Science.gov

Sample records for aerosol optical models

  1. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  2. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  3. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  4. Optical Modeling and Interpretation of TRACE-P Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Grant, W. B.; Anderson, B. E.; Browell, E. V.; Butler, C. F.; Brackett, V. G.; Jordan, C. E.

    2002-12-01

    The NASA Langley airborne UV Differential Absorption Lidar (DIAL) system participated in the NASA-sponsored Transport and Atmospheric Chemistry near the Equator-Pacific (TRACE-P) mission, designed to study transport and transformation of emissions from Asia, from February 26 to April 9, 2001. The UV DIAL system measures backscatter in both nadir and zenith at 1064, 600, and 300 nm and depolarization ratio in the nadir at 600 nm. From the lidar backscatter measurement, the aerosol scattering ratio (ASR) is determined. The ASR is the ratio of aerosol backscatter to molecular backscatter and is derived by dividing the total backscatter by a standard atmosphere molecular density profile then normalizing in some low-aerosol region of the atmosphere. The wavelength dependence of aerosol backscatter, which is related to aerosol size, is determined from the ASRs at 1064 and 600 nm. The depolarization ratio, which is sensitive to irregularly shaped particles, is used to determine the presence of dust. Dust encountered during this mission originated primarily in China, but also in India and Africa. In situ instruments onboard the DC-8 provide additional information such as meteorological parameters, aerosol size distributions and chemical composition, and gas concentrations. These in situ data are being used along with the ASRs to help determine the aerosol optical properties. These optical properties will then enable the use of the extensive lidar profiles to achieve the goal of estimating the effects of aerosols on radiative forcing of the atmosphere over the western Pacific as well as over Asia near the coast.

  5. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  6. A case study of modeled aerosol optical properties during the SAFARI 2000 campaign

    SciTech Connect

    Kuzmanoski, Maja; Box, M. A.; Schmid, Beat; Russell, P. B.; Redemann, Jens

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the SAFARI 2000 campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14), and the refractive index based on the available information on aerosol chemical composition. The study focuses on differences between the results of two models for the mixture of absorbing and non-absorbing aerosol components: a layered sphere with absorbing core and non-absorbing shell, and an effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. Because of the large difference between the single scattering albedo values (~ 0.1 at mid-visible wavelengths) obtained from different measurement methods for the case with high amount of biomass burning particles, radiative transfer calculations were carried out to estimate the radiative effect of the implied difference in aerosol absorption. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81 – 0.91 at λ = 0.50 μm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA), and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

  7. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  8. An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models

    SciTech Connect

    Kinne, Stefan; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, Olivier; Chin, M.; Collins, W.; Dentener, F.; Diehl, T.; Easter, Richard C.; Feichter, H.; Fillmore, D.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Herzog, M.; Horrowitz, L.; Isaksen, I.; Iversen, T.; Kirkevag, A.; Kloster, S.; Koch, D.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Lesins, G.; Liu, Xiaohong; Lohmann, U.; Montanaro, V.; Myhre, G.; Penner, Joyce E.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-29

    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment global fields for mass and for mid-visible aerosol optical thickness (aot) were compared among aerosol component modules of 21 different global models. There is general agreement among models for the annual global mean of component combined aot. At 0.12 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca 0.14) and space (MODIS-MISR composite ca 0.16). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture have remained. Of particular concern is the large model diversity for contributions by dust and carbon, because it leads to significant uncertainty in aerosol absorption (aab). Since not only aot but also aab influence the aerosol impact on the radiative energy-balance, aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) and space (e.g. correlations between retrieved aerosol and cloud properties).

  9. Coupling aerosol optics to the chemical transport model MATCH (v5.5.0) and aerosol dynamics module SALSA (v1)

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    Modelling aerosol optical properties is a notoriously difficult task due to the particles' complex morphologies and compositions. Yet aerosols and their optical properties are important for Earth system modelling and remote sensing applications. Operational optics models often make drastic and non realistic approximations regarding morphological properties, which can introduce errors. In this study a new aerosol optics model is implemented, in which more realistic morphologies and mixing states are assumed, especially for black carbon aerosols. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey shell" model. Simulated results of radiative fluxes, backscattering coefficients and the Ångström exponent from the new optics model are compared with results from another model simulating particles as externally mixed homogeneous spheres. To gauge the impact on the optical properties from the new optics model, the known and important effects from using aerosol dynamics serves as a reference. The results show that using a more detailed description of particle morphology and mixing states influences the optical properties to the same degree as aerosol dynamics. This is an important finding suggesting that over-simplified optics models coupled to a chemical transport model can introduce considerable errors; this can strongly effect simulations of radiative fluxes in Earth-system models, and it can compromise the use of remote sensing observations of aerosols in model evaluations and chemical data assimilation.

  10. Quantification of model uncertainty in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-09-01

    We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.

  11. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  12. Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: Implications for the Arctic aerosol burden

    NASA Astrophysics Data System (ADS)

    Generoso, S.; BréOn, F.-M.; Chevallier, F.; Balkanski, Y.; Schulz, M.; Bey, I.

    2007-01-01

    The large spatial and temporal variability of atmospheric aerosol load makes it a challenge to quantify aerosol effect on climate. This study is one of the first attempts to apply data assimilation for the analysis of global aerosol distribution. Aerosol optical thickness (AOT) observed from the Polarization and Directionality of the Earth Reflectances (POLDER) spaceborne instrument are assimilated into a three-dimensional chemistry model. POLDER capabilities to distinguish between fine and coarse AOT are used to constrain them separately in the model. Observation and model errors are a key component of such a system and are carefully estimated on a regional basis using some of the high-quality surface observations from the Aerosol Robotic Network (AERONET). Other AERONET data provide an independent evaluation of the a posteriori fields. Results for the fine mode show improvements, in terms of reduction of root-mean-square errors, in most regions with the largest improvements found in the Mediterranean Sea and Eurasia. We emphasize the results for the Arctic, where there is growing evidence of a strong aerosol impact on climate, but a lack of regional and continuous aerosol monitoring. The a posteriori fields noticeably well reproduce the winter-spring "Arctic Haze" peak measured in Longyearbyen (15°E, 78°N) and typical seasonal variations in the Arctic region, where AOT increase by up to a factor of three between a posteriori and a priori. Enhanced AOT are found over a longer period in spring 2003 than in 1997, suggesting that the large Russian fires in 2003 have influenced the Arctic aerosol load.

  13. Evaluation of aerosol optical depth and aerosol models from MODIS and VIIRS retrieval algorithms over North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhu, J.; Xia, X.; Chen, H.; Zhang, J.; Xu, X.; Oo, M. M.; Holz, R.; Levy, R. C.

    2015-12-01

    After the launch of Suomi National Polar-orbiting Partnership (S-NPP) equipped with the Visible Infrared Imaging Radiometer Suit (VIIRS) instrument in late 2011, the aerosol products of VIIRS have received much attention. Currently there are two aerosol products of VIIRS by using different algorithms: VIIRS Environment Data Record data (VIIRS_EDR) and aerosol products by applying MODIS-like algorithm to VIIRS (VIIRS_ML). In this study, the aerosol optical depth (AOD) at 550nm and properties of aerosol models used in the two VIIRS algorithms (VIIRS_EDR and VIIRS_ML) are compared respectively with their corresponding quantities retrieved from the ground-based Sunphotometer measurements (CE318) during May 2012-March 2014 at three sites over North China Plain (NCP): metropolis-Beijing, suburban-XiangHe and regional background site-Xinglong. The results show that the VIIRS_EDR AOD has a positive mean bias (MB) of 0.04-0.06 and the root mean square error (RMSE) of 0.22-0.24 in NCP region. Among three sites, the largest MB (0.10-0.15) and RMSE (0.27-0.30) are observed in Beijing. The results of evaluation of VIIRS_ML for each site and quality flags analysis are similar to VIIRS_EDR, but in general the VIIRS_ML AOD shows better than VIIRS_EDR except for the MB (0.13-0.14). The model comparisons show that the occurrence percentages of both dust and clean urban aerosol in VIIRS_EDR (82% for Beijing, 73% for XiangHe and 50% for Xinglong) are significantly larger than that for CE318, the latter shows the polluted urban aerosol is the dominant aerosol especially for Beijing (67%) and XiangHe (59%) sites. The values of Single Scattering albedo (SSA) from VIIRS_EDR are higher than from CE318 in all aerosol modes, with a positive bias of 0.03-0.06 for fine mode, 0.18-0.22 for coarse model and 0.03-0.08 for total modes and the aerosol microphysical properties used in the VIIRS_EDR algorithm for AOD retrieval show a large difference with the counterparts from CE318 inversion results

  14. Modeling of microphysics and optics of aerosol particles in the marine environments

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady

    2013-05-01

    We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0 - 25 m, U = 3 - 18 km s-1, X ≤ 120 km and RH = 40 - 98%. The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied for the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ = 0.2-12 μm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory. The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results. Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.

  15. Assimilation of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Verver, Gé; Henzing, Bas

    Climate predictions are hampered by the large uncertainties involved in the estima- tion of the effects of atmospheric aerosol (IPCC,2001). These uncertainties are caused partly because sources and sinks as well as atmospheric processing of the different types of aerosol are not accurately known. Moreover, the climate impact (especially the indirect effect) of a certain distribution of aerosol is hard to quantify. There have been different approaches to reduce these uncertainties. In recent years intensive ob- servational campaigns such as ACE and INDOEX have been carried out, aiming to in- crease our knowledge of atmospheric processes that determine the fate of atmospheric aerosols and to quantify the radiation effects. With the new satellite instruments such as SCIAMACHY and OMI it will be possible in the near future to derive the ge- ographical distribution of the aerosol optical depths (AOD) and perhaps additional information on the occurrence of different aerosol types. The goal of the ARIA project (started in 2001) is to assimilate global satellite de- rived aerosol optical depth (AOD) in an off-line chemistry/transport model TM3. The TM3 model (Jeuken et al. 2001) describes sources, sinks, transformation and transport processes of different types of aerosol (mineral dust, carbon, sulfate, nitrate) that are relevant to radiative forcing. All meteorological input is provided by ECMWF. The assimilation procedure constrains the aerosol distribution produced by the model on the basis of aerosol optical depths observed by satellite. The product, i.e. an optimal estimation of global aerosol distribution, is then available for the calculation of radia- tive forcing. Error analyses may provide valuable information on deficiencies of the model. In the ARIA project it is tried to extract additional information on the type of aerosol present in the atmosphere by assimilating AOD at multiple wavelengths. First results of the ARIA project will be presented. The values

  16. Spatiotemporal modeling of irregularly spaced Aerosol Optical Depth data

    PubMed Central

    Oleson, Jacob J.; Kumar, Naresh; Smith, Brian J.

    2012-01-01

    Many advancements have been introduced to tackle spatial and temporal structures in data. When the spatial and/or temporal domains are relatively large, assumptions must be made to account for the sheer size of the data. The large data size, coupled with realities that come with observational data, make it difficult for all of these assumptions to be met. In particular, air quality data are very sparse across geographic space and time, due to a limited air pollution monitoring network. These “missing” values make it diffcult to incorporate most dimension reduction techniques developed for high-dimensional spatiotemporal data. This article examines aerosol optical depth (AOD), an indirect measure of radiative forcing, and air quality. The spatiotemporal distribution of AOD can be influenced by both natural (e.g., meteorological conditions) and anthropogenic factors (e.g., emission from industries and transport). After accounting for natural factors influencing AOD, we examine the spatiotemporal relationship in the remaining human influenced portion of AOD. The presented data cover a portion of India surrounding New Delhi from 2000 – 2006. The proposed method is demonstrated showing how it can handle the large spatiotemporal structure containing so much missing data for both meteorologic conditions and AOD over time and space. PMID:24470786

  17. Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

    NASA Astrophysics Data System (ADS)

    Andersson, Emma; Kahnert, Michael

    2016-05-01

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between -28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from -50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  18. Diversity of Aerosol Optical Thickness in analysis and forecasting modes of the models from the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Lynch, P.

    2014-12-01

    With the emergence of global aerosol models intended for operational forecasting use at global numerical weather prediction (NWP) centers, the International Cooperative for Aerosol Prediction (ICAP) was founded in 2010. One of the objectives of ICAP is to develop a global multi-model aerosol forecasting ensemble (ICAP-MME) for operational and basic research use. To increase the accuracy of aerosol forecasts, several of the NWP centers have incorporated assimilation of satellite and/or ground-based observations of aerosol optical thickness (AOT), the most widely available and evaluated aerosol parameter. The ICAP models are independent in their underlying meteorology, as well as aerosol sources, sinks, microphysics and chemistry. The diversity of aerosol representations in the aerosol forecast models results in differences in AOT. In addition, for models that include AOT assimilations, the diversity in assimilation methodology, the observed AOT data to be assimilated, and the pre-assimilation treatments of input data also leads to differences in the AOT analyses. Drawing from members of the ICAP latest generation of quasi-operational aerosol models, five day AOT forecasts and AOT analyses are analyzed from four multi-species models which have AOT assimilations: ECMWF, JMA, NASA GSFC/GMAO, and NRL/FNMOC. For forecast mode only, we also include the dust products from NOAA NGAC, BSC, and UK Met office in our analysis leading to a total of 7 dust models. AOT at 550nm from all models are validated at regionally representative Aerosol Robotic Network (AERONET) sites and a data assimilation grade multi-satellite aerosol analysis. These analyses are also compared with the recently developed AOT reanalysis at NRL. Here we will present the basic verification characteristics of the ICAP-MME, and identify regions of diversity between model analyses and forecasts. Notably, as in many other ensemble environments, the multi model ensemble consensus mean outperforms all of the

  19. Modelling lidar-relevant optical properties of complex mineral dust aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Wiegner, Matthias; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Tesche, Matthias; Kandler, Konrad

    2011-09-01

    We model lidar-relevant optical properties of mineral dust aerosols and compare the modelling results with optical properties derived from lidar measurements during the SAMUM field campaigns. The Discrete Dipole Approximation is used for optical modelling of single particles. For modelling of ensemble properties, the desert aerosol type of the OPAC aerosol dataset is extended by mixtures of absorbing and non-absorbing irregularly shaped mineral dust particles. Absorbing and non-absorbing particles are mixed to mimic the natural mineralogical inhomogeneity of dust particles. A sensitivity study reveals that the mineralogical inhomogeneity is critical for the lidar ratio at short wavelengths; it has to be considered for agreement with the observed wavelength dependence of the lidar ratio. The amount of particles with low aspect ratios (about 1.4 and lower) affects the lidar ratio at any lidar wavelength; their amount has to be low for agreement with SAMUM observations. Irregularly shaped dust particles with typical refractive indices, in general, have higher linear depolarization ratios than corresponding spheroids, and improve the agreement with the observations.

  20. Comparing the relationships between aerosol optical depth and cloud properties in observations and global models

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes

    2016-04-01

    Aerosols impact the climate both directly, through their interaction with radiation and indirectly, via their ability to act as cloud condensation nuclei (CCN), modifying cloud properties. The influence of aerosols on cloud properties is highly uncertain. Many relationships between aerosol optical depth (AOD) and cloud properties have been observed using satellite data, but previous work has shown that some of these relationships are the product of the strong AOD-cloud fraction (CF) relationship. The confounding influence of local meteorology obscures the magnitude of any aerosol impact on CF, and so also the impact of aerosol on other cloud properties. For example, both AOD and CF are strongly influenced by relative humidity, which can generate a correlation between them. Previous studies have used reanalysis data to account for confounding meteorological variables. This requires knowledge of the relevant meteorological variables and is limited by the accuracy of the reanalysis data. Recent work has shown that by using the cloud droplet number concentration (CDNC) to mediate the AOD-CF relationship, the impact of relative humidity can be significantly reduced. This method removes the limitations imposed by the finite accuracy of reanalysis data. In this work we investigate the impact of the CDNC mediation on the AOD-CF relationship and on the relationship between AOD and other cloud properties in global atmospheric models. By comparing pre-industrial and present day runs, we investigate the success of the CDNC mediated AOD-CF relationship to predict the change in CF from the pre-industrial to the present day using only observations of the present day relationships between clouds and aerosol properties. This helps to determine whether the satellite-derived relationship provides a constraint on the aerosol indirect forcing due to changes in CF.

  1. Aerosol Optical Depth Model Assessment With High-Resolution Multiple Angle Sensors

    NASA Astrophysics Data System (ADS)

    Martin, J. S.; Nielsen, K. E.; Vincent, D. A.; Durkee, P. A.; Reid, J. S.

    2005-12-01

    The Naval Postgraduate School Aerosol Optical Depth (NPS AOD) model has been used successfully to retrieve aerosol optical depths over water using Advanced Very High Resolution Radiometer (AVHRR) imagery. In this work, the NPS AOD model is applied to the QuickBird high-resolution commercial satellite imagery collected at multiple zenith angles around Sir Bu Nuair Island, United Arab Emirates in September 2004 during the Unified Aerosol Experiment, United Arab Emirates (UAE2) Campaign. The QuickBird-retrieved aerosol optical depths are compared to other satellite and ground-based optical depth retrievals, including those from the Aeerosol Robotic NETwork (AERONET), the MODerate resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), and AVHRR. Adapting the NPS AOD model to the nominally 2.4-meter resolution imagery from QuickBird required using modal radiances determined over an area that matched the lower resolution imagers (~ 275 meters to 1 kilometer). Additionally, the NPS AOD model was originally developed for the AVHRR imager on the NOAA-14 satellite. The NPS AOD model selects a modeled aerosol size distribution and scattering phase function based on the ratio the red and near-infrared channels of the AVHRR and the scattering angle derived from solar-sensor geometry. As such, the LUT that relates the ratio of red and near-infrared radiances was based on the center effective wavelengths of the NOAA-14 channels. The AOD retrievals from the other imagers must be adjusted to account for the changes in center effective wavelengths of the red and near-IR channels. Results show that the application of the NPS AOD model to QuickBird data yields findings that are consistent with other satellite and ground-based retrievals. In general, the NPS AOD model works well for nadir and near-nadir view angles, but not for zenith angles greater than 50 degrees. A non-linearized single scattering model and additional scattering streams will be

  2. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  3. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  4. Aerosol lenses propagation model.

    PubMed

    Tremblay, Grégoire; Roy, Gilles

    2011-09-01

    We propose a model based on the properties of cascading lenses modulation transfer function (MTF) to reproduce the irradiance of a screen illuminated through a dense aerosol cloud. In this model, the aerosol cloud is broken into multiple thin layers considered as individual lenses. The screen irradiance generated by these individual layers is equivalent to the point-spread function (PSF) of each aerosol lens. Taking the Fourier transform of the PSF as a MTF, we cascade the lenses MTF to find the cloud MTF. The screen irradiance is found with the Fourier transform of this MTF. We show the derivation of the model and we compare the results with the Undique Monte Carlo simulator for four aerosols at three optical depths. The model is in agreement with the Monte Carlo for all the cases tested. PMID:21886230

  5. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are

  6. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  7. Ship-based Aerosol Optical Depth Measurements in the Atlantic Ocean, Comparison with Satellite Retrievals and GOCART Model

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sakerin, S.; Kabanov, D.; Slutsker, I.; Remer, L. A.; Kahn, R.; Ignatov, A.; Chin, M.; Diehl, T. L.; Mishchenko, M.; Liu, L.; Kucsera, T. L.; Giles, D.; Eck, T. F.; Torres, O.; Kopelevich, O.

    2005-12-01

    Aerosol optical depth measurements were made in October -December 2004 aboard of R/V Akademik Sergey Vavilov. The cruise area included the Atlantic transect from North Sea to Cape Town and then a crossing in the South Atlantic to Ushuaia, Argentina. The hand-held Microtops II sunphotometer was used to acquire 314 series of measurements spanning 38 days. The sunphotometer was pre-calibrated at the NASA Goddard Space Flight Center against a master sun/sky radiometer instrument of the Aerosol Robotic Network (AERONET). The direct sun measurements were acquired in five spectral channels: 340, 440, 675, 870 and 940 nm. To retrieve aerosol optical depths we applied AERONET processing algorithm (Version 2) to the raw data. Aerosol optical depth values were close to background oceanic conditions (0.04-0.08) in the open oceanic areas not influenced by continental sources. Spectral dependence can be described as almost neutral (Angstrom parameter was less than 0.6), especially in the Southern Atlantic. A notable latitudinal variability of optical depth was observed between 15N and 21S, which was associated with the aerosol transport from Africa. Correlations between optical depth and meteorological parameters were considered and comparison between ship-based measurements and AERONET sites along the cruise track was made. Aerosol optical depths were compared to the global transport model (GOCART) simulations and satellite retrievals from MODIS, MISR, and AVHRR.

  8. Ground truth methods for optical cross-section modeling of biological aerosols

    NASA Astrophysics Data System (ADS)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  9. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  10. Increase of Cloud Droplet Size with Aerosol Optical Depth: An Observational and Modeling Study

    SciTech Connect

    Yuan, Tianle; Li, Zhanqing; Zhang, Renyi; Fan, Jiwen

    2008-02-21

    Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including water vapor swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D spectral-bin microphysics Goddard Cumulus Ensemble model (GCE) which incorporated a reformulation of the Köhler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant CCNs. Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon.

  11. WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Balzarini, A.; Pirovano, G.; Honzak, L.; Žabkar, R.; Curci, G.; Forkel, R.; Hirtl, M.; San José, R.; Tuccella, P.; Grell, G. A.

    2015-08-01

    In the framework of the AQMEII initiative WRF-Chem has been applied over Europe adopting two chemical configurations for the calendar year 2010. The first one employed the RADM2 gas-phase chemistry and MADE/SORGAM aerosol module, while the second one implemented the CBM-Z gaseous parameterization and MOSAIC aerosol chemistry. Configurations shared the same domain, meteorological setups and input data. The Comparison demonstrated that CBM-Z has a more efficient ozone-NO titration than RADM2 in regions with sufficiently high levels of NOx and VOCs. At the same time, CBM-Z is found to have a more effective NO2 + OH reaction. The parameterization of the relative humidity of deliquescence point has a strong impact on HNO3 and NO3 concentrations over Europe, particularly over the sea. The MADE approach showed to be more efficient than MOSAIC. Differently, particulate sulfate and SO2 ground concentrations proved to be more influenced by the heterogeneous SO2 cloud oxidation. PM10 and PM2.5 have shown similar results for MOSAIC and MADE/SORGAM, even though some differences were found in the dust and sea salt size partitioning between modes and bins. Indeed, in MADE the sea salt was distributed only in the coarse fraction, while the dust emissions were distributed mainly in the fine fraction. Finally, different chemical mechanisms give different Aerosol Optical Depths (AOD). WRF-Chem is found to under predict the AODs in both configurations because of the misrepresentation of the dust coarse particle, as shown by the analysis of the relationship between the Angström exponent and the AOD bias. Differently, when the AOD is dominated by fine particles, the differences in model performance are more evident, with MADE/SORGAM generally performing better than MOSAIC. Indeed the higher availability of both sulfate and nitrate has a significant influence on reconstruction of the AOD estimations. This paper shows the great importance of chemical mechanisms in both gaseous and

  12. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China

    NASA Astrophysics Data System (ADS)

    Li, Shenshen; Yu, Chao; Chen, Liangfu; Tao, Jinhua; Letu, Husi; Ge, Wei; Si, Yidan; Liu, Yang

    2016-09-01

    China's large aerosol emissions have major impacts on global climate change as well as regional air pollution and its associated disease burdens. A detailed understanding of the spatiotemporal patterns of aerosol components is necessary for the calculation of aerosol radiative forcing and the development of effective emission control policy. Model-simulated and satellite-retrieved aerosol components can support climate change research, PM2.5 source appointment and epidemiological studies. This study evaluated the total and componential aerosol optical depth (AOD) from the GEOS-Chem model (GC) and the Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART), and the Multiangle Imaging Spectroradiometer (MISR) from 2006 to 2009 in China. Linear regression analysis between the GC and AErosol RObotic NETwork (AERONET) in China yielded similar correlation coefficients (0.6 daily, 0.71 monthly) but lower slopes (0.41 daily, 0.58 monthly) compared with those in the U.S. This difference was attributed to GC's underestimation of water-soluble AOD (WAOD) west of the Heihe-Tengchong Line, the dust AOD (DAOD) in the fall and winter, and the soot AOD (SAOD) throughout the year and throughout the country. GOCART exhibits the strongest dust estimation capability among all datasets. However, the GOCART soot distribution in the Northeast and Southeast has significant errors, and its WAOD in the polluted North China Plain (NCP) and the South is underestimated. MISR significantly overestimates the water-soluble aerosol levels in the West, and does not capture the high dust loadings in all seasons and regions, and the SAOD in the NCP. These discrepancies can mainly be attributed to the uncertainties in the emission inventories of both models, the poor performance of GC under China's high aerosol loading conditions, the omission of certain aerosol tracers in GOCART, and the tendency of MISR to misidentify dust and non-dust mixtures.

  13. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    EPA Science Inventory

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  14. Dust-aerosol optical modeling with Gaussian spheres: Combined invariant-imbedding T-matrix and geometric-optics approach

    NASA Astrophysics Data System (ADS)

    Liu, Jianping; Yang, Ping; Muinonen, Karri

    2015-08-01

    The Gaussian sphere has been widely used as a model to study light scattering by irregular particles; and, despite extensive numerical studies, the optical properties are not thoroughly understood. Based on Gaussian spheres and using a combination of the invariant imbedding T-matrix method and an improved geometric-optics method, the single-scattering properties (namely, the 4×4 phase matrix, extinction cross section, single-scattering albedo, and asymmetry factor) are computed in the Rayleigh to geometric optics regimes. The simulations are performed with various degrees of irregularity, and the effects of particle irregularities are investigated over a wide range of particle sizes. Furthermore, the theoretical simulations based on Gaussian spheres are used to fit the measured optical properties of feldspar particles from the well-known Amsterdam-Granada light scattering database. A mixture of several shapes is shown to closely reproduce the measured phase matrices. The results may be potentially useful for remote-sensing and radiative-transfer applications involving dust aerosol.

  15. Aerosol Optical Depth Retrieval by NPS Model Modified for SEAWIFS Input

    NASA Astrophysics Data System (ADS)

    Brown, Brady A.

    2002-03-01

    Using visible wavelength radiance data obtained from the spaceborne Sea-viewing Wide Field of-view Sensor (SeaWiFS), during the Aerosol Characterization Experiment-Asia (ACE-Asia), an analysis of aerosol optical depth (AOD) was completed by modification to the NPS AOD Model previously compiled for NOAA geosynchronous- and polar-orbiting satellites. The objective of the analysis was to calibrate the linearized, single-scatter algorithm, estimated bi-directional surface reflectance, and phase function parameters. The intent of the study was to provide enhanced temporal AOD coverage with the addition of the orbiting SeaWiFS eight-channel radiometer to the established NOAA constellation of five-channel AVHRR-equipped satellites. The work has operational significance in providing timely, accurate remote information to military operators of identification and targeting systems. Possible applications include detection and warning of international treaty violation of reducing the adverse public health effects by weapons of mass destruction of pollution advection on global weather patterns.

  16. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  17. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the

  18. Optical constants of Titan aerosols and their tholins analogs: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2015-05-01

    Since Bishun Khare's pioneer works on Titan tholins, many studies have been performed to improve the experimental database of the optical constants of Titan tholins. The determination of the optical constants of Titan aerosols is indeed essential to quantify their capacity to absorb and scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of the optical properties is also crucial to analyze and better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. This review paper critically summarizes these new results and presents constraints on Titan's aerosols optical constants. Finally, the information lacking in this field is highlighted as well as some possible investigations that could be carried out to fill these gaps.

  19. Comparison of modeled optical properties of Saharan mineral dust aerosols with SAMUM lidar and photometer observations

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Wiegner, Matthias

    2013-05-01

    Mineral dust aerosols are, for example, relevant for the radiative transfer in Earth's atmosphere. An important source of information on this aerosol type is provided by remote sensing using lidar systems and sun/sky photometers. We investigate the sensitivity of lidar and photometer observations to the microphysical aerosol properties in a numerical study. Knowledge of this sensitivity is required for the development of microphysical retrieval algorithms. Until recently, such retrieval algorithms were applied only to lidar or photometer observations. Quite different sensitivities for lidar and photometer are found in our study, suggesting that synergistic effects can be expected from combining the observations from both techniques. Furthermore, we compare the modeled aerosol properties to observations of Saharan mineral dust aerosols performed during the SAMUM field campaign. We determined aerosol ensembles that are consistent with the lidar as well as the photometer observations, confirming the feasibility of combining the observations from both techniques. The consistent aerosol ensembles are based on the desert mixture from the OPAC aerosol dataset, and were improved by considering mixing of absorbing and non-absorbing irregularly shaped particles.

  20. Spectral aerosol optical depths over Bay of Bengal and Chennai: II—sources, anthropogenic influence and model estimates

    NASA Astrophysics Data System (ADS)

    Ramachandran, S.; Jayaraman, A.

    A cruise experiment was conducted in February-March 2001 to study the aerosol optical characteristics over Bay of Bengal, identify the source regions of aerosols and to estimate the anthropogenic contribution to the measured aerosol optical depths. The aerosol optical depths (AODs) exhibit significant spatial differences. The observed variations are explained by 7-days back trajectory analyses performed at different heights. The higher AODs obtained on 21 February are found influenced by the air mass at different heights originating either from Bangladesh or mainland India, indicating the anthropogenic influence. The anthropogenic influence on AOD are estimated by comparing the AODs obtained over Bay of Bengal (i) with that measured over a clean oceanic region taking into account the wind speed dependence on sea-salt aerosols and (ii) using maritime clean aerosol. From the two methods the estimated mean contribution by the anthropogenic sources to the AODs measured over Bay of Bengal are found to be in the range of 74-92% at 0.5 μm. Over Chennai, an urban station located on the eastern coastline of India, the anthropogenic contribution is estimated by comparing the measured AOD values with that of clean continental aerosol model and is found to be about 89%. This percentage contribution is higher than the contributions measured over Kaashidhoo and the northern Indian Ocean during INDOEX. INDOEX expeditions were conducted over the Arabian Sea and Indian Ocean on the western side of the Indian subcontinent, while the Bay of Bengal experiment was conducted on the eastern side. The differences in percentage contributions could possibly be due to the differences in anthropogenic activities, changes in the meteorological conditions, wind patterns, production and subsequently the transport of aerosols. The measured AOD spectra are reconstructed using OPAC to find out the possible chemical species which make up the aerosols over Bay of Bengal and Chennai. The AODs are

  1. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  2. Aerosol optical depth measuring network - project description

    NASA Astrophysics Data System (ADS)

    Aaltonen, A.; Koskela, K.; Lihavainen, L.

    2003-04-01

    The Finnish Meteorological Institute (FMI), in collaboration with Servicio Meteorológico Nacional (SMN), Argentina, is constructing a network for aerosol optical depth (AOD) measurements. Measurements are to be started in the summer 2003 with three sunphotometers, model PFR, Davos. One of them will be sited in Marambio (64°S), Antarctica, and the rest two in the Observatory of Jokioinen (61°N) and Sodankylä GAW station (67°N), Finland. Each instrument consists of a precision filter radiometer and a suntracker. Due to the harsh climate conditions special solutions had to be introduced to keep the instrument warm and free from snow. Aerosol optical depth measured at Pallas-Sodankylä GAW station can be compared with estimated aerosol extinction, which is calculated from ground base aerosol scattering and absorption coefficient measurements.

  3. Two-dimensional modeling of multiply scattered laser radiation in optically dense aerosols

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1982-01-01

    The discrete ordinates finite element radiation transport code TWOTRAN is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol, we compute the average intensity of the scattered radiation and correction factors to the Lambert-Beer law arising from multiple scattering. As our results indicate, two-dimensional x-y and r-z geometry modeling can reliably describe a realistic three-dimensional scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km) the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment.

  4. Improvement of Aerosol Optical Depth Retrieval from MODIS Spectral Reflectance over the Global Ocean Using New Aerosol Models Archived from AERONET Inversion Data and Tri-axial Ellipsoidal Dust Database

    NASA Technical Reports Server (NTRS)

    Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.

    2012-01-01

    New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.

  5. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling

    PubMed Central

    Schwartz, Stephen E.; Harshvardhan; Benkovitz, Carmen M.

    2002-01-01

    The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effect, but previous efforts to identify and quantify enhancement of cloud albedo caused by anthropogenic aerosols in satellite observations have been limited, largely because of strong dependence of albedo on cloud liquid water path (LWP), which is inherently highly variable. Here we examine satellite-derived cloud radiative properties over two 1-week episodes for which a chemical transport and transformation model indicates substantial influx of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North Atlantic. Despite absence of discernible dependence of optical depth or albedo on modeled sulfate loading, examination of the dependence of these quantities on LWP readily permits detection and quantification of increases correlated with sulfate loading, which are otherwise masked by variability of LWP, demonstrating brightening of clouds because of the Twomey effect on a synoptic scale. Median cloud-top spherical albedo was enhanced over these episodes, relative to the unperturbed base case for the same LWP distribution, by 0.02 to 0.15. PMID:11854481

  6. Modeling the Absorbing Aerosol Index

    NASA Technical Reports Server (NTRS)

    Penner, Joyce; Zhang, Sophia

    2003-01-01

    We propose a scheme to model the absorbing aerosol index and improve the biomass carbon inventories by optimizing the difference between TOMS aerosol index (AI) and modeled AI with an inverse model. Two absorbing aerosol types are considered, including biomass carbon and mineral dust. A priori biomass carbon source was generated by Liousse et al [1996]. Mineral dust emission is parameterized according to surface wind and soil moisture using the method developed by Ginoux [2000]. In this initial study, the coupled CCM1 and GRANTOUR model was used to determine the aerosol spatial and temporal distribution. With modeled aerosol concentrations and optical properties, we calculate the radiance at the top of the atmosphere at 340 nm and 380 nm with a radiative transfer model. The contrast of radiance at these two wavelengths will be used to calculate AI. Then we compare the modeled AI with TOMS AI. This paper reports our initial modeling for AI and its comparison with TOMS Nimbus 7 AI. For our follow-on project we will model the global AI with aerosol spatial and temporal distribution recomputed from the IMPACT model and DAO GEOS-1 meteorology fields. Then we will build an inverse model, which applies a Bayesian inverse technique to optimize the agreement of between model and observational data. The inverse model will tune the biomass burning source strength to reduce the difference between modelled AI and TOMS AI. Further simulations with a posteriori biomass carbon sources from the inverse model will be carried out. Results will be compared to available observations such as surface concentration and aerosol optical depth.

  7. Time series model prediction and trend variability of aerosol optical depth over coal mines in India.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta

    2015-03-01

    A study of the assessment and management of air quality was carried out at 11 coal mines in India. Long-term observations (about 13 years, March 2000-December 2012) and modeling of aerosol loading over coal mines in India are analyzed in the present study. In this respect, the Box-Jenkins popular autoregressive integrated moving average (ARIMA) model was applied to simulate the monthly mean Terra Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD550 nm) over 11 sites in the coal mines region. The ARIMA model was found as the most suitable model with least normalized Bayesian information criterion (BIC) and root mean square error and high value of R (2). Estimation was done with the Ljung-Box test. Finally, a forecast for a 3-year period from January 2013 to December 2015 was calculated which showed that the model forecasted values are following the observed trend quite well over all mining areas in India. The average values of AOD for the next 3 years (2013-2015) at all sites are found to be 0.575 ± 0.13 (Raniganj), 0.452 ± 0.12 (Jharia), 0.339 ± 0.13 (Bokaro), 0.280 ± 0.09 (Bishrampur), 0.353 ± 0.13 (Korba), 0.308 ± 0.08 (Talcher), 0.370 ± 0.11 (Wardha), 0.35 ± 0.10 (Adilabad), 0.325 ± 0.09 (Warangal), 0.467 ± 0.09 (Godavari Valley), and 0.236 ± 0.07 (Cuddapah), respectively. In addition, long-term lowest monthly mean AOD550 values are observed over Bishrampur followed by Cuddapah, Talcher, Warangal, Adilabad, Korba, Wardha, Godavari Valley, Jharia, and Raniganj. Raniganj and Jharia exhibit the highest AOD values due to opencast mines and extensive mining activities as well as a large number of coal fires. Similarly, the highest AOD values are observed during the monsoon season among all four seasons over all the mining sites. Raniganj exhibits the highest AOD value at all seasons and at all sites. In contrast, the lowest seasonal AOD values are observed during the post

  8. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model.

    PubMed

    Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki

    2014-12-01

    A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. PMID:25017412

  9. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  10. Stratospheric aerosol optical depth: comparison of global model results with SAGE II and HALOE observations in the visible and near-, far-infrared channels

    NASA Astrophysics Data System (ADS)

    Pitari, Giovanni; de Luca, Natalia; Mancini, Eva; Bekki, Slimane; Mills, Michael; Timmreck, Claudia; Weisenstein, Debra

    2010-05-01

    Stratospheric aerosol optical depth: comparison of global model results with SAGE II and HALOE observations in the visible and near-, far-infrared channels G. Pitari (1), N. De Luca (1), E. Mancini (1), S. Bekki (2), M. Mills (3), C. Timmreck (4), D. Weisenstein (5) (1) Università degli Studi de L'Aquila, L'Aquila, Italy (2) Université Pierre e Marie Curie, Paris, France (3) University of Colorado, Boulder, CO, USA (4) Max-Planck Institut für Meteorologie, Hamburg, Germany (5) Atmospheric and Environmental Research, Inc., Lexington, MA, USA Stratospheric aerosols have been recognized to play an important role in the global climate system by influencing the Earth radiative balance and by providing a surface for heterogeneous chemistry. The accurate modeling of the shape and characteristics of the stratospheric aerosol layer requires the knowledge of their microphysical properties and the atmospheric distribution of their tropospheric precursor gases (SO2, OCS). The background aerosol distribution in the stratosphere may be sporadically perturbed for a time period of about five years after major explosive volcanic eruptions, that may inject in the stratosphere large amounts of SO2 and H2S. The most extensive coverage of the stratospheric aerosol distribution has been made using instruments on board of satellites (SAGE and HALOE in particular). Here we compare the distribution of stratospheric aerosols calculated by five global models with aerosol modules on-line against satellite observations. The results of two 3-D models (MPI and ULAQ) and three 2-D models (AER, LASP, UPMC) are used for this comparison, for both non-volcanic and volcanically perturbed conditions. The comparison is made in terms of aerosol extinction and optical depth: these are calculated using Mie scattering programs where the model calculated aerosol mass distribution is used as input as a function of the particle radius. The size distribution calculated in the models is the final product of

  11. Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements

    NASA Astrophysics Data System (ADS)

    Quijano, Ana Lía; Sokolik, Irina N.; Toon, Owen B.

    2000-11-01

    We investigate the importance of the layered vertical distribution of absorbing and non-absorbing tropospheric aerosols for the retrieval of the aerosol optical depth from satellite radiances measured at visible wavelengths at a single viewing angle. We employ lidar and in-situ measurements of aerosol extinction coefficients and optical depths to model radiances which would have been observed by a satellite. Then, we determine the aerosol optical depth that would produce the observed radiance under various sets of assumptions which are often used in current retrieval algorithms. We demonstrate that, in the presence of dust or other absorbing aerosols, the retrieved aerosol optical depth can underestimate or overestimate the observed optical depth by a factor of two or more depending on the choice of an aerosol optical model and the relative position of different aerosol layers. The presence of undetected clouds provides a further complication.

  12. Aerosol Optical Depth Measurements in the Southern Ocean Within the Framework of Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sayer, A. M.; Sakerin, S. M.; Radionov, V. F.; Courcoux, Y.; Broccardo, S. P.; Evangelista, H.; Croot, P. L.; Disterhoft, P.; Piketh, S.; Milinevsky, G. P.; O'Neill, N. T.; Slutsker, I.; Giles, D. M.

    2013-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. The Maritime Aerosol Network (MAN) as a component of AERONET has been collecting aerosol optical depth data over the oceans since 2006. A significant progress has been made in data acquisition over areas that previously had very little or no coverage. Data collection included intensive study areas in the Southern Ocean and off the coast of Antarctica including a number of circumnavigation cruises in high southern latitudes. It made an important contribution to MAN and provided a valuable reference point in atmospheric aerosol optical studies. The paper presents results of this international and multi-agency effort in studying aerosol optical properties over Southern Ocean and adjacent areas. The ship-borne aerosol optical depth measurements offer an excellent opportunity for comparison with global aerosol transport models, satellite retrievals and provide useful information on aerosol distribution over the World Ocean. A public domain web-based database dedicated to the MAN activity can be found at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html.

  13. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season

    NASA Astrophysics Data System (ADS)

    Peers, F.; Bellouin, N.; Waquet, F.; Ducos, F.; Goloub, P.; Mollard, J.; Myhre, G.; Skeie, R. B.; Takemura, T.; Tanré, D.; Thieuleux, F.; Zhang, K.

    2016-04-01

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in five Aerosol Comparisons between Observations and Models (Goddard Chemistry Aerosol Radiation and Transport (GOCART), Hadley Centre Global Environmental Model 3 (HadGEM3), European Centre Hamburg Model 5-Hamburg Aerosol Module 2 (ECHAM5-HAM2), Oslo-Chemical Transport Model 2 (OsloCTM2), and Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations.

  14. Comparison of Four Ground-Level PM2.5 Estimation Models Using PARASOL Aerosol Optical Depth Data from China.

    PubMed

    Guo, Hong; Cheng, Tianhai; Gu, Xingfa; Chen, Hao; Wang, Ying; Zheng, Fengjie; Xiang, Kunshen

    2016-02-01

    Satellite remote sensing is of considerable importance for estimating ground-level PM2.5 concentrations to support environmental agencies monitoring air quality. However, most current studies have focused mainly on the application of MODIS aerosol optical depth (AOD) to predict PM2.5 concentrations, while PARASOL AOD, which is sensitive to fine-mode aerosols over land surfaces, has received little attention. In this study, we compared a linear regression model, a quadratic regression model, a power regression model and a logarithmic regression model, which were developed using PARASOL level 2 AOD collected in China from 18 January 2013 to 10 October 2013. We obtained R (correlation coefficient) values of 0.64, 0.63, 0.62, and 0.57 for the four models when they were cross validated with the observed values. Furthermore, after all the data were classified into six levels according to the Air Quality Index (AQI), a low level of statistical significance between the four empirical models was found when the ground-level PM2.5 concentrations were greater than 75 μg/m³. The maximum R value was 0.44 (for the logarithmic regression model and the power model), and the minimum R value was 0.28 (for the logarithmic regression model and the power model) when the PM2.5 concentrations were less than 75 μg/m³. We also discussed uncertainty sources and possible improvements. PMID:26840329

  15. Comparison of Four Ground-Level PM2.5 Estimation Models Using PARASOL Aerosol Optical Depth Data from China

    PubMed Central

    Guo, Hong; Cheng, Tianhai; Gu, Xingfa; Chen, Hao; Wang, Ying; Zheng, Fengjie; Xiang, Kunshen

    2016-01-01

    Satellite remote sensing is of considerable importance for estimating ground-level PM2.5 concentrations to support environmental agencies monitoring air quality. However, most current studies have focused mainly on the application of MODIS aerosol optical depth (AOD) to predict PM2.5 concentrations, while PARASOL AOD, which is sensitive to fine-mode aerosols over land surfaces, has received little attention. In this study, we compared a linear regression model, a quadratic regression model, a power regression model and a logarithmic regression model, which were developed using PARASOL level 2 AOD collected in China from 18 January 2013 to 10 October 2013. We obtained R (correlation coefficient) values of 0.64, 0.63, 0.62, and 0.57 for the four models when they were cross validated with the observed values. Furthermore, after all the data were classified into six levels according to the Air Quality Index (AQI), a low level of statistical significance between the four empirical models was found when the ground-level PM2.5 concentrations were greater than 75 μg/m3. The maximum R value was 0.44 (for the logarithmic regression model and the power model), and the minimum R value was 0.28 (for the logarithmic regression model and the power model) when the PM2.5 concentrations were less than 75 μg/m3. We also discussed uncertainty sources and possible improvements. PMID:26840329

  16. Assessment of the aerosol optics component of the coupled WRF-CMAQ model using CARES field campaign data and a single column model

    NASA Astrophysics Data System (ADS)

    Gan, Chuen Meei; Binkowski, Francis; Pleim, Jonathan; Xing, Jia; Wong, David; Mathur, Rohit; Gilliam, Robert

    2015-08-01

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) - Community Multiscale Air Quality (CMAQ) model. This campaign included comprehensive measurements of aerosol composition and optical properties at two ground sites and aloft from instrumentation on-board two aircraft. A single column model (SCM) was developed to evaluate the accuracy and consistency of the coupled model using both observation and model information. Two cases (June 14 and 24, 2010) are examined in this study. The results show that though the coupled WRF-CMAQ estimates of aerosol extinction were underestimated relative to these measurements, when measured concentrations and characteristics of ambient aerosols were used as input to constrain the SCM calculations, the estimated extinction profiles agreed well with aircraft observations. One of the possible causes of the WRF-CMAQ extinction errors is that the simulated sea-salt (SS) in the accumulation mode in WRF-CMAQ is very low in both cases while the observations indicate a considerable amount of SS. Also, a significant amount of organic carbon (OC) is present in the measurement. However, in the current WRF-CMAQ model all OC is considered to be insoluble whereas most secondary organic aerosol is water soluble. In addition, the model does not consider external mixing and hygroscopic effects of water soluble OC which can impact the extinction calculations. In conclusion, the constrained SCM results indicate that the scattering portion of the aerosol optics calculations is working well, although the absorption calculation could not be effectively evaluated. However, a few factors such as greatly underestimated accumulation mode SS, misrepresentation of water soluble OC, and incomplete mixing state representation in the full coupled model

  17. Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Kalashnikova, Olga V.; Suzuki, Kentaroh; Braverman, Amy; Garay, Michael J.; Kahn, Ralph A.

    2016-06-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skewnesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  18. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  19. Climatology of the aerosol optical depth by components from the Multiangle Imaging SpectroRadiometer (MISR) and a high-resolution chemistry transport model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kalashnikova, O. V.; Suzuki, K.; Braverman, A.; Garay, M. J.; Kahn, R. A.

    2015-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product provides a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month between March 2000 and the present. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: non-absorbing, absorbing, and non-spherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skewnesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from the SPectral RadIatioN-TrAnSport (SPRINTARS) model, a chemistry transport model (CTM) with very high spatial and temporal resolution. Overall, the AOD distributions of combined MISR aerosol types show good agreement with those from SPRINTARS. Marginal distributions of AOD for each aerosol type in both MISR and SPRINTARS show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  20. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  1. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  2. Background stratospheric aerosol reference model

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Wang, Pi-Huan

    Nearly global SAGE I satellite observations in the nonvolcanic period from March 1979 to February 1980 are used to produce a reference background stratospheric aerosol optical model. Zonally average profiles of the 1.0-micron aerosol extinction for the tropics, midlatitudes, and high latitudes for both hemispheres are given in graphical and tabulated form for the different seasons. A third order polynomial fit to the vertical profile data set is used to derive analytic expressions for the seasonal global means and the yearly global mean. The results have application to the simulation of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  3. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  4. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  5. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    NASA Technical Reports Server (NTRS)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  6. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  7. Nonlinear optical studies of terpene-functionalized silica and its interactions with ozone as models for tropospheric aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Stokes, G. Y.; Buchbinder, A. M.; Gibbs-Davis, J. M.; Scheidt, K. A.; Geiger, F. M.

    2008-12-01

    Terpenes emitted from vegetation can become oxidized and form molecular films on tropospheric aerosols. These greasy olefinic coatings can be oxidized by ozone and may influence the microphysics of cloud formation and the earth's climate. Using a laboratory approach that combines organic synthesis with nonlinear optical spectroscopy, we utilized vibrational broadband sum frequency generation (SFG) to survey a number of terpene-modified glass surfaces and track their interactions with ozone in real time. Exposure of these surfaces to tropospherically relevant amounts of ozone at 1 atm total pressure and 296 K yield initial reactive uptake coefficients that are significantly higher than those measured in corresponding gas phase reactions and correlate with the accessibility of the C=C double bonds at the surface. The intensity changes in the olefinic =C-H stretch and aliphatic C-H stretching region of surface vibrational spectra were used to characterize surface-bound product species. Combined with a histogram analysis of contact angle measurements carried out before and after ozonolysis, our kinetic and spectroscopic studies suggest a reaction pathway involving vibrationally hot Criegee intermediates that strongly compete with pathways that involve thermalized surface species, a chemical insight which may help reduce uncertainties associated with aerosols when included in global climate change models.

  8. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  9. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. PMID:26925737

  10. The Use of Satellite-Measured Aerosol Optical Depth to Constrain Biomass Burning Emissions Source Strength in the GOCART Model

    NASA Astrophysics Data System (ADS)

    Petrenko, M. M.; Kahn, R. A.; Chin, M.; Kucsera, T.; Soja, A. J.; Harshvardhan, D.

    2012-12-01

    Simulations of biomass burning (BB) emissions in chemistry transport models strongly depend on the inventories that define emission source location and strength. We compare snapshots of aerosol optical depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) for 124 fire events occurring between 2006 and 2007 with AOD simulate by the GOCART model in 13 runs using different BB emission options, exposing regional biases of each emission option. The BB emissions input into the Goddard Chemistry Aerosol Radiation and Transport (GOCART) include the widely used Global Fire Emission Database (GFED) monthly and daily versions, Fire Radiative Power (FRP)-based Quick Fire Emission Dataset QFED, and 11 calculated emissions from different combinations of burned area based on the MODIS products, effective fuel load, and species emission factors. MODIS AOD snapshots for 124 globally distributed fire events serve as instantaneous constraint to the strength of the BB sources in the model. Even though globally GOCART average fire AOD values compare best to MODIS-measured AOD when the daily GFED inventory is used as input to GOCART, the regional performance of each inventory is essential when evaluating BB emissions. Even though GFED-based emission options provide the lowest emissions in the tropics, GFED-based GOCART AOD compares best with MODIS AOD in tropical cases. Fire-counts-based emission options give the largest emission estimates in the boreal regions, and the model performs best at higher latitudes with these inputs when compared to MODIS. Comparison of total annual BB emissions by all inventories suggests that burned area estimates are usually the largest source of disagreement. It is also shown that the quantitative relationship between BB aerosol emission rate and model-simulated AOD is related to the horizontal plume dispersion, which can be approximated by the wind speed in the planetary boundary layer in most cases. Thus, given average wind speed of the

  11. Aerosol Optical Depth over Europe: Evaluation of the CALIOPE air quality modelling system with direct-sun AERONET observations

    NASA Astrophysics Data System (ADS)

    Basart, Sara; Pay, María. Teresa; Pérez, Carlos; Cuevas, Emilio; Jorba, Oriol; Piot, Matthias; María Baldasano, Jose

    2010-05-01

    In the frame of the CALIOPE project (Baldasano et al., 2008), the Barcelona Supercomputing Center (BSC-CNS) currently operates a high-resolution air quality forecasting system based on daily photochemical forecasts in Europe (12km x 12km resolution) with the WRF-ARW/HERMES/CMAQ modelling system (http://www.bsc.es/caliope) and desert dust forecasts over Southern Europe with BSC-DREAM8b (Pérez et al., 2006; http://www.bsc.es/projects/earthscience/DREAM). High resolution simulations and forecasts are possible through their implementation on MareNostrum supercomputer at BSC-CNS. As shown in previous air quality studies (e.g. Rodríguez et al., 2001; Jiménez-Guerrero et al., 2008), the contribution of desert dust on particulate matter levels in Southern Europe is remarkable due to its proximity to African desert dust sources. When considering only anthropogenic emissions (Baldasano et al., 2008) and the current knowledge about aerosol physics and chemistry, chemistry-transport model simulations underestimate the PM10 concentrations by 30-50%. As a first approach, the natural dust contribution from BSC-DREAM8b is on-line added to the anthropogenic aerosol output of CMAQ. The aim of the present work is the quantitative evaluation of the WRF-ARW/HERMES/ CMAQ/BSC-DREAM8b forecast system to simulate the Aerosol Optical Depth (AOD) over Europe. The performance of the modelled AOD has been quantitatively evaluated with discrete and categorical (skill scores) statistics by a comparison to direct-sun AERONET observations for 2004. The contribution of different types of aerosols will be analyzed by means of the O'Neill fine mode AOD products (O'Neill et al., 2001). A previous aerosol characterization of AERONET data was performed (Basart et al., 2009) in order to discriminate the different aerosol source contributions within the study region. The results indicate a remarkable improvement in the discrete and skill-scores evaluation (accuracy, critical success index and

  12. Aerosol optical properties of the free troposphere: Tropospheric backscatter climatology

    NASA Astrophysics Data System (ADS)

    Rosen, James M.

    1994-12-01

    A unique ensemble of aerosol sensors (backscattersondes, nephelometers and particle counters) has been assembled during the course of this research to obtain new measurements relating to the optical properties of aerosols in the atmosphere, especially in the free troposphere. A knowledge of the aerosol extinction-to-backscatter ratio has been greatly enhanced as a result of this project and the inference of representative values along with the range of variation is now possible. Agreement between the optical model results and actual measurements appears to be quite satisfactory. An initial climatology of aerosol backscatter in the free troposphere has been developed and is in general agreement with results and inferences from global remote sensing instruments. However, the data from remote sensors may indicate a larger influence of volcanic aerosols on the upper troposphere than actually exists. Further work with high resolution soundings is needed to fully resolve this issue.

  13. Aerosol optical thickness measurements during FIFE '89

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Bruegge, Carol J.; Markham, Brian L.

    1990-01-01

    The measurements used for correction and calibration are presented which permit the estimation of atmospheric effects on reflected and transmitted solar radiation. Four sun-photometers are calibrated and used to derive aerosol optical thicknesses that agree with expected uncertainties, and lower values and higher values are associated with cool dry northerly flows and warm humid southerly flows, respectively. The rapid increase in the vertical aerosol optical thickness after sunrise is related to the growth of the mixing layer which can be inferred from the 2D maps of the instantaneous aerosol number densities.

  14. A novel approach for the characterisation of transport and optical properties of aerosol particles near sources - Part II: Microphysics-chemistry-transport model development and application

    NASA Astrophysics Data System (ADS)

    Valdebenito B, Álvaro M.; Pal, Sandip; Behrendt, Andreas; Wulfmeyer, Volker; Lammel, Gerhard

    2011-06-01

    A new high-resolution microphysics-chemistry-transport model (LES-AOP) was developed and applied for the investigation of aerosol transformation and transport in the vicinity of a livestock facility in northern Germany (PLUS1 field campaign). The model is an extension of a Large-Eddy Simulation (LES) model. The PLUS1 field campaign included the first deployment of the new eye-safe scanning aerosol lidar system of the University of Hohenheim. In a combined approach, model and lidar results were used to characterise a faint aerosol source. The farm plume structure was investigated and the absolute value of its particle backscatter coefficient was determined. Aerosol optical properties were predicted on spatial and temporal resolutions below 100 m and 1 min, upon initialisation by measured meteorological and size-resolved particulate matter mass concentration and composition data. Faint aerosol plumes corresponding to a particle backscatter coefficient down to 10 -6 sr -1 m -1 were measured and realistically simulated. Budget-related quantities such as the emission flux and change of the particulate matter mass, were estimated from model results and ground measurements.

  15. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  16. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  17. Modeling of the mineral contribution of dust to PM10 directly from the measurements of VIIRS Aerosol Optical Thickness

    NASA Astrophysics Data System (ADS)

    Albina, D. T.

    2015-12-01

    Northern Africa is well known as the largest producing region of dust, which is transported across the Atlantic to the Caribbean, under specific weather conditions. Saharan dust was observed, over the Caribbean Basin, to try to determine the roles they may play in human health, and in the fertilization of Amazon Forest. Scientists have not only used the satellite sensors MODIS and VIIRS to measure the volume of dust that makes this trans-Atlantic journey, but also the AERONET network of photometers, and PM10 Suspended Particulate Matter. We have successfully compared and shown a high correlation between the measurements from VIIRS aerosol optical thickness (AOT) and PM10 so that to be able to determine an accurate modeling of the mineral contribution of dust to PM10 directly from the measurements of VIIRS. The aim of this work is to show that it is possible to accurately forecast the daily mean concentration of PM10 using linear regression models. In this way, countries of the Caribbean region which cannot afford Particle Sensor for Pm10 will be able to have a precise idea of the PM10 daily forecast upon there region.

  18. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  19. Inhomogeneous models of Titan's aerosol distribution

    NASA Technical Reports Server (NTRS)

    Podolak, M.; Bar-Nun, A.; Noy, N.; Giver, L. P.

    1984-01-01

    A model of Titan's aerosol is presented which allows the particle size to vary with height. The model assumes a refractive index appropriate to an ethylene polymer and a mass flux independent of height equal to the value derived from laboratory measurements. The free parameters of the model are determined by fitting to the observed geometric albedo at 4000 and 6000 A. A methane spectrum is derived which is in excellent agreement with observations. An aerosol optical depth of about 5 is found in the visible, with the particle radius varying from 0.01 to 8 microns. The presence of an optically thick methane cloud at the temperature minimum is indicated.

  20. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  1. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  2. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  3. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  4. Modeling the Optical Properties of Biomass Burning Aerosols: Young Smoke Aerosols From Savanna Fires and Comparisons to Observations from SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Matichuk, R. I.; Smith, J. A.; Toon, O. B.; Colarso, P. R.

    2006-01-01

    Annually, farmers in southern Africa manage their land resources and prepare their fields for cultivation by burning crop residual debris, with a peak in the burning season occurring during August and September. The emissions from these fires in southern Africa are among the greatest from fires worldwide, and the gases and aerosol particles produced adversely affect air quality large distances from their source regions, and can even be tracked in satellite imagery as they cross the Atlantic and Pacific Ocean basins. During August and September 2000 an international group of researchers participating in the Southern African Regional Science Initiate field experiment (SAFARI 2000) made extensive ground-based, airborne, and satellite measurements of these gases and aerosols in order to quantify their amounts and effects on Earth's atmosphere. In this study we interpreted the measurements of smoke aerosol particles made during SAFARI 2000 in order to better represent these particles in a numerical model simulating their transport and fate. Typically, smoke aerosols emitted from fires are concentrated by mass in particles about 0.3 micrometers in diameter (1,000,000 micrometers = 1 meter, about 3 feet); for comparison, the thickness of a human hair is about 50 micrometers, almost 200 times as great. Because of the size of these particles, at the surface they can be easily inhaled into the lungs, and in high concentrations have deleterious health effects on humans. Additionally, these particles reflect and absorb sunlight, impacting both visibility and the balance of sunlight reaching -Earth's surface, and ultimately play a role in modulating Earth's climate. Because of these important effects, it is important that numerical models used to estimate Earth's climate response to changes in atmospheric composition accurately represent the quantity and evolution of smoke particles. In our model, called the Community Aerosol and Radiation Model for Atmospheres (CARMA) we used

  5. Optical Characterization of Metallic Aerosols

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Lin, Bing

    2005-01-01

    Airborne metallic particulates from industry and urban sources are highly conducting aerosols. The characterization of these pollutant particles is important for environment monitoring and protection. Because these metallic particulates are highly reflective, their effect on local weather or regional radiation budget may also need to be studied. In this work, light scattering characteristics of these metallic aerosols are studied using exact solutions on perfectly conducting spherical and cylindrical particles. It is found that for perfectly conducting spheres and cylinders, when scattering angle is larger than approx. 90 deg. the linear polarization degree of the scattered light is very close to zero. This light scattering characteristics of perfectly conducting particles is significantly different from that of other aerosols. When these perfectly conducting particles are immersed in an absorbing medium, this light scattering characteristics does not show significant change. Therefore, measuring the linear polarization of scattered lights at backward scattering angles can detect and distinguish metallic particulates from other aerosols. This result provides a great potential of metallic aerosol detection and monitoring for environmental protection.

  6. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  7. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  8. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  9. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  10. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  11. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  12. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  13. Sensitivity of a radiative transfer model to the uncertainty in the aerosol optical depth used as input

    NASA Astrophysics Data System (ADS)

    Román, Roberto; Bilbao, Julia; de Miguel, Argimiro; Pérez-Burgos, Ana

    2014-05-01

    The radiative transfer models can be used to obtain solar radiative quantities in the Earth surface as the erythemal ultraviolet (UVER) irradiance, which is the spectral irradiance weighted with the erythemal (sunburn) action spectrum, and the total shortwave irradiance (SW; 305-2,8000 nm). Aerosol and atmospheric properties are necessary as inputs in the model in order to calculate the UVER and SW irradiances under cloudless conditions, however the uncertainty in these inputs causes another uncertainty in the simulations. The objective of this work is to quantify the uncertainty in UVER and SW simulations generated by the aerosol optical depth (AOD) uncertainty. The data from different satellite retrievals were downloaded at nine Spanish places located in the Iberian Peninsula: Total ozone column from different databases, spectral surface albedo and water vapour column from MODIS instrument, AOD at 443 nm and Angström Exponent (between 443 nm and 670 nm) from MISR instrument onboard Terra satellite, single scattering albedo from OMI instrument onboard Aura satellite. The obtained AOD at 443 nm data from MISR were compared with AERONET measurements in six Spanish sites finding an uncertainty in the AOD from MISR of 0.074. In this work the radiative transfer model UVSPEC/Libradtran (1.7 version) was used to obtain the SW and UVER irradiance under cloudless conditions for each month and for different solar zenith angles (SZA) in the nine mentioned locations. The inputs used for these simulations were monthly climatology tables obtained with the available data in each location. Once obtained the UVER and SW simulations, they were repeated twice but changing the AOD monthly values by the same AOD plus/minus its uncertainty. The maximum difference between the irradiance run with AOD and the irradiance run with AOD plus/minus its uncertainty was calculated for each month, SZA, and location. This difference was considered as the uncertainty on the model caused by the AOD

  14. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans.

    PubMed

    Ahmad, Ziauddin; Franz, Bryan A; McClain, Charles R; Kwiatkowska, Ewa J; Werdell, Jeremy; Shettle, Eric P; Holben, Brent N

    2010-10-10

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFS and MODIS sensors, including aerosol optical thickness (τ), angstrom coefficient (α), and water-leaving radiance (L(w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity. These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity. From these findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%, and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all, 80 distributions (8 Rh×10 fine-mode fractions) were created to process the satellite data. We also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of the fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data. The reprocessing of the SeaWiFS data show that, over deep ocean, the average τ(865) values retrieved from the new aerosol models was 0.100±0.004, which was closer to the average AERONET value of 0.086±0.066 for τ(870) for the eight open-ocean sites used in this study. The average τ(865) value from the old models was 0.131±0.005. The comparison of monthly mean aerosol optical thickness retrieved from the SeaWiFS sensor with AERONET data over Bermuda and

  15. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  16. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  17. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  18. Optical Properties of Black and Brown Carbon Aerosols from Laboratory Combustion of Wildland Fuels

    NASA Astrophysics Data System (ADS)

    Beres, N. D.; Molzan, J.

    2015-12-01

    Aerosol light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct aerosol radiative forcing, which is determined by aerosol single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of aerosol direct radiative forcing; that is, does the aerosol make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of aerosol optical depth and properties. During wildland fires, aerosol optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the red and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning aerosol optical properties is described. It utilizes a laboratory biomass combustion chamber to generate aerosols through combustion of different wildland fuels of global and regional importance. Combustion aerosol optics is characterized with an integrating nephelometer to measure aerosol light scattering and a photoacoustic instrument to measure aerosol light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of aerosol radiative forcing and satellite retrievals for absorbing carbonaceous aerosols from combustion of wildland fuels.

  19. Aerosol deposition for optical and electroceramic applications

    NASA Astrophysics Data System (ADS)

    Wei, Chih-Hung

    1997-09-01

    A new technique for the fabrication of substrates for optical planar waveguides, fiber optics, and thin films of electroceramic capacitors has been developed. We dope multi-component elements (Si, Ge, B, Al, Na, Ga, Zn, P, and rare earths) into glass waveguide on the Si wafers. Pyrex (SiOsb2-Bsb2Osb3-Alsb2Osb3-Nasb2O, n = 1.4696) based glasses are very promising candidates for rare-earth doped host, in particular Er, to improve their lasing performances. All efforts have indicated that multi-component glasses of low temperature up to 1050sp°C compared to conventional sintering temperature from 1200-1300sp°C and near-matched thermal expansion coefficient to Si wafer can be fabricated by this process. The electric field enhanced aerosol deposition with MCVD process has successfully fabricated rare earth doped fiber lasers and amplifiers with sol-gel solution, aqueous solution and halide vapor phase with aqueous solution to produce efficiently aerosol precursors. The different solution preparations methods are promised to be applicable for all of different demands of fiber optics. We have demonstrated a feasible method to easily synthesize thin film (10-100mum thickness) of high purity and single phase of (BaSr)TiOsb3 by aerosol combustion using liquid sol as a precursor. The capacitance and dielectric constant have been measured from some of samples. The high ratio of the perovskite structure of Pb(Mgsb{1/3}Nbsb{2/3})Osb3\\ and\\ Pb(Mgsb{1/3}Nbsb{2/3})Osb3-BaTiOsb3 system on the Pt/Ti/SiO2/Si substrates by aerosol combustion using sol-gel solution can be achieved. It offers a valuable starting point for further research using the aerosol technique to develop PMN-BT system on the different conducting substrates.

  20. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    NASA Astrophysics Data System (ADS)

    Hungershoefer, K.; Zeromskiene, K.; Iinuma, Y.; Helas, G.; Trentmann, J.; Trautmann, T.; Parmar, R. S.; Wiedensohler, A.; Andreae, M. O.; Schmid, O.

    2008-07-01

    A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU) project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g-1 and 9.3±0.3 m2 g-1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa), respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g-1 and 0.50±0.02 m2 g-1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60-0.010i (savanna grass) and 1.56-0.010i (musasa) (λ=0.55 μm). The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa) fractions (8 to 15%) obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.

  1. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  2. Retrieval of aerosol optical properties over land using PMAp

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Lang, Ruediger; Poli, Gabriele; Holdak, Andriy

    2015-04-01

    The retrieval of aerosol optical properties is an important task for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolutions for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) is delivered as operational GOME product to our customers. The algorithms retrieve aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The next releases of PMAp will provide an extended set of aerosol and cloud properties which include AOD over land and an improved volcanic ash retrieval combining AVHRR and IASI. This presentation gives an overview on the existing product and the prototypes in development. The major focus is the discussion of the AOD retrieval over land implemented in the upcoming PMAp2 release. In addition, the results of our current validation studies (e.g. comparisons to AERONET, other satellite platforms and model data) are shown.

  3. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    SciTech Connect

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations.

  4. HETEAC: The Aerosol Classification Model for EarthCARE

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Engelmann, Ronny; Hünerbein, Anja; Horn, Stefan; Kanitz, Thomas; Donovan, David; van Zadelhoff, Gerd-Jan; Daou, David; Fischer, Jürgen; von Bismarck, Jonas; Filipitsch, Florian; Docter, Nicole; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2016-06-01

    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties.

  5. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  6. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  7. Aerosol Optical Depth Determinations for BOREAS

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)

    1994-01-01

    Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10

  8. Estimation of aerosol optical properties considering hygroscopicity and light absorption

    NASA Astrophysics Data System (ADS)

    Jung, Chang Hoon; Lee, Ji Yi; Kim, Yong Pyo

    2015-03-01

    In this study, the influences of water solubility and light absorption on the optical properties of organic aerosols were investigated. A size-resolved model for calculating optical properties was developed by combining thermodynamic hygroscopic growth and aerosol dynamics models. The internal mixtures based on the homogeneous and core-shell mixing were compared. The results showed that the radiative forcing (RF) of Water Soluble Organic Carbon (WSOC) aerosol can be estimated to range from -0.07 to -0.49 W/m2 for core-shell mixing and from -0.09 to -0.47 W/m2 for homogeneous mixing under the simulation conditions (RH = 60%). The light absorption properties of WSOC showed the mass absorption efficiency (MAE) of WSOC can be estimated 0.43-0.5 m2/g, which accounts for 5-10% of the MAE of elemental carbon (EC). The effect on MAE of increasing the imaginary refractive index of WSOC was also calculated, and it was found that increasing the imaginary refractive index by 0.001i enhanced WSOC aerosol absorption by approximately 0.02 m2/g. Finally, the sensitivity test results revealed that changes in the fine mode fraction (FMF) and in the geometric mean diameter of the accumulation mode play important roles in estimating RF during hygroscopic growth.

  9. If I know the aerosol compositional model identifier, how can I get information about the corresponding aerosol model?

    Atmospheric Science Data Center

    2014-12-08

    ... Climatology Product (MIANACP) which contains the Aerosol Physical and Optical Properties (APOP) and the Mixture files. The Mixture file lists the pure particles in each model identifier. The APOP then gives the detailed information for the pure ...

  10. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  11. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  12. Dye lasing in optically manipulated liquid aerosols

    NASA Astrophysics Data System (ADS)

    Karadag, Yasin; Aas, Mehdi; Jonáš, Alexandr; Anand, Suman; McGloin, David; Kiraz, Alper

    2013-09-01

    We present dye lasing from optically manipulated glycerol-water aerosols with diameters ranging between 7.7 and 11.0 μm confined in optical tweezers. While being optically trapped near the focal point of an infrared laser, the droplets stained with Rhodamine B were pumped with a Q-switched green laser and their fluorescence emission spectra featuring whispering gallery modes (WGMs) were recorded with a spectrograph. Nonlinear dependence of the intensity of the droplet WGMs on the pump laser fluence indicates dye lasing. The average wavelength of the lasing WGMs could be tuned between 600 and 630 nm by adjusting the droplet size. These results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium.

  13. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  14. The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART

    NASA Astrophysics Data System (ADS)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Soja, Amber; Kucsera, Tom; Harshvardhan, null

    2012-09-01

    Simulations of biomass burning (BB) emissions in chemistry transport models strongly depend on the inventories that define emission source location and strength. We use 13 global biomass burning emission estimates, including the widely used Global Fire Emission Database (GFED) monthly and daily versions, Fire Radiative Power (FRP)-based Quick Fire Emission Data set QFED, and 11 calculated emissions from different combinations of burned area based on the Moderate Resolution Imaging Spectroradiometer (MODIS) products, effective fuel load, and species emission factors as alternative inputs to the global Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The resultant simulated aerosol optical depth (AOD) and its spatial distribution are compared to AOD snapshots measured by the MODIS instrument for 124 fire events occurring between 2006 and 2007. This comparison exposes the regional biases of each emission option. GOCART average fire AOD values compare best to MODIS-measured AOD when the daily GFED inventory is used as input to GOCART. Even though GFED-based emission options provide the lowest emissions in the tropics, GFED-based GOCART AOD compares best with MODIS AOD in tropical cases. Fire-counts-based emission options give the largest emission estimates in the boreal regions, and the model performs best at higher latitudes with these inputs when compared to MODIS. Comparison of total annual BB emissions by all inventories suggests that burned area estimates are usually the largest source of disagreement. It is also shown that the quantitative relationship between BB aerosol emission rate and model-simulated AOD is related to the horizontal plume dispersion, which can be approximated by the wind speed in the planetary boundary layer in most cases. Thus, given average wind speed of the smoke plume environment, MODIS-measured AOD can provide a constraint to the strength of BB sources at the level of individual plumes.

  15. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N. L.; Anderson, B. E.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M.; Middlebrook, A. M.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Welti, A.; Ziemba, L. D.; Murphy, D. M.

    2015-11-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013. Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation of these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ~ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental airmasses in which an accumulation mode between 0.1-0.5 μm diameter dominates aerosol extinction.

  16. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Welti, Andre; Ziemba, Luke D.; Murphy, Daniel M.

    2016-04-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US). Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ˜ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1-0.5 µm diameter dominates aerosol extinction.

  17. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble

  18. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  19. THEMIS Observations of Atmospheric Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.; Richardson, Mark I.

    2003-01-01

    The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking began mapping in February 2002 (approximately Ls=330 deg.). Images taken by the Thermal Emission Imaging System (THEMIS) on-board the Odyssey spacecraft allow the quantitative retrieval of atmospheric dust and water-ice aerosol optical depth. Atmospheric quantities retrieved from THEMIS build upon existing datasets returned by Mariner 9, Viking, and Mars Global Surveyor (MGS). Data from THEMIS complements the concurrent MGS Thermal Emission Spectrometer (TES) data by offering a later local time (approx. 2:00 for TES vs. approx. 4:00 - 5:30 for THEMIS) and much higher spatial resolution.

  20. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    NASA Astrophysics Data System (ADS)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  1. Aerosol Climate Interactions in Climate System Models

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2002-12-01

    Aerosols are widely recognized as an important process in Earth's climate system. Observations over the past decade have improved our understanding of the physical and chemical properties of aerosols. Recently, field observations have highlighted the pervasiveness of absorbing aerosols in the atmosphere. These aerosols are of particular interest, since they alter the vertical distribution of shortwave radiative heating between the surface and atmosphere. Given this increased knowledge of aerosols from various field programs, interest is focusing on how to integrate this understanding into global climate models. These types of models provide the best tool available to comprehensively study the potential effects of aerosols on Earth's climate system. Results from climate system model simulations that include aerosol effects will be presented to illustrate key aerosol climate interactions. These simulations employ idealized and realistic distributions of absorbing aerosols. The idealized aerosol simulations provide insight into the role of aerosol shortwave absorption on the global hydrologic cycle. The realistic aerosol distributions provide insight into the local response of aerosol forcing in the Indian subcontinent region. Emphasis from these simulations will be on the hydrologic cycle, since water availability is of emerging global environmental concern. This presentation will also consider what more is needed to significantly improve our ability to model aerosol processes in climate system models. Uncertainty in aerosol climate interactions remains a major source of uncertainty in our ability to project future climate change. Focus will be on interactions between aerosols and various physical, chemical and biogeochemical aspects of the Earth system.

  2. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...

  3. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  4. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  5. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  6. Improved retrieval of aerosol optical depth by satellite

    NASA Astrophysics Data System (ADS)

    Drury, Easan Evans

    Atmospheric aerosols are of major concern for public health and climate change, but their sources and atmospheric distributions remain poorly constrained. Satellite-borne radiometers offer a new constraint on aerosol sources and processes by providing global aerosol optical depth (AOD) retrievals. However, quantitative evaluation of chemical transport models (CTMs) with AOD products retrieved from satellite backscattered reflectances can be compromised by inconsistent assumptions of aerosol optical properties and errors in surface reflectance estimates. We present an improved AOD retrieval algorithm for the MODIS satellite instrument using locally derived surface reflectances and CTM aerosol optical properties. Assuming negligible atmospheric reflectance at 2.13 in cloud-free conditions, we derive 0.47/2.13 and 0.65/2.13 surface reflectance ratios at 1°x1.25° horizontal resolution for the continental United States in summer 2004 from the subset of top-of-atmosphere (TOA) reflectance data with minimal aerosol reflectance. We find higher ratios over arid regions than those assumed in the operational MODIS AOD retrieval algorithm, explaining the high AOD bias found in these regions. We simulate TOA reflectances for each MODIS scene using local aerosol optical properties from the GEOS-Chem CTM, and fit these reflectances to the observed MODIS TOA reflectances for a best estimate of AODs for each scene. Comparison with coincident ground-based (AERONET) AOD observations in the western and central United States during the summer of 2004 shows considerable improvement over the operational MODIS AOD products in this region. We find the AOD retrieval is more accurate at 0.47 than at 0.65 mum because of the higher signal to noise ratio, and that the correlation between MODIS and AERONET AODs improves as averaging time increases. We further improve the AOD retrieval method using an extensive ensemble of aircraft, ground-based, and satellite aerosol observations during the

  7. Stratospheric aerosol forcing for climate modeling: 1850-1978

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Luo, Beiping; Thomason, Larry; Vernier, Jean-Paul; Peter, Thomas

    2016-04-01

    We present here a stratospheric aerosol dataset produced using the available aerosol optical depth observations from the pre-satellite period. The scarce atmospheric observations are supplemented by additional information from an aerosol microphysical model, initialized by ice-core derived sulfur emissions. The model is used to derive extinctions at all altitudes, latitudes and times when sulfur injections are known for specific volcanic eruptions. The simulated extinction coefficients are then scaled to match the observed optical depths. In order to produce the complete optical properties at all wavelengths (and the aerosol surface area and volume densities) needed by climate models, we assume a lognormal size distribution of the aerosols. Correlations between the extinctions in the visible and the effective radius and distribution width parameters are taken from the better constrained SAGE II period. The aerosol number densities are then fitted to match the derived extinctions in the 1850-1978 period. From these aerosol size distributions, we then calculate extinction coefficients, single scattering albedos and asymmetry factors at all wavelengths using the Mie theory. The aerosol surface area densities and volume densities are also provided.

  8. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  9. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China.

    PubMed

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui; Liu, Chao

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol-radiation and aerosol-cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core-shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ±6% and ±14% for external mixture and ±9% and ±31% for core-shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. PMID:26851881

  10. Comparison of simulated and observed aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Laulainen, Nels; Ghan, Steven; Easter, Richard; Zaveri, Rahul

    2000-08-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). This paper focuses on comparisons of simulated and measured aerosol optical depth (AOD). When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated AOD agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for. Simulated AODs are low over sites in Brazil during the biomass burning season and over sites in central Canada during the wildfire season, which can be attributed to limitations in the organic and black carbon emissions data used by MIRAGE. The simulated AODs are mostly within a factor of two of satellite estimates, but MIRAGE simulates excessively high AODs off the east coast of the US and China, and too little dust off the coast of West Africa and in the Arabian Sea.

  11. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  12. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-11-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average of 2% precipitation decrease during the fire week. This study demonstrated that, even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  13. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-06-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average 2% precipitation decease during the fire week. This study demonstrated that even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  14. Numerical Modelling of Gelating Aerosols

    SciTech Connect

    Babovsky, Hans

    2008-09-01

    The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.

  15. Influence of shape on the optical properties of hematite aerosol

    NASA Astrophysics Data System (ADS)

    Veghte, Daniel P.; Moore, Justin E.; Jensen, Lasse; Freedman, Miriam Arak

    2015-07-01

    Mineral dust particles are the second highest emitted aerosol type by mass. Due to changes in particle size, composition, and shape that are caused by physical processes and reactive chemistry, optical properties vary during transport, contributing uncertainty in the calculation of radiative forcing. Hematite is the major absorbing species of mineral dust. In this study, we analyzed the extinction cross sections of nigrosin and hematite particles using cavity ring-down aerosol extinction spectroscopy (CRD-AES) and have measured particle shape and size distributions using transmission electron microscopy. Nigrosin was also used in this study as a spherical standard for absorbing particles. The size-selected nigrosin particles have a narrow size distribution, with extinction cross sections that are described by Mie theory. In contrast, the size distribution of size-selected hematite particles is more polydisperse. The extinction cross sections were modeled using Mie theory and the discrete dipole approximation (DDA). The DDA was used to model more complex shapes that account for the surface roughness and particle geometry. Of the four models used, Mie theory was the simplest to implement, but had significant error with a 26.1% difference from the CRD-AES results. By increasing the complexity of the models using the DDA, we determined that spheroids had a 14.7% difference, roughened spheres a 12.8% difference, and roughened spheroids a 11.2% difference from the experimental results. Using additional parameters that account for particle shape is necessary to model the optical properties of hematite particles and leads to improved extinction cross sections for modeling aerosol optical properties.

  16. Are Satellite-Retrieved Correlations Between Cloud-Top-Height and Aerosol Optical Depth Evidence of Aerosol Invigoration of Convection?

    NASA Astrophysics Data System (ADS)

    Stier, P.; Gryspeerdt, E.; Grandey, B. S.; Wagner, T. M.; Kipling, Z.

    2013-12-01

    A robust negative correlation between cloud top pressure (CTP) and aerosol optical depth (AOD) has been documented in a number of studies and triggered hypotheses on aerosol invigoration of convective clouds. However, correlation based analysis is limited in its explanatory power as it does not directly establish physical causality between the correlated properties which may be cross-correlated with other meteorological factors. In this study we combine the global aerosol-climate model ECHAM-HAM with mechanistic coupling of the aerosol microphysics (HAM) to the two-moment cloud microphysics in the Convective Cloud Field Model (CCFM) and satellite data from SEVIRI, MODIS, ISCCP, CALIOP and CloudSat. CCFM explicitly simulates a spectrum of convective cloud top heights within each grid box, providing enhanced realism over traditional mass flux schemes. Consistency is established through sampling of the models at satellite overpass times and the use of ISCCP and COSP satellite simulators in the model. We employ this setup to investigate the contributions of aerosol-cloud interactions and meteorological cross-correlations to AOD--CTP correlations. Our analysis shows that a significant fraction of the observed AOD-CTP relationship is driven by the meteorological link between CTP and cloud fraction (CF), which itself is strongly linked to AOD via the humidification of aerosol in humid (hence preferentially cloudy) environments. Our results shed light on this controversial issue with potentially significant climate implications and emphasise the difficulty to constrain for meteorological variability in observational studies of aerosol-cloud interactions.

  17. Study on distribution of aerosol optical depth in Chongqing urban area

    NASA Astrophysics Data System (ADS)

    Yang, Shiqi; Liu, Can; Gao, Yanghua

    2015-12-01

    This paper selected 6S (second simulation of the satellite signal in the solar spectrum) model with dark pixel method to inversion aerosol optical depth by MODIS data, and got the spatial distribution and the temporal distribution of Chongqing urban area. By comparing with the sun photometer and API data, the result showed that the inversion method can be used in aerosol optical thickness monitoring in Chongqing urban area.

  18. The spatial-temporal variations in optical properties of atmosphere aerosols over China and its application in remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, H.; Cheng, T.

    2013-12-01

    The atmospheric and climate response to the aerosol forcing are assessed by climate models regionally and globally under the past, present and future conditions. However, large uncertainties exist because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. Reduction in these uncertainties requires long-term monitoring of detailed properties of different aerosol types. China is one of the heavily polluted areas with high concentration of aerosols in the world. The complex source, composition of China aerosol led to the worse accuracy of aerosol radiative forcing assessment in the world, which urgently calls for improvements on the understanding of China regional aerosol properties. The spatial-temporal properties of aerosol types over China are studied using the radiance measurements and inversions data at 4 Aerosol Robotic Network (AERONET) stations. Five aerosol classes were identified including a coarse-size dominated aerosol type (presumably dust) and four fine-sized dominated aerosol types ranging from non-absorbing to highly absorbing fine aerosols. The mean optical properties of different aerosol types in China and their seasonal variations were also investigated. Based on the cluster analysis, the improved ground-based aerosol model is applied to the MODIS dark target inversion algorithm. Validation with MODIS official product and CE318 is also included.

  19. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  20. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  1. Quantifying the sensitivity of aerosol optical depths retrieved from MSG SEVIRI to a priori data

    NASA Astrophysics Data System (ADS)

    Bulgin, C. E.; Palmer, P. I.; Merchant, C. J.; Siddans, R.; Poulsen, C.; Grainger, R. G.; Thomas, G.; Carboni, E.; McConnell, C.; Highwood, E.

    2009-12-01

    Radiative forcing contributions from aerosol direct and indirect effects remain one of the most uncertain components of the climate system. Satellite observations of aerosol optical properties offer important constraints on atmospheric aerosols but their sensitivity to prior assumptions must be better characterized before they are used effectively to reduce uncertainty in aerosol radiative forcing. We assess the sensitivity of the Oxford-RAL Aerosol and Cloud (ORAC) optimal estimation retrieval of aerosol optical depth (AOD) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) to a priori aerosol data. SEVIRI is a geostationary satellite instrument centred over Africa and the neighbouring Atlantic Ocean, routinely sampling desert dust and biomass burning outflow from Africa. We quantify the uncertainty in SEVIRI AOD retrievals in the presence of desert dust by comparing retrievals that use prior information from the Optical Properties of Aerosol and Cloud (OPAC) database, with those that use measured aerosol properties during the Dust Outflow and Deposition to the Ocean (DODO) aircraft campaign (August, 2006). We also assess the sensitivity of retrieved AODs to changes in solar zenith angle, and the vertical profile of aerosol effective radius and extinction coefficient input into the retrieval forward model. Currently the ORAC retrieval scheme retrieves AODs for five aerosol types (desert dust, biomass burning, maritime, urban and continental) and chooses the most appropriate AOD based on the cost functions. We generate an improved prior aerosol speciation database for SEVIRI based on a statistical analysis of a Saharan Dust Index (SDI) determined using variances of different brightness temperatures, and organic and black carbon tracers from the GEOS-Chem chemistry transport model. This database is described as a function of season and time of day. We quantify the difference in AODs between those chosen based on prior information from the SDI and GEOS

  2. 3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim

    2007-01-01

    To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.

  3. Chromism of Model Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Rincon, Angela; Guzman, Marcelo; Hoffmann, Michael; Colussi, Agustin

    2008-03-01

    The optical properties of the atmospheric aerosol play a fundamental role in the Earth's radiative balance. Since more than half of the aerosol mass consists of complex organic matter that absorbs in the ultraviolet and visible regions of the spectrum, it is important to establish the identity of the organic chromophores. Here we report studies on the chromism vs. chemical composition of photolyzed (lambda longer than 305 nm) solutions of pyruvic acid, a widespread aerosol component, under a variety of experimental conditions that include substrate concentration, temperature and the presence of relevant spectator solutes, such ammonium sulfate. We use high resolution mass- and 13C NMR-spectrometries to track chemical speciation in photolyzed solutions as they undergo thermochromic and photobleaching cycles. Since the chemical identity of the components of these mixtures does not change in these cycles, in which photobleached solutions gradually recover their yellow color in the dark with non-conventional kinetics typical of aggregation processes, we infer that visible absorptions likely involve the intermolecular coupling of carbonyl chromophores in supramolecular assemblies made possible by the polyfunctional nature of the products of pyruvic acid photolysis.

  4. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  5. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  6. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  7. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  8. Optical Properties of Aerosols and Clouds: The Software Package OPAC.

    NASA Astrophysics Data System (ADS)

    Hess, M.; Koepke, P.; Schult, I.

    1998-05-01

    The software package OPAC (Optical Properties of Aerosols and Clouds) is described. It easily provides optical properties in the solar and terrestrial spectral range of atmospheric particulate matter. Microphysical and optical properties of six water clouds, three ice clouds, and 10 aerosol components, which are considered as typical cases, are stored as ASCII files. The optical properties are the extinction, scattering, and absorption coefficients, the single scattering albedo, the asymmetry parameter, and the phase function. They are calculated on the basis of the microphysical data (size distribution and spectral refractive index) under the assumption of spherical particles in case of aerosols and cloud droplets and assuming hexagonal columns in case of cirrus clouds. Data are given for up to 61 wavelengths between 0.25 and 40 m and up to eight values of the relative humidity. The software package also allows calculation of derived optical properties like mass extinction coefficients and Ångström coefficients.Real aerosol in the atmosphere always is a mixture of different components. Thus, in OPAC it is made possible to get optical properties of any mixtures of the basic components and to calculate optical depths on the base of exponential aerosol height profiles. Typical mixtures of aerosol components as well as typical height profiles are proposed as default values, but mixtures and profiles for the description of individual cases may also be achieved simply.

  9. Estimating PM2.5 in Xi'an, China using aerosol optical depth: a comparison between the MODIS and MISR retrieval models.

    PubMed

    You, Wei; Zang, Zengliang; Pan, Xiaobin; Zhang, Lifeng; Chen, Dan

    2015-02-01

    Satellite measurements have been widely used to estimate particulate matter (PM) on the ground, which can affect human health adversely. However, such estimation from space is susceptible to meteorological conditions and may result in large errors. In this study, we compared the aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) to predict ground-level PM2.5 concentration in Xi'an, Shaanxi province of northwestern China, using an empirical nonlinear model. Meteorological parameters from ground-based measurements and NCEP/NCAR reanalysis data were used as covariates in the model. Both MODIS and MISR AOD values were highly significant predictors of ground-level PM2.5 concentration. The MODIS and MISR models had overall comparable predictability of ground-level PM2.5 concentration and explained 67% and 72% of the daily PM2.5 concentration variation, respectively. Seasonal analysis showed that the MODIS and MISR models had overall comparable predictability of ground-level PM2.5 concentration, with the MISR model having a higher correlation coefficient (R) and thus giving a better fit in all seasons. The MISR model had high prediction accuracy in all seasons, with average R(2) and absolute percentage error (APE) of 0.84 and 15.3% in all four seasons, respectively. The prediction of the MODIS model was best during winter (R(2)=0.83) with an APE of 19%, whereas it was relatively poor in spring (R(2)=0.56) with an APE of 21%. Further analysis showed that there was a significant improvement in correlation coefficient when using the nonlinear multiple regression model compared to using a simple linear regression model of AOD and PM2.5. These results are useful for assessing surface PM2.5 concentration and monitoring regional air quality. PMID:25466686

  10. Review of models applicable to accident aerosols

    SciTech Connect

    Glissmeyer, J.A.

    1983-07-01

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  11. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  12. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  13. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  14. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  15. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  16. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  17. A 4-D climatology (1979-2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    NASA Astrophysics Data System (ADS)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-05-01

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multi-year database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, sea-salt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth-Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level-2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust

  18. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    NASA Technical Reports Server (NTRS)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-01-01

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust

  19. Aerosols in GEOS-5: simulations of the UV Aerosol Index and the Aerosol Absorption Optical Depth and comparisons with OMI retrievals.

    NASA Astrophysics Data System (ADS)

    Buchard-Marchant, Virginie; da Silva, Arlindo; Colarco, Peter; Darmenov, Anton; Govindaraju, Ravi

    2013-04-01

    GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this analysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at ~85km). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We present a summary of our efforts to simulate the UV Aerosol Index (AI) at 354 nm from aerosol simulations by performing a radiative transfer calculation. We have compared model produced AI with the corresponding OMI measurements, identifying regions where the model representation of absorbing aerosols were deficient. Separately, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. Making use of CALIPSO measurements we have also investigated the impact of the altitude of the aerosol layer on OMI derived AI trying to ascertain misplacement of plume height by the model.

  20. Online Simulations and Forecasts of the Global Aerosol Distribution in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2006-01-01

    We present an analysis of simulations of the global aerosol system in the NASA GEOS-5 transport, radiation, and chemistry model. The model includes representations of all major tropospheric aerosol species, including dust, sea salt, black carbon, particulate organic matter, and sulfates. The aerosols are run online for the period 2000 through 2005 in a simulation driven by assimilated meteorology from the NASA Goddard Data Assimilation System. Aerosol surface mass concentrations are compared with existing long-term surface measurement networks. Aerosol optical thickness is compared with ground-based AERONET sun photometry and space-based retrievals from MODIS, MISR, and OMI. Particular emphasis is placed here on consistent sampling of model and satellite aerosol optical thickness to account for diurnal variations in aerosol optical properties. Additionally, we illustrate the use of this system for providing chemical weather forecasts in support of various NASA and community field missions.

  1. Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data

    SciTech Connect

    Kinne, S.; Lohmann, U; Feichter, J; Schulz, M.; Timmreck, C.; Ghan, Steven J.; Easter, Richard C.; Chin, M; Ginoux, P.; Takemura, T.; Tegen, I.; Koch, D; Herzog, M.; Penner, J.; Pitari, G.; Holben, B. N.; Eck, T.; Smirnov, A.; Dubovik, O.; Slutsker, I.; Tanre, D.; Torres, O.; Mishchenko, M.; Geogdzhayev, I.; Chu, D. A.; Kaufman, Yoram J.

    2003-10-21

    Aerosol introduces the largest uncertainties in model-based estimates of anthropogenic sources on the Earth's climate. A better representation of aerosol in climate models can be expected from an individual processing of aerosol type and new aerosol modules have been developed, that distinguish among at least five aerosol types: sulfate, organic carbon, black carbon, sea-salt and dust. In this study intermediate results of aerosol mass and aerosol optical depth of new aerosol modules from seven global models are evaluated. Among models, differences in predicted mass-fields are expected with differences to initialization and processing. Nonetheless, unusual discrepancies in source strength and in removal rates for particular aerosol types were identified. With simultaneous data for mass and optical depth, type conversion factors were compared. Differences among the tested models cover a factor of 2 for each, even hydrophobic, aerosol type. This is alarming and suggests that efforts of good mass-simulations could be wasted or that conversions are misused to cover for poor mass-simulations. An individual assessment, however, is difficult, as only part of the conversion determining factors (size assumption, permitted humidification and prescribed ambient relative humidity) were revealed. These differences need to be understood and minimized, if conclusions on aerosol processing in models can be drawn from comparisons to aerosol optical depth measurements.

  2. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-06-01

    A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size-resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1-CARMA is approximately ˜2.6 times as much computer time as the standard three-mode aerosol model in CESM1 (CESM1-MAM3) and twice as much computer time as the seven-mode aerosol model in CESM1 (CESM1-MAM7) using similar gas phase chemistry codes. Aerosol spatial-temporal distributions are simulated and compared with a large set of observations from satellites, ground-based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ˜32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

  3. Validation of MODIS Aerosol Optical Depth Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.

  4. Aerosol Behavior Log-Normal Distribution Model.

    2001-10-22

    HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure,more » and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.« less

  5. The advanced characterization of aerosol properties from measurements of spectral optical thickness of the atmosphere.

    NASA Astrophysics Data System (ADS)

    Torres, Benjamin; Toledano, Carlos; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Fuertes, David; Tanre, Didier; Goloub, Phillipe

    The main purpose of the work is to assess the potential of using spectral optical thickness measurement for characterizing aerosol properties. While the use of these measurements is limited to the characterization of aerosol loading in the atmosphere, several studies demonstrated that these observations could be used for deriving more detailed information about aerosol, such as size distribution (King et al. 1978) and for discriminating between the extinction of fine and coarse modes of aerosol (O’Neill 2003). In this study, we test the possibilities of using AERONET inversion (Dubovik and King 2000) for improving the interpretation of measurements of optical thickness. In addition, we study the potential of synergetic scenarios for inverting optical thickness using GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm (Dubovik et al., 2011). This algorithm uses new multi-pixel retrieval approach. According to this approach, the accuracy of aerosol retrieval can be improved if several sets of observations (e.g. observations of satellite over several pixels) are inverted together under additional a priori constraints on time and spatial variability of the retrieved parameters. The application of this approach appears to be promising for the present study. First, the retrieval stability can be improved by inverting more than a single set of spectral aerosol optical depth at once. Second, the set of spectral aerosol optical depth can be inverted together with the radiances observed in the same day. The preliminary results of using simulated data (for different scenarios and aerosol models), as well as, the applications to real data from several AERONET sites will be presented.

  6. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    SciTech Connect

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. -J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, Steven J.; Horowitz, L.; Lamarque, J.-F.; Lee, Y. H.; Naik, Vaishali; Nagashima, T.; Shindell, Drew; Skeie, R. B.

    2013-05-17

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatiotemporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols

  7. Retrieval of aerosol optical thickness over snow using AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; von Hoyningen-Huene, Wolfgang; Rozanov, Vladimir; Kokhanovsky, Alexander; Burrows, John P.

    Remote sensing of aerosols experiences lack of products over very bright surfaces, such as deserts and snow, due to difficulties with the subtraction of the surface reflection contribution, when a small error in accounting for surface reflectance can cause a large error in retrieved aerosol optical thickness (AOT). Cloud screening over bright surface is also not easy because of low contrast between clouds and surface in visible range of spectrum, and additional infrared chan-nels are not always available. Luckily, AATSR instrument onboard ENVISAT has necessary features to solve both of these problems. In current work we present an improved version of discussed earlier [1,2] dual-view algorithm to retrieve AOT over snow. The retrieval algorithm still consists of cloud screening, based on spectral shape analysis of AATSR pixel in order to extract clear snow pixels, and of AOT retrieval over snow and water. Current version of AOT retrieval over open ocean now contains improved accounting for ocean reflectance (in previous version the ocean was assumed to be absolutely black). The AOT retrieval over snow has been improved to account more accurately for the bidirectional features of the surface reflection function. For this we now use the approach described in [4] instead of [3], which has been used in the previous version of the retrieval. The accuracy of both approaches [3] and [4] has been evaluated via comparison to forward radiative-transfer model for the case of a very bright surface. The new algorithm has been applied to various scenes in European Arctic and Alaska in different scales, up to global AOT maps. The correspondence of AOT over snow to AOT over water is quite good, which proves the reliability of the retrieval. The algorithm has been validated against AERONET and other Arctic ground based AOT data and shows reasonably good correlation. The presented cloud screening method has been validated via comparison to MODIS cloud mask and Micro Pulse Lidar data

  8. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  9. Optical Characteristics of Aerosols and Clouds Retrieved from Sky Radiometer Data of SKYNET

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Irie, H.; Takamura, T.

    2015-12-01

    SKYNET is an observation network to collect data related to aerosols, clouds, and radiation using a variety of ground-based instruments. The sky radiometer, manufactured by PREDE Co. Ltd., Japan, is one of the SKYNET instruments. Present research activities have made it possible to retrieve not only optical characteristics of aerosols and clouds, but also columnar water vapor and ozone concentrations using data of this instrument. This study analyzes sky radiometer data of various sites to understand optical characteristics of aerosols of different backgrounds. Several interesting results were obtained. For example, the light-absorption capacity of dust aerosols was observed to depend on not only mixed pollutants but also on aerosol size. We further studied the effects of aerosols on atmospheric heat budget using such observation data and a radiative transfer model. The results showed clear spatial and temporal variations of aerosol radiative forcing at the surface as well as top of atmosphere (TOA). Sky radiometer data of selected super sites of SKYNET were also analyzed to understand the optical characteristics of clouds. Such retrieved cloud parameters were validated using irradiances measured at the surface as well as MODIS cloud parameters. Though differences exist with respect to MODIS cloud parameters, irradiances calculated using sky radiometer retrieved cloud parameters agree fairly well with observed values.

  10. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  11. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  12. Climatology and Characteristics of In-situ Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Ogren, J. A.; Sharma, S.; Asmi, E.; Bergin, M. H.; Jefferson, A.; Andrews, E.; Tunved, P.; Backman, J.; Starkweather, S.

    2015-12-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, Figure 1 presents the annual cycle of aerosol light scattering at 550 nm at each site for 2012-2014, with most stations (ALT, BRW, TIK, ZEP) experiencing maximum scattering in winter/spring, while SUM and PAL exhibit minimum scattering in the winter. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in

  13. The Global Ozone and Aerosol Profiles and Aerosol Hygroscopic Effect and Absorption Optical Depth (GOA2HEAD) Network Initiative

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.

    2014-12-01

    Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.

  14. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  15. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  16. Aerosol impacts in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, Jane P.; Brooks, Malcolm E.; Milton, Sean F.

    2010-05-01

    carbon, biogenic, sea salt, biomass-burning, mineral dust, and nitrate aerosol particles (Bellouin et al., 2007). As a first step, monthly mean climatologies of these species are implemented in the model. Stage two involves running the CLASSIC scheme in a prognostic mode where the aerosols are fully interactive with the model meteorological and radiation fields. Here we present an evaluation of both stages of the aerosol implementation procedure. An objective verification of the model output fields is carried out against forecast analyses and a wide range of satellite and in situ data. The model aerosol optical depth (AOD) is evaluated against ground-based AERONET observations and satellite aerosol retrievals available through the MACC project (e.g., MODIS, SEVIRI). The impacts on model performance, in terms of the general circulation patterns and in addressing the model radiation biases will also be presented. References: Bellouin, N. et al. (2007), Improved representation of aerosols for HadGEM2, Tech. Note 73, Hadley Centre, Met Office, Exeter, U. K. Cusack, S. et al. (1998), The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM, Q. J. R. Meteorol. Soc., 124, 2517-2526. Haywood, J. M. et al. (2005), Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003, J. Geophys. Res. 110, D05105, doi:10.1029/2004JD005232. Milton, S. F. et al. (2008), Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol and surface albedo, J. Geophys. Res., 113, D00C02, doi:10.1029/2007JD009741.

  17. A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval

    NASA Astrophysics Data System (ADS)

    You, Wei; Zang, Zengliang; Zhang, Lifeng; Zhang, Mei; Pan, Xiaobin; Li, Yi

    2016-02-01

    Satellite measurements have been widely used to estimate particulate matters (PMs) on the ground and their effects on human health. However, such estimation is susceptible to meteorological conditions and may result in large errors. In this study, we developed a nonlinear empirical model for seasonal ground-level PM10 prediction in Xi'an, Shaanxi province of northwestern China. The nonlinear model is based on 3 years (2011-2013) of daily PM10 concentration data from 13 PM10 monitoring stations in Xi'an, aerosol optical depth (AOD) data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), surface meteorological measurements, and NCEP/NCAR reanalysis data. The nonlinear model corrects the AOD data using the height of plenary boundary layer and surface relative humidity, and further adjusts the corrected AOD according to visibility, surface temperature and surface wind speed. Our results show that there is almost a threefold improvement from 0.28 to 0.78 in the correlation coefficient when using the nonlinear model compared to using a linear regression model of AOD and PM10. The root-mean-square error (RMSE) is reduced from 34.42 to 21.33 μg/m3 using the nonlinear model over the linear model. Further analysis about meteorological variables shows that relative humidity and visibility are important factors to improve the relationship between AOD and PM10. The relationship between the predicted PM10 concentration from the nonlinear model and observed PM10 concentration is the best in winter, moderate in autumn and spring, and poor in summer. Further validation has shown that the nonlinear model is able to explain approximately 79% (R2 = 0.79, n = 270, p < 0.01) of the variability in the monthly-mean PM10 concentration with an RMSE of 11.7 μg/m3 and mean absolute percentage error of 14.2% based on monthly-mean data set. These results are useful for accessing surface PM10 concentration and monitoring regional air pollution.

  18. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  19. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-01-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environment against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce fairly well the plume structure and location both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirmed the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicated that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated of about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%) and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  20. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-08-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%), and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  1. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  2. Strategies for Improved CALIPSO Aerosol Optical Depth Estimates

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Kuehn, Ralph E.; Tackett, Jason L.; Rogers, Raymond R.; Liu, Zhaoyan; Omar, A.; Getzewich, Brian J.; Powell, Kathleen A.; Hu, Yongxiang; Young, Stuart A.; Avery, Melody A.; Winker, David M.; Trepte, Charles R.

    2010-01-01

    In the spring of 2010, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) project will be releasing version 3 of its level 2 data products. In this paper we describe several changes to the algorithms and code that yield substantial improvements in CALIPSO's retrieval of aerosol optical depths (AOD). Among these are a retooled cloud-clearing procedure and a new approach to determining the base altitudes of aerosol layers in the planetary boundary layer (PBL). The results derived from these modifications are illustrated using case studies prepared using a late beta version of the level 2 version 3 processing code.

  3. Introduction of the aerosol feedback process in the model BOLCHEM

    NASA Astrophysics Data System (ADS)

    Russo, Felicita; Maurizi, Alberto; D'Isidoro, Massimo; Tampieri, Francesco

    2010-05-01

    The effect of aerosols on the climate is still one of the least understood processes in the atmospheric science. The use of models to simulate the interaction between aerosols and climate can help understanding the physical processes that rule this interaction and hopefully predicting the future effects of anthropogenic aerosols on climate. In particular regional models can help study the effect of aerosols on the atmospheric dynamics on a local scale. In the work performed here we studied the feedback of aerosols in the radiative transfer calculation using the regional model BOLCHEM. The coupled meteorology-chemistry model BOLCHEM is based on the BOLAM meteorological model. The BOLAM dynamics is based on hydrostatic primitive equations, with wind components u and v, potential temperature ?, specific humidity q, surface pressure ps, as dependent variables. The vertical coordinate σ is terrain-following with variables distributed on a non-uniformly spaced staggered Lorentz grid. In the standard configuration of the model a collection of climatological aerosol optical depth values for each aerosol species is used for the radiative transfer calculation. In the feedback exercise presented here the aerosol optical depth was calculated starting from the modeled aerosol concentrations using an approximate Mie formulation described by Evans and Fournier (Evans, B.T.N. and G.R. Fournier, Applied Optics, 29, 1990). The calculation was done separately for each species and aerosol size distribution. The refractive indexes for the different species were taken from P. Stier's work (P. Stier et al., Atmos. Chem. Phys., 5, 2005) and the aerosol extinction obtained by Mie calculation were compared with the results reported by OPAC (M. Hess et al., Bull. Am. Met. Soc., 79, 1998). Two model runs, with and without the aerosol feedback, were performed to study the effects of the feedback on meteorological parameters. As a first setup of the model runs we selected a domain over the

  4. Aerosol optical depth retrieval using the MERIS observation

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.

    2015-04-01

    Surface reflectance determination and aerosol type selection are the two main challenges for space-borne aerosol remote sensing, especially for those instruments lacking of near-infrared channels, high-temporal observations, multi-angles abilities and/or polarization information. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Depth (AOD) retrieval algorithm is presented. Global aerosol type and surface spectral dataset were used for the aerosol type selection and surface reflectance determination. A modified Ross-Li mode is used to describe the surface Bidirectional Reflectance Distribution Function (BRDF) effect. The comparison with operational MODIS C6 product and the validation using AErosol RObotic NETwork (AERONET) show promising results.

  5. URBAN AEROSOL TRANSFORMATION AND TRANSPORT MODELING

    EPA Science Inventory

    Modules for secondary aerosol formation have been included in the urban scale K-theory aerosol model, AR0S0L. hese are: (1) An empirical first-order 502 conversion scheme due to Meaghers, termed EMM; (2) The lumped parameter kinetic model termed the Carbon Bond Mechanism, in the ...

  6. Photochemistry of Model Organic Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Mang, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Nizkorodov, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Up to 90 percent of urban aerosol particles have been shown to contain organic molecules. Reactions of these particles with atmospheric oxidants and/or sunlight result in large changes in their composition, toxicity, and ability to act as cloud condensation nuclei. For this reason, chemistry of model organic aerosol particles initiated by oxidation and direct photolysis is of great interest to atmospheric, climate, and health scientists. Most studies in this area have focused on identifying the products of oxidation of the organic aerosols, while the products of direct photolysis of the resulting molecules remaining in the aerosol particle have been left mostly unexplored. We have explored direct photolytic processes occurring in selected organic aerosol systems using infrared cavity ringdown spectroscopy to identify small gas phase products of photolysis, and mass-spectrometric and photometric techniques to study the condensed phase products. The first model system was secondary organic aerosol formed from the oxidation of several monoterpenes by ozone in the presence and absence of NOx, under different humidities. The second system modeled after oxidatively aged primary organic aerosol particles was a thin film of either alkanes or saturated fatty acids oxidized in several different ways, with the oxidation initiated by ozone, chlorine atom, or OH. In every case, the general conclusion was that the photochemical processing of model organic aerosols is significant. Such direct photolysis processes are believed to age organic aerosol particles on time scales that are short compared to the particles' atmospheric lifetimes.

  7. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  8. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study.

    PubMed

    Papayannis, A; Nicolae, D; Kokkalis, P; Binietoglou, I; Talianu, C; Belegante, L; Tsaknakis, G; Cazacu, M M; Vetres, I; Ilic, L

    2014-12-01

    A coordinated experimental campaign aiming to study the aerosol optical, size and mass properties was organized in September 2012, in selected sites in Greece and Romania. It was based on the synergy of lidar and sunphotometers. In this paper we focus on a specific campaign period (23-24 September), where mixed type aerosols (Saharan dust, biomass burning and continental) were confined from the Planetary Boundary Layer (PBL) up to 4-4.5 km height. Hourly mean linear depolarization and lidar ratio values were measured inside the dust layers, ranging from 13 to 29 and from 44 to 65sr, respectively, depending on their mixing status and the corresponding air mass pathways over Greece and Romania. During this event the columnar Aerosol Optical Depth (AOD) values ranged from 0.13 to 0.26 at 532 nm. The Lidar/Radiometer Inversion Code (LIRIC) and the Polarization Lidar Photometer Networking (POLIPHON) codes were used and inter-compared with regards to the retrieved aerosol (fine and coarse spherical/spheroid) mass concentrations, showing that LIRIC generally overestimates the aerosol mass concentrations, in the case of spherical particles. For non-spherical particles the difference in the retrieved mass concentration profiles from these two codes remained smaller than ±20%. POLIPHON retrievals showed that the non-spherical particles reached concentrations of the order of 100-140 μg/m(3) over Romania compared to 50-75 μg/m(3) over Greece. Finally, the Dust Regional Atmospheric Model (DREAM) model was used to simulate the dust concentrations over the South-Eastern Europe. PMID:25226073

  9. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Healy, R. M.; Riemer, N.; West, M.; Wang, J. M.; Jeong, C.-H.; Wenger, J. C.; Evans, G. J.; Abbatt, J. P. D.; Lee, A. K. Y.

    2015-11-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particles was 0.02-0.08 and 0.72-0.93, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  10. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  11. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGESBeta

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol -Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  12. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  13. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  14. Uncertainty quantification in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-10-01

    The space borne measurements provide global view of atmospheric aerosol distribution. The Ozone Monitoring Instrument (OMI) on board NASAs Earth Observing System (EOS) Aura satellite is a Dutch-Finnish nadir-viewing solar backscatter spectrometer measuring in the ultraviolet and visible wavelengths. OMI measures several trace gases and aerosols that are important in many air quality and climate studies. The OMI aerosol measurements are used, for example, for detecting volcanic ash plumes, wild fires and transportation of desert dust. We present a methodology for improving the uncertainty quantification in the aerosols retrieval algorithm. We have used the OMI measurements in this feasibility study. Our focus is on the uncertainties originating from the pre-calculated aerosol models. These models are never complete descriptions of the reality. This aerosol model uncertainty is estimated using Gaussian processes with computational tools from spatial statistics. Our approach is based on smooth systematic differences between the observed and modelled reflectances. When acknowledging this model inadequacy in the estimation of aerosol optical thickness (AOT), the uncertainty estimates are more realistic. We present here a real world example of applying the methodology.

  15. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  16. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    NASA Technical Reports Server (NTRS)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions

  17. Using the Mixed Effect Model as an Alternative Approach to Improve Correlation between Satellite Derived Aerosol Optical Depth (MISR & MODIS) and Ground Measured PM2.5 Data

    NASA Astrophysics Data System (ADS)

    Cabanes, H. V. O.; Lagrosas, N.

    2014-12-01

    The study seeks to determine the efficacy of using aerosol optical depth (AOD) data from MISR and MODIS as a surrogate for ground-based particulate matter (PM2.5) data by using AOD as an input for various computational methods. The data set used in the study ranged from January 2011 to December 2012. The advantage of the mixed effects model is in its ability to consider temporally changing attributes through the inclusion of random effects in the regression model. The study first established that MISR and MODIS AOD has a correlation with ground measured PM2.5 through regression analysis thereby providing rationale for further analysis. The regression analyses resulted in an R2 of 0.7513 and 0.7536 for MODIS and MISR, respectively. With the rationale established, data quality improvement measures were carried out through data screening and empirical correction. The data screening process involved the removal of data entries in which the absolute difference of MODIS and MISR AOD values deviated far more than the average of the data set. On the other hand, empirical correction was done by developing correction equations through multivariate regression with ground parameters such as AERONET AOD, relative humidity, and wind speed. Both methods were found to yield marked improvement in the correlation of satellite-derived AOD with PM2.5. After data quality had been improved, several computational methods are assessed by solving for the R2 and absolute error percentage. The methods are simple linear regression with MODIS (R2 = 0.7764, 18.43%) and MISR (R2 = 0.7614, 17.99%), multivariate linear regression with MODIS and MISR together (R2 = 0.8721, 13.63%), artificial neural network with MODIS and MISR as inputs (R2 = 0.8764, 13.45%), and the mixed effects model with MODIS and MISR as predictors (R2 = 0.9793, 5.20%). Among these, the mixed effects model performed the best and further error analysis showing an error that was independent on seasonality and dependent on the PM

  18. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  19. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  20. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  1. Simulation of aerosol optical thickness during IMPACT (May 2008, The Netherlands) with ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Roelofs, G.-J.; ten Brink, H.; Kiendler-Scharr, A.; de Leeuw, G.; Mensah, A.; Minikin, A.; Otjes, R.

    2010-03-01

    In May 2008 the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw (The Netherlands). With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate aerosol and aerosol optical thickness (AOT) for the campaign period. Synoptic scale meteorology is represented realistically and simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately -30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL) dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The relation between particle concentration and AOT is rather weak during IMPACT. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.

  2. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  3. A Study on the Optical Properties of Aerosols above the Forest by Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bian, J.

    2004-12-01

    Aerosol retrieval by remote sensing technique is one of the promising method in understanding the chemical and optical properties, column load, and spatial distribution of aerosols. However, though the current technique in use is quite successful about aerosols over ocean with small water-leaving radiances, quantitative retrieval of aerosols over land mass is not yet satisfactory. We try to develop a new method to make the aerosol retrieval over land more accurate than ever before. A sensitivity analysis of reflectance shows that wrong selection of spectral reflectance model results in quite a large difference in retrieved aerosol characteristics. Therefore, a well¡Csuited surface reflectance model is needed to be created. We conducted aerosol and radiation measurements coupled with in situ forest reflectance measurements in sync with satellite radiance measurements by EOS Terra and Aqua from the top of the atmosphere. The experimental site is located in a forest with an extensive and uniform area covered with deciduous trees commonly existing in Japan. The ground-based measurements include Andersen impactor samplings, radiometric measurements with OPC, a sunphotometer and a telephotometer. Forest reflectance was measured with a spectral radiometer covering visible and near infrared above the forest canopy level from a tower standing in the forest. Reflectance was measured directionally, and was found to show no major bi-directional dependency, assuring us that Lambert reflectance model is sufficient for calculation in this particular type of forest. The sampled spectral reflectances were averaged to be 0.0414 at 0.55 μ m. For satellite aerosol retrieval, visible and near infrared bands in MODIS sensors were employed. MODTRAN code was used in radiative transfer in the aerosol-laden atmosphere. Several different types of aerosol were examined, and a rural aerosol model with similar size distribution and composition to the aerosols, which are estimated from OPC

  4. Retrieval of aerosol optical thickness from PROBA-CHRIS images acquired over a coniferous forest

    NASA Astrophysics Data System (ADS)

    Maffei, Carmine; Leone, Antonio P.; Menenti, Massimo; Pippi, Ivan; Maselli, Fabio; Antonelli, Paolo

    2005-10-01

    In the present work we show the potential of multiangular hyperspectral PROBA-CHRIS data to estimate aerosol optical properties over dense dark vegetation. Data acquired over San Rossore test site (Pisa, Italy) have been used together with simultaneous ground measurements. Additionally, spectral measurement over the canopy have been performed to describe the directional behavior of a Pinus pinaster canopy. Determination of aerosol properties from optical remote sensing images over land is an under-determined problem, and some assumptions have to be made on both the aerosol and the surface being imaged. Radiance measured on multiple directions add extra information that help in reducing retrieval ambiguity. Nevertheless, multiangular observations don't allow to ignore directional spectral properties of vegetation canopies. Since surface reflectivity is the parameter we wish to determine with remote sensing after atmospheric correction, at least the shape of the bi-directional reflectance factor has to be assumed. We have adopted a Rahman BRF, and have estimated its geometrical parameters from ground spectral measurements. The inversion of measured radiance to obtain aerosol optical properties has been performed, allowing simultaneous retrieval of aerosol model and optical thickness together with the vegetation reflectivity parameter of the Rahman model.

  5. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  6. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  7. Determination of aerosol extinction coefficient profiles from LIDAR data using the optical depth solution method

    NASA Astrophysics Data System (ADS)

    Aparna, John; Satheesh, S. K.; Mahadevan Pillai, V. P.

    2006-12-01

    The LIDAR equation contains four unknown variables in a two-component atmosphere where the effects caused by both molecules and aerosols have to be considered. The inversion of LIDAR returns to retrieve aerosol extinction profiles, thus, calls for some functional relationship to be assumed between these two. The Klett's method, assumes a functional relationship between the extinction and backscatter. In this paper, we apply a different technique, called the optical depth solution, where we made use of the total optical depth or transmittance of the atmosphere along the LIDAR-measurement range. This method provides a stable solution to the LIDAR equation. In this study, we apply this technique to the data obtained using a micro pulse LIDAR (MPL, model 1000, Science and Engineering Services Inc) to retrieve the vertical distribution of aerosol extinction coefficient. The LIDAR is equipped with Nd-YLF laser at an operating wavelength of 523.5 nm and the data were collected over Bangalore. The LIDAR data are analyzed to get to weighted extinction coefficient profiles or the weighted sum of aerosol and molecular extinction coefficient profiles. Simultaneous measurements of aerosol column optical depth (at 500 nm) using a Microtops sun photometer were used in the retrievals. The molecular extinction coefficient is determined assuming standard atmospheric conditions. The aerosol extinction coefficient profiles are determined by subtracting the molecular part from the weighted extinction coefficient profiles. The details of the method and the results obtained are presented.

  8. Probing the bulk viscosity of particles using aerosol optical tweezers

    NASA Astrophysics Data System (ADS)

    Power, Rory; Bones, David L.; Reid, Jonathan P.

    2012-10-01

    Holographic aerosol optical tweezers can be used to trap arrays of aerosol particles allowing detailed studies of particle properties and processes at the single particle level. Recent observations have suggested that secondary organic aerosol may exist as ultra-viscous liquids or glassy states at low relative humidity, potentially a significant factor in influencing their role in the atmosphere and their activation to form cloud droplets. A decrease in relative humidity surrounding a particle leads to an increased concentration of solute in the droplet as the droplet returns to equilibrium and, thus, an increase in the bulk viscosity. We demonstrate that the timescales for condensation and evaporation processes correlate with particle viscosity, showing significant inhibition in mass transfer kinetics using ternary sucrose/sodium chloride/water droplets as a proxy to atmospheric multi-component aerosol. We go on to study the fundamental process of aerosol coagulation in aerosol particle arrays, observing the relaxation of non-spherical composite particles formed on coalescence. We demonstrate the use of bright-field imaging and elastic light scattering to make measurements of the timescale for the process of binary coalescence contrasting the rheological properties of aqueous sucrose and sodium chloride aerosol over a range of relative humidities.

  9. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  10. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  11. Background Maritime Aerosol: Their Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The effect of human induced change in the aerosol concentration and properties, or the aerosol response to climate change (e.g. droughts producing fires or dust) should be measured relative to a "background aerosol". How to define this background aerosol, so that it is both measurable and useful? Here we use 10 stations located in the Pacific, Atlantic and Indian Oceans to answer this question. Using a data set of the spectral optical thickness measured by the Aerosol Robotic network (AERONET), extending 1-3 years, we find the background conditions for these stations. The oceanic background aerosol is the result of ocean emission and spray, and some residual long lived continental aerosol. Its source is very broadly spread and is expected to vary little in time. Pollution or dust sources are from specific locations, emitted and transported to the measuring site in specific combination of meteorological conditions. Therefore they are expected to vary with time. It follows that the background aerosol can be identified as the median for conditions with small variations. To define the background we compute the median of N consequent measurements. We use N=50 that in average cloudy conditions corresponds to 2-3 days of measurements and N=100 (4-5 days). Most high polluted or dusty conditions correspond to data sequences with high standard deviation (greater than 0.02 in optical thickness) and are excluded. From the remaining N point running medians with low standard deviations we derive again the median. This excludes those rare cases of pollution or dust that is stable during the N measurements. The results show that the background aerosol over the Pacific Ocean is characterize by optical thickness of 0.055 at 500 nm and Angstrom exponent of 0.74. Over the Atlantic Ocean the values are 0.070 and 1.1 respectively, with little influence of the assumed value of N (50 or 100). The derivation of the background uses 20,000 and 5000 medians respectively that passed the

  12. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  13. Aerosol effects over China investigated with a high resolution convection permitting weather model

    NASA Astrophysics Data System (ADS)

    Pagh Nielsen, Kristian; Mahura, Alexander; Yang, Xiaohua

    2016-04-01

    We investigate aerosol effects in the operational high resolution (2.5 km) convection permitting non-hydrostatical weather model HARMONIE (HIRLAM-ALADIN Regional Mesoscale Operational NWP in Euromed). Aerosol input from the global C-IFS model is downscaled and used. The impact of using realistic aerosols on both the direct and the indirect aerosol effects is studied and compared with default simulations that include only the direct aerosol effect of climatological aerosols. The study is performed as a part of the MarcoPolo FP7 project for a selected region of China during the months January and July 2010, where in particular January 2010 saw several cases of high anthropogenic aerosol loads. We also investigate the impact of accounting for realistic aerosol single scattering albedos and asymmetry factors in the simulations of the direct aerosol forcing. In many studies only variations in the aerosol optical depth are accounted for. We show this to be inadequate, when the assumed aerosol types have different optical properties than the actual aerosols.

  14. Evaluation of Aerosol-Cloud Interactions in GISS ModelE Using ASR Observations

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Menon, S.; Bauer, S. E.; Toto, T.; Bennartz, R.; Cribb, M.

    2011-12-01

    The impacts of aerosol particles on clouds continue to rank among the largest uncertainties in global climate simulation. In this work we assess the capability of the NASA GISS ModelE, coupled to MATRIX aerosol microphysics, in correctly representing warm-phase aerosol-cloud interactions. This evaluation is completed through the analysis of a nudged, multi-year global simulation using measurements from various US Department of Energy sponsored measurement campaigns and satellite-based observations. Campaign observations include the Aerosol Intensive Operations Period (Aerosol IOP) and Routine ARM Arial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) at the Southern Great Plains site in Oklahoma, the Marine Stratus Radiation, Aerosol, and Drizzle (MASRAD) campaign at Pt. Reyes, California, and the ARM mobile facility's 2008 deployment to China. This combination of datasets provides a variety of aerosol and atmospheric conditions under which to test ModelE parameterizations. In addition to these localized comparisons, we provide the results of global evaluations completed using measurements derived from satellite remote sensors. We will provide a basic overview of simulation performance, as well as a detailed analysis of parameterizations relevant to aerosol indirect effects.

  15. A physical model of Titan's aerosols.

    PubMed

    Toon, O B; McKay, C P; Griffith, C A; Turco, R P

    1992-01-01

    Microphysical simulations of Titan's stratospheric haze show that aerosol microphysics is linked to organized dynamical processes. The detached haze layer may be a manifestation of 1 cm sec-1 vertical velocities at altitudes above 300 km. The hemispherical asymmetry in the visible albedo may be caused by 0.05 cm sec-1 vertical velocities at altitudes of 150 to 200 km, we predict contrast reversal beyond 0.6 micrometer. Tomasko and Smith's (1982, Icarus 51, 65-95) model, in which a layer of large particles above 220 km altitude is responsible for the high forward scattering observed by Rages and Pollack (1983, Icarus 55, 50-62), is a natural outcome of the detached haze layer being produced by rising motions if aerosol mass production occurs primarily below the detached haze layer. The aerosol's electrical charge is critical for the particle size and optical depth of the haze. The geometric albedo, particularly in the ultraviolet and near infrared, requires that the particle size be near 0.15 micrometer down to altitudes below 100 km, which is consistent with polarization observations (Tomasko and Smith 1982, West and Smith 1991, Icarus 90, 330-333). Above about 400 km and below about 150 km Yung et al.'s (1984, Astrophys. J. Suppl. Ser. 55, 465-506) diffusion coefficients are too small. Dynamical processes control the haze particles below about 150 km. The relatively large eddy diffusion coefficients in the lower stratosphere result in a vertically extensive region with nonuniform mixing ratios of condensable gases, so that most hydrocarbons may condense very near the tropopause rather than tens of kilometers above it. The optical depths of hydrocarbon clouds are probably less than one, requiring that abundant gases such as ethane condense on a subset of the haze particles to create relatively large, rapidly removed particles. The wavelength dependence of the optical radius is calculated for use in analyzing observations of the geometric albedo. The lower

  16. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  17. Aerosol optical depth and type retrieval using MSG/SEVIRI data

    NASA Astrophysics Data System (ADS)

    Mei, L.; Xue, Y.; Kokhanovsky, A. A.

    2012-04-01

    IPCC fourth assessment report demonstrated that aerosol is the least understood with highest uncertainty (The uncertainty of aerosol radiative forcing is even larger than radiative forcing itself) factor compared to other component in the climate system (IPCC, 2007). The mainly reason is due to the high variability in space and temporary of aerosol and it is really difficult for us to obtain enough information for understanding aerosol effect. Even we obtain sufficient information; there is still a problem to get the aerosol properties with high accuracy because almost all the aerosol properties are coupled. Many different aerosol monitoring schemes using different satellite data are available, the original stem is based on at least one assumption; that is except the retrieval aerosol properties, all the other properties (both aerosol and surface) can be obtained first. For instance, DeepBlue method is supported by a reflectance database (Hsu et al., 2004) while DDV algorithm need much prior knowledge about other aerosol properties (Levy et al., 2007) in order to retrieve aerosol optical depth (AOD). However, the retrieval methods are not always capable of reproducing the AOD spectral slope in a correct way because the correspondent aerosol model (Kokhanovsky et al, 2009) and other factors are not retrieved but rather prescribed. Is it possible for us to retrieve several aerosol or surface properties simultaneously? A novel approach for the joint retrieval of AOD, aerosol type and surface reflectance, using Meteosat Second Generation - Spinning Enhanced Visible and Infrared Imagers (MSG/SEVIRI) observations in two solar channels, is presented in this paper. MSG/SEVIRI combines the advantages of a multi-spectral sensor as well as high-temporary satellite. The paper confined the consideration only to one approximate method of reducing the problem to solving a set of differential equations in the application to the case of shortwave radiation transfer. After

  18. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  19. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  20. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  1. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  2. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  3. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-01-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  4. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-10-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  5. A portable optical particle counter system for measuring dust aerosols.

    PubMed

    Marple, V A; Rubow, K L

    1978-03-01

    A portable battery-operated optical particle counter/multichannel analyzer system has been developed for the numbers size distribution and number concentration measurement of light-absorbing irregular-shaped dust particles. An inertial impactor technique has been used to obtain calibration curves by relating the magnitude of the optical counter's signal to the particle's aerodynamic or Stokes' diameter. These calibrations have been made for aerosols of coal, potash, silica, rock (copper ore), and Arizona road dust particles. PMID:645547

  6. Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2015-04-01

    Obtaining continuous aerosol-optical-depth (AOD) measurements is a difficult task due to the cloud-cover problem. With the main motivation of overcoming this problem, an AOD-predicting model is proposed. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the Ångström exponent against the AOD. A new empirical algorithm was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET due to frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The calibrated model coefficients have a coefficient of determination, R2, of 0.72. The predicted AOD of the model was generated based on these calibrated coefficients and compared against the measured data through standard statistical tests, yielding a R2 of 0.68 as validation accuracy. The error in weighted mean absolute percentage error (wMAPE) was less than 0.40% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Performance of our model was compared against selected LIDAR data to yield good correspondence. The predicted AOD can enhance measured short- and long-term AOD and provide supplementary information for climatological studies and monitoring aerosol variation.

  7. Effects of data assimilation on the global aerosol key optical properties simulations

    NASA Astrophysics Data System (ADS)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  8. Temperature dependent optical constants from aerosol spectroscopy: Applications to stratospheric clouds

    SciTech Connect

    Niedziela, R.F.; Miller, R.E.

    1996-10-01

    The refractive indices of various atmospheric condensates are of great importance in both modeling and remote sensing. In the past, data of this type was only available from thin film measurements made on substrates. The applicability of these data for the study of atmospheric aerosols has really never been tested in detail. We have developed a new approach that allows for the direction determination of frequency dependent refractive indices directly from aerosol spectra. In this paper we discuss the application of this methodology to the study of laboratory generated aerosols of interest in stratospheric heterogeneous chemistry. In particular, we report studies on water, nitric and sulfuric acid aerosols. In the latter case, we report temperature and composition dependent optical constants over the range of conditions appropriate for the stratosphere.

  9. Optical and radiative-transfer properties of mixed atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Degheidy, A. R.; Sallah, M.; Elgarayhi, A.; Shaaban, S. M.

    2015-04-01

    The optical and radiative-transfer properties of mixed atmospheric aerosols have been investigated. The aerosol medium is considered as a plane-parallel anisotropic scattering medium with diffusive reflecting boundaries and containing an internal radiation source. The basic components are defined by their complex refractive index, a lognormal size distribution and humidity dependence in hygroscopic particles. The aerosol particles are assumed to be spherical, so the scattering parameters in the form of single scattering albedo, asymmetry factor, scattering, absorption, extinction efficiencies and linear anisotropic coefficient are calculated using the Mie theory. The calculations have been performed for individual aerosol particles, internal and external mixing media. Radiation transfer problem through the considered aerosol medium has been solved in terms of the solution of the corresponding source-free problem with simple boundary conditions. For the solution of the source-free problem, the Variational Pomraning-Eddington technique has been employed. The variation of the radiative-transfer properties (partial radiative fluxes at the medium boundaries) have been calculated and represented graphically for the different aerosols with their different mixing states. A comparison of the obtained results versus available published data has been performed and a very good agreement was observed.

  10. Model Intercomparison of Indirect Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Penner, J. E.; Quaas, J.; Storelvmo, T.; Takemura, T.; Boucher, O.; Guo, H.; Kirkevag, A.; Kristjansson, J. E.; Seland, O.

    2006-01-01

    Modeled differences in predicted effects are increasingly used to help quantify the uncertainty of these effects. Here, we examine modeled differences in the aerosol indirect effect in a series of experiments that help to quantify how and why model-predicted aerosol indirect forcing varies between models. The experiments start with an experiment in which aerosol concentrations, the parameterization of droplet concentrations and the autoconversion scheme are all specified and end with an experiment that examines the predicted aerosol indirect forcing when only aerosol sources are specified. Although there are large differences in the predicted liquid water path among the models, the predicted aerosol first indirect effect for the first experiment is rather similar, about -0.6 W/sq m to -0.7 W/sq m. Changes to the autoconversion scheme can lead to large changes in the liquid water path of the models and to the response of the liquid water path to changes in aerosols. Adding an autoconversion scheme that depends on the droplet concentration caused a larger (negative) change in net outgoing shortwave radiation compared to the 1st indirect effect, and the increase varied from only 22% to more than a factor of three. The change in net shortwave forcing in the models due to varying the autoconversion scheme depends on the liquid water content of the clouds as well as their predicted droplet concentrations, and both increases and decreases in the net shortwave forcing can occur when autoconversion schemes are changed. The parameterization of cloud fraction within models is not sensitive to the aerosol concentration, and, therefore, the response of the modeled cloud fraction within the present models appears to be smaller than that which would be associated with model "noise". The prediction of aerosol concentrations, given a fixed set of sources, leads to some of the largest differences in the predicted aerosol indirect radiative forcing among the models, with values of

  11. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  12. Estimation of aerosol optical depth at different wavelengths by multiple regression method.

    PubMed

    Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin; Holben, Brent

    2016-02-01

    This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time. PMID:26438373

  13. Quantitative retrieval of aerosol optical properties by means of ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, Matthias; Gasteiger, Josef; Geiß, Alexander

    2016-04-01

    In the last few years extended networks of ceilometers have been established by several national weather services. Based on improvements of the hardware performance of these single-wavelength backscatter lidars and their 24/7 availability they are increasingly used to monitor mixing layer heights and to derive profiles of the particle backscatter profile. As a consequence they are used for a wide range of applications including the dispersion of volcanic ash plumes, validation of chemistry transport models and air quality studies. In this context the development of automated schemes to detect aerosol layers and to identify the mixing layer are essential, in particular as the latter is often used as a proxy for air quality. Of equal importance is the calibration of ceilometer signals as a pre-requisite to derive quantitative optical properties. Recently, it has been emphasized that the majority of ceilometers are influenced by water vapor absorption as they operate in the spectral range of 905 - 910 nm. If this effect is ignored, errors of the aerosol backscatter coefficient can be as large as 50%, depending on the atmospheric water vapor content and the emitted wavelength spectrum. As a consequence, any other derived quantity, e.g. the extinction coefficient or mass concentration, would suffer from a significant uncertainty in addition to the inherent errors of the inversion of the lidar equation itself. This can be crucial when ceilometer derived profiles shall be used to validate transport models. In this presentation, the methodology proposed by Wiegner and Gasteiger (2015) to correct for water vapor absorption is introduced and discussed.

  14. Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study

    SciTech Connect

    Shrivastava, ManishKumar B.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Laskin, Alexander; Chapman, Elaine G.; Gustafson, William I.; Liu, Ying; Berkowitz, Carl M.

    2013-02-07

    The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to simulate relationships between aerosols and clouds in the vicinity of Oklahoma City during the June 2007 Cumulus Humilis Aerosol Processing Study (CHAPS). The regional scale simulation completed using 2 km horizontal grid spacing evaluates four important relationships between aerosols and shallow cumulus clouds observed during CHAPS. First, the model reproduces the trends of higher nitrate volume fractions in cloud droplet residuals compared to interstitial non-activated aerosols, as measured using the Aerosol Mass Spectrometer. Comparing simulations with cloud chemistry turned on and off, we show that nitric acid vapor uptake by cloud droplets explains the higher nitrate content of cloud droplet residuals. Second, as documented using an offline code, both aerosol water and other inorganics (OIN), which are related to dust and crustal emissions, significantly affect predicted aerosol optical properties. Reducing the OIN content of wet aerosols by 50% significantly improves agreement of model predictions with measurements of aerosol optical properties. Third, the simulated hygroscopicity of aerosols is too high as compared to their hygroscopicity derived from cloud condensation nuclei and particle size distribution measurements, indicating uncertainties associated with simulating size-dependent chemical composition and treatment of aerosol mixing state within the model. Fourth, the model reasonably represents the observations of the first aerosol indirect effect where pollutants in the vicinity of Oklahoma City increase cloud droplet number concentrations and decrease the droplet effective radius. While previous studies have often focused on cloud-aerosol interactions in stratiform and deep convective clouds, this study highlights the ability of regional-scale models to represent some of the important aspects of cloud-aerosol interactions associated with fields of short

  15. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  16. Global direct radiative forcing by process-parameterized aerosol optical properties

    NASA Astrophysics Data System (ADS)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  17. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  18. Aerosol optical depth determination from ground based irradiance ratios

    SciTech Connect

    Miller, J. R.; O'Neill, N. T.; Boyer, A.

    1989-08-01

    The atmospheric optical depth serves as an input parameter to atmospheric correction procedures in remote sensing and as an index of atmospheric opacity or constituent columnar abundance for meteorological applications. Its measurement, typically performed by means of a small field of view radiometer centered on the solar disk, is sensitive to the absolute calibration accuracy of the instrument. In this paper a simple technique is presented which permits the extraction of aerosol optical depth from the ratio of total to direct irradiance measurements. An error analysis performed on the results of radiative transfer simulations and field measurements indicates that the technique generates values of aerosol optical depth which are sufficiently accurate for many applications. This method thus represents a useful alternative to standard sunphotometer measurements.

  19. Optical and Structural Properties of Aerosols Emitted from Open Biomass Burning (Invited)

    NASA Astrophysics Data System (ADS)

    Moosmuller, H.; Chakrabarty, R. K.; Lewis, K.; Gyawali, M.; Mazzoleni, C.; Dubey, M. K.; Kreidenweis, S. M.; Arnott, W. P.

    2010-12-01

    Open biomass burning including wildland fires and agricultural burning emits substantial quantities of carbonaceous aerosols into the atmosphere. Fuel, soil, and atmospheric conditions largely determine the combustion phase. High temperature flaming combustion emits black aerosols, generally consisting of fractal-like chain aggregates that have a high black carbon content and therefore strongly absorb visible light. Low temperature, smoldering combustion, on the other hand, emits fairly white aerosols, often consisting of near-spherical particles that have high organic carbon content. While this organic carbon is traditionally considered to cause negligent absorption of visible light, more recent studies have shown that organic carbon from biomass burning often contains brown carbon. Brown carbon is a component of organic carbon, optically defined by its increasing light absorption toward shorter wavelengths. The physical characteristics of biomass combustion aerosol particles are determined by a combination of their morphology, monomer size, and shape, all of which can be determined from electron microscopy and image analysis. Here, we review optical and structural properties of aerosols emitted from open biomass burning with a focus on relevance for radiative forcing and climate change and satellite remote sensing. This review is followed by a discussion of measurements and modeling of brown carbon optical properties, of associated metrics such as the Ångström absorption coefficient, and of future research needs.

  20. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.

    PubMed

    Paciorek, Christopher J; Liu, Yang

    2012-05-01

    Research in scientific, public health, and policy disciplines relating to the environment increasingly makes use of high-dimensional remote sensing and the output of numerical models in conjunction with traditional observations. Given the public health and resultant public policy implications of the potential health effects of particulate matter (PM*) air pollution, specifically fine PM with an aerodynamic diameter < or = 2.5 pm (PM2.5), there has been substantial recent interest in the use of remote-sensing information, in particular aerosol optical depth (AOD) retrieved from satellites, to help characterize variability in ground-level PM2.5 concentrations in space and time. While the United States and some other developed countries have extensive PM monitoring networks, gaps in data across space and time necessarily occur; the hope is that remote sensing can help fill these gaps. In this report, we are particularly interested in using remote-sensing data to inform estimates of spatial patterns in ambient PM2.5 concentrations at monthly and longer time scales for use in epidemiologic analyses. However, we also analyzed daily data to better disentangle spatial and temporal relationships. For AOD to be helpful, it needs to add information beyond that available from the monitoring network. For analyses of chronic health effects, it needs to add information about the concentrations of long-term average PM2.5; therefore, filling the spatial gaps is key. Much recent evidence has shown that AOD is correlated with PM2.5 in the eastern United States, but the use of AOD in exposure analysis for epidemiologic work has been rare, in part because discrepancies necessarily exist between satellite-retrieved estimates of AOD, which is an atmospheric-column average, and ground-level PM2.5. In this report, we summarize the results of a number of empirical analyses and of the development of statistical models for the use of proxy information, in particular satellite AOD, in

  1. Assessment of climate sensitivity to the representation of aerosols in a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David

    2016-04-01

    Atmospheric aerosols can significantly affect the Earth's radiative balance due to absorption, scattering, and indirect effects upon the climate system. Although our understanding of aerosol properties has improved over recent decades, aerosol radiative forcing remains as one of the largest uncertainties when projecting future climate change. A coupled ocean-atmosphere general circulation model was used to perform sensitivity tests in order to investigate how the representation of aerosols within the model can affect decadal climate variability. These tests included looking at the difference between using constant emissions versus using emissions that evolve over a period of thirty years; examining the impacts of including indirect effects from sea salt and organics; altering the aerosol optical properties; and using an interactive aerosol scheme versus using 2-D climatologies. The results of these sensitivity tests show how modifying certain aspects of the aerosol scheme can significantly modify radiative flux and global surface temperature.

  2. Photoacoustic study of airborne and model aerosols

    NASA Astrophysics Data System (ADS)

    Alebić-Juretić, A.; Zetzsch, C.; Dóka, O.; Bicanic, D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere with the physicochemical properties of the aerosols determining the lifetime of these organic compounds. As an example, the resistance of some PAHs against the photolysis is explained by the effect of the aerosol's "inner filter" that reduces the intensity of incident light reaching the mineral particles. On the other hand, some constituents of the aerosols can act as catalytic and/or stoichiometric reagents in atmospheric reactions on the solid surfaces. In the study described here the photoacoustic (PA) spectroscopy in the UV-Vis was used to investigate natural and model aerosols. The PA spectra obtained from coal and wood ashes and of Saharan sand, all three representatives of airborne aerosols, provide the evidence for the existence of the "inner filter." Furthermore, valuable information about the different nature of the interaction between the model aerosols and adsorbed organics (e.g., PAH-pyranthrene and silica, alumina, and MgO) has been obtained. Finally, the outcome of the study conducted with powdered mixtures of chalk and black carbon suggests that the PA method is a candidate method for determination of carbon content in stack ashes.

  3. Aerosol Optical Thickness Variability in the New York Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Liepert, B. G.

    2003-12-01

    In July 2003 this field study was performed as part of the NASA Goddard Institute for Space Studies Summer Program "Institute for Climate and Planets". The spatial variability of aerosol spectral optical thickness (AOT) in the New York Metropolitan area was measured with a hand held sun photometer "Microtops II". Measurements were taken on board of a cruise ship around Manhattan, and several transects from North to South and East to West within New York City including on top of the Empire State Building. These data are compared to other available ground observations of urban aerosols and to satellite data from MODIS. Consequences of the spatial variability of the effect of urban aerosols on climate will be discussed.

  4. Assessment and ground-based correction of the Level-3 MODIS daily aerosol optical depth: Implications in the context of surface solar radiation prediction and numerical weather modeling

    NASA Astrophysics Data System (ADS)

    Ruiz-Arias, J. A.; Dudhia, J.; Pozo-Vazquez, D.

    2012-12-01

    The Level-3 MODIS (L3M) aerosol optical depth (AOD) product offers interesting features for surface solar radiation and numerical weather modeling applications. However, most of the validation efforts so far have been focused on Level-2 (L2M) products and only rarely on L3M. We compare the Collection 5.1 L3M AOD (Terra dataset) available since 2000 against observed daily AOD values at 550 nm from more than 500 AERONET ground stations. The aim is to check the advisability of this dataset for surface solar radiation calculations using numerical weather models. Overall, the mean error (ME) is 0.03 (17%, relative to the mean observed AOD), with a root mean square error (RMSE) of 0.14 (73%), albeit these values are found highly dependent on geographical region. For AOD values above about 0.3 the expected error (EE) is found higher than that of the L2M product. We propose specific parameterizations for the EE of the L3M AOD, as well as for both its ME and its standard deviation. We also found that, roughly, half of the uncertainty of the L3M AOD dataset might be attributable to its sub-pixel variability. Finally, we used a radiative transfer model to investigate how the L3M AOD uncertainty propagates into the direct normal (DNI) and global horizontal (GHI) irradiances evaluation. Overall, for AODs smaller than 0.5, the induced uncertainty in DNI due to AOD alone is below 15% on average, and below 5% for GHI (for a solar zenith angle of 30 degrees). But the uncertainty in AOD is highly spatially variable, so is that in irradiance. These results suggest the necessity of a correction method to reduce the bias of the L3M AOD. Ground-based AOD measurements can be also used in a data fusion procedure. We present the results of a preliminary study using optimal interpolation of L3M daily AOD data based on daily AERONET AOD measurements in the US in the period since June to August 2009. The method removes the data gaps in the original dataset, assesses the spatial distribution

  5. Estimating trace gas and aerosol emissions over South America: Relationship between fire radiative energy released and aerosol optical depth observations

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriel; Freitas, Saulo R.; Moraes, Elisabete Caria; Ferreira, Nelson Jesus; Shimabukuro, Yosio Edemir; Rao, Vadlamudi Brahmananda; Longo, Karla M.

    2009-12-01

    Contemporary human activities such as tropical deforestation, land clearing for agriculture, pest control and grassland management lead to biomass burning, which in turn leads to land-cover changes. However, biomass burning emissions are not correctly measured and the methods to assess these emissions form a part of current research area. The traditional methods for estimating aerosols and trace gases released into the atmosphere generally use emission factors associated with fuel loading and moisture characteristics and other parameters that are hard to estimate in near real-time applications. In this paper, fire radiative power (FRP) products were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Geostationary Operational Environmental Satellites (GOES) fire products and new South America generic biomes FRE-based smoke aerosol emission coefficients were derived and applied in 2002 South America fire season. The inventory estimated by MODIS and GOES FRP measurements were included in Coupled Aerosol-Tracer Transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) and evaluated with ground truth collected in Large Scale Biosphere-Atmosphere Smoke, Aerosols, Clouds, rainfall, and Climate (SMOCC) and Radiation, Cloud, and Climate Interactions (RaCCI). Although the linear regression showed that GOES FRP overestimates MODIS FRP observations, the use of a common external parameter such as MODIS aerosol optical depth product could minimize the difference between sensors. The relationship between the PM 2.5μm (Particulate Matter with diameter less than 2.5 μm) and CO (Carbon Monoxide) model shows a good agreement with SMOCC/RaCCI data in the general pattern of temporal evolution. The results showed high correlations, with values between 0.80 and 0.95 (significant at 0.5 level by student t test), for the CATT-BRAMS simulations with PM 2.5μm and CO.

  6. Remote Marine Aerosol: A Characterization of Physical, Chemical and Optical Properties and their Relation to Radiative Transfer in the Troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Porter, John N.

    1997-01-01

    Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).

  7. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  8. Aerosol Optical Depth Trends in Switzerland from 1995 - 2010

    NASA Astrophysics Data System (ADS)

    Nyeki, S.; Halios, C.; Eleftheriadis, K.; Wehrli, C.; Groebner, J.

    2011-12-01

    Accurate and long-term measurements of aerosol optical depth (AOD) serve as an important contribution to studies assessing the effect of aerosols on climate change. In this study re-calibrated and updated AOD climatologies are reported for two sites in Switzerland for 1995 - 2010, (Davos, 1580 m and Jungfraujoch, 3580 m), as well as a new data-set for an urban site Bern (560 m asl). At Davos and Jungfraujoch AOD observations were conducted using an SPM2000 sun-photometer system until 2003 and with precision filter radiometers (PFR) from 1999 onwards, while continuous AOD measurements were conducted at Bern over the 1998 - 2006 period with SPM2000. In order to homogenize these diverse data-sets, procedures and algorithms of the GAW-PFR (Global Atmosphere Watch - Precision Filter Radiometer, WMO) program to derive AOD are used here. GAW-PFR procedures and algorithms use: 1) in-situ air pressure data, ii) in-situ or satellite ozone data, 3) commonly-used algorithms for cloud-screening, airmass calculation etc. The AOD average for the available 1-month data-set was 0.026 (± 0.013; ± 1 stdev) at Jungfraujoch, 0.069 (± 0.037) at Davos and 0.174 (± 0.054) at Bern illustrating the typical increase in average AOD with decreasing altitude due to surface aerosol sources, and to boundary layer/free troposphere dynamics. A trend analysis was performed using the seasonal Kendall test, and Sen's slope estimator on logarithmized AOD data. The seasonal Kendall test is an extension of the Mann-Kendall test, a non-parametric technique which determines if a monotonic increasing or de-creasing long-term trend exists. As AOD data are log-normally distributed, the logarithm of AOD was used for analysis. Statistically significant linear trends was found only at Jungfraujoch while for Davos and Bern even though no statistically significant trends were observed, significant trends during certain months were detected (e.g. during May, July, and December for Bern). Factors which could

  9. Heterogeneous Photochemistry and Optical Properties of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Grassian, Vicki

    2012-02-01

    It is now widely recognized that heterogeneous reactions of mineral dust aerosol with trace atmospheric gases impact the chemical balance of the atmosphere and the physicochemical properties of these particles. Field studies using single particle analysis, have now shown that the chemistry is mineralogy specific and follows the trends expected from laboratory studies. These laboratory studies, which were initiated over a decade ago, have focused on the nighttime chemistry of mineral dust aerosol which is really only ``half'' the story. This talk will focus on two aspects of solar light interaction with mineral dust aerosol. First, the heterogeneous photochemistry of adsorbed chromophores (e.g. nitrate ion) and light absorbing components of mineral dust (iron oxides and titanium dioxide) is discussed. These heterogeneous photochemical reactions are poorly understood and laboratory studies to better quantify these reactions in order to determine the impact on the chemical balance of the atmosphere are needed, as will be discussed. Second, the optical properties of mineral dust aerosol measured by extinction infrared spectroscopy and visible light scattering show that shape effects are extremely important for mineral dust aerosol.

  10. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  11. Optical properties of aerosols over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bryant, C.; Eleftheriadis, K.; Smolik, J.; Zdimal, V.; Mihalopoulos, N.; Colbeck, I.

    Measurements of aerosol optical properties, size distribution and chemical composition were conducted at Finokalia, a remote coastal site on the Greek island of Crete (35°19'N, 25°40'E) during July 2000 and January 2001. During the summer campaign the total scattering coefficient, σ, (at a wavelength of 550 nm) ranged from 13 to 120 Mm -1 (mean=44.2 Mm -1, standard deviation=17.5) whilst during the winter it ranged from 7.22 to 37.8 Mm -1 (mean=18.42 Mm -1, standard deviation=6.61). A distinct diurnal variation in scattering coefficients was observed, with minima occurring during the early morning and maxima in the late afternoon during the summer and late evening during the winter. The mean value of the Ångström exponent was 1.47 during the summer and 1.28 during the winter, suggesting a larger fraction of smaller particles at the site during the summer. This was confirmed by continuous measurements of the aerosol size distribution. An analysis of the single scattering albedo suggests that there is a more absorbing fraction in the particle composition in the summer than during the winter. An investigation of air mass origins on aerosol optical properties indicated that those from Turkey and Central/Eastern Europe were highly polluted with a corresponding impact on aerosol optical properties. A linear relationship was obtained between the total scattering coefficient and both the non-sea-salt sulphate concentrations and the fine aerosol fraction.

  12. Seasonal variability of aerosol optical depth over Indian subcontinent

    USGS Publications Warehouse

    Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.

    2005-01-01

    Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.

  13. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  14. Characterisation of coated aerosols using optical tweezers and neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Jones, S. H.; Ward, A.; King, M. D.

    2013-12-01

    Thin organic films are believed to form naturally on the surface of aerosols [1,2] and influence aerosol properties. Cloud condensation nuclei formation and chemical reactions such as aerosol oxidation are effected by the presence of thin films [3]. There is a requirement to characterise the physical properties of both the core aerosol and its organic film in order to fully understand the contribution of coated aerosols to the indirect effect. Two complementary techniques have been used to study the oxidation of thin organic films on the surface of aerosols; laser optical tweezers and neutron reflectometry. Micron sized polystyrene beads coated in oleic acid have been trapped in air using two counter propagating laser beams. Polystyrene beads are used as a proxy for solid aerosol. The trapped aerosol is illuminated with a white LED over a broadband wavelength range and the scattered light collected to produce a Mie spectrum [4]. Analysis of the Mie spectrum results in determination of the core polystyrene bead radius, the oleic acid film thickness and refractive index dispersion of the core and shell [5]. A flow of ozone gas can then be introduced into the aerosol environment to oxidise the thin film of oleic acid and the reaction followed by monitoring the changes in the Mie spectrum. The results demonstrate complete removal of the oleic acid film. We conclude that the use of a counter propagating optical trap combined with white light Mie spectroscopy can be used to study a range of organic films on different types of aerosols and their oxidation reactions. Neutron reflectometry has been used as a complementary technique to study the oxidation of monolayer films at the air-water interface in order to gain information on reaction kinetics. The oxidation of an oleic acid film at the air-water interface by the common tropospheric oxidant ozone has been studied using a Langmuir trough. Results indicate complete removal of the oleic acid film with ozone in agreement

  15. The assessment of climatology of absorbing aerosol field with integration of aerosol-climate model, and ground-based and satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Jeong, G.; Wang, C.; Mahowald, N. M.; Rigby, M. L.; Martins, J.

    2009-12-01

    Absorbing aerosols play important roles in the Earth’s radiation budget and atmospheric circulation by absorbing sunlight and heating the atmosphere while cooling the surface. The strength of such effects depends on microphysical processes in the lifecycle of absorbing aerosols and their emissions to the atmosphere. Even though the knowledge of aerosol controlling processes and the techniques measuring aerosol properties have been greatly advanced, there are still significant gaps between model results and measurement data. The goal of this study is to minimize the model-observation discrepancy and to assess global 3-D absorbing aerosol fields. To achieve this goal, we investigate the errors related to aerosol models and measurements, and optimize the emissions of anthropogenic absorbing aerosols (BC) used in the models. In this study we first derive the aerosol optical depth (AOD) and absorbing aerosol optical depth (AAOD) of anthropogenic aerosols using the 3-D interactive aerosol-climate model [Kim et al., 2008] developed based on NCAR CAM3, running in an aerosol-transport-model (ATM) driven by NCEP/NCAR reanalysis data (2001~2003). Aerosol transformation in the atmosphere is fully considered in this model. We also derived the AOD and AAOD of dust aerosols based on the climatology from the Model of Atmospheric Transport and Chemistry (MATCH) driven by the NCEP/NCAR reanalysis data [Mahowald et al., 1997; Kistler et al., 2001]. In addition, the climatology (10-year mean) of the CAM3 sea salt model (Mahowald et al., 2006) is used to calculate the AOD of sea salt aerosols. An inverse modeling technique (Kalman filtering) is used to optimize the emissions of BC aerosols by minimizing the model-observation discrepancy of AAOD, and the emissions of anthropogenic organic carbon (OC) aerosols and SO2 by minimizing the model-observation discrepancy of AOD. Initial estimates of carbonaceous aerosol emission due to fossil fuel are taken from the MIT EPPA model and Bond

  16. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. I - Theory and instrumentation

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Tracy, D. H.; Eloranta, E. W.; Roesler, F. L.; Weinman, J. A.; Trauger, J. T.; Sroga, J. T.

    1983-01-01

    A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator-amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

  17. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2011-12-01

    We present the implementation and evaluation of a sectional aerosol microphysics model SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by keeping the number of variables needed to describe the size and composition distribution to the minimum. The aerosol size distribution is described using 20 size sections with 10 size sections in size space which cover diameters ranging from 3 nm to 10 μm divided to three subranges each having distinct optimised process and compound selection. The ability of the module to describe the global aerosol properties was evaluated by comparison against (1) measured continental and marine size distributions, (2) observed variability of continental modal number concentrations, (3) measured sulphate, organic carbon, black carbon and sea salt mass concentrations, (4) observations of AOD and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7 which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using the coarse resolution of 10 size sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sea salt, sulphate and carbonaceous species have an annual mean within a factor of five of the observations, while the simulated sea salt concentrations reproduce the observations less accurately and show high variability. Regionally, AOD is in relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modeled AOD is

  18. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-08-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry-climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry-climate model for the period 1960-2009 against extensive ground-based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009), aerosol size distributions (2008-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2), aerosol number concentrations (N30 NMBF = -0.85; N50 NMBF = -0.65; and N100 NMBF = -0.96) and AOD (NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68 % (-78 %), SPM of -42 % (-20 %), PM10 of -9 % (-8 %) and AOD of -11 % (-14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  19. Measurements of aerosol optical depth and diffuse-to-direct irradiance ratios in the Northeastern United States

    SciTech Connect

    Laulainen, N.; Larson, N.; Michalsky, J.J.

    1995-12-31

    Simultaneous observations of total and diffuse irradiance on a horizontal surface in six narrowband filtered detectors and one broadband shortwave detector have been made since late 1991 at a nine-site network of multi-filter rotating shadowband radiometers. From these measurements, the direct normal irradiance values are calculated. These data are then used to calculate the outside-the-atmosphere direct irradiance (lo) and total optical depth using the Langley method of regressing the natural logarithm of the direct irradiance against air mass for cloud-free conditions. Frequent determinations of lo allow tracking of changes in lo caused by soiling and filter degradation. The daily average total optical depth is calculated in two ways: (1) from the slope of the Langley regression line and (2) from 30-minute averages calculated from the Beer-Lambert-Bougeur law using the median lo for that day. Finally, aerosol optical depths for five wavelengths (the other narrowband wavelength is used to estimate water vapor) are obtained by subtracting Rayleigh scattering and Chappuis ozone absorption optical depths from the total optical depths. The aerosol pattern at each site is consistent with an annual cycle superimposed on a decaying aerosol loading associated with the Mt. Pinatubo eruption. Moreover, the wavelength dependence of the aerosol pattern shows seasonal changes in the aerosol size distribution. The irradiance data are also used to calculate the diffuse-to-direct irradiance ratio, a quantity which in theory is related to the aerosol optical depth and surface albedo. A radiative transfer model based on the adjoint method, combined with a nonlinear least squares method. is used to estimate aerosol optical depth and surface albedo from the observed diffuse-to-direct ratios. The aerosol optical depths are in good agreement with those calculated from the direct beam data and the surface albedos are in accord with other observations.

  20. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2012-06-01

    We present the implementation and evaluation of a sectional aerosol microphysics module SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by minimising the number of variables needed to describe the size and composition distribution. The aerosol size distribution is described using 10 size classes with parallel sections which can have different chemical compositions. Thus in total, the module tracks 20 size sections which cover diameters ranging from 3 nm to 10 μm and are divided into three subranges, each with an optimised selection of processes and compounds. The implementation of SALSA into ECHAM5-HAM includes the main aerosol processes in the atmosphere: emissions, removal, radiative effects, liquid and gas phase sulphate chemistry, and the aerosol microphysics. The aerosol compounds treated in the module are sulphate, organic carbon, sea salt, black carbon, and mineral dust. In its default configuration, ECHAM5-HAM treats aerosol size distribution using the modal method. In this implementation, the aerosol processes were converted to be used in a sectional model framework. The ability of the module to describe the global aerosol properties was evaluated by comparing against (1) measured continental and marine size distributions, (2) observed variability of continental number concentrations, (3) measured sulphate, organic carbon, black carbon and sea-salt mass concentrations, (4) observations of aerosol optical depth (AOD) and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7, which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well

  1. Towards an integrated optical single aerosol particle lab.

    PubMed

    Horstmann, Marcel; Probst, Karl; Fallnich, Carsten

    2012-01-21

    We present a manipulation and characterization system for single airborne particles which is integrated onto a microscope slide. Trapped particles are manipulated by means of radiation pressure and characterized by cavity enhanced Raman spectroscopy. Optical fibers are used to deliver the trapping laser light as well as to collect the Raman scattered light, allowing for a flexible usage of the device. The system features a sample chamber which is separated from an aerosol-flooded injection chamber by means of a light guiding glass-capillary. The coupling of this device with an aerosol optical tweezers setup to selectively load its trapping sites is demonstrated. Finally, a route towards chip-integrated handling and processing of multiple particles is shown and the first results are presented. PMID:22105700

  2. Retrieval of aerosol optical thickness over land from airborne polarized measurements in Tianjin and Tangshan

    NASA Astrophysics Data System (ADS)

    Wang, Han; Sun, Xiaobing; Hou, Weizhen; Chen, Cheng; Hong, Jin

    2015-03-01

    New developed sensor was called Atmosphere Multi-angle Polarization Radiometer (AMPR). It provides airborne multi-spectral, multi-angular and polarized measurements. Based on the measurements, a method to retrieve aerosol optical thickness (AOT) was developed. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained. Initial surface reflectance was estimated from measurements at 1640 nm. With iteration the surface polarized reflectance tends to the real value together with AOT. Retrieved cases were selected from measurements in Tianjin. Validation between AOTs from AMPR and CE318 is encouraging. The AOTs along the track shows reasonable temporal and spatial variation.

  3. The Aerosol Coarse Mode: Its Importance for Light Scattering Enhancement and Columnar Optical Closure Studies

    NASA Astrophysics Data System (ADS)

    Zieger, P.

    2015-12-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of importance for radiative forcing calculations but is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, the particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Here, we will present insights from measurements of f(RH) across Europe (Zieger et al., 2013) and will demonstrate why the coarse mode is important when modeling or predicting f(RH) from auxiliary aerosol in-situ measurements. We will show the implications by presenting the results of a recently performed columnar optical closure study (Zieger et al., 2015). This study linked ground-based in-situ measurements (with the help of airborne aerosol size distribution measurements) to columnar aerosol optical properties derived by a co-located AERONET sun photometer. The in situ derived aerosol optical depths (AOD) were clearly correlated with the directly measured values of the AERONET sun photometer but were substantially lower compared to the directly measured values (factor of ˜ 2-3). Differences became greater for longer wavelengths. The disagreement between in situ derived and directly measured AOD was hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the forest's canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers from long-range transport were observed for parts of the campaign which could have explained some of the disagreement. Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different

  4. Vertical profiles of aerosol radiative forcing - a comparison of AEROCOM phase 2 model submissions

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.

    2012-04-01

    Aerosols in the earth's atmosphere affect the radiation balance of the planet. The radiative forcing (RF) induced by a given aerosol burden is however sensitive to its vertical density profile, in addition to aerosol optical properties, cloud distributions and surface albedo. Differences in vertical profiles are thought to be among the causes for the large intermodel differences in RF of the aerosol direct effect. As part of the AEROCOM phase 2 direct radiative forcing experiment, this study compares 3D concentration fields of black carbon from fossil fuel burning (BC) and sulphate (SO4) from a set of major global climate models. The participating models were run using a prescribed set of emissions of aerosol and aerosol precursors and the same meteorological year. We assume that model differences due to the aerosol vertical profile can be factored out from other differences such as aerosol physics, radiative transfer or ground albedo. We consequently analyse model RF variability using profiles of normalized RF (radiative forcing per unit mass, NDRF) calculated from a single model. This tool allows us to quantify the fraction of the intermodel variability due to differences in aerosol vertical profiles. We show that there are still significant differences between both modelled vertical density profiles, treatment of aerosol physics and other factors influencing the RF profiles.

  5. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols

    NASA Astrophysics Data System (ADS)

    Trainic, M.; Riziq, A. A.; Lavi, A.; Flores, J. M.; Rudich, Y.

    2011-07-01

    The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient RH. The reactions were studied under different relative humidity (RH) conditions, varying from dry conditions (~20 % RH) and up to 90 % RH, covering conditions prevalent in many atmospheric environments. At λ = 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90 %). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ~3.5, and the optical extinction cross-section up to ~250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100nm to 300 nm, as well as with decreasing RH values from 90 % to ~40 %. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50 %, 75 % and 90 % show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ = 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including imidazoles) increases with increasing RH value. A core/shell model used for the investigation of the optical properties of the reaction products of AS 300nm with gas phase glyoxal, shows that the refractive index (RI) of the reaction products are in the range between 1.57-1.71 for the real part and between 0-0.02 for the imaginary part of the RI at 355 nm. The observed increase in the

  6. Remote sensing of aerosol plumes: a semianalytical model.

    PubMed

    Alakian, Alexandre; Marion, Rodolphe; Briottet, Xavier

    2008-04-10

    A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5 microm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0 degrees and 60 degrees whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images. PMID:18404185

  7. Remote sensing of aerosol plumes: a semianalytical model

    NASA Astrophysics Data System (ADS)

    Alakian, Alexandre; Marion, Rodolphe; Briottet, Xavier

    2008-04-01

    A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5 μm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0° and 60° whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

  8. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    NASA Astrophysics Data System (ADS)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  9. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  10. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  11. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network

    NASA Astrophysics Data System (ADS)

    Che, Huizheng; Zhang, Xiaoye; Chen, Hongbin; Damiri, Bahaiddin; Goloub, Philippe; Li, Zhengqiang; Zhang, Xiaochun; Wei, Yao; Zhou, Huaigang; Dong, Fan; Li, Deping; Zhou, Tianming

    2009-02-01

    This paper introduced the calibration of the CE-318 sunphotometer of the China Aerosol Remote Sensing Network (CARSNET) and the validation of aerosol optical depth (AOD) by AOD module of ASTPWin software compared with the simultaneous measurements of the Aerosol Robotic Network (AERONET)/Photométrie pour le Traitement Opérationnel de Normalization Satellitaire (PHOTONS) and PREDE skyradiometer. The results show that the CARSNET AOD measurements have the same accuracy as the AERONET/PHOTONS. On the basis of a comparison between CARSNET and AERONET, the AODs from CARSNET at 1020, 870, 670, and 440 nm are about 0.03, 0.01, 0.01, and 0.01 larger than those from AERONET, respectively. The aerosol optical properties over Beijing acquired through the CE-318 sunphotometers of one AERONET/PHOTONS site and two CARSNET sites were analyzed on the basis of 4-year measurements. It was obvious that the AOD of the Shangdianzi site (rural site) was lower than that of the two urban sites (the Institute of Atmospheric Physics (IAP) site (north urban site) and the Beijing Meteorological Observatory (BJO) site (south urban site)). The AOD of BJO was about 0.05, 0.04, 0.05, and 0.06 larger than that of IAP at 1020, 870, 670, and 440 nm, respectively, indicating that there is more local pollution in the south part of Beijing. The highest AOD was found in summer because of the stagnation planetary boundary layer and transport of pollutants from large pollution centers south of Beijing. The high temperature and relative humidity in summer also favor the production of aerosol precursor and the hygroscopic growth of the existing particles locally, which results in high AOD. In contrast, the lowest AOD at the two urban sites and one rural site in Beijing occurred in winter as the frequent cold air masses help pollutants diffuse easily.

  12. Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties.

    PubMed

    Liu, Dong; Yang, Yongying; Cheng, Zhongtao; Huang, Hanlu; Zhang, Bo; Ling, Tong; Shen, Yibing

    2013-06-01

    Taking advantage of the broad spectrum of the Cabannes-Brillouin scatter from atmospheric molecules, the high spectral resolution lidar (HSRL) technique employs a narrow spectral filter to separate the aerosol and molecular scattering components in the lidar return signals and therefore can obtain the aerosol optical properties as well as the lidar ratio (i.e., the extinction-to-backscatter ratio) which is normally selected or modeled in traditional backscatter lidars. A polarized HSRL instrument, which employs an interferometric spectral filter, is under development at the Zhejiang University (ZJU), China. In this paper, the theoretical basis to retrieve the aerosol lidar ratio, depolarization ratio and extinction and backscatter coefficients, is presented. Error analyses and sensitivity studies have been carried out on the spectral transmittance characteristics of the spectral filter. The result shows that a filter that has as small aerosol transmittance (i.e., large aerosol rejection rate) and large molecular transmittance as possible is desirable. To achieve accurate retrieval, the transmittance of the spectral filter for molecular and aerosol scattering signals should be well characterized. PMID:23736562

  13. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2016-04-01

    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  14. The Dynamics of Aerosols: Recent Developments In Regional and Global Modelling

    NASA Astrophysics Data System (ADS)

    Vignati, E.

    An efficient and accurate representation of aerosol size distributions and microphysi- cal processes is required to make physically consistent calculations of the direct and indirect radiative effects of aerosols and their impact on climate. Various modelling approaches have been developed to simulate the dynamical evolu- tion of natural and anthropogenic aerosol populations. Among the components of the particulate phase, sulphate, sea salt, black carbon, organic carbon and dust all play an important role. However their contributions vary from region to region. Modal models, in which the aerosol size distribution is represented by a number of modes, present a computational attractive approach for aerosol dynamic modelling in regional and global models. They can describe external as well as internal mixtures of aerosol particles and the full aerosol dynamics. The accuracy of modal models is however dependent on both the suitability of the lognormal approximation to the size distribution and the extent to which processes can be expressed in terms of distribution parameters. Simultaneously, recent developments have been made to treat many aerosol species in global models using discrete size bins. The detailed description allows a more ac- curate calculation of the aerosol water content, an important parameter required for calculations of aerosol optical properties. However, such a fine size resolution is usu- ally time consuming when used in large scale models, therefore sometimes not all the processes modifying aerosol properties are included. Modest requirements for storage and computations is one of the advantages of moment methods. These techniques have the capability of simultaneously represent the aerosol dynamic processes and transport in large scale models. An overview of recent developments of aerosol modelling in global and regional mod- els will be presented outlining the advantages and disadvantages of the various tech- niques for such large scales.

  15. Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations.

    PubMed

    Wang, M; Gordon, H R

    1995-10-20

    We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors. PMID:21060560

  16. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  17. Evaluation of Operationally Derived Aerosol Optical Depth from MSG-SEVIRI over Central Europe

    NASA Astrophysics Data System (ADS)

    Popp, C.; Riffler, M.; Emili, E.; Petitta, M.; Wunderle, S.

    2009-04-01

    Aerosol parameters derived from geostationary remote sensing instruments can complement those obtained from polar orbiting sensors (e.g. MODIS, MERIS, or AVHRR). The high scanning frequency of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) satellites of 15 minutes significantly broadens the potential diurnal coverage over Europe and Africa. Therefore, these data allow to better account for the occasionally high spatial and temporal variabilities of atmospheric aerosols, for instance in cases such as desert dust outbreaks, forest fires, or the evolution of high particulate matter concentrations during stable weather conditions. The aim of this study is to evaluate operationally derived aerosol optical depth maps based on imagery acquired by MSG-SEVIRI between December 2007 and November 2008. A one-channel multi-temporal approach is used in order to daily estimate aerosol optical depth for each slot between 6:12 and 18:12 UTC. The resulting SEVIRI AOD values are related to Sun photometer measurements from the Aerosol Robotic Network (AERONET). 22 AERONET sites within the study area of central Europe provide cloud-screened level1.5 data for the investigation period. Overall, nearly ten thousand instantaneous SEVIRI and Sun photometer AOD values are compared and a correlation of 0.75 as well as a root-mean-square-error of 0.07 is found. Further, about 75% of all SEVIRI AOD values fall within the MODIS expected error over land of +/-(0.05+0.15*AOD). Finally, the computed statistical parameters for each individual season do not vary strongly. Taken together, the performance of the operational SEVIRI AOD estimation is comparable to the ones based on data from sensors on-board polar orbiting satellites. Therefore, these aerosol information of high temporal frequency can be of great interest e.g. for tracking pollutant transport, for comparisons with aerosol modelling results, or for synergistic use with additional

  18. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-05-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry climate models. Here we compare the HadGEM3-UKCA coupled chemistry-climate model for the period 1960 to 2009 against extensive ground based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2) and aerosol optical depth (AOD, NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68% (-78%), SPM of -42% (-20%), PM10 of -9% (-8%) and AOD of -11% (-14%). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5%) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3%), compared to simulations where ARE are excluded (0.2%). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by 3 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  19. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  20. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia

    NASA Astrophysics Data System (ADS)

    Masmoudi, M.; Chaabane, M.; Medhioub, K.; Elleuch, F.

    The aerosol optical thickness (AOT) τa computed from the spectral sun photometer in Thala (Tunisia) exhibited variability ranging from approximately 0.03 to greater than 2.0 at 870 nm for March-October 2001. These measurements are compared to the aerosol optical thickness computed in Ouagadougou (Burkina-Faso), Banizoumbou (Niger), IMC Oristano (Sardinia) and Rome Tor Vergata (Italy). Analysis of τa data from this observation network suggests that there is a high temporal and spatial variability of τa in the different sites. The Angström wavelength exponent α was found to vary with the magnitude of the aerosol optical thickness, with values as high as 1.5 for very low τa, and values of -0.1 for high τa situations. The relationship between the two parameters τa and α is investigated. Values of the turbidity coefficient β have been determined in Thala (Tunisia) for 8 months in 2001 based on a direct fitting method of the Angström power law expression using sun photometer data. The monthly averaged values of the turbidity coefficient β vary between 0.15 and 0.33. The months of July and October experienced the highest turbidity, while April experienced the lowest aerosol loading on average. The turbidity shows a maximum and minimum values for the Southwest and the Northwest wind directions, respectively. The single scattering albedo ωo for the 870 nm wavelength obtained from solar aureole data in Thala is analysed according to the particles' origin.

  1. Aerosol Physiochemistry in Clean and Polluted Regions: Influences on Optical Properties and CCN

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Kapustin, V.; Howell, S.; Shinozuka, Y.; McNaughton, C.; Zhou, J.; Decarlo, P.; Jimenez, J.; Roberts, G.

    2007-12-01

    Long range transport of aerosol from urban regions and anthropogenic sources is recognized to influence the radiative properties of aerosol and cloud condensation nuclei, CCN, over large portions of the planet. The nature of these influences is determined by the size distributions, concentration and composition of the aerosol and their magnitude relative to natural sources. We have participated in diverse major field studies over the past decade designed to measure and isolate key properties that can be used to characterize various source regions and to provide aerosol parameters to effectively model both "direct" and "indirect" radiative effects. More recently these have expanded to include scales that can assess transformation in both gas and aerosol components as they evolve downwind or get lofted into the free troposphere. These experiments have revealed the importance of primary emissions and secondary emissions and the state of mixing of the aerosol both near the source and after aging downwind. The physiochemical processes that influence aerosol composition, growth, evolution, optical properties and cloud processes differ markedly with size. In this talk we focus on direct radiative effects that depend on sizes that dominate aerosol surface area or mass and on cloud related effects more sensitive to smaller sizes that dominate aerosol number and CCN. Key players of both anthropogenic and natural origin are black carbon (BC), sulfate, nitrate and organic carbon. These frequently evolve into internal mixtures and/or interact with similar natural aerosol such as dust and sea- salt. Hence, the size resolved state-of-mixing of these components determine their influences and also impact the strategies that might be used to mitigate any effects. Recent data highlight the significance of BC to both direct and indirect effects and reveal its multiple roles expressed through its optical properties, its evolution, its relation to light absorbing OC (brown carbon) and

  2. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  3. INDOOR CONCENTRATION MODELING OF AEROSOL STRONG ACIDITY

    EPA Science Inventory

    A model for estimating indoor concentrations of acid aerosol was applied to data collected during the summer of 1989, in a densely populated location in New Jersey. he model, from a study of a semi-rural community in Pennsylvania, was used to estimate indoor concentrations of aer...

  4. Development of RAMS-CMAQ to Simulate Aerosol Optical Depth and Aerosol Direct Radiative Forcing and Its Application to East Asia

    SciTech Connect

    Han, Xiao; Zhang, Meigen; Liu, Xiaohong; Ghan, Steven J; Xin, Jin-Yuan; Wang, Li-Li

    2009-11-16

    The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2-1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than -25 and -20 W m-2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.

  5. The Aerosol Limb Imager: acousto-optic imaging of limb scattered sunlight for stratospheric aerosol profiling

    NASA Astrophysics Data System (ADS)

    Elash, B. J.; Bourassa, A. E.; Loewen, P. R.; Lloyd, N. D.; Degenstein, D. A.

    2015-12-01

    The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype instrument. The long term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track. The instrument design uses a large aperture Acousto-Optic Tunable Filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicate that the radiance measurements are of high quality, and we have used these to retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650-1000 nm, along with one moment of the particle size distribution. Those preliminary results are promising and development of a satellite prototype of ALI within the Canadian Space Agency is ongoing.

  6. A physical model of Titan's aerosols

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Mckay, C. P.; Griffith, C. A.; Turco, R. P.

    1992-01-01

    A modeling effort is presented for the nature of the stratospheric haze on Titan, under several simplifying assumptions; chief among these is that the aerosols in question are of a single composition, and involatile. It is further assumed that a one-dimensional model is capable of simulating the general characteristics of the aerosol. It is suggested in this light that the detached haze on Titan may be a manifestation of organized, Hadley-type motions above 300 km altitude, with vertical velocities of 1 cm/sec. The hemispherical asymmetry of the visible albedo may be due to organized vertical motions within the upper 150-200 km of the haze.

  7. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  8. Dye lasing in optically manipulated liquid aerosols.

    PubMed

    Karadag, Y; Aas, M; Jonáš, A; Anand, S; McGloin, D; Kiraz, A

    2013-05-15

    We report lasing in airborne, rhodamine B-doped glycerol-water droplets with diameters ranging between 7.7 and 11.0 μm, which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Our experiments revealed nonlinear dependence of the intensity of the droplet whispering gallery modes (WGMs) on the pump laser fluence, indicating dye lasing. The average wavelength of the lasing WGMs could be tuned between 600 and 630 nm by changing the droplet size. These results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium. PMID:23938905

  9. Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2014-05-01

    The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the

  10. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2013-11-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propogate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high latitude clean air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance

  11. Some Algorithms For Simulating Size-resolved Aerosol Dynamics Models

    NASA Astrophysics Data System (ADS)

    Debry, E.; Sportisse, B.

    The objective of this presentation is to show some algorithms used to solve aerosol dynamics in 3D dispersion models. INTRODUCTION The gas phase pollution has been widely studied and some models are now available . The situation is quite different with respect to atmospheric aerosols . However at- mospheric particulate matter significantly influences atmospheric properties such as radiative balance, cloud formation, gas pollutants concentrations ( gas to particle con- version ), and has an impact on man health. As aerosols properties ( optical, hygroscopic, noxiousness ) depend mainly on their size, it appears important to be able to follow the aerosol ( or particle ) size distribution (PSD) during time. This former is modified by physical processes as coagulation, condensation or evaporation, nucleation and removal. Aerosol dynamics is usually modelized by the well-known General Dynamics Equation (GDE) [1]. MODELS Several models already exist to solve this equation. Multi-modal models are widely used [2] [3] because of the few parameters needed, but the GDE is solved only on its moments and the PSD is assumed to remain in a log-normal form. On the contrary, size-resolved models implies a discretization of the aerosol size spec- trum into several bins and to solve the GDE within each one. This step can be per- formed either by resolving each process separately ( splitting ), for example coagula- tion can be resolved by the well-known "size-binning" algorithms [4] and condensa- tion leads to an advection equation on the PSD [5], or by coupling all processes, what the finite elements [6] and stochastic methods [7] allows. Stochastic algorithms may not be competitive compared to deterministic ones with respect to the computation time, but they provide reference solutions useful to validate more operational codes on realistic cases, as analytic solutions of the GDE exist only for academic cases. REFERENCES [1] Seinfeld, J.H. and Pandis,S.N. Atmospheric chemistry and

  12. Assimilation of Aerosols from Biomass Burning by the Radiative Transfer Model Brasil-Sr

    NASA Astrophysics Data System (ADS)

    Costa, R. S.; Gonçalves, A. R.; Souza, J. G.; Martins, F. R.; Pereira, E. B.

    2015-12-01

    The radiative transfer model BRASIL-SR is the main tool used by the Earth System Science Centre from the National Institute for Space Research (CCST / INPE) for solar energy resource assessment. Due to large and frequent events of burning biomass in Brazil there is a need to improve the aerosol representation in this model, mainly during the dry season (September - November) in Northern and Central Brazil. The standard aerosol representation in this model is inadequate to capture these events. It is based on the mean monthly climatological horizontal visibility with latitudinal values based on coarse global observation data. To improve the aerosol representation, climatological data of daily horizontal visibility from National Institute of Meteorology (INMET) was used to generate monthly averages from 1999 to 2012. To do a better representation of aerosols from burning biomass events, from megacities aerosol generation, and from transport processes, horizontal visibility estimates performed using aerosol optical thickness at 550 nm data from MACC Project Reanalysis model were used to adjust the aerosol representation in regions were the simple horizontal visibility fails. A methodology to generate these new visibility data from the Reanalysis was made and the resulting data was compared with the average horizontal visibility to implement a new corrected database. The solar irradiation simulated by the model using this new aerosol representation proved to be better than the previous version of the model in all regions with high aerosol loading.

  13. Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Siniuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R.; Tripathi, S. N.; Dubovik, O.; Giles, D. M.; Martins, J.; Reid, J. S.; O'Neill, N. T.; Smirnov, A.

    2009-12-01

    Several regions of the earth exhibit seasonal mixtures of fine and coarse mode sized aerosol types, which are challenging to characterize from satellite remote sensing. Over land the coarse mode size aerosols (radius >1 micron) originate primarily from arid regions, which generate airborne soil dust, and the dominant fine mode sources are gases and particulates from urban/industrial emissions and from biomass burning. AERONET sun-sky radiometer almucantar retrievals from several years are analyzed for the urban sites of Beijing, China and Kanpur, India (in the Ganges floodplain) where seasonal coarse mode dust particles mix with fine mode pollution aerosol, predominately in the spring. As increasingly more absorbing fine mode pollutants are added to the dust aerosol at both sites, the single scattering albedo (SSA) of the mixtures at 675 nm through 1020 nm decrease as the fine mode fraction of AOD increases, while the 440 nm SSA is relatively constant. Additionally we compare multi-year data from Ilorin, Nigeria where desert dust from the Sahara and Sahel mix with fine mode biomass-burning aerosols. The volume size distribution retrievals from this site often shows tri-modality (third mode centered at 0.6 micron radius), which suggests a different particle source than found for most other arid region AERONET sites, which typically have bi-modal distributions. Comparison of mid-visible single scattering albedo obtained from in situ aircraft measurements during DABEX to multi-year means from the Ilorin site AERONET retrievals show close agreement (within 0.03 or less) over a wide range of Angstrom exponent (0.3 to 1.5). Observed differences in the spectral SSA as a function of fine mode fraction of the optical depth between all three sites are discussed and occur due to differences in absorption for both modes and also due to fine mode particle size dynamics.

  14. Combining data from lidar and in situ instruments to characterize the vertical structure of aerosol optical properties

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Browell, E. V.; Grant, W. B.

    1998-01-01

    Over the last decade, the quantification of tropospheric aerosol abundance, composition and radiative impacts has become an important research endeavor. For the most part, the interest in tropospheric aerosols is derived from questions related to the global and local (instantaneous) radiative forcing of climate due to these aerosols. One approach is to study local forcing under well-defined conditions, and to extrapolate such results to global scales. To estimate local aerosol forcing, appropriate radiative transfer models can be employed (e.g., the Fu-Liou radiative transfer code, [Fu and Liou, 1993]). In general, such models require information on derived aerosol properties [Toon, 1994]; namely the aerosol optical depth, single-scattering albedo, and asymmetry factor (phase function), all of which appear in the equations of radiative transfer. In this paper, we report on a method that utilizes lidar data and in situ aerosol size distribution measurements to deduce the vertical structure of the aerosol complex index of refraction in the near IR, thus identifying the aerosol type. Together with aerosol size distributions obtained in situ, the aerosol refractive index can be used to calculate the necessary derived aerosol properties. The data analyzed here were collected during NASA's PEM West-B (Pacific Exploratory Mission) experiment, which took place in February/March 1994. The platform for the measurements was the NASA DC-8 aircraft. The primary goal of the PEM West missions [Browell et al., 1996] was the assessment of potential anthropogenic perturbations of the chemistry in the Pacific Basin troposphere. For this purpose the timing of PEM West-B corresponded to the seasonal peak in transport from the Asian continent into the Pacific basin [Merrill et al., in press]. This period normally occurs during Northern Hemisphere spring, when the Japan jet is well developed.

  15. Aerosol Optical Properties over the Oceans: Summary and Interpretation of Shadow-Band Radiometer Data from Six Cruises. Chapter 19

    NASA Technical Reports Server (NTRS)

    Miller, Mark A.; Reynolds, R. M.; Bartholomew, Mary Jane

    2001-01-01

    The aerosol scattering component of the total radiance measured at the detectors of ocean color satellites is determined with atmospheric correction algorithms. These algorithms are based on aerosol optical thickness measurements made in two channels that lie in the near-infrared portion of the electromagnetic spectrum. The aerosol properties in the near-infrared region are used because there is no significant contribution to the satellite-measured radiance from the underlying ocean surface in that spectral region. In the visible wavelength bands, the spectrum of radiation scattered from the turbid atmosphere is convolved with the spectrum of radiation scattered from the surface layers of the ocean. The radiance contribution made by aerosols in the visible bands is determined from the near-infrared measurements through the use of aerosol models and radiation transfer codes. Selection of appropriate aerosol models from the near-infrared measurements is a fundamental challenge. There are several challenges with respect to the development, improvement, and evaluation of satellite ocean-color atmospheric correction algorithms. A common thread among these challenges is the lack of over-ocean aerosol data. Until recently, one of the most important limitations has been the lack of techniques and instruments to make aerosol measurements at sea. There has been steady progress in this area over the past five years, and there are several new and promising devices and techniques for data collection. The development of new instruments and the collection of more aerosol data from over the world's oceans have brought the realization that aerosol measurements that can be directly compared with aerosol measurements from ocean color satellite measurements are difficult to obtain. There are two problems that limit these types of comparisons: the cloudiness of the atmosphere over the world's oceans and the limitations of the techniques and instruments used to collect aerosol data from

  16. Can satellite-derived aerosol optical depth quantify the surface aerosol radiative forcing?

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Ceamanos, Xavier; Roujean, Jean-Louis; Carrer, Dominique; Xue, Yong

    2014-12-01

    Aerosols play an important role in the climate of the Earth through aerosol radiative forcing (ARF). Nowadays, aerosol particles are detected, quantified and monitored by remote sensing techniques using low Earth orbit (LEO) and geostationary (GEO) satellites. In the present article, the use of satellite-derived AOD (aerosol optical depth) products is investigated in order to quantify on a daily basis the ARF at the surface level (SARF). By daily basis we mean that an average SARF value is computed every day based upon the available AOD satellite measurements for each station. In the first part of the study, the performance of four state-of-art different AOD products (MODIS-DT, MODIS-DB, MISR, and SEVIRI) is assessed through comparison against ground-based AOD measurements from 24 AERONET stations located in Europe and Africa during a 6-month period. While all AOD products are found to be comparable in terms of measured value (RMSE of 0.1 for low and average AOD values), a higher number of AOD estimates is made available by GEO satellites due to their enhanced frequency of scan. Experiments show a general lower agreement of AOD estimates over the African sites (RMSE of 0.2), which show the highest aerosol concentrations along with the occurrence of dust aerosols, coarse particles, and bright surfaces. In the second part of this study, the lessons learned about the confidence in aerosol burden derived from satellites are used to estimate SARF under clear sky conditions. While the use of AOD products issued from GEO observations like SEVIRI brings improvement in the SARF estimates with regard to LEO-based AOD products, the resulting absolute bias (13 W/m2 in average when AERONET AOD is used as reference) is judged to be still high in comparison with the average values of SARF found in this study (from - 25 W/m2 to - 43 W/m2) and also in the literature (from - 10 W/m2 to - 47 W/m2).

  17. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences

    NASA Astrophysics Data System (ADS)

    Lynch, Peng; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Hogan, Timothy F.; Hyer, Edward J.; Curtis, Cynthia A.; Hegg, Dean A.; Shi, Yingxi; Campbell, James R.; Rubin, Juli I.; Sessions, Walter R.; Turk, F. Joseph; Walker, Annette L.

    2016-04-01

    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1 × 1° and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how

  18. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  19. Large differences in aerosol optical properties over the north-west Atlantic Ocean during the TCAP field campaign

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Comstock, J. M.; Fast, J. D.; Flynn, C. J.; Hubbe, J. M.; Kassianov, E.; Mei, F.; Pekour, M. S.; Schmid, B.; Sedlacek, A. J., III; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2014-12-01

    Aerosol radiative forcing is an important parameter in the Earth's radiation budget and can be an important driver of atmospheric circulation and the hydrological cycle. Accurate estimation of aerosol radiative forcing requires measurement of both the extensive and intensive optical properties of aerosols. While the intensive optical properties are independent of aerosol mass or number, they are critical inputs when calculating radiative forcing with applications to climate research, satellite remote sensing and model validations. The key aerosol intensive properties that need to be evaluated include single scattering albedo (SSA), the angstrom exponent, the asymmetry parameter, the radiative forcing efficiency, and the hygroscopic scattering factor. We report here on values of these variables over the Cape Cod and nearby northwest Atlantic Ocean during the Two Column Aerosol Project (TCAP). The average SSA shows a distinct profile having higher SSA values below the top of well-mixed residual layer (RL) and lower SSA above it. Aerosol in the free troposphere (FT) were found to have less spectral dependence in their optical properties, lower back scatter fraction and higher hygroscopic growth relative to aerosols found in the RL. Analysis of individual particle composition suggests that that ratio of aged to fresh aerosol numbers in the FT is 70% higher compared to aerosols measured in the RL, and that smoke from biomass burning contributed ~10% to this number. Single particle analysis also reveals that the fraction and variability of coated black carbon (BC) aerosol is higher in the FT relative to that measured in the residual layer. The daily radiative forcing efficiency of these aerosols in the FT is factor 2 higher than below RL. Seven years (2007-2013) of CALIPSO satellite observations show that the mean altitude of the top of smoke layers (~3.3 km) consistent with these in situ observations from TCAP. Overall, the long term CALIPSO observations characterizes

  20. Vertical distribution of optical and micro-physical properties of ambient aerosols during dry haze periods in Shanghai

    NASA Astrophysics Data System (ADS)

    Chen, Yonghang; Liu, Qiong; Geng, Fuhai; Zhang, Hua; Cai, Changjie; Xu, Tingting; Ma, Xiaojun; Li, Hao

    2012-04-01

    Based on the lidar data obtained from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite of NASA (National Aeronautics and Space Administration), the vertical distributions of aerosols are revealed during dry haze periods in the Shanghai vicinity by analyzing the optical and micro-physical parameters including total attenuated backscatter coefficient (TABC), volume depolarization ratio (VDR) and total attenuated color ratio (TACR). The preliminary conclusion is that when dry haze occurs in the Shanghai vicinity, smoke and maritime aerosols are the major types in summer and autumn and aerosols might be affected by long-distance transport of dust in spring; lower troposphere below 2 km is the layer polluted most severely and aerosol scattering with relatively irregular shape is much stronger than that of aerosols with relatively regular shape within 2-10 km in middle and upper troposphere; relatively large aerosols appear more frequently in lower (0-2 km) and middle troposphere (2-6 km) than those in upper troposphere (6-10 km). In addition, HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model is applied to analyze the aerosol sources during two typical episodes. The results indicate that the middle and upper troposphere in the Shanghai vicinity are affected by the long-distance transport of dusts from northwest of China or other upstream regions. The high aerosol concentrations in the Shanghai vicinity are mainly caused not only by local human activities but also by the long-distance transport from other places.

  1. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  2. Trace Gas/Aerosol Interactions and GMI Modeling Support

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan

    2005-01-01

    Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.

  3. Aerosol Optical Depth spatiotemporal variability and contribution of different aerosol types over Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos; Zanis, Prodromos; Pöschl, Ulrich; Lelieveld, Jos; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios; Pozzer, Andrea

    2015-04-01

    In this work, we study the aerosol spatiotemporal variability over the region of Eastern Mediterranean, for the time period 2000-2012, using a 0.1-degree gridded dataset compiled from level-2 MODIS TERRA and MODIS AQUA AOD550 and FMR550 data. A detailed validation of the AOD550 data was implemented using ground-based observations from the AERONET, also showing that the gridding methodology we followed allows for the detection of several local hot spots that cannot be seen using lower resolutions or level-3 data. By combining the MODIS data with data from other satellite sensors (TOMS, OMI), data from a global chemical-aerosol-transport model (GOCART), and reanalysis data from MACC and ERA-interim, we quantify the relative contribution of different aerosol types to the total AOD550 for the period of interest. For this reason, we developed an optimized algorithm for regional studies based on results from previous global studies. Over land, anthropogenic, dust, and fine-mode natural aerosols contribute to the total AOD550, while anthropogenic, dust and maritime AODs are calculated over the ocean. The dust AOD550 over the region was compared against dust AODs from the LIVAS CALIPSO product, showing a similar seasonal variability. Finally, we also look into the aerosol load short-term trends over the region for each aerosol type separately, the results being strongly affected by the selected time period. The research leading to these results has received funding from the European Social Fund (ESF) and national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers" (QUADIEEMS project) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 226144 (C8 project).

  4. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  5. A multi-model evaluation of aerosols over South Asia: Common problems and possible causes

    NASA Astrophysics Data System (ADS)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2014-07-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, the water cycle, and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions found there. In this study, the spatio-temporal aerosol distributions over South Asia from 7 global models, for the period of 2000-2007, are evaluated systematically against aerosol retrievals of NASA satellite sensors and ground-based measurements. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in 6 out of 7 models. Averaged over the entire South Asia, the annual mean Aerosol Optical Depth (AOD) is underestimated by a range of 18-45 % across models compared to MISR, which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS, MODIS Aqua and Terra). In particular at Kanpur located in northern India, AOD is underestimated even more by a factor of 4, and annual mean Aerosol Absorption Optical Depth (AAOD) is underestimated by about a factor of 2 in comparison with AERONET, during the post-monsoon and the wintertime periods (i.e. October-January) when agricultural waste burning and anthropogenic emissions dominate. The largest model underestimation of aerosol loading occurs in the lowest boundary layer (from surface to 2 km) based on the comparisons with aerosol extinction vertical distribution from CALIPSO. The possible causes for the common problems of model aerosol underestimation over south Asia are identified here, which are suggested as the following. During the winter, not only the columnar aerosol loading in models, but also surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol and black carbon) are found lower than observations (ISRO-GBP, ICARB and CALIPSO), indicating that anthropogenic emissions, especially biofuel, are likely underestimated in this season. Nitrate, a major component of aerosols in South Asia, is either

  6. Characterization of the seasonal cycle of south Asian aerosols: A Regional-Scale Modeling Analysis.

    SciTech Connect

    Adhikary, Bhupesh; Carmichael, Gregory; Tang, Youhua; Leung, Lai-Yung R.; Qian, Yun; Schauer, James J.; Stone, Elizabeth A.; Ramanathan, Veerabhadran; Ramana, Muvva V.

    2007-11-07

    The STEM chemical transport model is used to study the aerosol distribution, composition and seasonality over South Asia from September 2004 to August 2005. Model predictions of sulfate, black carbon, primary organic carbon, other anthropogenic particulate matter, wind blown mineral dusts and sea salt are compared at two sites in South Asia where year long experimental observations are available from the Atmospheric Brown Cloud (ABC) Project. The model predictions are able to capture both the magnitude and seasonality of aerosols over Hanimaadhoo Observatory, Maldives. However, the model is not able to explain the seasonality at the Kathmandu Observatory; but the model does capture Kathmandu’s observed annual mean concentration. The absence of seasonal brick kiln emissions within Kathmandu valley in the current inventory is a probable reason for this problem. This model study reveals high anthropogenic aerosol loading over the Ganges valley even in the monsoonal months, which needs to be corroborated by experimental observations. Modeling results also show a high dust loading over South Asia with a distinct seasonality. Model results of aerosol monthly composition are also presented at 5 cities in South Asia. Total and fine mode aerosol optical depth along with contribution from each aerosol species is presented; the results show that the anthropogenic fraction dominates in the dry season with major contributions from sulfate and absorbing aerosols. Finally comparison with observations show that model improvements are needed in the treatment of aerosol dry and wet removal processes and increase in sulfate production via heterogeneous pathways.

  7. Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Oreshenko, Maria; Heng, Kevin; Demory, Brice-Olivier

    2016-04-01

    Optical phase curves have become one of the common probes of exoplanetary atmospheres, but the information they encode has not been fully elucidated. Building on a diverse body of work, we upgrade the Flexible Modelling System to include scattering in the two-stream, dual-band approximation and generate plausible, three-dimensional structures of irradiated atmospheres to study the radiative effects of aerosols or condensates. In the optical, we treat the scattering of starlight using a generalization of Beer's law that allows for a finite Bond albedo to be prescribed. In the infrared, we implement the two-stream solutions and include scattering via an infrared scattering parameter. We present a suite of four-parameter general circulation models for Kepler-7b and demonstrate that its climatology is expected to be robust to variations in optical and infrared scattering. The westward and eastward shifts of the optical and infrared phase curves, respectively, are shown to be robust outcomes of the simulations. Assuming micron-sized particles and a simplified treatment of local brightness, we further show that the peak offset of the optical phase curve is sensitive to the composition of the aerosols or condensates. However, to within the measurement uncertainties, we cannot distinguish between aerosols made of silicates (enstatite or forsterite), iron, corundum or titanium oxide, based on a comparison to the measured peak offset (41° ± 12°) of the optical phase curve of Kepler-7b. Measuring high-precision optical phase curves will provide important constraints on the atmospheres of cloudy exoplanets and reduce degeneracies in interpreting their infrared spectra.

  8. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  9. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    NASA Technical Reports Server (NTRS)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; Ritter, C.; Sakai, T.; Santer, B. D.; Sato, M.; Schmidt, A.; Uchino, O.; Vernier, J. P.

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  10. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    NASA Astrophysics Data System (ADS)

    von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.

    2011-02-01

    For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the

  11. Deriving High Resolution UV Aerosol Optical Depth over East Asia using CAI-OMI Joint Retrieval

    NASA Astrophysics Data System (ADS)

    Go, S.; Kim, J.; KIM, M.; Lee, S.

    2015-12-01

    Monitoring aerosols using near UV spectral region have been successfully performed over decades by Ozong Monitoring Instruments (OMI) with benefit of strong aerosol signal over continuous dark surface reflectance, both land and ocean. However, because of big foot print of OMI, the cloud contamination error was a big issue in the UV aerosol algorithm. In the present study, high resolution UV aerosol optical depth (AOD) over East Asia was derived by collaborating the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI) and OMI together. AOD of 0.1 degree grid resolution was retrieved using CAI band 1 (380nm) by bring OMI lv.2 aerosol type, single scattering albedo, and aerosol layer peak height in 1 degree grid resolution. Collocation of the two dataset within the 0.5 degree grid with time difference of OMI and CAI less than 5 minute was selected. Selected region becomes wider as it goes to the higher latitude. Also, calculated degradation factor of 1.57 was applied to CAI band1 (380nm) by comparing normalized radiance and Lambertian Equivalent Reflectivity (LER) of both sensors. The calculated degradation factor was reasonable over dark scene, but inconsistent over cirrus cloud and bright area. Then, surface reflectance was developed by compositing CAI LER minimum data over three month period, since the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. To retrieve AOD, look up table (LUT) was generated using radiative transfer model VLIDORT NGST. Finally, the retrieved AOD was validated with AERONET ground based measurement data during the Dragon-NE Asia campaign in 2012.

  12. Satellite observations and EMAC model calculations of sulfate aerosols from Kilauea: a study of aerosol formation, processing, and loss

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Brühl, Christoph; Dörner, Steffen; Pozzer, Andrea; Wagner, Thomas

    2016-04-01

    The currently most active volcano on Earth is Mount Kilauea on Hawaii, as it has been in a state of continuous eruption since 1983. The opening of a new vent in March 2008 caused half a year of strongly increased SO2 emissions, which in turn led to the formation of a sulfate plume with an extent of at least two thousand kilometers. The plume could be clearly identified from satellite measurements from March to November, 2008. The steady trade winds in the region and the lack of interfering sources allowed us to determine the life time of SO2 from Kilauea using only satellite-based measurements (no a priori or model information). The current investigation focuses on sulfate aerosols: their formation, processing and subsequent loss. Using space-based aerosol measurements by MODIS, we study the evolution of aerosol optical depth, which first increases as a function of distance from the volcano due to aerosol formation from SO2 oxidation, and subsequently decreases as aerosols are deposited to the surface. The outcome is compared to results from calculations using the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to test the state of understanding of the sulfate aerosol life cycle. For this comparison, a particular focus is on the role of clouds and wet removal processes.

  13. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  14. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  15. What is the real role of iron oxides in the optical properties of dust aerosols?

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Wu, G. J.; Zhang, C. L.; Xu, T. L.; Zhou, Q. Q.

    2015-11-01

    Iron oxide compounds constitute an important component of mineral dust aerosols. Several previous studies have shown that these minerals are strong absorbers at visible wavelengths and thus that they play a critical role in the overall climate perturbation caused by dust aerosols. When compiling a database of complex refractive indices of possible mineral species of iron oxides to study their optical properties, we found that uniformly continuous optical constants for a single type of iron oxide in the wavelength range between 0.2 and 50 μm are very scarce, and that the use of hematite to represent all molecular or mineral iron-oxides types is a popular hypothesis. However, the crucial problem is that three continuous data sets for complex refractive indices of hematite are employed in climate models, but there are significant differences between them. Thus, the real role of iron oxides in the optical properties of dust aerosols becomes a key scientific question, and we address this problem by considering different refractive indices, size distributions and more logical weight fractions and mixing states of hematite. Based on the microscopic observations, a semi-external mixture that employs an external mixture between Fe aggregates and other minerals and partly internal mixing between iron oxides and aluminosilicate particles is advised as the optimal approximation. The simulations demonstrate that hematite with a spectral refractive index from Longtin et al. (1988) shows approximately equal absorbing capacity to the mineral illite over the whole wavelength region from 0.55 to 2.5 μm, and only enhances the optical absorption of aerosol mixture at λ < 0.55 μm. Using the data set from Querry (1985) may overestimate the optical absorption of hematite at both visible and near-infrared wavelengths. More laboratory measurements of the refractive index of iron oxides, especially for hematite and goethite in the visible spectrum, should therefore be taken into account

  16. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Tan, Haobo; Liu, Li; Fan, Shaojia; Li, Fei; Yin, Yan; Cai, Mingfu; Chan, P. W.

    2016-04-01

    Aerosols contribute the largest uncertainty to the total radiative forcing estimate, and black carbon (BC) that absorbs solar radiation plays an important role in the Earth's energy budget. This study analysed the aerosol optical properties from 22 February to 18 March 2014 at the China Meteorological Administration Atmospheric Watch Network (CAWNET) station in the Pearl River Delta (PRD), China. The representative values of dry-state particle scattering coefficient (σsp), hemispheric backscattering coefficient (σhbsp), absorption coefficient (σabsp), extinction coefficient (σep), hemispheric backscattering fraction (HBF), single scattering albedo (SSA), as well as scattering Ångström exponent (α) were presented. A comparison between a polluted day and a clean day shows that the aerosol optical properties depend on particle number size distribution, weather conditions and evolution of the mixing layer. To investigate the mixing state of BC at the surface, an optical closure study of HBF between measurements and calculations based on a modified Mie model was employed for dry particles. The result shows that the mixing state of BC might be between the external mixture and the core-shell mixture. The average retrieved ratio of the externally mixed BC to the total BC mass concentration (rext-BC) was 0.58 ± 0.12, and the diurnal pattern of rext-BC can be found. Furthermore, considering that non-light-absorbing particles measured by a Volatility-Tandem Differential Mobility Analyser (V-TDMA) exist independently with core-shell and homogenously internally mixed BC particles, the calculated optical properties were just slightly different from those based on the assumption that BC exist in each particle. This would help understand the influence of the BC mixing state on aerosol optical properties and radiation budget in the PRD.

  17. A novel technique for estimating aerosol optical thickness trends using meteorological parameters

    NASA Astrophysics Data System (ADS)

    Emetere, Moses E.; Akinyemi, M. L.; Akin-Ojo, O.

    2016-02-01

    Estimating aerosol optical thickness (AOT) over regions can be tasking if satellite data set over such region is very scanty. Therefore a technique whose application captures real-time events is most appropriate for adequate monitoring of risk indicators. A new technique i.e. arithmetic translation of pictorial model (ATOPM) was developed. The ATOPM deals with the use mathematical expression to compute other meteorological parameters obtained from satellite or ground data set. Six locations within 335 × 230 Km2 area of a selected portion of Nigeria were chosen and analyzed -using the meteorological data set (1999-2012) and MATLAB. The research affirms the use of some parameters (e.g. minimum temperature, cloud cover, relative humidity and rainfall) to estimate the aerosol optical thickness. The objective of the paper was satisfied via the use of other meteorological parameters to estimate AOT when the satellite data set over an area is scanty.

  18. Spectral aerosol optical depth characterization of desert dust during SAMUM 2006

    NASA Astrophysics Data System (ADS)

    Toledano, C.; Wiegner, M.; Garhammer, M.; Seefeldner, M.; Gasteiger, J.; Müller, D.; Koepke, P.

    2009-02-01

    ABSTRACT The aerosol optical depth (AOD) in the range 340-1550nm was monitored at Ouarzazate (Morocco) during the Saharan Mineral Dust Experiment (SAMUM) experiment in May-June 2006. Two different sun photometers were used for this purpose. The mean AOD at 500nm was 0.28, with a maximum of 0.83, and the mean Ångström exponent (AE) was 0.35. The aerosol content over the site changed alternatively from very low turbidity, associated to Atlantic air masses, to moderate dust load, associated to air masses arriving in the site from Algeria, Tunisia and Libya. The dusty conditions were predominant in the measurement period (78% of data), with AOD (500nm) above 0.15 and AE below 0.4. The spectral features of the AOD under dusty conditions are discussed. Air mass back trajectory analysis is carried out to investigate the origin and height patterns of the dust loaded air masses. The advection of dust occurred mainly at atmospheric heights below 3000m, where east flow is the predominant. At the 5000m level, the air masses originate mainly over the Atlantic Ocean. Finally the Optical Properties of Aerosols and Clouds (OPAC) model is used to perform a set of simulations with different aerosol mixtures to illustrate the measured AOD and AE values under varying dust concentrations, and a brief comparison with other measurement sites is presented.

  19. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Tao, J. C.; Ma, N.

    2015-05-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity (RH) is the dominant factor which determines the diurnal pattern of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage data sets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARE at the TOA.

  20. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chunsheng

    2016-04-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity is the dominant factor which determines the diurnal patterns of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage datasets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARF at TOA.

  1. Radiative effects of aerosols at an urban location in southern India: Observations versus model

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.; Vinoj, V.; Krishna Moorthy, K.

    2010-12-01

    The radiative impact of aerosols is one of the largest sources of uncertainty in estimating anthropogenic climate perturbations. Here we have used independent ground-based radiometer measurements made simultaneously with comprehensive measurements of aerosol microphysical and optical properties at a highly populated urban site, Bangalore (13.02°N, 77.6°E) in southern India during a dedicated campaign during winter of 2004 and summer and pre-monsoon season of 2005. We have also used longer term measurements carried out at this site to present general features of aerosols over this region. The aerosol radiative impact assessments were made from direct measurements of ground reaching irradiance as well as by incorporating measured aerosol properties into a radiative transfer model. Large discrepancies were observed between measured and modeled (using radiative transfer models, which employed measured aerosol properties) radiative impacts. It appears that the presence of elevated aerosol layers and (or) inappropriate description of aerosol state of mixing are (is) responsible for the discrepancies. On a monthly scale reduction of surface irradiance due to the presence of aerosols (estimated using radiative flux measurements) varies from 30 to 65 W m -2. The lowest values in surface radiative impact were observed during June when there is large reduction in aerosol as a consequence of monsoon rainfall. Large increase in aerosol-induced surface radiative impact was observed from winter to summer. Our investigations re-iterate the inadequacy of aerosol measurements at the surface alone and importance of representing column properties (using vertical profiles) accurately in order to assess aerosol-induced climate changes accurately.

  2. Assimilation of satellite Aerosol Optical Depth measurements in the CTM MOCAGE during the ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Sic, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Emili, Emanuele

    2014-05-01

    Aerosols are of great importance for atmospheric chemistry, climate, and public health. Consequently, it is important to well simulate the spatial and temporal aerosol distribution. The atmospheric aerosols are a chemically and physically complex mixture of solid and liquid particles from natural and anthropogenic sources. Thus, modelling of different types of aerosols is subject of many uncertainties related to their parameterizations or sources/sinks. This contribution deals with the improvement of the spatial and temporal representation of different types of aerosols within the chemistry-transport model of Météo-France, MOCAGE. This consists of assimilating Aerosol Optical Depth (AOD) from satellite observations. The used approach during AOD assimilation consists in choosing the total aerosol concentrations as the control variable. First, we will present the methodology and the advantages of such an approach. Second, we will evaluate the AOD analyses by comparison to the independent aerosol measurements performed during the ChArMEx campaign (summer 2013). ChArMEx is a French initiative which aimed to characterize the atmospheric pollution in the western-Mediterranean basin using airborne measurements from balloons and aircrafts as well as ground-based measurements.

  3. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  4. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  5. Retrieval and Validation of Aerosol Optical Properties over East Asia from TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Lee, Sanghee; Kim, Jhoon; Kim, Mijin; Choi, Myungje; Go, Sujung; Lim, HyunKwang; Ou, Mi-Lim; Goo, Tae-Young; Yokota, Tatsuya

    2015-04-01

    Aerosol is a significant component on air quality and climate change. In particular, spatial and temporal distribution of aerosol shows large variability over East Asia, thus has large effect in retrieving carbon dioxide from Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS). An aerosol retrieval algorithm was developed from TANSO- Cloud and Aerosol Imager (CAI) onboard the GOSAT. The algorithm retrieves aerosol optical depth (AOD), size distribution of aerosol, and aerosol type in 0.1 degree grid resolution and surface reflectance was estimated using the clear sky composite method. To test aerosol absorptivity, the reflectance difference method was considered using channels of TANSO-CAI. In this study, the retrieved aerosol optical depth (AOD) was compared with those of Aerosol Robotic NETwork (AERONET) and MODerate resolution Imaging Sensor (MODIS) dataset from September 2011 and August 2014. Comparisons of AODs between AERONET and CAI show the reasonably good correlation with correlation coefficient of 0.77 and regression slope of 0.87 for the whole period. Moreover, those between MODIS and CAI for the same period show correlations with correlation coefficient of 0.7 ~ 0.9 and regression slope of 0.7 ~ 1.2, depending on season and comparison regions however, the largest error source in aerosol retrieval has been surface reflectance. Over ocean and some Land, surface reflectance tends to be overestimated, and thereby CAI-AOD tends to be underestimated. Based on the results with CAI algorithm developed, the algorithm is continuously improved for better performance.

  6. The relationship between aerosol model uncertainty and radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Carslaw, Ken; Lee, Lindsay; Reddington, Carly

    2016-04-01

    There has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated aerosol-cloud forcing between pre-industrial and present day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the pre-industrial aerosol state. But the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are "equally acceptable" compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty, but this hides a range of very different aerosol models. These multiple so-called "equifinal" model variants predict a wide range of forcings. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  7. Optical scattering by biological aerosols: experimental and computational results on spore simulants

    NASA Astrophysics Data System (ADS)

    Sindoni, Orazio I.; Saija, Rosalba; Iatì, Maria Antonia; Borghese, Ferdinando; Denti, Paolo; Fernandes, Gustavo E.; Pan, Yong-Le; Chang, Richard K.

    2006-07-01

    We present both a computational and an experimental approach to the problem of biological aerosol characterization, joining the expertises reached in the field of theoretical optical scattering by complex, arbitrary shaped particles (multipole expansion of the electromagnetic fields and Transition Matrix), and a novel experimental technique based on two-dimensional angular optical scattering (TAOS). The good agreement between experimental and computational results, together with the possibility for a laboratory single-particle angle-resolved investigation, opens a new scenario in biological particle modelling, and might have major implications for a rapid discrimination of airborne particles.

  8. Simulations of Aerosol Microphysics in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Smith; Randles; daSilva

    2010-01-01

    Aerosol-cloud-chemistry interactions have potentially large but uncertain impacts on Earth's climate. One path to addressing these uncertainties is to construct models that incorporate various components of the Earth system and to test these models against data. To that end, we have previously incorporated the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module online in the NASA Goddard Earth Observing System model (GEOS-5). GEOS-5 provides a platform for Earth system modeling, incorporating atmospheric and ocean general circulation models, a land surface model, a data assimilation system, and treatments of atmospheric chemistry and hydrologic cycle. Including GOCART online in this framework has provided a path for interactive aerosol-climate studies; however, GOCART only tracks the mass of aerosols as external mixtures and does not include the detailed treatments of aerosol size distribution and composition (internal mixtures) needed for aerosol-cloud-chemistry-climate studies. To address that need we have incorporated the Community Aerosol and Radiation Model for Atmospheres (CARMA) online in GEOS-5. CARMA is a sectional aerosol-cloud microphysical model, capable of treating both aerosol size and composition explicitly be resolving the aerosol distribution into a variable number of size and composition groupings. Here we present first simulations of dust, sea salt, and smoke aerosols in GEOS-5 as treated by CARMA. These simulations are compared to available aerosol satellite, ground, and aircraft data and as well compared to the simulated distributions in our current GOCART based system.

  9. Indoor concentration modeling of aerosol strong acidity

    SciTech Connect

    Zelenka, M.; Waldman, J.; Suh, H.; Koutrakis, P.

    1993-01-01

    A model for estimating indoor concentrations of acid aerosol was applied to data collected during the summer of 1989, in a densely populated location in New Jersey. The model, from a study of a semi-rural community in Pennsylvania, was used to estimate indoor concentrations of aerosol strong acidity (H+) at an elderly care residence in suburban New Jersey. The purpose of the present work is to assess the applicability of the model for predicting H+ exposures in a suburban environment and to evaluate the models performance for daytime and nighttime periods. Indoor and outdoor samples were taken at an elderly care home between June 20 and July 30, 1989. The indoor and outdoor monitoring schedule collected two 12-h samples per day. Samples were taken with the Indoor Denuder Sampler (IDS). Samples were analyzed for indoor and outdoor concentrations of aerosol strong acidity (H+), ammonia (NH3), and anion determination. The model generally underestimated the indoor H+ concentration. Slight improvement was seen in the model estimate of H+ for the nighttime period (7:00 pm to 7:00 am, local time). The model applied to the site in New Jersey did not predict the indoor H+ concentrations as well as it did for the experiment from which it was developed.

  10. The long-term global record on Aerosol Absorption Optical Depth from TOMS and OMI observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Bhartia, P.; Ahn, C.; Veefkind, P.

    2006-12-01

    Carbonaceous aerosols from biomass burning and boreal forest fires, and desert dust lofted by the winds from the world major arid and semi-arid areas are among the most long-lived aerosol types in the Earth's atmosphere, since they often reach the free troposphere and are sometimes transported thousands of kilometers from their original sources. A lot has been learned about the global distribution of aerosol sources, and the transport patterns of these aerosol types since the development of the near-UV methods of aerosol detection and characterization using data from the TOMS series of instruments. Because both smoke and desert dust aerosols absorb UV-radiation, the TOMS aerosol sensing technique is specially suited for tracking these aerosol types over variety of surfaces including clouds and snow. TOMS aerosol observations, for instance, have been fundamental in discovering that carbonaceous aerosols associated with wild fires at mid and high latitudes often reach the lower stratosphere, and travel as far as the remote polar regions. We have recently completed the development of an improved algorithm to derive quantitative information about aerosol absorption optical depth using near-UV data. We will discuss the multi- decadal global record on aerosol absorption optical depth produced using TOMS and OMI sensors, and review the multiple contributions of the TOMS-OMI record to the current understanding of the factors that govern the observed temporal and spatial distribution of smoke and desert dust aerosols.

  11. Microphysical, chemical and optical aerosol properties in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Kikas, Ülle; Reinart, Aivo; Pugatshova, Anna; Tamm, Eduard; Ulevicius, Vidmantas

    2008-11-01

    The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden. Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime-continental aerosol; 2) moderately polluted maritime-continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO 4- ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.

  12. Models of size spectrum of tropospheric aerosol

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    Quality criteria of a model distribution are considered. Information losses due to the nonorthogonality of the spectrum parameter transformation are discussed. Models are compared with a view to approximation accuracy and losses of information. Smerkalov's average tropospheric aerosol spectrum and 271 observed spectra have been used for test. Highest accuracy and lowest losses of information were yielded by a distribution having power asymptotes on both the left and the right sides.

  13. Total CMB analysis of streaker aerosol samples by PIXE, PIGE, beta- and optical-absorption analyses

    NASA Astrophysics Data System (ADS)

    Annegarn, H. J.; Przybylowicz, W. J.

    1993-04-01

    Multielemental analyses of aerosol samples are widely used in air pollution receptor modelling. Specifically, the chemical mass balance (CMB) model has become a powerful tool in urban air quality studies. Input data required for the CMB includes not only the traditional X-ray fluorescence (and hence PIXE) detected elements, but also total mass, organic and inorganic carbon, and other light elements including Mg, Na and F. The circular streaker sampler, in combination with PIXE analysis, has developed into a powerful tool for obtaining time-resolved, multielemental aerosol data. However, application in CMB modelling has been limited by the absence of total mass and complementary light element data. This study reports on progress in using techniques complementary to PIXE to obtain additional data from circular streaker samples, maintaining the nondestructive, instrumental approach inherent in PIXE: beta-gauging using a 147Pm source for total mass; optical absorption for inorganic carbon; and PIGE to measure the lighter elements.

  14. Spatial and temporal variations in the atmospheric aerosol optical depth at the ARM CART Site

    SciTech Connect

    Nash, T.M.; Cheng, M.D.

    1998-02-01

    In an effort to better characterize the inputs to radiative transfer models and research-grade global climate simulation models (GCMs) the columnar aerosol loading, measured as the aerosol optical depth (AOD), has been computed for five facilities within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site. Characterization of the AOD reported here show clear evidence that the spatial and temporal gradient exists at a much finer linear scale than those of the CART site. The annual variations of median AOD are on the order of 0.30 at all five facilities. The Spearman correlation and varimax-rotated PCA indicated the AOD values vary consistently across the CART site. The Northwest corner facility (EF-1) was the single facility that behaved differently from the rest. This sub-GCM grid variation can not be ignored if the model is to be used to accurately predict future climate change.

  15. Spatial and temporal variations in the atmospheric aerosol optical depth at the ARM CART Site

    SciTech Connect

    Nash, T.M.; Cheng, M.D.

    1998-12-31

    In an effort to better characterize the inputs to radiative transfer models and research-grade global climate simulation models (GCMs) the columnar aerosol loading, measured as the aerosol optical depth (AOD), has been computed for five facilities within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site. Characterization of the AOD reported here show clear evidence that the spatial and temporal gradient exists at a much finer linear scale than those of the CART site. The annual variations of median AOD are on the order of 0.30 at all five facilities. The Spearman correlation and varimax-rotated PCA indicated the AOD values vary consistently across the CART site. The Northwest corner facility (EF-1) was the single facility that behaved differently from the rest. This sub-GCM grid variation can not be ignored if the model it to be used to accurately predict future climate change.

  16. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    NASA Astrophysics Data System (ADS)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien

    2016-07-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  17. The impacts of optical properties on radiative forcing due to dust aerosol

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shi, G. Y.; Li, S. Y.; Li, W.; Wang, B.; Huang, Y. B.

    2006-05-01

    There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering albedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.

  18. Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Chen, L.-W. A.; Huang, R.-J.; Chow, J. C.; Watson, J. G.; Ni, H. Y.; Liu, S. X.; Fung, K. K.; Shen, Z. X.; Wei, C.; Wang, Q. Y.; Tian, J.; Zhao, Z. Z.; Prévôt, André S. H.; Cao, J. J.

    2016-05-01

    Carbonaceous aerosol is an important component that influences the environment, climate, and human health. Organic and elemental carbon (OC and EC) are the two main constituents of carbonaceous aerosols that have opposite, i.e., cooling versus warming, effects on the Earth's radiation balance. Knowledge on the variability of OC/EC splits measured by different thermal/optical protocols is useful for understanding the uncertainty in the climate models. This study shows good correlations within OC or EC (r2 > 0.83, P < 0.001) across the IMPROVE, IMPROVE_A, and EUSAAR_2 protocols for both ambient aerosol samples and biomass burning samples. However, EC concentrations differ by more than two folds, and OC/EC ratios differ up to a factor of 2.7. The discrepancies were attributed to the selection between the reflectance and transmittance corrections and the different peak inert-atmosphere temperature. The IMPROVE and IMPROVE_A protocols also quantified different char and soot concentrations, two subtypes of EC with distinct chemical and optical properties. Char, but not soot, was found to correlate with the humic-like substances (HULIS) content in the samples, suggesting that both char and HULIS originate mainly from biomass burning. A one-year (2012-2013) ambient aerosol monitoring in Xi'an, China, shows that OC, EC, and char displayed winter highs and summer lows, while soot had no seasonal trend. The char/soot ratios showed a "single peak" in winter, while OC/EC ratios exhibited "dual peak" feature due to the influence of secondary organic aerosol formation. In addition to commonly measured OC and EC, we recommend both char and soot from a common reference method to be considered in the chemical transport and climate models.

  19. Discrimination and classification of bio-aerosol particles using optical spectroscopy and scattering

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.

    2011-03-01

    For more than a decade now, there has been significant emphasis for development of sensors of agent aerosols, especially for biological warfare (BW) agents. During this period, the Naval Research Laboratory (NRL) and other labs have explored the application of optical and spectroscopic methods relevant to biological composition discrimination to aerosol particle characterization. I will first briefly attempt to establish the connection between sensor performance metrics which are statistically determined, and aerosol particle measurements through the use of computational models, and also describe the challenge of ambient background characterization that would be needed to establish more reliable and deterministic sensor performance predictions. Greater attention will then be devoted to a discussion of basic particle properties and their measurement. The NRL effort has adopted an approach based on direct measurements on individual particles, principally of elastic scatter and laser-induced fluorescence (LIF), rather than populations of particles. The development of a LIF instrument using two sequential excitation wavelengths to detect fluorescence in discrete spectral bands will be described. Using this instrument, spectral characteristics of particles from a variety of biological materials including BW agent surrogates, as well as other ``calibration'' particles and some known ambient air constituents will be discussed in terms of the dependence of optical signatures on aerosol particle composition, size and incident laser fluence. Comparison of scattering and emission measurements from particles composed of widely different taxa, as well as from similar species under different growth conditions highlight the difficulties of establishing ground truth for complex biological material compositions. One aspect that is anticipated to provide greater insight to this type of particle classification capability is the development of a fundamental computational model of

  20. Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Chen, L.-W. A.; Huang, R.-J.; Chow, J. C.; Watson, J. G.; Ni, H. Y.; Liu, S. X.; Fung, K. K.; Shen, Z. X.; Wei, C.; Wang, Q. Y.; Tian, J.; Zhao, Z. Z.; Prévôt, André S. H.; Cao, J. J.

    2016-05-01

    Carbonaceous aerosol is an important component that influences the environment, climate, and human health. Organic and elemental carbon (OC and EC) are the two main constituents of carbonaceous aerosols that have opposite, i.e., cooling versus warming, effects on the Earth's radiation balance. Knowledge on the variability of OC/EC splits measured by different thermal/optical protocols is useful for understanding the uncertainty in the climate models. This study shows good correlations within OC or EC (r2 > 0.83, P < 0.001) across the IMPROVE, IMPROVE_A, and EUSAAR_2 protocols for both ambient aerosol samples and biomass burning samples. However, EC concentrations differ by more than two folds, and OC/EC ratios differ up to a factor of 2.7. The discrepancies were attributed to the selection between the reflectance and transmittance corrections and the different peak inert-atmosphere temperature. The IMPROVE and IMPROVE_A protocols also quantified different char and soot concentrations, two subtypes of EC with distinct chemical and optical properties. Char, but not soot, was found to correlate with the humic-like substances (HULIS) content in the samples, suggesting that both char and HULIS originate mainly from biomass burning. A one-year (2012-2013) ambient aerosol monitoring in Xi'an, China, shows that OC, EC, and char displayed winter highs and summer lows, while soot had no seasonal trend. The char/soot ratios showed a "single peak" in winter, while OC/EC ratios exhibited "dual peak" feature due to the influence of secondary organic aerosol formation. In addition to commonly measured OC and EC, we recommend both char and soot from a common reference method to be considered in the chemical transport and climate models.

  1. Aerosol optical depth retrievals over the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Halthore, Rangasayi N.; Markham, Brian; Spanner, Michael; Wrigley, Robert

    1992-01-01

    The aerosol optical depth over the Konza Prairie, near Manhattan, Kansas, was recorded at various locations by five separate teams. These measurements were made in support of the First ISLSCP Field Experiment (FIFE) and used to correct imagery from a variety of satellite and aircraft sensors for the effects of atmospheric scattering and absorption. The results from one instrument are reported here for 26 days in 1987 and for 7 in 1989. Daily averages span a range of 0.05 to 0.28 in the midvisible wavelengths. In addition, diurnal variations are noted in which the afternoon optical depths are greater than those of the morning by as much as 0.07. A comparison between instruments and processing techniques used to determine these aerosol optical depths is provided. The first comparisons are made using summer 1987 data. Differences of as much as 0.05 (midvisible) are observed. Although these data allow reasonable surface reflectance retrievals, they do not agree to within the performance limits typically associated with these types of instruments. With an accuracy goal of 0.02 a preseason calibration/comparison experiment was conducted at a mountain site prior to the final field campaign in 1989. Good calibration data were obtained, and good agreement (0.01, midvisible) was observed in the retrieved optical depth acquired over the Konza. By comparing data from the surface instruments at different locations, spatial inhomogeneities are determined. Then, data from the airborne tracking sunphotometer allow one to determine variations as a function of altitude. Finally, a technique is proposed for using the in situ data to establish an instrument calibration.

  2. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    According to the IPCC report, atmospheric aerosols due to their properties -extinction of Sun and Earth radiation and participation in processes of creation of clouds, are among basic "unknowns" in climate studies. Aerosols have large effect on the radiation balance of the Earth which has a significant impact on climate changes. They are also a key issue in the case of remote sensing measurements. The optical properties of atmospheric aerosols depend not only on their type but also on physical parameters such as pressure, humidity, wind speed and direction. The wide range of properties in which atmospheric aerosols affect Earth's climate is the reason of high unrelenting interest of scientists from different disciplines such as physics, chemistry and biology. Numerous studies have dealt with aerosol optical properties, e.g. Dubovik et al. (2002), but only in a few have regarded the influence of meteorological parameters on the optical properties of aerosols in the Baltic Sea area. Studies of aerosol properties over the Baltic were conducted already in the last forty years, e.g. Zielinski T. et. al. (1999) or Zielinski T. & A. Zielinski (2002). The experiments carried out at that time involved only one measuring instrument -e.g. LIDAR (range of 1 km) measurements and they were conducted only in selected areas of the Polish coastal zone. Moreover in those publications authors did not use measurements performed on board of research vessel (R/V Oceania), which belongs to Institute of Oceanology Polish Academy of Science (IO PAN) or data received from satellite measurements. In 2011 Zdun and Rozwadowska performed an analysis of all data derived from the AERONET station on the Gotland Island. The data were divided into seasons and supplemented by meteorological factors. However, so far no comprehensive study has been carried out for the entire Baltic Sea area. This was the reason to conduct further research of SEasonal Variations of Aerosol optical depth over the Baltic

  3. A global average model of atmospheric aerosols for radiative transfer calculations

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1976-01-01

    A global average model is proposed for the size distribution, chemical composition, and optical thickness of stratospheric and tropospheric aerosols. This aerosol model is designed to specify the input parameters to global average radiative transfer calculations which assume the atmosphere is horizontally homogeneous. The model subdivides the atmosphere at multiples of 3 km, where the surface layer extends from the ground to 3 km, the upper troposphere from 3 to 12 km, and the stratosphere from 12 to 45 km. A list of assumptions made in construction of the model is presented and discussed along with major model uncertainties. The stratospheric aerosol is modeled as a liquid mixture of 75% H2SO4 and 25% H2O, while the tropospheric aerosol consists of 60% sulfate and 40% soil particles above 3 km and of 50% sulfate, 35% soil particles, and 15% sea salt below 3 km. Implications and consistency of the model are discussed.

  4. A Wintertime Aerosol Model for the Ganga Basin, Northern India

    NASA Astrophysics Data System (ADS)

    Dey, S.; Tripathi, S. N.

    2006-05-01

    An aerosol model has been developed using mass size distributions of various chemical components measured at Kanpur (an urban location in the Ganga basin, GB, in Northern India) and applied to estimate the radiative effects of the aerosols over the entire GB during the winter season for the first time. The number size distribution of various species was derived from the measured mass concentration and the optical properties were calculated using OPAC model. The anthropogenic contribution to the total extinction was found to be more than 90%. The relative contribution of various species to the aerosol optical depth (AOD) at 0.5 μm are in the following order, (NH2)2SO4 (AS, 37%), nitrate (N, 28%), other salts (S, mainly NaCl and KCl, 19%), dust (9%) and black carbon, BC (7%). Contribution of AS, N, S to the observed AOD decreases with wavelength and that of dust increases with wavelength, whereas, BC contribution remains almost same. The extinction coefficient strongly depends on the relative humidity (RH), as the scattering by fine mode fraction (contributing 88% to the total extinction) is enhanced at high ambient RH. The spectral variation of absorption coefficient indicates that the most likely source of BC (as BC is the dominant absorbing species) in this region is fossil- fuel. The spectral variation of single scattering albedo (SSA) in the fine and coarse mode fractions and that of asymmetry parameter suggests that the internal mixing is more likely scenario, although the possibility of external mixing can not be ruled out. If the RH is lowered by ~20%, BC contribution to the AOD increases by ~3.5%, which implies that the RH is a strong controlling factor of the aerosol forcing. The mean shortwave clear sky top of the atmosphere (TOA) and surface forcing over Kanpur are -13±3 and -43±8 W m-2. Extending the TOA and surface efficiency over the entire GB, the mean TOA and surface forcing become -9±3 and -25±10 W m-2. This results in high atmospheric

  5. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-03-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Sensitivity experiments are carried out to analyse the effects of these improvements in the process representation on the simulated aerosol properties and global distribution. The new parameterizations that have largest impact on the global mean aerosol optical depth and radiative effects turn out to be the water uptake scheme and cloud microphysics. The former leads to a significant decrease of aerosol water contents in the lower troposphere, and consequently smaller optical depth; the latter results in higher aerosol loading and longer lifetime due to weaker in-cloud scavenging. The combined effects of the new/updated parameterizations are demonstrated by comparing the new model results with those from the earlier version, and against observations. Model simulations are evaluated in terms of aerosol number concentrations against measurements collected from twenty field campaigns as well as from fixed measurement sites, and in terms of optical properties against the AERONET measurements. Results indicate a general improvement with respect to the earlier version. The aerosol size distribution and spatial-temporal variance simulated by HAM2 are in better agreement with the observations. Biases in the earlier model version in aerosol optical depth and in the Ångström parameter have been reduced. The paper also points out the remaining model deficiencies that need to be

  6. Application of GOES-12 Aerosol Optical Depths and OMI Aerosol Indices to Evaluate NOAA/NESDIS Hazard Mapping System Smoke Analysis

    NASA Astrophysics Data System (ADS)

    Zeng, J.; Kondragunta, S.

    2006-05-01

    NOAA/NESDIS Hazard Mapping System (HMS) provides biomass burning fires and smoke analysis products to users. The smoke analysis is done by human analysts by inspecting visible imagery and fire locations. Analysts have difficulty in drawing plumes once the plumes are removed from the source (fires) and mixed with clouds and other types of aerosols. NOAA/NESDIS also provides GOES Aerosol Optical Depth (AOD) product to the users. The AOD product is derived from visible radiance measurements using a look-up table which is created assuming a continental aerosol model. In this study we examine the usefulness of Aura Ozone Monitoring Instrument (OMI) Aerosol Index (AI) in evaluating the analyst drawn smoke plumes and GOES AODs corresponding to smoke plumes. OMI AI in the near UV and visible bands is capable of distinguishing between absorbing aerosols and non-absorbing aerosols. We will present analysis of GOES AODs, OMI AI, and HMS smoke analysis product for several prescribed and natural fires observed during 2005. This analysis is expected to provide information on average percent area overlap between GOES AOD and HMS smoke plumes, OMI AI and HMS smoke plumes, and GOES AOD and OMI AI that will lead to an assessment of HMS smoke analysis.

  7. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: Part III. Using Combined PCA to Compare Spatiotemporal Variability of MODIS, MISR and OMI Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  8. Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-04-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  9. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    SciTech Connect

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I

    2008-04-23

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced

  10. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I.

    2008-04-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

  11. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  12. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  13. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  14. Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station.

    PubMed

    Emetere, Moses Eterigho; Akinyemi, Marvel Lola; Akin-Ojo, Omololu

    2015-12-01

    The size characteristics of atmospheric aerosol over the tropical region of Lagos, Southern Nigeria were investigated using two years of continuous spectral aerosol optical depth measurements via the AERONET station for four major bands i.e. blue, green, red and infrared. Lagos lies within the latitude of 6.465°N and longitude of 3.406°E. Few systems of dispersion model was derived upon specified conditions to solve challenges on aerosols size distribution within the Stokes regime. The dispersion model was adopted to derive an aerosol size distribution (ASD) model which is in perfect agreement with existing model. The parametric nature of the formulated ASD model shows the independence of each band to determine the ASD over an area. The turbulence flow of particulates over the area was analyzed using the unified number (Un). A comparative study via the aid of the Davis automatic weather station was carried out on the Reynolds number, Knudsen number and the Unified number. The Reynolds and Unified number were more accurate to describe the atmospheric fields of the location. The aerosols loading trend in January to March (JFM) and August to October (ASO) shows a yearly 15% retention of aerosols in the atmosphere. The effect of the yearly aerosol retention can be seen to partly influence the aerosol loadings between October and February. PMID:26452005

  15. Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign

    SciTech Connect

    Barnard, James C.; Fast, Jerome D.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Laskin, Alexander

    2010-08-09

    A comparison between observed aerosol optical properties from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, and values simulated by the Weather Research and Forecasting model (WRF-Chem) model, reveals large differences. To help identify the source of the discrepancies, data from the MILAGRO campaign are used to evaluate the "aerosol chemical to aerosol optical properties" module implemented in the full chemistry version of the WRF-Chem model. The evaluation uses measurements of aerosol size distributions and chemical properties obtained at the MILAGRO T1 site. These observations are fed to the module, which makes predictions of various aerosol optical properties, including the scattering coefficient, Bscat; the absorption coefficient, Babs; and the single-scattering albedo, v0; all as a function of time. This simulation is compared with independent measurements obtained from a photoacoustic spectrometer (PAS) at a wavelength of 870 nm. Because of line losses and other factors, only "fine mode" aerosols with aerodynamic diameters less than 2.5 mm are considered here. Over a 10-day period, the simulations of hour-by-hour variations of Bscat are not satisfactory, but simulations of Babs and v0 are considerably better. When averaged over the 10-day period, the computed and observed optical properties agree within the uncertainty limits of the measurements and simulations. Specifically, the observed and calculated values are, respectively: (1) Bscat, 34.1 ± 5.1 Mm-1 versus 30.4 ± 4.3 Mm-1; (2) Babs, 9.7 ± 1.0 Mm-1 versus 11.7 ± 1.5 Mm-1; and (3) v0, 0.78 ± 0.04 and 0.74 ± 0.03. The discrepancies in values of v0 simulated by the full WRF-Chem model thus cannot be attributed to the "aerosol chemistry to optics" module. The discrepancy is more likely due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.

  16. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  17. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  18. Interpretation of Aerosol Optical and Morphological Properties during the Carbonaceous Aerosols and Radiative Effects Study in Sacramento, June 2010

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Mazzoleni, C.; China, S.; Sharma, N.; Flowers, B. A.; Dubey, M. K.; Gyawali, M. S.; Arnott, W. P.; Zaveri, R. A.

    2010-12-01

    The Sacramento Carbonaceous Aerosols and Radiative Effects Study (CARES) utilized two ground sites T0 and T1 along with an aircraft platform to characterize carbonaceous aerosol chemical and physical properties and their evolution. The T0 site was chosen within the Sacramento metropolitan area for measuring primary and secondary aerosols generated in the city. The T1 site was chosen East of Sacramento on the Sierra foothill to study the evolution and processing of the Sacramento aerosol plume and to assess the characteristics of the background air. To reach T1, the Sacramento aerosols traveled often over the Blodgett Forest resulting in significant aging due coagulation, condensation, and photochemical processes. The ground sites were chosen for this unique and reoccurring transport pattern of the aerosols. The campaign took place in June 2010. Six Integrated Photoacoustic/Nephelometer Spectrometers (IPNSs) were installed at the sites to simultaneously record aerosol light scattering and absorption data. The optical properties of the aerosols were measured at 355nm (ultraviolet), 375nm (ultraviolet), 405nm (blue), 532nm (green), and 781nm (red). In conjugation with the IPNSs, aerosol filters for electron microscopy analysis were collected at each site; these were examined using a field emission scanning electron microscope to study the aerosol morphology. The origins of the air masses did vary daily, but a few general trends emerged. The processing of the IPNS data with a wavelet denoising technique greatly enhanced the signal to noise ratio of the measurements enabling a better understanding of the aerosol optical properties for various airmasses with different characteristics. Typically signals at both sites were lower than expected, however the processed signals from T0 clearly showed a daily rise and dilution of the Sacramento plume. Using the processed signals from both sites the transportation of the Sacramento plume was detectable. The IPNS data were

  19. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  20. First observational Evidence of Rossby Wave Signatures in Spectral Aerosol Optical Depths over Central Himalayas

    NASA Astrophysics Data System (ADS)

    Devulapalli, P. V.; Kondapalli, N. K.; Krishna, S.; Ratnam, M.; Naja, M. K.; Kishore, R.

    2013-12-01

    It is now well known that the atmospheric aerosols (both natural and anthropogenic) exhibit large spatial, temporal and spectral uncertainties due to the short residence time and the diverse aerosol types. For example, aerosol loading varies not only from year to year but also on higher frequency intra-seasonal time scales producing strong variability on local and regional scales. Considering the advancements in the morphology of aerosol layers and their contribution to earth's radiation budget, recent studies tried to understand the role of atmospheric waves in variability of AODs from fast moving gravity waves to slow moving planetary-scale waves. It is also evident from earlier reports that the planetary-scale waves are intense in winter in both the hemispheres and play vital role in transporting not only energy and momentum but also atmospheric trace species. Very few reports till date showed modulations in the spectral AODs, from the equatorial and tropical latitudes by Madden Julian Oscillation (MJO) which dominates the tropical variability on time scales of 30-70 days. However, there are no reports yet neither from mid- nor from high latitudes showing the effect of planetary scale waves on spectral AODs and their quantification of the aerosol radiative forcing due to long period modulations. Hence, it is very important to understand the variability of aerosols, and the spectral AODs in terms of atmospheric wave modulations. This could be an essential input to the global and regional aerosol models to assess the global and regional radiative forcing and subsequent climate impacts. For the first time, long period modulations in spectral Aerosol Optical Depths (AODs) over extra-tropical region, Manora Peak, Nainital (29.4oN; 79.2oE; 1957m AMSL) in Central Himalayas are presented. Power spectrum analysis of AODs showed the existence of dominant 25-45 day oscillation, apart from quasi-6.5 and quasi-16 day waves. The 25-45 day oscillations are also seen in MODIS

  1. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-11-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  2. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-06-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions can not be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  3. Ship-borne rotating shadowband radiometer observations for determination of components of spectral irradiance and aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Walther, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2015-04-01

    The Maritime Aerosol Network (MAN) has been established as a sub-project of AERONET and a long-term program to collect ship-borne aerosol optical depth measurements over ocean. Its purpose is to serve as reliable reference database for the evaluation of models and satellite products. Data are currently collected by handheld Microtops II photometers, as the automated acquisition of data from sun photometers on stabilized platforms is so far too expensive for wide-spread use. A promising alternative to the sun photometer is the rotating shadowband radiometer, whose principle of operation allows the determination of the direct-beam component of solar radiation without stabilizing the instrument, if the orientation of the detector horizontal is known. OCEANET, a project to investigate the exchange fluxes of energy and matter between the atmosphere and ocean, has contributed aerosol observations to MAN on several of its cruises on RV Polarstern during the transit between the hemispheres. On the recent cruise (PS 83) from Cape Town to Bremerhaven, TROPOS has operated for the first time a 19 channel rotating shadowband radiometer (GUVis-3511) built by the company Biospherical, as a possible means to provide automated irradiance and aerosol optical depth measurements. Calibration and processing of the raw data will be described, and an initial evaluation of the instrumental performance will be given. Aerosol optical depths derived from Microtops II measurements and the rotating shadowband radiometer will be compared. We show that the standard deviation of Aerosol optical depths observed with Microtops II and the shadowband radiometer is about 0.02 for matching channels, and an aerosol type classification based on Angstrom exponent shows good agreement. Also the influence of ship smoke and ocean swell is studied. The suitability of the instrument to automate MAN observations is discussed, and an outlook to the use of the instrument to also derive cloud optical properties is

  4. Using Artificial Sky Glow to Retrieve Night Time Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Aubé, M.; O'Neill, N. T.; Giguère, J.-D.; Royer, A.

    2009-04-01

    Measuring the Aerosol Optical Depth (AOD) is of particular importance in monitoring aerosol contributions to global radiative forcing. Most measuring methods are based on direct or indirect observation of sunlight and thus are only available for use during daylight hours. Attempts have been made to measure AOD behavior at night from star photometry, and more recently moon photometry. Star photometry method uses spectrally calibrated stars as reference targets this provides somewhat more flexibility than a sunphotometer but there are low-signal and calibration issues which can make these measurements problematic. Moon photometry is only possible when the moon is present in the sky. We suggest a complementary method, based on the observation of artificial hemispheric sky glow generated by light pollution. The methodology requires (1) the implementation of an heterogeneous 3D light pollution model and (2) the design of an automated light pollution spectrometer. This instrument designated as the Spectrometer for Aerosol Night Detection (SAND) is now in it's third version. Basically, SAND-3 is a CCD based, long-slit spectrometer with a non imaging optical head. SAND-3 is protected from inclement weather by a transparent acrylic dome; it can run autonomously with minimal maintenance. The system can be remotely controlled via a web browser or via a secure shell client. Preliminary field measurements acquired at the Mont-Mégantic astronomical observatory (Québec, Canada) and in Sherbrooke (Québec, Canada) will be reported. We will also show preliminary day/night (continuity) comparisons with AERONET/AEROCAN sunphotometer AOD measurements and nightime comparisons with aerosol backscatter lidar profiles acquired at the nearby optical observatory in Sherbrooke Québec, Canada. The performance and the potential of this approach will be discussed in conjunction with the implementation of the light pollution model.

  5. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  6. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, Jane; Walters, David; Bellouin, Nicolas; Milton, Sean

    2014-05-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. Inclusion of the indirect aerosol effects has significant impacts on the SW radiation particularly at high latitudes due to lower cloud amounts in high latitude clean air regions. This leads to improved surface radiation biases at the North Slope of Alaska ARM site. Verification of temperature and height forecasts is also improved in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. This study highlights the importance of including a more realistic treatment of aerosol-cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex

  7. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  8. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; Halthore, R. N.; Haywood, J. M.; Iversen, T.; Kato, S.; Kinne, S.; Kirkevag, A.; Knapp, K. R.; Lacis, A.; Laszlo, I.; Mishchenko, M. I.

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  9. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  10. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    NASA Technical Reports Server (NTRS)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF

  11. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Remer, L. A.; Kahn, R. A.; Kleidman, R. G.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  12. Simulation of the recent evolution of stratospheric aerosols by the MOSTRA Simulation of the recent evolution of stratospheric aerosols by the MOSTRA microphysical/transport model

    NASA Astrophysics Data System (ADS)

    Bingen, Christine; Errera, Quentin; Vanhellemont, Filip; Fussen, Didier; Mateshvili, Nina; Dekemper, Emmanuel; Loodts, Nicolas

    2010-05-01

    We present recent advances in the development of a microphysical/transport model for stratospheric aerosols, called MOdel for STRatospheric Aerosols (MOSTRA). MOSTRA is a 3D model describing the evolution in time and space of the stratospheric aerosol distribution described using a set of discrete size bins. The microphysical module used in this model makes use of the PSCBOX model developed by Larsen (2000). The transport module is based on the flux-form semi-Lagragian scheme by Lin and Rood (1996). The model structure will be presented with simulations of the evolution of the volcanic aerosol plume after recent volcanic eruptions. References: N. Larsen, Polar Stratospheric Clouds, Microphysical and optical models, Scientific Report 00-06, Danish Meteorological Institute, 2000 Lin, S.-J. Rood, R.B., Multidimensional Flux-Form Semi-Lagrangian Transport Schemes, Monthly Weather Review, 124, 2046-2070, 1996.

  13. Mouse Model of Coxiella burnetii Aerosolization.

    PubMed

    Melenotte, Cléa; Lepidi, Hubert; Nappez, Claude; Bechah, Yassina; Audoly, Gilles; Terras, Jérôme; Raoult, Didier; Brégeon, Fabienne

    2016-07-01

    Coxiella burnetii is mainly transmitted by aerosols and is responsible for multiple-organ lesions. Animal models have shown C. burnetii pathogenicity, but long-term outcomes still need to be clarified. We used a whole-body aerosol inhalation exposure system to mimic the natural route of infection in immunocompetent (BALB/c) and severe combined immunodeficient (SCID) mice. After an initial lung inoculum of 10(4) C. burnetii cells/lung, the outcome, serological response, hematological disorders, and deep organ lesions were described up to 3 months postinfection. C. burnetii-specific PCR, anti-C. burnetii immunohistochemistry, and fluorescent in situ hybridization (FISH) targeting C. burnetii-specific 16S rRNA completed the detection of the bacterium in the tissues. In BALB/c mice, a thrombocytopenia and lymphopenia were first observed, prior to evidence of C. burnetii replication. In all SCID mouse organs, DNA copies increased to higher levels over time than in BALB/c ones. Clinical signs of discomfort appeared in SCID mice, so follow-up had to be shortened to 2 months in this group. At this stage, all animals presented bone, cervical, and heart lesions. The presence of C. burnetii could be attested in situ for all organs sampled using immunohistochemistry and FISH. This mouse model described C. burnetii Nine Mile strain spread using aerosolization in a way that corroborates the pathogenicity of Q fever described in humans and completes previously published data in mouse models. C. burnetii infection occurring after aerosolization in mice thus seems to be a useful tool to compare the pathogenicity of different strains of C. burnetii. PMID:27160294

  14. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.

    2008-01-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  15. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  16. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmüller, Klaus; Pozzer, Andrea; Metzger, Swen; Stenchikov, Georgiy L.; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  17. Deriving atmospheric visibility from satellite retrieved aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Schneider, Ch.; Popp, Ch.; Wunderle, S.

    2009-04-01

    Atmospheric visibility is a measure that reflects different physical and chemical properties of the atmosphere. In general, poor visibility conditions come along with risks for transportation (e.g. road traffic, aviation) and can negatively impact human health since visibility impairment often implies the presence of atmospheric pollution. Ambient pollutants, particulate matter, and few gaseous species decrease the perceptibility of distant objects. Common estimations of this parameter are usually based on human observations or devices that measure the transmittance of light from an artificial light source over a short distance. Such measurements are mainly performed at airports and some meteorological stations. A major disadvantage of these observations is the gap between the measurements, leaving large areas without any information. As aerosols are one of the most important factors influencing atmospheric visibility in the visible range, the knowledge of their spatial distribution can be used to infer visibility with the so called Koschmieder equation, which relates visibility and atmospheric extinction. In this study, we evaluate the applicability of satellite aerosol optical depth (AOD) products from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) to infer atmospheric visibility on large spatial scale. First results applying AOD values scaled with the planetary boundary layer height are promising. For the comparison we use a full automated and objective procedure for the estimation of atmospheric visibility with the help of a digital panorama camera serving as ground truth. To further investigate the relation between the vertical measure of AOD and the horizontal visibility data from the Aerosol Robotic Network (AERONET) site Laegeren (Switzerland), where the digital camera is mounted, are included as well. Finally, the derived visibility maps are compared with synoptical observations in central

  18. Direct and indirect radiative effects of aerosols using the coupled system of aerosol HAM module and the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Rabab; Irannejad, Parviz; Feichter, Johann; Akbari Bidokhti, Abbas Ali Ali

    2010-05-01

    The fully coupled aerosol-cloud and radiation WRF-HAM modeling system is presented. The aerosol HAM model is implemented within the chemistry version of WRF modeling system. HAM is based on a "pseudo-modal" approach for representation of the particle size distribution. Aerosols are grouped into four geometrical size classes and two types of mixed and insoluble particles. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. Microphysical processes including nucleation, condensation and coagulation of aerosol particles are considered using the microphysics M7 scheme. Horizontal transport of the aerosol particles is simulated using the advection scheme in WRF. Convective transport and vertical mixing of aerosol particles are also considered in the coupled system. A flux-resistance method is used for dry deposition of aerosol particles. Aerosol sizes and chemical compositions are used to determine the aerosol optical properties. Direct effects of aerosols on incoming shortwave radiation flux are simulated by transferring the aerosol optical parameters to the Goddard shortwave radiation scheme. Indirect effects of aerosols are simulated by using a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets. The first and second indirect effects, i.e. the interactions of clouds and incoming solar radiation are implemented in WRF-Chem by linking the simulated cloud droplet number with the Goddard shortwave radiation scheme and the Lin et al. microphysics scheme. The simulations are carried out for a 6-day period from 22 to 28 February 2006 in a domain with 30-km grid spacing, encompassing the south-western Asia, North Africa and some parts of Europe. The results show a negative radiative forcing over most parts of the domain, mainly due to the presence of mineral dust aerosols. The simulations are evaluated using the measured downward radiation in

  19. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  20. Validation of Retrieved Aerosol Optical Properties over Northeast Asia for Five Years from GOSAT TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, S.; KIM, M.; Choi, M.; Go, S.; Lim, H.; Goo, T. Y.; Nakajima, T.; Kuze, A.; Shiomi, K.; Yokota, T.

    2015-12-01

    An aerosol retrieval algorithm was developed from Thermal And Near infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT). The algorithm retrieves aerosol optical depth (AOD), size distribution of aerosol, and aerosol type in 0.1 degree grid resolution by look-up tables, which is used in retrieving optical properties of aerosol using inversion products from Aerosol Robotic NETwork (AERONET) sun-photometer observation. To improve the accuracy of aerosol algorithm, first, this algorithm considered the annually estimated radiometric degradation factor of TANSO-CAI suggested by Kuze et al. (2014). Second, surface reflectance was determined by two methods: one using the clear sky composite method from CAI measurements and the other the database from MODerate resolution Imaging Sensor (MODIS) surface reflectance data. At a given pixel, the surface reflectance is selected by using normalized difference vegetation index (NDVI) depending on season (Hsu et al., 2013). In this study, the retrieved AODs were compared with those of AERONET and MODIS dataset for different season over five years. Comparisons of AODs between AERONET and CAI show reasonable agreement with correlation coefficients of 0.65 ~ 0.97 and regression slopes between 0.7 and 1.2 for the whole period, depending on season and sites. Moreover, those between MODIS and CAI for the same period show agreements with correlation coefficients of 0.7 ~ 0.9 and regression slopes between 0.7 and 1.0, depending on season and regions. The results show reasonably good correlation, however, the largest error source in aerosol retrieval has been surface reflectance of TANSO-CAI due to its 3-days revisit orbit characteristics.

  1. Influence of aerosols on atmospheric variables in the HARMONIE model

    NASA Astrophysics Data System (ADS)

    Palamarchuk, Iuliia; Ivanov, Sergiy; Ruban, Igor; Pavlova, Hanna

    2016-03-01

    The mesoscale HARMONIE model is used to investigate the potential influence of aerosols on weather forecasts, and in particular, on precipitation. The study considers three numerical experiments over the Atlantic-Europe-Northern Africa region during 11-16 August 2010 with the following configurations: (a) no aerosols, (b) only the sea aerosols, and (c) the four types of the aerosols: sea, land, organic, and dust aerosols. The spatio-temporal analysis of forecast differences highlights the impact of aerosols on the prediction of main meteorological variables such as air temperature, humidity, precipitation, and cloud cover as well as their vertical profiles. The variations occur through changes in radiation fluxes and microphysics properties. The sensitivity experiments with the inclusion of climatological aerosol concentrations demonstrate the importance of aerosol effects on weather prediction.

  2. A Global Aerosol Model Forecast for the ACE-Asia Field Experiment

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-01-01

    We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large

  3. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  4. The estimation of Aerosol Optical Depth in eastern China based on regression analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Runhe; Liu, Chaoshun; Zhou, Cong

    2015-09-01

    The atmospheric pollution and air quality issues are getting worse in China, the formation mechanism of aerosols and their environment effects attracted more and more attention. Aerosol Optical Depth (AOD) is one of the most important parameters which can indicate the atmospheric turbidity and aerosol load. High-quality AOD data are significant for the study in the atmospheric environment (i.e., air quality). This paper used MODIS/Terra AOD in 2008 to improve the coverage of MODIS/Aqua AOD, which was based on linear regression analysis model. RMSE between estimation value and AquaAOD detected through satellite is 0.132. The average value of test data was 0.812. The average of regression result was 0.807. It showed that the regression model between AODTerra and AODAqua worked well. Also, we built two sets of estimation models (MODIS AOD and OMI AOD) through stepwise regression analysis model. One is using OMI AOD and meteorological elements to estimate MODIS AOD. The value of RMSE was 0.113, which represents 13.916% of the average(R2=0.782). The other one is using MODIS AOD and meteorological elements to estimate OMI AOD. RMSE of the model is 0.132, which represents 18.182% of the average (R2=0.726).

  5. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  6. Satellite derived aerosol optical depth climatology over Bangalore, India

    NASA Astrophysics Data System (ADS)

    Sreekanth, V.

    2013-06-01

    Climatological aerosol optical depths (AOD) over Bangalore, India have been examined to bring out the temporal heterogeneity in columnar aerosol characteristics. AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra and Aqua satellites, for the period of 2002-2011 have been analyzed (independently) for the purpose. Frequency distributions of the AOD values are examined to infer the monthly mean values. Monthly and seasonal variations of AOD are investigated in the light of regional synoptic meteorology. Climatological monthly and seasonal mean Terra and Aqua AOD values exhibited similar temporal variation patterns. Monthly mean AOD values increased from January, peaks during May and thereafter (except for a secondary peak during July) fall off to reach a minimum during December. Monsoon season recorded the highest climatological seasonal mean AOD, while winter season recorded the lowest. AOD values show an overall increasing trend on a yearly basis, which was found mainly due to sustained increase in the seasonal averaged AOD during summer. The results obtained in the present study are compared with that of the earlier studies over the same location and also with AOD over various other Indian locations. Finally, the radiative and climatic impacts are discussed.

  7. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGESBeta

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  8. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    NASA Astrophysics Data System (ADS)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  9. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  10. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  11. Regional Comparison and Assimilation of GOCART and MODIS Aerosol Optical Depth across the Eastern U.S.

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Schichtel, Bret; Yu, Hongbin; Chin, Mian; Chu, D. Allen; Niyogi, Dev

    2004-01-01

    This study compares aerosol optical depths (AOD) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and their integrated products with ground measurements across the eastern U.S. from March 1, 2000 to December 31, 2001. The Terra MODIS Level-3 (collection 4) AOD at 0.55 pm has better correlation, but consistently overestimates the values of the Aerosol Robotic Network (AERONET) measurements. GOCART has small biases for a 22-month integration, and slight positive biases are appeared for the cold season. These results are also supported by the comparison with the IMPROVE (Interagency Monitoring of Protected Visual Environments) light extinction index. The optimal interpolation improves the daily-scale RMSE from either MODIS or GOCART alone. However, the regional biases in the aerosol products constitute a major constraint to the optimal estimate of AOD.

  12. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  13. Midinfrared optical properties of petroleum oil aerosols. Final report

    SciTech Connect

    Gurton, K.P.; Bruce, C.W.

    1994-08-01

    The mass normalized absorption and extinction coefficients were measured for fog oil aerosol at 3.4 micrometers with a combined photoacoustic and transmissometer system. An extinction spectral profile was determined over a range of infrared (IR) wavelengths from 2.7 to 4.0 micrometers by an IR scanning transmissometer. The extinction spectrum was mass normalized by referencing it to the photoacoustic portion of the experiment. A corresponding Mie calculation was conducted and compared with the above measurements. Agreement is good for the most recent optical coefficients. An extrapolation of this data to other similar petroleum products such as kerosene or diesel fuel that exhibit similar bulk absorption characteristics were briefly examined.

  14. Aerosol Optical Depth: A study using Thailand based Brewer Spectrophotometers

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Sudhibrabha, Sumridh; Hanprasert, Kesrin

    2015-12-01

    The Aerosol Optical Depth (AOD) was retrieved from the direct-sun Brewer observation by the application of the Beer's law for the years 1997-2011 at two monitoring sites in Thailand (Bangkok and Songkhla). AOD values measured in Bangkok exhibited higher values than Songkhla. In addition, AOD values were higher in the morning and evening in Bangkok. In contrast, the AOD values in Songkhla were slightly lower during the mornings and late afternoons. The variation of AOD was seasonal in Bangkok, with the higher values found in summer (from Mid-February to Mid-May) compared with rainy season (Mid-May to Mid-October), whilst there was no clear seasonal pattern of AOD in Songkhla.

  15. Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea

    NASA Astrophysics Data System (ADS)

    Ogunjobi, K. O.; He, Z.; Kim, K. W.; Kim, Y. J.

    Spectral daily aerosol optical depths (τ a λ) estimated from a multi-filter radiometer over Kwangju were analyzed from January 1999 to August 2001 (total of 277 days). Optical depths obtained showed a pronounced temporal trend, with maximum dust loading observed during spring time and biomass burning aerosol in early summer and autumn of each year. Result indicates that τ a501 nm increased from spring average of 0.45±0.02 to values >0.7 on 7 April 2000, and 13 April 2001. Daily mean spectral variations in the Ångström exponents α were also computed for various episode periods under consideration. A dramatic change in α value is noted especially at high aerosol optical depth when coarse mode aerosol dominates over the influence of accumulation-mode aerosol. High values of τ a λ associated with high values of α in early June and October are characteristics of smoke aerosol predominantly from biomass burning aerosol. Also, volume size distribution is investigated for different pollution episodes with result indicating that the peak in the distribution of the coarse mode volume radius and fine mode particles of dust and biomass-burning aerosol respectively increases as aerosol optical depth increases at Kwangju. Air-mass trajectory were developed on 7-8 April and 19-20 October, 2000 to explain the transport of Asian dust particle and biomass burning to Kwangju.

  16. Aerosol optical properties over the midcontinental United States

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Markham, Brian L.; Ferrare, Richard A.; Aro, Theo. O.

    1992-01-01

    Solar and sky radiation measurements were analyzed to obtain aerosol properties such as the optical thickness and the size distribution. The measurements were conducted as part of the First International Satellite Land Surface Climatology Project Field Experiment during the second intensive field campaign (IFC) from June 25 to July 14, 1987, and the fifth IFC from July 25 to August 12, 1989, on the Konza Prairie near Manhattan, Kansas. Correlations with climatological and meteorological parameters show that during the period of observations in 1987, two types of air masses dominated the area: an air mass with low optical thickness and low temperature air associated with a northerly breeze, commonly referred to as the continental air, and an air mass with a higher optical thickness and higher temperature air associated with a southerly wind which we call 'Gulf air'. The size distributions show a predominance of the larger size particles in 'Gulf air'. Because of the presence of two contrasting air masses, correlations with parameters such as relative humidity, specific humidity, pressure, temperature, and North Star sky radiance reveal some interesting aspects. In 1989, clear distinctions between continental and Gulf air cannot be made; the reason for this will be discussed.

  17. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    NASA Technical Reports Server (NTRS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  18. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate.

    PubMed

    Freedman, Miriam A; Hasenkopf, Christa A; Beaver, Melinda R; Tolbert, Margaret A

    2009-12-01

    We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed. PMID:19877658