Science.gov

Sample records for aerosol optical parameters

  1. A novel technique for estimating aerosol optical thickness trends using meteorological parameters

    NASA Astrophysics Data System (ADS)

    Emetere, Moses E.; Akinyemi, M. L.; Akin-Ojo, O.

    2016-02-01

    Estimating aerosol optical thickness (AOT) over regions can be tasking if satellite data set over such region is very scanty. Therefore a technique whose application captures real-time events is most appropriate for adequate monitoring of risk indicators. A new technique i.e. arithmetic translation of pictorial model (ATOPM) was developed. The ATOPM deals with the use mathematical expression to compute other meteorological parameters obtained from satellite or ground data set. Six locations within 335 × 230 Km2 area of a selected portion of Nigeria were chosen and analyzed -using the meteorological data set (1999-2012) and MATLAB. The research affirms the use of some parameters (e.g. minimum temperature, cloud cover, relative humidity and rainfall) to estimate the aerosol optical thickness. The objective of the paper was satisfied via the use of other meteorological parameters to estimate AOT when the satellite data set over an area is scanty.

  2. Atmospheric aerosol optical parameters, deep convective clouds and hail occurence - a correlation study

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Andrei, Simona; Toanca, Florica; Stefan, Sabina

    2016-04-01

    Among the severe weather phenomena, whose frequency has increased during the past two decades, hail represents a major threat not only for agriculture but also for other economical fields. Generally, hail are produced in deep convective clouds, developed in an unstable environment. Recent studies have emphasized that besides the state of the atmosphere, the atmospheric composition is also very important. The presence of fine aerosols in atmosphere could have a high impact on nucleation processes, initiating the occurrence of cloud droplets, ice crystals and possibly the occurrence of graupel and/or hail. The presence of aerosols in the atmosphere, correlated with specific atmospheric conditions, could be predictors of the occurrence of hail events. The atmospheric investigation using multiwavelength Lidar systems can offer relevant information regarding the presence of aerosols, identified using their optical properties, and can distinguish between spherical and non-spherical shape, and liquid and solid phase of these aerosols. The aim of this study is to analyse the correlations between the presence and the properties of aerosols in atmosphere, and the production of hail events in a convective environment, using extensive and intensive optical parameters computed from lidar and ceilometer aerosols measurements. From these correlations, we try to evaluate if these aerosols can be taken into consideration as predictors for hail formation. The study has been carried out in Magurele - Romania (44.35N, 26.03E, 93m ASL) using two collocated remote sensing systems: a Raman Lidar (RALI) placed at the Romanian Atmospheric 3D Observatory and a ceilometer CL31 placed at the nearby Faculty of Physics, University of Bucharest. To evaluate the atmospheric conditions, radio sounding and satellite images were used. The period analysed was May 1st - July 15th, 2015, as the May - July period is climatologically favorable for deep convection events. Two hail events have been

  3. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    NASA Astrophysics Data System (ADS)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  4. Aerosol, surface, and cloud optical parameters derived from airborne spectral actinic flux: measurement comparison with other methods

    NASA Astrophysics Data System (ADS)

    Stark, H.; Bierwirth, E.; Schmidt, S.; Kindel, B. C.; Pilewskie, P.; Lack, D. A.; Madronich, S.; Parrish, D. D.

    2009-12-01

    Optical parameters of aerosols, surfaces, and clouds are essential for an accurate description of Earth’s radiative balance. We will present values for such parameters derived from spectral actinic flux measured on board the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in April 2008. We will compare these measurements to results obtained from other instruments on board the same aircraft, such as the Solar Spectral Flux Radiometer (SSFR) for irradiance measurements and aerosol extinction and absorption measurements by cavity ring-down and Particle Soot Absorption Photometer (PSAP). Actinic flux is sensitive to these parameters and can be used to measure them directly in the atmosphere without in-situ sampling methods required. We will describe the specifics of the actinic flux measurements, show advantages and disadvantages of this measurement technique, and compare results with other techniques. Furthermore, we will compare our measurements with model calculations from radiative transfer models such as the Tropospheric Ultraviolet and Visible (TUV) radiation model, the widely used library of radiative transfer (libradtran) model, and a Monte-Carlo radiation model (GRIMALDI). Also, we will investigate satellite measurements to constrain the radiation measurements to general radiation conditions in the arctic and to compare the results to aerosol optical depth retrievals. In particular, we will show results for surface albedo of the Arctic Ocean ice surface, extinction and absorption of Arctic haze layers, and optical thickness and albedo measurements of clouds.

  5. Long-term measurements of aerosol optical parameters in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Paraskevopoulou, Despoina; Liakakou, Eleni; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2015-04-01

    Aerosol chemical composition was studied in conjunction with its optical properties in the area of Athens Greece. For this purpose, sampling of fine aerosol fraction (PM2,5) took place on a daily basis from August 2010 to April 2013 at an urban background location. The samples are subsequently analyzed for their content in organic (OC) and elemental carbon (EC), major ions and trace metals, resulting in the exercise of chemical mass closure. In parallel, the optical properties of aerosols are recorded using a nephelometer and a particle soot absorption photometer (PSAP), leading to the calculation of scattering (σscat) and absorption (σabs) coefficients, respectively; while single scattering albedo (SSA) and mass scattering and absorption efficiencies are thereinafter calculated. Daily σscat values provide an average of 30.1±3.9 Μm-1 while, the average of σabs is 5.2±1.4 Μm-1. The seasonal cycle of σscat presents maximum during summer and in November, due to long-range transport of aerosol from continental Europe and dust transfer from Africa, respectively. The estimated mass absorption efficiency of EC is estimated to be 8.3±0.2 m2 g-1 for the whole studied period, while the corresponding estimated mass scattering efficiency of PM2.5 is 1.7±0.1 m2 g-1 and does not affected by the presence of dust. The average SSA equals to 0.87±0.11 for the three-year period. On a seasonal basis, SSA presents maximum values during summer that is consistent with the reduction of EC - the main absorbing specie. Finally, the reconstruction of scattering coefficients was performed taking into consideration the measured chemistry of fine aerosol.

  6. Case study of the ABL height and optical parameters of the atmospheric aerosols over Sofia

    NASA Astrophysics Data System (ADS)

    Evgenieva, Tsvetina; Kolev, Nikolay; Savov, Plamen; Kaleyna, Petya; Petkov, Doino; Danchovski, Ventsislav; Ivanov, Danko; Donev, Evgeni

    2016-01-01

    A study of the atmospheric boundary layer (ABL) height and its relation to the variations in the aerosol optical depth (AOD), Ångström coefficients, water vapor column (WVC) and total ozone column (TOC) was carried out in June 2011 and June 2012 at three sites in the city of Sofia (Institute of Electronics, Astronomical Observatory in the Borisova Gradina Park and National Institute of Geophysics, Geodesy and Geography). A ceilometer CHM15k, a sun photometer Microtops II, an ozonometer Microtops II and an automatic meteorological station were used during the experiments. Measurements of the AOD, WVC and TOC were done during the development of the ABL (followed by the ceilometer). In order to access microphysical properties of the aerosols, the Ångström coefficients α and β were retrieved from the spectral AOD data by the Volz method from three wavelength pairs 500/1020nm, 500/675nm and 380/1020nm. Comparison was done between the results obtained. Daily behavior of the AOD, Ångström exponent α and turbidity coefficient β, WVC and TOC are presented. Different types of AOD and WVC behavior were observed. The AOD had maximum values 1-2 h before ABL to reach its maximum height for the day. No significant correlation is found between TOC daily behavior and that of the AOD and WVC.

  7. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A.; Alharbi, B.; Tapper, N.

    2011-04-01

    On 10th March 2009 a widespread and severe dust storm event that lasted several hours struck Riyadh, and represented one of the most intense dust storms experienced in Saudi Arabia in the last two decades. This short-lived storm caused widespread and heavy dust deposition, zero visibility and total airport shutdown, as well as extensive damage to buildings, vehicles, power poles and trees across the city of Riyadh. Changes in Meteorological parameters, aerosol optical depth (AOD), Angstrom exponent α, infrared (IR) sky temperature and atmospheric emissivity were investigated before, during, and after the storm. The analysis showed significant changes in all of the above parameters due to this event. Shortly after the storm arrived, air pressure rapidly increased by 4 hPa, temperature decreased by 6 °C, relative humidly increased from 10% to 30%, the wind direction became northerly and the wind speed increased to a maximum of 30 m s -1. AOD at 550 nm increased from 0.396 to 1.71. The Angstrom exponent α rapidly decreased from 0.192 to -0.078. The mean AOD at 550 nm on the day of the storm was 0.953 higher than during the previous clear day, while α was -0.049 in comparison with 0.323 during the previous day. Theoretical simulations using SMART software showed remarkable changes in both spectral and broadband solar radiation components. The global and direct radiation components decreased by 42% and 68%, respectively, and the diffuse components increased by 44% in comparison with the previous clear day. IR sky temperatures and sky emissivity increased by 24 °C and 0.3, respectively, 2 h after the arrival of the storm. The effect of aerosol loading by the storm on IR atmospheric emission was investigated using MODTRAN software. It was found that the effect of aerosols caused an increase of the atmospheric emission in the atmospheric window (8-14 μm) such that the window emissions resembled those of a blackbody and the atmospheric window was almost closed.

  8. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  9. Characterization of aerosol events based on the column integrated optical aerosol properties and polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Mandija, Florian; Markowicz, Krzysztof; Zawadzka, Olga

    2016-12-01

    Aerosol optical properties are very useful tools for analyzing their radiative effects, which are directly or indirectly related to the global radiation budget. Investigation of column-integrated aerosol optical properties is a worldwide and well-accepted method. The introduction of new methodologies, like those of operation with polarimetric measurements, represent a new challenge to interpret the measurement data and give more detailed information about the aerosol events and their characteristics. Aerosol optical properties during the period June - August 2015 in AERONET Strzyzow station in Poland were analyzed. The aerosol properties like aerosol optical depth, Ångström exponent, fine mode fraction, fine mode contribution on AOD, asymmetry parameter, single scattering angle are analyzed synergistically with the polarimetric measurements of the degree of polarization in different solar zenith and zenith viewing angles at several wavelengths. The overall results show that aerosol events in Strzyzow were characterized mostly by fine mode aerosols. Backward-trajectories suggest that the majority of air masses come from the west. The principal component of the aerosol load was urban/industrial contamination, especially from the inner part of the continent. Additionally, the maximal values of the degree of linear polarization were found to be dependent on the solar zenith and zenith viewing angles and aerosol optical properties like aerosol optical depth and Ångström exponent. These dependencies were further analyzed in a specific case with very high mean values of AOD500 (0.59) and AE440-870 (1.91). The diurnal variations of aerosol optical properties investigated during this special case, suggest that biomass burning products are the main cause of that aerosol load over the stations.

  10. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land

    NASA Astrophysics Data System (ADS)

    Levy, Robert C.; Remer, Lorraine A.; Dubovik, Oleg

    2007-07-01

    As more information about global aerosol properties has become available from remotely sensed retrievals and in situ measurements, it is prudent to evaluate this new information, both on its own and in the context of satellite retrieval algorithms. Using the climatology of almucantur retrievals from global Aerosol Robotic Network (AERONET) Sun photometer sites, we perform cluster analysis to determine aerosol type as a function of location and season. We find that three spherical-derived types (describing fine-sized dominated aerosol) and one spheroid-derived types (describing coarse-sized dominated aerosol, presumably dust) generally describe the range of AERONET observed global aerosol properties. The fine-dominated types are separated mainly by their single scattering albedo (ω0), ranging from nonabsorbing aerosol (ω0 ˜ 0.95) in developed urban/industrial regions, to moderately absorbing aerosol (ω0 ˜ 0.90) in forest fire burning and developing industrial regions, to absorbing aerosol (ω0 ˜ 0.85) in regions of savanna/grassland burning. We identify the dominant aerosol type at each site, and extrapolate to create seasonal 1° × 1° maps of expected aerosol types. Each aerosol type is bilognormal, with dynamic (function of optical depth) size parameters (radius, standard deviation, volume distribution) and complex refractive index. Not only are these parameters interesting in their own right, they can also be applied to aerosol retrieval algorithms, such as to aerosol retrieval over land from Moderate Resolution Imaging Spectroradiometer. Independent direct-Sun AERONET observations of spectral aerosol optical depth (τ) are consistent the spectral dependence of the models, indicating that our derived aerosol models are relevant.

  11. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ω), the ratio between the scattering (αscat) and extinction (αext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to

  12. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  13. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  14. Long-term (2003-2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa

    NASA Astrophysics Data System (ADS)

    Kumar, K. Raghavendra; Sivakumar, V.; Yin, Yan; Reddy, R. R.; Kang, Na; Diao, Yiwei; Adesina, A. Joseph; Yu, Xingna

    2014-10-01

    The present study is aimed to analyze the spatial and temporal distributions, and trends and variations in aerosol optical properties during the last decade. For this we used the aerosol optical depth (AOD550), Ångström exponent (AE, α470-660) and fine mode fraction (FMF) products derived from the Moderate resolution Imaging Spectroradiometer (MODIS) on board Terra satellite during the period December 2003-November 2013 over three different aerosol environments in South Africa (SA). The spatial pattern of annual mean AOD is characterized with high (low) AOD in the north (south) and with a moderate AOD in the central part of SA. A decadal decrease in AOD has been noticed by performing linear trend analysis over the three stations (Pretoria, Bloemfontein and Cape Town). The seasonal and inter-annual variability of AOD values over three locations of SA showed that the higher mean AOD values occurred during spring (September) and summer (January/February) seasons, whereas the lower values were found in the late autumn/early winter periods (June). On seasonal basis, the decadal climatological variations showed a decreasing trend in different seasons except during spring. The HYSPLIT back trajectory model was used to identify airmass transport pathways originated from aerosol source regions during the dry and wet seasons.

  15. Analysis of optical trap mediated aerosol coalescence

    NASA Astrophysics Data System (ADS)

    Mistry, N. S.; Power, R.; Anand, S.; McGloin, D.; Almohamedi, A.; Downie, M.; Reid, J. P.; Hudson, A. J.

    2012-10-01

    The use of optical tweezers for the analysis of aerosols is valuable for understanding the dynamics of atmospherically relevant particles. However to be able to make accurate measurements that can be directly tied to real-world phenomena it is important that we understand the influence of the optical trap on those processes. One process that is seemingly straightforward to study with these techniques is binary droplet coalescence, either using dual beam traps, or by particle collision with a single trapped droplet. This binary coalescence is also of interest in many other processes that make use of dense aerosol sprays such as spray drying and the use of inhalers for drug delivery in conditions such as asthma or hay fever. In this presentation we discuss the use of high speed (~5000 frames per second) video microscopy to track the dynamics of particles as they approach and interact with a trapped aqueous droplet and develop this analysis further by considering elastic light scattering from droplets as they undergo coalescence. We find that we are able to characterize the re-equilibration time of droplets of the same phase after they interact and that the trajectories taken by airborne particles influenced by an optical trap are often quite complex. We also examine the role of parameters such as the salt concentration of the aqueous solutions used and the influence of laser wavelength.

  16. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Jiyoung

    In situ measurements at Gosan, South Korea, and onboard C-130 aircraft during ACE-Asia were analyzed to investigate the influence of relative humidity (RH) on aerosol optical properties and radiative forcing. The temporal variation of aerosol chemical composition at the Gosan super-site was highly dependent on the air mass transport pathways and source region. RH in the springtime over East Asia were distributed with very high spatial and temporal variation. The RH profile onboard C-130 aircraft measurements exhibits a mixed layer height of about 2 km. Aerosol scattering coefficient ( σsp) under ambient RH was greatly enhanced as compared with that at dry RH (RH<40%). From the aerosol optical and radiative transfer modeling studies, we found that the extinction and scattering coefficients are greatly enhanced with RH. Single scattering albedo with RH is also sensitively changed in the longer wavelength. Asymmetry parameter ( g) is gradually increased with RH although g decreases with wavelength at a given RH. Aerosol optical depth (AOD) at 550 nm and RH of 50% increased to factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90, and 95%, respectively. Diurnal-averaged aerosol radiative forcings for surface, TOA, and atmosphere were increased with RH because AOD was increased with RH due to hygroscopic growth of aerosol particles. This result implies that the hygroscopic growth due to water-soluble or hydrophilic particles in the lower troposphere may significantly modify the magnitude of aerosol radiative forcing both at the surface and TOA. However, the diurnal-averaged radiative forcing efficiencies at the surface, TOA, and atmosphere were decreased with increasing RH. The decrease of the forcing efficiency with RH results from the fact that increasing rate of aerosol optical depth with RH is greater than the increasing rate of aerosol radiative forcing with RH.

  17. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  18. Parameter sensitivity study of Arctic aerosol vertical distribution in CAM5

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Flanner, M.

    2015-12-01

    Arctic surface temperature response to light-absorbing aerosols (black carbon, brown carbon and dust) depends strongly on their vertical distributions. Improving model simulations of three dimensional aerosol fields in the remote Arctic region will therefore lead to improved projections of the climate change caused by aerosol emissions. In this study, we investigate how different physical parameterizations in the Community Atmosphere Model version 5 (CAM5) influence the simulated vertical distribution of Arctic aerosols. We design experiments to test the sensitivity of the simulated aerosol fields to perturbations of selected aerosol process-related parameters in the Modal Aerosol Module with seven lognormal modes (MAM7), such as those govern aerosol aging, in-cloud and below-cloud scavenging, aerosol hygroscopicity and so on. The simulations are compared with observed aerosol vertical distributions and total optical depth to assess model performance and quantify uncertainties associated with these model parameterizations. Observations applied here include Arctic aircraft measurements of black carbon and sulfate vertical profiles, along with Aerosol Robotic Network (AERONET) optical depth measurements. We also assess the utility of using High Spectral Resolution Lidar (HSRL) measurements from the ARM Barrow site to infer vertical profiles of aerosol extinction. The sensitivity study explored here will provide guidance for optimizing global aerosol simulations.

  19. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  20. Multiwavelength multistatic optical scattering for aerosol characterization

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.

    The main focus of this research is the development of a technique to remotely characterize aerosol properties, such as particle size distribution, concentration, and refractive index as a function of wavelength, through the analysis of optical scattering measurements. The proposed technique is an extension of the multistatic polarization ratio technique that has been developed by prior students at the Penn State Lidar Lab to include multiple wavelengths. This approach uses the ratio of polarized components of the scattering phase functions at multiple wavelengths across the visible region of the electromagnetic spectrum to extract the microphysical and optical properties of aerosols. The scattering intensities at each wavelength are vertically separated across the face of the imager using a transmission diffraction grating, so that scattering intensities for multiple wavelengths at many angles are available for analysis in a single image. The ratio of the scattering phase function intensities collected using parallel and perpendicular polarized light are formed for each wavelength and analysis of the ratio is used to determine the microphysical properties of the aerosols. One contribution of the present work is the development of an inversion technique based on a genetic algorithm that retrieves lognormal size distributions from scattering measurements by minimizing the squared error between measured polarization ratios and polarization ratios calculated using the Mie solution to Maxwell's equations. The opportunities and limitations of using the polarization ratio are explored, and a genetic algorithm is developed to retrieve single mode and trimodal lognormal size distributions from multiwavelength, angular scattering data. The algorithm is designed to evaluate particles in the diameter size range of 2 nm to 60 im, and uses 1,000 linear spaced diameters within this range to compute the modeled polarization ratio. The algorithm returns geometric mean radii and

  1. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  2. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  3. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    NASA Astrophysics Data System (ADS)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  4. Multi-Parameter Aerosol Scattering Sensor

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  5. Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols

    NASA Astrophysics Data System (ADS)

    Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.

    2002-05-01

    Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and

  6. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  7. Aerosol water parameterisation: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, Swen; Steil, Benedikt; Abdelkader, Mohamed; Klingmüller, Klaus; Xu, Li; Penner, Joyce E.; Fountoukis, Christos; Nenes, Athanasios; Lelieveld, Jos

    2016-06-01

    We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  8. Aerosol water parameterization: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Abdelkader, M.; Klingmüller, K.; Xu, L.; Penner, J. E.; Fountoukis, C.; Nenes, A.; Lelieveld, J.

    2015-11-01

    We introduce a framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute specific coefficient was introduced in Metzger et al. (2012) to accurately parameterize the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer sized particles up to dilute solutions, i.e., from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler-theory). Here we extend the νi-parameterization from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II, ISORROPIA II models as well as textbook examples. We apply our parameterization in EQSAM4clim, the EQuilibrium Simplified Aerosol Model V4 for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show: (i) that the νi-approach enables to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that, e.g., pure ammonium nitrate and mixed ammonium nitrate - ammonium sulfate mixtures can be solved with a simple method, and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  9. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K.-S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  10. Optical Characterization of Tropospheric Aerosols.

    DTIC Science & Technology

    1987-09-01

    Transmission of Light Through Fog," Phys. Rev. Vol. 38, p 159 (1931). 27. Kerker, M., Matijevic , E., Espenscheid, W. F., Farone, W. A., and Kitani, S...Espensheid, W. F., Matijevic , E., and Kerker, M., "Aerosol Studies by Light Scattering. III. Preparation and Particle Size Analysis of Sodium Chloride

  11. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  12. Ship-based Aerosol Optical Depth Measurements Near Antarctica

    NASA Astrophysics Data System (ADS)

    Sakerin, S. M.; Smirnov, A.; Kabanov, D. M.; Turchinovich, Y. S.; Holben, B. N.; Radionov, V. F.; Slutsker, I.

    2006-12-01

    Aerosol optical properties over the oceans were studied in November 2005 January 2006 onboard the R/V Akademik Fedorov within the framework of the 51st Russian Antarctic Expedition. Measurements were made with the handheld sunphotometer Microtops II. The sunphotometer was calibrated against the AERONET reference CIMEL radiometer. The direct sun measurements were acquired in five spectral channels at 340, 440, 675, 870 and 936 nm. Aerosol optical depth was retrieved by applying the AERONET processing algorithm (Version 2). The paper presents results of measurements along the Atlantic transect and in the Antarctic region, where the main data volume was obtained (spanning 20 days). During the measurement period near Antarctica aerosol optical depth was low (daily averages varied within 0.02-0.04 at a wavelength 440 nm). Average spectral dependence of aerosol optical depth showed usual monotonic behavior, decreasing from 0.037 at 440 nm to 0.022 at 870 nm. Daily averaged Angstrom parameter was 0.84. Spatial and temporal variations in the Antarctic region were less or about 0.02 which is comparable with the measurement uncertainty. For a few days Microtops was collocated with the stationary sunphotometer ABAS-3 from the coastal Antarctic station Myrnyi and took simultaneous measurements. Presented results are compared with the long-term observations in Antarctica.

  13. Optical Absorption Characteristics of Aerosols.

    DTIC Science & Technology

    1985-09-11

    properties of the powder as well as the thickness of the layer. For a layer that is thick enough so that no light is transmitted, the Kubelka -- Munk theory...which is a two stream radiative transfer model, relates the reflectance to the ratio of the absorption to the scattering. The Kubelka - Munk theory has...of the aerosol material is known. Under the assumptions of the Kubelka - Munk . theory, the imaginary component of the refractive index is deter- mined

  14. Vertical distribution of optical parameters of aerosol, evaluation of rain rate and rain drop size by using the pal system, at guwahati

    NASA Astrophysics Data System (ADS)

    Devi, M.; Barbara, A. K.; Baishya, R.; Takeuchi, N.

    The paper gives in brief, the features of a Portable Automated Lidar (PAL) set up, fabricated and operated at Guwahati (260N and 920 E) a subtropical station, for monitoring of aerosol, cloud and precipitation features and then describes the method adopted for profiling of aerosol and determination of rain rate as well as drop sizes with coupled observation from distrometer and radiosonde. The PAL generates 532 nm laser pulses of 10 ns duration of high repetition rate of 1-2 kHz. The backscattered signals from atmospheric constituents collected by a telescope of diameter 20 cm., and amplified with a Photo Multiplier Tube (PMT), are then processed in Lab View environment by a software for, extracting aerosol and cloud features. For checking and correcting the alignment affected by temperature, provisions are also introduced for easy adjustment of horizontal and vertical axes. In this approach we have evaluated system constant C, from the lidar backscattered signal itself, for an assumed lidar ratio as a first approach, and with extinction co-efficient determined experimentally. Here, the lidar is put for probing the atmosphere horizontally, when we may assume the atmosphere to be homogeneous along the FOV of the lidar. However, as horizontal in-homogeneity of the atmosphere cannot be ruled out, the paper illustrates the type of profiles adopted for such analysis and the lidar being situated in a semi rural area, a methodical screening approach adopted for selection of echograms free from shoot and fossil burning by product is described. Once the backscatter power with distance is known from the selected lidar outputs, σ is evaluated from the slope of the profile associating ``ratio of backscatter power to transmitter power'' with distance r. The methods taken up for realization of β value and then determination of C are elaborated in the paper. The lidar ratio S, is assumed from reported results as a first reference value. This parameter S is then checked for its

  15. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble

  16. Microphysical, chemical and optical aerosol properties in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Kikas, Ülle; Reinart, Aivo; Pugatshova, Anna; Tamm, Eduard; Ulevicius, Vidmantas

    2008-11-01

    The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden. Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime-continental aerosol; 2) moderately polluted maritime-continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO 4- ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.

  17. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  18. Aerosol Single-Scattering Albedo and Asymmetry Parameter from MFRSR Observations during the ARM Aerosol IOP 2003

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Ackerman, Thomas P.; Barnard, James C.

    2007-06-15

    Multi-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measurements of the aerosol optical depth ( << OLE Object: Microsoft Equation 3.0 >> ) at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94  << OLE Object: Picture (Metafile) >> ). The single-scattering albedo ( << OLE Object: Microsoft Equation 3.0 >> ) is typically estimated from the MFRSR measurements by assuming the asymmetry parameter ( << OLE Object: Microsoft Equation 3.0 >> ). In most instances, however, it is not easy to set an appropriate value of << OLE Object: Microsoft Equation 3.0 >> due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously << OLE Object: Microsoft Equation 3.0 >> and << OLE Object: Microsoft Equation 3.0 >> for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Science Program (ARM) Aerosol Intensive Operational Period (IOP) to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET) and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~ 5 << OLE Object: Microsoft Equation 3.0 >> ) to those obtained from measurements.

  19. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  20. Assessment of the MODIS Algorithm for Retrieval of Aerosol Parameters over the Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, W.; Stamnes, K.; Eide, H.; Spurr, R.; Tsay, S.

    2006-12-01

    The MODIS aerosol algorithm over the ocean derives spectral aerosol optical depth and aerosol size parameters from satellite measured radiances at the top of atmosphere (TOA). It is based on the addition of Apparent Optical Properties (AOPs): TOA reflectance is approximated as a linear combination of reflectance resulting from a small particle mode and a large particle mode. The weighting parameter is defined as the fraction of the optical depth at 550 nm due to the small mode. The AOP approach is correct only in the single scattering limit. For a physically correct TOA reflectance simulation, we create linear combinations of the Inherent Optical Properties (IOPs) of small and large particle modes, in which the weighting parameter is defined as the fraction of the number density attributed to the small particle mode. We use these IOPs as inputs to an accurate multiple scattering radiative transfer model. We show that the use of accurate radiative transfer simulations and weighting parameters as used in the IOP approach yields more satisfactory results for the retrieved aerosol optical depth and the size parameters.

  1. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  2. Relationship between column aerosol optical properties and surface aerosol gravimetric concentrations during the Distributed Regional Aerosol Gridded Observation Network - Northeast ASIA 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Seo, S.; Choi, M.; Kim, W. V.; Holben, B. N.; Lee, S.; Kim, J.

    2012-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. This study aims to identify the important parameters that affecting the relationship between those variables during the DRAGON - northeast Asia 2012 campaign. Column aerosol optical properties from ten Cimel sun photometers at DRAGON sites in Seoul, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOCI (Geostationary Ocean Color Imager) and particulate matter (PM10) sampling from 40 NIER (National Institute of Environmental Research of South Korea) measurement sites in Seoul during the period of 1st March - 31th May 2012 were employed in this study. The key parameters in relationship between aerosol optical depth (AOD) and PM are reported to be aerosol vertical profile and hygroscopicity of the aerosols. The meteorological conditions including relative humidity, surface temperature, and wind speed that could affect those parameters were investigated.

  3. Aerosol optical depth characteristics in Yinchuan area

    NASA Astrophysics Data System (ADS)

    Zhang, Yaya; Mao, Jiandong; Rao, Zhimin; Zhang, Fan

    2013-08-01

    Sand dust aerosol is the main component of aerosol in troposphere atmosphere of East Asia, which can produce the extensive influence on the ecosystem, atmosphere environment and atmosphere chemistry through intensive sand dust weather process. For investigation of the aerosol optical depth (AOD) and its temporal-spatial evolution over this area, a series of observation experiments were carried out by a sun photometer CE-318 located at Beifang University of Nationality( 106°E, 38°29'N ), Yinchuan Ningxia province of China from September 2012 to April 2013 and many direct solar radiation datum were obtained. The experiments results were analyzed in detail and some conclusions are obtained as follows: (1) For daily evolution of AOD, the variation trend are divided into four types: ①the AOD values are relatively steady in whole day; ② the AOD values increase from morning to afternoon; ③ the AOD values are greater at noon than that in the morning and afternoon; ④there is a peak in the variation trends of AOD from 9:00~12:00 in the morning, but it is small at other time. (2) For month evolution, the minimum AOD average value appears in September and the maximum one appears in April. (3) For the seasonal changes trend, the average AOD values in the April are bigger than that in the autumn. (4) In addition, during the observation period, one dust weather process was observed and the change characteristic of AOD of dust aerosol was obtained and analyzed.

  4. The Optical Spectra of Aerosols.

    DTIC Science & Technology

    1983-10-01

    espressione dell’ampiezza di diffusione in * avanti vengono fattorizzati. In questo modo la somma delle am- piezze di diftusione di "cluster" con...F1D-Ali35 687 THE OPTICAL SPECTRA OF REROSOLSOU) MESSINA UNIV (ITALY) i/i 1ST DI STRIJTTURA DELLA IIATERIA F BORIIHESE OCT 83 UNCLASSIFIED DRR78--85F...ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS * Istituto di Struttura della Materia 61102A-1T161102-BH57-01 Un iversita di Messina V~nina. Ttalv St

  5. Aerosol measurements and validation of satellite-derived aerosol optical depth over the Kavaratti Cal-Val site

    NASA Astrophysics Data System (ADS)

    Babu, K. N.; Suthar, N. M.; Patel, P. N.; Mathur, A. K.

    2016-05-01

    Aerosols are short-lived with a residual time of about a week in the lower atmosphere and are concentrated around the source of origin. Aerosols are produced by variety of natural processes as well as by anthropogenic activities; it gets distributed in the atmosphere through turbulent mixing as well as transported away from the source of origin and thus results in its large seasonal and spatial variability. In this study, the CIMEL sun-photometer measurements at Kavaratti calibration and validation site are used to characterize the aerosols' nature at the measurement site. Also, these in-situ measurements are used to validate the satellite sensor derived aerosol optical depth (AOD) parameter. The data analysis shows that the locally generated aerosols are mostly of marine aerosols and other natural aerosols are transported desert dust. The anthropogenic aerosols are transported from mainland and they are found during the pre-monsoon season. Also aerosol measurements for five years (2009 - 2015) are being planned for validating the satellite sensors derived AOD products namely: OceanSat2-OCM2, MODIS-Terra and MODIS-Aqua.

  6. Aerosol Optical Depth Determinations for BOREAS

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)

    1994-01-01

    Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10

  7. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  8. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  9. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  10. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective

    NASA Astrophysics Data System (ADS)

    Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; Honzak, L.; Jiménez-Guerrero, P.; Knote, C.; Langer, M.; Makar, P. A.; Pirovano, G.; Pérez, J. L.; San José, R.; Syrakov, D.; Tuccella, P.; Werhahn, J.; Wolke, R.; Žabkar, R.; Zhang, J.; Galmarini, S.

    2015-08-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model intercomparison, we used the bulk mass profiles of aerosol chemical species sampled over the locations of AERONET stations across Europe and North America to calculate the aerosol optical properties under a range of common assumptions for all models. Several simulations with parameters perturbed within a range of observed values are carried out for July 2010 and compared in order to infer the assumptions that have the largest impact on the calculated aerosol optical properties. We calculate that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. The uncertainty introduced by the choice of mixing state choice on the calculation of the asymmetry parameter is the order of 10%. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. It is thus recommended to focus further research on a more accurate representation of the aerosol mixing state in models, in order to have a less uncertain simulation of the related optical properties.

  11. THEMIS Observations of Atmospheric Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.; Richardson, Mark I.

    2003-01-01

    The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking began mapping in February 2002 (approximately Ls=330 deg.). Images taken by the Thermal Emission Imaging System (THEMIS) on-board the Odyssey spacecraft allow the quantitative retrieval of atmospheric dust and water-ice aerosol optical depth. Atmospheric quantities retrieved from THEMIS build upon existing datasets returned by Mariner 9, Viking, and Mars Global Surveyor (MGS). Data from THEMIS complements the concurrent MGS Thermal Emission Spectrometer (TES) data by offering a later local time (approx. 2:00 for TES vs. approx. 4:00 - 5:30 for THEMIS) and much higher spatial resolution.

  12. Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Schutgens, Nick; Stier, Philip

    2016-11-01

    A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid boxes, which can lead to discrepancies in simulated aerosol climate effects between high- and low-resolution models. This study investigates the impact of neglecting subgrid variability in present-day global microphysical aerosol models on aerosol optical depth (AOD) and cloud condensation nuclei (CCN). We introduce a novel technique to isolate the effect of aerosol variability from other sources of model variability by varying the resolution of aerosol and trace gas fields while maintaining a constant resolution in the rest of the model. We compare WRF-Chem (Weather and Research Forecast model) runs in which aerosol and gases are simulated at 80 km and again at 10 km resolutions; in both simulations the other model components, such as meteorology and dynamics, are kept at the 10 km baseline resolution. We find that AOD is underestimated by 13 % and CCN is overestimated by 27 % when aerosol and gases are simulated at 80 km resolution compared to 10 km. The processes most affected by neglecting aerosol subgrid variability are gas-phase chemistry and aerosol uptake of water through aerosol-gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol properties when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. These results demonstrate that aerosol variability can have a large impact on simulating aerosol climate effects, even when meteorology and dynamics are held constant. Future aerosol model development should focus on accounting for the effect of subgrid variability on these

  13. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  14. Optical and Hygroscopic Studies of Aerosols In Simulated Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Hasenkopf, Christa A.

    2011-08-01

    in the UV-Vis than Khare et al. (1984) values. These results may imply that (a) photolysis is not the dominant source of aerosol on Titan, and/or (b) the optical retrievals are dominated by the more absorbing and scattering electric discharge generated aerosol. For the hygroscopicity studies, the optical growth of the early Earth analog at various relative humidities (RH) was measured, as well as a Titan analog for comparison. The retrieved hygroscopic parameter for the early Earth analog indicates that a humidified early Earth aerosol could have contributed to a larger antigreenhouse effect on the early Earth atmosphere than previously modeled with dry aerosol. Such effects would be important in regions where RH is greater than 50% because such high humidities are needed for significant amounts of water to be on the aerosol. The retrieved hygroscopicity parameter also indicates that the particles could activate into cloud droplets at reasonable supersaturations. In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would create short-lived, optically thin clouds. Such clouds, if predominant on the early Earth, would have a lower albedo than clouds today, thereby warming the planet relative to current day clouds.

  15. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  16. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  17. Impact of aerosols and cloud parameters on Indian summer monsoon rain at intraseasonal scale: a diagnostic study

    NASA Astrophysics Data System (ADS)

    Singh, Charu; Thomas, Litty; Kumar, K. Kishore

    2017-01-01

    Aerosol and cloud parameters are known to be the influencing factors of the Indian summer monsoon rainfall (ISMR) variability at interannual and intraseasonal scales. In this study, we investigate the impact of remotely sensed aerosol optical depth and associated parameters (cloud fraction, cloud optical depth, cloud effective radii, cloud top pressure, and single-scattering albedo) on the individual active (break) spells of the Indian summer monsoon (ISM) season. Active and break spells are identified using satellite-derived data sets over the central Indian (CI) region. The present analysis suggests that the CI region is loaded with higher aerosol concentration and that rainfall is significantly negatively correlated with aerosol optical depth (significant at 1 % significance level) over CI. Contrary to the composite-based previous studies, it has been observed that the aerosol loading and cloud properties are considerably different during the individual active and break events. For break events, composite representation shows that aerosols are stacked along the Himalayan region while all individual break events do not portray this type of aerosol dispensation. It appears from the present analysis that the aerosols may impact the intraseasonal variability of ISMR through its indirect effect by altering the cloud properties and consequently the rainfall. Therefore, aerosols are supposed to be a regional contributor in affecting the intraseasonal variability of summer monsoon rainfall.

  18. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  19. An investigation of aerosol optical properties: Atmospheric implications and influences

    NASA Astrophysics Data System (ADS)

    Penaloza-Murillo, Marcos A.

    An experimental, observational, and theoretical investigation of aerosol optical properties has been made in this work to study their implications and influences on the atmosphere. In the laboratory the scientific and instrumental methodology consisted of three parts, namely, aerosol generation, optical and mass concentration measurements, and computational calculations. In particular the optical properties of ammonium sulfate and caffeine aerosol were derived from measurements made with a transmissometer cell-reciprocal- integrating nephelometer (TCRIN), equipped with a laser beam at 632.8 nm, and by applying a Mie theory computer code The aerosol generators, optical equipment and calibration procedures were reviewed. The aerosol shape and size distribution were studied by means of scanning electron microscopy and the Gumprecht- Sliepcevich/Lipofsky-Green extinction-sedimentation method. In particular the spherical and cylindrical shape were considered. During this investigation, an alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer, which is based on a linearisation of the Lambert-Beer law, was found. In addition, adapting the TCRIN to electrooptical aerosol studies, the optical properties of a circular-cylindrical aerosol of caffeine were undertaken under the condition of random orientation in relation with the laser beam, and perpendicular orientation to it. A theoretical study was conducted to assess the sensitivity of aerosol to a change of shape under different polarisation modes. The aerosol optical properties, obtained previously in the laboratory, were then used to simulate the direct radiative forcing. The calculations and results were obtained by applying a one- dimensional energy-balance box model. The influence of atmospheric aerosol on the sky brightness due to a total solar eclipse was studied using the photometric and meteorological observations made during the

  20. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  1. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  2. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  3. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  4. Classification of Aerosol over Central Europe by Cluster Analysis of Aerosol Columnar Optical Properties and Backward Trajectory Statistics

    NASA Astrophysics Data System (ADS)

    Szkop, Artur; Pietruczuk, Aleksander; Posyniak, Michał

    2016-12-01

    A cluster analysis is applied to the Aerosol Robotic Network (AERONET) data obtained at Belsk, Poland, as well as three nearby Central European stations (Leipzig, Minsk and Moldova) for estimation of atmospheric aerosol types. Absorption Ångstrom exponent (AAE), aerosol optical thickness (AOT) and extinction Ångstrom exponent (EAE) parameters are used. Clustering in both 2D (AOT, EAE) and 3D (AOT, EAE, AAE) is investigated. A method of air mass backward trajectory analysis is then proposed, with the receptor site at Belsk, to determine possible source regions for each cluster. Four dominant aerosol source regions are identified. The biomass burning aerosol source is localized in the vicinity of Belarusian-Ukrainian border. Slovakia and northern Hungary are found to be the source of urban/industrial pollutants. Western Poland and eastern Germany are the main sources of polluted continental aerosols. The most differentiated source region of Scandinavia, Baltic Sea and Northern Atlantic, associated with lowest values of AOT, corresponds to clean continental and possibly maritime type aerosols.

  5. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    (RH) at a certain RH divided by sp at a dry value, was used to evaluate the aerosol hygroscopicity. Different empirical fits were evaluated using the f(RH) data. The widely used gamma model was found inappropriate, as it overestimates f(RH) for RH<75%. Abetter empirical fit with two power-law curve-fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass (OMC) and the species that are affected by RH and f(RH) was also studied and categorized between the sites. A second experiment is reported where the first two elements of the scattering matrix of laboratory generated particles were studied under different humidity conditions. The non-spherical particles generated were ammonium sulfate, sodium chloride, and ammonium nitrate. The optical measurements were performed with a polarized imaging nephelometer (PI-Neph) installed in series with the humidifier dryer apparatus. The inorganic salts experienced low (80%) RH levels so that the observations could contrast the differences when the salts were crystallized (low RH) and when the particles turned to aqueous solutions after deliquesence (high RH). The measurements with the PI-Neph produce the aerosol phase function and the polarized phase function in a range of angles that go from 3 to 177. The results showed significant changes in the phase function and polarized phase function due to the hygroscopic growth. Although the inorganic salts used inthe experiments were non-spherical, the dry measurements were successfully reproduced with the Mie theory using literature values for the dry index of refraction. Moreover, the changes in the particle size distribution and index of refraction were evaluated through classic thermodynamic equilibrium theory producing comparable results with the simulations performed with Mie formalism. The final experiment consisted in the measurements of phase function and degree of linear polarization of ambient aerosols

  6. Midinfrared optical properties of petroleum oil aerosols

    NASA Astrophysics Data System (ADS)

    Gurton, K. P.; Bruce, C. W.

    1994-08-01

    The mass normalized absorption and extinction coefficients were measured for fog oil aerosol at 3.4 micrometers with a combined photoacoustic and transmissometer system. An extinction spectral profile was determined over a range of infrared (IR) wavelengths from 2.7 to 4.0 micrometers by an IR scanning transmissometer. The extinction spectrum was mass normalized by referencing it to the photoacoustic portion of the experiment. A corresponding Mie calculation was conducted and compared with the above measurements. Agreement is good for the most recent optical coefficients. An extrapolation of this data to other similar petroleum products such as kerosene or diesel fuel that exhibit similar bulk absorption characteristics were briefly examined.

  7. Aerosol optical and microphysical properties from POLDER-PARASOL multi-angle photo-polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, O.; Litvinov, P.; Butz, A.

    2010-12-01

    optical properties using a continuous parameter space, instead of using the traditional approach based on a limited number of standard aerosol models. We developed such a new retrieval approach, applied it to POLDER-PARASOL measurements, and validated the results with AERONET ground based measurements. We found very good agreement between our PARASOL retrievals and AERONET measurements, with a correlation coefficient for the aerosol optical thickness of 0.95, a mean difference of 0.004, and a standard deviation of 0.04. For the Angstrom exponent the correlation coefficient is 0.9, with a mean difference of 0.05 and a standard deviation of 0.3. Furthermore, based on the fit residuals of rejected retrievals we discuss the possibility to simultaneously retrieve aerosol and cloud properties for pixels with small residual cloud fraction. This would be another important new step in the field of aerosol satellite remote sensing.

  8. War Induced Aerosol Optical, Microphysical and Radiative Effects

    NASA Astrophysics Data System (ADS)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  9. Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multi-Parameter Algorithm

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Kacenelenbogen, M. S.; Livingston, J. M.; Hasekamp, O.; Burton, S. P.; Schuster, G. L.; Redemann, J.; Ramachandran, S.; Holben, B. N.

    2013-12-01

    In this presentation we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimeter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e,g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals; and quantifying assessments of aerosol radiative impacts on climate. With ongoing improvements in satellite measurement capability, the number of aerosol parameters retrieved from spaceborne sensors has been growing, from the initial aerosol optical depth at one or a few wavelengths to a list that now includes complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at several wavelengths; wavelength dependences of extinction, scattering, absorption, SSA, and backscatter; and several particle size and shape parameters. Making optimal use of these varied data products requires objective, multi-dimensional analysis methods. We describe such a method, which uses a modified Mahalanobis distance to quantify how far a data point described by N aerosol parameters is from each of several prespecified classes. The method makes explicit use of uncertainties in input parameters, treating a point and its N-dimensional uncertainty as an extended data point or pseudo-cluster E. It then uses a modified Mahalanobis distance, DEC, to assign that observation to the class (cluster) C that has minimum DEC from the point (equivalently, the class to which the point has maximum probability of belonging). The method also uses Wilks' overall lambda to indicate how well the input data lend themselves to separation into classes and Wilks' partial lambda to indicate the relative

  10. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  11. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.

  12. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  13. The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Wang, Tijian; Liu, Jane; Li, Shu; Xie, Min; Han, Yong; Chen, Pulong; Hu, Qiduo; Yang, Xiu-qun; Fu, Congbin; Zhu, Jialei

    2017-01-01

    Observational studies of aerosol optical properties are useful for reducing uncertainties in estimations of aerosol radiative forcing and forecasting visibility. In this study, the observed near-surface aerosol optical properties in urban Nanjing are analysed from March 2014 to February 2016. Results show that near-surface urban aerosols in Nanjing are mainly from local emissions and the surrounding regions. They have lower loadings but are more scattering than aerosols in most cities in China. The annual mean aerosol extinction coefficient (EC), single-scattering albedo (SSA) and asymmetry parameter (ASP) at 550 nm are 381.96 Mm-1, 0.9 and 0.57, respectively. The aerosol absorption coefficient (AAC) is about 1 order of magnitude smaller than its scattering coefficient (SC). However, the absorbing aerosol has a larger Ångström exponent (AAE) value, 1.58 at 470/660 nm, about 0.2 larger than the scattering aerosols (SAE). All the aerosol optical properties follow a near-unimodal pattern, and their values are mostly concentrated around their averages, accounting for more than 60 % of the total samplings. Additionally, they have substantial seasonality and diurnal variations. High levels of SC and AAC all appear in winter due to higher aerosol and trace gas emissions. AAE (ASP) is the smallest (largest) in summer, possibly because of high relative humidity (RH) which also causes considerably larger SC and smaller SAE, although intensive gas-to-particle transformation could produce a large number of finer scattering aerosols in this season. Seasonality of EC is different from the columnar aerosol optical depth. Larger AACs appear during the rush hours of the day while SC and back-scattering coefficient (Bsp) only peak in the early morning. Aerosols are fresher in the daytime than at night-time, leading to their larger Ångström exponent and smaller ASP. Different temporal variations between AAC and SC cause the aerosols to be more absorbing (smaller SSA) in autumn

  14. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  15. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  16. Calibrated sky imager for aerosol optical properties determination

    NASA Astrophysics Data System (ADS)

    Cazorla, A.; Shields, J. E.; Karr, M. E.; Burden, A.; Olmo, F. J.; Alados-Arboledas, L.

    2008-11-01

    The calibrated ground-based sky imager developed in the Marine Physical Laboratory, the Whole Sky Imager (WSI), has been tested to determine optical properties of the atmospheric aerosol. Different neural network-based models calculate the aerosol optical depth (AOD) for three wavelengths using the radiance extracted from the principal plane of sky images from the WSI as input parameters. The models use data from a CIMEL CE318 photometer for training and validation and the wavelengths used correspond to the closest wavelengths in both instruments. The spectral dependency of the AOD, characterized by the Ångström exponent α in the interval 440 870, is also derived using the standard AERONET procedure and also with a neural network-based model using the values obtained with a CIMEL CE318. The deviations between the WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncertainty assigned to the AERONET AOD calculation (±0.01), in 80% of the cases. The explanation of data variance by the model is over 92% in all cases. In the case of α, the deviation is within the uncertainty assigned to the AERONET α (±0.1) in 50% for the standard method and 84% for the neural network-based model. The explanation of data variance by the model is 63% for the standard method and 77% for the neural network-based model.

  17. Relative humidity impact on aerosol parameters in a Paris suburban area

    NASA Astrophysics Data System (ADS)

    Randriamiarisoa, H.; Chazette, P.; Couvert, P.; Sanak, J.; Mégie, G.

    2006-05-01

    Measurements of relative humidity (RH) and aerosol parameters (scattering cross section, size distributions and chemical composition), performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the "Etude et Simulation de la Qualité de l'air en Ile-de-France" (ESQUIF) program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  18. Relative humidity impact on aerosol parameters in a Paris suburban area

    NASA Astrophysics Data System (ADS)

    Randriamiarisoa, H.; Chazette, P.; Couvert, P.; Sanak, J.; Mégie, G.

    2005-09-01

    Measurements of relative humidity (RH) and aerosol parameters (scattering cross section, size distributions and chemical composition), performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the ''Etude et Simulation de la Qualité de l'air en Ile-de-France'' (ESQUIF) program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  19. Retrieval of aerosol optical thickness from PROBA-CHRIS images acquired over a coniferous forest

    NASA Astrophysics Data System (ADS)

    Maffei, Carmine; Leone, Antonio P.; Menenti, Massimo; Pippi, Ivan; Maselli, Fabio; Antonelli, Paolo

    2005-10-01

    In the present work we show the potential of multiangular hyperspectral PROBA-CHRIS data to estimate aerosol optical properties over dense dark vegetation. Data acquired over San Rossore test site (Pisa, Italy) have been used together with simultaneous ground measurements. Additionally, spectral measurement over the canopy have been performed to describe the directional behavior of a Pinus pinaster canopy. Determination of aerosol properties from optical remote sensing images over land is an under-determined problem, and some assumptions have to be made on both the aerosol and the surface being imaged. Radiance measured on multiple directions add extra information that help in reducing retrieval ambiguity. Nevertheless, multiangular observations don't allow to ignore directional spectral properties of vegetation canopies. Since surface reflectivity is the parameter we wish to determine with remote sensing after atmospheric correction, at least the shape of the bi-directional reflectance factor has to be assumed. We have adopted a Rahman BRF, and have estimated its geometrical parameters from ground spectral measurements. The inversion of measured radiance to obtain aerosol optical properties has been performed, allowing simultaneous retrieval of aerosol model and optical thickness together with the vegetation reflectivity parameter of the Rahman model.

  20. Calculation of aerosol optical properties under different assumptions on mixing state, refractive index, density and hygroscopicity: uncertainties and importance of representation of aerosol mixing state

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele

    2015-04-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. We used the FlexAOD post-processing tool to calculate the optical properties (aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (g)) from chemistry-transport model aerosol profiles, using a wide range of assumptions on aerosol chemical and physical properties. We calculated that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. We then tested simple parameterizations of the aerosol mixing state, expressed as a function of the aerosol aging, and verified that they may be helpful in reducing the uncertainty when comparing simulations with AERONET retrievals.

  1. Aerosol optical depths and their contributing sources in Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Chan, K. L.

    2017-01-01

    In this paper, we present a quantitative investigation of the contributions of different aerosols to the aerosol optical depths (AODs) in Taiwan using a global chemical transport model (GEOS-Chem) and remote sensing measurements. The study focus is on the period from June 2012 to October 2013. Five different types of aerosols are investigated: sea salt, dust, sulfate, organic carbon and black carbon. Three of these aerosols, namely sulfate, organic carbon and black carbon, have significant anthropogenic sources. Model simulation results were compared with both ground based sun photometer measurements and MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations. The model data shows good agreement with satellite observations (R = 0.72) and moderate correlation with sun photometer measurements (R = 0.52). Simulation results show the anthropogenic aerosols contribute ∼65% to the total AOD in Taipei, while natural originated aerosols only show a minor impact (∼35%). Among all the aerosols, sulfate is the dominating species, contributing 62.4% to the annual average total AOD. Organic carbon and black carbons respectively contribute 7.3% and 1.5% to the annual averaged total AOD. The annual average contributions of sea salt and dust aerosols to the total AOD are 26.4% and 2.4%, respectively. A sensitivity study was performed to identify the contributions of anthropogenic aerosol sources in each region to the AODs in Taipei. North-East Asia was identified as the major contributing source region of anthropogenic aerosols to Taipei, accounting for more than 50% of total sulfate, 32% of total organic carbon and 51% of total black carbon aerosols. South-East Asia is the second largest contributing source region, contributing 35%, 24% and 34% of total sulfate, organic carbon and black carbon aerosols, respectively. The aerosols from continents other than Asia only show minor impacts to the aerosol load in Taipei. In addition, a case study of a biomass

  2. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  3. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  4. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  5. Aerosol optical properties over the midcontinental United States

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Markham, Brian L.; Ferrare, Richard A.; Aro, Theo. O.

    1992-01-01

    Solar and sky radiation measurements were analyzed to obtain aerosol properties such as the optical thickness and the size distribution. The measurements were conducted as part of the First International Satellite Land Surface Climatology Project Field Experiment during the second intensive field campaign (IFC) from June 25 to July 14, 1987, and the fifth IFC from July 25 to August 12, 1989, on the Konza Prairie near Manhattan, Kansas. Correlations with climatological and meteorological parameters show that during the period of observations in 1987, two types of air masses dominated the area: an air mass with low optical thickness and low temperature air associated with a northerly breeze, commonly referred to as the continental air, and an air mass with a higher optical thickness and higher temperature air associated with a southerly wind which we call 'Gulf air'. The size distributions show a predominance of the larger size particles in 'Gulf air'. Because of the presence of two contrasting air masses, correlations with parameters such as relative humidity, specific humidity, pressure, temperature, and North Star sky radiance reveal some interesting aspects. In 1989, clear distinctions between continental and Gulf air cannot be made; the reason for this will be discussed.

  6. Assessment of the Moderate-Resolution Imaging Spectroradiometer algorithm for retrieval of aerosol parameters over the ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Kexin; Li, Wei; Stamnes, Knut; Eide, Hans; Spurr, Robert; Tsay, Si-Chee

    2007-03-01

    The Moderate Resolution Imaging Spectroradiometer aerosol algorithm over the ocean derives spectral aerosol optical depth and aerosol size parameters from satellite measured radiances at the top of the atmosphere (TOA). It is based on the adding of apparent optical properties (AOPs): TOA reflectance is approximated as a linear combination of reflectances resulting from a small particle mode and a large particle mode. The weighting parameter η is defined as the fraction of the optical depth at 550 nm due to the small mode. The AOP approach is correct only in the single scattering limit. For a physically correct TOA reflectance simulation, we create linear combinations of the inherent optical properties (IOPs) of small and large particle modes, in which the weighting parameter f is defined as the fraction of the number density attributed to the small particle mode. We use these IOPs as inputs to an accurate multiple scattering radiative transfer model. We find that reflectance errors incurred with the AOP method are as high as 30% for an aerosol optical depth of 2 at 550 nm. The retrieved optical depth has a relative error of up to 8%, and the retrieved fraction η has an absolute error of ˜6%. We show that the use of accurate radiative transfer simulations and a bimodal fraction f yields accurate values for the retrieved optical depth and the fraction f.

  7. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  8. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  9. Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering

    NASA Astrophysics Data System (ADS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slutsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Mikhail

    2012-12-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, ∼99.53%. Only ∼0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  10. Modeling of microphysics and optics of aerosol particles in the marine environments

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady

    2013-05-01

    We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0 - 25 m, U = 3 - 18 km s-1, X ≤ 120 km and RH = 40 - 98%. The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied for the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ = 0.2-12 μm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory. The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results. Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.

  11. The optical manipulation and characterisation of aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.

    2008-08-01

    Aerosols play a crucial role in many areas of science, ranging from atmospheric chemistry and physics, to pharmaceutical aerosols and drug delivery to the lungs, to combustion science and spray drying. The development of new methods for characterising the properties and dynamics of aerosol particles is of crucial importance if the complex role that particles play is to be more fully understood. Optical tweezers provide a valuable new tool to address fundamental questions in aerosol science. Single or multiple particles 1-15 μm in diameter can be manipulated for indefinite timescales. Linear and non-linear Raman and fluorescence spectroscopies can be used to probe particle composition, phase, component mixing state, and size. In particular, size can be determined with nanometre accuracy, allowing accurate measurements of the thermodynamic properties of aerosols, the kinetics of particle transformation and of light absorption. Further, the simultaneous manipulation of multiple particles in parallel optical traps provides a method for performing comparative measurements on particles of different composition. We will present some latest work in which optical tweezers are used to characterise aerosol dynamics, demonstrating that optical tweezers can find application in studies of hygroscopicity, the mixing state of different chemical components, including the phase separation of immiscible phases, and the kinetics of chemical transformation.

  12. Measuring Aerosol Optical Depth (AOD) and Aerosol Profiles Simultaneously with a Camera Lidar

    NASA Astrophysics Data System (ADS)

    Barnes, John; Pipes, Robert; Sharma, Nimmi C. P.

    2016-06-01

    CLidar or camera lidar is a simple, inexpensive technique to measure nighttime tropospheric aerosol profiles. Stars in the raw data images used in the CLidar analysis can also be used to calculate aerosol optical depth simultaneously. A single star can be used with the Langley method or multiple star pairs can be used to reduce the error. The estimated error from data taken under clear sky conditions at Mauna Loa Observatory is approximately +/- 0.01.

  13. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  14. Strategies for Improved CALIPSO Aerosol Optical Depth Estimates

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Kuehn, Ralph E.; Tackett, Jason L.; Rogers, Raymond R.; Liu, Zhaoyan; Omar, A.; Getzewich, Brian J.; Powell, Kathleen A.; Hu, Yongxiang; Young, Stuart A.; Avery, Melody A.; Winker, David M.; Trepte, Charles R.

    2010-01-01

    In the spring of 2010, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) project will be releasing version 3 of its level 2 data products. In this paper we describe several changes to the algorithms and code that yield substantial improvements in CALIPSO's retrieval of aerosol optical depths (AOD). Among these are a retooled cloud-clearing procedure and a new approach to determining the base altitudes of aerosol layers in the planetary boundary layer (PBL). The results derived from these modifications are illustrated using case studies prepared using a late beta version of the level 2 version 3 processing code.

  15. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  16. Optical properties of aerosols in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Skorov, Yu. V.; Keller, H. U.; Rodin, A. V.

    2008-04-01

    In the frame of fractal modeling of tholin aggregates we made a systematic analysis of their optical properties. Ballistic particle-cluster aggregation (BPCA) and diffusion-limited aggregation (DLA) of spherical primary particles (monomers) identical in material composition were considered. Aggregates composed of identical particles (monodisperse cluster), as well as of size-distributed particles (polydisperse cluster), were simulated. To calculate the light-scattering models, the code based on the superposition T-matrix method is used. Orientationally averaged properties of light scattering by model particles were extracted, and the normalized phase function and the degree of linear polarization were calculated as functions of scattering angle. We concluded that: (a) aggregation mechanism as well as specific internal structure of the clusters play only a minor role, and for the future it is not necessary to investigate aggregates of different types; (b) the intensity is very sensitive both to the size parameter of forming particles x and to the size parameter of the aggregates X; (c) characterization of the aggregates by the number of monomers is insufficient to retrieve physical properties of aggregates from optical measurement; and (d) it is very desirable to include into the analysis polarization data calculated for the different clusters.

  17. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  18. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  19. Optical Techniques for the Remote Detection of Biological Aerosols

    DTIC Science & Technology

    1974-08-01

    enhancement of Raman or fluorescent signals, and multiwavelength differential. absorption. As will be evident from the discussions in subsequent sections of...detection of aerosols, using optical techniques. B. Rationale SRI Proposal ERU 72-62, which led to this project, describes several optical...enhancement of Raman or fluorescent signals, and multiwavelength differential absorption. The optical interactions were reviewed early in the project, with

  20. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  1. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    DOE PAGES

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; ...

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facilitymore » (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.« less

  2. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    SciTech Connect

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek III, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  3. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  4. Ship-based Aerosol Optical Depth Measurements in the Atlantic Ocean, Comparison with Satellite Retrievals and GOCART Model

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sakerin, S.; Kabanov, D.; Slutsker, I.; Remer, L. A.; Kahn, R.; Ignatov, A.; Chin, M.; Diehl, T. L.; Mishchenko, M.; Liu, L.; Kucsera, T. L.; Giles, D.; Eck, T. F.; Torres, O.; Kopelevich, O.

    2005-12-01

    Aerosol optical depth measurements were made in October -December 2004 aboard of R/V Akademik Sergey Vavilov. The cruise area included the Atlantic transect from North Sea to Cape Town and then a crossing in the South Atlantic to Ushuaia, Argentina. The hand-held Microtops II sunphotometer was used to acquire 314 series of measurements spanning 38 days. The sunphotometer was pre-calibrated at the NASA Goddard Space Flight Center against a master sun/sky radiometer instrument of the Aerosol Robotic Network (AERONET). The direct sun measurements were acquired in five spectral channels: 340, 440, 675, 870 and 940 nm. To retrieve aerosol optical depths we applied AERONET processing algorithm (Version 2) to the raw data. Aerosol optical depth values were close to background oceanic conditions (0.04-0.08) in the open oceanic areas not influenced by continental sources. Spectral dependence can be described as almost neutral (Angstrom parameter was less than 0.6), especially in the Southern Atlantic. A notable latitudinal variability of optical depth was observed between 15N and 21S, which was associated with the aerosol transport from Africa. Correlations between optical depth and meteorological parameters were considered and comparison between ship-based measurements and AERONET sites along the cruise track was made. Aerosol optical depths were compared to the global transport model (GOCART) simulations and satellite retrievals from MODIS, MISR, and AVHRR.

  5. Asian Aerosols: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2007-12-01

    Atmospheric absorption by black carbon (BC) aerosol heats the atmosphere while simultaneously cooling the surface and reducing latent and sensible heat fluxes from the land. Recent studies have shown that absorbing BC aerosol can have a large impact on regional climates, including modification of the hydrological cycle. However, significant uncertainties remain with regards to (a) the total amount of all aerosol species and (b) the amount of aerosol absorption. Here we present a GCM sensitivity study focusing on the influences due to total aerosol amount and aerosol absorption in the south and east Asian regions. Six experiments are conducted to test the equilibrium response of the GFDL AM2 GCM (under conditions of prescribed, observed sea surface temperatures) to (i) changes in aerosol absorption caused by changes in BC aerosol amount, and (ii) aerosol extinction optical depth increases corresponding to the year 1990 relative to a control case of 1950. In order to systematically explore the uncertainties in aerosol loading and absorption, the sensitivity experiments are classified into four regimes: low extinction optical depth, low absorption; low extinction optical depth, high absorption; high extinction optical depth, low absorption; and high extinction optical depth, high absorption. Changes in surface temperature and changes in the hydrological cycle are generally insignificant when lower aerosol extinction optical depths are considered. For higher extinction optical depths, the change in the modeled regional circulation relative to the control circulation over south and east Asia is affected by the amount of aerosol absorption and contrasts sharply to the regional circulation change associated with increasing only scattering aerosols. When increasing absorbing aerosols over the region, low-level convergence and increases in vertical velocity overcome the stabilizing effects of the absorbing aerosol and enhance the monsoonal circulation and precipitation rate

  6. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  7. Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2008-11-01

    Forcing by absorbing atmospheric black carbon (BC) tends to heat the atmosphere, cool the surface, and reduce the surface latent and sensible heat fluxes. BC aerosol can have a large impact on regional climates and the hydrologic cycle. However, significant uncertainties remain concerning the increases in (1) the total amount of all aerosol species and (2) the amount of aerosol absorption that may have occurred over the 1950-1990 period. Focusing on south and east Asia, the sensitivity of a general circulation model's climate response (with prescribed sea surface temperatures and aerosol distributions) to such changes is investigated by considering a range of both aerosol absorption and aerosol extinction optical depth increases. We include direct and semidirect aerosol effects only. Precipitation changes are less sensitive to changes in aerosol absorption optical depth at lower aerosol loadings. At higher-extinction optical depths, low-level convergence and increases in vertical velocity overcome the stabilizing effects of absorbing aerosols and enhance the monsoonal circulation and precipitation in northwestern India. In contrast, the presence of increases in only scattering aerosols weakens the monsoonal circulation and inhibits precipitation here. Cloud amount changes can enhance or counteract surface solar flux reduction depending on the aerosol loading and absorption, with the changes also influencing the surface temperature and the surface energy balance. The results have implications for aerosol reduction strategies in the future that seek to mitigate air pollution concerns. At higher optical depths, if absorbing aerosol is present, reduction of scattering aerosol alone has a reduced effect on precipitation changes, implying that reductions in BC aerosols should be undertaken at the same time as reductions in sulfate aerosols.

  8. Background Maritime Aerosol: Their Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The effect of human induced change in the aerosol concentration and properties, or the aerosol response to climate change (e.g. droughts producing fires or dust) should be measured relative to a "background aerosol". How to define this background aerosol, so that it is both measurable and useful? Here we use 10 stations located in the Pacific, Atlantic and Indian Oceans to answer this question. Using a data set of the spectral optical thickness measured by the Aerosol Robotic network (AERONET), extending 1-3 years, we find the background conditions for these stations. The oceanic background aerosol is the result of ocean emission and spray, and some residual long lived continental aerosol. Its source is very broadly spread and is expected to vary little in time. Pollution or dust sources are from specific locations, emitted and transported to the measuring site in specific combination of meteorological conditions. Therefore they are expected to vary with time. It follows that the background aerosol can be identified as the median for conditions with small variations. To define the background we compute the median of N consequent measurements. We use N=50 that in average cloudy conditions corresponds to 2-3 days of measurements and N=100 (4-5 days). Most high polluted or dusty conditions correspond to data sequences with high standard deviation (greater than 0.02 in optical thickness) and are excluded. From the remaining N point running medians with low standard deviations we derive again the median. This excludes those rare cases of pollution or dust that is stable during the N measurements. The results show that the background aerosol over the Pacific Ocean is characterize by optical thickness of 0.055 at 500 nm and Angstrom exponent of 0.74. Over the Atlantic Ocean the values are 0.070 and 1.1 respectively, with little influence of the assumed value of N (50 or 100). The derivation of the background uses 20,000 and 5000 medians respectively that passed the

  9. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  10. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  11. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    SciTech Connect

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  12. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  13. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    satellites and atmospheric models. Chapter 3 presents an innovative retrieval approach to measure AOD430 and the aerosol phase function parameter, g, without the need for absolute radiance calibration; the retrieval is based on solar azimuth distributions of the Raman Scattering Probability (RSP), the near-absolute Rotational Raman Scattering (RRS) intensity, during the Department of Energy Two Column Aerosol Project (TCAP) at Cape Cod, MA. Furthermore, the TCAP field campaign provides a unique dataset to evaluate innovative retrieval algorithms and perform radiation closure studies. In Chapters 4 I describe the effect of persistent elevated aerosol layers on the apparent absorption of the collision induced absorption of oxygen (O2-O2, or O4) as seen by the ground based 2-D-MAX-DOAS. Chapter 5 discusses the effect of chemical composition of aerosols for optical closure of aerosol extinction as characterized by ground based (2-D-MAX-DOAS) and airborne remote sensing instruments (HSRL-2) and in-situ observations of aerosol optical properties calculated from size distributions measured aboard the DoE G-1 aircraft. Chapter 5 also includes a discussion on the effects of dry, moist, and size-corrections that need to be applied to the in-situ observations in order to infer extinction in the atmosphere. In the final Chapter 6, I present a comprehensive analysis of CHOCHO, HCHO, and NO2 column measurements obtained in multiple field deployments of MAX-DOAS under different NOx (NO + NO2) conditions and VOC precursors. In particular, I assess the magnitude of the ratio of CHOCHO to HCHO (RGF), which has been proposed as a metric to distinguish biogenic and/or anthropogenic VOC (BVOC/AVOC) influences, and show with box-modeling that the concentration of NO2 and dictates the value of RGF . I proposed a new metric of RGF based on box-modeling and field measurements to distinguish AVOC/BVOC influences and split in BVOCs.

  14. Electro-Optical Aerosol Phase Function Database PFNDAT2005

    DTIC Science & Technology

    2005-11-01

    Pollack, J.B.; Khare, B.N. Optical Constants of Several Atmospheric Aerosol Species, Ammonium Sulphate , Aluminum Oxide and Sodium Chloride. J. of...16 Table 12. Precipitation rates, number...rain at three precipitation rates (drizzle, moderate, and heavy); and two classes of snow, “dry” and “wet”. Dusts are treated under four categories

  15. The deconvolution of aerosol backscattered optical pulses to obtain system-independent aerosol signatures

    NASA Astrophysics Data System (ADS)

    McGuire, D.; Conner, M.

    1981-06-01

    Means are discussed for extracting system-independent aerosol signatures from aerosol backscatter measurements obtained with a specific pencil beam active optical detection system. Such signatures are required before the backscatter data can be applied to various proposed optical fuze designs for determining their aerosol vulnerability and to the investigation of aerosol discrimination schemes. The measurement system, which has been used in numerous experiments to probe such aerosols as weather clouds and military smokes, is a short pulse GaAs laser probe (pulse width + or - 10 nanoseconds whose range sensitivity extends from near the system to beyond 10 meters. A computationally fast numerical deconvolution algorithm is devised together with a comprehensive supporting analysis. Both indicate that severe signal-to-noise ratio constraints apply to the achievement of meaningful superresolution. While the signal-to-noise ratios typical of recent measurements are likely to satisfy the severe constraints discovered, many of the earlier data are too noisy and thus require other signature determination methods.

  16. Aerosol Optical Depth over Africa retrieved from AATSR

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; de Leeuw, Gerrit; Kolmonen, Pekka; Sundström, Anu-Maija; Rodriques, Edith

    2010-05-01

    Aerosols produced over the African continent have important consequences for climate. In particular, large amounts of desert dust are produced over the Sahara and transported across the North Atlantic where desert dust deposition influences the eco system by iron fertilization, and further North over Europe with outbreaks as far as Scandinavia. Biomass burning occurs in most of the African continent south of the Sahara and causes a net positive radiating forcing resulting in local warming of the atmosphere layers. These effects have been studied during large field campaigns. Satellites can systematically provide information on aerosols over a large area such as Africa and beyond. To this end, we retrieved the Aerosol Optical Depth (AOD) at three wavelengths (555nm, 670nm, and 1600nm) over Africa from the reflectance measured at the top of the atmosphere by the AATSR (Advances Along Track Scanning Radiometer) flying on ENVISAT, for one year (1 May 2008 to 30 April 2009) to obtain information on the seasonal and spatial behaviour of the AOD, episodes of high AOD events and connect the retrieved AOD with the ground-based aerosol measurements. The AOD retrieval algorithm, which is applied to cloud-free pixels over land, is based on the comparison of the measured and modeled reflectance at the top of the atmosphere (TOA). The algorithm uses look-up-tables (LUTs) to compute the modeled TOA reflectance. For AOD retrieval, an aerosol in the atmosphere is assumed to be an external mixture of fine and coarse mode particles. The two aerosol types are mixed such that the spectral behavior of the reflectance due to aerosol best fits the measurements. Comparison with AERONET (Aerosol Roboric NETwork), which is a network of ground-based sun photometers which measure atmospheric aerosol properties, shows good agreement but with some overestimation of the AATSR retrieved AOD. Different aerosol models have been used to improve the comparison. The lack of AERONET stations in Africa

  17. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  18. Retrieval of aerosol optical properties over land using PMAp

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Lang, Ruediger; Poli, Gabriele; Holdak, Andriy

    2015-04-01

    The retrieval of aerosol optical properties is an important task for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolutions for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) is delivered as operational GOME product to our customers. The algorithms retrieve aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The next releases of PMAp will provide an extended set of aerosol and cloud properties which include AOD over land and an improved volcanic ash retrieval combining AVHRR and IASI. This presentation gives an overview on the existing product and the prototypes in development. The major focus is the discussion of the AOD retrieval over land implemented in the upcoming PMAp2 release. In addition, the results of our current validation studies (e.g. comparisons to AERONET, other satellite platforms and model data) are shown.

  19. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used

  20. Variability of aerosol optical properties in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Cusack, M.; Alastuey, A.; Querol, X.

    2011-08-01

    Aerosol light scattering, absorption and particulate matter (PM) concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB) which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR). Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm) were 26.6±23.2 Mm-1 and 4.3±2.7 Mm-1, respectively and the mean aerosol absorption coefficient (@ 637 nm) was 2.8±2.2 Mm-1. Mean values of Single Scattering Albedo (SSA) and Ångström exponent (å) (calculated from 450 nm to 635 nm) at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC) for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g-1 and 11.8±2.2 m2 g-1, respectively, while the mean aerosol absorption cross section (MAC) was 10.4±2.0 m2 g-1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1) while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly dominated by coarser particles (å = 1.0±0.4). The sea breeze played an important role in transporting pollutants from the developed WMB coastlines towards inland rural areas

  1. Optical properties of aerosols during APEX and ACE-Asia experiments

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Okada, Yasuhiko; Holben, Brent N.; Ohta, Sachio; Takamura, Tamio

    2003-12-01

    Sun/sky photometry and polarimetry of atmospheric light have been undertaken by multispectral photometers (CE-318-1 and -2, Cimel Electronique, France) and a polarimeter (PSR-1000, Opto Research, Japan) over Amami, Noto, and Shirahama, Japan, during APEX-E1, -E2, and ACE-Asia field campaigns. Radiometers provide us with the optical thickness of aerosols and Ångström exponent. Other aerosol characteristics, e.g., size distribution, refractive index, etc., are retrieved based on each inversion method corresponding each equipment. The former takes a standard AERONET processing, and the latter is according to our own procedure to analyze the polarimetry with PSR-1000. After several aerosol parameters are derived, the HYSPLIT4 backward trajectory analysis is adopted to search the origin of aerosols. It is shown from these ground measurements that aerosol optical thickness, Ångström exponent, and refractive index are classified into two typical categories as a background type detected in winter, and a soil dust type appeared in Asian dust events in spring. Further, it is found that the obtained size distribution of Asian dust indicates the dominance of large particles.

  2. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  3. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  4. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  5. Aerosol optical depth over complex topography: comparison of AVHRR, MERIS and MODIS aerosol products

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Popp, Christoph; Hauser, Adrian; Wunderle, Stefan

    Aerosols are a key component in the Earth's atmosphere, influencing the radiation budget due to scattering and absorption of solar and terrestrial radiation and changing cloud physics by serving as cloud condensation nuclei. Furthermore, dispersed particles alter visibility and affect human health. Remote sensing techniques are a common means to monitor aerosol variability on large spatial scales. The accuracy of these retrievals is highest over surfaces with well known spectral properties and low reflectance (e.g. oceans). The retrieval over brighter and heterogeneous land surfaces is more demanding, since temporally unstable surface reflectance and a reduced aerosol signal may result in larger errors. Regions with highly complex topography, like the Alps, can exhibit even larger errors, basically due to directional effects caused by the topography, temporal snow coverage, and usually higher cloud amount. Ground validation of remote sensing aerosol products is generally performed using sun photometer measurements from the AErosol RObotic NETwork (AERONET). However, the lack of such sites in the central parts of the Alps renders validation difficult. To study the potential of aerosol remote sensing in regions with complex topography, namely in the Alps, we make use of an unusual situation on one of the major trans-alpine traffic routes in June 2006: A fatal rock fall caused the nearly one month closure of the Gotthard route in the Central Swiss Reuss Valley. Large parts of the traffic were redirected to the San Bernardino route (eastern Switzerland), which had a large impact on the local traffic amount, and thereby on air quality. Herein we compare the performance of three different sensors (AVHRR, MERIS, MODIS) in detecting this obvious change in the aerosol optical depth of the two alpine valleys in summer 2006. First results from AVHRR show a clear reduction (47%) of the aerosol optical depth along the Gotthard route compared to the five year monthly mean (2003

  6. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  7. Correlation of aerosol mass near the ground with aerosol optical depth during two seasons in Munich

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Harbusch, Andreas; Emeis, Stefan; Koepke, Peter; Wiegner, Matthias

    2008-06-01

    Relations of the aerosol optical depth (AOD) with aerosol mass concentration near the ground, particulate matter (PM), have been studied on the basis of measurements. The objective is with respect to possible remote sensing methods to get information on the spatial and temporal variation of aerosols which is important for human health effects. Worldwide the AOD of the atmospheric column is routinely monitored by sun-photometers and accessible from satellite measurements also. It is implied here that the AOD is caused mainly by attenuation processes within the mixing layer because this layer includes nearly all atmospheric aerosols. Thus the mixing layer height (MLH) is required together with the AOD, measured by ground-based sun-photometers (around 560 nm), to get information about aerosols near the ground. MLH is determined here from surface-based remote sensing. Investigations were performed during two measurement campaigns in and near Munich in May and November/December 2003 on the basis of daily mean values. Using AOD and MLH measurements the aerosol extinction coefficient of the mixing layer has been calculated. This quantity was correlated with the measured PM10, PM2.5 and PM1 mass concentrations near the ground by performing a linear regression and thus providing a mass extinction efficiency giving squares of the correlation coefficients (R2) between 0.48 (PM1 during summer campaign) and 0.90 (PM2.5 during winter campaign). These correlations suggest that the derived mass extinction efficiencies represent a statistically significant relation between the aerosol extinction coefficients and the surface-based PM mass concentrations mainly during winter conditions.

  8. Aerosol Optical Thickness Variability in the New York Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Liepert, B. G.

    2003-12-01

    In July 2003 this field study was performed as part of the NASA Goddard Institute for Space Studies Summer Program "Institute for Climate and Planets". The spatial variability of aerosol spectral optical thickness (AOT) in the New York Metropolitan area was measured with a hand held sun photometer "Microtops II". Measurements were taken on board of a cruise ship around Manhattan, and several transects from North to South and East to West within New York City including on top of the Empire State Building. These data are compared to other available ground observations of urban aerosols and to satellite data from MODIS. Consequences of the spatial variability of the effect of urban aerosols on climate will be discussed.

  9. Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites.

    NASA Astrophysics Data System (ADS)

    Delene, David J.; Ogren, John A.

    2002-03-01

    Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in aerosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations. The mean aerosol light absorption coefficient (ap) is 10 times larger and the mean aerosol scattering coefficient (sp) is 5 times larger at the anthropogenically influenced site at BND than at BRW. The aerosol optical properties of single scattering albedo (o) and hemispheric backscatter fraction (b) have variability of approximately ±3% and ±8%, respectively, in mean values among the four stations. To assess the importance of the variability in o and b on top of the atmosphere aerosol radiative forcing calculations, the aerosol radiative forcing efficiency (F/) is calculated. The F/ is defined as the aerosol forcing (F) per unit optical depth () and does not depend explicitly on the amount of aerosol present. Based on measurements at four North American stations, radiative transfer calculations that assume fixed aerosol properties can have errors of 1%-6% in the annual average forcing at the top of the atmosphere due to variations in average single scattering albedo and backscatter fraction among the sites studied. The errors increase when shorter-term variations in aerosol properties are considered; for monthly and hourly timescales, errors are expected to be greater than 8% and 15%, respectively, approximately one-third of the time. Systematic relationships exist between various aerosol optical properties [ap, o, b, F/, and Ångström exponent (å)] and the amount of aerosol present (measured by sp) that are qualitatively similar but quantitatively

  10. Simultaneous Retrieval of Aerosol and Marine Parameters in Coastal Areas Using a Coupled Atmosphere-Ocean Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Fan, Yongzhen; Li, Wei; Stamnes, Knut; Stamnes, Jakob J.; Sorensen, Kai

    2015-12-01

    Simultaneous retrieval of aerosol and marine parameters using inverse techniques based on a coupled atmosphere-ocean radiative transfer model (CRTM) and optimal estimation can yield considerably improved retrieval accuracy based on radiances measured by MERIS, MODIS, and future instruments like OLCI compared with traditional methods. As an example, we discuss simultaneous retrieval in a Norwegian coastal environment from MERIS and MODIS data using a one-step nonlinear optimal estimation method instead of the traditional two-step look up table approach. To increase retrieval speed without loss of accuracy we replace the forward CRTM by a radial basis function neural network. Five parameters are obtained from the retrieval: aerosol optical depth, aerosol bimodal fraction, chlorophyll concentration, absorption by colored dissolved organic matter, and backscattering coefficient. The water leaving radiance is provided as a by-product. We demonstrate the accuracy of this simultaneous retrieval approach through a comparison with match-ups from a Norwegian coastal area.

  11. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  12. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  13. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  14. Vertically Resolved Aerosol Optical Properties over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Jonsson, H.; Strawa, A.; Provencal, B.; Covert, D.; Arnott, P.; Bucholtz, A.; Pilewskie, P.; Pommier, J.; Rissman, T.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. To this end, the ARM program will conduct an Aerosol Intensive Operational Period (IOP) in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma. The IOP involves airborne measurements from two airplanes over the heavily instrumented SGP site. We will give an overview of early airborne results obtained aboard Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The aircraft will carry instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size including such novel techniques as the photoacoustic and cavity ring-down methods. Aerosol optical depth and extinction will be measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore up- and downwelling solar (broadband and spectral) and infrared radiation will be measured using three different instruments. The up-looking radiation instruments will be mounted on a newly developed stabilized platform, which will keep the instruments level up to aircraft pitch and roll angles of 10 degrees. Additional effort will be directed toward measurement of cloud condensation nucleus concentration as a function of supersaturation and relating CCN concentration to aerosol composition and size distribution. This relation is central to description of the aerosol indirect effect.

  15. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  16. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  17. Seasonal variability of aerosol optical depth over Indian subcontinent

    USGS Publications Warehouse

    Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.

    2005-01-01

    Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.

  18. Aerosol optical properties in Northern Norway and Svalbard

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Hamre, B.; Frette, Ø.; Blindheim, S.; Stebel, K.; Sobolewski, P.; Toledano, C.; Stamnes, J. J.

    2013-12-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET (Aerosol Robotic Network) stations at Andenes (69.28° N, 16.01° E, 379 m altitude) and Hornsund (77.00° N, 15.56° E, 10 m altitude) for the period 2008-2011. The four-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund both were 0.10. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.25 and 1.37, respectively. At Andenes and Hornsund α was found to be larger than 1.1 in 64% and 86% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar seasonal variation of the aerosol size distribution although one site is in an arctic area while the other site is in a sub-arctic area.

  19. Aerosol optical properties in Northern Norway and Svalbard.

    PubMed

    Chen, Yi-Chun; Hamre, Børge; Frette, Øyvind; Muyimbwa, Dennis; Blindheim, Sandra; Stebel, Kerstin; Sobolewski, Piotr; Toledano, Carlos; Stamnes, Jakob J

    2016-02-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET (Aerosol Robotic Network) stations at Andenes (69.28°N, 16.01°E, 379 m altitude) and Hornsund (77.00°N, 15.56°E, 10 m altitude) for the period 2008-2013. The five/six-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund both were 0.09. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.29 and 1.34, respectively. At Andenes and Hornsund α was found to be larger than 1.1 in 68% and 84% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar aerosol size distribution during summer although one site is in an arctic area while the other site is in a subarctic area.

  20. Characterisation of coated aerosols using optical tweezers and neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Jones, S. H.; Ward, A.; King, M. D.

    2013-12-01

    Thin organic films are believed to form naturally on the surface of aerosols [1,2] and influence aerosol properties. Cloud condensation nuclei formation and chemical reactions such as aerosol oxidation are effected by the presence of thin films [3]. There is a requirement to characterise the physical properties of both the core aerosol and its organic film in order to fully understand the contribution of coated aerosols to the indirect effect. Two complementary techniques have been used to study the oxidation of thin organic films on the surface of aerosols; laser optical tweezers and neutron reflectometry. Micron sized polystyrene beads coated in oleic acid have been trapped in air using two counter propagating laser beams. Polystyrene beads are used as a proxy for solid aerosol. The trapped aerosol is illuminated with a white LED over a broadband wavelength range and the scattered light collected to produce a Mie spectrum [4]. Analysis of the Mie spectrum results in determination of the core polystyrene bead radius, the oleic acid film thickness and refractive index dispersion of the core and shell [5]. A flow of ozone gas can then be introduced into the aerosol environment to oxidise the thin film of oleic acid and the reaction followed by monitoring the changes in the Mie spectrum. The results demonstrate complete removal of the oleic acid film. We conclude that the use of a counter propagating optical trap combined with white light Mie spectroscopy can be used to study a range of organic films on different types of aerosols and their oxidation reactions. Neutron reflectometry has been used as a complementary technique to study the oxidation of monolayer films at the air-water interface in order to gain information on reaction kinetics. The oxidation of an oleic acid film at the air-water interface by the common tropospheric oxidant ozone has been studied using a Langmuir trough. Results indicate complete removal of the oleic acid film with ozone in agreement

  1. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  2. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment.

    PubMed

    Verma, S; Bhanja, S N; Pani, S K; Misra, A

    2014-04-01

    We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in

  3. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  4. Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Oreshenko, Maria; Heng, Kevin; Demory, Brice-Olivier

    2016-04-01

    Optical phase curves have become one of the common probes of exoplanetary atmospheres, but the information they encode has not been fully elucidated. Building on a diverse body of work, we upgrade the Flexible Modelling System to include scattering in the two-stream, dual-band approximation and generate plausible, three-dimensional structures of irradiated atmospheres to study the radiative effects of aerosols or condensates. In the optical, we treat the scattering of starlight using a generalization of Beer's law that allows for a finite Bond albedo to be prescribed. In the infrared, we implement the two-stream solutions and include scattering via an infrared scattering parameter. We present a suite of four-parameter general circulation models for Kepler-7b and demonstrate that its climatology is expected to be robust to variations in optical and infrared scattering. The westward and eastward shifts of the optical and infrared phase curves, respectively, are shown to be robust outcomes of the simulations. Assuming micron-sized particles and a simplified treatment of local brightness, we further show that the peak offset of the optical phase curve is sensitive to the composition of the aerosols or condensates. However, to within the measurement uncertainties, we cannot distinguish between aerosols made of silicates (enstatite or forsterite), iron, corundum or titanium oxide, based on a comparison to the measured peak offset (41° ± 12°) of the optical phase curve of Kepler-7b. Measuring high-precision optical phase curves will provide important constraints on the atmospheres of cloudy exoplanets and reduce degeneracies in interpreting their infrared spectra.

  5. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  6. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  7. Nighttime Aerosol Optical Depth Variability From Astronomical Photometry

    NASA Astrophysics Data System (ADS)

    Musat, I. C.; Ellingson, R. G.

    2006-12-01

    A technique for determination of the short-term (6 minutes intervals) variability of the aerosol optical depth (AOD) during nighttime from broadband visible measurements of star irradiances during clear nights was developed for the instrument called the Whole Sky Imager (WSI), placed at the Atmospheric Radiation Measurement (ARM) observation site in Oklahoma. The AOD is inferred indirectly from simultaneous observations of extinction of stars having different colors (spectra) and different elevations above the horizon, and takes into account the other sources for starlight attenuation in the atmosphere which might be present and which are measured by other instruments at the site at compatible timescales (e.g., precipitable water vapor content, columnar ozone amount, observed atmospheric stratification). The total error of the new method is a combination of the absolute star flux measurement error with the WSI and a systematic error in the models assumed for the other atmospheric components causing the starlight extinction. The relative error in the aerosol optical depth determined through this method is found to be below 4%. For the validation of the results, the comparison of the aerosol optical depth measured with the Lidar at 10 minutes intervals (at 355nm) with the AOD determined from WSI (in visible) shows a good agreement for the data in the interval studied (1999-2003).

  8. Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem.

    PubMed

    Chemyakin, Eduard; Burton, Sharon; Kolgotin, Alexei; Müller, Detlef; Hostetler, Chris; Ferrare, Richard

    2016-03-20

    We present an investigation of some important mathematical and numerical features related to the retrieval of microphysical parameters [complex refractive index, single-scattering albedo, effective radius, total number, surface area, and volume concentrations] of ambient aerosol particles using multiwavelength Raman or high-spectral-resolution lidar. Using simple examples, we prove the non-uniqueness of an inverse solution to be the major source of the retrieval difficulties. Some theoretically possible ways of partially compensating for these difficulties are offered. For instance, an increase in the variety of input data via combination of lidar and certain passive remote sensing instruments will be helpful to reduce the error of estimation of the complex refractive index. We also demonstrate a significant interference between Aitken and accumulation aerosol modes in our inversion algorithm, and confirm that the solutions can be better constrained by limiting the particle radii. Applying a combination of an analytical approach and numerical simulations, we explain the statistical behavior of the microphysical size parameters. We reveal and clarify why the total surface area concentration is consistent even in the presence of non-unique solution sets and is on average the most stable parameter to be estimated, as long as at least one extinction optical coefficient is employed. We find that for selected particle size distributions, the total surface area and volume concentrations can be quickly retrieved with fair precision using only single extinction coefficients in a simple arithmetical relationship.

  9. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  10. Aerosol optical depth increase in partly cloudy conditions

    NASA Astrophysics Data System (ADS)

    Chand, Duli; Wood, Robert; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven; Schichtel, Bret; Moore, Tom

    2012-09-01

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter than further away from the clouds, leading to an increase in the retrieved aerosol optical depth (τ). Mechanisms contributing to this enhancement or increase, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but the extent to which each of these factors influence the observed enhancement (Δτ) is poorly known. Here we used 11 years of daily global observations at 10 × 10 km2 resolution from the MODIS on the NASA Terra satellite to quantify τ as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky τ is enhanced by Δτ = 0.05 in cloudy conditions (CF = 0.8-0.9). This enhancement in Δτ corresponds to relative enhancement of 25% in cloudy conditions (CF = 0.8-0.9) compared with relatively clear conditions (CF = 0.1-0.2). Unlike the absolute enhancement Δτ, the relative increase in τis rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependentτeffects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  11. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  12. In situ observations of aerosol physical and optical properties in northern India

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Hyvarinen, A.; Hooda, R. K.; Raatikainen, T. E.; Sharma, V.; Komppula, M.

    2012-12-01

    The southern Asia, including India, is exposed to substantial quantities of particulate air pollution originating mainly from fossil fuel combustion and biomass burning. Besides serious adverse health effects, these aerosols cause a large reduction of solar radiation at the surface accompanied by a substantial atmospheric heating, which is expected to have significant influences on the air temperature, crop yields, livestock and water resources over the southern Asia. The various influences by aerosols in this region depend crucially on the development of aerosol emissions from household, industrial, transportation and biomass burning sectors. The main purpose of this study is to investigate several measured aerosol optical and physical properties. We take advantage of observations from two measurement stations which have been established by the Finnish Meteorological Institute and The Energy and Resources Institute. Another station is on the foothills of Himalayas, in Mukteshwar, about 350 km east of New Delhi at elevation about 2 km ASL. This site is considered as a rural background site. Measurements of aerosol size distribution (7-500 nm), PM10, PM2.5, aerosol scattering and absorption coefficients and weather parameters have been conducted since 2006. Another station is located at the outskirts of New Delhi, in Gual Pahari, about 35 km south of city centre. It is considered as an urban background site. Measurements of aerosol size distribution (7 nm- 10 μm), PM10, PM2.5, aerosol scattering and absorption coefficients, aerosol optical depth, aerosol vertical distribution (LIDAR), aerosol filter sampling for chemical characterization and weather parameters were conducted between 2008 and 2010. On the overall average PM10 and PM2.5 values were about 3-4 times higher in Gual Pahari than in Mukteshwar as expected, 216 and 126 μg m^-3, respectively. However, difference depended much on the season, so that during winter time PM10 and PM2.5 concentrations were about

  13. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  14. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  15. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.

    2016-11-01

    Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements.

  16. Aerosol climatology over Mexico City basin: Characterization of their optical properties

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, Giovanni; Valdéz-Barrón, Mauro; Bonifaz-Alfonso, Roberto; Riveros-Rosas, David; Estévez, Héctor

    2015-04-01

    Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using a 15-year (1999-2014) data set from AErosol RObotic NETwork (AERONET) observations over Mexico City basin. Since urban air pollution is one of the biggest problems that face this megacity, many studies addressing these issues have been published. However few studies have examined the climatology of aerosol taking into account their optical properties over long-time period. Pollution problems in Mexico City have been generated by the daily activities of some 21 million people coupled with the vast amount of industry located within the city's metropolitan area. Another contributing factor is the unique geographical setting of the basin encompassing Mexico City. The basin covers approximately 5000 km2 of the Mexican Plateau at an average elevation of 2250 m above sea level (ASL) and is surrounded on three sides by mountains averaging over 3000 m ASL. In this work we present preliminary results of aerosol climatology in Mexico City.

  17. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  18. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  19. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Romdhane, Haifa Ben; Ali, Mohammed Tauha; Armstrong, Peter; Ghedira, Hosni

    2016-12-01

    The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012-July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March-May) and summer (June-September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October-November) and winter (December-February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from -13.2 Wm-2 (˜-0.96 Wm-2) in November to -39.4 Wm-2 (-11.4 Wm-2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm-2 (November) to 28.2 Wm-2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (-85.0 ± 4.1 W m-2 τ -1) followed closely by winter (-79.2 ± 7.1 W m-2 τ -1) and the lowest values during autumn season (-54 ± 4.3 W m-2 τ -1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day -1) and the lowest in November (0.17 K day -1) and the temporal

  20. Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sakerin, S. M.; Kabanov, D. M.; Slutsker, I.; Chin, M.; Diehl, T. L.; Remer, L. A.; Kahn, R.; Ignatov, A.; Liu, L.; Mishchenko, M.; Eck, T. F.; Kucsera, T. L.; Giles, D.; Kopelevich, O. V.

    2006-07-01

    Aerosol optical depth measurements were made in October-December 2004 onboard the R/V Akademik Sergey Vavilov. The cruise area included an Atlantic transect from North Sea to Cape Town and then a crossing in the South Atlantic to Argentina. In the open oceanic areas not influenced by continental sources aerosol optical depth values were close to background oceanic conditions (τa ~ 0.06-0.08). Spectral dependence, especially in the high latitude Southern Atlantic, can be considered as quasi-neutral (Angstrom parameter α was less than 0.4). Back-trajectory analysis allowed statistical division of the aerosol optical parameters and showed similar properties for the North Atlantic polar marine, South Atlantic subtropical marine and South Atlantic polar marine air. Ship-borne aerosol optical depth comparisons to GOCART model and satellite retrievals revealed systematic biases. Satellite retrieved optical depths are generally higher by 0.02-0.07 (depending on the sensor), especially in low τa conditions. GOCART model simulated optical depths correlate well with the ship measurements and, despite overall bias and a notable disparity with the observations in a number of cases, about 30% agree within +/-0.01.

  1. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  2. Crop Burning in the North and Northwestern Parts in India and Its Impact on Air Quality and Aerosol Parameters

    NASA Astrophysics Data System (ADS)

    Chauhan, A.

    2015-12-01

    Crop burning in the North and Northwestern parts of India started sometime in 1986 when the farmers started using mechanized forming. During October-November and April-May crop residues are burnt which is a serious health threat to people living in the areas and also it impacts climate of the northern parts of India including Himalayan region. Detailed analysis of satellite data, MODIS, AIRS and OMI AURA have been carried out to study aerosol and meteorological parameters near the source of biomass burning and also at far region. During crop burning period, pronounced changes in the aerosol and meteorological parameters are observed at different pressure levels. The emissions from the crop burning are spread in the Indo-Gangetic plains from west-east, over the Himalayan region and over the central parts of India depending upon the wind direction and wind speed. The air quality changes anomalously affecting the visibility and aerosol parameters. The emissions from crop burning mixes with the local emissions (vehicular and industrial sources) affecting the trace gas concentrations and aerosol optical parameters as a result dense haze fog and smog are observed during burning period. Long range transport of emissions from crop burning over India and its various climatic and health consequences will be presented.

  3. Direct effect of aerosol optical properties on global dimming and brightening

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Uchiyama, A.

    2011-12-01

    Surface solar radiation observed at numerous locations has decreased from the 1960s to the 1980s (Global dimming), thereafter increased (Global brightening). The dimming and brightening is considered to be due to the changes in both clouds and aerosols. Aerosols have a direct impact on the surface solar radiation by scattering and absorption. The impact is determined by three parameters: optical depth (AOD), single scattering albedo (SSA), and asymmetry factor, but the effect of asymmetry factor is rather smaller than the others. Therefore, the long-term changes in AOD and SSA are necessary to evaluate the aerosol impact on the global dimming and brightening. We have developed the method to estimate AOD and SSA from the hourly accumulated direct and diffuse irradiances measured by the ground-based broadband radiometers. In the estimation, the real part of the refractive index is fixed, and the size distribution is defined by the Junge distribution with a fixed shaping constant. Using the developed method, the measurements from 1975 to 2008 at 14 sites in Japan were analyzed. Consequently, a decrease of AOD by 0.02 and an increase of SSA by 0.2 during the period were seen. The surface solar radiation under the clear sky conditions, which was calculated from the estimated aerosol optical properties, was increased by 5% due to the changes in AOD and SSA; the influence of SSA was dominant. We also investigate the cloud impact on the surface solar radiation which was simply defined as the difference between the surface solar radiation under the cloudy sky conditions and under the clear sky conditions; the cloud impact had no statistically significant trends. The brightening in Japan may be due to the changes in aerosol optical properties, especially SSA. Our developed method can be applied to measurements at other sites around the world and would be helpful to understand the causes of the global dimming and brightening.

  4. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  5. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2016-02-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.

  6. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-09-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.

  7. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    According to the IPCC report, atmospheric aerosols due to their properties -extinction of Sun and Earth radiation and participation in processes of creation of clouds, are among basic "unknowns" in climate studies. Aerosols have large effect on the radiation balance of the Earth which has a significant impact on climate changes. They are also a key issue in the case of remote sensing measurements. The optical properties of atmospheric aerosols depend not only on their type but also on physical parameters such as pressure, humidity, wind speed and direction. The wide range of properties in which atmospheric aerosols affect Earth's climate is the reason of high unrelenting interest of scientists from different disciplines such as physics, chemistry and biology. Numerous studies have dealt with aerosol optical properties, e.g. Dubovik et al. (2002), but only in a few have regarded the influence of meteorological parameters on the optical properties of aerosols in the Baltic Sea area. Studies of aerosol properties over the Baltic were conducted already in the last forty years, e.g. Zielinski T. et. al. (1999) or Zielinski T. & A. Zielinski (2002). The experiments carried out at that time involved only one measuring instrument -e.g. LIDAR (range of 1 km) measurements and they were conducted only in selected areas of the Polish coastal zone. Moreover in those publications authors did not use measurements performed on board of research vessel (R/V Oceania), which belongs to Institute of Oceanology Polish Academy of Science (IO PAN) or data received from satellite measurements. In 2011 Zdun and Rozwadowska performed an analysis of all data derived from the AERONET station on the Gotland Island. The data were divided into seasons and supplemented by meteorological factors. However, so far no comprehensive study has been carried out for the entire Baltic Sea area. This was the reason to conduct further research of SEasonal Variations of Aerosol optical depth over the Baltic

  8. Measured Infrared Optical Cross Sections For a Variety Of Chemical and Biological Aerosol Simulants

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Ligon, David; Dahmani, Rachid

    2004-08-01

    We conducted a series of spectral extinction measurements on a variety of aerosolized chemical and biological simulants over the spectral range 3-13 µm using conventional Fourier-transform IR (FTIR) aerosol spectroscopy. Samples consist of both aerosolized particulates and atomized liquids. Materials considered include Bacillus subtilis endospores, lyophilized ovalbumin, polyethylene glycol, dimethicone (SF-96), and three common background materials: kaolin clay (hydrated aluminum silicate), Arizona road dust (primarily SiO2), and diesel soot. Aerosol size distributions and mass density were measured simultaneously with the FTIR spectra. As a result, all optical parameters presented here are mass normalized, i.e., in square meters per gram. In an effort to establish the utility of using Mie theory to predict such parameters, we conducted a series of calculations. For materials in which the complex indices of refraction are known, e.g., silicone oil (SF-96) and kaolin, measured size distributions were convolved with Mie theory and the resultant spectral extinction calculated. Where there was good agreement between measured and calculated extinction spectra, absorption, total scattering, and backscatter were also calculated.

  9. Climatology of aerosol optical properties in Northern Norway and Svalbard

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Hamre, B.; Frette, Ø.; Stamnes, J. J.

    2012-10-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET stations at Andenes (69° N, 16° E, 379 m altitude) and Hornsund (77° N, 15° E, 10 m altitude) for the period 2008-2010. The three-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund were 0.11 and 0.10, respectively. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.18 and 1.37, respectively. At Andenes and Hornsund α was found to be larger than 1.0 in 68% and 93% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar seasonal variation of the aerosol size distribution although one site is in an Arctic area while the other site is in a sub-arctic area.

  10. The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India.

    PubMed

    Gunaseelan, Indira; Bhaskar, B Vijay; Muthuchelian, K

    2014-01-01

    Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment's impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.

  11. The contribution of different aerosol sources to the Aerosol Optical Depth in Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wenig, Mark; Zhou, Wen; Diehl, Thomas; Chan, Ka-Lok; Wang, Lingna

    2014-02-01

    The contribution of major aerosol components emitted from local and remote regions to Hong Kong's Aerosol Optical Depth (AOD) in 2007 is quantitatively determined using the chemical transport model GOCART (Global Ozone Chemistry Aerosol Radiation and Transport). Of the major aerosol components, sulphur has the largest influence (68%) on Hong Kong, followed by organic carbon (OC, 13%) and dust (11%), and the influences of black carbon (BC, 5%) and sea salt (3%) are the lowest. The highest AOD is seen in September 2007 and is composed mainly of sulphur aerosols (85%). The high AOD values in March and April 2007 are caused by sulphur and OC. OC has a relative contribution of 39% in March and 30% in April. The anthropogenic sulphur, BC, and OC emitted from every continent, as well as from China and South China, are considered respectively. In summer, South China's contribution of sulphur aerosols from anthropogenic SO2 emissions to the total sulphur AOD in Hong Kong is more than 20%. In other seasons, sulphur aerosols from anthropogenic SO2 emissions in Rest China (all of China except South China) accounts for more than 25%. Anthropogenic BC from South China accounts for more than 20% of total BC AOD in Hong Kong in summer. The contribution of anthropogenic BC from Rest China exceeds 40% in autumn and winter. Anthropogenic BC from Rest Asia (all of Asia except China) accounts for more than 30% in summer and autumn. The contribution of anthropogenic OC from Rest China is more than 35% in autumn and winter. The contribution of anthropogenic OC from Rest Asia exceeds 20% in summer. Gobi dust accounts for more than 40% of the total dust AOD in winter, and its impact appears mainly in the Atmospheric Boundary Layer (ABL), where it is responsible for 50% of the dust concentration. The contribution of Sahara dust to the dust AOD in spring exceeds 35%, and its contribution to the dust concentration in the free atmosphere (40%) is larger than that in the ABL (10%). More than 35

  12. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  13. Microphysical aerosol parameters of spheroidal particles via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine

    2015-04-01

    One of the main topics in understanding the aerosol impact on climate requires the investigation of the spatial and temporal variability of microphysical properties of particles, e.g., the complex refractive index, the effective radius, the volume and surface-area concentration, and the single-scattering albedo. Remote sensing is a technique used to monitor aerosols in global coverage and fill in the observational gap. This research topic involves using multi-wavelength Raman lidar systems to extract the microphysical properties of aerosol particles, along with depolarization signals to account for the non-sphericity of the latter. Given, the optical parameters (measured by a lidar), the kernel functions, which summarize the size, shape and composition of particles, we solve for the size distribution of the particles modeled by a Fredholm integral system and further calculate the refractive index. This model works well for spherical particles (e.g. smoke); the kernel functions are derived from relatively simplified formulas (Mie scattering theory) and research has led to successful retrievals for particles which at least resemble a spherical geometry (small depolarization ratio). Obviously, more complicated atmospheric structures (e.g dust) require employment of non-spherical kernels and/or more complicated models which are investigated in this paper. The new model is now a two-dimensional one including the aspect ratio of spheroidal particles. The spheroidal kernel functions are able to be calculated via T-Matrix; a technique used for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped particles. In order to speed up the process and massively perform simulation tests, we created a software interface using different regularization methods and parameter choice rules. The following methods have been used: Truncated singular value decomposition and Pade iteration with the discrepancy principle, and Tikhonov regularization with the L

  14. A geostatistical approach for producing daily Level-3 MODIS aerosol optical depth analyses

    NASA Astrophysics Data System (ADS)

    Ruiz-Arias, J. A.; Dudhia, J.; Lara-Fanego, V.; Pozo-Vázquez, D.

    2013-11-01

    The daily Level-3 MODIS (dL3M) aerosol optical depth product is a global daily spatial aggregation of the Level-2 MODIS aerosol optical depth (10-km spatial resolution) into a regular grid with a resolution of 1° × 1°. Aerosol optical depth is a seminal parameter for surface solar radiation assessment, in particular, for those applications involving direct irradiance. However, the dL3M AOD is prone to data gaps originated mostly by the unfeasibility of retrieving reliable estimates under cloudy conditions. In addition, its usability is also constrained by regional biases owing to some other reasons. In this work we propose a methodology for bias reduction and data-gaps removal of the dL3M AOD dataset. The result is a database of daily regularly-gridded AOD suitable for use in surface solar radiation applications and large-scale and long-term studies involving AOD without requiring a previous costly data assimilation process involving numerical weather prediction models. The method consists of an empirical approach to bias reduction, data-gaps removal by kriging interpolation and, finally, where reliable ground observations are available, an optimal interpolation procedure. The method was tested in the North American region, where it was able to reduce the initial mean error from 0.067 to 0.001, the root mean square error from 0.130 to 0.057, and increase the squared correlation coefficient from 23% to 58%, as compared against ground measurements.

  15. Optical properties of salt particles of a sea aerosol (laboratory experiment)

    NASA Astrophysics Data System (ADS)

    Gubareva, T. V.

    2002-02-01

    The scientific clause is devoted to complex examinations of optical properties of micro crystals of alkali-halides simulative an atmospheric salt aerosol. In laboratory requirements the interactions in system 'micro crystals of salts - gas phase' were explored at superimposition of high- energy fields. Thus the scale of radiation and cold air plasma was utilized ultraviolet, X-ray. Is shown, that the presence of high-energy fields gives in interaction of micro crystals and gas phase. At interaction the chemical composition, structure and optical properties of salt particles changes. The scientific clause is devoted to study of optical properties of salt particles mainly in infrared range of a spectrum. The purpose of operation is the study of transformation of salt micro crystals and its communications with optical parameters.

  16. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  17. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-11-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ˜ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ˜ 51, ˜ 34 and ˜ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ˜ 40, ˜ 34 and ˜ 26 % of the total AOD550 over the sea, based on

  18. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  19. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  20. Aerosol optical properties from multiwavelength lidar measurements in Romania

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Talianu, Camelia; Carstea, Emil; Nemuc, Anca

    2009-09-01

    Vertically resolved profiles of optical properties of aerosols were measured using a multi-wavelength lidar system-RALI, set up at the scientific research center in Magurele, Bucharest area (44.35 N latitude, 26.03 E longitude) during 2008. The use of multiple laser wavelengths has enabled us to observe significant variations in backscatter profiles depending on the particle origins. An air mass backward trajectory analysis, using Hysplit-4, was carried out to track the aerosol plumes. Aerosols can serve as valuable tracers of air motion in the planetary boundary layer (PBL). The height of layers in the lower troposphere from lidar signal was calculated using the gradient method- minima of the first derivative. The Richardson number method was used to estimate PBL height from the radio-soundings. We have used pressure, temperature and dew point profiles as well as the wind direction profiles from NOAA (National Oceanic and Atmospheric Administration) data base. The results were consistent with the ones obtained from LIDAR.

  1. Aerosol optical properties in ultraviolet ranges and respiratory diseases in Thailand

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Hanprasert, Kasarin

    2016-10-01

    This study investigated the values of Angstrom parameters (α,β) in ultraviolet (UV) ranges by using AERONET Aerosol Optical Depth (AOD) data. A second-order polynomial was applied to the AERONET data in order to extrapolate to 320 nm from 2003 to 2013 at seven sites in Thailand. The α,β were derived by applying the Volz Method (VM) and Linear Method (LM) at 320-380 nm at seven monitoring sites in Thailand. Aerosol particles were categorized in both coarse and fine modes, depending on regions. Aerosol loadings were related to dry weather, forest fires, sea salt and most importantly, biomass burning in the North, and South of Thailand. Aerosol particles in the Central region contain coarse and fine modes, mainly emitted from vehicles. The β values obtained were associated with turbid and very turbid skies in Northern and Central regions except Bangkok, while β results are associated with clean skies in South. Higher values of the β at all sites were found in the winter and summer compared with the rainy season, in contrast to South where the highest AOD was observed in June. The β values were likely to increase during 2003-2013. These values correlate with worsening health situations as evident from increasing respiratory diseases reported.

  2. Multiple regression method to determine aerosol optical depth in atmospheric column in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Zubir Matjafri, M.; Holben, B.

    2014-02-01

    Aerosol optical depth (AOD) from AERONET data has a very fine resolution but air pollution index (API), visibility and relative humidity from the ground truth measurements are coarse. To obtain the local AOD in the atmosphere, the relationship between these three parameters was determined using multiple regression analysis. The data of southwest monsoon period (August to September, 2012) taken in Penang, Malaysia, was used to establish a quantitative relationship in which the AOD is modeled as a function of API, relative humidity, and visibility. The highest correlated model was used to predict AOD values during southwest monsoon period. When aerosol is not uniformly distributed in the atmosphere then the predicted AOD can be highly deviated from the measured values. Therefore these deviated data can be removed by comparing between the predicted AOD values and the actual AERONET data which help to investigate whether the non uniform source of the aerosol is from the ground surface or from higher altitude level. This model can accurately predict AOD if only the aerosol is uniformly distributed in the atmosphere. However, further study is needed to determine this model is suitable to use for AOD predicting not only in Penang, but also other state in Malaysia or even global.

  3. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  4. Development of an Internet accessible software: optics and spectroscopy of gas-aerosol media

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Kashirskii, D. E.; Egorov, O. V.

    2015-11-01

    A description of an Internet accessible software «Optics and spectroscopy of gas-aerosol media» is represented. The new software is focused on research in the field of direct and inverse problems of optics and spectroscopy of gas-aerosol media.

  5. Long-term Observation of Aerosol Optical Properties at the SORPES station in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Shen, Yicheng; Ding, Aijun; Virkkula, Aki; Wang, Jiaping; Chi, Xuguang; Qi, Ximeng; Liu, Qiang; Zheng, Longfei; Xie, Yuning

    2016-04-01

    Atmospheric aerosols influence the earth's radiation budget by scattering and absorbing solar radiation and contribute substantial uncertainty in the estimation of climate forcing. Thorough and comprehensive measurements on different parameters including absorption and scattering coefficient, wavelength dependence and angular dependence along with their daily and seasonal variation help to understand the influence of aerosol on radiation. 2-years continuous measurement of aerosol optical properties has been conducted from June 2013 to May 2015 at the Station for Observing Regional Process of Earth System (SORPES) station, which is a regional background station located in downwind direction of Yangtze River Delta (YRD) urban agglomeration in China. A 7-wavelenths aethalometer and a 3-wavelenths nephelometer were used to measure absorption and scattering coefficient, and also other parameters like single scattering albedo (SSA), absorption angstrom Exponent (AAE), scattering angstrom exponent (SAE) and back-scattering refraction. In addtion, simultaneous measurements on chemical composition and particle size distribution were performed so as to investigate the dependencies of aerosol optical properties on chemical composition and size distribution. To get further insight on the influencing factors, Lagrangian particle dispersion modeling (LPDM) was employed for source identification in this study. The averages of absorption coefficient, scattering coefficient and SSA are 26.0±18.7 Mm-1, 426±327 Mm-1 , 0.936±0.3 at 520nm respectively for whole period. SAE between 450 and 635nm is 1.299±0.34 and have strong negative correlation with particle Surface Mean Diameter (SMD). AAE between 370 and 950nm is 1.043±0.15 for whole period but growth to more than 1.6 in all identified Biomass Burning (BB) events.

  6. Optical properties of aerosols at Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.

    Visibility in the United States is expected to improve over the next few decades because of reduced emissions, especially sulfur dioxide. In the eastern United States, sulfates make up about 60-70% of aerosol extinction, while in the inner mountain west that fraction is only about 30%. In the inner mountain west, carbon aerosols make up about 35% of extinction, while coarse mass contributes between 15 and 25% depending on how absorption is estimated. Although sulfur dioxide emissions are projected to decrease, carbon emissions due to prescribed fire activity will increase by factors of 5-10, and while optical properties of sulfates have been extensively studied, similar properties of carbon and coarse particles are less well understood. The inability to conclusively apportion about 50% of the extinction budget motivated a study to examine aerosol physio-chemical-optical properties at Grand Canyon, Arizona during the months of July and August. Coarse particle mass has usually been assumed to consist primarily of wind-blown dust, with a mass-scattering efficiency between about 0.4 and 0.6 m 2 g -1. Although there were episodes where crustal material made up most of the coarse mass, on the average, organics and crustal material mass were about equal. Furthermore, about one-half of the sampling periods had coarse-mass-scattering efficiencies greater than 0.6 m 2 g -1 and at times coarse-mass-scattering efficiencies were near 1.0 m 2 g -1. It was shown that absorption by coarse- and fine-particle absorption were about equal and that both fine organic and sulfate mass-scattering efficiencies were substantially less than the nominal values of 4.0 and 3.0 m 2 g -1 that have typically been used.

  7. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  8. Comparison of CALIOP and MODIS aerosol optical depths for aerosol types over the ocean

    NASA Astrophysics Data System (ADS)

    Kim, M.; Yoon, S.; Kim, S.; Omar, A. H.

    2012-12-01

    The aerosol optical depth (AOD) obtained by vertical integration of the CALIOP (The Cloud-Aerosol Lidar with Orthogonal Polarization) level 2 aerosol extinction coefficient at 532 nm is compared with AOD from MODIS (The Moderate Resolution Imaging Spectroradiometer)-Aqua level 2 product at 550 nm for five aerosol subtypes (clean marine, dust, polluted dust, polluted continental, and biomass burning) identified by CALIOP algorithm over the ocean from June 2006 to December 2010. The mean AOD of MODIS (0.108±0.081) for all collocated dataset is 61% higher than that of CALIOP (0.067±0.074). The difference of AOD between CALIOP and MODIS for five aerosol types and potential reasons for the difference are discussed. (i) Clean marine: For the clean marine, which accounts for 84% of total collocated dataset, the mean AOD of MODIS (0.107±0.066) is almost twice higher than CALIOP (0.056±0.041) having strong latitude dependency related with surface wind speed over the ocean. The difference of AOD increases up to ~0.074 (MODIS AOD minus CALIOP AOD) at 52°S where the surface wind speed is maximum, while the difference is ~0.030 at 32°S where the surface wind speed is minimum. (ii) Dust: The difference of AOD between two sensors for dust (~12.4%) is smallest among five aerosols types but shows regional variation. CALIOP AOD is similar or even slightly higher than MODIS AOD for the dust from Saharan and Arabian deserts, whereas CALIOP AOD for the Asian dust is much less than MODIS AOD. This result suggests that the Asian dust is often mixed with polluted aerosols, thus the lidar ratio for the Asian dust would be higher than current value used in CALIOP algorithm. The difference of AOD for dust also shows distinguishable dependency on the layer mean of particulate depolarization ratio (δ). The lidar ratio for dust should increase as δ increases to reduce the AOD difference between two sensors. (iii) Polluted dust and polluted continental: The differences of AOD for

  9. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  10. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  11. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  12. Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-10-01

    Light absorption enhancement of aged soot aerosols is highly sensitive to the morphologies and mixing states of soot aggregates and their non-absorbing coatings, such as organic materials. The quantification of these effects on the optical properties of thinly coated soot aerosols is simulated using an effective model with fixed volume fractions. Fractal aggregated soot was simulated using the diffusion limited aggregation (DLA) algorithm and discretized into soot dipoles. The dipoles of non-absorbing aerosols, whose number was fixed by the volume fraction, were further generated from the neighboring random edge dipoles. Their optical properties were calculated using the discrete dipole approximation (DDA) method and were compared with other commonly used models. The optical properties of thinly coated soot calculated using the fixed volume fraction model are close to (less than ~10% difference) the results of the fixed coating thickness model, except their asymmetry parameters (up to ~25% difference). In the optical simulations of thinly coated soot aerosols, this relative difference of asymmetry parameters and phase functions between these realistic models may be notable. The realizations of the fixed volume fraction model may introduce smaller variation of optical results than those of the fixed coating thickness model. Moreover, the core-shell monomers model and homogeneous aggregated spheres model with the Maxwell-Garnett (MG) theory may underestimate (up to ~20%) the cross sections of thinly coated soot aggregates. The single core-shell sphere model may largely overestimate (up to ~150%) the cross sections and single scattering albedo of thinly coated soot aggregates, and it underestimated (up to ~60%) their asymmetry parameters. It is suggested that the widely used single core-shell sphere approximation may not be suitable for the single scattering calculations of thinly coated soot aerosols.

  13. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  14. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    NASA Astrophysics Data System (ADS)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  15. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  16. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  17. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  18. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2014-09-01

    The TwO-Moment Aerosol Sectional microphysics model (TOMAS) has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic), mixed elemental carbon (hydrophilic), hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model) cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2) differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found for naturally

  19. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are

  20. Climatology of aerosol optical properties near the New England coast: preparation for the Two Column Aerosol Program (TCAP) field campaign

    NASA Astrophysics Data System (ADS)

    Berkowitz, C. M.; Chand, D.; Berg, L.; Kassianov, E.; Chapman, E.

    2011-12-01

    A key objective of the U.S. Department of Energy's Two Column Aerosol Project (TCAP) is to provide observations with which to evaluate the uncertainty in model simulations of aerosol optical depth (AOD) and their relation to estimates of aerosol radiative forcing and hence, to climate. To meet this objective, detailed ground-based aerosol measurements will be made via deployment of the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) at Cape Cod, Massachusetts for a 12-month period starting in the summer of 2012. These measurements will be supported by two scheduled aircraft campaigns using the ARM Aerial Facility's (AAF) G-1 aircraft and the NASA B-200 aircraft in July 2012 and again in February 2013. Each campaign will include sampling within two atmospheric columns using the aircrafts; one column will be located directly over, or very close to, Cape Cod, while the second will be over a relatively remote maritime location. This preliminary study presented here is designed to select the optimum location of the second, remote maritime atmospheric column using the mean and standard deviation of previously observed AODs from surface and space. An area with the large variability in AOD will be considered as a potential location for evaluation of the outputs from atmospheric models. In this study, we present regional climatological values of (1) AOD from the Moderate Resolution Imaging Spectrometer (MODIS) on Terra and Aqua satellite platforms; (2) single scattering albedo from the Multi-angle Imaging SpectroRadiometer (MISR) satellite; (3) the vertical distribution of aerosol layers from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite; and (4) the long term aerosol optical properties from the Aerosol Robotic Network (AERONET) surface sunphotometer at Martha's Vineyard, MA. Seasonal and geographical variations in these quantities will be analyzed and possible explanations will be presented based on

  1. Validation of Retrieved Aerosol Optical Properties over Northeast Asia for Five Years from GOSAT TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, S.; KIM, M.; Choi, M.; Go, S.; Lim, H.; Goo, T. Y.; Nakajima, T.; Kuze, A.; Shiomi, K.; Yokota, T.

    2015-12-01

    An aerosol retrieval algorithm was developed from Thermal And Near infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT). The algorithm retrieves aerosol optical depth (AOD), size distribution of aerosol, and aerosol type in 0.1 degree grid resolution by look-up tables, which is used in retrieving optical properties of aerosol using inversion products from Aerosol Robotic NETwork (AERONET) sun-photometer observation. To improve the accuracy of aerosol algorithm, first, this algorithm considered the annually estimated radiometric degradation factor of TANSO-CAI suggested by Kuze et al. (2014). Second, surface reflectance was determined by two methods: one using the clear sky composite method from CAI measurements and the other the database from MODerate resolution Imaging Sensor (MODIS) surface reflectance data. At a given pixel, the surface reflectance is selected by using normalized difference vegetation index (NDVI) depending on season (Hsu et al., 2013). In this study, the retrieved AODs were compared with those of AERONET and MODIS dataset for different season over five years. Comparisons of AODs between AERONET and CAI show reasonable agreement with correlation coefficients of 0.65 ~ 0.97 and regression slopes between 0.7 and 1.2 for the whole period, depending on season and sites. Moreover, those between MODIS and CAI for the same period show agreements with correlation coefficients of 0.7 ~ 0.9 and regression slopes between 0.7 and 1.0, depending on season and regions. The results show reasonably good correlation, however, the largest error source in aerosol retrieval has been surface reflectance of TANSO-CAI due to its 3-days revisit orbit characteristics.

  2. Satellite and ground-based study of optical properties of 1997 Indonesian Forest Fire aerosols

    NASA Astrophysics Data System (ADS)

    Nakajima, Teruyuki; Higurashi, Akiko; Takeuchi, Nobuo; Herman, Jay R.

    Optical properties of biomass burning aerosols in the event of Indonesian forest fires in 1997 were studied by groundbased sky radiometry and satellite remote sensing with AVHRR and TOMS radiometers. The AVHRR-derived optical thickness distribution agreed with the distribution of TOMS-derived UV-absorbing aerosol index and with the optical thickness measured by sky radiometry and sunphotometry. The single scattering albedo of aerosols was fairly constant as 0.9 in the September-October period. Relationship between Ångström turbidity factor and exponent supported the polydispersion consisted of aged small particles. This observation was consistent with the fact that the retrieved volume size distribution by sky radiometry has a distinct accumulation mode with a peak radius of 0.25 µm. Those optical properties of smoke aerosols seem to reflect the specific chemical structure of Indonesian forest fire aerosols, i.e., a mixture of carbonaceous and sulfate particles.

  3. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmüller, Klaus; Pozzer, Andrea; Metzger, Swen; Stenchikov, Georgiy L.; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  4. Remote sensing of aerosol optical properties and solar heating rate by the combination of sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori; Fujiyoshi, Yasushi; Higuchi, Yuji; Hayashi, Masahiko; Shimizu, Atsushi; Aoki, Kazuma

    2017-02-01

    The SKYLIDAR algorithm was developed to estimate the vertical profiles of aerosol optical properties from combining the measurements of the sky radiometer in SKYNET and the lidar in AD-Net. The derived parameters are the vertical profiles of extinction coefficient, single-scattering albedo, asymmetry factor, real and imaginary parts of the refractive index, and size distribution. The solar heating rate was estimated from these parameters. The algorithm was applied to the transported dust case, and the detailed vertical structures of the optical properties and the solar heating rate and their relationship were shown. For the validation of the SKYLIDAR algorithm, the vertical profile of the aerosol size distribution from the surface to the altitude of about 3 km was directly observed by the optical particle counter on board the glider. The comparison of the SKYLIDAR derived extinction coefficient with that estimated from OPC measurements showed that the SKYLIDAR result had a bias error due to the optimization of aerosol parameters to the optical thickness measured by the sky radiometer.

  5. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  6. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  7. Sensitivity of aerosol optical depth, single scattering albedo, and phase function calculations to assumptions on physical and chemical properties of aerosol

    EPA Science Inventory

    In coupled chemistry-meteorology simulations, the calculation of aerosol optical properties is an important task for the inclusion of the aerosol effects on the atmospheric radiative budget. However, the calculation of these properties from an aerosol profile is not uniquely defi...

  8. Comparison of Aerosol Optical Depth from GOES Aerosol and Smoke Product (GASP) and MODIS to AERONET AOD and IMPROVE PM2.5 Mass at Bondville, Illinois Stratified by Chemical Composition, RH, Particle Size, and Season

    NASA Astrophysics Data System (ADS)

    Green, M. C.; Kondragunta, S.; Ciren, P.

    2008-05-01

    The USEPA is interested in using satellite remote sensing data to estimate levels of PM2.5. Here we report on comparisons of aerosol optical depth (AOD) from GOES Aerosol and Smoke Product (GASP) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to IMPROVE network PM2.5 mass and AErosol RObotic NETwork (AERONET) ground-based AOD. Before we compare GASP and MODIS AOD to PM2.5, we first evaluate satellite AOD using the ground-based AERONET measurements and how it varies by aerosol chemical composition and size distribution. We focus attention on the Bondville, Illinois site because there is collocated IMPROVE sampling and an AERONET site. GASP provides aerosol optical depth at 0.55 um using top of atmosphere visible channel radiance measured from GOES east and GOES west. Time resolution is typically every 30 minutes during daylight hours. MODIS provides typically once per day AOD for any given location. The IMPROVE sampler provides a 24-hour integrated sample of PM10 mass, and PM2.5 mass and elemental composition on a one day in three schedule. AERONET provides aerosol optical depth at multiple wavelengths and aerosol size distribution as well as other derived parameters such as Angstrom exponent from ground based daytime measurements. We stratified cases by RH group, major chemical component, size distribution, and season. GOES AOD correlated best with PM2.5 mass during periods with mainly small particles, moderate RH, and sulfate dominated aerosol. It correlated poorly when RH is very high or low, aerosol is primarily organic, and when coarse to fine mass ratio is high. GASP AOD also correlated best with AERONET AOD when particles are mainly fine, suggesting the aerosol model assumptions (e.g. size distribution) may need to be varied geographically for GASP to achieve better AOD results.

  9. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  10. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  11. Aerosol Optical Depth: A study using Thailand based Brewer Spectrophotometers

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Sudhibrabha, Sumridh; Hanprasert, Kesrin

    2015-12-01

    The Aerosol Optical Depth (AOD) was retrieved from the direct-sun Brewer observation by the application of the Beer's law for the years 1997-2011 at two monitoring sites in Thailand (Bangkok and Songkhla). AOD values measured in Bangkok exhibited higher values than Songkhla. In addition, AOD values were higher in the morning and evening in Bangkok. In contrast, the AOD values in Songkhla were slightly lower during the mornings and late afternoons. The variation of AOD was seasonal in Bangkok, with the higher values found in summer (from Mid-February to Mid-May) compared with rainy season (Mid-May to Mid-October), whilst there was no clear seasonal pattern of AOD in Songkhla.

  12. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  13. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    SciTech Connect

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  14. Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans

    NASA Astrophysics Data System (ADS)

    Naud, Catherine M.; Posselt, Derek J.; Heever, Susan C.

    2016-10-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database, the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere midlatitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the postcold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  15. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  16. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  17. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  18. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  19. Diurnal variation of aerosol optical depth and angstrom exponent from Geostationary Ocean Color Imager (GOCI) Yonsei AErosol Retrieval (YAER) algorithm

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa

    2015-04-01

    Over the East Asia, aerosol optical properties (AOPs) can be changed very quickly and diversely during a day because mineral dust or heavy anthropogenic aerosol events occur sporadically and frequently. When severe aerosol event occurs from source region, long-range transported can be appeared over East Asia within one day so that multi-temporal satellite observation during a day is essential to detect aerosol diurnal variation in East Asia. Although it has been possible from previous meteorological sensors in geostationary earth orbit, only aerosol optical depth (AOD) at one channel can be retrieved and accuracy of retrieved AOD is worse than those of multi-channel sensors such as MODIS, SeaWiFS, or VIIRS because appropriate aerosol model selection is difficult using single channel information. The Geostationary Ocean Color Imager (GOCI) is one of sensor onboard COMS geostationary satellite. It has 8 channels in visible, which are similar with SeaWiFS and MODIS ocean color channels. It observes East Asia, including East China, Korean Peninsula, and Japan, hourly during the daytime (8 times observation in daytime). Because of geostationary and multi-channel characteristics, accurate AOPs such as AOD and Angstrom exponent (AE) can be retrieved from GOCI Yonsei Aerosol retrieval (YAER) algorithm as high spatial (6 km x 6 km) and temporal (1 hour) resolution. In this study, GOCI YAER AOD and AE are compared with those from AERONET (ground-based observation) and MODIS Collection 6 Dark Target and Deep Blue algorithm (satellite-based observation) as high frequency time series during a day and few days over AERONET sites. This can show the accuracy of GOCI YAER algorithm in compare with AERONET. In specific transport cases such as dust or haze, instantaneous increase of AOD and change of aerosol size from AE can be also detect from GOCI. These GOCI YEAR products can be used effectively as input observation data of air-quality monitoring and forecasting.

  20. The estimation of Aerosol Optical Depth in eastern China based on regression analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Runhe; Liu, Chaoshun; Zhou, Cong

    2015-09-01

    The atmospheric pollution and air quality issues are getting worse in China, the formation mechanism of aerosols and their environment effects attracted more and more attention. Aerosol Optical Depth (AOD) is one of the most important parameters which can indicate the atmospheric turbidity and aerosol load. High-quality AOD data are significant for the study in the atmospheric environment (i.e., air quality). This paper used MODIS/Terra AOD in 2008 to improve the coverage of MODIS/Aqua AOD, which was based on linear regression analysis model. RMSE between estimation value and AquaAOD detected through satellite is 0.132. The average value of test data was 0.812. The average of regression result was 0.807. It showed that the regression model between AODTerra and AODAqua worked well. Also, we built two sets of estimation models (MODIS AOD and OMI AOD) through stepwise regression analysis model. One is using OMI AOD and meteorological elements to estimate MODIS AOD. The value of RMSE was 0.113, which represents 13.916% of the average(R2=0.782). The other one is using MODIS AOD and meteorological elements to estimate OMI AOD. RMSE of the model is 0.132, which represents 18.182% of the average (R2=0.726).

  1. Optical properties of salt aerosols with and without inclusions as a function of relative humidity

    NASA Astrophysics Data System (ADS)

    Greenslade, Margaret E.; Attwood, Alexis R.; Galpin, Tyler

    2016-05-01

    Salt aerosols will undergo deliquescence as humidity is increased. This deliquescent transition dramatically affects the ability of aerosols to extinguish light. It is known that the relative humidity is very high in the viscous sublayer at the ocean surface (~98%) but decreases to an average of 80% in the surface layer. We present results of an investigation of the impact of inclusions on the deliquescence point and correlated optical properties of salt aerosols.

  2. Thermochemical, cloud condensation nucleation ability and optical properties of alkyl aminium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lavi, A.; Bluvshtein, N.; Segre, E.; Segev, L.; Flores, J.; Rudich, Y.

    2013-12-01

    The increased interest in the chemistry of alkylamines and their possible roles in the atmosphere increased recently due to field observations of the correlation between new particle formation and post nucleation growth events and the presence of alkylamines in their cationic form. Due to their high saturation vapor pressure it is unlikely that short chain alkylamines will contribute to particle formation or growth by condensation. Therefore, it was previously suggested that their contribution to particulate phase is the result of acid-base reactions between the basic alkylamines and atmospherically relevant acids such as sulfuric and nitric acid. In this study we present laboratory data on the thermochemical, CCN activity and optical properties of selected atmospherically relevant alkyl aminium sulfate salts: Monomethyl aminium sulfate (MMAS), dimethyaminium sulfate (DMAS), trimethylaminium sulfate, monoethylaminium sulfate (MEAS), diethylaminium sulfate (DEAS) and triethylaminium sulfate (TEAS)). We found that the vapor pressure of these aminium salts is 1-3 orders of magnitude lower than that of ammonium sulfate and as such they can contribute to new aerosols and secondary aerosols formation. We infer that these species have very high CCN activity, with hygroscopicity parameter that is lower but close to that ammonium sulfate. Finally, we present the optical properties of these alkyl aminium sulfate salts between 360 and 420 nm. These compounds are less scattering than ammonium sulfate and show minimal wavelength dependence in this range. These compounds also do not absorb light. These derived parameters can contribute to the better understanding and characterization of the role that these compounds play in atmospheric chemical reactions, gas-solid partitioning and their possible contribution to the microphysical and radiative effects of atmospheric aerosols.

  3. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  4. Background Southeast United States Aerosol Optical Properties and Their Dependence Upon Meteorology

    NASA Astrophysics Data System (ADS)

    Pawlyszyn, C.; West, M.; Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Aerosol effects on SE U.S. radiation budget are highly-seasonal. Aerosol loading is much higher in summer, due largely to high levels of biogenic secondary organic aerosol and sulfates. Aerosol loading is lowest in winter. Aerosol optical properties relevant to radiative forcing have been measured continuously at the Appalachian Atmospheric Interdisciplinary Research facility (AppalAIR) since the summer of 2009. AppalAIR is the only site in the eastern US to house co-located NOAA ESRL and NASA AeroNET instrumentation and is located in the mountains of Boone, NC. Lower tropospheric sub-micron (PM1) light scattering and absorption coefficients measured over seven summers and six winters are presented here, in addition to PM1 organic and sulfate aerosol mass concentrations measured during summers 2012-2013 as well as winter 2013. The objective is to determine the influence of aerosol sources and meteorology along the air mass back-trajectories on aerosol loading and composition. PM1 aerosol mass was dominated by organic aerosol and sulfate during the periods measured. Aerosol light scattering and organic aerosol concentrations were positively correlated during summer with temperature and solar flux along the parcel back-trajectory and negatively-correlated with rainfall along the back-trajectory. Wet deposition was a major factor in the difference between the upper and lower scattering coefficient quartiles for both summer and winter. Summer PM1 light scattering coefficient declined by approximately 30-40% since 2009, with smaller decreases during winter months. Long-term studies of aerosol optical properties from the regionally-representative AppalAIR site are necessary to determine the relationships between changing SE U.S. air quality and aerosol effects on regional climate and weather.

  5. A merged aerosol dataset based on MODIS and MISR Aerosol Optical Depth products

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Gautam, Ritesh; Venkatachalam, Parvatham

    2016-05-01

    Aerosol Optical Depth (AOD) products available from MODIS and MISR observations are widely used for aerosol characterization, and global/environmental change studies. These products are based on different retrieval-algorithms, resolutions, sampling, and cloud-screening schemes, which have led to global/regional biases. Thus a merged product is desirable which bridges this gap by utilizing strengths from each of the sensors. In view of this, we have developed a "merged" AOD product based on MODIS and MISR AOD datasets, using Bayesian principles which takes error distributions from ground-based AOD measurements (from AERONET). Our methodology and resulting dataset are especially relevant in the scenario of combining multi-sensor retrievals for satellite-based climate data records; particularly for long-term studies involving AOD. Specifically for MISR AOD product, we also developed a methodology to produce a gap-filled dataset, using geostatistical methods (e.g. Kriging), taking advantage of available MODIS data. Merged and spatially-complete AOD datasets are inter-compared with other satellite products and with AERONET data at three stations- Kanpur, Jaipur and Gandhi College, in the Indo-Gangetic Plains. The RMSE of merged AOD (0.08-0.09) is lower than MISR (0.11-0.20) and MODIS (0.15-0.27). It is found that merged AOD has higher correlation with AERONET data (r within 0.92-0.95), compared to MISR (0.74-0.86) and MODIS (0.69-0.84) data. In terms of Expected Error, the accuracy of valid merged AOD is found to be superior as percent of merged AOD within error envelope are larger (71-92%), compared to MISR (43-61%) and MODIS (50-70%).

  6. Diurnal Evolution of Aerosol Optical Properties and Morphology at Pico Tres Padres: A Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Chakrabarty, R.; Dubey, M. K.; Moosmuller, H.; Chylek, P.; Onasch, T. B.; Herndon, S.; Zavala, M.; Kolb, C.

    2007-05-01

    Aerosol optical properties affect planetary radiative balance and therefore climate. The optical properties are related to chemical composition, size distribution, and morphology, which also have implications for human health and environmental degradation. During the MILAGRO field campaign, we measured ensemble aerosol absorption and angle-integrated scattering in Mexico City. These measurements were performed using the Los Alamos aerosol photoacoustic instrument with an integrated nephelometer (LAPA) operating at 781 nm. The LAPA was mounted on-board the Aerodyne Inc. mobile laboratory, which hosted a wide variety of gaseous and aerosol instruments. During the campaign, the Aerodyne mobile laboratory was moved to different sites, capturing the influence of spatial and temporal parameters including location, aging, elevation, and sources on ambient air pollution. The LAPA operated almost continuously between the 3rd and the 28th of March 2006. During the same period we collected ambient aerosols on more than 100 Nuclepore filters for scanning electron microscopy (SEM) analysis. Filter samples were collected during specific pollution events and different times of the day. Subsequently, SEM images of selected filters were taken to study particle morphology. The elemental composition of a few individual particles was also qualitatively assessed by energy dispersive X-ray spectroscopy. Between March 7th and 19th the laboratory was sampling air close to the top of the Pico Tres Padres, a ~3000 m high mountain on the north side of the Mexico City. Daily changes of aerosol loading and pollutant concentrations followed the expected diurnal variations of the boundary layer height. Here we report a preliminary analysis of aerosol absorption, scattering, and morphology at Pico Tres Padres for three specific days (9th, 11th and 12th of March 2006). The single scattering albedo (ratio of scattering to total extinction) during these three days showed a characteristic drop in the

  7. Design parameters for wearable optical imagers

    NASA Astrophysics Data System (ADS)

    Akin, Ata; Kim, Sanghyun; Pourrezaei, Kambiz; Chance, Britton; Nioka, Shoko

    2001-06-01

    This paper summarizes the design steps that are followed during the development of the portable optical imager for breast cancer screening. The design steps considered the parameters such as total power consumption versus battery weight and size, speed of data acquisition versus cost and complexity of the design (functionality), graphical display versus operating system choice. We have used a single board computer system that uses Windows CE as the real time operating system. This choice was preferred since our graphical display requirements can only be carried out with the CE environment's GUI kernels.

  8. Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters

    NASA Astrophysics Data System (ADS)

    Mu, Q.; Liao, H.

    2014-05-01

    We used the nested grid version of the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the interannual variations (IAVs) of aerosols over heavily polluted regions in China for years 2004-2012. The role of variations in meteorological parameters was quantified by a simulation with fixed anthropogenic emissions at year 2006 levels and changes in meteorological parameters over 2004-2012. Simulated PM2.5 (particles with a diameter of 2.5 μm or less) aerosol concentrations exhibited large IAVs in North China (NC, 32-42° N, 110-120° E), with regionally averaged absolute percent departure from the mean (APDM) values of 17, 14, 14, and 11% in December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. Over South China (SC, 22-32° N, 110-120° E), the IAVs in PM2.5 were found to be the largest in JJA, with the regional mean APDM values of 14% in JJA and of about 9% in other seasons. Concentrations of PM2.5 over the Sichuan Basin (SCB, 27-33° N, 102-110° E) were simulated to have the smallest IAVs among the polluted regions examined in this work, with the APDM values of 8-9% in all seasons. All aerosol species (sulfate, nitrate, ammonium, black carbon, and organic carbon) were simulated to have the largest IAVs over NC in DJF, corresponding to the large variations in meteorological parameters over NC in this season. Process analyses were performed to identify the key meteorological parameters that determined the IAVs of different aerosol species in different regions. While the variations in temperature and specific humidity, which influenced the gas-phase formation of sulfate, jointly determined the IAVs of sulfate over NC in both DJF and JJA, wind (or convergence of wind) in DJF and precipitation in JJA were the dominant meteorological factors to influence IAVs of sulfate over SC and the SCB. The IAVs in temperature and specific humidity

  9. Solar irradiance and aerosol optical properties during the CARES field campaign

    NASA Astrophysics Data System (ADS)

    Barnard, J.; Kassianov, E.

    2010-12-01

    Measurements of both broadband and spectral solar irradiances were made during the Carbonaceous Aerosols and Radiative Effects Study (CARES) field campaign at the T0 and T1 sites. The broadband irradiances were measured using a typical Eppley Precision Spectral Pyranometer (PSP), while the spectral irradiances were measured by a Multi-Filter Rotating Shadowband Radiometer (MFRSR) at six wavelengths (415, 500, 615, 673, 870, and 940 nm). The aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP), can be inferred from the MFRSR measurements for the first five of these wavelengths. Analyses of these data show three distinct aerosol regimes. The first period, at the beginning of the field campaign, was extremely clean, with AOD values at 500nm as low as 0.03 (with uncertainty of 0.02). Such clear air rivals that at other pristine locations, such as Barrow, Alaska, in late summer. Next, a brief episode of biomass burning took place on June 16, as indicated by increased AOD. Finally, towards the end of the campaign, progressively deteriorating air quality was observed with a concomitant increase in AOD, with values 0.1 (500 nm) and larger. However, at no time during the campaign did the air quality deteriorate to the extent that might be observed in less clean locations such as Mexico City, or more humid places were significant hydroscopic growth occurs. The broadband irradiances also reflect clean conditions, with midday total, hemispherical irradiances often exceeding 1000 W/m^2. We also show some initial results of columnar SSA and AP values derived during the three aerosol regimes. MFRSR data taken near the T1 site during the summer of 2009 also indicate generally clear skies, except during episodes of biomass burning when the AOD approaches 1.0 at 500 nm. Such dirty air was never observed during the CARES campaign.

  10. Quantitative retrieval of aerosol optical properties by means of ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, Matthias; Gasteiger, Josef; Geiß, Alexander

    2016-04-01

    In the last few years extended networks of ceilometers have been established by several national weather services. Based on improvements of the hardware performance of these single-wavelength backscatter lidars and their 24/7 availability they are increasingly used to monitor mixing layer heights and to derive profiles of the particle backscatter profile. As a consequence they are used for a wide range of applications including the dispersion of volcanic ash plumes, validation of chemistry transport models and air quality studies. In this context the development of automated schemes to detect aerosol layers and to identify the mixing layer are essential, in particular as the latter is often used as a proxy for air quality. Of equal importance is the calibration of ceilometer signals as a pre-requisite to derive quantitative optical properties. Recently, it has been emphasized that the majority of ceilometers are influenced by water vapor absorption as they operate in the spectral range of 905 - 910 nm. If this effect is ignored, errors of the aerosol backscatter coefficient can be as large as 50%, depending on the atmospheric water vapor content and the emitted wavelength spectrum. As a consequence, any other derived quantity, e.g. the extinction coefficient or mass concentration, would suffer from a significant uncertainty in addition to the inherent errors of the inversion of the lidar equation itself. This can be crucial when ceilometer derived profiles shall be used to validate transport models. In this presentation, the methodology proposed by Wiegner and Gasteiger (2015) to correct for water vapor absorption is introduced and discussed.

  11. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...

  12. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  13. Retrievals of aerosol optical depth and Angström exponent from ground-based Sun-photometer data of Singapore.

    PubMed

    Salinas, Santo V; Chew, Boon N; Liew, Soo C

    2009-03-10

    The role of aerosols in climate and climate change is one of the factors that is least understood at the present. Aerosols' direct interaction with solar radiation is a well understood mechanism that affects Earth's net radiative forcing. However, quantifying its magnitude is more problematic because of the temporal and spatial variability of aerosol particles. To enhance our understanding of the radiative effects of aerosols on the global climate, Singapore has joined the AERONET (Aerosol Robotic Network) worldwide network by contributing ground-based direct Sun measurements performed by means of a multiwavelength Sun-photometer instrument. Data are collected on an hourly basis, then are uploaded to be fully screened and quality assured by AERONET. We use a one year data record (level 1.5/2.0) of measured columnar atmospheric optical depth, spanning from November 2006 to October 2007, to study the monthly and seasonal variability of the aerosol optical depth and the Angström exponent. We performed independent retrievals of these parameters (aerosol optical depth and Angström exponent) by using the photometer's six available bands covering the near-UV to near-IR (380-1080 nm). As a validation, our independent retrievals were compared with AERONET 1.5/2.0 level direct Sun product.

  14. Linking surface in-situ measurements to columnar aerosol optical properties at Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Ehn, M.; Hong, J.; Krejci, R.; Laborde, M.; de Leeuw, G.; Petäjä, T.; Pfüller, A.; Rosati, B.; Tesche, M.; Väänänen, R.

    2014-12-01

    Ambient optical properties of aerosols strongly depend on the particles' hygroscopicity and the relative humidity (RH) of the surrounding air. The key parameter to describe the influence of RH on the particle light scattering is the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Knowledge of this hygroscopicity effect is of crucial importance for climate forcing calculations and is needed for the comparison or validation of remote sensing with in-situ measurements. We will present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station in Hyytiälä, Finland, which was part of the EU-FP7 project PEGASOS (Pan-European Gas-Aerosols-climate interaction Study). Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground by a humidified nephelometer was found to be significantly lower (1.53 ± 0.24 at RH=85% and wavelength λ=450 nm) than observed at other European sites (Zieger et al., 2013). One reason is the high organic mass fraction of the boreal aerosol as measured by an aerosol chemical speciation monitor (ACSM). A closure study using Mie theory showed the consistency of the ground based in-situ measurements. Our measurements allowed to determine the ambient particle light extinction coefficient. Together with intensive aircraft measurements (lasting one month) of the particle number size distribution and ambient humidity, different columnar values were determined and compared to direct measurements and inversions of the AERONET Sun photometer (e.g., the columnar aerosol volume size distribution). The aerosol optical depth strongly correlated (R2≈0.9 for λ=440 nm to R2≈0.6 for λ=1020 nm) with the in situ derived values, but was significantly lower compared to the direct measurements of the Sun photometer (slope ≈0.5). This was explained by the loss of

  15. Vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Wang, Yuan; Kuang, Zhongyu; Fang, Sihua; Chen, Yonghang; Kang, Yanming; Zhang, Hua; Wang, Daoyuan; Fu, Yingying

    2016-06-01

    A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar. There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions. Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50 km-1 on haze days. In contrast, aerosols with smaller extinction coefficients (0.20-0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days. The seasonal variations of extinction and aerosol optical depth (AOD) for both haze and floating dust cases were similar—greatest in winter, smaller in spring, and smallest in autumn. More than 85% of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather. The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon, and at nightfall, respectively. The aerosol extinction coefficient gradually increased throughout the day during floating dust weather. Case studies showed that haze aerosols were generated from the surface and then lifted up, but floating dust aerosols were transported vertically from higher altitude to the surface. The AOD during floating dust weather was higher than that during haze. The boundary layer was more stable during haze than during floating dust weather.

  16. Optical Properties of the Marine Aerosol as Predicted by a BASIC Version of the Navy Aerosol Model.

    DTIC Science & Technology

    1983-09-02

    microns) would be from the other available inputs and then adjusts all of the three lognormal amplitudes so that the predicted visual range at . 55 ...Knollenberg light scattering aerosol counters", J. Aerosol Sci., 10, p 55 -74. Trusty, G.L. and TS. Cosden (1981) "Optical Extinction Predictions from...FOR CURRENT RH AT . 55 MICRONS 2700 REM 2710 J-4 2720 FOR I=2 TO 4 2730 IF R9=R(I) THEN 2780 2740 IF R9<R(I) THEN 2800 2750 NEXT I 2760 01-Tl(JdI

  17. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  18. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; Reid, J. S.; Giles, D. M.; Dubovik O.; O'Neill, N. T.; Smirnov, A.; Wang, P.; Xia, X.

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  19. Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part I: Optical Thicknesses and Aerosol Size Distributions.

    NASA Astrophysics Data System (ADS)

    Fouquart, Y.; Bonnel, B.; Chaoui Roquai, M.; Santer, R.; Cerf, A.

    1987-01-01

    A series of ground-based and airborne observations of desert aerosols, the ECLATS experiment was carried out in December 1980 in the vicinity of Niamey (Niger). This paper deals with aerosol optical thicknesses and size distributions derived from (i) in situ measurements using singe particle optical counters (a Kratel and a Knollenberg FSSP), (ii) a ground-based cascade impactor, and (iii) ground-based measurements of the spectral variation of the sober extinction.During the experiment, aerosol optical thicknesses (at 550 nm) varied from 0.20 on very clear days to 1.5 during a so-called `dry haze' episode.Comparisons between size distributions derived from in situ measurements from ground-based cascade impactor, and from inversion of the spectral optical thicknesses, showed that the optical counters drastically underestimated the concentration of small (r<0.5 m) particles It was shown that the occurrence of a `dry haze' episode was characterized by a large increase (an order of magnitude in this particular case) of the intermediate particles (r0.5 m), whereas the concentration in very (r<0.2 m) and large (r>1 m) particles remained roughly constant.

  20. Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin - article no. L05805

    SciTech Connect

    Prasad, A.K.; Singh, R.P.; Kafatos, M.

    2006-03-07

    The Indo-Gangetic basin is characterized by dense fog, haze and smog during the winter season. Here, we show one to one correspondence during the winter season of aerosol optical properties with the location of thermal power plants which are single small spatial entities compared to the big cities. Our results indicate that power plants are the key point source of air pollutants. The detailed analysis of aerosol parameters deduced from the Multiangle Imaging SpectroRadiometer (MISR) level 3 remote sensing data show the existence of absorbing and non-absorbing aerosols emitted from these plants. Analysis of higher resolution Moderate Resolution Imaging Spectroradiometer (MODIS) level 2 aerosol optical depth over thermal power plants supports the findings.

  1. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-11-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average of 2% precipitation decrease during the fire week. This study demonstrated that, even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  2. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-06-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average 2% precipitation decease during the fire week. This study demonstrated that even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  3. Coupling aerosol optics to the chemical transport model MATCH (v5.5.0) and aerosol dynamics module SALSA (v1)

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    Modelling aerosol optical properties is a notoriously difficult task due to the particles' complex morphologies and compositions. Yet aerosols and their optical properties are important for Earth system modelling and remote sensing applications. Operational optics models often make drastic and non realistic approximations regarding morphological properties, which can introduce errors. In this study a new aerosol optics model is implemented, in which more realistic morphologies and mixing states are assumed, especially for black carbon aerosols. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey shell" model. Simulated results of radiative fluxes, backscattering coefficients and the Ångström exponent from the new optics model are compared with results from another model simulating particles as externally mixed homogeneous spheres. To gauge the impact on the optical properties from the new optics model, the known and important effects from using aerosol dynamics serves as a reference. The results show that using a more detailed description of particle morphology and mixing states influences the optical properties to the same degree as aerosol dynamics. This is an important finding suggesting that over-simplified optics models coupled to a chemical transport model can introduce considerable errors; this can strongly effect simulations of radiative fluxes in Earth-system models, and it can compromise the use of remote sensing observations of aerosols in model evaluations and chemical data assimilation.

  4. Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: A Novel Approach

    SciTech Connect

    Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

    2008-10-13

    A novel method for the retrieval of aerosol optical depth (AOD) under partly cloudy conditions has been suggested. The method exploits reflectance ratios, which are not sensitive to the three-dimensional (3D) effects of clouds. As a result, the new method provides an effective way to avoid the 3D cloud effects, which otherwise would have a large (up to 140%) contaminating impact on the aerosol retrievals. The 1D version of the radiative transfer model has been used to develop look-up tables (LUTs) of reflectance ratios as functions of two parameters describing the spectral dependence of AOD (a power law). The new method implements an innovative 2D inversion for simultaneous retrieval of these two parameters and, thus, the spectral behavior of AOD. The performance of the new method has been illustrated with a model-output inverse problem. We demonstrated that a new retrieval has the potential for (i) detection of clear pixels outside of cloud shadows and (ii) accurate (~15%) estimation of AOD for the majority of them.

  5. Measurements of total column ozone, precipitable water content and aerosol optical depth at Sofia

    NASA Astrophysics Data System (ADS)

    Kaleyna, P.; Kolev, N.; Savov, P.; Evgenieva, Ts.; Danchovski, V.; Muhtarov, P.

    2016-03-01

    This article reports the results of a study related to variations in total ozone content, aerosol optical depth, water vapor content and Ångström coefficients from summer campaign carried out in June-July 2014, at two sites in the city of Sofia (Astronomical Observatory in the Borisova Gradina Park and National Institute of Geophysics, Geodesy and Geography (NIGGG)). The results of data analysis indicate the following: Spectral dependence of aerosol optical depth (AOD); Greater AOD values due to greater portion of aerosols; Inverse relationship between the time variations of AOD or water vapor and ozone.

  6. Analysis of aerosol optical and microphysical properties observed during the DC3 field study

    NASA Astrophysics Data System (ADS)

    Chen, G.; Schuster, G. L.; Anderson, B. E.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Scheuer, E. M.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Moore, R.; Winstead, E.; Markovic, M. Z.

    2013-12-01

    The Deep Convective Clouds and Chemistry Experiment (DC3) consisted of 18 research flights from Salina, KS. During cloud inflow and outflow surveys, various aged aerosol layers and plumes, including biomass burning, were sampled by the NASA DC-8 aircraft which was equipped with a broad suite of instruments for aerosol optical, microphysical, and chemical properties. As a result, the DC3 dataset includes detailed aerosol number size distribution, bulk aerosol mass concentration, black carbon mass concentration, and mass size distribution for sulfate, nitrate, ammonium and organics, together with scattering and absorption coefficients. We use this comprehensive dataset to perform a detailed closure analysis to examine the consistency between the observed aerosol properties and the literature reported aerosol refractive index values. In this context, we report aerosol observations, and comparisons between the aerosol mass and number size distribution for various aerosol layers. Closure tests will also be presented in terms of the impact of the aerosol composition and size distribution on the scattering and absorption.

  7. Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships.

    PubMed

    Perrone, M R; Romano, S; Orza, J A G

    2015-11-01

    Columnar and ground-level aerosol optical properties co-located in space and time and retrieved from sun/sky photometer and nephelometer measurements, respectively, have been analyzed to investigate the impact of local and transboundary pollution, to analyze their relationships, and hence to contribute to the aerosol load characterization over the Central Mediterranean. The aerosol optical depth (AOD) at 440 nm, the Ångström exponent (Å) calculated from the AOD at 440 and 675 nm, and the asymmetry parameter (g col ) at 440 nm represent the investigated columnar aerosol parameters. The scattering coefficient (σ p) at 450 nm, the scattering Ångström exponent (å) calculated from σ p at 450 and 635 nm, and the asymmetry parameter (g) at 450 nm are the corresponding ground-level parameters. It is shown that the columnar and ground-level aerosol properties were significantly and similarly affected by the main airflows identified with backtrajectory cluster analysis. The yearly averaged daily evolution of σ p, å, and g was fairly correlated to the one of the AOD, Å, and g col , respectively. These results indicate that the aerosol particles were on average characterized by similar yearly averaged optical properties up to the ground level. In particular, the yearly means of columnar and ground-level Ångström exponents, 1.3 ± 0.4 and 1.1 ± 0.4, respectively, which are close to one, reveal a coarse-mode aerosol contribution in addition to the fine-mode particle contribution up to the ground level. Hourly means, day-by-day, and seasonal daily patterns of ground-level parameters were, however, very weakly correlated with the corresponding columnar parameters. The large impact of the local meteorology on the daily evolution of the ground-level aerosol properties, which makes the impact of long-range transported particles less apparent, was mainly responsible for these last results. It has also been found that columnar Ångström exponents much smaller

  8. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  9. Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.; Zorzano, María-Paz; Lemmon, Mark; Martín-Torres, Javier; Mendaza de Cal, Teresa

    2016-12-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.

  10. Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes

    NASA Technical Reports Server (NTRS)

    Smith, M. D.; Zorzano, M.-P.; Lemmon, M.; Martin-Torres, J.; Mendaza de Cal, T.

    2017-01-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270deg, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time. A full description of these observations, the retrieval algorithm, and the results can be found in Smith et al. (2016).

  11. Aerosol Direct Radiative Effects Over the Northwest Atlantic, Northwest Pacific, and North Indian Oceans: Estimates Based on In-situ Chemical and Optical Measurements and Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2005-12-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are

  12. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  13. Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2013-10-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment (λ = 550 nm) for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulfate, nitrate, and elemental carbon. Achieving full optical closure is hampered by limitations in accounting for the role of water vapor in the system, uncertainties in the instruments and the need for further knowledge in the source apportionment of the model's major chemical components. Nonetheless, our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulfate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Consistency between the measured and modeled optical parameters serves as an

  14. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-05-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  15. The influence of fog parameters on aerosol depletion measured in the KAEVER experiments

    SciTech Connect

    Poss, G.; Weber, D.; Fritsche, B.

    1995-12-31

    The release of radioactive aerosols in the environment is one of the most serious hazards in case of an accident in nuclear power plant. Many efforts have been made in the past in numerous experimental programs like NSPP, DEMONA, VANAM, LACE, MARVIKEN, others are still underway to improve the knowledge of the aerosol behavior and depletion in a reactor containment in order to estimate the possible source term and to validate computer codes. In the German single compartment KAEVER facility the influence of size distribution, morphology, composition and solubility on the aerosol behavior is investigated. One of the more specific items is to learn about {open_quotes}wet depletion{close_quotes} means, the aerosol depletion behavior in condensing atmospheres. There are no experiments known where the fog parameters like droplet size distribution, volume concentration, respectively airborne liquid water content have been measured in- and on-line explicitly. To the authors knowledge the use of the Battelle FASP photometer, which was developed especially for this reason, for the first time gives insight in condensation behavior under accident typical thermal hydraulic conditions. It delivers a basis for code validation in terms of a real comparison of measurements and calculations. The paper presents results from {open_quotes}wet depletion{close_quotes} aerosol experiments demonstrating how depletion velocity depends on the fog parameters and where obviously critical fog parameter seem to change the regime from a {open_quotes}pseudo dry depletion{close_quotes} at a relative humidity of 100% but quasi no or very low airborne liquid water content to a real {open_quotes}wet depletion{close_quotes} under the presence of fogs with varying densities. Characteristics are outlined how soluble and insoluble particles as well as aerosol mixtures behave under condensing conditions.

  16. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  17. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  18. On the variation of aerosol properties over Finland based on the optical columnar measurements

    NASA Astrophysics Data System (ADS)

    Aaltonen, V.; Rodriguez, E.; Kazadzis, S.; Arola, A.; Amiridis, V.; Lihavainen, H.; de Leeuw, G.

    2012-10-01

    Long-range aerosol transport over Finland has been studied using ground-based sunphotometer measurements of aerosol optical properties. Cimel sunphotometers were used at an urban site (Helsinki), a rural site (Hyytiälä) and a semiurban site (Kuopio) and PFR sunphotometer measurements were made at two rural sites, Jokioinen and Sodankylä. The CIMEL measurements are part of the AERONET (Aerosol robotic network) network and Jokioinen and Sodankylä are GAW-PFR (Global Atmosphere Watch-Precision Filter Radiometer) Associate Stations. Sunphotometers provide information on local columnar aerosol properties such as aerosol optical depth (AOD) and Ångström exponent (ÅE) that were used to investigate the aerosol content and aerosol type in this region. A set of representative event days, i.e. days with high turbidity, covering the time period between March 2006 and June 2010 has been selected for further analysis. For these days the AOD results were combined with air mass back trajectories to provide information about the air mass origin, especially for cases with moderate turbidity produced by long-range transported aerosols from mid latitudes to Finland. As expected, episodes with high AOD are connected with the transport of polluted air masses originating from the east or southeast or from industrial areas in Central Europe. We distinguished events with long range transported air pollution from cases where pollution was accumulated in the area due to the local meteorological factors.

  19. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  20. Measurements of stratospheric volcanic aerosol optical depth from NOAA TIROS Observational Vertical Sounder (TOVS) observations

    NASA Astrophysics Data System (ADS)

    Pierangelo, CléMence; ChéDin, Alain; Chazette, Patrick

    2004-02-01

    We show that the infrared optical depth of stratospheric volcanic aerosols produced by the eruption of Mount Pinatubo in June 1991 may be retrieved from the observations of the High-Resolution Infrared Radiation Sounder (HIRS-2) on board the polar meteorological satellites of the National Oceanic and Atmospheric Administration (NOAA). Evolution of the concentration in time and in space, in particular the migration of the aerosols from the tropics to the Northern and Southern Hemispheres, is found to be consistent with our knowledge of the consequences of this eruption. The method relies on the analysis of the differences between the satellite observations and simulations from an aerosol-free radiative transfer model using collocated radiosonde data as the prime input. Thus aerosol optical depths are retrieved directly without making assumptions about the aerosol size distribution or absorption coefficient. The aerosol optical depths reached a maximum in August 1991 in the tropical zone (0.055 at 8.3 μm, 0.03 at 4.0 μm, and 0.02 at 11.1 μm). The peak occurred in November 1991 in the southern midlatitudes and in March/April 1992 in the northern midlatitudes. A reanalysis of the almost 25 year archive of NOAA TIROS-N Operational Vertical Sounder (TOVS) observations holds considerable promise for improved knowledge of the atmosphere loading in volcanic aerosols.

  1. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; van Zyl, Pieter G.; Müller, Detlef; Balis, Dimitris; Komppula, Mika

    2016-07-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type are available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single-scattering albedo, were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr, 41 ± 13 sr, 0.9 ± 0.4 % and 2.3 ± 0.5, respectively, for urban/industrial aerosols, while these values were 92 ± 10 sr, 75 ± 14 sr, 3.2 ± 1.3 % and 1.7 ± 0.3, respectively, for biomass burning aerosol layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 µm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single-scattering albedo at 532 nm was 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532

  2. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, E.; van Zyl, P. G.; Müller, D.; Balis, D.; Komppula, M.

    2015-12-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type is available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol proper ties, i.e. effective radius and single scattering, albedo were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr; 0.9 ± 0.4 % and 2.3 ± 0.5, respectively for urban/industrial aerosols, while these values were 92 ± 10 sr; 3.2 ± 1.3 %; 2.0 ± 0.4 respectively for biomass burning aerosols layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 μm for urban/industrial, biomass burning, and mixed biomass burning and desert dust aerosols, respectively, while the single scattering albedo at 532 nm were 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532 nm), respectively for

  3. Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

    NASA Astrophysics Data System (ADS)

    Andersson, Emma; Kahnert, Michael

    2016-05-01

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between -28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from -50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  4. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro

    2017-01-01

    The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated

  5. Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony

    1997-01-01

    NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.

  6. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  7. In situ measurements of aerosols optical properties and number size distributions in a subarctic coastal region of Norway

    NASA Astrophysics Data System (ADS)

    Mogo, S.; Cachorro, V. E.; Lopez, J. F.; Montilla, E.; Torres, B.; Rodríguez, E.; Bennouna, Y.; de Frutos, A. M.

    2011-12-01

    sized between 30 and 100 nm (Aitken mode) are presented as a function of the concentration of the particles sized between 100 and 390 nm (accumulation mode). The optical and the microphysical parameters are related to each other, and the results are presented. The origins and pathways of air masses were examined by computing the back-trajectories in a trajectory model (HYSPLIT). Six geographical sectors were defined to classify the air masses, and, based on the sector classification, the linkage between the air mass origin and the optical parameters was established. Aerosol size distributions were also evaluated in relation to the air masses. The relationships between the air mass origins and other parameters, especially those related to the single scattering albedo, allow us to describe two characteristic situations: northern and western air masses, which had predominantly marine aerosols, presented lower optical parameter values, indicating predominantly coarser and non-absorbent particles; and eastern and southern air masses, in which continental aerosols were predominant, presented higher values for all optical parameters, indicating the presence of smaller absorbent particles.

  8. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  9. Optical inhomogeneity of dust-like aerosols and its effects on scattering and absorption

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Dlugach, Z.; Liu, L.

    2015-12-01

    The use of the very concept of effective refractive index has been implicit in virtually all computations of electromagnetic scattering by dust-like aerosols since the nanometer-scale heterogeneity of such particles has been essentially ignored. Therefore, the failure of this concept in application to dust-like aerosols would create a highly problematic situation. It is thus imperative to perform a comprehensive analysis of the actual physical origin of the heuristic effective-medium approximations (EMAs) and the range and conditions of their practical applicability. In this talk, we will identify the true place of the EMAs in the framework of statistical electrodynamics. We will validate the outcome of this analysis by superposition T-matrix computer calculations and will perform a detailed quantitative assessment of the actual accuracy of the EMAs when they are applied to less-than-ideal types of heterogeneity encountered in nature. It is expected that the accuracy of an EMA will depend on many factors: on type of mixing; on refractive indices and size parameters of the host and the inclusions; on number, spatial distribution, and packing density of the inclusions; on whether one computes monodisperse or polydisperse optical characteristics; on whether one computes only integral radiometric characteristics or also the elements of the scattering matrix; etc. If so, the actual practical suitability of an EMA will vary widely depending on the specific type of application, e.g., lidar remote sensing, polarimetric remote sensing, radiometric remote sensing, or integral radiation-budget computations.

  10. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  11. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Albayrak, A.; Wei, J. C.; Petrenko, M.; Lary, D. J.; Leptoukh, G. G.

    2011-12-01

    Over the past decade, global aerosol observations have been conducted by space-borne sensors, airborne instruments, and ground-base network measurements. Unfortunately, quite often we encounter the differences of aerosol measurements by different well-calibrated instruments, even with a careful collocation in time and space. The differences might be rather substantial, and need to be better understood and accounted for when merging data from many sensors. The possible causes for these differences come from instrumental bias, different satellite viewing geometries, calibration issues, dynamically changing atmospheric and the surface conditions, and other "regressors", resulting in random and systematic errors in the final aerosol products. In this study, we will concentrate on the subject of removing biases and the systematic errors from MODIS (both Terra and Aqua) aerosol product, using Machine Learning algorithms. While we are assessing our regressors in our system when comparing global aerosol products, the Aerosol Robotic Network of sun-photometers (AERONET) will be used as a baseline for evaluating the MODIS aerosol products (Dark Target for land and ocean, and Deep Blue retrieval algorithms). The results of bias adjustment for MODIS Terra and Aqua are planned to be incorporated into the AeroStat Giovanni as part of the NASA ACCESS funded AeroStat project.

  12. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  13. Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters

    NASA Astrophysics Data System (ADS)

    Mu, Q.; Liao, H.

    2014-09-01

    We used the nested grid version of the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the interannual variations (IAVs) of aerosols over heavily polluted regions in China for years 2004-2012. The role of variations in meteorological parameters was quantified by a simulation with fixed anthropogenic emissions at year 2006 levels and changes in meteorological parameters over 2004-2012. Simulated PM2.5 (particles with a diameter of 2.5 μm or less) aerosol concentrations exhibited large IAVs in North China (NC; 32-42° N, 110-120° E), with regionally averaged absolute percent departure from the mean (APDM) values of 17, 14, 14, and 11% in December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. Over South China (SC; 22-32° N, 110-120° E), the IAVs in PM2.5 were found to be the largest in JJA, with the regional mean APDM values of 14% in JJA and of about 9% in other seasons. The concentrations of PM2.5 over the Sichuan Basin (SCB; 27-33° N, 102-110° E) were simulated to have the smallest IAVs among the polluted regions examined in this work, with APDM values of 8-9% in all seasons. All aerosol species (sulfate, nitrate, ammonium, black carbon, and organic carbon) were simulated to have the largest IAVs over NC in DJF, corresponding to the large variations in meteorological parameters over NC in this season. Process analyses were performed to identify the key meteorological parameters that determined the IAVs of different aerosol species in different regions. While the variations in temperature and specific humidity, which influenced the gas-phase formation of sulfate, jointly determined the IAVs of sulfate over NC in both DJF and JJA, wind (or convergence of wind) in DJF and precipitation in JJA were the dominant meteorological factors to influence IAVs of sulfate over SC and the SCB. The IAVs in temperature and specific humidity

  14. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    SciTech Connect

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E.

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  15. New Statistical Model for Variability of Aerosol Optical Thickness and its Application to Analysis of Global Satellite Datasets

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Geogdzhayev, I. V.; Cairns, B.; Mishchenko, M. I.

    2013-05-01

    We present a novel statistical model AOTVM for variability of aerosol optical thickness (AOT). Mathematically this model is based on summation of multiple realizations of certain binary Markov process. It allows for construction of realistic examples of AOT time series, which have 1-point (lognormal PDF) and 2-point (structure function) statistics consistent with each other. Unlike commonly used scale-invariant (fractal) variability models having power-law structure functions, AOTVM's second order structure function converges to a constant (double of AOT's variance) at large lags (where the AOT values at different points become essentially independent from each other). This structure function has simple analytical form convenient for use in remote sensing data analysis. Aerosol variability in AOTVM is characterized by 3 parameters independent from the mean AOT. The first parameter is the ratio between AOT's standard deviation and its mean representing the relative magnitude of AOT variability. The second parameter is the characteristic size of inhomogeneity in AOT field. It quantifies the loss of dependence between AOT values at two points in space with the increase of distance between them. The third parameter is the Hurst exponent characterizing AOT's turbulent behavior at small scales. The proposed variability model was evaluated using MODIS Terra satellite AOT product (collection 5 level 2). We took one-year-long (2006) global AOT dataset (at 550 nm wavelength) and computed means, variances, and structure functions for the data from overlapping 10 by 10 degree cells (with ocean and land treated separately). This provided a set of AOT statistics on a grid with 5-degree resolution. We demonstrated that the structure functions derived from the satellite data can be closely fitted by AOTVM's analytical expressions. These fits provide global long-term datasets of the 3 model parameters described above, thus, adding to the information content of the satellite

  16. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  17. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  18. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  19. Simultaneous retrieval of aerosol optical thickness and chlorophyll concentration from multiwavelength measurement over East China Sea

    NASA Astrophysics Data System (ADS)

    Shi, Chong; Nakajima, Teruyuki; Hashimoto, Makiko

    2016-12-01

    A flexible inversion algorithm is proposed for simultaneously retrieving aerosol optical thickness (AOT) and surface chlorophyll a (Chl) concentration from multiwavelength observation over the ocean. In this algorithm, forward radiation calculation is performed by an accurate coupled atmosphere-ocean model with a comprehensive bio-optical ocean module. Then, a full-physical nonlinear optimization approximation approach is used to retrieve AOT and Chl. For AOT retrieval, a global three-dimensional spectral radiation-transport aerosol model is used as the a priori constraint to increase the retrieval accuracy of aerosol. To investigate the algorithm's availability, the retrieval experiment is conducted using simulated radiance data to demonstrate that the relative errors in simultaneously determining AOT and Chl can be mostly controlled to within 10% using multiwavelength and angle covering in and out of sunglint. Furthermore, the inversion results are assessed using the actual satellite observation data obtained from Cloud and Aerosol Imager (CAI)/Greenhouse gas Observation SATellite GOSAT and MODerate resolution Imaging Spectroradiometer (MODIS)/Aqua instruments through comparison to Aerosol Robotic Network (AERONET) aerosol and ocean color (OC) products over East China Sea. Both the retrieved AOT and Chl compare favorably to the reported AERONET values, particularly when using the CASE 2 ocean module in turbid water, even when the retrieval is performed in the presence of high aerosol loading and sunglint. Finally, the CAI and MODIS images are used to jointly retrieve the spatial distribution of AOT and Chl in comparison to the MODIS AOT and OC products.

  20. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  1. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  2. A Global Survey of Shipboard Measurements of Aerosol Optical Properties over the Oceans

    NASA Astrophysics Data System (ADS)

    Miller, M. A.; Reynolds, R. M.; Quinn, P.; Bartholomew, M. J.

    2001-12-01

    Marine aerosols contribute to the global albedo in two ways: direct scattering of incoming solar radiation to space (the direct effect) and modulation of the scattering properties of marine clouds (the indirect effect). The shortwave scattering and absorption characteristics of the marine atmosphere vary widely in space and time due to the variety of aerosol types, aerosol concentrations, and cloud structures that can be present. Aerosols over the oceans may originate from a variety of sources. Some are locally produced by wind-wave interaction while others are advected over great distances by the wind. In clear skies, advected continental aerosols can have a significantly different radiative impact than those that are locally produced. In cloudy skies, continental aerosol can cause modifications to the cloud droplet distribution in marine boundary layer clouds. Therefore, it is important to understand the spatial, temporal, and physical characteristics of aerosol over the world's oceans. Although information about aerosol optical properties over the world's oceans is critical, shipboard sun photometer measurements of these properties are relatively sparse. As part of our NASA SIMBIOS work and with additional support from the Department of Energy's (DOE) Atmospheric Radiation Program (ARM) program, the number of shipboard measurements has increased exponentially due to the development of a marine version of the Fast-Rotating, Shadow-band spectral Radiometer (FRSR). This instrument makes continuous, semi-automated shipboard measurements of the direct-normal, diffuse, and global irradiance in seven channels (415 nm, 500 nm, 610 nm, 660 nm, 862 nm, 936 nm, and broadband) and does not require a mechanically stabilized platform, thereby making it cost effective and reliable. The aerosol optical thickness is computed continuously from the direct-normal component of irradiance using calibration constants obtained using the Langley technique. The FRSR has been deployed on

  3. Thermophoresis and Its Thermal Parameters for Aerosol Collection

    SciTech Connect

    Huang, Z.; Apte, Michael; Gundel, Lara

    2007-08-01

    The particle collection efficiency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25mu m in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  4. THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION

    SciTech Connect

    Huang, Z.; Apte, M.; Gundel, L.

    2007-01-01

    The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler’s heating element was made of three sets of thermophoretic (TP) wires 25μm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  5. Aerosol optical properties and types over the tropical urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Kaskaoutis, D. G.; Rani Sharma, Anu; Kvs, Badarinath; Kambezidis, H. D.

    India is densely populated, industrialized and in the recent years has witnessed an impressive economic development. Aerosols over and around India not only affect the Indian monsoon but also the global climate. The growing population coupled with revolution in industry has resulted in higher demands for energy and transport. With more and more urbanization the usage pattern of fossil and bio-fuels are leading to changes in aerosol properties, which may cause changes in precipitation and can decelerate the hydrological cycle. Over urban areas of India aerosol emissions from fossil fuels such as coal, petrol and diesel oil dominate. Further-more, the Indian subcontinent exhibits different land characteristics ranging from vegetated areas and forests to semiarid and arid environments and tall mountains. India experiences large seasonal climatic variations, which result in extreme temperatures, rainfall and relative humidity. These meteorological and climatic features introduce large variabilities in aerosol op-tical and physico-chemical characteristics at spatial and temporal scales. In the present study, seasonal variations in aerosol properties and types were analysed over tropical urban region of Hyderabad, India during October 2007-September 2008 using MICROTOPS II sun photometer measurements. Higher aerosol optical depth (AOD) values are observed in premonsoon, while the variability of the ˚ngstrüm exponent (α) seems to be more pronounced with higher values A in winter and premonsoon and lower in the monsoon periods. The AOD at 500 nm (AOD500 ) is very large over Hyderabad, varying from 0.46±0.17 in postmonsoon to 0.65±0.22 in premon-soon periods. A discrimination of the different aerosol types over Hyderabad is also attempted using values of AOD500 and α380-870. Such discrimination is rather difficult to interpret since a single aerosol type can partly be identified only under specific conditions (e.g. anthropogenic emissions, biomass burning or dust

  6. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    SciTech Connect

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol -Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  7. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGES

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; ...

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  8. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  9. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  10. Comparison of POLDER Derived Aerosol Optical Thickness to Surface Monitor Fine Particle Concentration

    NASA Astrophysics Data System (ADS)

    Leon, J.; Kacenelenbogen, M.; Chiapello, I.

    2005-12-01

    The Particulate Matter (PM) mass measured at the ground level is a common way to quantify the amount of aerosol particles in the atmosphere and is used as a standard to evaluate air quality. Satellite remote sensing is well suited for a daily monitoring of the aerosol load. However, there are no straightforward relationship between aerosol optical properties derived from the satellite sensor and the PM mass at the ground. This paper is focused on the use of Polarization and Directionality of Earth's Reflectance (POLDER-2) derived aerosol optical thickness (AOT) for the monitoring of PM2.5. We present a correlation study between PM2.5 data collected in the frame of the French Environmental protection agency, aerosol optical properties derived from Sun photometer measurements, and POLDER derived-AOT over the land. POLDER AOT retrieval algorithm over the land is based on the use of the measurement of the linear polarized light in the 670 nm and 865 nm channels. We show that only the fine fraction (below 0.3 μm) of the aerosol size distribution contributes to the signal in polarization and then to the POLDER derived-AOT and then is well suited for monitoring of fine particle. The correlation between POLDER AOT and PM2.5 is significant (R between 0.6 and 0.7) over several sites. We present a tentative evaluation of Air Quality Categories from satellite data.

  11. Studies of aerosol optical depth with use of Microtops sun photometers and MODIS detectors

    NASA Astrophysics Data System (ADS)

    Makuch, Przemyslaw; Zawadzka, Olga; Markowicz, Krzystof M.; Zielinski, Tymon; Petelski, Tomasz; Strzalkowska, Agata; Rozwadowska, Anna; Gutowska, Dorota

    2013-04-01

    We would like to describe the results of a research campaign aimed at the studies of aerosol optical properties in the regions of the open Baltic Sea as well as coastal areas. During the campaign we carried out simultaneous measurements of aerosol optical depth at 4 stations with use of the hand-held Microtops II sunphotometers. The studies were complemented with the MODIS aerosol data. In order to obtain the full picture of the aerosol situation over the study area we added air mass back-trajectories at various altitudes and wind fields. Such complex information facilitated the proper conclusions regarding aerosol optical depth and Angstroem exponent for the four locations and discussion of the changes of aerosol properties with distance and meteorological factors. We show that Microtops II sunphotometers are reliable instruments for field campaigns. They are easy to operate and provide good quality results. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

  12. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Merkulov, V.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2011-11-01

    In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm, which can be deconvoluted into a dilute intrinsic hygroscopicity parameter (κm,∞) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For sodium chloride, the κm-interaction model (KIM) captures the observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1-99%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. By application of KIM to the measurement data we can distinguish three different regimes of hygroscopicity in the investigated aerosol samples: (I) A quasi-eutonic regime at low relative humidity (~60% RH) where the solutes co-exist in an aqueous and non-aqueous phase; (II) a gradually deliquescent regime at intermediate humidity (~60%-90% RH) where different solutes undergo gradual dissolution in the aqueous phase; and (III) a dilute regime at high humidity (≳90% RH) where the solutes are fully dissolved approaching their dilute intrinsic hygroscopicity. The characteristic features of the three hygroscopicity regimes are similar for both samples, while the RH threshold values vary as expected for samples of different chemical composition. In each regime, the

  13. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sebastien; Maltagliati, Luca; Sotin, Christophe; Rannou, Pascal; Bézard, Bruno; Cornet, Thomas

    2016-10-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008).Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 μm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°.We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  14. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Rodriguez, Sebastien; Sotin, Christophe; Rannou, Pascal; Bezard, Bruno; Cornet, Thomas

    2016-06-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008). Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 µm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°. We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  15. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  16. Technical Note: Determination of aerosol optical properties by a calibrated sky imager

    NASA Astrophysics Data System (ADS)

    Cazorla, A.; Shields, J. E.; Karr, M. E.; Olmo, F. J.; Burden, A.; Alados-Arboledas, L.

    2009-09-01

    The calibrated ground-based sky imager developed in the Marine Physical Laboratory, the Whole Sky Imager (WSI), has been tested with data from the Atmospheric Radiation Measurement Program (ARM) at the Southern Great Plain site (SGP) to determine optical properties of the atmospheric aerosol. Different neural network-based models calculate the aerosol optical depth (AOD) for three wavelengths using the radiance extracted from the principal plane of sky images from the WSI as input parameters. The models use data from a CIMEL CE318 photometer for training and validation and the wavelengths used correspond to the closest wavelengths in both instruments. The spectral dependency of the AOD, characterized by the Ångström exponent α in the interval 440-870 nm, is also derived using the standard AERONET procedure and also with a neural network-based model using the values obtained with a CIMEL CE318. The deviations between the WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncertainty assigned to the AERONET AOD calculation (±0.01), in 80% of the cases. The explanation of data variance by the model is over 92% in all cases. In the case of α, the deviation is within the uncertainty assigned to the AERONET α (±0.1) in 50% of the cases for the standard method and 84% for the neural network-based model. The explanation of data variance by the model is 63% for the standard method and 77% for the neural network-based model.

  17. Global and Seasonal Aerosol Optical Depths Derived From Ultraviolet Observations by Satellites (TOMS)

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Torres, O.

    1999-01-01

    It has been shown that absorbing aerosols (dust, smoke, volcanic ash) can be detected in the ultraviolet wavelengths (331 nm to 380 nm) from satellite observations (TOMS, Total Ozone Mapping Spectrometer) over both land and water. The theoretical basis for these observations and their conversions to optical depths is discussed in terms of an aerosol index AI or N-value residue (assigned positive for absorbing aerosols). The theoretical considerations show that negative values of the AI frequently represent the presence of non-absorbing aerosols (NA) in the troposphere (mostly pollution in the form of sulfates, hydrocarbons, etc., and some natural sulfate aerosols) with particle sizes near 0.1 to 0.2 microns or less. The detection of small-particle non-absorbing aerosols from the measured backscattered radiances is based on the observed wavelength dependence from Mie scattering after the background Rayleigh scattering is subtracted. The Mie scattering from larger particles, 1 micron or more (e.g., cloud water droplets) has too small a wavelength dependence to be detected by this method. In regions that are mostly cloud free, aerosols of all sizes can be seen in the single channel 380 nm or 360 nm radiance data. The most prominent Al feature observed is the strong asymmetry in aerosol amount between the Northern and Southern Hemispheres, with the large majority of NA occurring above 20degN latitude. The maximum values of non-absorbing aerosols are observed over the eastern U.S. and most of western Europe corresponding to the areas of highest industrial pollution. Annual cycles in the amount of NA are observed over Europe and North America with maxima occurring in the summer corresponding to times of minimum wind transport. Similarly, the maxima in the winter over the Atlantic Ocean occurs because of wind borne transport from the land. Most regions of the world have the maximum amount of non-absorbing aerosol in the December to January period except for the eastern

  18. Trends in aerosol optical depth over Indian region: Potential causes and impact indicators

    NASA Astrophysics Data System (ADS)

    Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Gogoi, Mukunda M.; Nair, Vijayakumar S.; Kompalli, Sobhan Kumar; Satheesh, S. K.; Niranjan, K.; Ramagopal, K.; Bhuyan, P. K.; Singh, Darshan

    2013-10-01

    first regional synthesis of long-term (back to ~ 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported ~ 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

  19. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-01-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  20. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  1. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  2. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  3. Aerosol Optical Depth spatiotemporal variability and contribution of different aerosol types over Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos; Zanis, Prodromos; Pöschl, Ulrich; Lelieveld, Jos; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios; Pozzer, Andrea

    2015-04-01

    In this work, we study the aerosol spatiotemporal variability over the region of Eastern Mediterranean, for the time period 2000-2012, using a 0.1-degree gridded dataset compiled from level-2 MODIS TERRA and MODIS AQUA AOD550 and FMR550 data. A detailed validation of the AOD550 data was implemented using ground-based observations from the AERONET, also showing that the gridding methodology we followed allows for the detection of several local hot spots that cannot be seen using lower resolutions or level-3 data. By combining the MODIS data with data from other satellite sensors (TOMS, OMI), data from a global chemical-aerosol-transport model (GOCART), and reanalysis data from MACC and ERA-interim, we quantify the relative contribution of different aerosol types to the total AOD550 for the period of interest. For this reason, we developed an optimized algorithm for regional studies based on results from previous global studies. Over land, anthropogenic, dust, and fine-mode natural aerosols contribute to the total AOD550, while anthropogenic, dust and maritime AODs are calculated over the ocean. The dust AOD550 over the region was compared against dust AODs from the LIVAS CALIPSO product, showing a similar seasonal variability. Finally, we also look into the aerosol load short-term trends over the region for each aerosol type separately, the results being strongly affected by the selected time period. The research leading to these results has received funding from the European Social Fund (ESF) and national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers" (QUADIEEMS project) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 226144 (C8 project).

  4. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  5. Uncertainties in Carbonaceous Aerosol Emissions, Scavenging Parameterizations, and Optical Properties

    NASA Astrophysics Data System (ADS)

    Koch, D.; Bond, T.; Kinne, S.; Klimont, Z.; Sun, H.; van Aardenne, J.; van der Werf, G.

    2006-12-01

    Estimates of human influence on climate are especially hindered by poor constraint on the amount of anthropogenic carbonaceous aerosol absorption in the atmosphere. Coordination of observation and model analyses attempt to constrain particle absorption amount, however these are limited by uncertainties in aerosol emission estimates, model scavenging parameterization, aerosol size assumption, contributions from organic aerosol absorption, air concentration observational techniques and by sparsity of data coverage. We perform multiple simulations using GISS modelE and six present-day emission estimates for black carbon (BC) and organic carbon (OC) (Bond et al 2004 middle and upper estimates, IIASA, EDGAR, GFED v1 and v2); for one of these emissions we apply 4 different BC/OC scavenging parameterizations. The resulting concentrations will be compared with a new compilation of observed BC/OC concentrations. We then use these model concentrations, together with effective radius assumptions and estimates of OC absorption to calculate a range of carbonaceous aerosol absorption. We constrain the wavelength-dependent model τ- absorption with AERONET sun-photometer observations. We will discuss regions, seasons and emission sectors with greatest uncertainty, including those where observational constraint is lacking. We calculate the range of model radiative forcing from our simulations and discuss the degree to which it is constrained by observations.

  6. Analysis of the origin of peak aerosol optical depth in springtime over the Gulf of Tonkin.

    PubMed

    Shan, Xiaoli; Xu, Jun; Li, Yixue; Han, Feng; Du, Xiaohui; Mao, Jingying; Chen, Yunbo; He, Youjiang; Meng, Fan; Dai, Xuezhi

    2016-02-01

    By aggregating MODIS (moderate-resolution imaging spectroradiometer) AOD (aerosol optical depth) and OMI (ozone monitoring instrument) UVAI (ultra violet aerosol index) datasets over 2010-2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin (17-23 °N, 105-110 °E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP (cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km. In contrast, aerosol loading in the low atmosphere (below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula (NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring.

  7. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  8. Optical properties of urban aerosols in the region Bratislava-Vienna—II: Comparisons and results

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Hrvoľ, J.

    The optical and microphysical properties of aerosols in highly urbanized region Bratislava-Vienna were determined by means of ground-based optical methods during campaign in August and September 2004. Although both cities are close to each other forming a common metropolitan region, the features of their aerosol systems are distinct. While urban and suburban zones around Vienna have mostly a clean air without major influences of emissions from industry, Bratislava itself need to be classified as polluted area—the optical data collected in the measuring site are influenced mainly by Technické Sklo factory (NW positioned), Matador (SSE), Istrochem (ENE) and Slovnaft (ESE). In contrary to an observed smooth evolution of the aerosol system in Vienna, the aerosol environment is quite unstable in Bratislava and usually follows the day changes of the wind directions (as they correspond to the position of individual sources of pollution). The particle sizes in Bratislava are predominately larger compared to Vienna. A subsidiary mode within surface size distribution frequently occurs at radius about 0.7 μm in Bratislava but not in Vienna. The size distribution of airborne particles in Vienna is more dependent on relative humidity than in Bratislava. It suggests the particles in Bratislava are larger whenever, or non-deliquescent to a great extent. The spectral attenuation of solar radiation by aerosol particles shows a typical mode at λ≈0.4μm in Bratislava, which is not observed in the spectral aerosol extinction coefficient in Vienna. In Bratislava, the average aerosol optical thickness grows from morning hours to the evening, while an opposite effect can be observed in Vienna in the same time.

  9. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  10. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ma, Y. M.; You, C.; Zhu, Z. K.

    2015-06-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported over the main body of the TP across the northeastern edge rather than the southern edge. This is may be because the altitude is much lower at the northeastern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A natural boundary seems to extend to an altitude of 6-8 km a.s.l., which may act as a dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP, especially in spring and summer. This boundary appears around 33-35° N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that this natural boundary extending to upper troposphere is consistent with the spatial pattern of aerosol loading. The whole TP blocks the atmospheric aerosols transported from surrounding regions, and the extreme high mountains on the TP also cause an obstruction to the transport of aerosols. The aerosol distribution patterns are primarily driven by atmospheric

  11. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  12. [Specific parameters for the calculation of dose after aerosol inhalation of transuranium elements].

    PubMed

    Ramounet-Le Gall, B; Fritsch, P; Abram, M C; Rateau, G; Grillon, G; Guillet, K; Baude, S; Bérard, P; Ansoborlo, E; Delforge, J

    2002-07-01

    A review on specific parameter measurements to calculate doses per unit of incorporation according to recommendations of the International Commission of Radiological Protection has been performed for inhaled actinide oxides. Alpha activity distribution of the particles can be obtained by autoradiography analysis using aerosol sampling filters at the work places. This allows us to characterize granulometric parameters of "pure" actinide oxides, but complementary analysis by scanning electron microscopy is needed for complex aerosols. Dissolution parameters with their standard deviation are obtained after rat inhalation exposure, taking into account both mechanical lung clearance and actinide transfer to the blood estimated from bone retention. In vitro experiments suggest that the slow dissolution rate might decrease as a function of time following exposure. Dose calculation software packages have been developed to take into account granulometry and dissolution parameters as well as specific physiological parameters of exposed individuals. In the case of poorly soluble actinide oxides, granulometry and physiology appear as the main parameters controlling dose value, whereas dissolution only alters dose distribution. Validation of these software packages are in progress.

  13. CALIOP and AERONET Aerosol Optical Depth Comparisons: One Size Fits None

    NASA Technical Reports Server (NTRS)

    Omar, A. H.; Winker, D. M.; Tackett, J. L.; Giles, D. M.; Kar, J.; Liu, Z.; Vaughan, M. A.; Powell, K. A.; Trepte, C. R.

    2013-01-01

    We compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite with coincident Aerosol Robotic Network (AERONET) measurements. Overpass coincidence criteria of +/- 2 h and within a 40 km radius are satisfied at least once at 149 globally distributed AERONET sites from 2006 to 2010. Most data pairs (>80%) use AERONET measurements acquired +/- 30 min of the overpass. We examine the differences in AOD estimates between CALIOP and AERONET for various aerosol, environmental, and geographic conditions. Results show CALIOP AOD are lower than AERONET AOD especially at low optical depths as measured by AERONET (500 nm AOD<0.1). Furthermore, the median relative AOD difference between the two measurements is 25% of the AERONET AOD for AOD>0.1. Differences in AOD between CALIOP and AERONET are possibly due to cloud contamination, scene inhomogeneity, instrument view angle differences, CALIOP retrieval errors, and detection limits. Comparison of daytime to nighttime number of 5 km 60m (60m in the vertical) features detected by CALIOP show that there are 20% more aerosol features at night. We find that CALIPSO and AERONET do not agree on the cloudiness of scenes. Of the scenes that meet the above coincidence criteria, CALIPSO finds clouds in more than 45% of the coincident atmospheric columns AERONET classifies as clear.

  14. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    NASA Astrophysics Data System (ADS)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  15. Aerosol Optical Properties Characterization By Means Of The CNR-IMAA Multi-Wavelength Raman Lidar

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2007-12-01

    A Raman/elastic lidar for tropospheric aerosol study is operational at CNR-IMAA (40°36'N, 15°44'E, 760 m above sea level) since May 2000 in the framework of EARLINET. Since August 2005, this system provides aerosol backscatter coefficient profiles at 1064 nm, and independent measurements of aerosol extinction and backscatter coefficient profiles at 355 and 532 nm. In this way, lidar ratio (i.e. extinction to backscatter ratio) profiles at 355 and 532 nm are also obtained. In addition, depolarization ratio measurements at 532 nm are obtained by means of detection of components of backscattered light polarized perpendicular and parallel to the direction of the linearly polarized transmitted laser beam. Depolarization ratio measurements provide information about shape and orientation of aerosolic particles, while lidar ratio measurements and wavelength dependences of both backscatter and extinction are important for aerosol characterization in terms of aerosol type and size. In addition, high quality multi-wavelength measurements (3 backscatter + 2 extinction) can allow the determination of microphysical aerosol properties (refractive index, single-scattering albedo and effective particles radii). Systematic measurements are performed three times per week according to the EARLINET schedule since May 2000, and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. This extended dataset allows the optical characterization of aerosol located close to the surface, namely in the Planetary Boundary Layer, as well as in the free troposphere. In the free troposphere, an high occurrence of Saharan dust intrusions at CNR-IMAA (about 1 day of Saharan dust intrusion every 10 days) has been identified by means of back-trajectory analysis and in accordance with satellite images, because of the short distance from the Sahara region. In addition, CNR-IMAA is pretty close to Etna, the largest European

  16. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  17. Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology

    NASA Astrophysics Data System (ADS)

    Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg

    2016-09-01

    The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.

  18. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  19. Aerosol optical depth measurements by means of a Sun photometer network in Switzerland

    NASA Astrophysics Data System (ADS)

    Ingold, T.; MäTzler, C.; KäMpfer, N.; Heimo, A.

    2001-11-01

    Within the Swiss Atmospheric Radiation Monitoring program (CHARM) the Swiss Meteorological Institute - MeteoSwiss operates a network of presently six Sun photometer stations. Aerosol optical depths (AOD) at 368, 500, and 778 nm were determined from measurements of the relative direct solar irradiance, primarily to provide climatological information relevant in particular to climate change studies. The six instruments are located at various sites representative of high and low altitudes at the north and south part of the Alps in areas free from urban pollution in Switzerland. AOD time series of recordings back to 1991 are discussed, when data were first collected at Davos. An important aerosol layer is often present over stations at lower sites, showing seasonal variability and regional differences for the observed tropospheric aerosols. A classification scheme for synoptic weather types was applied to separate the AOD data into groups corresponding to different atmospheric transport conditions. On average, lower AODs are measured within advective weather situations than within convective ones. However, at the high Alpine sites such a classification is incomplete for AOD characterization due to orographically induced vertical motion. Monthly averaged values of AOD at 500 nm ranged from 0.05 during winter up to 0.3 in summer. The scale height of the aerosol optical depth is found to be 1-2 km depending on season. The high mountain sites are more suitable to the study stratospheric aerosols, for example, the change of the aerosol content and of its size distribution due to Mount Pinatubo eruption was clearly identified at Davos. In 1996 the aerosol optical depth returned to pre-Pinatubo values. Minimum AODs of ≈0.004-0.007 measured at 500 nm in 1997 are in good agreement with widely reported aerosol optical depth measurements of the stratospheric background aerosols. Besides the Pinatubo-affected period aerosol characterization by means of the Angström power law

  20. Empirical algorithms for ocean optics parameters.

    PubMed

    Smart, Jeffrey H

    2007-06-11

    As part of the Worldwide Ocean Optics Database (WOOD) Project, The Johns Hopkins University Applied Physics Laboratory has developed and evaluated a variety of empirical models that can predict ocean optical properties, such as profiles of the beam attenuation coefficient computed from profiles of the diffuse attenuation coefficient. In this paper, we briefly summarize published empirical optical algorithms and assess their accuracy for estimating derived profiles. We also provide new algorithms and discuss their applicability for deriving optical profiles based on data collected from a variety of locations, including the Yellow Sea, the Sea of Japan, and the North Atlantic Ocean. We show that the scattering coefficient (b) can be computed from the beam attenuation coefficient (c) to about 10% accuracy. The availability of such relatively accurate predictions is important in the many situations where the set of data is incomplete.

  1. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    NASA Astrophysics Data System (ADS)

    Esparza, Angel Eduardo

    2011-12-01

    The assessment and characterization of atmospheric aerosols and their optical properties are of great significance for several applications such as air pollution studies, atmospheric visibility, remote sensing of the atmosphere, and impacts on climate change. Decades ago, the interest in atmospheric aerosols was primarily for visibility impairment problems; however, recently interest has intensified with efforts to quantify the optical properties of aerosols, especially because of the uncertainties surrounding the role of aerosols in climate change. The main objective of the optical characterization of aerosols is to understand their properties. These properties are determined by the aerosols' chemical composition, size, shape and concentration. The general purpose of this research was to contribute to a better characterization of the aerosols present in the Paso del Norte Basin. This study permits an alternative approach in the understanding of air pollution for this zone by analyzing the predominant components and their contributions to the local environment. This dissertation work had three primary objectives, in which all three are intertwined by the general purpose of the aerosol characterization in the Paso del Norte region. The first objective was to retrieve the columnar aerosol size distribution for two different cases (clean and polluted scenarios) at each season (spring, summer, fall and winter) of the year 2009. In this project, instruments placed in buildings within the University of Texas at El Paso (UTEP) as well as a monitoring site (CAMS 12) from the Texas Commission on Environmental Quality (TCEQ) provided the measurements that delimited the aerosol size distribution calculated by our model, the Environmental Physics Inverse Reconstruction (EPIRM) model. The purpose of this objective was to provide an alternate method of quantifying and size-allocating aerosols in situ, by using the optical properties of the aerosols and inversely reconstruct and

  2. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  3. Optical and Structural Properties of Aerosols Emitted from Open Biomass Burning (Invited)

    NASA Astrophysics Data System (ADS)

    Moosmuller, H.; Chakrabarty, R. K.; Lewis, K.; Gyawali, M.; Mazzoleni, C.; Dubey, M. K.; Kreidenweis, S. M.; Arnott, W. P.

    2010-12-01

    Open biomass burning including wildland fires and agricultural burning emits substantial quantities of carbonaceous aerosols into the atmosphere. Fuel, soil, and atmospheric conditions largely determine the combustion phase. High temperature flaming combustion emits black aerosols, generally consisting of fractal-like chain aggregates that have a high black carbon content and therefore strongly absorb visible light. Low temperature, smoldering combustion, on the other hand, emits fairly white aerosols, often consisting of near-spherical particles that have high organic carbon content. While this organic carbon is traditionally considered to cause negligent absorption of visible light, more recent studies have shown that organic carbon from biomass burning often contains brown carbon. Brown carbon is a component of organic carbon, optically defined by its increasing light absorption toward shorter wavelengths. The physical characteristics of biomass combustion aerosol particles are determined by a combination of their morphology, monomer size, and shape, all of which can be determined from electron microscopy and image analysis. Here, we review optical and structural properties of aerosols emitted from open biomass burning with a focus on relevance for radiative forcing and climate change and satellite remote sensing. This review is followed by a discussion of measurements and modeling of brown carbon optical properties, of associated metrics such as the Ångström absorption coefficient, and of future research needs.

  4. Variation of aerosol optical properties from AERONET observation at Mt. Muztagh Ata, Eastern Pamirs

    NASA Astrophysics Data System (ADS)

    Yan, Ni; Wu, Guangjian; Zhang, Xuelei; Zhang, Chenglong; Xu, Tianli; Lazhu

    2015-02-01

    Using data from the ground-based remote sensing Aerosol Robotic Network (AERONET), aerosol optical properties, including aerosol optical depth (AOD), Ångström exponent (α), and volume size distribution were investigated for the period June to December 2011 at Mt. Muztagh Ata (Muztagata), Eastern Pamirs. The monthly average values of AOD (500 nm) and α (440-870 nm) varied from 0.08 ± 0.02 to 0.16 ± 0.11, and from 0.56 ± 0.06 to 0.93 ± 0.28, respectively. The daily AOD averages 0.14 ± 0.07, with the maximum (0.5) occurring in August and the minimum (0.05) occurring in November. A small increase in AOD is expected with a noticeable decrease in the α value. The daily α averages 0.70 ± 0.27, and most exponents are less than 1, indicating the majority of larger aerosol particles. The volume size distribution of aerosol particles shows bimodal log-normal characteristics, with a fine mode radius of 0.2 μm and a coarse mode radius of 3 μm. The MODIS AOD and AERONET AOD display a similar variation, while the former is always noticeably higher than the latter with a difference of 0.1-0.4, indicating that the MODIS data might overestimate the aerosol load. Our results indicate that high aerosol volume concentration occurs in summer with the dominance of coarse particles over Muztagh Ata. The low AOD shows a clean atmosphere in this region, revealing that it is an atmospheric background site for continental aerosol monitoring.

  5. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  6. Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2015-04-01

    Obtaining continuous aerosol-optical-depth (AOD) measurements is a difficult task due to the cloud-cover problem. With the main motivation of overcoming this problem, an AOD-predicting model is proposed. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the Ångström exponent against the AOD. A new empirical algorithm was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET due to frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The calibrated model coefficients have a coefficient of determination, R2, of 0.72. The predicted AOD of the model was generated based on these calibrated coefficients and compared against the measured data through standard statistical tests, yielding a R2 of 0.68 as validation accuracy. The error in weighted mean absolute percentage error (wMAPE) was less than 0.40% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Performance of our model was compared against selected LIDAR data to yield good correspondence. The predicted AOD can enhance measured short- and long-term AOD and provide supplementary information for climatological studies and monitoring aerosol variation.

  7. Determination of the broadband optical properties of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  8. Effects of data assimilation on the global aerosol key optical properties simulations

    NASA Astrophysics Data System (ADS)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  9. Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Arola, A.; Ferrare, R. A.; Hostetler, C. A.; Crumeyrolle, S. N.; Berkoff, T. A.; Welton, E. J.; Lolli, S.; Lyapustin, A.; Wang, Y.; Schafer, J. S.; Giles, D. M.; Anderson, B. E.; Thornhill, K. L.; Minnis, P.; Pickering, K. E.; Loughner, C. P.; Smirnov, A.; Sinyuk, A.

    2014-11-01

    During the July 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field experiment in Maryland, significant enhancements in Aerosol Robotic Network (AERONET) sun-sky radiometer measured aerosol optical depth (AOD) were observed in the immediate vicinity of non-precipitating cumulus clouds on some days. Both measured Ångström exponents and aerosol size distribution retrievals made before, during and after cumulus development often suggest little change in fine mode particle size; therefore, implying possible new particle formation in addition to cloud processing and humidification of existing particles. In addition to sun-sky radiometer measurements of large enhancements of fine mode AOD, lidar measurements made from both ground-based and aircraft-based instruments during the experiment also measured large increases in aerosol signal at altitudes associated with the presence of fair weather cumulus clouds. These data show modifications of the aerosol vertical profile as a result of the aerosol enhancements at and below cloud altitudes. The airborne lidar data were utilized to estimate the spatial extent of these aerosol enhancements, finding increased AOD, backscatter and extinction out to 2.5 km distance from the cloud edge. Furthermore, in situ measurements made from aircraft vertical profiles over an AERONET site during the experiment also showed large increases in aerosol scattering and aerosol volume after cloud formation as compared to before. The 15-year AERONET database of AOD measurements at the Goddard Space Flight Center (GSFC), Maryland site, was investigated in order to obtain a climatological perspective of this phenomenon of AOD enhancement. Analysis of the diurnal cycle of AOD in summer showed significant increases in AOD from morning to late afternoon, corresponding to the diurnal cycle of cumulus development.

  10. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ma, Y. M.; You, C.; Zhu, Z. K.

    2015-10-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by the Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP throughout the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is maybe partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental aerosol and smoke are also investigated, based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at an altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35° N in the middle of the plateau, and it is possibly associated with the high-altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  11. Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP

    NASA Astrophysics Data System (ADS)

    Toth, Travis D.; Zhang, Jianglong; Campbell, James R.; Reid, Jeffrey S.; Vaughan, Mark A.

    2016-08-01

    Temporal variability in the vertical distribution of aerosol optical thickness (AOT) derived from the 0.532 µm aerosol extinction coefficient is described using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations over 8.5 years (June 2006 to December 2014). Temporal variability of CALIOP column-integrated AOT is largely consistent with total column AOT trends from several passive satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and the Sea-viewing Wide Field-of-view Sensor. Globally, a 0.0002 AOT per year positive trend in deseasonalized CALIOP total column AOT for daytime conditions is attributed to corresponding changes in near-surface (i.e., 0.0-0.5 km or 0.5-1.0 km above ground level (agl)) aerosol particle loading, while a -0.0006 AOT per year trend during nighttime is attributed to elevated (i.e., 1.0-2.0 km or >2.0 km agl) aerosols. Regionally, increasing daytime CALIOP AOTs are found over Southern Africa and India, mostly due to changes in aerosol loading at the 1.0-2.0 km and 0.0-0.5 km agl layers, respectively. Decreasing daytime CALIOP AOTs are observed over Northern Africa, Eastern U.S., and South America (due mostly to elevated aerosol loading), while the negative CALIOP AOT trends found over Eastern China, Europe, and Western U.S. are due mostly to aerosol layers nearer the surface. To our knowledge, this study is the first to provide both a globally comprehensive estimation of the temporal variation in aerosol vertical distribution and an insight into passive sensor column AOT trends in the vertical domain.

  12. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    NASA Astrophysics Data System (ADS)

    Flores, J. Michel; Bar-Or, R. Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Koren, I.; Rudich, Y.

    2012-06-01

    One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. We found a weak linear dependence or no dependence of fRH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption

  13. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-01-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  14. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-10-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  15. Design of Fiber Optic Sensors for Measuring Hydrodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Quiett, Carramah; Griffin, DeVon (Technical Monitor)

    2001-01-01

    The science of optical hydrodynamics involves relating the optical properties to the fluid dynamic properties of a hydrodynamic system. Fiber-optic sensors are being designed for measuring the hydrodynamic parameters of various systems. As a flowing fluid makes an encounter with a flat surface, it forms a boundary layer near this surface. The region between the boundary layer and the flat plate contains information about parameters such as viscosity, compressibility, pressure, density, and velocity. An analytical model has been developed for examining the hydrodynamic parameters near the surface of a fiber-optic sensor. An analysis of the conservation of momentum, the continuity equation and the Navier-Stokes equation for compressible flow were used to develop expressions for the velocity and the density as a function of the distance along the flow and above the surface. When examining the flow near the surface, these expressions are used to estimate the sensitivity required to perform direct optical measurements and to derive the shear force for indirect optical measurements. The derivation of this result permits the incorporation of better design parameters for other fiber-based sensors. Future work includes analyzing the optical parametric designs of fiber-optic sensors, modeling sensors to utilize the parameters for hydrodynamics and applying different mixtures of hydrodynamic flow. Finally, the fabrication of fiber-optic sensors for hydrodynamic flow applications of the type described in this presentation could enhance aerospace, submarine, and medical technology.

  16. Optical constants of Titan aerosols and their tholins analogs: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2015-05-01

    Since Bishun Khare's pioneer works on Titan tholins, many studies have been performed to improve the experimental database of the optical constants of Titan tholins. The determination of the optical constants of Titan aerosols is indeed essential to quantify their capacity to absorb and scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of the optical properties is also crucial to analyze and better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. This review paper critically summarizes these new results and presents constraints on Titan's aerosols optical constants. Finally, the information lacking in this field is highlighted as well as some possible investigations that could be carried out to fill these gaps.

  17. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  18. Real Effect or Artifact of Cloud Cover on Aerosol Optical Thickness?

    SciTech Connect

    Jeong, M-J.; Li, Z.

    2005-03-18

    Aerosol measurements over the Southern Great Plains (SGP) Cloud And Radiation Test bed (CART) site under Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program characterize the temporal variability, vertical distribution, and optical properties of aerosols in the region. They were made by the Cimel sunphotometer and Multifilter Rotating Shadow-band Radiometer (MFRSR), Raman Lidar, In situ Aerosol Profiling (IAP) flights, and the Aerosol Observing System (AOS). The spatial variability of aerosols relies a network of MFRSR at the Central Facility (CF) and Extended Facilities (EF), together with satellite remote sensing. The current state-of-art satellite-based estimates over land--e.g., MODerate resolution Imaging Scanner (MODIS) aerosol optical thickness--still suffer from large uncertainties. Contamination due to sub-pixel and/or thin cirrus clouds is believed to be one of the major sources of uncertainties. Retrievals near clouds are discouraged to use, which reduces considerably the amount of useful data. In this regard, cloud is considered as an artifact. However, cloud could have a real impact on AOT by changing humidity, which affects aerosol through the aerosol swelling effect. As a preliminary study, we first investigate the effects of cloud cover and humidity on the retrievals of AOT from ground-based Cimel sunphotometer measurements, in order to help us sort out the real influence and artifact. In general, it is very difficult to verify and quantify the effects of cloud on satellite retrieval of aerosol quantities. Speculation and warning of cloud contamination have been made whenever there is a correlation between the retrieved AOT and cloud fraction or their spatial variabilities, while it has also been argued that aerosol humidification effect (AHE) might be at work. The ample measurements available from ARM over the SGP region may allow us to unravel this complex issue. Our ultimate goals are to (1) evaluate various effects on the

  19. Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2014-02-16

    In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

  20. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  1. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    EPA Science Inventory

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  2. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter.

    The aerosol optical depth (AOD) - a derived estimate from the satellite-measured radiance, can be compared against model estimates to provide an evaluation of the columnar ae...

  3. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  4. Evaluation of MODIS aerosol optical depth for semi­-arid environments in complex terrain

    NASA Astrophysics Data System (ADS)

    Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2015-12-01

    The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.

  5. Optical characteristics of aerosol trioxide dialuminum at the IR wavelength range

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Shefer, O. V.; Kashirskii, D. E.

    2015-11-01

    In this work, a numerical study of the transmission function, extinction coefficient, scattering coefficient, and absorption coefficient of the aerosol generated by the jet engine emissions was performed. Analyzing the calculation results of the IR optical characteristics of anthropogenic emissions containing the dialuminum trioxide was carried out. The spectral features of the optical characteristics of the medium caused by the average size, concentration and complex refractive index of the particles were illustrated.

  6. Four dimensional variational data assimilation of species-resolved satellite-retrieved aerosol optical thickness

    NASA Astrophysics Data System (ADS)

    Nieradzik, Lars Peter; Elbern, Hendrik

    2010-05-01

    Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe only account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents like mineral dust derived from desert storms and sea salt contribute to PMx it is necessary to make aerosol forcasts not only of load, but also type resolved. The source of information chosen for this study is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves BLAOT (Boundary Layer Aerosol Optical Thickness) making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot, sea salt, and mineral dust which are furthermore size resolved in terms of modes. A widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements is the method of four dimensional variational data assimilation (4Dvar). The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability, and a time saving online NMC-module for the generation of the background

  7. Optical properties and cross-sections of biological aerosols

    NASA Astrophysics Data System (ADS)

    Thrush, E.; Brown, D. M.; Salciccioli, N.; Gomes, J.; Brown, A.; Siegrist, K.; Thomas, M. E.; Boggs, N. T.; Carter, C. C.

    2010-04-01

    There is an urgent need to develop standoff sensing of biological agents in aerosolized clouds. In support of the Joint Biological Standoff Detection System (JBSDS) program, lidar systems have been a dominant technology and have shown significant capability in field tests conducted in the Joint Ambient Breeze Tunnel (JABT) at Dugway Proving Ground (DPG). The release of biological agents in the open air is forbidden. Therefore, indirect methods must be developed to determine agent cross-sections in order to validate sensor against biological agents. A method has been developed that begins with laboratory measurements of thin films and liquid suspensions of biological material to obtain the complex index of refraction from the ultraviolet (UV) to the long wave infrared (LWIR). Using that result and the aerosols' particle size distribution as inputs to Mie calculations yields the backscatter and extinction cross-sections as a function of wavelength. Recent efforts to model field measurements from the UV to the IR have been successful. Measurements with aerodynamic and geometric particle sizers show evidence of particle clustering. Backscatter simulations of these aerosols show these clustered particles dominate the aerosol backscatter and depolarization signals. In addition, these large particles create spectral signatures in the backscatter signal due to material absorption. Spectral signatures from the UV to the IR have been observed in simulations of field releases. This method has been demonstrated for a variety of biological simulant materials such as Ovalbumin (OV), Erwinia (EH), Bacillus atrophaeus (BG) and male specific bacteriophage (MS2). These spectral signatures may offer new methods for biological discrimination for both stand-off sensing and point detection systems.

  8. The Aerosol Coarse Mode: Its Importance for Light Scattering Enhancement and Columnar Optical Closure Studies

    NASA Astrophysics Data System (ADS)

    Zieger, P.

    2015-12-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of importance for radiative forcing calculations but is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, the particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Here, we will present insights from measurements of f(RH) across Europe (Zieger et al., 2013) and will demonstrate why the coarse mode is important when modeling or predicting f(RH) from auxiliary aerosol in-situ measurements. We will show the implications by presenting the results of a recently performed columnar optical closure study (Zieger et al., 2015). This study linked ground-based in-situ measurements (with the help of airborne aerosol size distribution measurements) to columnar aerosol optical properties derived by a co-located AERONET sun photometer. The in situ derived aerosol optical depths (AOD) were clearly correlated with the directly measured values of the AERONET sun photometer but were substantially lower compared to the directly measured values (factor of ˜ 2-3). Differences became greater for longer wavelengths. The disagreement between in situ derived and directly measured AOD was hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the forest's canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers from long-range transport were observed for parts of the campaign which could have explained some of the disagreement. Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different

  9. Aerosols optical properties in Titan's Detached Haze Layer

    NASA Astrophysics Data System (ADS)

    Seignovert, Benoit; Rannou, Pascal; Lavvas, Panayotis; West, Robert

    2016-10-01

    Titan's Detached Haze Layer (DHL) was first observed in 1983 by Rages and Pollack during the Voyager 2 is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 (West et al. 2011). Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere (Rannou et al. 2000, Lavvas et al. 2009, Cours et al. 2011).In this talk we will present the UV photometric analyses based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer radius and local density) performed on ISS observations taken from 2005 to 2007.References:- Rages and Pollach, Icarus 55 (1983)- West, et al., Icarus 38 (2011)- Rannou, et al., Icarus 147 (2000)- Lavvas, et al., Icarus 201 (2009)- Cours, et al., ApJ Lett. 741 (2015)

  10. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly.

  11. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  12. Comparison of trend between aerosol optical depth and PM in East Asia

    NASA Astrophysics Data System (ADS)

    KIM, S. H.; Kim, J.; Choi, M.; KIM, M.; Jeong, U.

    2014-12-01

    East Asia is one of major source region of aerosol emission. For decades, vast amount of aerosol, which is emitted and transported from emission region such as desert and industrialized area, has significant effect in the air quality and public health. Moreover, by scattering solar radiation and moderating cloud microphysical system, aerosol plays an important role in climate system. As the Korean peninsula is located in the downwind side of East Asia, the distribution of aerosol in this region is affected by continental outflow and local emission, This study shows the long-term trend and regional distribution of PM10 concentration over 28 Korea Meteorological Administration (KMA) sites and aerosol optical depth (AOD) retrieved from Geostationary Ocean Color Imager (GOCI) at 550nm channel during the period from March 2011 to March 2014. Though AOD is a good indicator of PM10 concentration, there are some uncertainties in AOD caused largely by aerosol type, surface reflectance, and those in PM by relative humidity (RH), boundary layer height (BLH) and so on. In this study, retrieved AODs were compared with the observed PM10, and trends and correlations between AOD and PM10 have been calculated for different region and season over the Korean peninsula.

  13. [A floating-dust case study based on the vertical distribution of aerosol optical properties].

    PubMed

    Wang, Yuan; Deng, Jun-Ying; Shi, Lan-Hong; Chen, Yong-Hang; Zhang, Qiang; Wang, Sheng; Xu, Ting-Ting

    2014-03-01

    The vertical distribution of aerosol optical properties of a typical floating-dust event on October 19, 2009 in Shanghai was analyzed by using Micro-pulse Lidar (MPL) and the CALIPSO satellite. The results showed that the floating-dust aerosol mainly existed below 2 km of height. The floating-dust aerosol backscatter coefficient ranged from 0 to 0.015 km(-1) x sr(-1), and the MPL extinction coefficient ranged from 0 to 0.32 km(-1). The MPL data showed that the aerosol extinction coefficient first increased and then decreased during the floating-dust event. At the same time, the aerosol layer was constantly lifting. The CALIPSO data showed that a large number of small particles were suspended in air at a height of below 2 km, while the big particles always stayed near the ground (0-0.5 km). At the height of 2-10 km, there was only few aerosols; in the range of 4-6 km, there was a mixture of particles with regular and irregular shapes. The vertical distribution of CALIPSO 532 nm total attenuated backscatter coefficient and MPL normalized relative backscatter signal was basically the same, but the extinction coefficient values gained by them were different. Observations by CALIPSO and MPL together could be more comprehensive and objective for monitoring floating-dust in Shanghai.

  14. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-04-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  15. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2012-12-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  16. Fifteen-year aerosol optical depth climatology for Salt Lake City

    NASA Astrophysics Data System (ADS)

    Michalsky, Joseph; Lebaron, Brock

    2013-04-01

    Aerosol optical depth (AOD) and its wavelength dependence have been measured for the past 15 years in the Salt Lake City metropolitan area using a multifilter rotating shadowband radiometer. The instrument has not experienced a major hardware failure. It has been continuously field calibrated for extraterrestrial responses in its five aerosol channels. The instrument's cosine response was measured in 1996 and again in 2012. In our analysis of this 15 year data set, linear interpolation of these two cosine responses was used to approximate the angular response between the two characterizations. The Salt Lake City aerosol burden increased through the mid-2000s, but has dropped to its lowest level of the record since that time despite a population increase of approximately 25%. Annually, the aerosol burden is highest in midspring and midsummer with relatively coarse aerosols during the spring peak and fine aerosols during the summer peak. There is no indication of a diurnal cycle in AOD. There is a significant, but low, correlation between PM2.5 and 500 nm AOD, and a slightly lower correlation between PM10 and 500 nm AOD. The correlations between the surface-based measurements and total column AOD explain only 13% and 9% of the variance, respectively. Measurements are continuing to track future trends.

  17. The aerosol optical properties measurement by ground remote sensing in Zhejiang, China

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Jiang, Hong; Chen, Jian; Jiang, Zishan; Yu, Shuquan; Ma, Yuandan

    2009-10-01

    The aerosol optical depth was affected by the chemical composition, the particle size and the shape of aerosol as well as the water vapor in the atmosphere; it is an important indicator for air pollution. The special and temporal characteristics of aerosol optical depth (AOD) was measured by CE318 sun-photometer, Angstrom wavelength exponent (Alpha) and the aerosol turbidity coefficient (β) were calculated in Ningbo, Lin'an and Qiandaohu of Zhejiang province from 2007 to 2008. We also analyzed the relationship between AOD and Angstrom wavelength exponent (Alpha) in these stations. The results show that there are different pattern of AOD in this gradient of urban and suburban region. Lin'an station had two peaks of AOD, but Ningbo and Qiandaohu stations had single peak of AOD in measurement year. The difference of AOD seasonal pattern exists in three sites. The Angstrom wavelength exponent (Alpha) analysis suggests that the aerosol sizes in three stations various from fine particle in autumn to coarse particle in spring. The seasonal patterns show that spring air pollution is serious, summer is relatively clean, and autumn and winter are relative serious in three stations.

  18. UV lidar measurements of the stratospheric aerosol layer and comparison with other optical data

    NASA Astrophysics Data System (ADS)

    Uchino, O.

    1985-12-01

    After the violent volcanic eruptions of El Chichon in Mexico (17.33 deg. N, 93.20 deg. W) in late March and early April 1982, enhanced stratospheric aerosols have been monitored by ruby (lasing wavelength lambda=694.3 nm) or Nd:YAG lidars (lambda=1064 or 532 nm). By these lidars, visible or near-infrared optical informations of stratospheric aerosols and their space-time variations can be obtained. It is usually difficult to measure the background level of stratospheric aerosols by an ultraviolet (UV) lidar, since Rayleigh scattering prevails over Mie scattering in the stratosphere. However, after the large volcanic eruptions, UV lidar measurements of stratospheric aerosols are possible. In order to obtain UV optical properties of stratospheric aerosols, measurements have been made at Fukuoka (33.65 deg. N, 130.35 deg. E) by a p-terphenyl dye laser at a wavelength of 340.5 nm. Observational results during October 1982, through May 1983, are shown and are compared with the results obtained by a ruby lidar at Tsukuba (36.05 deg. N, 140.13 deg. E).

  19. Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Dubovik, O.; Lavenu, F.; Abuhassen, N.; Chatenet, B.

    1999-01-01

    AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings.

  20. Optical and chemical properties of aerosols transported to Mount Bachelor during spring 2010

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Perry, K. D.; Jaffe, D. A.

    2011-09-01

    We report on springtime 2010 observations of aerosol optical properties and size-resolved elemental composition from Mount Bachelor Observatory (MBO; 2763 meters above sea level). Observations included multiwavelength aerosol scattering and absorption, made with a nephelometer and a particle soot absorption photometer, and size-resolved composition, made using a rotating DRUM impactor with substrates analyzed by synchrotron X-ray fluorescence. Our main tool for investigating variability in composition was empirical orthogonal function (EOF) analysis. In April, dust and sulfate explained 96% of the variance in the observed fine composition and accounted for the majority of the fine mode scattering. Three coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation overpasses also identified aerosol layers classified as dust or polluted dust over MBO. Later in the spring, we deduce that organics and nitrate comprised more than 50% of the submicrometer aerosol mass. We used the EOF analysis to identify systematic relationships between composition and optical properties. We observed dust accompanied by anthropogenic pollutants including sulfate. When present, dust aerosol controlled ˜30% of the variability in the wavelength dependence of fine mode scattering. Many of the samples containing sulfate had absorption Ångstrom exponents near 1, suggesting black carbon was also present. Most of the sulfate was in the fine mode, but sulfate was also observed on coarse aerosols, and we inferred that much of the coarse sulfur was coated on the dust or had formed CaSO4 during transport. The relationships between Fe, Ca, Al, and Si observed at MBO were consistent with previous observations of Asian dust transported to North America.

  1. Assessment of OMI near-UV aerosol optical depth over Central and East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhao; Gu, Xingfa; Xu, Hui; Yu, Tao; Zheng, Fengjie

    2016-01-01

    Several essential improvements have been made in recent Ozone Monitoring Instrument (OMI) near-ultraviolet (UV) aerosol retrieval algorithm version (OMAERUV version 1.4.2), but few regional validations for its aerosol optical depth (AOD) product are conducted. This paper assessed the OMAERUV AOD product over Central and East Asia. The OMAERUV Level 2.0 AOD product was compared with Aerosol Robotic Network (AERONET) Level 2.0 direct Sun AOD measurement over 10 years (2005-2014) at 27 selected AERONET sites. A combined comparison of OMAERUV-AERONET AOD at 25 (2) sites was carried out and yielded correlation coefficient (ρ) of 0.63 (0.77), slope of 0.53 (0.57), y intercept of 0.18 (0.13), and 50.71% (57.24%) OMAERUV AOD fall within the expected uncertainty boundary (larger by 0.1 or ±30%) at 380 nm (440 nm). The more accurate (ρ > 0.70) OMAERUV retrievals are reported over eastern and northern China and South Korea. The two primary reasons for the underestimation of OMAERUV AOD over China are as follows: (1) the use of single-channel (388 nm) retrieval method retrieves scattering AOD and not total AOD, and (2) the spectral dependence of the imaginary part of the refractive index in the near-UV region assumed in the algorithm may not be representative of aerosols found over China. The comparisons for three predominant aerosol types indicate that smoke aerosol exhibits the best performance, followed by dust and nonabsorbing aerosol. It is consistent with the characteristic of near-UV wavelength that it is more sensitive to absorbent particles. The comprehensive yearly (2005-2014) comparison at 25 sites and comparison between two periods (2005-2006 and 2009-2014) at selected four sites show no discernible decrease of temporal trend, which indicates that the OMAERUV algorithm successfully maintains its quality of aerosol product despite post-2008 row anomaly instrument problem.

  2. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; You, Chao; Zhu, Zhikun

    2016-04-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is may be partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35°N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  3. Enhanced water vapor in Asian dust layer: Entrainment processes and implication for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Sang-Woo; Kim, Jiyoung; Sohn, Byung-Ju; Jefferson, Anne; Choi, Suk-Jin; Cha, Dong-Hyun; Lee, Dong-Kyou; Anderson, Theodore L.; Doherty, Sarah J.; Weber, Rodney J.

    The entrainment process of water vapor into the dust layer during Asian dust events and the effect of water vapor associated with the Asian dust layer (ADL) on aerosol hygroscopic properties are investigated. The entrainment processes of water vapor into the ADL is examined by using a PSU/NCAR MM5 together with the backward trajectory model, radiosonde data, and remotely sensed aerosol vertical distribution data. Two dust events in the spring of 1998 and 2001 are examined in detail. The results reveal that the water vapor mixing ratio (WVMR) derived by the MM5 fits in well with the WVMR observed by radiosonde, and is well coincident with the aerosol extinction coefficient ( σep) measured by the micro-pulse lidar. The temporal evolution of the vertical distributions of WVMR and σep exhibited similar features. On the basis of a well simulation of the enhanced water vapor within the dust layer by the MM5, we trace the dust storms to examine the entrainment mechanism. The enhancement of WVMR within the ADL was initiated over the mountainous areas. The relatively moist air mass in the well-developed mixing layer over the mountainous areas is advected upward from the boundary layer by an ascending motion. However, a large portion of the water vapor within the ADL is enhanced over the edge of a highland and the plains in China. This is well supported by the simulated WVMR and the wind vectors. Aircraft-based in situ measurements of the chemical and optical properties of aerosol enable a quantitative estimation of the effect of the enhanced WVMR on the aerosol hygroscopic properties. The submicron aerosol accompanied by the dust storm caused an increase of aerosol scattering through water uptakes during the transport. This increase could be explained by the chemical fact that water-soluble submicron pollution aerosols are enriched in the ADL.

  4. Aerosol optical properties variations over the southern and northern slopes of the Himalayas

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; Yang, Kun; Qin, Jun; Zhu, Zhikun

    2013-04-01

    The Himalayas is the highest mountain on the earth. It blocks off the aerosols obviously, especially during the monsoon seasons. The aerosol optical properties derived from Aerosol Robotic Network (AERONET) dataset over the southern (Pokhara station in Nepal and EVK2-CNR station in Nepal) and northern (Qomolangma(Mt. Everest) station (QOMS_CAS) in Tibet, China) slopes of the Himalayas are analyzed in this study. The low aerosol optical depth (AOD) at QOMS_CAS and EVK2-CNR indicates they are background sites in Himalaya regions. AOD at Pokhara is much higher than the former two sites with a seasonal variation pattern. This is maybe because Pokhara is more influenced by human activities and India summer monsoon. There are both fine and coarse particle mode aerosol in all three sites. Diurnal variation of AOD and Ångström exponent (AE) has a wide range at all three stations. QOMS_CAS mostly influenced by distant sources reveals AOD has no diurnal cycle in all seasons. Simultaneously, there are smaller particles in the morning and late afternoon, however, particles are larger at noon. The diurnal variation at Pokhara shows a higher AOD value in the morning and late afternoon, and reaches its minimum at noon except JJA (June to August). In all seasons, AOD at EVK2-CNR increases continuously during a day, and reaches maximum at late afternoon due to evolution of mountain-valley flows. AE indicating the particle size has no fixed mode at Pokhara and EVK2-CNR. The aerosols in the northern slope are mostly from distinct regions, and transport from the upper troposphere to atmospheric boundary layer (ABL) probably. The changes of ABL make no apparent effect on aerosol daytime variation. Conversely, the aerosols in the southern slope are mostly from local regions, and maybe spread upwards from the ground gradually. Atmospheric mixing layer height changes with the evolution of the ABL, which diffuses aerosols in the troposphere. Therefore, this process leads aerosol daytime

  5. Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia

    NASA Astrophysics Data System (ADS)

    Ma, Yongjing; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    Observation and analysis of the optical properties of atmospheric aerosols in a South Asian tropical rain forest showed that the annual mean aerosol optical depth (AOD) and aerosol Ångström exponent (α) at 500 nm were 0.47 ± 0.30 (± value represents the standard deviation) and 1.35 ± 0.32, respectively, from 2012 to 2014, similar with that of Amazon region. Aerosol optical properties in this region varied significantly between the dry and wet seasons. The mean AOD and α were 0.50 ± 0.32 and 1.41 ± 0.28, respectively, in the dry season and 0.41 ± 0.20 and 1.13 ± 0.41 in the wet season. Because of the combustion of the rich biomass in the dry season, fine modal smoke aerosols increased, which led to a higher AOD and smaller aerosol control mode than in the wet season. The average atmospheric humidity in the wet season was 85.50%, higher than the 79.67% during the dry season. In the very damp conditions of the wet season, the aerosol control mode was relatively larger, while AOD appeared to be lower because of the effect of aerosol hygroscopic growth and wet deposition. The trajectories were similar both in dry and wet, but with different effects on the aerosol concentration. The highest AOD values 0.66 ± 0.34 (in dry) and 0.45 ± 0.21 (in wet) both occurred in continental air masses, while smaller (0.38-0.48 in dry and 0.30-0.35 in wet) in oceanic air masses. The range of AOD values during the wet season was relatively narrow (0.30-0.45), but the dry season range was wider (0.38-0.66). For the Ångström exponent, the range in the wet season (0.74-1.34) was much greater than that in the dry season (1.33-1.54).

  6. Long term measurements of aerosol optical properties at a primary forest site in Amazonia

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Artaxo, P.; Müller, T.; Wiedensohler, A.; Paixão, M.; Cirino, G. G.; Arana, A.; Swietlicki, E.; Roldin, P.; Fors, E. O.; Wiedemann, K. T.; Leal, L. S. M.; Kulmala, M.

    2013-03-01

    A long term experiment was conducted in a primary forest area in Amazonia, with continuous in-situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in the Amazon Basin. Two major classes of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January-June), naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July-December), transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm-1 to 22 Mm-1, whereas absorption at 637 nm increased from 0.5 Mm-1 to 2.8 Mm-1 from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode (PM2) particles (40-80% of PM10 mass), while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA) did not show a significant seasonal variability, in average 0.86 ± 0.08 at 637 nm for dry aerosols. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this primary forest site the radiative balance was dominated by the cloud cover, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency absolute values were below -3.5 W m-2 in 70% of the wet season days and in 46% of the dry season days. Besides the seasonal variation, the influence of out-of-Basin aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected, characterized by a consistent increase on particle scattering (factor 2.5) and absorption coefficients (factor 5). Episodes of biomass burning and mineral dust

  7. Long term measurements of aerosol optical properties at a pristine forest site in Amazonia

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Artaxo, P.; Müller, T.; Wiedensohler, A.; Paixão, M.; Cirino, G. G.; Arana, A.; Swietlicki, E.; Roldin, P.; Fors, E. O.; Wiedemann, K. T.; Leal, L. S. M.; Kulmala, M.

    2012-09-01

    A long term experiment was conducted in a pristine area in the Amazon forest, with continuous in situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in Amazonia. Two types of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January-June), naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July-December), transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm-1 to 22 Mm-1, whereas absorption at 637 nm increased from 0.5 Mm-1 to 2.8 Mm-1 from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode particles (40-80% of PM10 mass), while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA) did not show a significant seasonal variability, in average 0.86 ± 0.08 at 637 nm for dry particles. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this pristine forest site the radiative balance was dominated by the cloud cover, or, in other words, the aerosol indirect effect predominated over the direct effect, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency was below -3.5 W m-2 in 70% of the wet season days and in 46% of the dry season days. These values are lower than the ones reported in the literature, which are based on remote sensing data. Besides the seasonal variation, the influence of external aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected

  8. A Comparison of Aerosol Optical Property Measurements Made During the DOE Aerosol Intensive Operating Period and Their Effects on Regional Climate

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.

    2004-01-01

    The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.

  9. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Jayaraman, A.; Misra, A.

    2008-06-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmaerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  10. Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China

    NASA Astrophysics Data System (ADS)

    Che, H.; Shi, G.; Uchiyama, A.; Yamazaki, A.; Chen, H.; Goloub, P.; Zhang, X.

    2007-11-01

    This study compares the aerosol optical and physical properties simultaneously measured by a SKYNET PREDE skyradiometer and AERONET/PHOTONS CIMEL sunphotometer at a location in Beijing, China. Aerosol optical properties (AOP) including the Aerosol Optical Depth (AOD), Angstrom exponent (α), volume size distribution, single scattering albedo (ω) and the complex refractive index were compared. The difference between the two types of instruments was less than 1.3% for the AOD and less than 4% for the single scattering albedo below the wavelength of 670 nm. There is a difference between the volume size distribution patterns derived from two instruments, which is probablely due to difference of measurement protocols and inversion algorithms for the respective instruments. AOP under three distinct weather conditions (background, haze, and dust days) over Beijing were compared by using the retrieved skyradiometer and sunphotometer data combined with MODIS satellite results, pyranometer measurements, PM10 measurements, and backtrajectory analysis. The results show that the significant difference of AOP under background, haze, and dust days over Beijing is probablely due to different aerosol components under distinct weather conditions.

  11. Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China

    NASA Astrophysics Data System (ADS)

    Che, H.; Shi, G.; Uchiyama, A.; Yamazaki, A.; Chen, H.; Goloub, P.; Zhang, X.

    2008-06-01

    This study compares the aerosol optical and physical properties simultaneously measured by a SKYNET PREDE skyradiometer and AERONET/PHOTONS CIMEL sunphotometer at a location in Beijing, China. Aerosol optical properties (AOP) including the Aerosol Optical Depth (AOD), Angstrom exponent (α), volume size distribution, single scattering albedo (ω) and the complex refractive index were compared. The difference between the two types of instruments was less than 1.3% for the AOD and less than 4% for the single scattering albedo below the wavelength of 670 nm. There is a difference between the volume size distribution patterns derived from two instruments, which is probably due to difference of measurement protocols and inversion algorithms for the respective instruments. AOP under three distinct weather conditions (background, haze, and dust days) over Beijing were compared by using the retrieved skyradiometer and sunphotometer data combined with MODIS satellite results, pyranometer measurements, PM10 measurements, and backtrajectory analysis. The results show that the significant difference of AOP under background, haze, and dust days over Beijing is probably due to different aerosol components under distinct weather conditions.

  12. [Optical properties of aerosol during haze-fog episodes in Beijing].

    PubMed

    Yu, Xing-Na; Li, Xin-Mei; Deng, Zen-Grandeng; De, Qing-Yangzong; Yuan, Shuai

    2012-04-01

    The purpose of this study is to investigate the optical properties of aerosol during haze-fog episodes in Beijing. The aerosol optical depth (AOD), Angstrom exponent (alpha), size distribution and single scattering albedo (omega) during haze-fog episodes were analyzed between 2002 and 2008 using AERONENT data. During haze-fog episodes, the aerosol optical depth showed a decreasing trend with wavelengths, and showed high values with an average 1.34 at 440 nm. The magnitude of Angstrom exponent was relatively high during haze-fog episodes and the mean values reached 1.11. The frequency distribution of alpha was up to 94% when alpha > 0.9, indicating the predominance of fine particles during haze-fog episodes in Beijing. The aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The maxima (peaks) radius of fine mode showed an increasing trend with AOD, however, those of coarse mode showed a decreasing trend with AOD. The size distribution showed a distinct difference in dominant mode for the different AOD. The single scattering albedo showed an increasing trend with AOD during haze-fog episodes in Beijing. The mean value of omega was 0.89 at the four wavelengths and the omega exhibited a low sensitivity to wavelengths.

  13. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  14. Continuous measurements of Arctic boundary layer aerosol physical and optical properties

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Lihavainen, H.; Laurila, T. J.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Reshetnikov, A.; Ivakhov, V.; Uttal, T.; Makshtas, A. P.

    2013-12-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded on the shore of the Arctic Ocean, in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71_360N; 128_530E) has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol particle physical and optical properties. Measurements were initiated in summer 2010 and further extended in summer 2013. Together with the FMI measurements in Pallas GAW station in northern Finland since 1999

  15. North Atlantic Aerosol Single Scattering Albedos: TARFOX and ACE-2 Results and Their Relation to Radiative Effects Derived from Satellite Optical Depths

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Redemann, J.; Quinn, P. K.; Carrico, C. M.; Rood, M. J.

    2000-01-01

    Bergstrom and Russell estimated direct solar radiative flux changes caused by atmospheric aerosols over the mid-latitude North Atlantic Ocean under cloud-free and cloudy conditions. They excluded African dust aerosols, primarily by restricting calculations to latitudes 25-60 N. As inputs they used midvisible aerosol optical depth (AOD) maps derived from AVHRR satellite measurements and aerosol intensive properties determined primarily in the 1996 IGAC Troposheric Aerosol Radiative Forcing Observational Experiment (TARFOX). Those aerosol intensive properties, which included optical depth wavelength dependence and spectra of single scattering albedo (SSA) and scattering asymmetry parameter, were also checked against initial properties from the 1997 North Atlantic Aerosol Characterization Experiment (ACE 2). Bergstrom and Russell investigated the sensitivity of their derived flux changes to assumed input parameters, including midvisible AOD, SSA, and scattering asymmetry parameter. Although the sensitivity of net flux change at the tropopause to SSA was moderate over the ocean (e.g., a SSA uncertainty of 0.07 produced a flux-change uncertainty of 21%), the sensitivity over common land surfaces can be much larger. Also, flux changes within and below the aerosol layer, which affect atmospheric stability, heating rates, and cloud formation and persistence, are quite sensitive to aerosol SSA. Therefore, this paper focuses on the question: "What have we learned from TARFOX and ACE 2 regarding aerosol single scattering albedo?" Three techniques were used in TARFOX to determine midvisible SSA. One of these derived SSA as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from aerosol properties. Another technique combined airborne measurements of aerosol scattering and absorption by nephelometer and absorption photometer. A third technique obtained SSA from best-fit complex refractive indices derived by comparing

  16. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  17. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    NASA Technical Reports Server (NTRS)

    Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory

    2011-01-01

    To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.

  18. Influence of the Pinatubo eruption on the aerosol optical depth in the Arctic in the summer of 1993

    NASA Astrophysics Data System (ADS)

    Skouratov, S.

    In the summer of 1993, measurements of the spatial distribution of atmospheric optical aerosol thickness were conducted in the region of the Laptev Sea, the Kara Sea and the Taimyr peninsula, using an aircraft visible and UV band spectrophotometer. The Arctic atmosphere's aerosol optical depth was measured using I1-18 'Cyclone' aircraft-meteolab as a platform at an altitude ranges of 100-8500 m. It was observed that the troposphere aerosol was concentrated in the altitude range 100-4000 m. The light extinction of the troposphere column was approximately 0.05 for a wavelength of 400 nm. A comparison with the results of measurements made in the same region in March-April 1990 shows a decrease of more than 3-5 times in troposphere aerosol optical depth in the Arctic during summer months. It was also found that there was a relatively clean area above 4000 m in this season in the Arctic troposphere. In addition, an increase in aerosol optical thickness in the stratosphere is observed. The value of aerosol optical depth measured from the level 8200 m was 0.1 for a wavelength of 500 nm. The spectral dependence of the stratospheric optical thickness has a complicated form with at least two local maxima. Estimates of the size and concentration of stratospheric aerosol particles are in agreement with in-situ measurements after the Mount Pinatubo eruption.

  19. Fast aerosol optical thickness retrieval from MERIS data with the use of fast radiative transfer code and analytical radiative transfer solutions

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Katsev, Iosif; Prikhach, Alexander; Zege, Eleonora

    We present the new fast aerosol retrieval technique (FAR) to retrieve the aerosol optical thick-ness (AOT), Angstrom parameter, and land reflectance from spectral satellite data. The most important difference of the proposed techniques from NASA/MODIS, ESA/MERIS and some other well-known AOT retrieval codes is that our retrievals do not use the look-up tables (LUT) technique but instead it is based on our previously developed extremely fast code RAY for ra-diative transfer (RT) computations and includes analytical solutions of radiative transfer. The previous version of the retrieval code (ART) was completely based at the RT computations. The FAR technique is about 100 times faster than ART because of the use combination of the RAY computation and analytical solution of the radiative transfer theory. The accuracy of these approximate solutions is thoroughly checked. Using the RT computations in the course of the AOT retrieval allows one to include any available local models of molecular atmosphere and of aerosol in upper and middle atmosphere layers for the treated area. Any set of wave-lengths from any satellite optical instruments can be processed. Moreover, we use the method of least squares in the retrieval of optical parameters of aerosol because the RAY code pro-vides the derivatives of the radiation characteristics with respect to the parameters in question. This technique allows the optimal use on multi-spectral information. The retrieval methods are flexible and can be used in synergetic algorithms, which couple data of two or more satel-lite receivers. These features may be considered as definite merits in comparison with the LUT technique. The successful comparison of FAR retrieved data with results of some other algorithms and with AERONET measurements will be demonstrated. Beside two important problems, namely, the effect of a priory choice of aerosol model to the retrieved AOT accuracy and effect of adjacent pixels containing clouds or snow spots is

  20. Use of Remotely Sensed Aerosol Optical Depth in Particulate Matter Forecasting for Urban Areas

    NASA Astrophysics Data System (ADS)

    Grant, S. L.; Crist, K.

    2011-12-01

    Cincinnati, a large metropolitan area in southwestern Ohio, has been listed as a non-attainment area based on the EPA 1997 PM2.5 (particulate matter with aerodynamic diameter < 2.5μm) standard with a number of unhealthy days reported annually for sensitive groups. AirNow provides air quality index for the city, but its accuracy largely depends on the air quality forecast models used and ground-based monitoring network measurements. These networks are inherently limited by their sparse distribution; nonetheless, they form an integral part of many decision-making structure and epidemiological studies. Remote sensing instruments such as MODIS provide daily aerosol optical depth (AOD) products with almost global spatial coverage, which are available on a near-real-time (NRT) basis. This work aims to show that the NRT AOD product obtained from MODIS can improve the air quality forecast in the Cincinnati area. To achieve this, an evaluation of the correlation of AOD retrievals with ground-based PM2.5 observations is carried out. Further to which, the MODIS AOD data is included as a variable in a statistical model to bolster current PM2.5 forecasting capabilities. Other key input parameters to the multiple linear regression model includes surface and vertical weather patterns, mixing height, local wind patterns, relative humidity and temperature.

  1. Aerosol spectral optical depths: Jet fuel and forest fire smokes

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; Livingston, J. M.

    1990-12-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral optical depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  2. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  3. Accounting for High-biases in the MODIS Aerosol Optical Depth Retrieval

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Patadia, F.; Mattoo, S.; Platnick, S. E.

    2015-12-01

    Aerosol optical depth retrieved from observations made by the MODIS instrument, onboard Terra and Aqua satellites, has been extensively validated against ground based AERONET AOD. Global validation of the current Collection 6 (C6) AOD over ocean indicates that 68% of retrieved AOD agrees to within 0.03 ± 10% * AERONET AOD. However there does exist high bias in MODIS AOD retrievals. There are a number of reasons for over-estimation. One is cloud contamination, which is where undetected clouds are retrieved as aerosol. A second is 3D radiative effects, where observed radiance is enhanced due to scattering from clouds. Here we parse out and attempt to quantify the contributions from the cloud contamination in AOD retrieval over ocean. Among other reasons for high bias are wrong aerosol models, improper surface characterization, error in local windspeed data and adjacency effects.

  4. Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth

    2012-01-01

    We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.

  5. Common summertime total cloud cover and aerosol optical depth weekly variabilities over Europe: Sign of the aerosol indirect effects?

    NASA Astrophysics Data System (ADS)

    Georgoulias, A. K.; Kourtidis, K. A.; Alexandri, G.; Rapsomanikis, S.; Sanchez-Lorenzo, A.

    2015-02-01

    In this study, the summer total cloud cover (TCC) weekly cycle over Europe is investigated using MODIS and ISCCP satellite data in conjunction with aerosol optical depth (AOD) MODIS data. Spatial weekly patterns are examined at a 1° × 1° (MODIS) and 250 × 250 km2 (ISCCP) resolution. Despite the noise in the TCC weekly cycle patterns, their large-scale features show similarities with the AOD550 patterns. Regions with a positive (higher values during midweek) weekly cycle appear over Central Europe, while a strong negative (higher values during weekend) weekly plume appears over the Iberian Peninsula and the North-Eastern Europe. The TCC weekly variability exhibits a very good agreement with the AOD550 weekly variability over Central, South-Western Europe and North-Eastern Europe and a moderate agreement for Central Mediterranean. The MODIS derived TCC weekly variability shows reasonable agreement with the independent ISCCP observations, thus supporting the credibility of the results. TCC and AOD550 correlations exhibit a strong slope for the total of the 6 regions investigated in this work with the slopes being higher for regions with common TCC-AOD550 weekly variabilities. The slope is much stronger for AOD550 values less than 0.2 for Central and South-Western Europe, in line with previous studies around the world. Possible scenarios that could explain the common weekly variability of aerosols and cloud cover through the aerosol indirect effects are discussed here also taking into account the weekly variability appearing in ECA&D E-OBS rainfall data.

  6. Observations of Aerosol Optical Properties over 15 AERONET Sites in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, J. D.; Lagrosas, N.; Uy, S. N.; Holben, B. N.; Dorado, S.; Tobias, V., Jr.; Anh, N. X.; Po-Hsiung, L.; Janjai, S.; Salinas Cortijo, S. V.; Liew, S. C.; Lim, H. S.; Lestari, P.

    2014-12-01

    Mean column-integrated optical properties from ground sun photometers of the Aerosol Robotic Network (AERONET) are studied to provide an overview of the characteristics of aerosols over the region as part of the 7 Southeast Asian Studies (7-SEAS) mission. The 15 AERONET sites with the most available level 2 data products are selected from Thailand (Chiang Mai, Mukdahan, Songkhla and Silpakorn University), Malaysia (University Sains Malaysia), Laos (Vientiane), Vietnam (Bac Giang, Bac Lieu and Nha Trang), Taiwan (National Cheng Kung University and Central Weather Bureau Taipei), Singapore, Indonesia (Bandung) and the Philippines (Manila Observatory and Notre Dame of Marbel University). For all 15 sites, high angstrom exponent values (α>1) have been observed. Chiang Mai and USM have the highest mean Angstrom exponent indicating the dominance of fine particles that can be ascribed to biomass burning and urbanization. Sites with the lowest Angstrom exponent values include Bac Lieu (α=1.047) and Manila Observatory (α=1.021). From the average lognormal size distribution curves, Songkhla and NDMU show the smallest annual variation in the fine mode region, indicating the observed fine aerosols are local to the sites. The rest of the sites show high variation which could be due to large scale forcings (e.g., monsoons and biomass burnings) that affect aerosol properties in these sites. Both high and low single scattering albedo at 440 nm (ω0440) values are found in sites located in major urban areas. Silpakorn University, Manila Observatory and Vientiane have all mean ω0440 < 0.90. Singapore and CWB Taipei have ω0440 > 0.94. The discrepancy in ω0 suggests different types of major emission sources present in urban areas. The absorptivity of urban aerosols can vary depending on the strength of traffic emissions, types of fuel combusted and automobile engines used, and the effect of biomass burning aerosols during the dry season. High aerosol optical depth values (τa550

  7. Aerosol Classification using Airborne High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R.; Butler, C. F.; Cook, A.; Harper, D.; Froyd, K. D.

    2011-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of aerosol optical thickness and inferences of aerosol types are used to apportion aerosol optical thickness to aerosol type; results of this analysis are shown for several experiments.

  8. Optical inversions based on polarization parameters indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Huang, Zicheng; Ni, Guoqiang

    2016-10-01

    The resolution of conventional optical microscope is intrinsically limited by the optical diffraction, therefore it cannot be used in the measurement of sub-100nm shape and structural detection. Non-optical imaging techniques are not limited by the optical diffraction. For example, scanning tunneling microscopy (STM) and atomic force microscopy (AFM), but both of them have the weakness of narrow view field, low efficiency, and excessive cost. To detect nanoscale material, a new microscopic imaging technique is introduced in this paper, i.e. the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, with polarization-modulation mechanics being inserted into it. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated, and then curves of the image intensity can be obtained. By analyzing the near-field polarization parameters in nanoscale, indirect polarization parameter imaging can be established.

  9. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y.

    2016-03-01

    Seasonal variation of aerosol optical properties and dominant aerosol types at Kunming (KM), an urban site in southwest China, is characterized. Substantial influences of the hygroscopic growth and long-range transport of biomass burning (BB) aerosols on aerosol optical properties at KM are revealed. These results are derived from a detailed analysis of (a) aerosol optical properties (e.g. aerosol optical depth (AOD), columnar water vapor (CWV), single scattering albedo (SSA) and size distribution) retrieved from sunphotometer measurements during March 2012-August 2013, (b) satellite AOD and active fire products, (c) the attenuated backscatter profiles from the space-born lidar, and (d) the back-trajectories. The mean AOD440nm and extinction Angstrom exponent (EAE440 - 870) at KM are 0.42 ± 0.32 and 1.25 ± 0.35, respectively. Seasonally, high AOD440nm (0.51 ± 0.34), low EAE440 - 870 (1.06 ± 0.34) and high CWV (4.25 ± 0.97 cm) during the wet season (May - October) contrast with their counterparts 0.17 ± 0.11, 1.40 ± 0.31 and 1.91 ± 0.37 cm during the major dry season (November-February) and 0.53 ± 0.29, 1.39 ± 0.19, and 2.66 ± 0.44 cm in the late dry season (March-April). These contrasts between wet and major dry season, together with the finding that the fine mode radius increases significantly with AOD during the wet season, suggest the importance of the aerosol hygroscopic growth in regulating the seasonal variation of aerosol properties. BB and Urban/Industrial (UI) aerosols are two major aerosol types. Back trajectory analysis shows that airflows on clean days during the major dry season are often from west of KM where the AOD is low. In contrast, air masses on polluted days are from west (in late dry season) and east (in wet season) of KM where the AOD is often large. BB air mass is found mostly originated from North Burma where BB aerosols are lifted upward to 5 km and then subsequently transported to southwest China via prevailing westerly winds.

  10. Comparing the relationships between aerosol optical depth and cloud properties in observations and global models

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes

    2016-04-01

    Aerosols impact the climate both directly, through their interaction with radiation and indirectly, via their ability to act as cloud condensation nuclei (CCN), modifying cloud properties. The influence of aerosols on cloud properties is highly uncertain. Many relationships between aerosol optical depth (AOD) and cloud properties have been observed using satellite data, but previous work has shown that some of these relationships are the product of the strong AOD-cloud fraction (CF) relationship. The confounding influence of local meteorology obscures the magnitude of any aerosol impact on CF, and so also the impact of aerosol on other cloud properties. For example, both AOD and CF are strongly influenced by relative humidity, which can generate a correlation between them. Previous studies have used reanalysis data to account for confounding meteorological variables. This requires knowledge of the relevant meteorological variables and is limited by the accuracy of the reanalysis data. Recent work has shown that by using the cloud droplet number concentration (CDNC) to mediate the AOD-CF relationship, the impact of relative humidity can be significantly reduced. This method removes the limitations imposed by the finite accuracy of reanalysis data. In this work we investigate the impact of the CDNC mediation on the AOD-CF relationship and on the relationship between AOD and other cloud properties in global atmospheric models. By comparing pre-industrial and present day runs, we investigate the success of the CDNC mediated AOD-CF relationship to predict the change in CF from the pre-industrial to the present day using only observations of the present day relationships between clouds and aerosol properties. This helps to determine whether the satellite-derived relationship provides a constraint on the aerosol indirect forcing due to changes in CF.

  11. Deriving High Resolution UV Aerosol Optical Depth over East Asia using CAI-OMI Joint Retrieval

    NASA Astrophysics Data System (ADS)

    Go, S.; Kim, J.; KIM, M.; Lee, S.

    2015-12-01

    Monitoring aerosols using near UV spectral region have been successfully performed over decades by Ozong Monitoring Instruments (OMI) with benefit of strong aerosol signal over continuous dark surface reflectance, both land and ocean. However, because of big foot print of OMI, the cloud contamination error was a big issue in the UV aerosol algorithm. In the present study, high resolution UV aerosol optical depth (AOD) over East Asia was derived by collaborating the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI) and OMI together. AOD of 0.1 degree grid resolution was retrieved using CAI band 1 (380nm) by bring OMI lv.2 aerosol type, single scattering albedo, and aerosol layer peak height in 1 degree grid resolution. Collocation of the two dataset within the 0.5 degree grid with time difference of OMI and CAI less than 5 minute was selected. Selected region becomes wider as it goes to the higher latitude. Also, calculated degradation factor of 1.57 was applied to CAI band1 (380nm) by comparing normalized radiance and Lambertian Equivalent Reflectivity (LER) of both sensors. The calculated degradation factor was reasonable over dark scene, but inconsistent over cirrus cloud and bright area. Then, surface reflectance was developed by compositing CAI LER minimum data over three month period, since the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. To retrieve AOD, look up table (LUT) was generated using radiative transfer model VLIDORT NGST. Finally, the retrieved AOD was validated with AERONET ground based measurement data during the Dragon-NE Asia campaign in 2012.

  12. Three-parameter optical studies in Scottish coastal waters

    NASA Astrophysics Data System (ADS)

    McKee, David; Cunningham, Alex; Jones, Ken

    1997-02-01

    A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.

  13. Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets

    NASA Technical Reports Server (NTRS)

    Ignatov, Alexander; Minnis, Patrick; Miller, Walter F.; Wielicki, Bruce A.; Remer, Lorraine

    2006-01-01

    Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for

  14. Estimation of aerosol optical depth at different wavelengths by multiple regression method.

    PubMed

    Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin; Holben, Brent

    2016-02-01

    This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time.

  15. Comparison of PMCAMx aerosol optical depth predictions over Europe with AERONET and MODIS measurements

    NASA Astrophysics Data System (ADS)

    Panagiotopoulou, Antigoni; Charalampidis, Panagiotis; Fountoukis, Christos; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-11-01

    The ability of chemical transport model (CTM) PMCAMx to reproduce aerosol optical depth (AOD) measurements by the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) over Europe during the photochemically active period of May 2008 (EUCAARI campaign) is evaluated. Periods with high dust or sea-salt levels are excluded, so the analysis focuses on the ability of the model to simulate the mostly secondary aerosol and its interactions with water. PMCAMx reproduces the monthly mean MODIS and AERONET AOD values over the Iberian Peninsula, the British Isles, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. However, the model overestimates the AOD over northern Europe, most probably due to an overestimation of organic aerosol and sulfates. At the other end, PMCAMx underestimates the monthly mean MODIS AOD over the Balkans, the Mediterranean, and the South Atlantic. These errors appear to be related to an underestimation of sulfates. Sensitivity tests indicate that the evaluation results of the monthly mean AODs are quite sensitive to the relative humidity (RH) fields used by PMCAMx, but are not sensitive to the simulated size distribution and the black carbon mixing state. The screening of the satellite retrievals for periods with high dust (or coarse particles in general) concentrations as well as the combination of the MODIS and AERONET datasets lead to more robust conclusions about the ability of the model to simulate the secondary aerosol components that dominate the AOD during this period.

  16. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    NASA Technical Reports Server (NTRS)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; Ritter, C.; Sakai, T.; Santer, B. D.; Sato, M.; Schmidt, A.; Uchino, O.; Vernier, J. P.

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  17. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Tan, Haobo; Liu, Li; Fan, Shaojia; Li, Fei; Yin, Yan; Cai, Mingfu; Chan, P. W.

    2016-04-01

    Aerosols contribute the largest uncertainty to the total radiative forcing estimate, and black carbon (BC) that absorbs solar radiation plays an important role in the Earth's energy budget. This study analysed the aerosol optical properties from 22 February to 18 March 2014 at the China Meteorological Administration Atmospheric Watch Network (CAWNET) station in the Pearl River Delta (PRD), China. The representative values of dry-state particle scattering coefficient (σsp), hemispheric backscattering coefficient (σhbsp), absorption coefficient (σabsp), extinction coefficient (σep), hemispheric backscattering fraction (HBF), single scattering albedo (SSA), as well as scattering Ångström exponent (α) were presented. A comparison between a polluted day and a clean day shows that the aerosol optical properties depend on particle number size distribution, weather conditions and evolution of the mixing layer. To investigate the mixing state of BC at the surface, an optical closure study of HBF between measurements and calculations based on a modified Mie model was employed for dry particles. The result shows that the mixing state of BC might be between the external mixture and the core-shell mixture. The average retrieved ratio of the externally mixed BC to the total BC mass concentration (rext-BC) was 0.58 ± 0.12, and the diurnal pattern of rext-BC can be found. Furthermore, considering that non-light-absorbing particles measured by a Volatility-Tandem Differential Mobility Analyser (V-TDMA) exist independently with core-shell and homogenously internally mixed BC particles, the calculated optical properties were just slightly different from those based on the assumption that BC exist in each particle. This would help understand the influence of the BC mixing state on aerosol optical properties and radiation budget in the PRD.

  18. Cloud-free aerosol optical depth determination over oceans from satellite radiometry

    SciTech Connect

    Wagener, R.; Nemesure, S.; Benkovitz, C.M.; Schwartz, S.E.; Berkowitz, C.M.; Ghan, S.J.

    1993-06-01

    Shortwave radiative forcing of climate by anthropogenic sulfate aerosol has been estimated to be of comparable global-average magnitude, but opposite sign, to longwave forcing by greenhouse gases (Charlson et al., 1992). It is therefore important that this forcing be accurately represented in climate models. Sulfate concentrations calculated by a Global Chemistry Model driven by operational meteorological data (GChM; Benkovitz et al., this meeting) exhibit high spatial and temporal variations that closely reproduce observations at continental sites. However, because of the sparsity of sulfate concentration measurements over oceans, aerosol optical depth determinations from satellite data are needed to evaluate the performance of the model over oceans. Previous studies of aerosol optical depths over oceans have employed Advanced Very High Resolution Radiometer Global Area Coverage (AVHRR GAC) data (Rao et al., 1989; Durkee et al., 1991) that should yield the required information, but the emphasis in these studies has been to produce wide spatial coverage by time averaging for periods of a week to a month, thereby masking the high spatial and temporal variability associated with the data and required for model evaluation. The Rao et al. method is employed in the production of the weekly composite aerosol maps by NOAA since June 1987. The authors report results obtained with a modified Durkee algorithm that provides instantaneous optical depths averaged over individual GChM model grid cells (1.125{degrees} x 1.125{degrees}) for comparison with optical depths predicted by the chemistry model at the same times and places (Berkowitz et al., this meeting). The optical depth retrieval is improved by a more accurate removal of sun-glint contamination, using the formulation of (Cox and Munk, 1956) for sun-glint probability as a function of wind speed, together with the wind speeds available from the operational meteorological data used to drive the chemistry model.

  19. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    PubMed

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (<0.5); whereas, large spectral dependence in AOD was observed for the remaining aerosol types, with the highest AE values (>1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB.

  20. Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, Olusegun G.; Cai, Xiaoming; Levine, James G.; Pinker, Rachel T.; MacKenzie, A. R.

    2016-12-01

    The West African region, with its peculiar climate and atmospheric dynamics, is a prominent source of aerosols. Reliable and long-term in situ measurements of aerosol properties are not readily available across the region. In this study, Version 2 Level 1.5 Aerosol Robotic Network (AERONET) data were used to study the absorption and size distribution properties of aerosols from dominant sources identified by trajectory analysis. The trajectory analysis was used to define four sources of aerosols over a 10 year period. Sorting the AERONET aerosol retrievals by these putative sources, the hypothesis that there exists an optically distinct gas flaring signal was tested. Dominance of each source cluster varies with season: desert-dust (DD) and biomass burning (BB) aerosols are dominant in months prior to the West African Monsoon (WAM); urban (UB) and gas flaring (GF) aerosol are dominant during the WAM months. BB aerosol, with single scattering albedo (SSA) at 675 nm value of 0.86 ± 0.03 and GF aerosol with SSA (675 nm) value of 0.9 ± 0.07, is the most absorbing of the aerosol categories. The range of Absorption Angstr&öm Exponent (AAE) for DD, BB, UB and GF classes are 1.99 ± 0.35, 1.45 ± 0.26, 1.21 ± 0.38 and 0.98 ± 0.25, respectively, indicating different aerosol composition for each source. The AAE (440-870 nm) and Angstr&öm Exponent (AE) (440-870 nm) relationships further show the spread and overlap of the variation of these optical and microphysical properties, presumably due in part to similarity in the sources of aerosols and in part, due to mixing of air parcels from different sources en route to the measurement site.