren, John A.; Penner, Joyce E.; Stephens, Graeme L.; Torres, Omar; Travis, Larry D.; Yu, Bin

    2004-01-01

    Aerosols are generated and transformed by myriad processes operating across many spatial and temporal scales. Evaluation of climate models and their sensitivity to changes, such as in greenhouse gas abundances, requires quantifying natural and anthropogenic aerosol forcings and accounting for other critical factors, such as cloud feedbacks. High accuracy is required to provide sufficient sensitivity to perturbations, separate anthropogenic from natural influences, and develop confidence in inputs used to support policy decisions. Although many relevant data sources exist, the aerosol research community does not currently have the means to combine these diverse inputs into an integrated data set for maximum scientific benefit. Bridging observational gaps, adapting to evolving measurements, and establishing rigorous protocols for evaluating models are necessary, while simultaneously maintaining consistent, well understood accuracies. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept represents a systematic, integrated approach to global aerosol Characterization, bringing together modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies to provide the machinery necessary for achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term data record.

  9. MODIS and AERONET Characterization of the Global Aerosol

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Reme, Lorraine; Tanre, Didier; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere.

  10. Propagation of global model uncertainties in aerosol forecasting: A field practitioner's opinion

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Benedetti, A.; Bozzo, A.; Brooks, I. M.; Brooks, M.; Colarco, P. R.; daSilva, A.; Flatau, M. K.; Kuehn, R.; Hansen, J.; Holz, R.; Kaku, K.; Lynch, P.; Remy, S.; Rubin, J. I.; Sekiyama, T. T.; Tanaka, T. Y.; Zhang, J.

    2015-12-01

    While aerosol forecasting has its own host of aerosol source, sink and microphysical challenges to overcome, ultimately any numerical weather prediction based aerosol model can be no better than its underlying meteorology. However, the scorecard elements that drive NWP model development have varying relationships to the key uncertainties and biases that are of greatest concern to aerosol forecasting. Here we provide opinions from member developers of the International Cooperative for Aerosol Prediction (ICAP) on NWP deficiencies related to multi-specie aerosol forecasting, as well as relevance of current NWP scorecard elements to aerosol forecasting. Comparisons to field mission data to simulations are used to demonstrate these opinions and show how shortcomings in individual processes in the global models cascade into aerosol prediction. While a number of sensitivities will be outlined, as one would expect, the most important processes relate to aerosol sources, sinks and, in the context of data assimilation, aerosol hygroscopicity. Thus, the pressing needs in the global models relate to boundary layer and convective processes in the context of large scale waves. Examples will be derived from tropical to polar field measurements, from simpler to more complex including a) network data on dust emissions and transport from Saharan Africa, b) boundary layer development, instability, and deep convection in the United States during Studies of Emissions and Atmospheric, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS); and c) 7 Southeast Asian Studies (7SEAS) data on aerosol influences by maritime convection up-scaled through tropical waves. While the focus of this talk is how improved meteorological model processes are important to aerosol modeling, we conclude with recent findings of the Arctic Summer Cloud Ocean Study (ASCOS) which demonstrate how aerosol processes may be important to global model simulations of polar cloud, surface energy and subsequently

  11. Aerosol remote sensing in East Asia : Motivation for NASA/AERONET/DRAGON-Asia

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Nakata, M.; Sano, I.; Holben, B. N.

    2013-12-01

    It is known that the air pollution in East Asia becomes to be severe due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the complicated behavior of natural aerosols. Furthermore, air quality in the big cities is worse in comparison with that in remote area because of the industries and auto mobiles. Then high resolved measurements of atmospheric aerosols in spatial- and temporal- scale are desired in Asian urban cities. NASA/Dragon-Asia practiced in the spring of 2012 is really meaningful accordingly. In recent years, heavy air pollutants as well as Asian dusts, i.e. yellow dust storm, transport to neighbor countries from the continent of China throughout year. These aerosol episodes, which mean dense concentrations of aerosols in the atmosphere, severely influence for the environment and human health. This work focuses on the aerosol remote sensing in the case of serious aerosol episodes detected by both satellite and ground measurements in East Asia. It is reasonable to consider for aerosol remote sensing that precise simulations of multiple light scattering processes ( cslled radiative transfer hereafter) in coupled Earth-atmosphere-surface model are necessary and need a long computational time especially for an optically thick atmosphere model such as an aerosol episode. Thus efficient and practical algorithms for radiative transfer are indispensable to retrieve aerosol properties from space. It is shown here that dense aerosol episodes can be well simulated by a semi-infinite radiation model composed of the proposed aerosol models, which are compiled from the accumulated measurements during more than ten years provided with the world wide aerosol monitoring network (NASA/AERONET). In addition the efficient procedure to solve the radiative transfer problem for semi-infinite medium named MSOS (Method of Successive Order of Scattering) is examined in practice around Beijing by using Aqua/MODIS data.

  12. A six year satellite-based assessment of the regional variations in aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Jones, T. A.; Christopher, S. A.; Quaas, J.

    2009-06-01

    present off the West African coast corresponding to aerosols produced from seasonal biomass burning (both natural and man-made). Interestingly, atmospheric conditions are not particularly favorable for cloud formation compared to the other regions during the times where AIE is observed; however, clouds are generally thin (LWP<20 gm-2) and concentrated very near the surface. Overall, we conclude that vertical motion, aerosol type, and aerosol layer heights do make a significant contribution to AIE and that these factors are often more important than total aerosol concentration alone and that the relative importance of each differs significantly from region to region.

  13. Aerosol optical depth over complex topography: comparison of AVHRR, MERIS and MODIS aerosol products

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Popp, Christoph; Hauser, Adrian; Wunderle, Stefan

    Aerosols are a key component in the Earth's atmosphere, influencing the radiation budget due to scattering and absorption of solar and terrestrial radiation and changing cloud physics by serving as cloud condensation nuclei. Furthermore, dispersed particles alter visibility and affect human health. Remote sensing techniques are a common means to monitor aerosol variability on large spatial scales. The accuracy of these retrievals is highest over surfaces with well known spectral properties and low reflectance (e.g. oceans). The retrieval over brighter and heterogeneous land surfaces is more demanding, since temporally unstable surface reflectance and a reduced aerosol signal may result in larger errors. Regions with highly complex topography, like the Alps, can exhibit even larger errors, basically due to directional effects caused by the topography, temporal snow coverage, and usually higher cloud amount. Ground validation of remote sensing aerosol products is generally performed using sun photometer measurements from the AErosol RObotic NETwork (AERONET). However, the lack of such sites in the central parts of the Alps renders validation difficult. To study the potential of aerosol remote sensing in regions with complex topography, namely in the Alps, we make use of an unusual situation on one of the major trans-alpine traffic routes in June 2006: A fatal rock fall caused the nearly one month closure of the Gotthard route in the Central Swiss Reuss Valley. Large parts of the traffic were redirected to the San Bernardino route (eastern Switzerland), which had a large impact on the local traffic amount, and thereby on air quality. Herein we compare the performance of three different sensors (AVHRR, MERIS, MODIS) in detecting this obvious change in the aerosol optical depth of the two alpine valleys in summer 2006. First results from AVHRR show a clear reduction (47%) of the aerosol optical depth along the Gotthard route compared to the five year monthly mean (2003

  14. American Association for Aerosol Research (AAAR) `95

    SciTech Connect

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  15. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  16. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  17. Interaction of gaseous pollutants with aerosols in Asia during March 2002.

    PubMed

    Jeong, Jae-In; Park, Soon-Ung

    2008-03-25

    The Asian Dust Aerosol Model (ADAM) and the aerosol dynamic model with the output of the fifth generation of mesoscale model (MM5) in a grid of 60x60 km2 over the Asian domain have been performed with and without the heterogeneous reaction (gas-aerosol interaction) to estimate the effect of the gas-aerosol interaction on the formation of aerosol for the period of 1-31 March 2002 when a severe Asian dust event has been observed during this period. The simulated gas-phase pollutants concentrations and aerosols are compared with those observed in South Korea and the East Asia Network (EANET). The results indicate that the present modeling system including ADAM, aerosol dynamic model and MM5 model simulates quite well and the gas-phase pollutants concentrations observed in South Korea and the simulated aerosol concentrations with the gas-aerosol interaction yield much better results in concentrations than those without the gas-aerosol interaction. It is found that the favorable regions for the gas-aerosol interaction in Asia are eastern China (high pollutants emissions), Korea, Japan and the East China Sea that are downstream regions of the Asian dust sources and relatively high relative humidity. In these regions the concentrations of SO2 and O3 decrease whereas the concentrations of sulfate and nitrate increase significantly due to the gas-aerosol interaction. In particular, the increase of sulfate concentration due to the interaction is more than 30% of the corresponding concentration without the gas-aerosol interaction. It is also found that the time-area mean column concentrations of PM10, sulfate, nitrate in the model domain are respectively to be 154.9, 3.2, 3.6 mg m(-2) without the gas-aerosol interaction. However, with the gas-aerosol interaction these values have been increased to 0.6% (155.8 mg m(-2)), 16% (3.7 mg m(-2)), and 14% (4.1 mg m(-2)) of the corresponding concentration without the gas-aerosol interaction. On the other hand, the time-area mean

  18. Roles and needs of man in space

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1983-01-01

    Human capabilities and requirements on space missions are discussed. Utilitarian and humanistic motivations for manned missions are considered, and a general program of development from easy space access and return, to a permanent LEO presence, to the limited self-sufficiency of man in space, is proposed. Man's potential as scientific observer, operator, and engineer/technician is illustrated with examples from the Apollo and Skylab missions. It is shown that future increases in man's space presence will require significant improvements in habitation technology, crew comfort and safety, operational effectiveness and reliability, and man/machine interactions: man-tended systems must be standardized and adapted to (mainly EVA) human servicing; permanently manned systems must be designed to attain levels of comfort, privacy, and overall habitability more like those expected on the ground.

  19. Determination of aerosol ammonium using an aerodyne aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Delia, A. E.; Toohey, D. W.; Worsnop, D. R.

    2003-04-01

    The chemical composition of fine aerosols is a significant issue both because it influences the chemical and radiative properties of the aerosols, which in turn impact the regional and global climate and human health, and because it is difficult to measure accurately. The Aerosol Mass Spectrometer (AMS) developed by Aerodyne Research measures both chemical composition and aerodynamic size of submicron aerosols quantitatively. However, the measurement of aerosol ammonium is more difficult than that of the other major inorganic species, nitrate and sulfate, because of interferences in the mass spectrum from air and water. This presentation will describe the successful procedure developed for dealing with these interferences and accurately determining the ammonium mass. In addition, the application of this procedure to aerosols from a range of ambient conditions will be demonstrated using data from several field studies.

  20. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Reid, J. S.; Benedetti, A.; Colarco, P. R.; da Silva, A.; Lu, S.; Sekiyama, T.; Tanaka, T. Y.; Baldasano, J. M.; Basart, S.; Brooks, M. E.; Eck, T. F.; Iredell, M.; Hansen, J. A.; Jorba, O. C.; Juang, H.-M. H.; Lynch, P.; Morcrette, J.-J.; Moorthi, S.; Mulcahy, J.; Pradhan, Y.; Razinger, M.; Sampson, C. B.; Wang, J.; Westphal, D. L.

    2014-06-01

    representative Aerosol Robotic Network (AERONET) sites, all models generally captured the basic aerosol features of the globe. However, there is an overall AOT low bias among models, particularly for high AOT events. Biomass burning regions have the most diversity in seasonal average AOT. The southern oceans, though low in AOT, nevertheless also have high diversity. In regard to root mean square error, as expected the ICAP-MME placed first over all models worldwide, and was typically first or second in ranking against all models at individual sites. These results are encouraging; as more global operational aerosol models come on line, we expect their inclusion in a robust operational multi-model ensemble will provide valuable aerosol forecasting guidance.

  1. Using the Aerosol Single Scattering Albedo and Angstrom Exponent from AERONET to Determine Aerosol Origins and Mixing States over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Slutsker, I.; Smirnov, A.; Schafer, J. S.; Dickerson, R. R.; Thompson, A. M.; Tripathi, S. N.; Singh, R. P.; Ghauri, B.

    2012-12-01

    Aerosol mixtures—whether dominated by dust, carbon, sulfates, nitrates, sea salt, or mixtures of them—complicate the retrieval of remotely sensed aerosol properties from satellites and possibly increase the uncertainty of the aerosol radiative impact on climate. Major aerosol source regions in South Asia include the Thar Desert as well as agricultural lands, Himalayan foothills, and large urban centers in and near the Indo-Gangetic Plain (IGP). Over India and Pakistan, seasonal changes in meteorology, including the monsoon (June-September), significantly affect the transport, lifetime, and type of aerosols. Strong monsoonal winds can promote long range transport of dust resulting in mixtures of dust and carbonaceous aerosols, while more stagnant synoptic conditions (e.g., November-January) can prolong the occurrence of urban/industrial pollution, biomass burning smoke, or mixtures of them over the IGP. Aerosol Robotic Network (AERONET) Sun/sky radiometer data are analyzed to show the aerosol optical depth (AOD) seasonality and aerosol dominant mixing states. The Single Scattering Albedo (SSA) and extinction Angstrom exponent (EAE) relationship has been shown to provide sound clustering of dominant aerosol types using long term AERONET site data near known source regions [Giles et al., 2012]. In this study, aerosol type partitioning using the SSA (440 nm) and EAE (440-870 nm) relationship is further developed to quantify the occurrence of Dust, Mixed (e.g., dust and carbonaceous aerosols), Urban/Industrial (U/I) pollution, and Biomass Burning (BB) smoke. Based on EAE thresholds derived from the cluster analysis (for AOD440nm>0.4), preliminary results (2001-2010) for Kanpur, India, show the overall contributions of each dominant particle type (rounded to the nearest 10%): 10% for Dust (EAE≤0.25), 60% for Mixed (0.251.25). In the IGP, BB aerosols may have varying sizes (e.g., corresponding to 1.2

  2. Effects of weightlessness in man.

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1973-01-01

    The program for the Apollo 16 flight was designed to include both safeguards against and investigations of the physiological problems arising from increase in the period of manned space flight. Precautions included the provision of a controlled diet with high potassium content, carefully controlled work loads and work-rest cycles, and an emergency cardiology consultation service, and investigations were made to enable preflight vs postflight comparisons of metabolic, cardiovascular, and central nervous system data. Results of these investigations indicate that adjustment to weightlessness can be satisfactorily assisted by appropriate countermeasures, including attention to diet.

  3. Stone man: a case report.

    PubMed

    Mortazavi, Hamed; Eshghpour, Majid; Niknami, Mahdi; Saeedi, Morteza

    2012-12-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare hereditary connective tissue disease characterized by the progressive ectopic ossification of ligaments, tendons, and facial and skeletal muscles throughout life. Symptoms begin in childhood as localized soft tissue swellings. Immobility and articular dysfunction appear with involvement of the spine and proximal extremities. The temporomandibular joint (TMJ) is a critical component involved in the maxillofacial region, resulting in severe limitation of masticatory function, although TMJ involvement is rare. The aim of this article is to present a 28-year-old man with dental problems and slowly progressive limitation of motion in the jaw, knees, shoulders and hips as well as neck distortion.

  4. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  5. On the variation of aerosol properties over Finland based on the optical columnar measurements

    NASA Astrophysics Data System (ADS)

    Aaltonen, V.; Rodriguez, E.; Kazadzis, S.; Arola, A.; Amiridis, V.; Lihavainen, H.; de Leeuw, G.

    2012-10-01

    Long-range aerosol transport over Finland has been studied using ground-based sunphotometer measurements of aerosol optical properties. Cimel sunphotometers were used at an urban site (Helsinki), a rural site (Hyytiälä) and a semiurban site (Kuopio) and PFR sunphotometer measurements were made at two rural sites, Jokioinen and Sodankylä. The CIMEL measurements are part of the AERONET (Aerosol robotic network) network and Jokioinen and Sodankylä are GAW-PFR (Global Atmosphere Watch-Precision Filter Radiometer) Associate Stations. Sunphotometers provide information on local columnar aerosol properties such as aerosol optical depth (AOD) and Ångström exponent (ÅE) that were used to investigate the aerosol content and aerosol type in this region. A set of representative event days, i.e. days with high turbidity, covering the time period between March 2006 and June 2010 has been selected for further analysis. For these days the AOD results were combined with air mass back trajectories to provide information about the air mass origin, especially for cases with moderate turbidity produced by long-range transported aerosols from mid latitudes to Finland. As expected, episodes with high AOD are connected with the transport of polluted air masses originating from the east or southeast or from industrial areas in Central Europe. We distinguished events with long range transported air pollution from cases where pollution was accumulated in the area due to the local meteorological factors.

  6. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  7. Background Maritime Aerosol: Their Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The effect of human induced change in the aerosol concentration and properties, or the aerosol response to climate change (e.g. droughts producing fires or dust) should be measured relative to a "background aerosol". How to define this background aerosol, so that it is both measurable and useful? Here we use 10 stations located in the Pacific, Atlantic and Indian Oceans to answer this question. Using a data set of the spectral optical thickness measured by the Aerosol Robotic network (AERONET), extending 1-3 years, we find the background conditions for these stations. The oceanic background aerosol is the result of ocean emission and spray, and some residual long lived continental aerosol. Its source is very broadly spread and is expected to vary little in time. Pollution or dust sources are from specific locations, emitted and transported to the measuring site in specific combination of meteorological conditions. Therefore they are expected to vary with time. It follows that the background aerosol can be identified as the median for conditions with small variations. To define the background we compute the median of N consequent measurements. We use N=50 that in average cloudy conditions corresponds to 2-3 days of measurements and N=100 (4-5 days). Most high polluted or dusty conditions correspond to data sequences with high standard deviation (greater than 0.02 in optical thickness) and are excluded. From the remaining N point running medians with low standard deviations we derive again the median. This excludes those rare cases of pollution or dust that is stable during the N measurements. The results show that the background aerosol over the Pacific Ocean is characterize by optical thickness of 0.055 at 500 nm and Angstrom exponent of 0.74. Over the Atlantic Ocean the values are 0.070 and 1.1 respectively, with little influence of the assumed value of N (50 or 100). The derivation of the background uses 20,000 and 5000 medians respectively that passed the

  8. Charicteristics of Aerosol indices distribution followed by Aerosol types

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, J.; Lee, J.; Kim, M.; Lee, S.; Song, C.

    2010-12-01

    Transboundary transport of aerosol has been a hot issue in East Asia and with various aerosol types from different source region. To detect signals from aerosols, OMI provides aerosol indices. Aerosol Indices (AI) represent the change of spectral contrast between two wavelengths and these indices are derived in UV and Visible regions. These indices also can get not only in ocean but also in land region so that AI is good to observe the source region and transport of aerosols. In UV region, AI (UV-AI) can classify the absorbing and non-absorbing aerosols (Torres et al., 1998) so that this value is frequently used for dust detection. Additionally, visible AI (VIS-AI) uses to differentiate the absorbing and non-absorbing aerosol types. If we combine two types of indices at the coordinate system of two types of AI, distribution of indices contains different signals if aerosol types change theoretically. In this study, we want to find out classification results based by the observation data to see the theoretical distribution in two AI values. For the observation data, aerosol types are obtained from the results of MODIS-OMI algorithm and 4-channel algorithm classify four types of aerosols, i.e. dust, carbonaceous, sea-salt and Non-Absorbing (NA). These algorithms classify aerosol by using the characteristics of aerosol optical properties in visible and near IR regions. MODIS-OMI algorithm uses the MODIS AOD and UV-AI in OMI values. For UV-AI case, dust and carbonaceous types have larger UV-AI values than non-absorbing aerosols because of absorbing characteristics. However, dust and carbonaceous types cannot classify if UV-AI values use only. For VIS-AI case, dust has larger proportion, but carbonaceous aerosol has smaller proportion in high AI value. However, VIS-AI cannot clearly classify between dust and carbonaceous types except for the case of extremely high AI cases. In NA type, VIS-AI has almost positive values, but the distribution has smaller than the absorbing

  9. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  10. Regional and Global Aspects of Aerosols in Western Africa: From Air Quality to Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Kucsera, Tom; Spinhime, Jim; Palm, Stephen; Holben, Brent; Ginoux, Paul

    2006-01-01

    Western Africa is one of the most important aerosol source regions in the world. Major aerosol sources include dust from the world's largest desert Sahara, biomass burning from the Sahel, pollution aerosols from local sources and long-range transport from Europe, and biogenic sources from vegetation. Because these sources have large seasonal variations, the aerosol composition over the western Africa changes significantly with time. These aerosols exert large influences on local air quality and regional climate. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze satellite lidar data from the GLAS instrument on the ICESat and the sunphotometer data from the ground-based network AERONET taken in both the wet (September - October 2003) and dry (February - March 2004) seasons over western Africa. We will quantify the seasonal variations of aerosol sources and compositions and aerosol spatial (horizontal and vertical) distributions over western Africa. We will also assess the climate impact of western African aerosols. Such studies will be applied to support the international project, Africa Monsoon Multidisciplinary Analysis (AMMA) and to analyze the AMMA data.

  11. Aerosol simulation applying high resolution anthropogenic emissions with the EMAC chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; de Meij, A.; Pringle, K. J.; Tost, H.; Doering, U. M.; van Aardenne, J.; Lelieveld, J.

    2011-09-01

    The new high resolution global anthropogenic emission inventory (EDGAR-CIRCE) of gas and aerosol pollutants has been incorporated in the chemistry general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). A high horizontal resolution simulation is performed for the years 2005-2008 to evaluate the capability of the model and the emissions to reproduce observed aerosol concentrations and aerosol optical depth (AOD) values. Model output is compared with observations from different measurement networks (CASTNET, EMEP and EANET) and AODs from remote sensing instruments (MODIS and MISR). The model reproduces the main spatial and temporal atmospheric features of the sulfate, ammonium and nitrate aerosol distributions. A good spatial agreement of the distribution of sulfate and ammonium aerosol is found when compared to observations, while calculated nitrate aerosol concentrations show some discrepancies. The simulated temporal development of the inorganic aerosols is in line with measurements of sulfate and nitrate aerosol, while for ammonium aerosol some deviations from observations occur over the USA. The calculated AODs agree well with the satellite observations in most regions, while a negative bias is found for the equatorial area and in the dust outflow regions (i.e. Central Atlantic and Northern Indian Ocean), due to an underestimation of biomass burning and aeolian dust emissions, respectively.

  12. Spatial Distribution of Accuracy of Aerosol Retrievals from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles

    2012-01-01

    Remote sensing of aerosols from space has been a subject of extensive research, with multiple sensors retrieving aerosol properties globally on a daily or weekly basis. The diverse algorithms used for these retrievals operate on different types of reflected signals based on different assumptions about the underlying physical phenomena. Depending on the actual retrieval conditions and especially on the geographical location of the sensed aerosol parcels, the combination of these factors might be advantageous for one or more of the sensors and unfavorable for others, resulting in disagreements between similar aerosol parameters retrieved from different sensors. In this presentation, we will demonstrate the use of the Multi-sensor Aerosol Products Sampling System (MAPSS) to analyze and intercompare aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Based on this intercomparison, we are determining geographical locations where these products provide the greatest accuracy of the retrievals and identifying the products that are the most suitable for retrieval at these locations. The analyses are performed by comparing quality-screened satellite aerosol products to available collocated ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations, during the period of 2006-2010 when all the satellite sensors were operating concurrently. Furthermore, we will discuss results of a statistical approach that is applied to the collocated data to detect and remove potential data outliers that can bias the results of the analysis.

  13. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  14. Resolving mesoscale variation in aerosol fields from satellite: Is fine resolution worth the hassle? (Invited)

    NASA Astrophysics Data System (ADS)

    Remer, L. A.; Munchak, L. A.; Huang, J.; Levy, R. C.; Mattoo, S.

    2013-12-01

    In early 2000 we began receiving global aerosol products from the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) at nominal 10 km and 17.5 km resolution, respectively. Aerosol products derived from other satellite sensors such as the Ozone Monitoring Instrument (OMI) with spatial resolution nominally at 13 x 12 km later joined these data. Suddenly the global aerosol system popped into focus. For global-scale science, a 10 km product appeared to be adequate. Questions concerning the adequacy of this moderate resolution data set began to arise as the community's interest in satellite-derived aerosol products branched towards more local questions. As of Collection 6, the MODIS aerosol product will now include a fine resolution product at nominal 3 km resolution. What can we learn about mesoscale variation in aerosol fields from this new product? Was the effort worth it? We take advantage of the AERONET DRAGON networks in the mid-Atlantic region of the U.S., in Korea and in California to compare the accuracy of the MODIS 3 km product with the MODIS 10 km product, and just for fun, with the 6 km Visible Infrared Imager Suite (VIIRS) aerosol product. Do the finer resolution aerosol products show us aerosol features unobtainable by the coarser resolution products? Are the finer resolution products worth the hassle?

  15. Lidar measurements of wildfire smoke aerosols in the atmosphere above Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2016-01-01

    Presented are results of lidar measurements and characterization of wildfire caused smoke aerosols observed in the atmosphere above the city of Sofia, Bulgaria, related to two local wildfires raging in forest areas near the city. A lidar systems based on a frequency-doubled Nd:YAG laser operated at 532 nm and 1064 nm is used in the smoke aerosol observations. It belongs to the Sofia LIDAR Station (at Laser Radars Laboratory, Institute of Electronics, Bulgarian Academy of Sciences), being a part of the European Aerosol Lidar Network. Optical, dynamical, microphysical, and geometrical properties and parameters of the observed smoke aerosol particles and layers are displayed and analyzed, such as: range/height-resolved profiles of the aerosol backscatter coefficient; integral aerosol backscattering; sets of colormaps displaying time series of the height distribution of the aerosol density; topologic, geometric, and volumetric properties of the smoke aerosol layers; time-averaged height profiles of backscatter-related Ångström exponent (BAE). Obtained results of retrieving and profiling smoke aerosols are commented in their relations to available meteorological and air-mass-transport forecasting and modelling data.

  16. Assessment of aloft aerosol layers by ground-based lidar, satellite CALIPSO and model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Cordero, L.; Nazmi, C.; Gross, B.; Moshary, F.; Ahmed, S. A.

    2013-12-01

    Aloft aerosol layers injected from dust storms and biomass burning are often transported over the long-distance, thus playing important roles in climate radiative forcing and air quality in the regional and continental scale. In particular, they are critical to satellite remote sensing of air quality, e.g. using satellite column aerosol optical depth (AOD) to evaluate surface PM2.5 concentration, because the aloft aerosol layer can make a substantial contribution to total AOD. These aloft aerosol plumes have been extensively observed or identified by the ground-lidar and space-borne lidar CALIOP/CALIPSO, as well as the global aerosol transport such as NRL-NAAPS. In this study, the aloft aerosol layers are investigated with a regional NOAA-CREST Lidar Network (CLN) in the East Coast of U.S., spaceborne lidar CAIPSO observations and NAAPS model forecast. We first analyze the height distribution and seasonal occurrence of aloft aerosol plumes from the multi-year CLN-lidar dataset. We also explore specific aloft aerosol layers and type classifications between NAAPS-model and CLN-lidar observations to asses NAAPS with special attention to time slices when MODIS AOD assimilation is present or not. Moreover, we assess the potential of NAAPS to identify and separate between aloft aerosol layers ('unclear' sky) and the non-aloft-layer ('clear' sky). This identification is very important in filtering the use of satellite AOD retrievals in potential PM2.5 estimators.

  17. Aerosol Dynamics Laboratory

    SciTech Connect

    Rader, D.J.; Mondy, L.A.

    1990-04-01

    In past five years, Department 1510 has developed a state-of-the-art Aerosol Dynamics Laboratory (ADL). This report documents the current instrumentation and capabilities that exist in this laboratory. The ADL was developed from a variety of sources, with a primary contribution from Department 1510's Independent Research and Development program in aerosol dynamics. Current capabilities of the ADL include: (1) generation of calibration-quality monodisperse particles with diameters between 0.005 to 100 {mu}m, (2) real-time measurement of particle size distributions for particle diameters between 0.01 and 100 {mu}m, (3) in situ, real-time measurement of particle size distributions for particle diameters between 0.3 and 100 {mu}m, and (4) real-time measurement of particle charge distributions for particle diameters between 0.01 and 1.0 {mu}m. 14 refs., 5 figs.

  18. Chinese Manned Space Utility Project

    NASA Astrophysics Data System (ADS)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  19. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  20. COMPARISON OF DATA FROM THE STN AND IMPROVE NETWORKS

    EPA Science Inventory

    Two national chemical speciation-monitoring networks operate currently within the United States. The Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network operates primarily in rural areas collecting aerosol and optical data to better understand th...

  1. The rights of man and animal experimentation.

    PubMed

    Martin, J

    1990-09-01

    Since emotions give contradictory signals about animal experimentation in medical science, man's relationship to animals must be based upon reason. Thomas Aquinas argues that man is essentially different from animals because man's intellectual processes show evidence of an abstract mechanism not possessed by animals. Man's rights arise in association with this essential difference. The consequence is that only man possesses true rights by Aquinas's definition; animals have them only by analogy. However, cruelty to animals is illicit and they should be protected, principally not because they have rights, but because he who is cruel to animals is more likely to be cruel to his fellowman. If there is a need for animal experimentation in science for the good of man, this approach gives philosophical justification for experimentation, since man's well-being must come before that of animals because of his unique possession of rights. However, those experiments should be carried out in the kindest way possible, to promote kindness towards man. To see man as solely part of a biological continuum in competition for rights with those beings close to him biologically, detracts from man's dignity.

  2. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  3. Improvement of Aerosol Prediction Capability

    DTIC Science & Technology

    2001-09-30

    by dust storms in the past.) The operational aerosol products will be used for initialization or specification of aerosols in COAMPS when new cloud...Figure 2. SeaWiFS visible imagery for May 18, 2001, showing a dust storm originating at dry lakes along the Iran-Afghanistan border and then...versions of the Navy Aerosol Analysis and Prediction System (NAAPS) for analysis of airborne dust loads (Westphal/NRL). B: Modify existing radiative

  4. Unified Aerosol Microphysics for NWP

    DTIC Science & Technology

    2011-09-30

    Specifically, the goal is to develop a COAMPS that is capable of simulating the full range of interactions between aerosol particles, clouds , and radiative...aerosol species that are responsible for degradation of Electro- Optical (EO) propagation or that modify cloud behavior and lifetime. Report...enabling new development of more complex cloud -aerosol interactions. The work on this project has been divided into two phases, an investigation phase

  5. Photothermal spectroscopy of aerosols

    SciTech Connect

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 ..mu..m were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO/sub 2/ laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m/sup 2//g at 1087 cm/sup -1/. The absorption coefficient sensitivity of this scheme was less than or equal to 10/sup -8/ cm/sup -1/. The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations.

  6. Application of AERONET Single Scattering Albedo and Absorption Angstrom Exponent to Classify Dominant Aerosol Types during DRAGON Campaigns

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.

    2013-12-01

    Aerosols can have major implications on human health by inducing respiratory diseases due to inhalation of fine particles from biomass burning smoke or industrial pollution and on radiative forcing whereby the presence of absorbing aerosol particles (e.g., black carbon) increases atmospheric heating. Aerosol classification techniques have utilized aerosol loading and aerosol properties derived from multi-spectral and multi-angle observations by ground-based (e.g., AERONET) and satellite instrumentation (e.g., MISR). Aerosol Robotic Network (AERONET) data have been utilized to determine aerosol types by implementing various combinations of measured aerosol optical depth or retrieved size and absorption aerosol properties (e.g., Gobbi et al., 2007; Russell et al., 2010). Giles et al. [2012] showed single scattering albedo (SSA) relationship with extinction Angstrom exponent (EAE) can provide an estimate of the general classification of dominant aerosol types (i.e., desert dust, urban/industrial pollution, biomass burning smoke, and mixtures) based on data from ~20 AERONET sites located in known aerosol source regions. In addition, the absorption Angstrom exponent relationship with EAE can provide an indication of the dominant absorbing aerosol type such as dust, black carbon, brown carbon, or mixtures of them. These classification techniques are applied to the AERONET Level 2.0 quality assured data sets collected during Distributed Regional Aerosol Gridded Observational Network (DRAGON) campaigns in Maryland (USA), Japan, South Korea, Singapore, Penang (Malaysia), and California (USA). An analysis of aerosol type classification for DRAGON sites is performed as well as an assessment of the spatial variability of the aerosol types for selected DRAGON campaigns. Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications

  7. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  8. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  9. Variability of aerosol vertical distribution in the Sahel

    NASA Astrophysics Data System (ADS)

    Cavalieri, O.; Cairo, F.; Fierli, F.; di Donfrancesco, G.; Snels, M.; Viterbini, M.; Cardillo, F.; Chatenet, B.; Formenti, P.; Marticorena, B.; Rajot, J. L.

    2010-12-01

    In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analysis (AMMA), by the AEROsol RObotic NETwork (AERONET) sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations). During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies. Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites. Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the continent by the monsoon flow. During summer

  10. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  11. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-02

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption.

  12. Man-machine cooperation in advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Das, Hari; Lee, Sukhan

    1993-01-01

    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.

  13. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  14. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  15. Aerosol patterns and aerosol-cloud-interactions off the West African Coast based on the A-train formation

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Bendix, Jörg; Cermak, Jan

    2013-04-01

    ). Satellite data from the A-train formation, including the Aqua, CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) are used to analyze aerosol-cloud-interactions in detail, along with re-analysis data to constrain by meteorological conditions. Information about the vertical and geographical distribution of different aerosol types and cloud parameters will lead to a process-oriented understanding of these issues on a regional scale. Ackerman, A., Kirkpatrick, M., Stevens, D., & Toon, O. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432(December), 1014-1017. doi:10.1038/nature03137.1. Feingold, G. (2003). First measurements of the Twomey indirect effect using ground-based remote sensors. Geophysical Research Letters, 30(6), 1287. doi:10.1029/2002GL016633 IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Interfovernmental Panel on climate Change. Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., & Fan, S. (2005). Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research, 110(D10), 1-16. doi:10.1029/2003JD004436 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., et al. (2006). The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 6(9), 2593-2649. doi:10.5194/acp-6-2593-2006

  16. The Socio-Technical Man

    NASA Astrophysics Data System (ADS)

    Moreno, Yamir

    In the last 20 years or so, the field of complexity science has entered a new age. The combination of new theoretical insights and the data revolution has prepared the ground for a number of conceptual milestones in many disciplines as diverse as biology, physics, engineering, and economic and social sciences. At the same time, we have been able to identify new challenges whose solutions will confer the science of complex systems an unprecedented applied dimension. Here I would like to focus on one of these challenges: the socio-technical man. With the ever-increasing growth of both the world population and new technologies, it is fundamental for the well-being of humanity and our society to understand how humans interact among them and with the new technological environment...

  17. A man with worsening weakness.

    PubMed

    Proietti, G; Puliti, M; Tulli, F; Silvestri, M

    1999-01-01

    The contemporary presence of organomegaly, skin manifestations, polyneuropathy, endocrinopathy and monoclonal component characterises the POEMS syndrome, often associated with osteosclerotic myeloma and Castelman's disease and more frequent in the Japanese. Clinical manifestations seem to be related to the production of many interleukins, mainly IL-1, IL-6 and TNF. Several endocrinopathies have been described, the most frequent being diabetes. Only one previous case of hypoparathyroidism associated with the syndrome has been described in medical reviews. Polyneuropathy is often sensitivo-motory and skin disease accounts for Raynaud phenomenon, skin pigmentation, hypertricosis and others. We describe the case of a 74-year-old man who underwent clinical examination for weakness mainly in the legs. Clinical and instrumental data showed rhabdomyolysis due to hypoparathyroidism. The contemporary presence of a monoclonal band of light chains on proteic electrophoresis, organomegaly and distal leg neuropathy allowed us to make a diagnosis of POEMS syndrome.

  18. Profile of heating rate due to aerosols using lidar and skyradiometer in SKYNET Hefei site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, D.; Xie, C.

    2015-12-01

    Atmospheric aerosols have a significant impact on climate due to their important role in modifying atmosphere energy budget. On global scale, the direct radiative forcing is estimated to be in the range of -0.9 to -0.1 Wm-2 for aerosols [1]. Yet, these estimates are subject to very large uncertainties because of uncertainties in spatial and temporal variations of aerosols. At local scales, as aerosol properties can vary spatially and temporally, radiative forcing due to aerosols can be also very different and it can exceed the global value by an order of magnitude. Hence, it is very important to investigate aerosol loading, properties, and radiative forcing due to them in detail on local regions of climate significance. Haze and dust events in Hefei, China are explored by Lidar and Skyradiometer. Aerosol optical properties including the AOD, SSA, AAE and size distribution are analysed by using the SKYRAD.PACK [2] and presented in this paper. Furthermore, the radiative forcing due to aerosols and the heating rate in the ATM are also calculated using SBDART model [3]. The results are shown that the vertical heating rate is tightly related to aerosol profile. References: 1. IPCC. 2007. Climate Change 2007: The Physical Science Basic. Contribution of Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, Manning M, et al. eds., Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA. 2. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate poly dispersions, Appl. Opt., 35, 2672-2686. 3. Ricchiazzi et al 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,Bulletin of the American Meteorological Society,79,2101-2114.

  19. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  20. AERONET Version 3 Release: Providing Significant Improvements for Multi-Decadal Global Aerosol Database and Near Real-Time Validation

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Slutsker, Ilya; Giles, David; Eck, Thomas; Smirnov, Alexander; Sinyuk, Aliaksandr; Schafer, Joel; Sorokin, Mikhail; Rodriguez, Jon; Kraft, Jason; Scully, Amy

    2016-01-01

    Aerosols are highly variable in space, time and properties. Global assessment from satellite platforms and model predictions rely on validation from AERONET, a highly accurate ground-based network. Ver. 3 represents a significant improvement in accuracy and quality.

  1. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-08-01

    This study extends the application of the previously developed Aerosol Single-scattering albedo and layer Height Estimation (ASHE) algorithm, which was originally applied to smoke aerosols only, to both smoke and dust aerosols by including nonspherical dust properties in the retrieval process. The main purpose of the algorithm is to derive aerosol height information over wide areas using aerosol products from multiple satellite sensors simultaneously: aerosol optical depth (AOD) and Ångström exponent from the Visible Infrared Imaging Radiometer Suite (VIIRS), UV aerosol index from the Ozone Mapping and Profiler Suite (OMPS), and total backscatter coefficient profile from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The case studies suggest that the ASHE algorithm performs well for both smoke and dust aerosols, showing root-mean-square error of the retrieved aerosol height as compared to CALIOP observations from 0.58 to 1.31 km and mean bias from -0.70 to 1.13 km. In addition, the algorithm shows the ability to retrieve single-scattering albedo to within 0.03 of Aerosol Robotic Network inversion data for moderate to thick aerosol loadings (AOD of ~1.0). For typical single-layered aerosol cases, the estimated uncertainty in the retrieved height ranges from 1.20 to 1.80 km over land and from 1.15 to 1.58 km over ocean when favorable conditions are met. Larger errors are observed for multilayered aerosol events, due to the limited sensitivities of the passive sensors to such cases.

  2. Analysis and testing of key technologies of PTN on MAN

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Chen, Ying; Cui, Wanlong

    2009-08-01

    Broadband connectivity to Internet has quickly become one of the most successful telecom service offerings ever. The meeting and marketplace of the future requires Full-Service Broadband. Full Service Broadband encompasses a unique combination of products and experience that will enable operators and network providers to meet this emerging demand for anywhere access to broadband services, quickly, cost-effectively and with minimal risk. Firstly, the standard of PTN (Packet Transmission Network) are analyzed. Then ,by deep analysis the key technology of PTN on MAN. The key technologies of PTN on MAN can be divided into two group: PBT, PBBREP, RRPP, ERP technology, and Carrier Ethernet with MPLS technology. At the same time, communication each other of MSTP and PTN,T-MPLS and IP/MPLS ,PBT and IP/MPLS are carried out by figures. At last, testing of PTN are analyzed, testing contents mainly include: TDM service function of PTN equipment, long time BER capability of STM-1service, time delay capability of PTN equipment, protection and provisioned backup path function of T-MPLS, Wrapping protection a function of T-MPLS loop network,and OAM functions.

  3. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    SciTech Connect

    Leung, L Ruby

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  4. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  5. The role of anisotropic expansion for pulmonary acinar aerosol deposition

    PubMed Central

    Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (dp = 0.005–5.0 μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (dp ~ 0.5–0.75 μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. PMID:27614613

  6. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  7. INDOOR AEROSOLS AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    This chapter provides an overview of both indoor aerosol concentration measurements, and the considerations for assessment of exposure to aerosols in non-occupational settings. The fixed-location measurements of concentration at an outdoor location, while commuting inside an a...

  8. Aerosol Variability Observed with Rpas

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Lampert, A.; Scholtz, A.; Bange, J.; Platis, A.; Hermann, M.; Wehner, B.

    2013-08-01

    To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS) Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter). Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  9. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  10. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  11. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  12. Sampling stratospheric aerosols with impactors

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.

    1989-01-01

    Derivation of statistically significant size distributions from impactor samples of rarefield stratospheric aerosols imposes difficult sampling constraints on collector design. It is shown that it is necessary to design impactors of different size for each range of aerosol size collected so as to obtain acceptable levels of uncertainty with a reasonable amount of data reduction.

  13. Man to Man about Rape: A Rape Prevention Program for Men.

    ERIC Educational Resources Information Center

    Ring, Timothy E.; Kilmartin, Christopher

    1992-01-01

    Describes "Man to Man about Rape," project offered at one university that uses both didactic and small group experiential formats to educate male college students about male socialization, intimacy, violent behavior, objectification, father-son relationships, and sexual behavior. (NB)

  14. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  15. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Han, Zhiwei; Xin, Jinyuan; Liu, Xiaohong

    2011-11-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m -2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m -2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  16. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  17. A novel ultrasonic aerosol generator.

    PubMed

    Davies, A; Hudson, N; Pirie, L

    1995-07-01

    An ultrasonic aerosol generator constructed from a domestic humidifier is described which has been used to produce liquid aerosols for physiological investigations. The instrument was constructed from a Pifco domestic humidifier modified to include an energy guide to direct the oscillations of the transducer through the coupling water, which would normally be aerosolized, onto a small membrane based sample chamber containing the liquid to be aerosolized. The size distribution of the aerosol produced was found to be between 2 and 6 mm, optimum for diffuse intrapulmonary deposition. Up to 4 ml/min of aqueous liquid was used; however the sample chamber could be made small enough to contain economic amounts of expensive material to administer by inhalation. The instrument has proved to be reliable over a period of three years.

  18. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  19. Multi-Parameter Aerosol Scattering Sensor

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  20. Aerosol Single-Scattering Albedo and Asymmetry Parameter from MFRSR Observations during the ARM Aerosol IOP 2003

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Ackerman, Thomas P.; Barnard, James C.

    2007-06-15

    Multi-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measurements of the aerosol optical depth ( << OLE Object: Microsoft Equation 3.0 >> ) at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94  << OLE Object: Picture (Metafile) >> ). The single-scattering albedo ( << OLE Object: Microsoft Equation 3.0 >> ) is typically estimated from the MFRSR measurements by assuming the asymmetry parameter ( << OLE Object: Microsoft Equation 3.0 >> ). In most instances, however, it is not easy to set an appropriate value of << OLE Object: Microsoft Equation 3.0 >> due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously << OLE Object: Microsoft Equation 3.0 >> and << OLE Object: Microsoft Equation 3.0 >> for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Science Program (ARM) Aerosol Intensive Operational Period (IOP) to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET) and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~ 5 << OLE Object: Microsoft Equation 3.0 >> ) to those obtained from measurements.

  1. The man and the hill

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1962-01-01

    He was sitting on a large slab of rock. As he looked at the cloud of dust hanging hazily on the horizon, the piece of antler and the block of flint he held in his hand hung as if they were suspended from their previous rapid motion. The man gazed intently across the swaying grass which rose in wave-like billows across the distant hills. What was that dust - a herd of buffalo, a band of hunters, or were coyotes chasing the antelope again? After watching for a while he started again to chip the flint with a rapid twisting motion of the bone in his right hand. The little chips of flint fell in the grass before him. It is the same hill but the scene has changed. Seated on the same rock, holding the reins of a saddle horse, a man dressed in buckskin took the fur cap off his head and wiped his brow. He was looking intently across a brown and desolate landscape at a cloud of dust on the far horizon. Was it the hostile tribe of Indians? It could be buffalo. Nervously he kicked at the ground with the deerhide moccasin, pushing the flint chips out of the way. He wiped the dust from his long rifle. What a terrible place - no water, practically no grass, everything bare and brown. Now at sunset, slanting across the hills green with springtime, a cowman sits on a big rock, pushes his sombrero back on his head, and looks across the valley at a large but quiet herd of stock, moving slowly as each steer walks from one lush patch of grass to another, nibbling. Suddenly he stood up. Far on the horizon some dark objects were moving. Is it the sheepmen? Could it be the stage coach from Baggs to the Sweetwater Crossing?Same hill - a gray truck was grinding slowly toward the summit. It pulled up near a small fenced enclosure where there were some instruments painted a bright silver color. A man stepped out of the truck and turned to his younger companion, "You've never found an arrowhead? Maybe you have never thought about it correctly. If you want to find where an Indian camped long

  2. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  3. Saudi Arabian solar radiation network and data for validating satellite remote sensing systems

    NASA Astrophysics Data System (ADS)

    Myers, Daryl R.; Wilcox, Stephen; Anderberg, Mary; Al-Awaji, Saleh H.; Al Abbadi, Naif M.; Mahfoodh, Mohammed Y. b.

    1999-09-01

    The National Aeronautics and Space Administration (NASA) will be launching complex satellite remote-sensing platforms for monitoring the earth's radiation budget, land use, and atmospheric physics for periods exceeding 10 years. These Earth Observing Satellite (EOS) platforms will strive to detect man-made and natural variations in the Earth's climate. Form 1993 to the present (1999), the National Renewable Energy Laboratory and the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, conducted a joint solar radiation resource assessment project to upgrade the solar resources assessment capability of the Kingdom of Saudi Arabia. KACST has deployed a high quality 12-station network in Saudi Arabia for monitoring solar total horizontal, direct beam, and diffuse radiation. One- and five-minute network data is collected and assessed for quality. 80 percent or more of the network data fall within quality limits of +/- 5 percent for correct partitioning between the three radiation components. This network will provide measured data for validating the NASA remote sensing systems. We describe the network, quality assessment procedures, and the result of estimating aerosol optical depth and precipitable water vapor. These are important for validating satellite estimates of radiation fluxes in and at the top of the Earth's atmosphere.

  4. Direct radiative effects of aerosols over South Asia from observations and modeling

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Chin, Mian

    2016-10-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter (DRESUR = -28 ± 12 W m-2 and DREATM = +19.6 ± 9 W m-2) to spring (DRESUR = -33.7 ± 12 W m-2 and DREATM = +27 ± 9 W m-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as 1 K day-1 during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 ± 7 W m-2) during spring overwhelms that of black carbon DRE (+11.8 ± 6 W m-2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  5. The man and the universe

    NASA Astrophysics Data System (ADS)

    Kolodziejska, Magdalena

    2016-04-01

    The universe has always aroused people's curiosity. It fascinates and at the same time scares in its vastness. Encourages us to reflect of the meaning of human life. This begs the questions: whether there is a life beyond Earth? Whether is it possible that the man is alone in such a large space? These questions still remain unanswered, and topics concerning "the cosmos" constantly evoke many emotions. It is especially fascinating for the youngest students. Quite often, preschoolers can flawlessly name the planets according to their order of appearance in relation to the sun. They are happy to take the fun inspired by journeys into space. Teaching through action is extremely important for the development of the child-man* (Piaget, 2006). The thinking originates primarily from the action. Therefore, students should undertake independent research activities, perform experiments and conduct observations and thus raise questions about the world, looking for meanings and solutions. Adults (a teacher, a person with a passion) are to be the support in the search for knowledge, its processing and cleaning. Its role is to ensure a proper development of environment that is conducive to research activity. The answer to these requirements was to create in the oldest technical school in Poland (Railway Technical College, now Technical College No. 7) the astronomical observatory, which can be used by pupils of Warsaw's kindergartens and schools. There are organized activities for children and youth in this school, as well as trainings for teachers. Younger students during such an interdisciplinary courses are, among others, the opportunity to get acquainted with the construction of the telescope, they can build their own rockets and organize their racing or create your own star constellations. Older students as a result of observations and experiments may confirm or refute the hypothesis that the universe is within each of us. The classes are enriched using applications on

  6. The Ny-Alesund aerosol and ozone measurements intercomparison campaign 1997/1998 (NAOMI-1998)

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Beyerle, G.; Beninga, I.; VonderGathen, P.; Rairoux, P.; Schrems, O.; Wahl, P.; Gross, M.; McGee, Th.; Iwasaka, Y.; Fujiwara, M.; Shibata, T.; Klein, U.; Steinbrecht, W.

    1998-01-01

    An intercomparison campaign for Lidar measurements of stratospheric ozone and aerosol has been conducted at the Primary Station of the Network for the Detection of Stratospheric Change (NDSC) in Ny-Alesund/Spitsbergen during January-February 1998. In addition to local instrumentation, the NDSC mobile ozone lidar from NASA/GSFC and the mobile aerosol lidar from Alfred Wegener Institute (AWI) participated. The aim is the validation of stratospheric ozone and aerosol profile measurements according to NDSC guidelines. This paper briefly presents the employed instruments and outlines the campaign. Results of the blind intercomparison of ozone profiles are given in a companion paper and temperature measurements are described in this issue.

  7. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  8. THE MAN MADE WORLD, TEACHER'S MANUAL.

    ERIC Educational Resources Information Center

    Commission on Engineering Education, Washington, DC.

    THIS TEACHER'S MANUAL FOR THE ENGINEERING CONCEPTS CURRICULUM PROJECT'S HIGH SCHOOL COURSE, "THE MAN MADE WORLD," IS THE THIRD DRAFT OF THE EXPERIMENTAL VERSION. THE MATERIAL WRITTEN BY ENGINEERS, SCIENTISTS, AND EDUCATORS, EMPHASIZES ENGINEERING--MAN'S APPLICATION OF SCIENTIFIC PRINCIPLES TO THE CONTROL AND UTILIZATION OF HIS ENVIRONMENT.…

  9. Alternative Frameworks for the Study of Man.

    ERIC Educational Resources Information Center

    Markova, Ivana

    1979-01-01

    Two frameworks for the study of man are discussed. The Cartesian model views man as a physical object. A dialectic framework, with the emphasis on the self, grew out of nineteenth century romanticism and reflects the theories of Hegel. Both models have had an effect on social psychology and the study of interpersonal communication. (BH)

  10. Learning Processes in Man, Machine and Society

    ERIC Educational Resources Information Center

    Malita, Mircea

    1977-01-01

    Deciphering the learning mechanism which exists in man remains to be solved. This article examines the learning process with respect to association and cybernetics. It is recommended that research should focus on the transdisciplinary processes of learning which could become the next key concept in the science of man. (Author/MA)

  11. Resources and Man, A Study and Recommendations.

    ERIC Educational Resources Information Center

    National Academy of Sciences, National Research Council, Washington, DC. Div. of Earth Sciences.

    Presented are the results of two years of inquiry by the Committee on Resources and Man established by the National Academy of Sciences. Chapters 1 and 2 pose the problem: since resources are finite, as population increases the ratio of resources to man must eventually fall to an unacceptable level. Chapter 3 considers the possibility of evading…

  12. Man Is the Measure...the Measurer.

    ERIC Educational Resources Information Center

    Stone, Mark H.

    1998-01-01

    The science of metrology has moved from man as the measure to man as the measurer. This transformation is documented with examples from the history of metrology. Outcome measures, which rest on the same history of measurement, are units constructed and maintained for their utility, constancy, and generality. (Author/SLD)

  13. 33 CFR 143.407 - Manning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Manning. 143.407 Section 143.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.407 Manning. Standby vessels must be crewed in accordance with their certificate...

  14. 33 CFR 143.407 - Manning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Manning. 143.407 Section 143.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.407 Manning. Standby vessels must be crewed in accordance with their certificate...

  15. 33 CFR 143.407 - Manning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Manning. 143.407 Section 143.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.407 Manning. Standby vessels must be crewed in accordance with their certificate...

  16. 33 CFR 143.407 - Manning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Manning. 143.407 Section 143.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.407 Manning. Standby vessels must be crewed in accordance with their certificate...

  17. Man's Size in Terms of Fundamental Constants.

    ERIC Educational Resources Information Center

    Press, William H.

    1980-01-01

    Reviews calculations that derive an order of magnitude expression for the size of man in terms of fundamental constants, assuming that man satifies these three properties: he is made of complicated molecules; he requires an atmosphere which is not hydrogen and helium; he is as large as possible. (CS)

  18. Teaching Ideas About Man and the Environment.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ.

    This is a collection of papers which resulted from an assignment given in a seminar dealing with the topic Man and His Environment at Phoenix Union High School, Arizona. The interdisciplinary seminar focused on the relationships between man and his physical environment. Its purpose was to introduce the participants to the spectrum of environmental…

  19. 33 CFR 143.407 - Manning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Manning. 143.407 Section 143.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.407 Manning. Standby vessels must be...

  20. The War in Man; Media and Machines.

    ERIC Educational Resources Information Center

    Wilhelmsen, Frederick D.; Bret, Jane

    The authors present a picture of contemporary man torn by conflicting forces, caught in a psychic house divided against itself, a victim of war between media and machines. Machines, they state, represent the rationalistic tradition which has brought man to the brink of psychic and social disaster. The media they see as offering hope--true…

  1. Man and Nature, Resource Paper No. 10.

    ERIC Educational Resources Information Center

    Tuan, Yi-Fu

    Man and nature is the theme of this resource paper which is part of a series designed to supplement existing texts and to fill a gap between significant research in geography and readily accessible materials. The approach followed in the paper is loosely dialectical: the intent is to understand man and nature by posing one concept against the…

  2. Marihuana in Man: Three Years Later

    ERIC Educational Resources Information Center

    Hollister, Leo E.

    1971-01-01

    Reviews three years of research on the effects of marihuana in man. Previously known clinical mental and physical effects have been confirmed. Causes and mechanisms of these effects generally remain undetermined in man and animals. Social implications and long term effects require additional study, although usage appears detrimental. (JM)

  3. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro

    2017-01-01

    The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated

  4. Scientific Objectives, Measurement Needs, and Challenges Motivating the PARAGON Aerosol Initiative

    NASA Technical Reports Server (NTRS)

    Seinfeld, John H.; Kahn, Ralph A.; Anderson, Theodore L.; Charlson, Robert J.; Davies, Roger; Ogren, John A.; Diner, David J.; Schwartz, Stephen E.; Wielicki, Bruce A.

    2004-01-01

    Aerosols are involved in a complex set of processes that operate across many spatial and temporal scales. Understanding these processes, and ensuring their accurate representation in models of transport, radiation transfer, and climate, requires knowledge of aerosol physical, chemical, and optical properties and the distributions of these properties in space and time. To derive aerosol climate forcing, aerosol optical and microphysical properties and their spatial and temporal distributions, and aerosol interactions with clouds, need to be understood. Such data are also required in conjunction with size-resolved chemical composition in order to evaluate chemical transport models and to distinguish natural and anthropogenic forcing. Other basic parameters needed for modeling the radiative influences of aerosols are surface reflectivity and three-dimensional cloud fields. This large suite of parameters mandates an integrated observing and modeling system of commensurate scope. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept, designed to meet this requirement, is motivated by the need to understand climate system sensitivity to changes in atmospheric constituents, to reduce climate model uncertainties, and to analyze diverse collections of data pertaining to aerosols. This paper highlights several challenges resulting from the complexity of the problem. Approaches for dealing with them are offered in the set of companion papers.

  5. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  6. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  7. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2015-01-01

    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  8. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; Reid, J. S.; Giles, D. M.; Dubovik O.; O'Neill, N. T.; Smirnov, A.; Wang, P.; Xia, X.

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  9. Aerosol Daytime Variations over North and South America Derived from Multiyear AERONET Measurements

    NASA Technical Reports Server (NTRS)

    Zhang, Yan; Yu, Hongbin; Eck, Tom F.; Smirnov, Alexander; Chin, Mian; Remer, Lorraine A.; Bian, Huisheng; Tan, Qian; Levy, Roberrt; Holben, Brent N.

    2012-01-01

    This study analyzes the daytime variation of aerosol with seasonal distinction by using multi-year measurements from 54 of the Aerosol Robotic Network (AERONET) sites over North America, South America, and islands in surrounding oceans. The analysis shows a wide range of daily variability of aerosol optical depth (AOO) and Angstrom exponent depending on location and season. Possible reasons for daytime variations are given. The largest AOO daytime variation range at 440 nm, up to 75%, occurs in Mexico City, with maximum AOO in the afternoon. Large AOO daily variations are also observed in the polluted mid-Atlantic U.S. and U.S. West Coast with maximum AOO occurring in the afternoon in the mid-Atlantic U.S., but in the morning in the West Coast. In South American sites during the biomass burning season (August to October), maximum AOO generally occurs in the afternoon. But the daytime variation becomes smaller when sites are influenced more by long-range transported smoke than by local burning. Islands show minimum AOO in the morning and maximum AOO in the afternoon. The diverse patterns of aerosol daytime variation suggest that geostationary satellite measurements would be invaluable for characterizing aerosol temporal variations on regional and continental scales. In particular, simultaneous measurements of aerosols and aerosol precursors from a geostationary satellite would greatly aid in understanding the evolution of aerosol as determined by emissions, chemical transformations, and transport processes.

  10. MODIS Satellite Data and GOCART Model Characterization of the Global Aerosol

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Chin, Mian; Remer, Lorraine; Tanre, Didier; Lau, William K.-M. (Technical Monitor)

    2003-01-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the GOCART model and used to estimate the first observation based direct anthropogenic radiative forcing of climate by aerosol.

  11. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  12. Human capabilities in space. [man machine interaction

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.

    1984-01-01

    Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.

  13. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  14. Hermes - A manned European system

    NASA Astrophysics Data System (ADS)

    Cretenet, J.-C.

    Features of a European hypersonic winged reentry vehicle, Hermes, are presented, together with the technology requirements for its development and the missions it would serve. LEO is beginning to hold promise for the manufacture of materials in microgravity and/or vacuum conditions in orbiting facilities which need to be serviced. A manned, reusable, winged reentry vehicle would permit the delivery and return of payloads from space, recovery of the first stage of the Ariane V rocket for reuse, and return of the Hermes to a landing at the Kourou launch site. The avionics would be similar to those of modern aircraft, as would the landing system. In-orbit operational techniques would be needed, as would an internal environment similar to Spacelab, a rigid turnaround time, high utilization rate, and a 10 yr lifetime. The length of the Hermes is projected as 12.5 m, wingtip to wingtip breadth of 7.4 m, and a total mass of 11,400 kg for a heliosynchronous orbit mission, while 15,400 kg are available for a circular, 490 m/sec orbit.

  15. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  16. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  17. South Asian aerosols in perspective: Preface to the special issue

    NASA Astrophysics Data System (ADS)

    Moorthy, K. Krishna; Satheesh, S. K.; Sarin, M. M.; Panday, Arnico K.

    2016-01-01

    The south Asian region is one the world's most populous and fast-developing regions. The more than 1.7 billion population (˜24% of the world population) with highly diverse living habits, fast growing industrial and transport sectors, large and increasing demand for power, diverse fuel use for domestic and industrial purposes, and equally diverse geographical features make this region a large cauldron of emissions and atmospheric processes. It is being increasingly recognized to be among the global hotspots of aerosols and anthropogenic trace gases. The complex geography of this region adds considerable amount of natural aerosols (sea spray, windblown desert dust, pollen, etc) into the atmosphere, which mix with the man-made ones, making the aerosol environment one of the most complex in the world. The large spatial diversity of the sources coupled with the varying atmospheric dynamics, driven by the contrasting monsoons and the topography, make South Asia's aerosol and pollution very difficult to characterize, to model and to plan effective mitigation measures, despite the fairly good knowledge on their implications to radiative and climate forcing, health effects and environmental degradation. In the recent years, there have been several reports on the impact of aerosols (more importantly black carbon - BC) on the regional and global climate system including Asian monsoon, with the caveats of long-term impacts on the livelihoods of tens of millions of people in this region; though specifics of these are not yet unequivocally established. While tropospheric perturbations would produce strong regional signatures, their global impacts still remain marginally above the uncertainty levels (IPCC, 2013). There have been several recent investigations showing that deposition of aerosol black carbon (BC) on snow can reduce the snow albedo, leading to enhanced absorption of solar radiation and hence faster melting rates of glaciers. Though several investigators have

  18. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  19. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  20. Estimation of mineral dust direct radiative forcing at the European Aerosol Research Lidar NETwork site of Lecce, Italy, during the ChArMEx/ADRIMED summer 2013 campaign: Impact of radiative transfer model spectral resolutions

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria Rita; Comeron, Adolfo

    2016-09-01

    A field campaign took place in the western and central Mediterranean basin on June-July 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/)/ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, http://adrimed.sedoo.fr/) project to characterize the aerosol direct radiative forcing (DRF) over the Mediterranean. This work focuses on the aerosol DRF estimations at Lecce (40.33°N; 18.11°E; 30 m above sea level) during the Saharan dust outbreak that affected southern Italy from 20 to 24 June 2013. The Global Atmospheric Model (GAME) and the Two-Stream (TS) model were used to calculate the instantaneous aerosol DRF in the short-wave (SW) and long-wave (LW) spectral ranges, at the surface and at the top of the atmosphere (TOA). The main differences between the two models were due to the different numerical methods to solve the radiative transfer (RT) equations and to the more detailed spectral resolution of GAME compared to that of TS. 167 and 115 subbands were used by GAME in the 0.3-4 and 4-37 µm spectral ranges, respectively. Conversely, the TS model used 8 and 11 subbands in the same spectral ranges, respectively. We found on 22 June that the SW-DRFs from the two models were in good agreement, both at the TOA and at the surface. The instantaneous SW-DRFs at the surface and at the TOA varied from -50 to -34 W m-2 and from -6 to +8 W m-2, respectively, while the surface and TOA LW-DRFs ranged between +3.5 and +8.0 W m-2 and between +1.7 and +6.9 W m-2, respectively. In particular, both models provided positive TOA SW-DRFs at solar zenith angles smaller than 25° because of the mixing of the desert dust with anthropogenic pollution during its transport to the study site. In contrast, the TS model overestimated the GAME LW-DRF up to about 5 and 7.5 times at the surface and at the TOA, respectively, when the dust particle contribution was largest. The low spectral

  1. Aerosol Types using Passive Remote Sensing: Global Distribution, Consistency Check, Total-Column Investigation and Translation into Composition Derived from Climate and Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Dawson, K. W.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D. J.

    2015-12-01

    To improve the predictions of aerosol composition in chemical transport models (CTMs) and global climate models (GCMs), we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to two different total-column datasets of aerosol optical properties: inversions from the ground-based AErosol RObotic NETwork (AERONET) and retrievals from the space-borne POLDER (Polarization and Directionality of Earth's Reflectances) instrument. The POLDER retrievals that we use differ from the standard POLDER retrievals [Deuzé et al., 2001] as they make full use of multi-angle, multispectral polarimetric data [Hasekamp et al., 2011]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER globally. Then, we investigate how our total-column "effective" SCMC aerosol types relate to different aerosol types within the column (i.e. either a mixture of different types within one layer in the vertical or the stacking of different aerosol types within the vertical column). For that, we compare AERONET-SCMC aerosol types to collocated NASA LaRC HSRL vertically resolved aerosol types [Burton et al., 2012] during the SEAC4RS and DISCOVER-AQ airborne field experiments, mostly over Texas in Aug-Sept 2013. Finally, in order to evaluate the GEOS-Chem CTM aerosol types, we translate each of our SCMC aerosol type into a unique distribution of GEOS-Chem aerosol composition (e.g. biomass burning, dust, sulfate, sea salt). We bridge the gap between remote sensing and model-inferred aerosol types by using multiple years of collocated AERONET

  2. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite

  3. Continuous measurements of aerosol particles in Arctic Russia and Finland

    NASA Astrophysics Data System (ADS)

    Asmi, Eija; Kondratyev, Vladimir; Brus, David; Lihavainen, Heikki; Laurila, Tuomas; Aurela, Mika; Hatakka, Juha; Viisanen, Yrjö; Reshetnikov, Alexander; Ivakhov, Victor; Uttal, Taneil; Makshtas, Alexander

    2013-04-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71o 36' N; 128o 53' E) on the shore of the Laptev Sea has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol physical properties, which have been successfully continued since summer 2010. These, together with the FMI measurements in Pallas station in northern Finland since 1999, provide important information on the

  4. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    PubMed

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (<0.5); whereas, large spectral dependence in AOD was observed for the remaining aerosol types, with the highest AE values (>1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB.

  5. Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, Olusegun G.; Cai, Xiaoming; Levine, James G.; Pinker, Rachel T.; MacKenzie, A. R.

    2016-12-01

    The West African region, with its peculiar climate and atmospheric dynamics, is a prominent source of aerosols. Reliable and long-term in situ measurements of aerosol properties are not readily available across the region. In this study, Version 2 Level 1.5 Aerosol Robotic Network (AERONET) data were used to study the absorption and size distribution properties of aerosols from dominant sources identified by trajectory analysis. The trajectory analysis was used to define four sources of aerosols over a 10 year period. Sorting the AERONET aerosol retrievals by these putative sources, the hypothesis that there exists an optically distinct gas flaring signal was tested. Dominance of each source cluster varies with season: desert-dust (DD) and biomass burning (BB) aerosols are dominant in months prior to the West African Monsoon (WAM); urban (UB) and gas flaring (GF) aerosol are dominant during the WAM months. BB aerosol, with single scattering albedo (SSA) at 675 nm value of 0.86 ± 0.03 and GF aerosol with SSA (675 nm) value of 0.9 ± 0.07, is the most absorbing of the aerosol categories. The range of Absorption Angstr&öm Exponent (AAE) for DD, BB, UB and GF classes are 1.99 ± 0.35, 1.45 ± 0.26, 1.21 ± 0.38 and 0.98 ± 0.25, respectively, indicating different aerosol composition for each source. The AAE (440-870 nm) and Angstr&öm Exponent (AE) (440-870 nm) relationships further show the spread and overlap of the variation of these optical and microphysical properties, presumably due in part to similarity in the sources of aerosols and in part, due to mixing of air parcels from different sources en route to the measurement site.

  6. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  7. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  8. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.

  9. Aerosol measurement program strategy for global aerosol backscatter model development

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  10. SAINT: A combined simulation language for modeling man-machine systems

    NASA Technical Reports Server (NTRS)

    Seifert, D. J.

    1979-01-01

    SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.

  11. Dust layer profiling using an aerosol dropsonde

    NASA Astrophysics Data System (ADS)

    Ulanowski, Zbigniew; Kaye, Paul Henry; Hirst, Edwin; Wieser, Andreas; Stanley, Warren

    2015-04-01

    Routine meteorological data is obtained in the atmosphere using disposable radiosondes, giving temperature, pressure, humidity and wind speed. Additional measurements are obtained from dropsondes, released from research aircraft. However, a crucial property not yet measured is the size and concentration of atmospheric particulates, including dust. Instead, indirect measurements are employed, relying on remote sensing, to meet the demands from areas such as climate research, air quality monitoring, civil emergencies etc. In addition, research aircraft can be used in situ, but airborne measurements are expensive, and aircraft use is restricted to near-horizontal profiling, which can be a limitation, as phenomena such as long-range transport depend on the vertical distribution of aerosol. The Centre for Atmospheric and Instrumentation Research at University of Hertfordshire develops light-scattering instruments for the characterization of aerosols and cloud particles. Recently a range of low-cost, miniature particle counters has been created, intended for use with systems such as disposable balloon-borne radiosondes, dropsondes, or in dense ground-based sensor networks. Versions for different particle size ranges exist. They have been used for vertical profiling of aerosols such as mineral dust or volcanic ash. A disadvantage of optical particle counters that sample through a narrow inlet is that they can become blocked, which can happen in cloud, for example. Hence, a different counter version has been developed, which can have open-path geometry, as the sensing zone is defined optically rather than being delimited by the flow system. This counter has been used for ground based air-quality monitoring around Heathrow airport. The counter has also been adapted for use with radiosondes or dropsondes. The dropsonde version has been successfully tested by launching it from research aircraft together with the so-called KITsonde, developed at the Karlsruhe Institute of

  12. Aerosol profiling by calibrated ceilometer data

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2015-04-01

    Recently, networks of automated single-wavelength backscatter lidars ("ceilometers") were implemented, primarily by weather services. As a consequence, the potential of ceilometers to quantitatively determine the spatiotemporal distribution of atmospheric aerosols was investigated, to derive mixing layer heights for air quality studies and to assess optical properties. The main issues are the limited signal-to-noise ratio and the inherent problems of the calibration. We have studied several approaches for calibrating ceilometers, based on different numerical solutions and on auxiliary data of different remote sensing techniques. As a result, the backscatter coefficient can be determined with a relative accuracy of typically 10% and a time resolution in the order of 5 minutes. This parameter is used to estimate the mixing layer height by applying different techniques of averaging and pattern recognition. In this context, it is assumed that aerosols are a good tracer for the thermodynamic stratification of the troposphere. Our algorithm is fully automated and was tested for several commercially available ceilometers. For this purpose, a simplified version for non-calibrated ceilometers, based on the so called range corrected signal, was additionally developed. We used data of the CHM15k-x ceilometer (manufactured by Jenoptik) from more than 5 years of continuous operation by the LMU-MIM in Munich (Germany) to establish climatologies of mixing layer heights (MLH), cloud cover, cloud heights and vertical profiles of the backscatter coefficient. Among others, the mean diurnal cycle and the interannual variability of the MLH for different months were determined. Ceilometer derived MLH were also used to validate different parameterization of chemistry transport models and to validate forecasts of the dispersion of aerosol layers. For the latter applications backscatter coefficients are required. That means, a calibration of the ceilometers is mandatory.

  13. Remote Sensing of Aerosol and Non-Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.

  14. The Ancestry and Affiliations of Kennewick Man

    PubMed Central

    Rasmussen, Morten; Poznik, G. David; Zollikofer, Christoph P. E.; de León, Marcia Ponce; Allentoft, Morten E.; Moltke, Ida; Jónsson, Hákon; Valdiosera, Cristina; Malhi, Ripan S.; Orlando, Ludovic; Bustamante, Carlos D.; Stafford, Thomas W.; Meltzer, David J.; Nielsen, Rasmus; Willerslev, Eske

    2016-01-01

    Kennewick Man, referred to as the Ancient One by Native Americans, is a male human skeleton discovered in Washington state (USA) in 1996 and initially radiocarbon-dated to 8340–9200 calibrated years BP1. His population affinities have been the subject of scientific debate and legal controversy. Based on initial study of cranial morphology it was asserted that Kennewick Man was neither Native American nor closely related to the Claimant Plateau tribes of the Pacific Northwest, who claimed ancestral relationship and requested repatriation under the Native American Graves Protection and Repatriation Act (NAGPRA). The morphological analysis was important to judicial decisions that Kennewick Man was not Native American and that therefore NAGPRA did not apply. Instead of repatriation, additional studies of the remains were permitted2. Subsequent craniometric analysis affirmed Kennewick Man to be more closely related to circumpacific groups such as the Ainu and Polynesians than he is to modern Native Americans2. In order to resolve Kennewick Man’s ancestry and affiliations, we have sequenced his genome to ~1× coverage and compared it to worldwide genomic data including the Ainu and Polynesians. We find that Kennewick Man is closer to modern Native Americans than to any other population worldwide. Among the Native American groups for whom genome wide data is available for comparison, several appear to be descended from a population closely related to that of Kennewick Man, including the Confederated Tribes of the Colville Reservation (Colville), one of the five tribes claiming Kennewick Man. We revisit the cranial analyses and find that, as opposed to genomic-wide comparisons, it is not possible on that basis to affiliate Kennewick Man to specific contemporary groups. We therefore conclude based on genetic comparisons that Kennewick Man shows continuity with Native North Americans over at least the last eight millennia. PMID:26087396

  15. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2016-04-01

    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  16. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  17. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  18. Aerosol Transmission of Filoviruses

    PubMed Central

    Mekibib, Berhanu; Ariën, Kevin K.

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  19. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  20. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  1. Analysis of anions in ambient aerosols by microchip capillary electrophoresis.

    PubMed

    Liu, Yan; MacDonald, David A; Yu, Xiao-Ying; Hering, Susanne V; Collett, Jeffrey L; Henry, Charles S

    2006-11-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass, with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 microM) and low limits-of-detection for sulfate and nitrate, with Au providing the lowest detection limits (1 microM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  2. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  3. Satellite measurements of tropospheric aerosols

    NASA Technical Reports Server (NTRS)

    Griggs, M.

    1981-01-01

    This investigation uses LANDSAT 2 radiance data and ground-truth measurements of the aerosol optical thickness, obtained previously from five inland sites, to study the usefulness and limitations of the near infrared radiance over inland bodies of water. The linear relationship between LANDSAT 2 MSS7 and aerosol content found in this study can be used to estimate the aerosol content with a standard deviation of 0.42N. Analysis of the data for MSS6 and MSS7 suggest that the larger uncertainty is mostly due to water turbidity, with little contribution from the adjacency effect. The relationship found is best applied to determine an average aerosol content over a period of time at a given target, or an area average at a given time over several targets close together.

  4. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  5. Sentient networks

    SciTech Connect

    Chapline, G.

    1998-03-01

    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A better idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.

  6. Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Schutgens, Nick; Stier, Philip

    2016-11-01

    A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid boxes, which can lead to discrepancies in simulated aerosol climate effects between high- and low-resolution models. This study investigates the impact of neglecting subgrid variability in present-day global microphysical aerosol models on aerosol optical depth (AOD) and cloud condensation nuclei (CCN). We introduce a novel technique to isolate the effect of aerosol variability from other sources of model variability by varying the resolution of aerosol and trace gas fields while maintaining a constant resolution in the rest of the model. We compare WRF-Chem (Weather and Research Forecast model) runs in which aerosol and gases are simulated at 80 km and again at 10 km resolutions; in both simulations the other model components, such as meteorology and dynamics, are kept at the 10 km baseline resolution. We find that AOD is underestimated by 13 % and CCN is overestimated by 27 % when aerosol and gases are simulated at 80 km resolution compared to 10 km. The processes most affected by neglecting aerosol subgrid variability are gas-phase chemistry and aerosol uptake of water through aerosol-gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol properties when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. These results demonstrate that aerosol variability can have a large impact on simulating aerosol climate effects, even when meteorology and dynamics are held constant. Future aerosol model development should focus on accounting for the effect of subgrid variability on these

  7. Introduction: Aerosol Delivery of Orally Inhaled Agents

    PubMed Central

    Devadason, Sunalene G.; Kuehl, Philip J.

    2012-01-01

    Abstract Deposition scintigraphy methods have been used extensively to provide qualitative and quantitative data on aerosol drug deposition in the lungs. However, differences in methodology among the different centers performing these studies have limited the application of these techniques, especially in regulatory roles. As an introduction to the standardized techniques developed by the International Society for Aerosols in Medicine (ISAM) Regulatory Affairs Networking Group, we present potential advantages of the use of standard techniques for deposition scintigraphy. Specifically, we propose that standardized techniques would allow for better comparisons between labs and would facilitate multicenter studies. They would allow for improved methods of establishing equivalence and could be better utilized to establish dosing for new medications. They would allow for the performance of more accurate dose ranging or multidose studies and complement pharmacokinetic studies of new inhaled medications. Standardized techniques could help to establish the relationship between the deposition of drug in the lungs and clinical effect, and may also facilitate clinical measurements of deposited dose for medications with narrow therapeutic indices. In the sections that follow, we discuss the best techniques used to perform deposition scintigraphy through planar, single-photon emission computed tomography, and positron emission tomography modalities and propose a detailed set of standardized methods for each. These include methods for radiolabel validation, radiolabel accountability and mass balance, and imaging acquisition and analysis. PMID:23215846

  8. Concentrations and sources of organic carbon aerosols in the free troposphere over North America

    NASA Astrophysics Data System (ADS)

    Heald, Colette L.; Jacob, Daniel J.; Turquety, SolèNe; Hudman, Rynda C.; Weber, Rodney J.; Sullivan, Amy P.; Peltier, Richard E.; Atlas, Eliot L.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John S.; Neuman, J. Andrew; Flocke, Frank M.; Seinfeld, John H.

    2006-12-01

    Aircraft measurements of water-soluble organic carbon (WSOC) aerosol over NE North America during summer 2004 (ITCT-2K4) are simulated with a global chemical transport model (GEOS-Chem) to test our understanding of the sources of organic carbon (OC) aerosol in the free troposphere (FT). Elevated concentrations were observed in plumes from boreal fires in Alaska and Canada. WSOC aerosol concentrations outside of these plumes average 0.9 ± 0.9 μg C m-3 in the FT (2-6 km). The corresponding model value is 0.7 ± 0.6 μg C m-3, including 42% from biomass burning, 36% from biogenic secondary organic aerosol (SOA), and 22% from anthropogenic emissions. Previous OC aerosol observations over the NW Pacific in spring 2001 (ACE-Asia) averaged 3.3 ± 2.8 μg C m-3 in the FT, compared to a model value of 0.3 ± 0.3 μg C m-3. WSOC aerosol concentrations in the boundary layer (BL) during ITCT-2K4 are consistent with OC aerosol observed at the IMPROVE surface network. The model is low in the boundary layer by 30%, which we attribute to secondary formation at a rate comparable to primary anthropogenic emission. Observed WSOC aerosol concentrations decrease by a factor of 2 from the BL to the FT, as compared to a factor of 10 decrease for sulfate, indicating that most of the WSOC aerosol in the FT originates in situ. Despite reproducing mean observed WSOC concentrations in the FT to within 25%, the model cannot account for the variance in the observations (R = 0.21). Covariance analysis of FT WSOC aerosol with other measured chemical variables suggests an aqueous-phase mechanism for SOA generation involving biogenic precursors.

  9. Resolution and Content Improvements to MISR Aerosol and Land Surface Products

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Bull, M. A.; Diner, D. J.; Hansen, E. G.; Kalashnikova, O. V.

    2015-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. The performance of the aerosol product has been validated against ground-based Aerosol Robotic Network (AERONET) observations, model comparisons, and climatological assessments. This product has played a major role in studies of the impacts of aerosols on climate and air quality. The surface product has found a variety of uses, particularly at regional scales for assessing vegetation and land surface change. A major development effort has led to the release of an update to the operational (Version 22) MISR Level 2 aerosol and land surface retrieval products, which has been in production since December 2007. The new release is designated Version 23. The resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23 and present validation of the aerosol product against both the standard AERONET historical database, as well as high spatial density AERONET-DRAGON deployments. Comparisons will also be shown relative to the Version 22 aerosol and land surface products. Applications enabled by these product updates will be discussed.

  10. Method for producing monodisperse aerosols

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  11. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-13

    storm activity, and 4) surface and airborne measurements on the west coast of the U.S. indicate the presence of aerosols and dust on the predicted...observables (in situ and satellites) and model quantities such as mass. Aerosol species currently included in the analyses are dust , pollution, biomass...Prediction System ( COAMPS ®). Over the next several years it is the goal of this project to maintain these systems as the world leaders in EO prediction

  12. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-07

    for dust storm forecasting and analysis, AGU Fall Meeting, San Francisco, CA. Dec. 11-15, 2002 [Published]. Reid, J.S., J.R. Cook, D.L. Westphal...Persian Gulf/Arabian Sea, East Asia, and some parts of the Mediterranean Sea. Along coastal regions, dust , pollution and smoke can be present and...transitioned from the combined Marine Aerosol and Dust Aerosol programs from SPAWAR Systems Center San Diego (SSC-SD) to the Naval Research Laboratory

  13. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  14. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  15. Synergistic Man: Outcome Model for Counselors

    ERIC Educational Resources Information Center

    Rousseve, Ronald J.

    1973-01-01

    Drawing on the insights of Ruth Benedict and Abraham Maslow in their search for an ethical gauge by which to rate personal-social health, this article proposes synergistic man'' as the desired outcome model for counselors. (Author)

  16. Mission analyses for manned flight experiments

    NASA Technical Reports Server (NTRS)

    Orth, J. E.

    1973-01-01

    The investigations to develop a high altitude aircraft program plan are reported along with an analysis of manned comet and asteroid missions, the development of shuttle sortie mission objectives, and an analysis of major management issues facing the shuttle sortie.

  17. Laser Pyro System Standardization and Man Rating

    NASA Technical Reports Server (NTRS)

    Brown, Christopher W.

    2004-01-01

    This viewgraph presentation reviews an X-38 laser pyro system standardization system designed for a new manned rated program. The plans to approve this laser initiation system and preliminary ideas for this system are also provided.

  18. Cardiology Still a Man's Field, Survey Finds

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162700.html Cardiology Still a Man's Field, Survey Finds Women less ... Dr. Claire Duvernoy, chair of the Women in Cardiology Council at the American College of Cardiology (ACC). ...

  19. QX MAN: Q and X file manipulation

    NASA Technical Reports Server (NTRS)

    Krein, Mark A.

    1992-01-01

    QX MAN is a grid and solution file manipulation program written primarily for the PARC code and the GRIDGEN family of grid generation codes. QX MAN combines many of the features frequently encountered in grid generation, grid refinement, the setting-up of initial conditions, and post processing. QX MAN allows the user to manipulate single block and multi-block grids (and their accompanying solution files) by splitting, concatenating, rotating, translating, re-scaling, and stripping or adding points. In addition, QX MAN can be used to generate an initial solution file for the PARC code. The code was written to provide several formats for input and output in order for it to be useful in a broad spectrum of applications.

  20. Sex and the Man With Cancer

    MedlinePlus

    ... and Sexual Side Effects in People with Cancer Sex and the Man With Cancer In this guide, ... you and your partner some information about cancer, sex, and sexuality. We cannot answer every question, but ...

  1. Sexuality for the Man with Cancer

    MedlinePlus

    ... Cancer Sexuality for the Man With Cancer Cancer, sex, and sexuality When you first learned you had ... affect your sexual function. What is a normal sex life? People vary a great deal in their ...

  2. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  3. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  4. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  5. Unmanned Aerial System, New System Manning Prediction

    DTIC Science & Technology

    2006-01-01

    during the same mission, the area under surveillance is subject to a chemical attack during a period of inclement weather, say low-level fog or rain...these potential fog -of-war situations occur that systems design, particularly manning, must be able to cope with the imposed load. This concept is...of some of the data, that is, because of the dispersion in manning values for the five systems chosen, a rank-based regression would provide a more

  6. The Effect of Aerosol-Cloud-Vegetation Interactions and Intraseasonal Meteorological Variability on Warm Cloud Development during the Amazonian Biomass Burning Season

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2009-12-01

    The effect of aerosols on the hydrological cycle remains one of the largest uncertainties in our climate system. Biomass burning, from both deforestation and annual agricultural burning, is the largest anthropogenic source of these aerosols in the Southern Hemisphere. Biomass burning aerosols have competing effects on clouds: Depending on the level of aerosol loading and the background cloud characteristics, biomass burning aerosols have been shown in observational studies to invigorate or inhibit cloud formation and/or growth through microphysical and absorptive pathways, respectively. Many of these previous studies have employed all days during the Amazonian burning season months of August through October to formulate aerosol-cloud correlations, assuming relatively constant meteorological conditions exist throughout these months. This study investigates how intraseasonal trends of precipitable water vapor and aerosol loading between August and October impact these aerosol-cloud correlations. Other factors affecting aerosol-cloud relationships, such as atmospheric stability, are also investigated. This study is focused on a small 3 degree NE x 4 degree WE region in Rondonia, Brazil that encompasses extensive, contiguous areas of both forested and deforested land. High resolution aerosol, cloud, water vapor, and atmospheric profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, as well as aerosol and water vapor data from the Aerosol Robotic Network (AERONET), are used collectively to explore the effect of aerosols on water vapor loading and warm cloud development over the Amazon. The difference in aerosol effects on the local hydrological cycle over forested and deforested areas is also examined. This final exercise provides insight into the relationship between aerosols, land-atmosphere processes, and warm clouds.

  7. Cross-Characterization of Aerosol Properties from Multiple Spaceborne Sensors Facilitated by Regional Ground-Based Observations

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2010-01-01

    Aerosol observations from space have become a standard source for retrieval of aerosol properties on both regional and global scales. Indeed, the large number of currently operational spaceborne sensors provides for unprecedented access to the most complete set of complimentary aerosol measurements ever to be available. Nonetheless, this resource remains under-utilized, largely due to the discrepancies and differences existing between the sensors and their aerosol products. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have designed and implemented an online Multi-sensor Aerosol Products Sampling System (MAPSS) that facilitates the joint sampling of aerosol data from multiple sensors. MAPSS consistently samples aerosol products from multiple spaceborne sensors using a unified spatial and temporal resolution, where each dataset is sampled over Aerosol Robotic Network (AERONET) locations together with coincident AERONET data samples. In this way, MAPSS enables a direct cross-characterization and data integration between aerosol products from multiple sensors. Moreover, the well-characterized co-located ground-based AERONET data provides the basis for the integrated validation of these products.

  8. Zoonotic aspects of filarial infections in man

    PubMed Central

    Dissanaike, A. S.

    1979-01-01

    This article gives an account of the filarial parasites found in man and their potential transmissibility to and from other vertebrate animals under natural and experimental conditions. Those species that are regarded as being primarily parasites of other vertebrates, but which also infect man, are then dealt with in greater detail. These include the subperiodic strain of Brugia malayi and perhaps also B. pahangi, both of which are found in wild and domestic carnivores and monkeys, and Dirofilaria species of dogs and racoons. The Brugia parasites develop to maturity with the production of microfilaraemia and clinical manifestations in man similar to those caused by periodic B. malayi in man. Human dirofilariasis, on the other hand, represents a transmission cul-de-sac for the parasite. Clinical manifestations are mild or absent and generally the worms do not mature and, even if they do, they rarely give rise to microfilaraemia. D. immitis causes pulmonary dirofilariasis, and D. repens and D. tenuis give rise to subcutaneous nodules in man. The diagnosis of dirofilariasis depends on an awareness of the infection in the animal reservoirs and of the possibility of man being exposed to bites of infected vectors. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:314349

  9. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  10. Aerosol size distribution and aerosol water content measurements during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.; Wellman, D.; Pszenny, A.

    1995-11-01

    Aerosol size distribution data measured during the June 1992 Marine Aerosol and Gas Exchange experiment are analyzed to investigate the characteristics of fine marine aerosol particles measured over the North Atlantic near the Azores Islands. Measured aerosol size distribution data were corrected using the corrected size calibration data based on the optical properties of particles being measured. The corrected size distribution data were then approximated with either one or two lognormal size distributions, depending on air mass conditions. Under clean air mass conditions <3 μm diameter aerosol size distributions typically exhibited two modes, consisting of an accumulation mode and the small end of the sea-salt particle mode. However, under the influence of continental polluted air masses, the aerosol size distribution was dominated by <1 μm diameter particles in a single mode with an increased aerosol concentration. Aerosol water content of accumulation mode marine aerosols was estimated from differences between several series of ambient and dried aerosol size distributions. The average aerosol water fraction was 0.31, which is in good agreement with an empirical aerosol growth model estimate. The average rate of SO4= production in the accumulation mode aerosol water by H2O2 oxidation was estimated to be <7×10-10 mol L-1 s-1, which is an insignificant contributor to the observed non-sea-salt SO4= in the accumulation mode.

  11. Satellite Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Robles Gonzalez, C.; Kusmierczyk-Michulec, J.; Decae, R.

    SATELLITE RETRIEVAL of AEROSOL PROPERTIES G. de Leeuw, C. Robles Gonzalez, J. Kusmierczyk-Michulec and R. Decae TNO Physics and Electronics Laboratory, The Hague, The Netherlands; deleeuw@fel.tno.nl Methods to retrieve aerosol properties over land and over sea were explored. The dual view offered by the ATSR-2 aboard ERS-2 was used by Veefkind et al., 1998. The retrieved AOD (aerosol optical depth) values compare favourably with collocated sun photometer measurements, with an accuracy of 0.06 +/- 0.05 in AOD. An algorithm developed for GOME on ERS-2 takes advantage of the low surface reflection in the UV (Veefkind et al., 2000). AOD values retrieved from ATSR-2 and GOME data over western Europe are consistent. The results were used to produce a map of mean AOD values over Europe for one month (Robles-Gonzalez et al., 2000). The ATSR-2 is al- gorithm is now extended with other aerosol types with the aim to apply it over the In- dian Ocean. A new algorithm is being developed for the Ozone Monitoring Instrument (OMI) to be launched in 2003 on the NASA EOS-AURA satellite. It is expected that, based on the different scattering and absorption properties of various aerosol types, five major aerosol classes can be distinguished. The experience with the retrieval of aerosol properties by using several wavelength bands is used to develop an algorithm for Sciamachy to retrieve aerosol properties both over land and over the ocean which takes advantage of the wavelengths from the UV to the IR. The variation of the AOD with wavelength is described by the Angstrom parameter. The AOD and the Angstrom parameter together yield information on the aerosol size distribution, integrated over the column. Analysis of sunphotometer data indicates a relation between the Angstrom parameter and the mass ratio of certain aerosols (black carbon, organic carbon and sea salt) to the total particulate matter. This relation has been further explored and was applied to satellite data over land to

  12. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Ichoku, C.

    2013-02-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS - altogether, a total of 11 different aerosol products - were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the

  13. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Ichoku, C.

    2013-07-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS - altogether, a total of 11 different aerosol products - were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 7%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.8 for many of the analyzed products, while root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.07 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different land cover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the land cover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface closed shrublands more accurately than the other sensors, while POLDER, which

  14. A Framework for Aerosol-Cloud Interactions Monitoring

    NASA Astrophysics Data System (ADS)

    Russchenberg, H. W. J.; Sarna, K.

    2014-12-01

    A broad range of strategies have been used to study Aerosol-Cloud Interactions (ACI). However, the wide scope of methods and scales used makes it difficult to quantitatively compare result from different studies. In this paper, we propose a method of aerosol-cloud interaction monitoring based on widely available remote sensing instruments and easily applicable at many different observatories. This method provides a way of identifying cases where a change in the aerosol environment causes a change in the cloud. In this scheme we attempt to use (as far as possible) the observed signal from lidar and radar. For an aerosol proxy we use the attenuated backscatter (sensitive to aerosol concentration) and to obtain information about changes in the cloud we use the radar reflectivity factor (sensitive to cloud droplet size and concentration). Assuming a positive dependence between the number concentration of cloud droplets and the number concentration of aerosol we expect that an increase of the attenuated backscatter coefficient will correspond to a small increase of the radar reflectivity factor (due to the increase of cloud droplets concentration). However, the slope of this correlation will vary. A number of factors, such as meteorology or cloud drop microphysical properties, can influence changes in a cloud. For that reason we put a constraint on the liquid water content using liquid water path information from microwave radiometers. This limitation ensures that the variability in the cloud will be primarily due to changes in microphysical properties associated with the variation in aerosols. Further, we limit the cases only to non-precipitating, low-level stratiform and stratocumulus clouds without drizzle. Although this method is based on a synergy of instruments, we use widely available systems for an efficient evaluation of the aerosol influence on the cloud. The main advantages of this scheme are the use of direct observables from widely spread remote sensing

  15. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  16. Remote sensing of aerosols over snow using infrared AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, L. G.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Schultz, E.; Burrows, J. P.

    2011-06-01

    Infrared (IR) retrievals of aerosol optical thickness (AOT) are challenging because of the low reflectance of aerosol layer at longer wavelengths. In this paper we present a closer analysis of this problem, performed with radiative transfer (RT) simulations for coarse and accumulation mode of four main aerosol components. It shows the strong angular dependence of aerosol IR reflectance at low solar elevations resulting from the significant asymmetry of aerosol phase function at these wavelengths. This results in detectable values of aerosol IR reflectance at certain non-nadir observation angles providing the advantage of multiangle remote sensing instruments for a retrieval of AOT at longer wavelengths. Such retrievals can be of importance e.g. in case of a very strong effect of the surface on the top of atmosphere (TOA) reflectance in the visible spectral range. In the current work, a new method to retrieve AOT of the coarse and accumulation mode particles over snow has been developed using the measurements of Advanced Along Track Scanning Radiometer (AATSR) on board the ENVISAT satellite. The algorithm uses AATSR channel at 3.7 μm and utilizes its dual-viewing observation technique, implying the forward view with an observation zenith angle of around 55 degrees and the nadir view. It includes cloud/snow discrimination, extraction of the atmospheric reflectance out of measured brightness temperature (BT) at 3.7 μm, and interpolation of look-up tables (LUTs) for a given aerosol reflectance. The algorithm uses LUTs, separately simulated with RT forward calculations. The resulting AOT at 500 nm is estimated from the value at 3.7 μm using a fixed Angström parameter. The presented method has been validated against ground-based Aerosol Robotic Network (AERONET) data for 4 high Arctic stations and shows good agreement. A case study has been performed at W-Greenland on 5 July 2008. The day before was characterized by a noticeable dust event. The retrieved AOT maps of

  17. Lightning activity and aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Kazantzidis, A.

    2016-03-01

    In the framework of this study, the effect of aerosols on lightning activity has been investigated for the first time over the broader Mediterranean Sea. Atmospheric optical depth data retrieved by MODIS on board Aqua satellite and cloud to ground lightning activity data provided by ZEUS network operated by the National Observatory of Athens were analyzed for a time period spanning from 01/01/2005 up to 31/12/2013. The results indicate the importance of aerosols in lightning modulation. The mean aerosol optical depth (AOD) values of the days with lightning activity were found to be higher than the mean seasonal AOD in 90% of the under study domain. Furthermore, the increasing rate of lightning activity with increasing aerosol loading was found to be more pronounced during summertime and for AOD values up to 0.4. Additionally, the spatial analysis showed that the percentage of days with lightning activity during summertime is increasing with increasing AOD. Finally, time series showed similar temporal behavior between AOD seasonal anomalies and days with lightning activity differences. Both the spatial and temporal analysis showed that lightning activity is correlated to AOD, a characteristic consistent for all seasons.

  18. Validation of MODIS Aerosol Retrieval over the Ocean during CLAMS

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Remer, L. A.; Martins, J. V.; Fattori, A. P.; Holben, B. N.; Redemann, J.; Russell, P.; Schuster, G. L.; Rodriquez, W. J.; Rutledge, K.; Kleidman, R.; Kaufman, Y. J.

    2002-05-01

    The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) took place from 10 July to 2 Aug 2001, over and around the Chesapeake Lighthouse, some 25 kilometers off the coast of Virginia Beach, Virginia, and the Wallops Flight Facility (WFF) near Chincoteague, Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the MODerate resolution Imaging Spectrometer (MODIS). Over ocean pixels, MODIS retrieved optical depths (AOD) at seven wavelengths and an estimate of the aerosol size distribution. Temporally coincident measurements of aerosol properties were made with sunphotometers from sites near WFF, from the Chesapeake Lighthouse, and airborne in a variety of locations just above Atlantic ocean surface. This suite of sunphotometer measurements include: standard visible wavelength AOD and size from three Aerosol Robotic Network (AERONET) instruments, standard visible and new infrared wavelength AOD from six Microtops handheld instruments, infrared wavelength AOD from the Ames Airborne Tracking Sunphotometer (AATS-14), and unique hyperspectral AOD from a Analytical Spectral Devices (ASD) FieldSpec spectrometer. In this study, we compare AOD retrieved from MODIS with measurements from the surface, paying special attention to the new infrared wavelength validation data. A detailed evaluation of the CLAMS spectral optical depth combined with retrieved size distributions will be a first step toward improvement of the aerosol models used in the MODIS retrieval.

  19. The relation between aerosol particles and lightning in Mexico

    NASA Astrophysics Data System (ADS)

    Kucienska, B.; Cervantes Villa, J. S.; Raga, G. B.

    2013-05-01

    The analysis of lightning activity registered by the World Wide Lightning Location Network and aerosol optical depth (AOD) derived from the Moderate Resolution Imaging Spectroradiometer indicate that spatial and temporal variations in cloud-to-ground lightning density over Mexico are linked to variations in aerosol amounts. Average lightning activity registered on days with moderate AOD is higher than that registered on days with low AOD for most of the continental areas and coastal maritime regions. This finding could be explained either by the aerosol effect on thunderstorms electrical activity or by a similar influence of meteorological conditions on both lightning and AOD. Analysis of temporal variations of electrical activity show that over large continental areas a significant lightning density is observed during spring, at the very beginning of rainy seasons. In May, when rainfall is relatively low, an exceptionally high lightning activity is also registered over the Pacific, in the region located south to Isthmus of Tehuantepec. This signal of high lightning density propagates hundreds of kilometers away from the coast. We hypothesize that high lightning activity during spring observed over both continental and oceanic regions is linked to the presence of aerosol particle generated by biomass burning which peaks in April and May.

  20. Evaluating Ammonium, Nitrate and Sulfate Aerosols in 3-Dimensions

    NASA Astrophysics Data System (ADS)

    Mezuman, K.; Bauer, S.; Tsigaridis, K.

    2015-12-01

    The spatial distribution of aerosols and their chemical composition dictates whether they would have a cooling or a warming effect on the climate system. Hence, properly modeling the 3-dimensonal distribution of aerosols is a crucial step for coherent climate simulations. Since surface networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluation. In this study, the vertical distribution of ammonium, nitrate, and sulfate, is constrained against a collection of 14 AMS flight campaigns, and surface measurements from 2000-2010 in the USA and Europe. GISS modelE2, one of the only models to include nitrate aerosol in CIMP5, is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA-II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate and that there is a systematic underestimation of ammonium and nitrate over the USA and Europe. In terms of gaseous precursors, underestimation of nitrate and ammonium is likely tied to ammonia emissions uncertainties, while nitric acid concentrations are largely overestimated in the higher levels of the model, influenced by strong strat-trop exchange. At high altitudes, nitrate formation is calculated to be ammonia limited, whose profile measurements are scarce.

  1. Aerosol optical properties in Northern Norway and Svalbard

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Hamre, B.; Frette, Ø.; Blindheim, S.; Stebel, K.; Sobolewski, P.; Toledano, C.; Stamnes, J. J.

    2013-12-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET (Aerosol Robotic Network) stations at Andenes (69.28° N, 16.01° E, 379 m altitude) and Hornsund (77.00° N, 15.56° E, 10 m altitude) for the period 2008-2011. The four-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund both were 0.10. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.25 and 1.37, respectively. At Andenes and Hornsund α was found to be larger than 1.1 in 64% and 86% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar seasonal variation of the aerosol size distribution although one site is in an arctic area while the other site is in a sub-arctic area.

  2. Aerosol optical properties in Northern Norway and Svalbard.

    PubMed

    Chen, Yi-Chun; Hamre, Børge; Frette, Øyvind; Muyimbwa, Dennis; Blindheim, Sandra; Stebel, Kerstin; Sobolewski, Piotr; Toledano, Carlos; Stamnes, Jakob J

    2016-02-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET (Aerosol Robotic Network) stations at Andenes (69.28°N, 16.01°E, 379 m altitude) and Hornsund (77.00°N, 15.56°E, 10 m altitude) for the period 2008-2013. The five/six-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund both were 0.09. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.29 and 1.34, respectively. At Andenes and Hornsund α was found to be larger than 1.1 in 68% and 84% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar aerosol size distribution during summer although one site is in an arctic area while the other site is in a subarctic area.

  3. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Cao, Xianjie; Zhang, Lei; Sun, Naixiu; Sun, Lu; Logan, Timothy; Shi, Jinsen; Wang, Yuan; Ji, Yuemeng; Lin, Yun; Huang, Zhongwei; Zhou, Tian; Shi, Yingying; Zhang, Renyi

    2017-02-01

    The seasonal and spatial variations of vertical distribution and optical properties of aerosols over China are studied using long-term satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and ground-based lidar observations and Aerosol Robotic Network (AERONET) data. The CALIOP products are validated using the ground-based lidar measurements at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). The Taklamakan Desert and Tibetan Plateau regions exhibit the highest depolarization and color ratios because of the natural dust origin, whereas the North China Plain, Sichuan Basin and Yangtze River Delta show the lowest depolarization and color ratios because of aerosols from secondary formation of the anthropogenic origin. Certain regions, such as the North China Plain in spring and the Loess Plateau in winter, show intermediate depolarization and color ratios because of mixed dust and anthropogenic aerosols. In the Pearl River Delta region, the depolarization and color ratios are similar to but higher than those of the other polluted regions because of combined anthropogenic and marine aerosols. Long-range transport of dust in the middle and upper troposphere in spring is well captured by the CALIOP observations. The seasonal variations in the aerosol vertical distributions reveal efficient transport of aerosols from the atmospheric boundary layer to the free troposphere because of summertime convective mixing. The aerosol extinction lapse rates in autumn and winter are more positive than those in spring and summer, indicating trapped aerosols within the boundary layer because of stabler meteorological conditions. More than 80 % of the column aerosols are distributed within 1.5 km above the ground in winter, when the aerosol extinction lapse rate exhibits a maximum seasonal average in all study regions except for the Tibetan Plateau. The aerosol extinction lapse rates in the polluted regions are higher

  4. A New, Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Remer, L. A.; Kaufman, Y. J.; Mattoo, S.; Dickerson, R. R.

    2004-12-01

    The MODerate Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land, to include more physical, less empirical assumptions. The new algorithm will include surface type information, instead of assuming globally fixed ratios of visible to infrared surface reflectance. It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONET operation. The effects of polarization will be including during lookup table creation, using vector RT calculations. Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. This new formulation will invert reflectance observed in the three channels (blue, red, and infrared), rather than performing iterative single channel retrievals.

  5. Simultaneous retrieval of aerosol optical thickness and chlorophyll concentration from multiwavelength measurement over East China Sea

    NASA Astrophysics Data System (ADS)

    Shi, Chong; Nakajima, Teruyuki; Hashimoto, Makiko

    2016-12-01

    A flexible inversion algorithm is proposed for simultaneously retrieving aerosol optical thickness (AOT) and surface chlorophyll a (Chl) concentration from multiwavelength observation over the ocean. In this algorithm, forward radiation calculation is performed by an accurate coupled atmosphere-ocean model with a comprehensive bio-optical ocean module. Then, a full-physical nonlinear optimization approximation approach is used to retrieve AOT and Chl. For AOT retrieval, a global three-dimensional spectral radiation-transport aerosol model is used as the a priori constraint to increase the retrieval accuracy of aerosol. To investigate the algorithm's availability, the retrieval experiment is conducted using simulated radiance data to demonstrate that the relative errors in simultaneously determining AOT and Chl can be mostly controlled to within 10% using multiwavelength and angle covering in and out of sunglint. Furthermore, the inversion results are assessed using the actual satellite observation data obtained from Cloud and Aerosol Imager (CAI)/Greenhouse gas Observation SATellite GOSAT and MODerate resolution Imaging Spectroradiometer (MODIS)/Aqua instruments through comparison to Aerosol Robotic Network (AERONET) aerosol and ocean color (OC) products over East China Sea. Both the retrieved AOT and Chl compare favorably to the reported AERONET values, particularly when using the CASE 2 ocean module in turbid water, even when the retrieval is performed in the presence of high aerosol loading and sunglint. Finally, the CAI and MODIS images are used to jointly retrieve the spatial distribution of AOT and Chl in comparison to the MODIS AOT and OC products.

  6. Development of a high-spectral-resolution lidar for continuous observation of aerosols in South America

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Sugimoto, Nobuo; Nishizawa, Tomoaki; Ristori, Pablo; Papandrea, Sebastian; Otero, Lidia; Quel, Eduardo; Mizuno, Akira

    2016-05-01

    Continuous monitoring of aerosol profiles using lidar is helpful for a quasi-real-time indication of aerosol concentration. For instance, volcanic ash concentration and its height distribution are essential information for plane flights. Depolarization ratio and multi-wavelength measurements are useful for characterizing aerosol types such as volcanic ash, smoke, dust, sea-salt, and air pollution aerosols. High spectral resolution lidar (HSRL) and Raman scattering lidar can contribute to such aerosol characterization significantly since extinction coefficients can be measured independently from backscattering coefficients. In particular, HSRL can measure aerosol extinction during daytime and nighttime with a high sensitivity. We developed an HSRL with the iodine filter method for continuous observation of aerosols at 532nm in the northern region of Argentina in the framework of the South American Environmental Atmospheric Risk Management Network (SAVER.Net)/SATREPS project. The laser wavelength of the HSRL was controlled by a feedback system to tune the laser wavelength to the center of an iodine absorption line. The stability of the laser wavelength with the system satisfied the requirement showing very small systematic errors in the retrieval of extinction and backscatter.

  7. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    NASA Astrophysics Data System (ADS)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  8. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  9. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  10. Aerosol single-scattering albedo retrieval over North Africa using critical reflectance

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.

    The sign and magnitude of the aerosol radiative forcing over bright surfaces is highly dependent on the absorbing properties of the aerosol. Thus, the determination of aerosol forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA). However, the brightness of desert surfaces complicates the retrieval of aerosol optical properties using passive space-based measurements. The aerosol critical reflectance is one parameter that can be used to relate top-of-atmosphere (TOA) reflectance changes over land to the aerosol absorption properties, without knowledge of the underlying surface properties or aerosol loading. Physically, the parameter represents the TOA reflectance at which increased aerosol scattering due to increased aerosol loading is balanced by increased absorption of the surface contribution to the TOA reflectance. It can be derived by comparing two satellite images with different aerosol loading, assuming that the surface reflectance and background aerosol are similar between the two days. In this work, we explore the utility of the critical reflectance method for routine monitoring of spectral aerosol absorption from space over North Africa, a region that is predominantly impacted by absorbing dust and biomass burning aerosol. We derive the critical reflectance from Moderate Resolution Spectroradiometer (MODIS) Level 1B reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, a site in the Algerian Sahara, and Banizoumbou, a Sahelian site in Niger. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties, as well as solar and viewing geometry, using the Santa Barbara DISORT Radiative Transfer (SBDART) model, and apply our findings to retrieve SSA from the MODIS critical reflectance values. We compare our results to AERONET-retrieved estimates, as well as to measurements of the TOA albedo and surface fluxes from the

  11. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  12. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  13. The designing of SDH embedded with RPR and its applications in MAN

    NASA Astrophysics Data System (ADS)

    Zhang, Jijun; Li, Guangcheng

    2004-04-01

    This paper discusses and analyzes the designing of SDH embedded with RPR and its applications in MAN. The main contents of this paper include: First of all, we discuss the disadvantages of the traditional Ethernet module embedded in SDH node while it carrying dada service in perspective of network organization, of QoS guarantee and network security. Secondly, we introduce the designing of SDH embedded with RPR, which can resolve the above problems. And finally, this paper puts emphases on analyzing the application models of this kind of SDH nodes in the metro area transport network, and the performance optimization for data services provided by the nodes.

  14. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  15. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  16. Development and Applications of a New, High-Resolution, Operational MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Kalashnikova, O.

    2014-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the operational MISR algorithm performs well, with about 75% of MISR AOD retrievals falling within 0.05 or 20% × AOD of the paired validation data from the ground-based Aerosol Robotic Network (AERONET), and is able to distinguish aerosol particles by size and sphericity, over both land and water. These attributes enable a variety of applications, including aerosol transport model validation and global air quality assessment. Motivated by the adverse impacts of aerosols on human health at the local level, and taking advantage of computational speed advances that have occurred since the launch of Terra, we have implemented an operational MISR aerosol product with 4.4 km spatial resolution that maintains, and sometimes improves upon, the quality of the 17.6 km resolution product. We will describe the performance of this product relative to the heritage 17.6 km product, the global AERONET validation network, and high spatial density AERONET-DRAGON sites. Other changes that simplify product content, and make working with the data much easier for users, will also be discussed. Examples of how the new product demonstrates finer spatial variability of aerosol fields than previously retrieved, and ways this new dataset can be used for studies of local aerosol effects, will be shown.

  17. CATS Aerosol Typing and Future Directions

    NASA Technical Reports Server (NTRS)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; Trepte, Chip; Vaughan, Mark; Colarco, Peter; da Silva, Arlindo

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  18. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  19. Aerosol Emission during Human Speech

    NASA Astrophysics Data System (ADS)

    Asadi, Sima; Ristenpart, William

    2016-11-01

    The traditional emphasis for airborne disease transmission has been on coughing and sneezing, which are dramatic expiratory events that yield easily visible droplets. Recent research suggests that normal speech can release even larger quantities of aerosols that are too small to see with the naked eye, but are nonetheless large enough to carry a variety of pathogens (e.g., influenza A). This observation raises an important question: what types of speech emit the most aerosols? Here we show that the concentration of aerosols emitted during healthy human speech is positively correlated with both the amplitude (loudness) and fundamental frequency (pitch) of the vocalization. Experimental measurements with an aerodynamic particle sizer (APS) indicate that speaking in a loud voice (95 decibels) yields up to fifty times more aerosols than in a quiet voice (75 decibels), and that sounds associated with certain phonemes (e.g., [a] or [o]) release more aerosols than others. We interpret these results in terms of the egressive airflow rate associated with each phoneme and the corresponding fundamental frequency, which is known to vary significantly with gender and age. The results suggest that individual speech patterns could affect the probability of airborne disease transmission.

  20. Center for Aerosol Research (AEROCENTER)

    NASA Technical Reports Server (NTRS)

    Kleidman, Richard; Kaufman, Yoram; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The newly established Center for Aerosol Research (AEROCENTER) located at the NASA/Goddard Space Flight Center in Greenbelt MD is dedicated to fostering interdisciplinary research in all aspects of aerosol science. AEROCENTER will be an incubator for innovative new analysis of existing data and ideas for new space missions. The plan is to tap and harvest ideas from a broad international and interdisciplinary science community and to incorporate these ideas into NASA's aerosol research effort for understanding and predicting the aerosol effect on climate and the environment. In order to achieve this goal the center aims to host several established and developing scientists for a period of 3-6 months each year. AEROCENTER will also develop a new technical infrastructure that will integrate the present aerosol research activities and data resources of GSFC/Greenbelt and GSFC/GISS, increase efficiency in the use of NASA remote sensing data, and increase the involvement of a larger national and international scientific community. The center aims to institutionalize and extend the present knowledge base within NASA into a national resource for the education and research communities.

  1. Comparison of Aerosol Optical Depth from GOES Aerosol and Smoke Product (GASP) and MODIS to AERONET AOD and IMPROVE PM2.5 Mass at Bondville, Illinois Stratified by Chemical Composition, RH, Particle Size, and Season

    NASA Astrophysics Data System (ADS)

    Green, M. C.; Kondragunta, S.; Ciren, P.

    2008-05-01

    The USEPA is interested in using satellite remote sensing data to estimate levels of PM2.5. Here we report on comparisons of aerosol optical depth (AOD) from GOES Aerosol and Smoke Product (GASP) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to IMPROVE network PM2.5 mass and AErosol RObotic NETwork (AERONET) ground-based AOD. Before we compare GASP and MODIS AOD to PM2.5, we first evaluate satellite AOD using the ground-based AERONET measurements and how it varies by aerosol chemical composition and size distribution. We focus attention on the Bondville, Illinois site because there is collocated IMPROVE sampling and an AERONET site. GASP provides aerosol optical depth at 0.55 um using top of atmosphere visible channel radiance measured from GOES east and GOES west. Time resolution is typically every 30 minutes during daylight hours. MODIS provides typically once per day AOD for any given location. The IMPROVE sampler provides a 24-hour integrated sample of PM10 mass, and PM2.5 mass and elemental composition on a one day in three schedule. AERONET provides aerosol optical depth at multiple wavelengths and aerosol size distribution as well as other derived parameters such as Angstrom exponent from ground based daytime measurements. We stratified cases by RH group, major chemical component, size distribution, and season. GOES AOD correlated best with PM2.5 mass during periods with mainly small particles, moderate RH, and sulfate dominated aerosol. It correlated poorly when RH is very high or low, aerosol is primarily organic, and when coarse to fine mass ratio is high. GASP AOD also correlated best with AERONET AOD when particles are mainly fine, suggesting the aerosol model assumptions (e.g. size distribution) may need to be varied geographically for GASP to achieve better AOD results.

  2. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Sessi