Science.gov

Sample records for aerosol optical thicknesses

  1. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  2. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia

    NASA Astrophysics Data System (ADS)

    Masmoudi, M.; Chaabane, M.; Medhioub, K.; Elleuch, F.

    The aerosol optical thickness (AOT) τa computed from the spectral sun photometer in Thala (Tunisia) exhibited variability ranging from approximately 0.03 to greater than 2.0 at 870 nm for March-October 2001. These measurements are compared to the aerosol optical thickness computed in Ouagadougou (Burkina-Faso), Banizoumbou (Niger), IMC Oristano (Sardinia) and Rome Tor Vergata (Italy). Analysis of τa data from this observation network suggests that there is a high temporal and spatial variability of τa in the different sites. The Angström wavelength exponent α was found to vary with the magnitude of the aerosol optical thickness, with values as high as 1.5 for very low τa, and values of -0.1 for high τa situations. The relationship between the two parameters τa and α is investigated. Values of the turbidity coefficient β have been determined in Thala (Tunisia) for 8 months in 2001 based on a direct fitting method of the Angström power law expression using sun photometer data. The monthly averaged values of the turbidity coefficient β vary between 0.15 and 0.33. The months of July and October experienced the highest turbidity, while April experienced the lowest aerosol loading on average. The turbidity shows a maximum and minimum values for the Southwest and the Northwest wind directions, respectively. The single scattering albedo ωo for the 870 nm wavelength obtained from solar aureole data in Thala is analysed according to the particles' origin.

  3. Retrieval of aerosol optical thickness over snow using AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; von Hoyningen-Huene, Wolfgang; Rozanov, Vladimir; Kokhanovsky, Alexander; Burrows, John P.

    Remote sensing of aerosols experiences lack of products over very bright surfaces, such as deserts and snow, due to difficulties with the subtraction of the surface reflection contribution, when a small error in accounting for surface reflectance can cause a large error in retrieved aerosol optical thickness (AOT). Cloud screening over bright surface is also not easy because of low contrast between clouds and surface in visible range of spectrum, and additional infrared chan-nels are not always available. Luckily, AATSR instrument onboard ENVISAT has necessary features to solve both of these problems. In current work we present an improved version of discussed earlier [1,2] dual-view algorithm to retrieve AOT over snow. The retrieval algorithm still consists of cloud screening, based on spectral shape analysis of AATSR pixel in order to extract clear snow pixels, and of AOT retrieval over snow and water. Current version of AOT retrieval over open ocean now contains improved accounting for ocean reflectance (in previous version the ocean was assumed to be absolutely black). The AOT retrieval over snow has been improved to account more accurately for the bidirectional features of the surface reflection function. For this we now use the approach described in [4] instead of [3], which has been used in the previous version of the retrieval. The accuracy of both approaches [3] and [4] has been evaluated via comparison to forward radiative-transfer model for the case of a very bright surface. The new algorithm has been applied to various scenes in European Arctic and Alaska in different scales, up to global AOT maps. The correspondence of AOT over snow to AOT over water is quite good, which proves the reliability of the retrieval. The algorithm has been validated against AERONET and other Arctic ground based AOT data and shows reasonably good correlation. The presented cloud screening method has been validated via comparison to MODIS cloud mask and Micro Pulse Lidar data

  4. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  5. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  6. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  7. A novel technique for estimating aerosol optical thickness trends using meteorological parameters

    NASA Astrophysics Data System (ADS)

    Emetere, Moses E.; Akinyemi, M. L.; Akin-Ojo, O.

    2016-02-01

    Estimating aerosol optical thickness (AOT) over regions can be tasking if satellite data set over such region is very scanty. Therefore a technique whose application captures real-time events is most appropriate for adequate monitoring of risk indicators. A new technique i.e. arithmetic translation of pictorial model (ATOPM) was developed. The ATOPM deals with the use mathematical expression to compute other meteorological parameters obtained from satellite or ground data set. Six locations within 335 × 230 Km2 area of a selected portion of Nigeria were chosen and analyzed -using the meteorological data set (1999-2012) and MATLAB. The research affirms the use of some parameters (e.g. minimum temperature, cloud cover, relative humidity and rainfall) to estimate the aerosol optical thickness. The objective of the paper was satisfied via the use of other meteorological parameters to estimate AOT when the satellite data set over an area is scanty.

  8. Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP

    NASA Astrophysics Data System (ADS)

    Toth, Travis D.; Zhang, Jianglong; Campbell, James R.; Reid, Jeffrey S.; Vaughan, Mark A.

    2016-08-01

    Temporal variability in the vertical distribution of aerosol optical thickness (AOT) derived from the 0.532 µm aerosol extinction coefficient is described using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations over 8.5 years (June 2006 to December 2014). Temporal variability of CALIOP column-integrated AOT is largely consistent with total column AOT trends from several passive satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and the Sea-viewing Wide Field-of-view Sensor. Globally, a 0.0002 AOT per year positive trend in deseasonalized CALIOP total column AOT for daytime conditions is attributed to corresponding changes in near-surface (i.e., 0.0-0.5 km or 0.5-1.0 km above ground level (agl)) aerosol particle loading, while a -0.0006 AOT per year trend during nighttime is attributed to elevated (i.e., 1.0-2.0 km or >2.0 km agl) aerosols. Regionally, increasing daytime CALIOP AOTs are found over Southern Africa and India, mostly due to changes in aerosol loading at the 1.0-2.0 km and 0.0-0.5 km agl layers, respectively. Decreasing daytime CALIOP AOTs are observed over Northern Africa, Eastern U.S., and South America (due mostly to elevated aerosol loading), while the negative CALIOP AOT trends found over Eastern China, Europe, and Western U.S. are due mostly to aerosol layers nearer the surface. To our knowledge, this study is the first to provide both a globally comprehensive estimation of the temporal variation in aerosol vertical distribution and an insight into passive sensor column AOT trends in the vertical domain.

  9. Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth

    2012-01-01

    We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.

  10. Real Effect or Artifact of Cloud Cover on Aerosol Optical Thickness?

    SciTech Connect

    Jeong, M-J.; Li, Z.

    2005-03-18

    Aerosol measurements over the Southern Great Plains (SGP) Cloud And Radiation Test bed (CART) site under Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program characterize the temporal variability, vertical distribution, and optical properties of aerosols in the region. They were made by the Cimel sunphotometer and Multifilter Rotating Shadow-band Radiometer (MFRSR), Raman Lidar, In situ Aerosol Profiling (IAP) flights, and the Aerosol Observing System (AOS). The spatial variability of aerosols relies a network of MFRSR at the Central Facility (CF) and Extended Facilities (EF), together with satellite remote sensing. The current state-of-art satellite-based estimates over land--e.g., MODerate resolution Imaging Scanner (MODIS) aerosol optical thickness--still suffer from large uncertainties. Contamination due to sub-pixel and/or thin cirrus clouds is believed to be one of the major sources of uncertainties. Retrievals near clouds are discouraged to use, which reduces considerably the amount of useful data. In this regard, cloud is considered as an artifact. However, cloud could have a real impact on AOT by changing humidity, which affects aerosol through the aerosol swelling effect. As a preliminary study, we first investigate the effects of cloud cover and humidity on the retrievals of AOT from ground-based Cimel sunphotometer measurements, in order to help us sort out the real influence and artifact. In general, it is very difficult to verify and quantify the effects of cloud on satellite retrieval of aerosol quantities. Speculation and warning of cloud contamination have been made whenever there is a correlation between the retrieved AOT and cloud fraction or their spatial variabilities, while it has also been argued that aerosol humidification effect (AHE) might be at work. The ample measurements available from ARM over the SGP region may allow us to unravel this complex issue. Our ultimate goals are to (1) evaluate various effects on the

  11. Aerosol Optical Thickness From the SeaWiFS and MODIS Sensors Over the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Kwiatkowska, E.; Franz, B. A.; McClain, C. R.

    2006-12-01

    Presently, a suite of 12 aerosol models are used for atmospheric correction purposes to retrieve water-leaving radiances in the visible and near IR spectral bands of the SeaWiFS and MODIS sensors. These models are based on Shettle and Fenn's (1979) aerosol models of tropospheric and oceanic aerosols. As a part of the atmospheric correction effort, the Ocean Biology Processing Group (OBPG) also reports the aerosol optical thickness (AOT) for the scene. We have compared the AOT from the SeaWiFS and MODIS with the AERONET retrievals over the Chesapeake Bay, and found that the satellite-retrieved AOT in the 865/869 bands of SeaWiFS/MODIS sensors are generally higher than the AERONET retrievals. We attribute the overestimation of AOT mostly due to the backscattering of downwelling solar irradiance by phytoplankton, CDOM and non-algal suspended particles in the Bay. Results from simulation studies, and from the comparison of satellite-derived AOT and the AERONET in the visible and near IR bands will be presented.

  12. Meridional Distribution of Aerosol Optical Thickness over the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, P.; Silva, Arlindo M.; Starobinets, B.; Long, C. N.; Kalashnikova, O.; Alpert, P.

    2015-01-01

    Previous studies showed that, over the global ocean, there is hemispheric asymmetry in aerosols and no noticeable asymmetry in cloud fraction (CF). In the current study, we focus on the tropical Atlantic (30 Deg N 30 Deg S) which is characterized by significant amounts of Saharan dust dominating other aerosol species over the North Atlantic. We found that, by contrast to the global ocean, over a limited area such as the tropical Atlantic, strong meridional asymmetry in dust aerosols was accompanied by meridional CF asymmetry. During the 10-year study period (July 2002 June 2012), NASA Aerosol Reanalysis (aka MERRAero) showed that, when the meridional asymmetry in dust aerosol optical thickness (AOT) was the most pronounced (particularly in July), dust AOT averaged separately over the tropical North Atlantic was one order of magnitude higher than dust AOT averaged over the tropical South Atlantic. In the presence of such strong meridional asymmetry in dust AOT in July, CF averaged separately over the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic by 20%. Our study showed significant cloud cover, up to 0.8 - 0.9, in July along the Saharan Air Layer which contributed to above-mentioned meridional CF asymmetry. Both Multi-Angle Imaging SpectroRadiometer (MISR) measurements and MERRAero data were in agreement on seasonal variations in meridional aerosol asymmetry. Meridional asymmetry in total AOT over the Atlantic was the most pronounced between March and July, when dust presence over the North Atlantic was maximal. In September and October, there was no noticeable meridional asymmetry in total AOT and meridional CF distribution over the tropical Atlantic was almost symmetrical.

  13. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  14. An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band

    NASA Astrophysics Data System (ADS)

    McHardy, T. M.; Zhang, J.; Reid, J. S.; Miller, S. D.; Hyer, E. J.; Kuehn, R. E.

    2015-11-01

    Using Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method, dubbed the "variance method", is developed for retrieving nighttime aerosol optical thickness (τ) values through the examination of the dispersion of radiance values above an artificial light source. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime τ using artificial light sources. Nighttime τ retrievals from the newly developed method are inter-compared with an interpolated value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column-integrated τ from one High Spectral Resolution Lidar (HSRL) site at Huntsville, AL, during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. Sensitivity studies are performed to examine the effects of lunar illumination on VIIRS τ retrievals made via the variance method, revealing that lunar contamination may have a smaller impact than previously thought; however, the small sample size of this study limits the conclusiveness thus far. VIIRS τ retrievals yield a coefficient of determination (r2) of 0.60 and a root-mean-squared error (RMSE) of 0.18 when compared against straddling daytime-averaged AERONET τ values. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.

  15. Short term variability of aerosol optical thickness at Belsk for the period 2002-2010

    NASA Astrophysics Data System (ADS)

    Pietruczuk, Aleksander

    2013-11-01

    In this work variability of aerosol optical thickness (AOT) measured at Belsk, Poland is studied as well as modification of AOT during airmass advection towards Belsk. AOT measurements taken at Belsk and at AERONET stations located in eastern Germany, Belarus and Scandinavia are used as well as satellite measurements of AOT taken by MODIS instrument onboard Terra and Aqua satellites. Directions of airmass advection are determined by means of cluster analysis of airmass backward-trajectories. Changes of AOT at Belsk from day to day varies around zero regardless of time lag between measurements. The standard deviation of these measurements increases with increasing time lag. In case of advection from west and north direction such standard deviation is reduced. It gives good perspective for a persistent forecast of next day AOT. Analysis of AOT changes during airmass advection toward Belsk reveals two modes of AOT changes distributions. One of them with small increase of AOT and second one with larger increase of AOT, so-called loading mode. Loading mode dominates in case of advection from south direction whilst the first mode of AOT changes dominates in case of advection from other directions. Mean increase of AOT associated with the first mode is 0.034 ± 0.003. Analysis of backward-trajectories shows that aerosol loading occurs over urban/industrial regions located south and south-west of Belsk. Substantial aerosol loading is found during seasonal biomass burning episodes in Eastern Europe.

  16. The retrieval of aerosol optical thickness over snow using AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, L. G.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Burrows, J. P.

    2009-12-01

    Remote sensing of aerosols experiences lack of products over very bright surfaces, such as deserts and snow, due to difficulties with surface subtraction, when a small error in accounting for surface reflectance can cause a large error in retrieved aerosol optical thickness (AOT). Cloud screening over bright surface is also not easy because of low contrast between clouds and surface in visible area of spectrum, and additional infrared channels are not always available. Luckily, AATSR instrument on board ENVISAT has necessary features to solve both of these problems. In current work we present an improved version of discussed earlier [1,2] dual-view algorithm to retrieve AOT over snow. The retrieval algorithm still consists of cloud screening, based on spectral shape analysis of AATSR pixel in order to extract clear snow pixels, and of AOT retrieval over snow and water. Current version of AOT retrieval over open ocean now contains improved accounting for ocean reflectance (in previous version the ocean was assumed to be absolutely black). The AOT retrieval over snow is also improved. Instead of using the approximate expression for top-of-atmosphere reflectance (see, e.g., [3]), we now use the accurate analytical expression for it [4], which accounts for bidirectional reflection properties of the surface and for multiple scattering between given point of surface, atmosphere and neighbor points of surface. As before, we don't use any pre-assumed model to account for the surface, but derive the ratio of surface reflectances for two views, necessary for retrieval with AATSR data (forward, where observation zenith angle equals to 55°, and nadir), using measured top-of-atmosphere reflectances in visible channel. The algorithm has been applied to various scenes in European Arctic and Alaska in different scales, up to global AOT maps. The correspondence of AOT over snow to AOT over water is quite good, which proves the reliability of the retrieval. The algorithm has been

  17. Quantitative retrieval of aerosol optical thickness from FY-2 VISSR data

    NASA Astrophysics Data System (ADS)

    Bai, Linyan; Xue, Yong; Cao, Chunxiang; Feng, Jianzhong; Zhang, Hao; Guang, Jie; Wang, Ying; Li, Yingjie; Mei, Linlu; Ai, Jianwen

    2009-09-01

    Atmospheric aerosol, as particulate matter suspended in the air, exists in a variety of forms such as dust, fume and mist. It deeply affects climate and land surface environment in both regional and global scales, and furthermore, lead to be hugely much influence on human health. For the sake of effectively monitoring it, many atmospheric aerosol observation networks are set up and provide associated informational services in the wide world, as well-known Aerosol robotic network (AERONET), Canadian Sunphotometer Network (AeroCan) and so forth. Given large-scale atmospheric aerosol monitoring, that satellite remote sensing data are used to inverse aerosol optical depth is one of available and effective approaches. Nowadays, special types of instruments aboard running satellites are applied to obtain related remote sensing data of retrieving atmospheric aerosol. However, atmospheric aerosol real-timely or near real-timely monitoring hasn't been accomplished. Nevertheless, retrievals, using Fengyun-2 VISSR data, are carried out and the above problem resolved to certain extent, especially over China. In this paper, the authors have developed a new retrieving model/mode to retrieve aerosol optical depth, using Fengyun-2 satellite data that were obtained by the VISSR aboard FY-2C and FY-2D. A series of the aerosol optical depth distribution maps with high time resolution were able to obtained, is helpful for understanding the forming mechanism, transport, influence and controlling approach of atmospheric aerosol.

  18. Quantitative retrieval of aerosol optical thickness from FY-2 VISSR data

    NASA Astrophysics Data System (ADS)

    Bai, Linyan; Xue, Yong; Cao, Chunxiang; Feng, Jianzhong; Zhang, Hao; Guang, Jie; Wang, Ying; Li, Yingjie; Mei, Linlu; Ai, Jianwen

    2010-11-01

    Atmospheric aerosol, as particulate matter suspended in the air, exists in a variety of forms such as dust, fume and mist. It deeply affects climate and land surface environment in both regional and global scales, and furthermore, lead to be hugely much influence on human health. For the sake of effectively monitoring it, many atmospheric aerosol observation networks are set up and provide associated informational services in the wide world, as well-known Aerosol robotic network (AERONET), Canadian Sunphotometer Network (AeroCan) and so forth. Given large-scale atmospheric aerosol monitoring, that satellite remote sensing data are used to inverse aerosol optical depth is one of available and effective approaches. Nowadays, special types of instruments aboard running satellites are applied to obtain related remote sensing data of retrieving atmospheric aerosol. However, atmospheric aerosol real-timely or near real-timely monitoring hasn't been accomplished. Nevertheless, retrievals, using Fengyun-2 VISSR data, are carried out and the above problem resolved to certain extent, especially over China. In this paper, the authors have developed a new retrieving model/mode to retrieve aerosol optical depth, using Fengyun-2 satellite data that were obtained by the VISSR aboard FY-2C and FY-2D. A series of the aerosol optical depth distribution maps with high time resolution were able to obtained, is helpful for understanding the forming mechanism, transport, influence and controlling approach of atmospheric aerosol.

  19. Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations.

    PubMed

    Wang, M; Gordon, H R

    1995-10-20

    We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors. PMID:21060560

  20. Extension, validation, and analysis of the multi-decadal GACP/AVHRR aerosol optical thickness record

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Geogdzhayev, I. V.

    2015-12-01

    The main product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans based on channel-1 and -2 radiances from successively flown AVHRR instruments. We extend the previous GACP dataset by four years though the end of 2009 using NOAA-17 and -18 AVHRR data recalibrated against MODIS radiances according to Heidinger et al. (2010), thereby making the GACP record almost three decades long. The temporal overlap of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. A comprehensive set of monthly mean AOT data from coastal and insular AERONET stations was used to validate GACP retrievals for the period 1995-2009. To put the GACP performance in broader perspective, we also compared AERONET and MODIS Aqua level-2 data for 2003-2009 using the same methodology. Monthly mean AOTs from the two over-the-ocean satellite datasets are well correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrated that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The previously identified negative trend in the global GACP AOT which started in the late 1980s and continued into the early 2000s was confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This result is consistent with the MODIS and MISR AOT records as well as with the recent gradual reversal from brightening to dimming revealed by surface flux measurements in many aerosol producing regions. Thus the robustness of the GACP

  1. Extension and statistical analysis of the GACP aerosol optical thickness record

    NASA Astrophysics Data System (ADS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Li, Jing; Rossow, William B.; Liu, Li; Cairns, Brian

    2015-10-01

    The primary product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans. It is based on channel-1 and -2 radiance data from the Advanced Very High Resolution Radiometer (AVHRR) instruments flown on successive National Oceanic and Atmospheric Administration (NOAA) platforms. We extend the previous GACP dataset by four years through the end of 2009 using NOAA-17 and -18 AVHRR radiances recalibrated against MODerate resolution Imaging Spectroradiometer (MODIS) radiance data, thereby making the GACP record almost three decades long. The temporal overlap of over three years of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. The temporal overlap of the NOAA-17 and -18 instruments is used to introduce a small additive adjustment to the channel-2 calibration of the latter resulting in a consistent record with increased data density. The Principal Component Analysis (PCA) of the newly extended GACP record shows that most of the volcanic AOT variability can be isolated into one mode responsible for ~ 12% of the total variance. This conclusion is confirmed by a combined PCA analysis of the GACP, MODIS, and Multi-angle Imaging SpectroRadiometer (MISR) AOTs during the volcano-free period from February 2000 to December 2009. We show that the modes responsible for the tropospheric AOT variability in the three datasets agree well in terms of correlation and spatial patterns. A previously identified negative AOT trend which started in the late 1980s and continued into the early 2000s is confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This

  2. Monitoring of urban air pollution from MODIS and AERONET Aerosol Optical Thickness (AOT) data

    NASA Astrophysics Data System (ADS)

    Tijani, K.; Chiaradia, M.; Guerriero, L.; Pasquariello, G.; Morea, A.; Nutricato, R.; Preziosa, G.

    2012-12-01

    Air pollution, caused by fuel industries and urban traffic and its environmental impact, are of considerable interest to studies in air quality. In this paper, the monitoring of the air pollution over urban areas in Italy through Aerosol Optical Thickness (AOT) data retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements is presented. The high spatio-temporal frequency of MODIS AOT products (twice per day at 470nm, 1km full resolution) demonstrates that this satellite can be potentially used to routinely monitor the air pollution over land, especially urban area, which is the main source of aerosol particles. In this work AOT data derived by MODIS from November 2010 to February 2011 (winter period) and from May 2011 to August 2011 (summer period) were compared with AOT measurements from 6 different Aerosol Robotic Network (AERONET) stations over Italy (Bari, Lecce, Roma, Ispra, Potenza, Etna). The statistical analysis shows a good agreement between the ground based AOT measurements and the values retrieved using space based sensors, as shown in Figure 1. For all the stations the mean error is negligible, with a correlation ranging from 0.725 (in the worst case) to 0.96 (see Table 1). Moreover, LANDSAT-panchromatic images were used to discriminate urban and rural areas, based on the typical finger-like projections of urban land uses. The results of this study will be presented and commented. Acknowledgements This work was funded by Apulian Region in the framework of the ECOURB project. (Analisi e Modelli di inquinamento atmosferico e termico per sistemi di ECOlabeling URBano, 2009-2012). Figure 1: Scatter plot between AOT derived from MODIS and AERONET for Lecce City in summer period from May 2011 to August 2011. Y = - 0.023+0.86x (fit) ; Table 1: Statistical Analysis Report on the difference between AOT derived from MODIS and AERONET from May 2011 to August 2011 (summer period) for 6 different Aerosol Robotic Network (AERONET) stations

  3. Remote Sensing of Global Fire Patterns, Aerosol Optical Thickness, and Carbon Monoxide During April 1994

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Klich, Donna V.; Welch, Ronald M.; Nolf, Scott; Connors, Vickie S.

    1997-01-01

    Fires play a crucial role in several ecosystems. They are routinely used to burn forests in order to accommodate the needs of the expanding population, clear land for agricultural purposes, eliminate weeds and pests, regenerate nutrients in grazing and crop lands and produce energy for cooking and heating purposes. Most of the fires on earth are related to biomass burning in the tropics, although they are not confined to these latitudes. The boreal and tundra regions also experience fires on a yearly basis. The current study examines global fire patterns, Aerosol Optical Thickness (AOT) and carbon monoxide concentrations during April 9-19, 1994. Recently, global Advanced Very High Resolution Radiometer (AVHRR) data at nadir ground spatial resolution of 1 km are made available through the NASA/NOAA Pathfinder project. These data from April 9-19, 1994 are used to map fires over the earth. In summary, our analysis shows that fires from biomass burning appear to be the dominant factor for increased tropospheric CO concentrations as measured by the MAPS. The vertical transport of CO by convective activities, along with horizontal transport due to the prevailing winds, are responsible for the observed spatial distribution of CO.

  4. Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Zubko, V.; Gopalan, A.

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.

  5. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  6. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences

    NASA Astrophysics Data System (ADS)

    Lynch, Peng; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Hogan, Timothy F.; Hyer, Edward J.; Curtis, Cynthia A.; Hegg, Dean A.; Shi, Yingxi; Campbell, James R.; Rubin, Juli I.; Sessions, Walter R.; Turk, F. Joseph; Walker, Annette L.

    2016-04-01

    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1 × 1° and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how

  7. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  8. A Novel Method to Retrieve Aerosol Optical Thickness from High-Resolution Optical Satellite Images for Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Wilson, R. T.; Milton, E. J.

    2015-12-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  9. Diversity of Aerosol Optical Thickness in analysis and forecasting modes of the models from the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Lynch, P.

    2014-12-01

    With the emergence of global aerosol models intended for operational forecasting use at global numerical weather prediction (NWP) centers, the International Cooperative for Aerosol Prediction (ICAP) was founded in 2010. One of the objectives of ICAP is to develop a global multi-model aerosol forecasting ensemble (ICAP-MME) for operational and basic research use. To increase the accuracy of aerosol forecasts, several of the NWP centers have incorporated assimilation of satellite and/or ground-based observations of aerosol optical thickness (AOT), the most widely available and evaluated aerosol parameter. The ICAP models are independent in their underlying meteorology, as well as aerosol sources, sinks, microphysics and chemistry. The diversity of aerosol representations in the aerosol forecast models results in differences in AOT. In addition, for models that include AOT assimilations, the diversity in assimilation methodology, the observed AOT data to be assimilated, and the pre-assimilation treatments of input data also leads to differences in the AOT analyses. Drawing from members of the ICAP latest generation of quasi-operational aerosol models, five day AOT forecasts and AOT analyses are analyzed from four multi-species models which have AOT assimilations: ECMWF, JMA, NASA GSFC/GMAO, and NRL/FNMOC. For forecast mode only, we also include the dust products from NOAA NGAC, BSC, and UK Met office in our analysis leading to a total of 7 dust models. AOT at 550nm from all models are validated at regionally representative Aerosol Robotic Network (AERONET) sites and a data assimilation grade multi-satellite aerosol analysis. These analyses are also compared with the recently developed AOT reanalysis at NRL. Here we will present the basic verification characteristics of the ICAP-MME, and identify regions of diversity between model analyses and forecasts. Notably, as in many other ensemble environments, the multi model ensemble consensus mean outperforms all of the

  10. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  11. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  12. Long-term changes in the aerosol optical thickness in moscow and correction under strong atmospheric turbidity

    NASA Astrophysics Data System (ADS)

    Gorbarenko, E. V.; Rublev, A. N.

    2016-03-01

    We have estimated and compensated the error in long-term series of the aerosol optical thickness (AOT) calculated from the data on direct integral solar radiation measured by a standard actinometer at the Meteorological Observatory of the Moscow State University (MO MSU) for strong atmospheric turbidity conditions. The necessary corrections have been obtained by the Monte-Carlo simulation of the actinometry measurements for different atmospheric conditions, taking into account the angular size of the field of view of the instrument; and a special correctional formula has been obtained. This correction formula has been applied for all timed AOT values of above 0.5 observed at the MO MSU for the entire time period from 1955 to 2013. Changes in the long-term average AOT values in Moscow occurred only when the smoky haze from the forest and peat fires affected the aerosol turbidity of the atmosphere. Here, the significant decreasing trend of aerosol optical depth of the atmosphere from 1955 to 2013 has been retained with the same confidence level.

  13. Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.

    2014-01-01

    We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results

  14. Analysis of shipboard aerosol optical thickness measurements from multiple sunphotometers aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia

    NASA Astrophysics Data System (ADS)

    Miller, Mark A.; Knobelspiesse, Kirk; Frouin, Robert; Bartholomew, Mary Jane; Reynolds, R. Michael; Pietras, Christophe; Fargion, Giulietta; Quinn, Patricia; Thieuleux, François

    2005-06-01

    Marine sunphotometer measurements collected aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia (ACE-Asia) are used to evaluate the ability of complementary instrumentation to obtain the best possible estimates of aerosol optical thickness and Ångstrom exponent from ships at sea. A wide range of aerosol conditions, including clean maritime conditions and highly polluted coastal environments, were encountered during the ACE-Asia cruise. The results of this study suggest that shipboard hand-held sunphotometers and fast-rotating shadow-band radiometers (FRSRs) yield similar measurements and uncertainties if proper measurement protocols are used and if the instruments are properly calibrated. The automated FRSR has significantly better temporal resolution (2 min) than the hand-held sunphotometers when standard measurement protocols are used, so it more faithfully represents the variability of the local aerosol structure in polluted regions. Conversely, results suggest that the hand-held sunphotometers may perform better in clean, maritime air masses for unknown reasons. Results also show that the statistical distribution of the Ångstrom exponent measurements is different when the distributions from hand-held sunphotometers are compared with those from the FRSR and that the differences may arise from a combination of factors.

  15. In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, and and Data QC and Analysis

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; Barnes, Robert; McClain, Charles

    2001-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project Office activities on in situ aerosol optical thickness (i.e., protocols, and data QC and analysis). This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  16. Time Series Analysis of Satellie-Measured Vegetation Phenology and Aerosol Optical Thickness over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, S.

    2015-04-01

    The spatiotemporal influences of climatic factors and atmospheric aerosol on vegetative phenological cycles of the Korean Peninsula was analysed based on four major forest types. High temporal-resolution satellite data can overcome limitations of ground-based phenological studies with reasonable spatial resolution. Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) (MOD13Q1 and MYD13Q1) and aerosol (MOD04_D3) data were downloaded from the USGS Earth Observation and Science (EROS) Data Center and NASA Goddard Space Flight Center. Harmonic analysis was used to describe and compare the periodic phenomena of the vegetative phenology and atmospheric aerosol optical thickness (AOT). The method transforms complex timeseries to a sum of various sinusoidal functions, or harmonics. Each harmonic curve, or term (or Fourier series), from time-series data us defined by a unique amplitude and a phase, indicating the half of the height and the peak time of a curve. Therefore, the mean, phase, and amplitude of harmonic terms of the data provided the temporal relationships between AOT and VI time series. The phenological characteristics of evergreen forest, deciduous forest, and grassland were similar to each other, but the inter-annual VI amplitude of mixed forest was differentiated from the other forest types. Overall, forests with high VI amplitude reached their maximum greenness earlier, and the phase of VI, or the peak time of greenness, was significantly influenced by air temperature. AOT time-series showed strong seasonal and inter-annual variations. Generally, aerosol concentrations were peaked during late spring and early summer. However, inter-annual AOT variations did not have significant relationships with those of VI. Weak relationships between inter-annual AOT and VI variations indicate that the impacts of aerosols on vegetation growth may be limited for the temporal scale investigated in the region.

  17. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  18. The validation and comparison of the GOCI aerosol optical thickness products: a case study of Tianjin 8.12

    NASA Astrophysics Data System (ADS)

    Yao, Lingling; Zhang, Xiaoyu; Yu, Hui; Jiang, Binbin

    2016-01-01

    COMSGOCI (Geostationary Ocean Color Imager) is the first geostationary ocean color satellite in the world launched by South Korea in June 2010, which includes eight bands from the visible to the infrared band. GOCI aerosol optical thickness (AOT) at 555nm was retrieved by atmospheric radiative transfer model based on two-stream approximation algorithm. Due to GOCI without near infrared band and has a high solar elevation angle, solar zenith angle must be recalibrated to solve the earth system albedo, and the surface reflectance solved by quack atmospheric correction and recalculated backward scatter coefficient. Evaluation of GOCIAOT with AERONET measurements showed that the average error becomes 0.107 from the original 0.393, that means GOCI aerosol optical thickness can be more accurately with the advanced two-stream approximation. Taking the eastern China in 3 and 4 December 2013 for example, comparing the GOCIAOT at 555nm, MODISAOT retrievals at 550nm, NPPAOT at 550nm and AERONET data products indicated that: take the AERONET data as reference, the error of three kinds of satellite data can be ordered as following: MODISAOT< GOCIAOT< NPPAOT and the GOCI-MODIS shows a bias of 0.02917 with the GOCI-NPP. GOCIAOT is 0.05714 generally bigger than that of MODISAOT. NPP-GOCI deviation is 0.10253. The deficiency of MODIS is its low spatial resolution and the high concentration of AOT will be mistaken for a cloud area. However, GOCI can well reflect the concentration and distribution of aerosols. Therefore, GOGI can provide real-time dynamic monitoring on China Eastern atmospheric environment and the accurate time event information of haze for each process can be obtained. Finally, applied GOCI to the "8.12 Tianjin bombings" and to monitor the migration and dispersion of pollutant.

  19. Nighttime Aerosol Optical Thickness Retrievals Via the VIIRS Day/Night Band and the Effects of Lunar Contamination

    NASA Astrophysics Data System (ADS)

    McHardy, T. M.; Zhang, J.; Reid, J. S.; Miller, S. D.; Hyer, E. J.; Kuehn, R.

    2015-12-01

    Using Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method for retrieving aerosol optical thickness (AOT) values at night via the examination of the dispersion of radiance values above an artificial light source ,dubbed the "variance method", is presented. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime AOT using artificial light sources. Nighttime DNB AOT retrievals from the variance method are compared with an AOT value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column integrated from one High Spectral Resolution Lidar (HSRL) site at Huntsville, AL during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. An emphasis is placed on sensitivity studies performed to examine the effects of lunar illumination on VIIRS DNB AOT retrievals made via the variance method. Although the small sample size of this study limits the conclusiveness thus far, investigation reveals that lunar contamination may have a smaller impact on VIIRS DNB AOT retrievals made using this method than previously thought. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.

  20. Hand-Held Sunphotometers for High School Student Construction and Measuring Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Almonor, Linda; Baldwin, C.; Craig, R.; Johnson, L. P.

    2000-01-01

    Science education is taking the teaching of science from a traditional (lecture) approach to a multidimensional sense-making approach which allows teachers to support students by providing exploratory experiences. Using projects is one way of providing students with opportunities to observe and participate in sense-making activity. We created a learning environment that fostered inquiry-based learning. Students were engaged in a variety of Inquiry activities that enabled them to work in cooperative planning teams where respect for each other was encouraged and their ability to grasp, transform and transfer information was enhanced. Summer, 1998: An air pollution workshop was conducted for high school students in the Medgar Evers College/Middle College High School Liberty Partnership Summer Program. Students learned the basics of meteorology: structure and composition of the atmosphere and the processes that cause weather. The highlight of this workshop was the building of hand-held sunphotometers, which measure the intensity of the sunlight striking the Earth. Summer, 1999: high school students conducted a research project which measured the mass and size of ambient particulates and enhanced our ability to observe through land based measurements changes in the optical depth of ambient aerosols over Brooklyn. Students used hand held Sunphotometers to collect data over a two week period and entered it into the NASA GISS database by way of the internet.

  1. New Statistical Model for Variability of Aerosol Optical Thickness and its Application to Analysis of Global Satellite Datasets

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Geogdzhayev, I. V.; Cairns, B.; Mishchenko, M. I.

    2013-05-01

    We present a novel statistical model AOTVM for variability of aerosol optical thickness (AOT). Mathematically this model is based on summation of multiple realizations of certain binary Markov process. It allows for construction of realistic examples of AOT time series, which have 1-point (lognormal PDF) and 2-point (structure function) statistics consistent with each other. Unlike commonly used scale-invariant (fractal) variability models having power-law structure functions, AOTVM's second order structure function converges to a constant (double of AOT's variance) at large lags (where the AOT values at different points become essentially independent from each other). This structure function has simple analytical form convenient for use in remote sensing data analysis. Aerosol variability in AOTVM is characterized by 3 parameters independent from the mean AOT. The first parameter is the ratio between AOT's standard deviation and its mean representing the relative magnitude of AOT variability. The second parameter is the characteristic size of inhomogeneity in AOT field. It quantifies the loss of dependence between AOT values at two points in space with the increase of distance between them. The third parameter is the Hurst exponent characterizing AOT's turbulent behavior at small scales. The proposed variability model was evaluated using MODIS Terra satellite AOT product (collection 5 level 2). We took one-year-long (2006) global AOT dataset (at 550 nm wavelength) and computed means, variances, and structure functions for the data from overlapping 10 by 10 degree cells (with ocean and land treated separately). This provided a set of AOT statistics on a grid with 5-degree resolution. We demonstrated that the structure functions derived from the satellite data can be closely fitted by AOTVM's analytical expressions. These fits provide global long-term datasets of the 3 model parameters described above, thus, adding to the information content of the satellite

  2. Aerosol Optical Thickness in the Presence and Absence of African Dust using AERONET and Microtops II Sunphotometers

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Raizada, S.; Tepley, C. A.; Venero, I.; Zurcher, F.; Mayol-Bracero, O. L.

    2011-12-01

    As part of the Puerto Rico African Dust and Cloud Study (PRADACS) Project, we present a comparison of the aerosol optical thickness (AOT) between the AERONET sunphotometer (CIMEL Electronique 318A) located at Cape San Juan (CSJ, 18° 23' N, 65° 37' E), Puerto Rico, and the radiometers (Microtops II) of the Arecibo Observatory. Data were collected at CSJ during the summer period of 2011, when African dust was present most of the time. Preliminary results showed, for both instruments, AOT values around of 0.4 when there were high concentrations of African dust over the island Puerto Rico. The AOT correlations between the two instruments were very good, with a slope of 0.8 and r2 of 0.9 for all wavelengths. The main differences observed were on the values above 0.6. We will show the temporal behavior of AOT for the two instruments and the spatial differences between them.

  3. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  4. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  5. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  6. Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances From the SeaWiFS and MODIS Sensors Over the Chesapeake Bay Area (Case 2 Water)

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Kwiatkowska, E. J.; Franz, B. A.; McClain, C. R.

    2007-12-01

    Presently, a suite of 12 aerosol models are used for atmospheric correction purposes to retrieve normalized water-leaving radiances in the visible bands of the SeaWiFS and MODIS sensors. These aerosol models are based on Shettle and Fenn's models (1979) of tropospheric and oceanic aerosols. Over most of the open oceans of the world (case 1 water), the atmospheric correction algorithm has been shown to work reasonably well. However, over case 2 waters, (for example Chesapeake Bay) the algorithm often yields negative water- leaving radiances, particularly, in the blue bands of the two sensors. In addition, over the coastal areas, the retrieved aerosol optical thickness (AOT) in the 865/869 bands are often higher than the in situ AERONET retrievals. Our analysis of the AERONET data show that Shettle and Fenn's aerosol models are not representative of the aerosols generally found over the coastal region of the Eastern United States. We show that use of wrong aerosol models often results in negative water-leaving radiances. Also, the backscattering of the solar irradiance in the near IR bands by phytoplankton and non-algal suspended particles results in overestimation of AOT. Based on the AERONET data, we have developed a set of new aerosol models for the atmospheric correction over Chesapeake Bay. Results from the new aerosol models, including comparison of satellite-derived AOT and the AERONET in the visible and near IR bands, will be presented.

  7. Aerosol Optical Thickness Patterns and their Trend in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Holben, B. N.; Zhang, J.; Campbell, J. R.; Edgerton, E.; De Gouw, J. A.; Eloranta, E. W.; Hand, J. L.; Holz, R.; Hyer, E. J.; Jacob, D. J.; Kaku, K.; kuang, S.; Lynch, P.; Newchurch, M.; Schichtel, B. A.; Shaw, S. L.; Shi, Y.; Toon, O. B.; Trepte, C. R.

    2013-12-01

    The Southeastern United States (SEUS) has long been known for its large scale regional hazes, fueled by a complex interaction of anthropogenic and biogenic emissions. Chemically, strong zonal gradients in organic to inorganic ratio coupled with high humidity also likely lead to microphysically induced variability in ambient light extinction to dry mass ratios. As part of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Southeast Nexus (SENEX) campaigns, a mesonet of Aerosol Robotic Network (AERONET) sun photometers was deployed across the SEUS in the summer of 2013. The University of Wisconsin HSRL lidar was also placed alongside an Ozone Dial lidar at the University of Alabama Huntsville. We present early results from the 2013 aerosol ground network deployment and relate findings to previous years. AERONET data is combined with MODIS and MISR satellite data along with surface particulate matter measurements to understand the regional extent of the SEUS haze and its relationship to surface particulate matter concentrations. We further examine the apparent downward trend in regional AOT. Special emphasis is placed on applying ground network data to issues of satellite data quality assurance, data assimilation and large scale modeling.

  8. Impact of Spatial Resolution on Surface PM2.5 Monitoring using Satellite-derived Aerosol Optical Thickness

    NASA Astrophysics Data System (ADS)

    Kondragunta, S.

    2012-12-01

    Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. The VIIRS instrument provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR). The air quality and public health community has been using the 10-km Aqua and Terra MODIS (Moderate resolution Imaging Spectroradiometer) AOT products as a proxy to monitor surface PM2.5 (particulate mass for particles smaller than 2.5 μm in median diameter). The United States Environmental Protection Agency (USEPA) monitors surface PM2.5 because high concentrations have adverse human health impacts. The monitoring stations are not dense, especially in the rural regions, requiring the EPA and scientific community to use satellite-derived AOT as a proxy to derive surface PM2.5. VIIRS AOT will provide continuity to the use of MODIS AOT and its two different spatial resolutions provide an opportunity to test the impact of spatial resolution on the AOT-PM2.5 relationship. A preliminary comparison of VIIRS best quality aerosol products with in situ L1.5 AERONET data using nearest neighbor matchup criteria for one month (May 2012) shows that the IP and EDR AOT bias is 0.204 and 0.153 respectively, and the precision of IP and EDR AOT is 0.319 and 0.235 respectively. A comparison to Aqua MODIS for the same time period also shows that VIIRS AOT is biased high over land but the magnitudes of bias and precision are lower. Given that this evaluation places the VIIRS aerosol products at the beta maturity level (product is minimally validated, may contain significant errors, and not appropriate for quantitative applications) and algorithm refinements are forthcoming, this study compares the collocated satellite-derived AOT and surface PM2.5 relationship for summer 2012 using

  9. Modeling of the mineral contribution of dust to PM10 directly from the measurements of VIIRS Aerosol Optical Thickness

    NASA Astrophysics Data System (ADS)

    Albina, D. T.

    2015-12-01

    Northern Africa is well known as the largest producing region of dust, which is transported across the Atlantic to the Caribbean, under specific weather conditions. Saharan dust was observed, over the Caribbean Basin, to try to determine the roles they may play in human health, and in the fertilization of Amazon Forest. Scientists have not only used the satellite sensors MODIS and VIIRS to measure the volume of dust that makes this trans-Atlantic journey, but also the AERONET network of photometers, and PM10 Suspended Particulate Matter. We have successfully compared and shown a high correlation between the measurements from VIIRS aerosol optical thickness (AOT) and PM10 so that to be able to determine an accurate modeling of the mineral contribution of dust to PM10 directly from the measurements of VIIRS. The aim of this work is to show that it is possible to accurately forecast the daily mean concentration of PM10 using linear regression models. In this way, countries of the Caribbean region which cannot afford Particle Sensor for Pm10 will be able to have a precise idea of the PM10 daily forecast upon there region.

  10. Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Zhang, Hai; Superczynski, Stephen; Ciren, Pubu; Holben, Brent N.; Petrenko, Maksym

    2016-06-01

    The new-generation polar-orbiting operational environmental sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite, provides critical daily global aerosol observations. As older satellite sensors age out, the VIIRS aerosol product will become the primary observational source for global assessments of aerosol emission and transport, aerosol meteorological and climatic effects, air quality monitoring, and public health. To prove their validity and to assess their maturity level, the VIIRS aerosol products were compared to the spatiotemporally matched Aerosol Robotic Network (AERONET) measurements. Over land, the VIIRS aerosol optical thickness (AOT) environmental data record (EDR) exhibits an overall global bias against AERONET of -0.0008 with root-mean-square error (RMSE) of the biases as 0.12. Over ocean, the mean bias of VIIRS AOT EDR is 0.02 with RMSE of the biases as 0.06. The mean bias of VIIRS Ocean Ångström Exponent (AE) EDR is 0.12 with RMSE of the biases as 0.57. The matchups between each product and its AERONET counterpart allow estimates of expected error in each case. Increased uncertainty in the VIIRS AOT and AE products is linked to specific regions, seasons, surface characteristics, and aerosol types, suggesting opportunity for future modifications as understanding of algorithm assumptions improves. Based on the assessment, the VIIRS AOT EDR over land reached Validated maturity beginning 23 January 2013; the AOT EDR and AE EDR over ocean reached Validated maturity beginning 2 May 2012, excluding the processing error period 15 October to 27 November 2012. These findings demonstrate the integrity and usefulness of the VIIRS aerosol products that will transition from S-NPP to future polar-orbiting environmental satellites in the decades to come and become the standard global aerosol data set as the previous generations' missions come to an end.

  11. Estimate of the Impact of Absorbing Aerosol Over Cloud on the MODIS Retrievals of Cloud Optical Thickness and Effective Radius Using Two Independent Retrievals of Liquid Water Path

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Harshvardhan; Platnick, Steven

    2009-01-01

    Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the

  12. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  13. A novel method to retrieve Aerosol Optical Thickness from high-resolution optical satellite images using an extended version of the Haze Optimized Transform (HOTBAR)

    NASA Astrophysics Data System (ADS)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  14. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    NASA Technical Reports Server (NTRS)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  15. Spatial and temporal evolution of the optical thickness of the Pinatubo aerosol cloud in the Northern Hemisphere from a network of ship-borne and stationary lidars

    NASA Astrophysics Data System (ADS)

    Avdyushi, S. I.; Tulinov, G. F.; Ivanov, M. S.; Kuzmenko, B. N.; Mezhuev, I. R.; Nardi, B.; Hauchecorne, A.; Chanin, M.-L.

    1993-09-01

    The vertical profiles of the extinction coefficient and the total optical thickness of the Pinatubo aerosol layer obtained from a network of 5 Rayleigh-Mie lidars are presented here. Three ship-borne lidars (Professor Zubov, Professor Vize, Henri Poincare) and two fixed lidar stations (OHP and CEL) are operated respectively by the Roscomhydromet of Russia and of the Service d'Aeronomie du CNRS of France. The measurements presented are in the altitude range 15-35 km. They were obtained between July 1991 - April 1992 and cover 8 deg S-60 deg N latitude and 80 deg W-6 deg E longitude. This represents extensive coverage of the western sector of the Northern Hemisphere, which is partly coincident with UARS satellite coverage. Optical depths of up to 0.2 were observed and maximum extinction coefficient values of 0.08/km were obtained at 24 km and 18 deg N latitude.

  16. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  17. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  18. Aerosol ultraviolet absorption experiment (2002 to 2004), part 2: absorption optical thickness, refractive index, and single scattering albedo

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay A.; Bhartia, Pawan K.; Herman, Jay R.; Slusser, James R.; Scott, Gwendolyn R.; Labow, Gordon J.; Vasilkov, Alexander P.; Eck, Tom; Doubovik, Oleg; Holben, Brent N.

    2005-04-01

    Compared to the visible spectral region, very little is known about aerosol absorption in the UV. Without such information it is impossible to quantify the causes of the observed discrepancy between modeled and measured UV irradiances and photolysis rates. We report results of a 17-month aerosol column absorption monitoring experiment conducted in Greenbelt, Maryland, where the imaginary part of effective refractive index k was inferred from the measurements of direct and diffuse atmospheric transmittances by a UV-multifilter rotating shadowband radiometer [UV-MFRSR, U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Network]. Colocated ancillary measurements of aerosol effective particle size distribution and refractive index in the visible wavelengths [by CIMEL sun-sky radiometers, National Aeronautics and Space Administration (NASA) Aerosol Robotic Network (AERONET)], column ozone, surface pressure, and albedo constrain the forward radiative transfer model input, so that a unique solution for k is obtained independently in each UV-MFRSR spectral channel. Inferred values of k are systematically larger in the UV than in the visible wavelengths. The inferred k values enable calculation of the single scattering albedo ω, which is compared with AERONET inversions in the visible wavelengths. On cloud-free days with high aerosol loadings [τext(440)>0.4], ω is systematically lower at 368 nm (<ω368>=0.94) than at 440 nm (<ω440>=0.96), however, the mean ω differences (0.02) are within expected uncertainties of ω retrievals (~0.03). The inferred ω is even lower at shorter UV wavelengths (<ω325>~<ω332>=0.92), which might suggest the presence of selectively UV absorbing aerosols. We also find that decreases with decrease in aerosol loading. This could be due to real changes in the average aerosol composition between summer and winter months at the Goddard Space Flight Center (GSFC) site.

  19. Investigations of the March 2006 African dust storm using ground-based column-integrated high spectral resolution infrared (8-13 μm) and visible aerosol optical thickness measurements: 2. Mineral aerosol mixture analyses

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.

    2009-07-01

    The mineral aerosol mixture composition for the March 2006 Saharan dust storm is assessed in this paper on the basis of the analysis of visible to near-infrared (VIS-NIR) and infrared (IR) aerosol optical thickness (AOT) spectra obtained during the Portable Infrared Aerosol Transmission Experiment (PIRATE). The AOT spectra from 8 to 13 μm were determined using column-integrated solar transmission measurements using a Fourier transform infrared spectrometer. To determine the mineralogy and mixture composition of the dust, we determined the expected mineralogy of dust from the Algerian source region in a dust storm environment. Then we computed the modeled VIS-IR AOT spectra using Mie theory for external and internal mixtures. We compared the modeled VIS-NIR AOT spectra and derived index of refraction and single-scattering albedo with the measured values from AERONET and compared the modeled IR AOT spectra with the values from our IR measurements. The fit between the measured and modeled values was best when we used an extinction resonance correction to the Mie theory results to better account for the exact wavelengths and shapes of some of the AOT peaks for mineral particles. The mineralogy and mixture composition of the best dust model includes external mixtures, internal mixtures, and mineralogy dominated by quartz, illite, and calcite. The modeled mean radius was determined, and several modes were computed in agreement with AERONET results.

  20. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    NASA Astrophysics Data System (ADS)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  1. Correlating MODIS aerosol optical thickness data with ground-based PM 2.5 observations across Texas for use in a real-time air quality prediction system

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Smith, Solar; Faruqui, Shazia J.

    Investigations have been conducted at the Center for Space Research (CSR) into approaches to correlate MODIS aerosol optical thickness (AOT) values with ground-based, PM 2.5 observations made at continuous air monitoring station locations operated by the Texas Commission on Environmental Quality (TCEQ). These correlations are needed to more fully utilize real-time MODIS AOT analyses generated at CSR in operational air quality forecasts issued by TCEQ using a trajectory-based forecast model developed by NASA. Initial analyses of two data sets collected during 3 months in 2003 and all of 2004 showed linear correlations in the 0.4-0.5 range in the data collected over Texas. Stronger correlations (exceeding 0.9) were obtained by averaging these same data over longer timescales but this approach is considered unsuitable for use in issuing air quality forecasts. Peculiarities in the MODIS AOT analyses, referred to as hot spots, were recognized while attempting to improve these correlations. It is demonstrated that hot spots are possible when pixels that contain surface water are not detected and removed from the AOT retrieval algorithms. An approach to reduce the frequency of hot spots in AOT analyses over Texas is demonstrated by tuning thresholds used to detect inland water surfaces and remove pixels that contain them from the analysis. Finally, the potential impact of hot spots on MODIS AOT-PM 2.5 correlations is examined through the analysis of a third data set that contained sufficient levels of aerosols to mask inland water surfaces from the AOT algorithms. In this case, significantly stronger correlations, that exceed the 0.9 value considered suitable for use in a real-time air quality prediction system, were observed between the MODIS AOT observations and ground-based PM 2.5 measurements.

  2. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  3. Analysis of the Performance Characteristics of the Five-Channel Microtops II Sun Photometer for Measuring Aerosol Optical Thickness and Precipitable Water Vapor

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Levy, Robert; Kaufman, Yoram; Remer, Lorraine A.; Li, Rong-Rong; Martins, Vanderlei J.; Holben, Brent N.; Abuhassan, Nader; Slutsker, Ilya; Eck, Thomas F.; Pietras, Christophe; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Five Microtops II sun photometers were studied in detail at the NASA Goddard Space Flight Center (GSFC) to determine their performance in measuring aerosol optical thickness (AOT or Tau(sub alphalambda) and precipitable column water vapor (W). Each derives Tau(sub alphalambda) from measured signals at four wavelengths lambda (340, 440, 675, and 870 nm), and W from the 936 nm signal measurements. Accuracy of Tau(sub alphalambda) and W determination depends on the reliability of the relevant channel calibration coefficient (V(sub 0)). Relative calibration by transfer of parameters from a more accurate sun photometer (such as the Mauna-Loa-calibrated AERONET master sun photometer at GSFC) is more reliable than Langley calibration performed at GSFC. It was found that the factory-determined value of the instrument constant for the 936 nm filter (k= 0.7847) used in the Microtops' internal algorithm is unrealistic, causing large errors in V(sub 0(936)), Tau(sub alpha936), and W. Thus, when applied for transfer calibration at GSFC, whereas the random variation of V(aub 0) at 340 to 870 nm is quite small, with coefficients of variation (CV) in the range of 0 to 2.4%, at 936 nm the CV goes up to 19%. Also, the systematic temporal variation of V(sub 0) at 340 to 870 nm is very slow, while at 936 nm it is large and exhibits a very high dependence on W. The algorithm also computes Tau(sub alpha936) as 0.91Tau(sub alpha870), which is highly simplistic. Therefore, it is recommended to determine Tau(sub alpha936) by logarithmic extrapolation from Tau(sub alpha675) and Tau(sub alpha 870. From the operational standpoint of the Microtops, apart from errors that may result from unperceived cloud contamination, the main sources of error include inaccurate pointing to the Sun, neglecting to clean the front quartz window, and neglecting to calibrate correctly. If these three issues are adequately taken care of, the Microtops can be quite accurate and stable, with root mean square (rms

  4. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    NASA Astrophysics Data System (ADS)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  5. Investigations of the March 2006 African dust storm using ground-based column-integrated high spectral resolution infrared (8-13 μm) and visible aerosol optical thickness measurements: 1. Measurement procedures and results

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.; Ricchiazzi, P.

    2009-06-01

    The infrared (IR) aerosol optical thickness (AOT) spectra of Saharan dust measured during the Portable Infrared Aerosol Transmission Experiment (PIRATE) are reported. Saharan dust optical thickness (extinction) spectra from 8 to 13 μm were obtained using column-integrated solar transmission measurements in Puerto Rico in July 2005 and Senegal in January and March 2006 (during a dust plume) using a Fourier transform infrared (FTIR) spectrometer. The FTIR measured the solar spectral irradiance in the IR in the presence of Saharan dust, and the AOT was determined by comparing the measured spectra to modeled downwelling spectra without dust for the same atmospheric temperature profile, solar zenith angle, water vapor, and ozone concentrations. The modeled dust-free spectra are generated using the Santa Barbara Disort Atmospheric Radiative Transfer (SBDART) program. The measured dust AOT is compared with modeled AOT spectra obtained using Mie theory with dust indices of refraction from Volz and Fouquart with assumed lognormal size distributions. When the visible AOT values from nearby Aerosol Robotic Network (AERONET) sensors are compared to the IR AOT values, results from various dust loadings show that the IR dust AOT at 9.5 μm is typically only one third that of the visible (670 nm) dust AOT, but there is some evidence that this ratio could increase for larger dust size distributions. The surface IR dust forcing is determined to be about -0.4 W/m2 by summing the dusty and clear irradiance differences.

  6. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  7. Long-term variability of aerosol optical thickness in Eastern Europe over 2001-2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction

    NASA Astrophysics Data System (ADS)

    Chubarova, N. Y.; Poliukhov, A. A.; Gorlova, I. D.

    2015-07-01

    The aerosol properties of the atmosphere were obtained within the framework of the AERONET program at the Moscow State University Meteorological Observatory (Moscow MSU MO) over 2001-2014 period. The quality data control has revealed the necessity of their additional cloud and NO2 correction. The application of cloud correction according to hourly visual cloud observations provides a decrease in average aerosol optical thickness (AOT) at 500 nm of up to 0.03 compared with the standard dataset. We also show that the additional NO2 correction of the AERONET data is needed in large megalopolis, like Moscow, with 12 million residents and the NOx emission rates of about 100 kt yr-1. According to the developed method we estimated monthly mean NO2 content, which provides an additional decrease of 0.01 for AOT at 340 nm, and of about 0.015 - for AOT at 380 and 440 nm. The ratios of NO2 optical thickness to AOT at 380 and 440 nm are about 5-6 % in summer and reach 15-20 % in winter when both factors have similar effects on UV irradiance. Seasonal cycle of AOT at 500 nm is characterized by a noticeable summer and spring maxima, and minimum in winter conditions, changing from 0.08 in December and January up to 0.3 in August. The application of the additional cloud correction removes a local AOT maximum in February, and lowered the December artificial high AOT values. The pronounced negative AOT trends of about -1-5 % yr-1 have been obtained for most months, which could be attributed to the negative trends in emissions (E) of different aerosol precursors of about 116 Gg yr-2 in ESOx, 78 Gg yr-2 in ENMVOC, and 272 Gg yr-2 in ECO over European territory of Russia. No influence of natural factors on temporal AOT variations has been revealed.

  8. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  9. Some New Lidar Equations for Laser Pulses Scattered Back from Optically Thick Media Such as Clouds, Dense Aerosol Plumes, Sea Ice, Snow, and Turbid Coastal Waters

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2013-01-01

    I survey the theoretical foundations of the slowly-but-surely emerging field of multiple scattering lidar, which has already found applications in atmospheric and cryospheric optics that I also discuss. In multiple scattering lidar, returned pulses are stretched far beyond recognition, and there is no longer a one-to-one connection between range and return-trip timing. Moreover, one can exploit the radial profile of the diffuse radiance field excited by the laser source that, by its very nature, is highly concentrated in space and collimated in direction. One needs, however, a new class of lidar equations to explore this new phenomenology. A very useful set is derived from radiative diffusion theory, which is found at the opposite asymptotic limit of radiative transfer theory than the conventional (single-scattering) limit used to derive the standard lidar equation. In particular, one can use it to show that, even if the simple time-of-flight-to-range connection is irretrievably lost, multiply-scattered lidar light can be used to restore a unique profiling capability with coarser resolution but much deeper penetration into a wide variety of optical thick media in nature. Several new applications are proposed, including a laser bathymetry technique that should work for highly turbid coastal waters.

  10. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  11. Global Modeling of Mineral Dust and its Optical Thickness

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul A.; Chin, Mian; Tegen, Ina; Herman, Jay R.; Torres, Omar; Winker, David; Holben, Brent; Lin, S.-J.

    1999-01-01

    Global distribution of dust in the atmosphere has been simulated using the NASA Goddard chemical transport model (GEOS-CTM) to help retrieve the aerosol optical thickness from TOMS absorbing aerosol index. The model contains a dust module which accounts for sources and removal processes. The transport is driven by the assimilated meteorological fields generated by the NASA Goddard Earth Observing System Data Assimilation System (GEOS DAS). One of the key parameters, in the retrieval algorithm of optical thickness from Total Ozone Mapping Spectrometer (TOMS) data, is the vertical profile of aerosols. During the period 10- 19 September 1994, Lidar on-space Technology Experiment (LITE) was flown on space shuttle Discovery. The 53 hours of data collected cover the lower atmosphere from the earth surface to 20 kilometers altitude and from 57 N to 57 S with a high resolution of about 15 meters. The model results are compared with LITE data over the source regions of dust (Africa, Middle East, Asia, Australia) and in the remote troposphere (Atlantic and Pacific). The simulated horizontal distribution is compared with TOMS absorbing aerosol index. Finally the calculated optical thickness will be assessed with ground based sun-photometers (AERONET).

  12. Optical Properties of Atmospheric Aerosol in Maritime Environments.

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander; Holben, Brent N.; Kaufman, Yoram J.; Dubovik, Oleg; Eck, Thomas F.; Slutsker, Ilya; Pietras, Christophe; Halthore, Rangasayi N.

    2002-02-01

    Systematic characterization of aerosol over the oceans is needed to understand the aerosol effect on climate and on transport of pollutants between continents. Reported are the results of a comprehensive optical and physical characterization of ambient aerosol in five key island locations of the Aerosol Robotic Network (AERONET) of sun and sky radiometers, spanning over 2-5 yr. The results are compared with aerosol optical depths and size distributions reported in the literature over the last 30 yr. Aerosol found over the tropical Pacific Ocean (at three sites between 20°S and 20°N) still resembles mostly clean background conditions dominated by maritime aerosol. The optical thickness is remarkably stable with mean value of a(500 nm) = 0.07, mode value at am = 0.06, and standard deviation of 0.02-0.05. The average Ångström exponent range, from 0.3 to 0.7, characterizes the wavelength dependence of the optical thickness. Over the tropical to subtropical Atlantic (two stations at 7°S and 32°N) the optical thickness is significantly higher: a(500 nm) = 0.14 and am = 0.10 due to the frequent presence of dust, smoke, and urban-industrial aerosol. For both oceans the atmospheric column aerosol is characterized by a bimodal lognormal size distribution with a fine mode at effective radius Reff = 0.11 ± 0.01 m and coarse mode at Reff = 2.1 ± 0.3 m. A review of the published 150 historical ship measurements from the last three decades shows that am was around 0.07 to 0.12 in general agreement with the present finding. The information should be useful as a test bed for aerosol global models and aerosol representation in global climate models. With global human population expansion and industrialization, these measurements can serve in the twenty-first century as a basis to assess decadal changes in the aerosol concentration, properties, and radiative forcing of climate.

  13. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  14. Retrieval of the atmospheric compounds using a spectral optical thickness information

    SciTech Connect

    Ioltukhovski, A.A.

    1995-03-01

    A spectral inversion technique for retrieval of the atmospheric gases and aerosols contents is proposed. This technique based upon the preliminary measurement or retrieval of the spectral optical thickness. The existence of a priori information about the spectral cross sections for some of the atmospheric components allows to retrieve the relative contents of these components in the atmosphere. Method of smooth filtration makes possible to estimate contents of atmospheric aerosols with known cross sections and to filter out other aerosols; this is done independently from their relative contribution to the optical thickness.

  15. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  16. Climate stability and cloud optical thickness feedbacks

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1989-01-01

    An improved radiative-convective model (RCM) has been developed and used to examine the role of cirrus clouds in the optical thickness feedback mechanism. Low and middle clouds are approximately black bodies for infrared radiative transfer, and so any increase in their optical thickness primarily increases the cloud albedo. Thus, if a climate warming is accompanied by an increase in average atmospheric absolute humidity and hence in average cloud liquid water content, low and middle cloud optical thickness and albedo may increase. The result is a negative feedback on the climate change, tending to reduce the surface temperature increase. Recent research suggests that the optical thickness feedback can depend sensitively on aspects of cirrus which are not well observed or adequately incorporated in typical present-day climate models.

  17. Optically thick line widths in pyrotechnic flares

    NASA Technical Reports Server (NTRS)

    Douda, B. E.; Exton, R. J.

    1975-01-01

    Experimentally determined sodium line widths for pyrotechnic flares are compared with simple analytical, optically-thick-line-shape calculations. Three ambient pressure levels are considered (760, 150 and 30 torr) for three different flare compositions. The measured line widths range from 1.3 to 481 A. The analytic procedure emphasizes the Lorentz line shape as observed under optically-thick conditions. Calculated widths are in good agreement with the measured values over the entire range.

  18. Intercomparison of Aerosol Optical Thickness Derived from MODIS and in Situ Ground Datasets over Jaipur, a Semi-arid Zone in India.

    PubMed

    Payra, Swagata; Soni, Manish; Kumar, Anikender; Prakash, Divya; Verma, Sunita

    2015-08-01

    The first detailed seasonal validation has been carried out for the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua satellites Level 2.0 Collection Version 5.1 AOT (τMODIS) with Aerosol Robotic Network (AERONET) Level 2.0 AOT (τAERONET) for the years 2009-2012 over semi-arid region Jaipur, northwestern India. The correlation between τMODIS versus τAERONET at 550 nm is determined with different spatial and temporal size windows. The τMODIS overestimates τAERONET within a range of +0.06 ± 0.24 during the pre-monsoon (April-June) season, while it underestimates the τAERONET with -0.04 ± 0.12 and -0.05 ± 0.18 during dry (December-March) and post-monsoon (October-November) seasons, respectively. Correlation without (with) error envelope has been found for pre-monsoon at 0.71 (0.89), post-monsoon at 0.76 (0.94), and dry season at 0.78 (0.95). τMODIS is compared to τAERONET at three more ground AERONET stations in India, i.e., Kanpur, Gual Pahari, and Pune. Furthermore, the performance of MODIS Deep Blue and Aqua AOT550 nm (τDB550 nm and τAqua550 nm) with τAERONET is also evaluated for all considered sites over India along with a U.S. desert site at White Sand, Tularosa Basin, NM. The statistical results reveal that τAqua550 nm performs better over Kanpur and Pune, whereas τDB550 nm performs better over Jaipur, Gual Pahari, and White Sand High Energy Laser Systems Test Facility (HELSTF) (U.S. site).

  19. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  20. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  1. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  2. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  3. Aerosol optical properties and their radiative effects in northern China

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Xia, Xiangao; Cribb, Maureen; Mi, Wen; Holben, Brent; Wang, Pucai; Chen, Hongbin; Tsay, Si-Chee; Eck, T. F.; Zhao, Fengsheng; Dutton, E. G.; Dickerson, R. E.

    2007-11-01

    As a fast developing country covering a large territory, China is experiencing rapid environmental changes. High concentrations of aerosols with diverse properties are emitted in the region, providing a unique opportunity for understanding the impact of environmental changes on climate. Until very recently, few observational studies were conducted in the source regions. The East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) attempts to characterize the physical, optical and chemical properties of the aerosols and their effects on climate over China. This study presents some preliminary results using continuous high-quality measurements of aerosol, cloud and radiative quantities made at the first EAST-AIRE baseline station at Xianghe, about 70 km east of Beijing over a period of one year (September 2004 to September 2005). It was found that the region is often covered by a thick layer of haze (with a yearly mean aerosol optical depth equal to 0.82 at 500 nm and maximum greater than 4) due primarily to anthropogenic emissions. An abrupt "cleanup" of the haze often took place in a matter of one day or less because of the passage of cold fronts. The mean single scattering albedo is approximately 0.9 but has strong day-to-day variations with maximum monthly averages occurring during the summer. Large aerosol loading and strong absorption lead to a very large aerosol radiative effect at the surface (the annual 24-hour mean values equals 24 W m-2), but a much smaller aerosol radiative effect at the top of the atmosphere (one tenth of the surface value). The boundary atmosphere is thus heated dramatically during the daytime, which may affect atmospheric stability and cloud formation. In comparison, the cloud radiative effect at the surface is only moderately higher (-41 W m-2) than the aerosol radiative effect at the surface.

  4. Design of Aerosol Particle Coating: Thickness, Texture and Efficiency

    PubMed Central

    Buesser, B.; Pratsinis, S.E.

    2013-01-01

    Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles’ surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. PMID:23729833

  5. New Approaches to Aerosol Optical Extinction Measurement

    NASA Astrophysics Data System (ADS)

    Strawa, A. W.; Owano, T.; Moosmuller, H.; Atkinson, D.; Covert, D.; Ahlquist, N.; Schmid, B.

    2002-12-01

    Aerosols can have important influences on climate and the radiation balance of the atmosphere. However, the temporal and spatial variability of aerosols and our inadequate knowledge of aerosol optical properties have lead to large uncertainties in these effects. Thus improved in-situ measurements of aerosol optical properties, in particular measurement of their extinction coefficients, are required. Recently, the relatively new technique of cavity ring-down spectroscopy has been applied to the problem of making fast, accurate measurements of aerosol extinction coefficient. Typically, extinction measurements have been made by measuring the decrease in the intensity of a light beam that has passed through a particulate-laden cell. Often, the cell contains mirrors which reflect the beam several times increasing the optical path length thereby increasing the extinction. Path lengths of up to 400 m have been obtained, which is still insufficient to measure atmospheric extinction in the visible down to background values. In cavity ring-down, a light beam is reflected many thousands of times between two highly reflective mirrors, resulting in a path length of kilometers. The light exiting the cell decreases exponentially with time, and this exponential decay is related to the extinction of the aerosol inside the cell. The CRD instruments can routinely measure sub-Rayleigh equivalent extinction levels of a few Mm-^1 and are generally more rugged and portable than traditional extinction cells. Possible applications of CRD-based extinction cells include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellites such as MODIS, MISR, and CALYPSO. This paper will present the motivation for making improved aerosol extinction measurements and discuss the problems in making the measurement. The cavity ring-down technique will be described. In June, 2002, a calibration and methods intercomparison, the Reno Aerosol Optics Study

  6. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  7. Probing and monitoring aerosol and atmospheric clouds with an electro-optic oscillator.

    PubMed

    Arnon, S; Kopeika, N S

    1996-09-20

    Monitoring, probing, and sensing characteristics of aerosol clouds is difficult and complicated. Probing the characteristics of aerosols is most useful in the chemical and microelectronic industry for processing control of aerosols and emulsion, decreasing bit error rate in adaptive optical communication systems, and in acquiring data for atmospheric science and environment quality. We present a new mathematical and optical engineering model for monitoring characteristics of aerosol clouds. The model includes the temporal transfer function of aerosol clouds as a variable parameter in an electro-optic oscillator. The frequency of the oscillator changes according to changes in the characteristics of the clouds (density, size distribution, physical thickness, the medium and the particulate refractive indices, and spatial distribution). It is possible to measure only one free characteristic at a given time. An example of a practical system for monitoring the density of aerosol clouds is given. The frequency of the oscillator changes from 1.25 to 0.43 MHz for changes in aerosol density from 2000 to 3000 particulates cm(-3). The advantages of this new method compared with the transmissometer methods are (a) no necessity for line-of-sight measurement geometry, (b) accurate measurement of high optical thickness media is possible, (c) under certain conditions measurements can include characteristics of aerosol clouds related to light scatter that cannot be or are difficult to measure with a transmissometer, and (d) the cloud bandwidth for free space optical communication is directly measurable.

  8. Study on distribution of aerosol optical depth in Chongqing urban area

    NASA Astrophysics Data System (ADS)

    Yang, Shiqi; Liu, Can; Gao, Yanghua

    2015-12-01

    This paper selected 6S (second simulation of the satellite signal in the solar spectrum) model with dark pixel method to inversion aerosol optical depth by MODIS data, and got the spatial distribution and the temporal distribution of Chongqing urban area. By comparing with the sun photometer and API data, the result showed that the inversion method can be used in aerosol optical thickness monitoring in Chongqing urban area.

  9. Pioneer Venus polarimetry and haze optical thickness

    NASA Technical Reports Server (NTRS)

    Knibbe, W. J. J.; Wauben, W. M. F.; Travis, L. D.; Hovenier, J. W.

    1992-01-01

    The Pioneer Venus mission provided us with high-resolution measurements at four wavelengths of the linear polarization of sunlight reflected by the Venus atmosphere. These measurements span the complete phase angle range and cover a period of more than a decade. A first analysis of these data by Kawabata et al. confirmed earlier suggestions of a haze layer above and partially mixed with the cloud layer. They found that the haze exhibits large spatial and temporal variations. The haze optical thickness at a wavelength of 365 nm was about 0.06 at low latitudes, but approximately 0.8 at latitudes from 55 deg poleward. Differences between morning and evening terminator have also been reported by the same authors. Using an existing cloud/haze model of Venus, we study the relationship between the haze optical thickness and the degree of linear polarization. Variations over the visible disk and phase angle dependence are investigated. For that purpose, exact multiple scattering computations are compared with Pioneer Venus measurements. To get an impression of the variations over the visible disk, we have first studied scans of the polarization parallel to the intensity equator. After investigating a small subset of the available data we have the following results. Adopting the haze particle characteristics given by Kawabata et al., we find a thickening of the haze at increasing latitudes. Further, we see a difference in haze optical thickness between the northern and southern hemispheres that is of the same order of magnitude as the longitudinal variation of haze thickness along a scan line. These effects are most pronounced at a wavelength of 935 nm. We must emphasize the tentative nature of the results, because there is still an enormous amount of data to be analyzed. We intend to combine further polarimetric research of Venus with constraints on the haze parameters imposed by physical and chemical processes in the atmosphere.

  10. Cloud optical thickness retrievals from ground-based pyranometer measurements

    NASA Astrophysics Data System (ADS)

    Qiu, Jinhuan

    2006-11-01

    A method is developed to retrieve total cloud optical thickness (COT) from global solar radiation (GSR) detected by ground-based pyranometer, and approaches to input aerosol/molecular/gas parameters for COT retrievals are presented. On the basis of numerical simulations and comparative tests, main error factors of COT retrievals are analyzed, which include radiation data error, cloud inhomogeneity, uncertainties of aerosol optical parameters, and surface albedo. The retrieved COT error, caused by a -5% or 5% systematic error of the GSR measurement, is within ±0.6 and ±5.0 for COT ranges of 0-5.0 and 5-100, respectively. The AOT, the aerosol single scatter albedo (SSA), and the surface albedo are three significant parameters affecting COT retrieval accuracy. The mean SSA in the pyranometer spectral response range and the broadband surface albedo are suitably used in the retrievals. If uncertainties of AOT, SSA, and surface albedo are within ±0.1, ±0.05, and ±0.05, respectively, the retrieval accuracy is accepted for most applications. Furthermore, COTs (τPyr) from pyranometer data at two meteorological observatories are compared with COTs (τISCCP) from ISCCP and COTs (τMODIS) from MODIS. The relative standard deviations between monthly mean τPyr and τMODIS, or τPyr and τISCCP, are all less than 45.4% for both sites. The agreement among the yearly mean τPyr,τMODIS, and τISCCP is satisfactory. The absolute (relative) deviations between the yearly mean τPyr and τMODIS are within ±1.55 (8%) for both sites, and the deviations between the τPyr and τISCCP are within ±1.94 (25%). The yearly mean τPyr also agrees considerably well with τISCCP in the broken cloud case.

  11. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing

    NASA Astrophysics Data System (ADS)

    Kox, S.; Bugliaro, L.; Ostler, A.

    2014-04-01

    A novel approach for the detection of cirrus clouds and the retrieval of optical thickness and top altitude based on the measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented. Trained with 8 000 000 co-incident measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission the new "cirrus optical properties derived from CALIOP and SEVIRI algorithm during day and night" (COCS) algorithm utilizes a backpropagation neural network to provide accurate measurements of cirrus optical depth τ at λ =532 nm and top altitude z every 15 min covering almost one third of Earth's atmosphere. The retrieved values are validated with independent measurements of CALIOP and the optical thickness derived by an airborne high spectral resolution lidar.

  12. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing

    NASA Astrophysics Data System (ADS)

    Kox, S.; Bugliaro, L.; Ostler, A.

    2014-10-01

    A novel approach for the detection of cirrus clouds and the retrieval of optical thickness and top altitude based on the measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented. Trained with 8 000 000 co-incident measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission the new "cirrus optical properties derived from CALIOP and SEVIRI algorithm during day and night" (COCS) algorithm utilizes a backpropagation neural network to provide accurate measurements of cirrus optical depth τ at λ = 532 nm and top altitude z every 15 min covering almost one-third of the Earth's atmosphere. The retrieved values are validated with independent measurements of CALIOP and the optical thickness derived by an airborne high spectral resolution lidar.

  13. Aerosol Optical Depth Determinations for BOREAS

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)

    1994-01-01

    Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10

  14. Aerosol optical properties over the midcontinental United States

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Markham, Brian L.; Ferrare, Richard A.; Aro, Theo. O.

    1992-01-01

    Solar and sky radiation measurements were analyzed to obtain aerosol properties such as the optical thickness and the size distribution. The measurements were conducted as part of the First International Satellite Land Surface Climatology Project Field Experiment during the second intensive field campaign (IFC) from June 25 to July 14, 1987, and the fifth IFC from July 25 to August 12, 1989, on the Konza Prairie near Manhattan, Kansas. Correlations with climatological and meteorological parameters show that during the period of observations in 1987, two types of air masses dominated the area: an air mass with low optical thickness and low temperature air associated with a northerly breeze, commonly referred to as the continental air, and an air mass with a higher optical thickness and higher temperature air associated with a southerly wind which we call 'Gulf air'. The size distributions show a predominance of the larger size particles in 'Gulf air'. Because of the presence of two contrasting air masses, correlations with parameters such as relative humidity, specific humidity, pressure, temperature, and North Star sky radiance reveal some interesting aspects. In 1989, clear distinctions between continental and Gulf air cannot be made; the reason for this will be discussed.

  15. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  16. THEMIS Observations of Atmospheric Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.; Richardson, Mark I.

    2003-01-01

    The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking began mapping in February 2002 (approximately Ls=330 deg.). Images taken by the Thermal Emission Imaging System (THEMIS) on-board the Odyssey spacecraft allow the quantitative retrieval of atmospheric dust and water-ice aerosol optical depth. Atmospheric quantities retrieved from THEMIS build upon existing datasets returned by Mariner 9, Viking, and Mars Global Surveyor (MGS). Data from THEMIS complements the concurrent MGS Thermal Emission Spectrometer (TES) data by offering a later local time (approx. 2:00 for TES vs. approx. 4:00 - 5:30 for THEMIS) and much higher spatial resolution.

  17. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign.

    PubMed

    Kuzmanoski, Maja; Box, Michael A; Schmid, Beat; Russell, Philip B; Redemann, Jens

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2,000 (SAFARI 2,000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3-1.5 microm wavelength range to assumptions regarding the mixing scenario. We considered two models for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell-Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (approximately 0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81-0.91 at lambda=0.50 microm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

  18. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  19. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  20. Optical closure study on light-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  1. Synthesis of information on aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Liu, Hongqing; Pinker, R. T.; Chin, M.; Holben, B.; Remer, L.

    2008-04-01

    In a previous study (Liu et al., 2005) obtained are global scale estimates of aerosol optical depth at 0.55 μm based on spatial and temporal variation patterns from models and satellite observations, regulated by the Aerosol Robotic Network (AERONET) measurements. In this study an approach is developed to obtain information on global distribution of the single scattering albedo (ω0), the asymmetry parameter (g), and the normalized extinction coefficient over shortwave (SW) spectrum. Since space observations of ω0 are in early stages of development and none are available for g, first an approach was developed to infer them from relevant information from the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, Moderate Resolution Imaging Spectroradiometer (MODIS) and AERONET retrievals. The single scattering albedo is generated by extending GOCART ω0 at 0.55 μm to the entire SW spectrum using spectral dependence derived from AERONET retrievals. The asymmetry parameter over the solar spectrum is derived from the MODIS Ångström wavelength exponent, utilizing a relationship based on AERONET almucantar observations. The normalized extinction coefficient is estimated from the MODIS Ångström wavelength exponent. The methodology was implemented as a "proof of concept" with one year of data. The approach described here is a step in preparedness for utilizing information from new observing systems (e.g., MISR, A-Train constellation) when available. The impact of the newly derived information on the quality of satellite based estimates of surface radiative fluxes was evaluated and is presented by Liu and Pinker (2008).

  2. An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models

    SciTech Connect

    Kinne, Stefan; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, Olivier; Chin, M.; Collins, W.; Dentener, F.; Diehl, T.; Easter, Richard C.; Feichter, H.; Fillmore, D.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Herzog, M.; Horrowitz, L.; Isaksen, I.; Iversen, T.; Kirkevag, A.; Kloster, S.; Koch, D.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Lesins, G.; Liu, Xiaohong; Lohmann, U.; Montanaro, V.; Myhre, G.; Penner, Joyce E.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-29

    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment global fields for mass and for mid-visible aerosol optical thickness (aot) were compared among aerosol component modules of 21 different global models. There is general agreement among models for the annual global mean of component combined aot. At 0.12 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca 0.14) and space (MODIS-MISR composite ca 0.16). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture have remained. Of particular concern is the large model diversity for contributions by dust and carbon, because it leads to significant uncertainty in aerosol absorption (aab). Since not only aot but also aab influence the aerosol impact on the radiative energy-balance, aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) and space (e.g. correlations between retrieved aerosol and cloud properties).

  3. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  4. An investigation of aerosol optical properties: Atmospheric implications and influences

    NASA Astrophysics Data System (ADS)

    Penaloza-Murillo, Marcos A.

    An experimental, observational, and theoretical investigation of aerosol optical properties has been made in this work to study their implications and influences on the atmosphere. In the laboratory the scientific and instrumental methodology consisted of three parts, namely, aerosol generation, optical and mass concentration measurements, and computational calculations. In particular the optical properties of ammonium sulfate and caffeine aerosol were derived from measurements made with a transmissometer cell-reciprocal- integrating nephelometer (TCRIN), equipped with a laser beam at 632.8 nm, and by applying a Mie theory computer code The aerosol generators, optical equipment and calibration procedures were reviewed. The aerosol shape and size distribution were studied by means of scanning electron microscopy and the Gumprecht- Sliepcevich/Lipofsky-Green extinction-sedimentation method. In particular the spherical and cylindrical shape were considered. During this investigation, an alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer, which is based on a linearisation of the Lambert-Beer law, was found. In addition, adapting the TCRIN to electrooptical aerosol studies, the optical properties of a circular-cylindrical aerosol of caffeine were undertaken under the condition of random orientation in relation with the laser beam, and perpendicular orientation to it. A theoretical study was conducted to assess the sensitivity of aerosol to a change of shape under different polarisation modes. The aerosol optical properties, obtained previously in the laboratory, were then used to simulate the direct radiative forcing. The calculations and results were obtained by applying a one- dimensional energy-balance box model. The influence of atmospheric aerosol on the sky brightness due to a total solar eclipse was studied using the photometric and meteorological observations made during the

  5. Optically thick outflows in ultraluminous supersoft sources

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-02-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ˜0.1 keV, bolometric luminosities ˜ a few 1039 erg s-1, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disc outflow becomes effectively optically thick and forms a large photosphere, shrouding the inner regions from our view. Our model predicts that when the photosphere expands to ≳ 105 km and the temperature decreases below ≈50 eV, ULSs become brighter in the far-UV but undetectable in X-rays. Conversely, we find that harder emission components begin to appear in ULSs when the fitted size of the thermal emitter is smallest (interpreted as a shrinking of the photosphere). The observed short-term variability and absorption edges are also consistent with clumpy outflows. We suggest that the transition between ULXs (with a harder tail) and ULSs (with only a soft thermal component) occurs at blackbody temperatures of ≈150 eV.

  6. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  7. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  8. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  9. Biogenic Aerosols Over the Amazon Basin: Optical Properties and Relationship With Elemental and Ionic Composition

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Martin, S. T.; Andreae, M. O.; Godoy, J. M.; Godoy, M. L.; Rizzo, L. V.; Paixao, M.

    2008-12-01

    We investigated the optical properties of natural biogenic aerosol particles over the central Amazon Basin near Manaus during the wet season in February and March 2008. The measurements were conducted as part of the AMAZE-08 (Amazonian Aerosol Characterization Experiment) sampling campaign. Light absorption was determined with the use of an Aethalometer and an MAAP (Multi Angle Absorption Photometer). Light scattering was measured with a 3 wavelength TSI nephelometer and an Ecotech nephelometer. The elemental composition was measured trough PIXE and IC. Single scattering albedo shows relatively low values varying from 0.86 to 0.95. Very low fine mode aerosol mass was measured, and coarse mode particles are responsible for a significant fraction of scattering and absorption. Sulfur was observed in very low concentrations, and most of the aerosol mass was organic. Long range transport of soil dust from Sahara were observed and reflected in the light scattering coefficient. Wavelength dependence of absorption indicates the strong influence of coarse mode aerosol. Aerosol optical thickness shows low values, but with significant single scattering albedo values, showing strong absorption properties of these biogenic aerosols. Size distribution measurements shows consistence with the scattering coefficients measured, if the coarse mode particles are taken into account.

  10. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  11. A study of aerosol optical properties at the global GAW station Bukit Kototabang, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurhayati, N.; Nakajima, Teruyuki

    2012-01-01

    There have been very few studies carried out in Indonesia on the atmospheric aerosol optical properties and their impact on the earth climate. This study utilized solar radiation and aerosol measurement results of Indonesian GAW station Bukit Kototabang in Sumatra. The radiation data of nine years were used as input to a radiation simulation code for retrieving optically equivalent parameters of aerosols, i.e., aerosol optical thickness (AOT), coarse particle to fine particle ratio ( γ-ratio), and soot fraction. Retrieval of aerosol properties shows that coarse particles dominated at the station due to high relative humidity (RH) reaching more than 80% throughout the year. AOT time series showed a distinct two peak structure with peaks in MJJ and NDJ periods. The second peak corresponds to the period of high RH suggesting it was formed by active particle growth with large RH near 90%. On the other hand the time series of hot spot number, though it is only for the year of 2004, suggests the first peak was strongly contributed by biomass burning aerosols. The γ-ratio took a value near 10 throughout the year except for November and December when it took a larger value. The soot fraction varies in close relation with the γ-ratio, i.e. low values when γ was large, as consistent with our proposal of active particle growth in the high relative periods.

  12. Retrieval of Spectral Aerosol Optical Properties and Their Relationship to Aerosol Chemistry During ARCTAS

    NASA Astrophysics Data System (ADS)

    Corr, C. A.; Hall, S. R.; Ullmann, K.; Shetter, R.; Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L.; Cubison, M.; Jimenez, J. L.; Dibb, J. E.

    2010-12-01

    Aerosols are known to both absorb and scatter radiation at UV wavelengths with the degree of absorption/scattering largely dependent on aerosol chemistry. The interactions of aerosols with the UV radiation field were examined during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). Analysis focused on two case studies; one flight from the first phase of ARCTAS over Alaska and the Arctic ocean (Flight 10, April 2008) and the other from the second phase over northern Canada (Flight 17, June 2008). These flights were chosen based on availability of aircraft profiles through pollution layers and biomass burning smoke plumes with high loadings of organic aerosol during flight. Aerosol single scattering albedo (ω) was retrieved at near-UV (350-400nm) wavelengths at 1nm resolution from spectral actinic flux data collected aboard the NASA DC-8 aircraft during ARCTAS using two CCD Actinic Flux Spectroradiometers. Retrievals were performed using the Tropospheric Ultraviolet Model version 4.6 (TUV 4.6). Inputs of trace gas (e.g., NO2, SO2) concentrations, aerosol optical depth, location, time, pressure, etc. required by TUV were determined from ancillary aircraft measurements made from the DC-8. Values of ω were subsequently used to determine absorption optical depth (τabs) for each of the examined flights. Retrieval and calculation results were compared to aerosol optical properties in the visible (calculated from measurements of absorption and scattering aboard the DC-8) and the spectral dependencies characterized. Spectral ω and τabs were compared with aerosol chemistry data collected by an Aerosol Mass Spectrometer (AMS) to provide insight into the role of aerosol composition on absorption in the UV wavelength range. In particular, spectral dependencies were compared to the oxidation state of the organic aerosol (determined from AMS data) to examine the impact of aerosol processing/aging on spectral ω and τabs.

  13. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  14. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  15. Sensitivity of spectral reflectance to aerosol optical properties in UV and visible wavelength range: Preparatory study for aerosol retrieval from Geostationary Environmental Monitoring Spectrometer (GEMS)

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Lee, J.

    2011-12-01

    Asia, with its rapid increase in industrialization and population, has been receiving great attention as one of important source regions of pollutants including aerosols and trace gases. Since the spatio-temporal distribution of the pollutants varies rapidly, demands to monitor air quality in a geostationary satellite have increased recently. In these perspectives, the Ministry of Environment of Korea initiated a geostationary satellite mission to launch the Geostationary Environmental Monitoring Spectrometer (GEMS) onboard the GEO-KOMPSAT in 2017-2018 timeframe. From the Ozone Monitoring Instrument (OMI) measurements, it has been found that the low surface reflectance and strong interaction between aerosol absorption and molecular scattering in UV wavelength range can be advantageous in retrieving aerosol optical properties, such as aerosol optical thickness (AOT) and optical type (or single scattering albedo), over the source regions as well as ocean areas. In addition, GEMS is expected to have finer spatial resolution compared to OMI (13 x 24 km2 at nadir), thereby less affected by sub-pixel clouds. In this study, we present sensitivity of spectral reflectance to aerosol optical properties in ultraviolet (UV) and visible wavelength range for a purpose to retrieve aerosol optical properties from GEMS. The so called UV-VIS algorithm plans to use spectral reflectance in 350-650 nm. The algorithm retrieves AOT and aerosol type using an inversion method, which adopts pre-calculated lookup table (LUT) for a set of assumed aerosol models. For the aerosol models optimized in Asia areas, the inversion data of Aerosol Robotic Network (AERONET) located in the target areas are selectively used to archive aerosol optical properties. As a result, major aerosol types representing dust, polluted dust, and absorbing/non-absorbing anthropogenic aerosols are constructed and used for the LUT calculations. We analyze the effect of cloud contamination on the retrieved AOT by

  16. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-10-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  17. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-01-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  18. Validation of MODIS Aerosol Optical Depth Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.

  19. Global patterns of cloud optical thickness variation with temperature

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William B.; Rind, David

    1992-01-01

    The International Satellite Cloud Climatology Project dataset is used to correlate variations of cloud optical thickness and cloud temperature in today's atmosphere. The analysis focuses on low clouds in order to limit the importance of changes in cloud vertical extent, particle size, and water phase. Coherent patterns of change are observed on several time and space scales. On the planetary scale, clouds in colder, higher latitudes are found to be optically thicker than clouds in warmer, lower latitudes. On the seasonal scale, winter clouds are, for the most part, optically thicker than summer clouds. The logarithmic derivative of cloud optical thickness with temperature is used to describe the sign and magnitude of the optical thickness-temperature correlation. The seasonal, latitudinal, and day-to-day variations of this relation are examined for Northern Hemisphere clouds in 1984. In cold continental clouds, optical thickness increases with temperature, consistent with the temperature variation of the adiabatic cloud water content. In warm continental and in almost all maritime clouds, however, optical thickness decreases with temperature.

  20. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  1. Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals

    NASA Technical Reports Server (NTRS)

    Wang, Meng-Hua; King, Michael D.

    1997-01-01

    We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic

  2. Optical properties of urban aerosols in the region Bratislava-Vienna—II: Comparisons and results

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Hrvoľ, J.

    The optical and microphysical properties of aerosols in highly urbanized region Bratislava-Vienna were determined by means of ground-based optical methods during campaign in August and September 2004. Although both cities are close to each other forming a common metropolitan region, the features of their aerosol systems are distinct. While urban and suburban zones around Vienna have mostly a clean air without major influences of emissions from industry, Bratislava itself need to be classified as polluted area—the optical data collected in the measuring site are influenced mainly by Technické Sklo factory (NW positioned), Matador (SSE), Istrochem (ENE) and Slovnaft (ESE). In contrary to an observed smooth evolution of the aerosol system in Vienna, the aerosol environment is quite unstable in Bratislava and usually follows the day changes of the wind directions (as they correspond to the position of individual sources of pollution). The particle sizes in Bratislava are predominately larger compared to Vienna. A subsidiary mode within surface size distribution frequently occurs at radius about 0.7 μm in Bratislava but not in Vienna. The size distribution of airborne particles in Vienna is more dependent on relative humidity than in Bratislava. It suggests the particles in Bratislava are larger whenever, or non-deliquescent to a great extent. The spectral attenuation of solar radiation by aerosol particles shows a typical mode at λ≈0.4μm in Bratislava, which is not observed in the spectral aerosol extinction coefficient in Vienna. In Bratislava, the average aerosol optical thickness grows from morning hours to the evening, while an opposite effect can be observed in Vienna in the same time.

  3. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    NASA Astrophysics Data System (ADS)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  4. Computing Temperatures in Optically Thick Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  5. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  6. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    NASA Astrophysics Data System (ADS)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  7. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  8. Optical coherence tomography as film thickness measurement technique

    NASA Astrophysics Data System (ADS)

    Manallah, Aissa; Bouafia, Mohamed; Meguellati, Said

    2015-01-01

    Optical coherence tomography (OCT) is a powerful optical method, noninvasive and noncontact diagnostic method. Although it is usually used for medical examinations, particularly in ocular exploration; it can also be used in optical metrology as measure technique. In this work, we use OCT to measure thicknesses of films. In OCT, depth profiles are constructed by measuring the time delay of back reflected light by interferometry measurements. Frequency in k-space is proportional to optical path difference. Then the reflectivity profile is obtained by a Fourier transformation, and the difference between two successive peaks of the resulting spectrum gives the film thickness. Several films, food-type, of different thicknesses were investigated and the results were very accurate.

  9. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  10. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  11. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  12. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  13. Aerosol vertical distribution, optical properties and transport over Corsica (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Léon, J.-F.; Augustin, P.; Mallet, M.; Bourrianne, T.; Pont, V.; Dulac, F.; Fourmentin, M.; Lambert, D.; Sauvage, B.

    2015-03-01

    This paper presents the aerosol vertical distribution observed in the western Mediterranean between February and April 2011 and between February 2012 and August 2013. An elastic backscattering lidar was continuously operated at a coastal site in the northern part of Corsica Island (Cap Corse) for a total of more than 14 000 h of observations. The aerosol extinction coefficient retrieved from cloud-free lidar profiles are analyzed along with the SEVIRI satellite aerosol optical depth (AOD). The SEVIRI AOD was used to constrain the retrieval of the aerosol extinction profiles from the lidar range-corrected signal and to detect the presence of dust or pollution aerosols. The daily average AOD at 550 nm is 0.16 (±0.09) and ranges between 0.05 and 0.80. A seasonal cycle is observed with minima in winter and maxima in spring-summer. High AOD days (above 0.3 at 550 nm) represent less than 10% of the totality of daily observations and correspond to the large scale advection of desert dust from Northern Africa or pollution aerosols from Europe. The respective origin of the air masses is confirmed using FLEXPART simulations in the backward mode. Dust events are characterized by a large turbid layer between 2 and 5 km height while pollution events show a lower vertical development with a thick layer below 3 km in altitude. However low level dust transport is also reported during spring while aerosol pollution layer between 2 and 4 km height has been also observed. We report an effective lidar ratio at 355 nm for pollution aerosols 68 (±13) Sr while it is 63 (±18) Sr for dust. The daily mean AOD at 355 nm for dust events is 0.61 (±0.14) and 0.71 (±0.16) for pollution aerosols events.

  14. Radiance and polarization of light reflected from optically thick clouds.

    PubMed

    Kattawar, G W; Plass, G N

    1971-01-01

    The reflected radiance and polarization are calculated for clouds with optical thicknesses from 10 to 100. The results are presented for both the haze C and nimbostratus model. The peak in the single scattered polarization at 140 degrees for the nimbostratus model persists even with all the multiple scattering events that occur for the largest optical thicknesses considered here. The calculations are made by a Monte Carlo technique, which includes the effect of multiple scattering through all orders and a realistic anisotropic phase function for single scattering appropriate for the distribution of particle sizes in the cloud. The effect of the surface albedo is included in the calculations for the optical thickness of 10. The variation of the radiance and polarization with both the nadir and azimuthal angle is given for several solar zenith angles.

  15. Global patterns of cloud optical thickness variation with temperature

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rind, David; Rossow, William B.

    1990-01-01

    A global cloud climatology dataset is used to study patterns of cloud optical thickness variation with temperature. The data, which cover the period from July 1983 through June 1995, contain detailed information on the distribution of cloud radiative properties and their diurnal and seasonal variations, as well as information on the vertical distribution of temperature and humidity in the troposphere. For cold low clouds over land, the temperature coefficient of change in optical thickness has a value of about 0.04, which is similar to that deduced from Soviet aircraft observations and derived from thermodynamic considerations for the change of cloud liquid water with temperature. It is suggested that, in this cold-temperature range, cloud optical thickness variations are dominated by changes in the liquid water content of the cloud and that the liquid water content changes in accordance with the thermodynamic theory.

  16. Evolution of Biomass Burning Aerosol Optical Properties in the Near Field

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Arnott, W. P.; Chand, D.; Fortner, E.; Freedman, A.; Kleinman, L. I.; Onasch, T. B.; Shilling, J. E.; Springston, S. R.

    2014-12-01

    Biomass burning (BB) events are known to produce chemically rich environments that can impact the evolution of primary aerosols and influence secondary aerosols production rates. With their increasing in frequency, BB events are expected to exert an ever-increasing impact on climate due to aerosol radiative forcing processes. One area that is still poorly understood is the evolution of these smoke aerosols in the near field. Recent literature suggests that BB aerosols undergo a rapid evolution near their source that is then followed by a slower aging phase. During the summer of 2013, the Department of Energy-sponsored an aircraft field campaign called the Biomass Burning Observation Project (BBOP) that specifically targeted the evolution of smoke aerosols in the near field (< 2 hours). Results examining the evolution of BB optical and microphysical properties will be presented. To probe these properties, the BBOP field campaign deployed a Single Particle Soot Photometer (SP2) to probe the mixing state of refractory black carbon (rBC) and a Soot Particle Aerosol Mass Spectrometer (SP-AMS) to investigate the composition of both non-refractory and rBC-containing particles. Aerosol optical properties were measured in situ using a 355 nm Photoacoustic spectrometer (PAS), a 532 nm photo thermal interferometer (PTI), a 630 nm cavity Attenuation Phase Shifted (CAPS) spectrometer, a 3-λ nephelometer, and a 3-λ PSAP. The BBOP study represented the maiden aircraft deployment for the SP-AMS, the 355 nm PAS and 532 nm PTI. Discussion will be on the near-field evolution of particle mixing state and morphology, chemical composition, and microphysical processes that determine aerosol size distributions and single scattering albedo (SSA) of light absorbing aerosols. In the cases studied, increases in the coating thickness of refractive black carbon (rBC) particles, organic aerosol/rBC ratio, scattering/CO ratio, and aerosol size distributions have been observed. Results will be

  17. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  18. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  19. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  20. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  1. Tissue thickness calculation in ocular optical coherence tomography

    PubMed Central

    Alonso-Caneiro, David; Read, Scott A.; Vincent, Stephen J.; Collins, Michael J.; Wojtkowski, Maciej

    2016-01-01

    Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature. PMID:26977367

  2. Optical substrate thickness measurement system using hybrid fiber-freespace optics and selective wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Sheikh, Mumtaz; Perez, Frank

    2007-01-01

    Proposed and demonstrated is a simple few components non-contact thickness measurement system for optical quality semi-transparent samples such as Silicon (Si) and 6H Silicon Carbide (SiC) optical chips used for designing sensors. The instrument exploits a hybrid fiber-freespace optical design that enables self-calibrating measurements via the use of confocal imaging via single mode fiber-optics and a self-imaging type optical fiber collimating lens. Data acquisition for fault-tolerant measurements is accomplished via a sufficiently broadband optical source and a tunable laser and relevant wavelength discriminating optics. Accurate sample thickness processing is achieved using the known material dispersion data for the sample and the few (e.g., 5) accurately measured optical power null wavelengths produced via the sample etalon effect. Thicknesses of 281.1 μm and 296 μm are measured for given SiC and Si optical chips, respectively.

  3. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    NASA Astrophysics Data System (ADS)

    Esparza, Angel Eduardo

    2011-12-01

    retrieve the size distribution of them. This method permits the assessment of aerosols in the ambient in-situ, without physically extracting them from their current state, as the filter technique does. The second objective was an analysis and comparison of the aerosol optical thickness (AOT) data between ground-based instruments and satellite data. In this project, the groundbased instruments are the Multi Filter Rotating Shadowband Radiometers (MFRSR) installed at UTEP and the nearest sun photometer facility, a NASA's Aerosol Robotic Network (AERONET), located at White Sands, New Mexico. The satellite data is provided by the NASA's Multi-angle Imaging Spectro-radiometer (MISR) instrument located in the Terra satellite. Finally, the third objective was to estimate ground particulate matter concentration of particles no greater than 2.5 mum in diameter (PM2.5) by using the MISR's satellite data. This objective was achieved by implementing an empirical mathematical model that includes measured data. In addition, this model addressed the geographic characteristics of the region as well as several factors such as season, relative humidity (RH) and the height of the planetary boundary layer (PBL).

  4. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  5. Aerosol optical properties over the midcontinental United States

    SciTech Connect

    Halthore, R.N. ); Markham, B.L.; Ferrare, R.A. ); Aro, T.O. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. Here the authors report on measurements of aerosol optical depth over the FIFE site, making use of a calibrated Sun photometer. Aerosols are relevant for the impact they have on remotely sensed measurements of radiation effects on the earth. They also play a major role in cloud formation, and can impact the atmospheric concentration of minor species gases. Here the authors look at the meteorological effects on aerosols in the troposphere. Wavelength dependence gives information on the size distributions within the aerosols. During 1987 they observe mixing of gulf air with continental air over the site. They report on correlation with surface values of pressure, temperature, specific, and relative humidity.

  6. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  7. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  8. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  9. Formation of Thick Dense Yttrium Iron Garnet Films Using Aerosol Deposition.

    PubMed

    Johnson, Scooter D; Glaser, Evan R; Kub, Fritz J; Eddy, Charles R

    2015-05-15

    Aerosol deposition (AD) is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95% of the bulk. The primary advantage of AD is that the deposition takes place entirely at ambient temperature; thereby enabling film growth in material systems with disparate melting temperatures. This report describes in detail the processing steps for preparing the powder and for performing AD using the custom-built system. Representative characterization results are presented from scanning electron microscopy, profilometry, and ferromagnetic resonance for films grown in this system. As a representative overview of the capabilities of the system, focus is given to a sample produced following the described protocol and system setup. Results indicate that this system can successfully deposit 11 µm thick yttrium iron garnet films that are  > 90% of the bulk density during a single 5 min deposition run. A discussion of methods to afford better control of the aerosol and particle selection for improved thickness and roughness variations in the film is provided.

  10. A new operational EUMETSAT product for the retrieval of aerosol optical properties over land (PMAp v2)

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Poli, Gabriele; Holdak, Andriy; Lang, Ruediger

    2016-04-01

    The retrieval of aerosol optical properties is an important task to provide data for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolution for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) has been delivered as an operational GOME product to our customers. The algorithm retrieves aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The product is now extended to pixels over land using a new release of the operational PMAp processor (PMAp v2). The pre-operational data dissemination of the new PMAp v2 data to our users is scheduled for March 2016. This presentation gives an overview on the new operational product PMAp v2 with a focus on the validation of the PMAp aerosol optical depth over land. The impact of different error sources on the results (e.g. surface contribution to the TOA reflectance) is discussed. We also show first results of upcoming extensions of our PMAp processor, in particular the improvement of the cloud/aerosol discrimination of thick aerosol events (e.g. volcanic ash plumes, desert dust outbreaks).

  11. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-07-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer-Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  12. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  13. Cloud optical thickness feedbacks in the CO2 climate problem

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1985-01-01

    A radiative-convective equilibrium model is developed and applied to study cloud optical thickness feedbacks in the CO2 climate problem. The basic hypothesis is that in the warmer and moister CO2-rich atmosphere, cloud liquid water content will generally be larger than at present, so that cloud optical thickness will be larger too. For clouds other than thin cirrus, the result is to increase the albedo more than to increase the greenhouse effect. Thus the sign of the feedback is negative: cloud optical properties alter in such a way as to reduce the surface and tropospheric warming caused by the addition of CO2. This negative feedback can be substantial. When observational estimates of the temperature dependence of cloud liquid water content are employed in the model, the surface temperature change due to doubling CO2 is reduced by about one half.

  14. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  15. Retrieval of aerosol optical properties over land using PMAp

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Lang, Ruediger; Poli, Gabriele; Holdak, Andriy

    2015-04-01

    The retrieval of aerosol optical properties is an important task for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolutions for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) is delivered as operational GOME product to our customers. The algorithms retrieve aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The next releases of PMAp will provide an extended set of aerosol and cloud properties which include AOD over land and an improved volcanic ash retrieval combining AVHRR and IASI. This presentation gives an overview on the existing product and the prototypes in development. The major focus is the discussion of the AOD retrieval over land implemented in the upcoming PMAp2 release. In addition, the results of our current validation studies (e.g. comparisons to AERONET, other satellite platforms and model data) are shown.

  16. Dust aerosol optical properties using ground-based and airborne lidar in the framework of FENNEC

    NASA Astrophysics Data System (ADS)

    Marnas, Fabien; Chazette, Patrick; Flamant, Cyrille; Royer, Philippe; Boytard, Mai-Lan; Genau, Pascal; Doira, Pascal; Bruneau, Didier; Pelon, Jacques; Sanak, Joseph

    2013-04-01

    The FENNEC program aims to improve our knowledge of both the role of the Saharan Heat Low (SHL) on the West African monsoon and the interactions between the African continent and the Mediterranean basin through the Saharan dust transport. The Saharan desert is the major source of mineral dust in the world and may significantly impact the air quality over the Western Europe by increasing the particular matter content. Two lidar systems were operated by the French component of the FENNEC project: an airborne lidar which was flown aboard the French Falcon 20 research aircraft and a ground-based lidar which was located in the southeastern part of Spain, close to Marbella. The presence of dust in the Saharan atmospheric boundary layer has been easily highlighted using the lidars and confirmed by ground-based sunphotometer and observations from both MODIS and SEVIRI spaceborne instruments. The simultaneous use of the sunphotometer-derived Angstrom exponent and the lidar-derived backscatter to extinction ratio is appeared to be a good approach to separate the optical contribution of dust from local aerosols for the coastal site. Over Spain, the dust layer was mainly located above the planetary boundary layer with several kilometers thick. Over the tropical Atlantic Ocean and the Mauritania the airborne lidar shows a high planetary boundary layer (~5 km above the mean sea level) associated to strong aerosol optical thickness (> 0.8 at 532 nm). The airborne lidar data have been inverted using both MODIS and SEVIRI-derived aerosol optical thickness. The differences between dust optical properties close to and remote from the sources will be discussed.

  17. Thickness identification of two-dimensional materials by optical imaging.

    PubMed

    Wang, Ying Ying; Gao, Ren Xi; Ni, Zhen Hua; He, Hui; Guo, Shu Peng; Yang, Huan Ping; Cong, Chun Xiao; Yu, Ting

    2012-12-14

    Two-dimensional materials, e.g. graphene and molybdenum disulfide (MoS(2)), have attracted great interest in recent years. Identification of the thickness of two-dimensional materials will improve our understanding of their thickness-dependent properties, and also help with scientific research and applications. In this paper, we propose to use optical imaging as a simple, quantitative and universal way to identify the thickness of two-dimensional materials, i.e. mechanically exfoliated graphene, nitrogen-doped chemical vapor deposition grown graphene, graphene oxide and mechanically exfoliated MoS(2). The contrast value can easily be obtained by reading the red (R), green (G) and blue (B) values at each pixel of the optical images of the sample and substrate, and this value increases linearly with sample thickness, in agreement with our calculation based on the Fresnel equation. This method is fast, easily performed and no expensive equipment is needed, which will be an important factor for large-scale sample production. The identification of the thickness of two-dimensional materials will greatly help in fundamental research and future applications.

  18. Controlling Environmental Effects on Optical Measurements of Gate Dielectric Thickness

    SciTech Connect

    Elisa, U.; Van Buskirk, Jonathan; Pois, Heath; Zhukov, Vladimir; Morris, Stephen; Kelso, Sue; Collings, Chris; McWhirter, Jim; Nguyen, Thierry; Ramamurthi, Saroja

    2005-09-09

    As the gate dielectric has scaled to the sub 3 nanometer regime, demands on gate dielectric thickness control have translated into the need for sub-monolayer precision on thickness measurements. While current ellipsometry techniques are capable of meeting these requirements, environmental film growth on the gate dielectric induces changes in the optical thickness of the film, yielding artificially thick results when measured. This growth is not constant, and we will discuss how both large scale and localized fluctuations of ambient parameters affect growth rates and can destabilize existing growth.In response to AMC (Airborne Molecular Contamination) layer formation, optical thickness metrology suppliers have developed a variety of techniques to remove the AMC layer from the film prior to measurement. As AMC growth rates are affected by humidity, air pressure, and air composition, each AMC desorption method must be customized for the individual properties of the gate dielectric and process environment to optimize AMC removal. Two AMC layer desorption techniques have been investigated and will be covered along with their respective strengths and complications in a production environment.

  19. Vanadium dioxide thickness effects on tunable optical antennas

    NASA Astrophysics Data System (ADS)

    Earl, Stuart K.; James, Timothy D.; Marvel, Robert E.; Gomez, Daniel E.; Davis, Timothy J.; Valentine, Jason G.; McCallum, Jeffrey C.; Haglund, Richard F.; Roberts, Ann

    2013-12-01

    Vanadium Dioxide is an optically dense phase change material that has been applied to modulating the resonances of plasmonic structures resonant in the THz, infrared and optical ranges. It has been shown previously that fabrication of optical antennas on thin films of Vanadium Dioxide can result in a resonance shift of more than 10% across the phase change. This post-fabrication, dynamic tuning mechanism has the potential to significantly increase the possible applications of plasmonic devices. Here, we show that optical antenna arrays fabricated on differing thicknesses of Vanadium Dioxide supported by a silicon substrate show a dependence of their resonant wavelengths on this thickness. Along with the geometry of the antennas in the arrays this constitutes an additional degree of freedom in the design of the tuning range of these devices, offering further potential for optimisation of this mechanism. The potential extra blue-shift provided by optimising this thickness may be used, for example, in lieu of reducing antenna dimensions to avoid increasing antenna absorption and the additional plasmonic heating that can result.

  20. Deep and Clear Optical Imaging of Thick Inhomogeneous Samples

    PubMed Central

    Andilla, Jordi; Maandhui, Amina; Frongia, Céline; Lobjois, Valérie; Ducommun, Bernard; Lorenzo, Corinne

    2012-01-01

    Inhomogeneity in thick biological specimens results in poor imaging by light microscopy, which deteriorates as the focal plane moves deeper into the specimen. Here, we have combined selective plane illumination microscopy (SPIM) with wavefront sensor adaptive optics (wao). Our waoSPIM is based on a direct wavefront measure using a Hartmann-Shack wavefront sensor and fluorescent beads as point source emitters. We demonstrate the use of this waoSPIM method to correct distortions in three-dimensional biological imaging and to improve the quality of images from deep within thick inhomogeneous samples. PMID:22558226

  1. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  2. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land.

    PubMed

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ(550) with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ(550) and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ(550) retrieved by Module A (r(2) = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r(2) ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  3. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  4. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  5. Satellite remote sensing of nonspherical tropospheric aerosols

    SciTech Connect

    Mishchenko, M.I.; Travis, L.D.; Lacis, A.A.; Carlson, B.E.

    1995-12-31

    In this paper the authors discuss the possible effect of nonsphericity of solid tropospheric aerosols on the accuracy of aerosol optical thickness retrievals from reflectance measurements over the ocean surface. To model light-scattering properties of nonspherical aerosols, they use a shape mixture of moderately aspherical, randomly oriented polydisperse spheroids. They assume that the size distribution and refractive index of aerosols are known and use the aerosol optical thickness 0.2 to compute the reflectivity for an atmosphere-ocean model similar to that used in the AVHRR aerosol retrieval algorithms. They then use analogous computations for volume-equivalent spherical aerosols with varying optical thickness to invert the simulated nonspherical reflectance. The computations demonstrate that the use of the spherical model to retrieve the optical thickness of actually nonspherical aerosols can result in errors which, depending on the scattering geometry, can well exceed 100%.

  6. Determination of the corneal thickness profile by optical pachometry.

    PubMed

    Edmund, C

    1987-04-01

    A clinical method of measuring central-peripheral corresponding values of corneal thickness and measurement positions in the horizontal meridian is described. Employing a fitting procedure it is demonstrated that the relative increase in the corneal thickness from apex to limbus is proportional to the square of the chord distance. The proportionality factor is defined as the coefficient of thickness variation (TV). Tm is defined as the minimal corneal thickness. In relation to the visual axis the chord distance xm denote the temporal or nasal position of Tm. TV, Tm and xm are characteristic constants of a particular eye. Measuring the corneal thickness and the chord distance in mm pooled values of 80 eyes demonstrates (means +/- SD) Tm to be 0.575 +/- 0.027, and TV to be 0.0088 +/- 0.0020. With the normal interval in parenthes these results imply an enlargement of corneal thickness 0.9% (0.4-1.3%) 1 mm and 22% (12-32%) 5 mm from the visual axis. With respect to the position of Tm 21 eyes (26%) showed a median temporal displacement at 0.4 mm, 4 eyes (5%) showed a median nasal displacement at 0.3 mm and 55 eyes (69%) showed no significant displacement. This corresponds to the usual angle kappa value, which clinically expresses the often slight nasal decentration of the visual axis relative to the optic axis.

  7. Aerosol Optical Properties over the Oceans: Summary and Interpretation of Shadow-Band Radiometer Data from Six Cruises. Chapter 19

    NASA Technical Reports Server (NTRS)

    Miller, Mark A.; Reynolds, R. M.; Bartholomew, Mary Jane

    2001-01-01

    The aerosol scattering component of the total radiance measured at the detectors of ocean color satellites is determined with atmospheric correction algorithms. These algorithms are based on aerosol optical thickness measurements made in two channels that lie in the near-infrared portion of the electromagnetic spectrum. The aerosol properties in the near-infrared region are used because there is no significant contribution to the satellite-measured radiance from the underlying ocean surface in that spectral region. In the visible wavelength bands, the spectrum of radiation scattered from the turbid atmosphere is convolved with the spectrum of radiation scattered from the surface layers of the ocean. The radiance contribution made by aerosols in the visible bands is determined from the near-infrared measurements through the use of aerosol models and radiation transfer codes. Selection of appropriate aerosol models from the near-infrared measurements is a fundamental challenge. There are several challenges with respect to the development, improvement, and evaluation of satellite ocean-color atmospheric correction algorithms. A common thread among these challenges is the lack of over-ocean aerosol data. Until recently, one of the most important limitations has been the lack of techniques and instruments to make aerosol measurements at sea. There has been steady progress in this area over the past five years, and there are several new and promising devices and techniques for data collection. The development of new instruments and the collection of more aerosol data from over the world's oceans have brought the realization that aerosol measurements that can be directly compared with aerosol measurements from ocean color satellite measurements are difficult to obtain. There are two problems that limit these types of comparisons: the cloudiness of the atmosphere over the world's oceans and the limitations of the techniques and instruments used to collect aerosol data from

  8. Ray vector fields, prismatic effect, and thick astigmatic optical systems.

    PubMed

    Harris, W F

    1996-06-01

    The application of the concept of ray vector fields to optical systems is reexamined. Paraxial or linear optics defines a four-dimensional ray vector field for any optical system: the vector field maps the incident ray vector into the emergent ray vector. In the case of thin systems, including thin astigmatic lenses, one can define a vector field of reduced dimensionality: the vector field is two-dimensional and maps the ray's incident position into the change in reduced direction. When the index of refraction is the same before and after a thin system, the change in reduced direction is the reduced deflection through the system or the reduced prismatic effect. Contrary to what has recently been claimed, this type of two-dimensional vector field does not apply in general to thick systems. However, a number of different types of two-dimensional vector fields can be defined for various particular classes of optical systems. Thick systems differ qualitatively from thin systems. They do not have equivalent thin lenses and cannot generally be replaced by thin lenses. Equations are derived for the change in reduced direction and deflection for a ray through optical systems in general and through separated two- and three-lens systems in particular. PMID:8807654

  9. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  10. Dynamics of photoinduced dichroism and birefringence in optically thick azopolymers

    SciTech Connect

    Ponomarev, Yu V; Ivanov, Yu V; Rumyantsev, Yu A; Gromchenko, A A

    2009-01-31

    Dynamics of photoinduced dichroism and birefringence have been studied experimentally and theoretically (with the help of the Dumont model) by using some comb-shaped azopolymers. It is shown that the dynamics of trans-isomer concentration and their angular distribution anisotropy can be restored from the experimentally found dichroism dynamics, with the concentration and anisotropy being averaged over the thickness for optically thick samples. At the initial stage of photoinduced anisotropy when the active role of the polymer matrix can be neglected, the experimental time dependence of dichroism is shown to comply well with the Dumont model even if the orientation memory is neglected, provided that only a part of trans-isomers participates in trans-isomerisation. (nonlinear optical phenomena)

  11. Noncontact optical measurement of lens capsule thickness ex vivo

    NASA Astrophysics Data System (ADS)

    Ziebarth, Noel M.; Manns, Fabrice; Uhlhorn, Stephen; Parel, Jean-Marie

    2004-07-01

    Purpose: To design a non-contact optical system to measure lens capsule thickness in cadaver eyes. Methods: The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused onto the tissue using an aspheric lens (NA=0.68) mounted on a motorized translation stage. Light reflected from the sample is collected by the fiber coupler and sent to a silicon photodiode connected to a power meter. Peaks in the power signal are detected when the focal point of the aspheric lens coincides with the capsule boundaries. The capsule thickness is proportional to the distance between successive peaks. Anterior and posterior lens capsule thickness measurements were performed on 13 human, 10 monkey, and 34 New Zealand white rabbit lenses. The cadaver eyes were prepared for optical measurements by bonding a PMMA ring on the sclera. The posterior pole was sectioned, excess vitreous was removed, and the eye was placed on a Teflon slide. The cornea and iris were then sectioned. After the experiments, the lenses were excised, placed in 10% buffered formalin, and prepared for histology. Results: Central anterior lens capsule thickness was 9.4+/-2.9μm (human), 11.2+/-6.6μm (monkey), and 10.3+/-3.6μm (rabbit) optically and 14.9+/-1.6μm (human), 17.7+/-4.9μm (monkey), and 12.6+/-2.3μm (rabbit) histologically. The values for the central posterior capsule were 9.4+/-2.9μm (human), 6.6+/-2.5μm (monkey), and 7.9+/-2.3μm (rabbit) optically and 4.6+/-1.4μm (human), 4.5+/-1.2μm (monkey), and 5.7+/-1.7μm (rabbit) histologically. Conclusions: This study demonstrates that a non-contact optical system can successfully measure lens capsule thickness in cadaver eyes.

  12. High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    PubMed Central

    2012-01-01

    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used. PMID:22283973

  13. Retrieval of aerosol aspect ratio from optical measurements in Vienna

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Gangl, M.

    The phase function and extinction coefficient measured simultaneously are interpreted in terms of surface distribution function and mean effective aspect ratio of aerosol particles. All optical data were collected in the atmosphere of Vienna during field campaign in June 2005. It is shown that behavior of aspect ratio of Viennese aerosols has relation to relative humidity in such a way, that nearly spherical particles (with aspect ratio ɛ≈1) might became aspherical with ɛ≈1.3-1.6 under low relative humidity conditions. Typically, >80% of all Viennese aerosols have the aspect ratio <1.4, so the morphology of these particles behaves like perturbed spheres. The ɛ, exceptionally, can reach the value about 2, but these situations occur with probability <2%. Most typically, the aspect ratio peaks at ɛ≈1.2 in the atmosphere of Vienna.

  14. View angle dependence of cloud optical thicknesses retrieved by MODIS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  15. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  16. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  17. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  18. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  19. Optical properties of aerosols over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bryant, C.; Eleftheriadis, K.; Smolik, J.; Zdimal, V.; Mihalopoulos, N.; Colbeck, I.

    Measurements of aerosol optical properties, size distribution and chemical composition were conducted at Finokalia, a remote coastal site on the Greek island of Crete (35°19'N, 25°40'E) during July 2000 and January 2001. During the summer campaign the total scattering coefficient, σ, (at a wavelength of 550 nm) ranged from 13 to 120 Mm -1 (mean=44.2 Mm -1, standard deviation=17.5) whilst during the winter it ranged from 7.22 to 37.8 Mm -1 (mean=18.42 Mm -1, standard deviation=6.61). A distinct diurnal variation in scattering coefficients was observed, with minima occurring during the early morning and maxima in the late afternoon during the summer and late evening during the winter. The mean value of the Ångström exponent was 1.47 during the summer and 1.28 during the winter, suggesting a larger fraction of smaller particles at the site during the summer. This was confirmed by continuous measurements of the aerosol size distribution. An analysis of the single scattering albedo suggests that there is a more absorbing fraction in the particle composition in the summer than during the winter. An investigation of air mass origins on aerosol optical properties indicated that those from Turkey and Central/Eastern Europe were highly polluted with a corresponding impact on aerosol optical properties. A linear relationship was obtained between the total scattering coefficient and both the non-sea-salt sulphate concentrations and the fine aerosol fraction.

  20. Seasonal variability of aerosol optical depth over Indian subcontinent

    USGS Publications Warehouse

    Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.

    2005-01-01

    Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.

  1. Total ozone column, aerosol optical depth and precipitable water effects on solar erythemal ultraviolet radiation recorded in Malta.

    NASA Astrophysics Data System (ADS)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro

    2013-04-01

    The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at

  2. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  3. Nighttime Aerosol Optical Depth Variability From Astronomical Photometry

    NASA Astrophysics Data System (ADS)

    Musat, I. C.; Ellingson, R. G.

    2006-12-01

    A technique for determination of the short-term (6 minutes intervals) variability of the aerosol optical depth (AOD) during nighttime from broadband visible measurements of star irradiances during clear nights was developed for the instrument called the Whole Sky Imager (WSI), placed at the Atmospheric Radiation Measurement (ARM) observation site in Oklahoma. The AOD is inferred indirectly from simultaneous observations of extinction of stars having different colors (spectra) and different elevations above the horizon, and takes into account the other sources for starlight attenuation in the atmosphere which might be present and which are measured by other instruments at the site at compatible timescales (e.g., precipitable water vapor content, columnar ozone amount, observed atmospheric stratification). The total error of the new method is a combination of the absolute star flux measurement error with the WSI and a systematic error in the models assumed for the other atmospheric components causing the starlight extinction. The relative error in the aerosol optical depth determined through this method is found to be below 4%. For the validation of the results, the comparison of the aerosol optical depth measured with the Lidar at 10 minutes intervals (at 355nm) with the AOD determined from WSI (in visible) shows a good agreement for the data in the interval studied (1999-2003).

  4. Evaluating UVA aerosol optical depth using a smartphone camera.

    PubMed

    Igoe, Damien P; Parisi, Alfio V; Carter, Brad

    2013-01-01

    This research evaluates a smartphone complementary metal oxide semiconductor (CMOS) image sensor's ability to detect and quantify incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies revealed that the consumer grade CMOS sensor has inherent UVA sensitivities, despite attenuating effects of the lens. Narrow bandpass and neutral density filters were used to protect the image sensor and to not allow saturation of the solar images produced. Observations were made on clear days, free from clouds. The results of this research demonstrate that there is a definable response to changing solar irradiance and aerosol optical depth can be measured within 5% and 10% error margins at 380 and 340 nm respectively. The greater relative error occurs at lower wavelengths (340 nm) due to increased atmospheric scattering effects, particularly at higher air masses and due to lower signal to noise ratio in the image sensor. The relative error for solar irradiance was under 1% for observations made at 380 nm. The results indicate that the smartphone image sensor, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate solar UVA irradiance and aerosol optical depth.

  5. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  6. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  7. The dynamics of radiation-driven, optically thick winds

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Nakar, Ehud; Piran, Tsvi

    2016-06-01

    Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes (dot{M} > L_Edd/c^2). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, Lk, are super-Eddington with L < Lk and L ∝ L_k^{1/3}. In the lower total luminosity regime, most of the energy is carried out by the radiation with Lk < L ≈ LEdd. In a third, low mass-loss regime (dot{M} < L_Edd/c^2), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.

  8. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  9. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  10. Optical and Hygroscopic Studies of Aerosols In Simulated Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Hasenkopf, Christa A.

    2011-08-01

    Basic characteristics of the early Earth climate, the only known environment in the Universe in which life has been known to emerge and thrive, remain a mystery. In particular, little is understood about the Earth's atmosphere 2.8 billion years ago. From climate models and laboratory studies, it is postulated that an organic haze, much like that found on Saturn's largest moon Titan, covered the early Earth. This haze, generated from photolysis of carbon dioxide (CO2) and methane (CH4), may have had profound climatic consequences. Climate models of the early Earth that include this haze have had to rely upon optical properties of a Titan laboratory analog. Titan haze, though thought to be similar, is formed from a different combination of precursor gases and by different energy sources than early Earth haze. This thesis examines the direct and indirect radiative effects of aerosol on early Earth climate by studying the optical and hygroscopic properties of a laboratory analog. A Titan analog is studied for comparison and to better understand spacecraft-retrieved haze chemical and optical properties from Titan. The properties of the laboratory analogs, generated in a flowing reactor cell with a continuum ultraviolet (UV) light source, were primarily measured using cavity ringdown aerosol extinction spectroscopy and UV-visible (UV-Vis) transmission spectroscopy. We find that the optical properties of our early Earth analog are significantly different than those of the Titan analog from Khare et al. (1984). In both the UV and visible, when modeled as fractals, particles with the optical properties of the early Earth analog have approximately 30% larger extinction efficiencies than particles with Khare et al. (1984) values. This result implies our early Earth haze analog would provide a more efficient UV shield and have a stronger antigreenhouse effect than the Khare et al. (1984) Titan analog. Our Titan analog has significantly smaller imaginary refractive index values

  11. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Welti, Andre; Ziemba, Luke D.; Murphy, Daniel M.

    2016-04-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US). Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ˜ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1-0.5 µm diameter dominates aerosol extinction.

  12. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  13. The Aerosol Limb Imager: acousto-optic imaging of limb scattered sunlight for stratospheric aerosol profiling

    NASA Astrophysics Data System (ADS)

    Elash, B. J.; Bourassa, A. E.; Loewen, P. R.; Lloyd, N. D.; Degenstein, D. A.

    2015-12-01

    The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype instrument. The long term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track. The instrument design uses a large aperture Acousto-Optic Tunable Filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicate that the radiance measurements are of high quality, and we have used these to retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650-1000 nm, along with one moment of the particle size distribution. Those preliminary results are promising and development of a satellite prototype of ALI within the Canadian Space Agency is ongoing.

  14. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  15. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  16. Aerosol Optical Properties During The SAMUM-2 Experiment

    NASA Astrophysics Data System (ADS)

    Toledano, C.; Freudenthaler, V.; Gross, S.; Seefeldner, M.; Gasteiger, J.; Garhammer, M.; Esselborn, M.; Wiegner, M.; Koepke, P.

    2009-03-01

    A field campaign of the Saharan Mineral Dust Experiment (SAMUM-2) took place in the Cape Verde islands in January-February 2008, to investigate the properties of long-range transported dust over the Atlantic. The Meteorological Institute of the University of Munich deployed a set of active and passive remote sensing instruments: one sun photometer, for the measurement of the direct sun irradiance and sky radiances; a broad-band UV radiometer; and 2 tropospheric lidar systems. The measurements were made in close cooperation with the other participating groups. During the measurement period the aerosol scenario over Cape Verde mostly consisted of a dust layer below 2 km and a smoke layer above 2 km height. The Saharan dust arrived in the site from the NE, whereas the smoke originated in the African equatorial region is transported from the SE. The aerosol load was also very variable over this area, with AOD (500 nm) ranging from 0.04 to 0.74. The optical properties of the layers are shown: extinction and particle depolarization ratio profiles at 3 wavelengths, as well as aerosol optical depth (in the range 340-1550 nm), Ångström exponent, size distribution and single scattering albedo.

  17. Dye lasing in optically manipulated liquid aerosols.

    PubMed

    Karadag, Y; Aas, M; Jonáš, A; Anand, S; McGloin, D; Kiraz, A

    2013-05-15

    We report lasing in airborne, rhodamine B-doped glycerol-water droplets with diameters ranging between 7.7 and 11.0 μm, which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Our experiments revealed nonlinear dependence of the intensity of the droplet whispering gallery modes (WGMs) on the pump laser fluence, indicating dye lasing. The average wavelength of the lasing WGMs could be tuned between 600 and 630 nm by changing the droplet size. These results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium. PMID:23938905

  18. Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-10-01

    Light absorption enhancement of aged soot aerosols is highly sensitive to the morphologies and mixing states of soot aggregates and their non-absorbing coatings, such as organic materials. The quantification of these effects on the optical properties of thinly coated soot aerosols is simulated using an effective model with fixed volume fractions. Fractal aggregated soot was simulated using the diffusion limited aggregation (DLA) algorithm and discretized into soot dipoles. The dipoles of non-absorbing aerosols, whose number was fixed by the volume fraction, were further generated from the neighboring random edge dipoles. Their optical properties were calculated using the discrete dipole approximation (DDA) method and were compared with other commonly used models. The optical properties of thinly coated soot calculated using the fixed volume fraction model are close to (less than ~10% difference) the results of the fixed coating thickness model, except their asymmetry parameters (up to ~25% difference). In the optical simulations of thinly coated soot aerosols, this relative difference of asymmetry parameters and phase functions between these realistic models may be notable. The realizations of the fixed volume fraction model may introduce smaller variation of optical results than those of the fixed coating thickness model. Moreover, the core-shell monomers model and homogeneous aggregated spheres model with the Maxwell-Garnett (MG) theory may underestimate (up to ~20%) the cross sections of thinly coated soot aggregates. The single core-shell sphere model may largely overestimate (up to ~150%) the cross sections and single scattering albedo of thinly coated soot aggregates, and it underestimated (up to ~60%) their asymmetry parameters. It is suggested that the widely used single core-shell sphere approximation may not be suitable for the single scattering calculations of thinly coated soot aerosols.

  19. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  20. Tracing the sub-photospheric layers of optically thick winds

    NASA Astrophysics Data System (ADS)

    Graefener, G.

    2013-06-01

    Towards the end of their evolution hot massive stars develop strong stellar winds and appear as emission line stars, such as WR stars or LBVs. The quanitative description of the mass loss in these important pre-SN phases is hampered by unkowns such as wind clumping and porosity, and by an incomplete theoretical understanding of optically thick stellar winds. Even the stellar radii in these phases are badly undestood as they are often variable (LBVs), or deviate from theoretical expectations (WR stars). Here we present a new semi-empirical method that helps to tackle these problems. By analysing a large sample of Galactic WR stars we gain information about deep wind layers near the sonic point which are otherwise not directly observable. We find evidence that these layers are clumped, with clumping factors comparable to the ones observed in the winds of WR stars. Moreover, density and temperature near the sonic point seem to follow a relation which is ubiqitous for optically thick winds, and which may be responsible for the peculiar radius properties of these objects.

  1. Optical Properties of Black and Brown Carbon Aerosols from Laboratory Combustion of Wildland Fuels

    NASA Astrophysics Data System (ADS)

    Beres, N. D.; Molzan, J.

    2015-12-01

    Aerosol light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct aerosol radiative forcing, which is determined by aerosol single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of aerosol direct radiative forcing; that is, does the aerosol make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of aerosol optical depth and properties. During wildland fires, aerosol optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the red and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning aerosol optical properties is described. It utilizes a laboratory biomass combustion chamber to generate aerosols through combustion of different wildland fuels of global and regional importance. Combustion aerosol optics is characterized with an integrating nephelometer to measure aerosol light scattering and a photoacoustic instrument to measure aerosol light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of aerosol radiative forcing and satellite retrievals for absorbing carbonaceous aerosols from combustion of wildland fuels.

  2. Can satellite-derived aerosol optical depth quantify the surface aerosol radiative forcing?

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Ceamanos, Xavier; Roujean, Jean-Louis; Carrer, Dominique; Xue, Yong

    2014-12-01

    Aerosols play an important role in the climate of the Earth through aerosol radiative forcing (ARF). Nowadays, aerosol particles are detected, quantified and monitored by remote sensing techniques using low Earth orbit (LEO) and geostationary (GEO) satellites. In the present article, the use of satellite-derived AOD (aerosol optical depth) products is investigated in order to quantify on a daily basis the ARF at the surface level (SARF). By daily basis we mean that an average SARF value is computed every day based upon the available AOD satellite measurements for each station. In the first part of the study, the performance of four state-of-art different AOD products (MODIS-DT, MODIS-DB, MISR, and SEVIRI) is assessed through comparison against ground-based AOD measurements from 24 AERONET stations located in Europe and Africa during a 6-month period. While all AOD products are found to be comparable in terms of measured value (RMSE of 0.1 for low and average AOD values), a higher number of AOD estimates is made available by GEO satellites due to their enhanced frequency of scan. Experiments show a general lower agreement of AOD estimates over the African sites (RMSE of 0.2), which show the highest aerosol concentrations along with the occurrence of dust aerosols, coarse particles, and bright surfaces. In the second part of this study, the lessons learned about the confidence in aerosol burden derived from satellites are used to estimate SARF under clear sky conditions. While the use of AOD products issued from GEO observations like SEVIRI brings improvement in the SARF estimates with regard to LEO-based AOD products, the resulting absolute bias (13 W/m2 in average when AERONET AOD is used as reference) is judged to be still high in comparison with the average values of SARF found in this study (from - 25 W/m2 to - 43 W/m2) and also in the literature (from - 10 W/m2 to - 47 W/m2).

  3. The contribution of different aerosol sources to the Aerosol Optical Depth in Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wenig, Mark; Zhou, Wen; Diehl, Thomas; Chan, Ka-Lok; Wang, Lingna

    2014-02-01

    The contribution of major aerosol components emitted from local and remote regions to Hong Kong's Aerosol Optical Depth (AOD) in 2007 is quantitatively determined using the chemical transport model GOCART (Global Ozone Chemistry Aerosol Radiation and Transport). Of the major aerosol components, sulphur has the largest influence (68%) on Hong Kong, followed by organic carbon (OC, 13%) and dust (11%), and the influences of black carbon (BC, 5%) and sea salt (3%) are the lowest. The highest AOD is seen in September 2007 and is composed mainly of sulphur aerosols (85%). The high AOD values in March and April 2007 are caused by sulphur and OC. OC has a relative contribution of 39% in March and 30% in April. The anthropogenic sulphur, BC, and OC emitted from every continent, as well as from China and South China, are considered respectively. In summer, South China's contribution of sulphur aerosols from anthropogenic SO2 emissions to the total sulphur AOD in Hong Kong is more than 20%. In other seasons, sulphur aerosols from anthropogenic SO2 emissions in Rest China (all of China except South China) accounts for more than 25%. Anthropogenic BC from South China accounts for more than 20% of total BC AOD in Hong Kong in summer. The contribution of anthropogenic BC from Rest China exceeds 40% in autumn and winter. Anthropogenic BC from Rest Asia (all of Asia except China) accounts for more than 30% in summer and autumn. The contribution of anthropogenic OC from Rest China is more than 35% in autumn and winter. The contribution of anthropogenic OC from Rest Asia exceeds 20% in summer. Gobi dust accounts for more than 40% of the total dust AOD in winter, and its impact appears mainly in the Atmospheric Boundary Layer (ABL), where it is responsible for 50% of the dust concentration. The contribution of Sahara dust to the dust AOD in spring exceeds 35%, and its contribution to the dust concentration in the free atmosphere (40%) is larger than that in the ABL (10%). More than 35

  4. Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren.

    PubMed

    Wang, Danyang; Chun, Rachel Ka Man; Liu, Manli; Lee, Roger Pak Kin; Sun, Yuan; Zhang, Ting; Lam, Chuen; Liu, Quan; To, Chi Ho

    2016-01-01

    The current study aimed to examine the short-term choroidal response to optical defocus in schoolchildren. Myopic schoolchildren aged 8-16 were randomly allocated to control group (CG), myopic defocus group (MDG) and hyperopic defocus group (HDG) (n = 17 per group). Children in MDG and HDG received additional +3D and -3D lenses, respectively, to their full corrections on the right eyes. Full correction was given to their left eyes, and on both eyes in the CG. Axial length (AXL) and subfoveal choroidal thickness (SFChT) were then measured by spectral domain optical coherence tomography. Children wore their group-specific correction for 2 hours after which any existing optical defocus was removed, and subjects wore full corrections for another 2 hours. Both the AXL and SFChT were recorded hourly for 4 hours. The mean refraction of all subjects was -3.41 ± 0.37D (± SEM). SFChT thinned when exposed to hyperopic defocus for 2 hours but less thinning was observed in response to myopic defocus compared to the control group (p < 0.05, two-way ANOVA). Removal of optical defocus significantly decreased SFChT in the MDG and significantly increased SFChT in the HDG after 1 and 2 hours (mean percentage change at 2-hour; control vs. hyperopic defocus vs. myopic defocus; -0.33 ± 0.59% vs. 3.04 ± 0.60% vs. -1.34 ± 0.74%, p < 0.01). Our results showed short-term exposure to myopic defocus induced relative choroidal thickening while hyperopic defocus led to choroidal thinning in children. This rapid and reversible choroidal response may be an important clinical parameter in gauging retinal response to optical defocus in human myopia. PMID:27537606

  5. Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren.

    PubMed

    Wang, Danyang; Chun, Rachel Ka Man; Liu, Manli; Lee, Roger Pak Kin; Sun, Yuan; Zhang, Ting; Lam, Chuen; Liu, Quan; To, Chi Ho

    2016-01-01

    The current study aimed to examine the short-term choroidal response to optical defocus in schoolchildren. Myopic schoolchildren aged 8-16 were randomly allocated to control group (CG), myopic defocus group (MDG) and hyperopic defocus group (HDG) (n = 17 per group). Children in MDG and HDG received additional +3D and -3D lenses, respectively, to their full corrections on the right eyes. Full correction was given to their left eyes, and on both eyes in the CG. Axial length (AXL) and subfoveal choroidal thickness (SFChT) were then measured by spectral domain optical coherence tomography. Children wore their group-specific correction for 2 hours after which any existing optical defocus was removed, and subjects wore full corrections for another 2 hours. Both the AXL and SFChT were recorded hourly for 4 hours. The mean refraction of all subjects was -3.41 ± 0.37D (± SEM). SFChT thinned when exposed to hyperopic defocus for 2 hours but less thinning was observed in response to myopic defocus compared to the control group (p < 0.05, two-way ANOVA). Removal of optical defocus significantly decreased SFChT in the MDG and significantly increased SFChT in the HDG after 1 and 2 hours (mean percentage change at 2-hour; control vs. hyperopic defocus vs. myopic defocus; -0.33 ± 0.59% vs. 3.04 ± 0.60% vs. -1.34 ± 0.74%, p < 0.01). Our results showed short-term exposure to myopic defocus induced relative choroidal thickening while hyperopic defocus led to choroidal thinning in children. This rapid and reversible choroidal response may be an important clinical parameter in gauging retinal response to optical defocus in human myopia.

  6. Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren

    PubMed Central

    Liu, Manli; Lee, Roger Pak Kin; Sun, Yuan; Zhang, Ting; Lam, Chuen; Liu, Quan; To, Chi Ho

    2016-01-01

    The current study aimed to examine the short-term choroidal response to optical defocus in schoolchildren. Myopic schoolchildren aged 8–16 were randomly allocated to control group (CG), myopic defocus group (MDG) and hyperopic defocus group (HDG) (n = 17 per group). Children in MDG and HDG received additional +3D and -3D lenses, respectively, to their full corrections on the right eyes. Full correction was given to their left eyes, and on both eyes in the CG. Axial length (AXL) and subfoveal choroidal thickness (SFChT) were then measured by spectral domain optical coherence tomography. Children wore their group-specific correction for 2 hours after which any existing optical defocus was removed, and subjects wore full corrections for another 2 hours. Both the AXL and SFChT were recorded hourly for 4 hours. The mean refraction of all subjects was -3.41 ± 0.37D (± SEM). SFChT thinned when exposed to hyperopic defocus for 2 hours but less thinning was observed in response to myopic defocus compared to the control group (p < 0.05, two-way ANOVA). Removal of optical defocus significantly decreased SFChT in the MDG and significantly increased SFChT in the HDG after 1 and 2 hours (mean percentage change at 2-hour; control vs. hyperopic defocus vs. myopic defocus; -0.33 ± 0.59% vs. 3.04 ± 0.60% vs. -1.34 ± 0.74%, p < 0.01). Our results showed short-term exposure to myopic defocus induced relative choroidal thickening while hyperopic defocus led to choroidal thinning in children. This rapid and reversible choroidal response may be an important clinical parameter in gauging retinal response to optical defocus in human myopia. PMID:27537606

  7. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  8. Cloud optical thickness feedbacks in the CO2 climate problem

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.; Remer, L. A.

    1984-01-01

    A radiative-convective equilibrium model is developed and applied to study cloud optical thickness feedbacks in the CO2 climate problem. The basic hypothesis is that in the warmer and moister CO2-rich atmosphere, cloud liquid water content will generally be larger too. For clouds other than thin cirrus the result is to increase the albedo more than to increase the greenhouse effect. Thus, the sign of the feedback is negative: cloud optical properties act as a thermostat and alter in such a way as to reduce the surface and tropospheric warming caused by the addition of CO2. This negative feedback can be substantial. When observational estimates of the temperature dependence of cloud liquid water content are employed in the model, the surface temperature change caused by doubling CO2 is reduced by about one half. This result is obtained for global and annual average conditions, no change in cloud amount or altitude, and constant relative humidity. These idealizations, together with other simplifications typical of one-dimensional radiative-convective climate models, render the result tentative. Further study of cloud optical property feedbacks is warranted, however, because the climate is apparently so sensitive to them.

  9. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Fung, Inez

    1994-01-01

    A global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere. The model includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture. Uplift and deposition are parameterized using analyzed winds and rainfall statistics that resolve high-frequency events. Dust transport in the atmosphere is simulated with the tracer transport model of the Goddard Institute for Space Studies. The simulated seasonal variations of dust concentrations show general reasonable agreement with the observed distributions, as do the size distributions at several observing sites. The discrepancies between the simulated and the observed dust concentrations point to regions of significant land surface modification. Monthly distribution of aerosol optical depths are calculated from the distribution of dust particle sizes. The maximum optical depth due to dust is 0.4-0.5 in the seasonal mean. The main uncertainties, about a factor of 3-5, in calculating optical thicknesses arise from the crude resolution of soil particle sizes, from insufficient constraint by the total dust loading in the atmosphere, and from our ignorance about adhesion, agglomeration, uplift, and size distributions of fine dust particles (less than 1 micrometer).

  10. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  11. Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Dubovik, O.; Smirnov, A.; Goloub, P.; Chen, H. B.; Chatenet, B.; Gomes, L.; Zhang, X.-Y.; Tsay, S.-C.; Ji, Q.; Giles, D.; Slutsker, I.

    2005-03-01

    The column-integrated optical properties of aerosol in the central eastern region of Asia and midtropical Pacific were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites in these regions. Characterization of aerosol properties in the Asian region is important due to the rapid growth of both population and economic activity, with associated increases in fossil fuel combustion, and the possible regional and global climatic impacts of related aerosol emissions. Multiyear monitoring over the complete annual cycle at sites in China, Mongolia, South Korea, and Japan suggest spring and/or summer maximum in aerosol optical depth (τa) and a winter minimum; however, more monitoring is needed to establish accurate climatologies. The annual cycle of Angstrom wavelength exponent (α) showed a springtime minimum associated with dust storm activity; however, the monthly mean α440-870 was >0.8 even for the peak dust season at eastern Asian sites suggesting that fine mode pollution aerosol emitted from population centers in eastern Asia dominates the monthly aerosol optical influence even in spring as pollution aerosol mixes with coarse mode dust originating in western source regions. Aerosol optical depth peaks in spring in the tropical mid-Pacific Ocean associated with seasonal shifts in atmospheric transport from Asia, and ˜35% of the springtime τa500 enhancement occurs at altitudes above 3.4 km. For predominately fine mode aerosol pollution cases, the average midvisible (˜550 nm) single scattering albedo (ω0) at two continental urban sites in China averaged ˜0.89, while it was significantly higher, ˜0.93, at two relatively rural coastal sites in South Korea and Japan. Differences in fine mode absorption between these regions may result from a combination of factors including aerosol aging during transport, relative humidity differences, sea salt at coastal sites, and fuel type and combustion differences in the two

  12. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  13. Aerosol optical properties in the Iranian region obtained by ground-based solar radiation measurements in the summer of 1991

    SciTech Connect

    Nakajima, Teruyuki; Hayasaka, Tadahiro; Higurashi, Akiko; Hashida, Gen; Moharram-Nejad, N.; Najafi, Y.; Valavi, H.

    1996-08-01

    Solar radiation measurements were made using sun photometers and pyranometers during 31 May-7 June 1991 at several places in Iran and during 12 June-17 September 1991 at a fixed place, Bushehr, Iran. In the first period the aerosol optical thickness had values about 0.4 at the wavelength of 0.5 {mu}m in the coastal area and about 0.2 in the plateau area. The Angstrom`s exponent, which is the slope of optical thickness spectrum, had values around 1 for large city areas and less than 0.5 for inland arid areas. Chemical analyses of sampled air indicate an effect of fossil fuel burning from local sources. Such optical and chemical characteristics of atmospheres suggest that soil-derived coarse particles contributed considerably to the atmospheric turbidity in arid areas, whereas an active generation of aerosols was dominant near large cities. Significant rises in atmospheric turbidity were observed in the earlier part of the second period at Bushehr about once a week with a duration of about one day, which may have been caused by smoke from oil-well fires in Kuwait. The aerosol optical thickness in these events had values of about 1.5, which is equivalent to a columnar aerosol volume of 4.4 x 10{sup -4} cm{sup 3} cm{sup -2}. The absorption index ranged from 0.005 to 0.02 with several peaks reaching 0.1 in the second period. These peaks can be attributed to prevailing smoke particles. 32 refs., 15 figs., 3 tabs.

  14. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  15. Time-dependent, optically thick accretion onto a black hole

    NASA Technical Reports Server (NTRS)

    Gilden, D. L.; Wheeler, J. C.

    1980-01-01

    A fully relativistic hydrodynamics code which incorporates diffusive radiation transport is used to study time-dependent, spherically symmetric, optically thick accretion onto a black hole. It is found that matter free-falls into the hole regardless of whether the diffusion time scale is longer or shorter than the dynamical time. Nonadiabatic heating due to magnetic field reconnection is included. The internal energy thus generated affects the flow in a purely relativistic way, again ensuring free-fall collapse of the inflowing matter. Any matter enveloping a black hole will thus be swallowed on a dynamical time scale with relatively small net release of energy. The inclusion of angular momentum will not necessarily affect this conclusion.

  16. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  17. Fringe biasing: A variance reduction technique for optically thick meshes

    SciTech Connect

    Smedley-Stevenson, R. P.

    2013-07-01

    Fringe biasing is a stratified sampling scheme applicable to Monte Carlo thermal radiation transport codes. The thermal emission source in optically thick cells is partitioned into separate contributions from the cell interiors (where the likelihood of the particles escaping the cells is virtually zero) and the 'fringe' regions close to the cell boundaries. Thermal emission in the cell interiors can now be modelled with fewer particles, the remaining particles being concentrated in the fringes so that they are more likely to contribute to the energy exchange between cells. Unlike other techniques for improving the efficiency in optically thick regions (such as random walk and discrete diffusion treatments), fringe biasing has the benefit of simplicity, as the associated changes are restricted to the sourcing routines with the particle tracking routines being unaffected. This paper presents an analysis of the potential for variance reduction achieved from employing the fringe biasing technique. The aim of this analysis is to guide the implementation of this technique in Monte Carlo thermal radiation codes, specifically in order to aid the choice of the fringe width and the proportion of particles allocated to the fringe (which are interrelated) in multi-dimensional simulations, and to confirm that the significant levels of variance reduction achieved in simulations can be understood by studying the behaviour for simple test cases. The variance reduction properties are studied for a single cell in a slab geometry purely absorbing medium, investigating the accuracy of the scalar flux and current tallies on one of the interfaces with the surrounding medium. (authors)

  18. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  19. Retrieval and Validation of Aerosol Optical Properties over East Asia from TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Lee, Sanghee; Kim, Jhoon; Kim, Mijin; Choi, Myungje; Go, Sujung; Lim, HyunKwang; Ou, Mi-Lim; Goo, Tae-Young; Yokota, Tatsuya

    2015-04-01

    Aerosol is a significant component on air quality and climate change. In particular, spatial and temporal distribution of aerosol shows large variability over East Asia, thus has large effect in retrieving carbon dioxide from Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS). An aerosol retrieval algorithm was developed from TANSO- Cloud and Aerosol Imager (CAI) onboard the GOSAT. The algorithm retrieves aerosol optical depth (AOD), size distribution of aerosol, and aerosol type in 0.1 degree grid resolution and surface reflectance was estimated using the clear sky composite method. To test aerosol absorptivity, the reflectance difference method was considered using channels of TANSO-CAI. In this study, the retrieved aerosol optical depth (AOD) was compared with those of Aerosol Robotic NETwork (AERONET) and MODerate resolution Imaging Sensor (MODIS) dataset from September 2011 and August 2014. Comparisons of AODs between AERONET and CAI show the reasonably good correlation with correlation coefficient of 0.77 and regression slope of 0.87 for the whole period. Moreover, those between MODIS and CAI for the same period show correlations with correlation coefficient of 0.7 ~ 0.9 and regression slope of 0.7 ~ 1.2, depending on season and comparison regions however, the largest error source in aerosol retrieval has been surface reflectance. Over ocean and some Land, surface reflectance tends to be overestimated, and thereby CAI-AOD tends to be underestimated. Based on the results with CAI algorithm developed, the algorithm is continuously improved for better performance.

  20. Characteristics of spectral aerosol optical depths over India during ICARB

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Moorthy, K. Krishna; Nair, Vijayakumar S.; Babu, S. Suresh; Satheesh, S. K.; Vinoj, V.; Reddy, R. Ramakrishna; Gopal, K. Rama; Badarinath, K. V. S.; Niranjan, K.; Pandey, Santosh Kumar; Behera, M.; Jeyaram, A.; Bhuyan, P. K.; Gogoi, M. M.; Singh, Sacchidanand; Pant, P.; Dumka, U. C.; Kant, Yogesh; Kuniyal, J. C.; Singh, Darshan

    2008-07-01

    Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent ( α) remained significantly lower (˜1) over the Arabian Sea compared to Bay of Bengal (BoB) (˜1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of

  1. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  2. Aerosol optical depth estimates based on nephelometer measurements at the SGP arm site

    SciTech Connect

    Bergin, M.H.; Ogren, J.A.; Halthore, R.

    1996-03-01

    The scattering of shortwave radiation by anthropogenic aerosols during clear-sky conditions, termed direct aerosol forcing, has been estimated to be roughly 1 W/m{sup 2} on a global annual average and may be as high as 50 W/m{sup 2} locally and instantaneously new source regions. The extent of the direct aerosol forcing effect at a given time and place depends primarily in the aerosol optical depth, {tau}, as well as on other factors including the solar zenith angle, aerosol upscatter fraction, and the single scatter albedo (ratio of light scattering to total extinction). The aerosol optical depth at a given wavelength ({tau}{sub {lambda}}) can be written as the integral with height to the top of the atmosphere (toa) of the aerosol extinction coefficient, b{sub ext,p}. Where b{sub ext,p} is the sum of the aerosol extinction (b{sub ap}) and scattering (b{sub sp}) coefficients. The objectives of this research are to use nephelometer measurements of the scattering coefficient to estimate the aerosol optical depth at a specific wavelength (530 nm), and to compare these results with optical depths measured by a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and Cimel Sun Photometer. This comparison will used to determine if all of the key parameters related to aerosol optical depth are being measured at the SGP ARM site.

  3. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  4. Development of an Internet accessible software: optics and spectroscopy of gas-aerosol media

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Kashirskii, D. E.; Egorov, O. V.

    2015-11-01

    A description of an Internet accessible software «Optics and spectroscopy of gas-aerosol media» is represented. The new software is focused on research in the field of direct and inverse problems of optics and spectroscopy of gas-aerosol media.

  5. Optical characteristics of the aerosol in Spain and Austria and its effect on radiative forcing

    NASA Astrophysics Data System (ADS)

    Horvath, H.; Alados Arboledas, L.; Olmo, F. J.; Jovanović, O.; Gangl, M.; Kaller, W.; SáNchez, C.; Sauerzopf, H.; Seidl, S.

    2002-10-01

    The horizontal and vertical attenuation of the aerosol, the sky radiance, and the light absorption coefficient of the aerosol have been determined at wavelengths in the visible. From this set of data the following optical characteristics of the atmospheric aerosol could be derived: vertical optical depth, horizontal extinction and absorption coefficient, scattering phase function, asymmetry parameter, and single scattering albedo. Campaigns have been performed in Almería, Spain, and Vienna, Austria. The aerosol undergoes a considerable variation, as experienced by many other studies. Sometimes the vertical and the horizontal measurements gave similar data; on other days the aerosol at the surface and the aerosol aloft were completely different. The "clearest" aerosol always had the smallest single scattering albedo and thus relatively the highest light absorption. The optical characteristics of the aerosol in the two very different locations were very similar. Using the measured optical data, a radiative transfer calculation was performed, and the radiation reaching the ground was calculated. Comparing the values for the clear aerosol and the days with higher aerosol load, the radiative forcing due to the additional aerosol particles could be determined. The forcing of the aerosol at the ground is always negative, and at the top of the atmosphere it is close to zero or slightly negative. Its dependence on wavelength and zenith angle is presented. The preindustrial aerosol in Europe was estimated, and the forcing due to the present-day aerosol was determined. At the surface it is negative, but at the top of the atmosphere it is close to zero or positive. This is caused by the light absorption of the European aerosol, which is higher than in most other locations.

  6. Aerosol optical depth retrievals over the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Halthore, Rangasayi N.; Markham, Brian; Spanner, Michael; Wrigley, Robert

    1992-01-01

    The aerosol optical depth over the Konza Prairie, near Manhattan, Kansas, was recorded at various locations by five separate teams. These measurements were made in support of the First ISLSCP Field Experiment (FIFE) and used to correct imagery from a variety of satellite and aircraft sensors for the effects of atmospheric scattering and absorption. The results from one instrument are reported here for 26 days in 1987 and for 7 in 1989. Daily averages span a range of 0.05 to 0.28 in the midvisible wavelengths. In addition, diurnal variations are noted in which the afternoon optical depths are greater than those of the morning by as much as 0.07. A comparison between instruments and processing techniques used to determine these aerosol optical depths is provided. The first comparisons are made using summer 1987 data. Differences of as much as 0.05 (midvisible) are observed. Although these data allow reasonable surface reflectance retrievals, they do not agree to within the performance limits typically associated with these types of instruments. With an accuracy goal of 0.02 a preseason calibration/comparison experiment was conducted at a mountain site prior to the final field campaign in 1989. Good calibration data were obtained, and good agreement (0.01, midvisible) was observed in the retrieved optical depth acquired over the Konza. By comparing data from the surface instruments at different locations, spatial inhomogeneities are determined. Then, data from the airborne tracking sunphotometer allow one to determine variations as a function of altitude. Finally, a technique is proposed for using the in situ data to establish an instrument calibration.

  7. Chemical, Physical and Optical Properties of Saharan Dust Aerosols at a Marine Site in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Ortiz Montalvo, D. L.; Mayol Bracero, O. L.; Morales, F.; Sheridan, P.; Ogren, J. A.

    2005-12-01

    Atmospheric dust particles blown from the Sahara across the Atlantic into the Caribbean have an impact on its climate and public health. These particles may play a significant role in radiative forcing, affecting the extinction of solar radiation and thus having an influence on climate. About half of the dust that travels from Africa contains particles that are small enough to inhale. Human breathe them into the respiratory system and they settle in the lungs causing respiratory problems. To have a better understanding of these effects, information is needed on the properties of these aerosols. As part of this study, chemical, physical and optical characterization is being performed on aerosol samples collected at a marine site on the northeastern tip of Puerto Rico (Cabezas de San Juan, Fajardo), during periods with and without Saharan incursions. Stacked-filter units (SFU) are used to collect particles with diameters smaller than 1.7 μm, using Nuclepore, quartz and Teflon filters. These filter samples are analyzed to obtain the chemical composition of the particles. Initially we are focusing on the carbonaceous fraction (elemental and organic carbon, EC, and OC) of the aerosol using thermal/optical analysis. Online measurements of total particle number concentrations and aerosol light scattering coefficients are performed using a condensation particle counter and an integrating nephelometer, respectively. In addition, a sunphotometer, part of AERONET (http://aeronet.gsfc.nasa.gov/), is used to obtain the aerosol optical thickness (AOT). Preliminary results include only samples collected from air masses under the influence of Saharan dust, as signified by AOT satellite images from MODIS and the results from the air masses backward trajectories calculated with the NOAA HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model. In terms of the chemical composition, EC concentrations were at low-to-undetectable levels, indicating that OC concentrations

  8. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  9. Case study of extreme aerosol pollution events in the Paris area by synergy between optical measurements from multiple platforms

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Chazette, Patrick; Royer, Philippe

    2013-04-01

    Major pollution events encountered in the Paris area are mainly due to anticyclonic conditions where air masses are blocked and recycled (horizontal wind speed less than 1 m.s-1) or advected from northestern Europe. Such events with aerosol optical thickness larger than 0.4 at 355 nm have been documented by in situ sensors (AirParif network), ground-based sunphotometers (Aeronet network) and fixed and mobile ground-based Rayleigh-Mie lidars. The first studied event occurred during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) summer experiment, on July 1st, 2009. Another favorable period for major pollution events is the spring season and we have highlighted two of them using the opportunity given by lidar experimental tests at LSCE in march 2011. Ground-based observations have been complemented by spaceborne measurements from MODIS and CALIPSO/CALIOP that give information on the spatial extent of the pollution plume in 3 dimensions. From this instrumental synergy we determine the aerosol optical properties (extinction coefficients in the atmospheric column, optical thickness, lidar ratio, ...). The probable aerosol sources have also been investigated using back-trajectories analyses computed by the HYSPLIT model (http://ready.arl.noaa.gov/HYSPLIT.php) ; they lie in the French Lorraine, Benelux, and German Saarland and Ruhr industrialized regions.

  10. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  11. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    SciTech Connect

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations.

  12. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  13. Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Zhu, Yannian; Rosenfeld, Daniel; Yu, Xing; Li, Zhanqing

    2015-08-01

    The high resolution (375 m) of the Visible Infrared Imaging Radiometer Suite on board the Suomi National Polar-Orbiting Partnership satellite allows retrieving relatively accurately the vertical evolution of convective cloud drop effective radius (re) with height or temperature. A tight relationship is found over SE Asia and the adjacent seas during summer between the cloud-free aerosol optical depth (AOD) and the cloud thickness required for the initiation of warm rain, as represented by the satellite-retrieved cloud droplet re of 14 µm, for a subset of conditions that minimize measurement artifacts. This cloud depth (ΔT14) is parameterized as the difference between the cloud base temperature and the temperature at the height where re exceeds 14 µm (T14). For a unit increase of AOD, the height of rain initiation is increased by about 5.5 km. The concern of data artifacts due to the increase in AOD near clouds was mitigated by selecting only scenes with cloud fraction (CF) < 0.1. For CF > 0.1 and ΔT14 > ~20°C, the increase of ΔT14 gradually levels off with further increase of AOD, possibly because the AOD is enhanced by aerosol upward transport and detrainment through the clouds below the T14 isotherm. The bias in the retrieved re due to the different geometries of solar illumination was also quantified. It was shown that the retrievals are valid only for backscatter views or when avoiding scenes with significant amount of cloud self-shadowing. These artifacts might have contributed to past reported relationships between cloud properties and AOD.

  14. Spatial variation of aerosol optical properties in North China Plain

    NASA Astrophysics Data System (ADS)

    Fan, Xuehua

    2013-04-01

    The column-integrated optical properties of aerosol in Beijing and Xianghe situated at North China Plain were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites. Only version 2 and level 2 quality-assured data were presented and analyzed in this paper. Time intervals differ for the two sites, with Beijing having 9 years of data (Mar.-May, 2001; Apr., 2002-Dec., 2011),while Xianghe having 6 years of data (Mar.-Apr., 2001;Sep., 2004-Dec.,2011). Monthly mean 500 nm AOT values reach a maximum in June (0.95) and exceed 0.55 from March through September, and the minimum values occur during the late fall and winter months of November through February at Beijing. The monthly mean AOT values at Xianghe are very close to those measured at Beijing. The absolute differences of AOT between the two sites are less than 0.1 except in June and July. The reason of large difference in June and July is the frequently cloud contamination in summer result in the monthly means over the two sites computed from a large number of measurements of different date. The monthly averaged AOT with the same date in June and July are re-computed and the absolute difference of AOT between Beijing and Xianghe reduced to 0.01 and 0.03 in June and July respectively. The monthly mean Angstrom Exponent (AE) in Beijing and Xianghe sites are very close, with the absolute difference less than 0.075. The monthly mean AE in the two sites varied between ~1.0 and ~1.3 except in spring (March-May), therefore clearly dominated by fine mode aerosol for most of the year. All monthly averaged SSA at Beijing showed much lower value as compared to Xianghe though the seasonal variations are similar for the two sites, which indicates that aerosol absorption is greater in Beijing. All monthly averaged imaginary part of refractive index at Beijing has much higher value than Xianghe. The absolute differences of SSA between the two sites range from 0.016 to 0.037 except that

  15. Room-temperature growth of Ni-Zn-Cu ferrite/PTFE composite thick films on PET via aerosol deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Jun; Kwon, Oh-Yun; Jang, Chan-Ick; Kim, Tae Kyoung; Oh, Jun Rok; Yoon, Young Joon; Kim, Jong-Hee; Nam, Song-Min; Koh, Jung-Hyuk

    2013-11-01

    Ni-Zn-Cu ferrite and Ni-Zn-Cu ferrite/poly-tetra-fluoro-ethylene (PTFE) composite-thick-films were grown at room temperature on polyethylene terephthalate (PET) sheets via aerosol deposition (AD) as a magnetic shielding sheet for near-field communication. An 80 µm-thick Ni-Zn-Cu ferrite/PTFE composite-thick-film was grown on the PET sheet when 2.0 wt. % PTFE starting powder was used. The real relative permeability µ r ' and the imaginary permeability µ r ″ of the Ni-Zn-Cu ferrite thick film were 10.1 and 2.1 at 13.56 MHz, respectively. In the case of the composite thick film, µ r ' and µ r ″ decreased to 3.9 and 1.3, respectively, at 13.56 MHz; with the addition of the PTFE.

  16. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  17. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  18. Scattering line polarization in rotating, optically thick disks

    NASA Astrophysics Data System (ADS)

    Milić, I.; Faurobert, M.

    2014-11-01

    Context. To interpret observations of astrophysical disks, it is essential to understand the formation process of the emitted light. If the disk is optically thick, scattering dominated and permeated by a Keplerian velocity field, non-local thermodynamic equilibrium (NLTE) radiative transfer modeling must be done to compute the emergent spectrum from a given disk model. Aims: We investigate NLTE polarized line formation in different simple disk models and aim to demonstrate the importance of both radiative transfer effects and scattering, as well as the effects of velocity fields. Methods: We self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for a two-level atom model by means of Jacobi iteration. We use the short characteristics method of formal solution in two-dimensional axisymmetric media and compute scattering polarization, that is Q/I and U/I line profiles, using the reduced intensity formalism. We account for the presence of Keplerian velocity fields by casting the radiative transfer equation in the observer's frame. Results: Relatively simple (homogeneous and isothermal) disk models show complex intensity profiles that owe their shape to the interplay of multidimensional NLTE radiative transfer and the presence of rotation. The degree of scattering polarization is significantly influenced not only by the inclination of the disk with respect to observer, but also by the optical thickness of the disk and the presence of rotation. Stokes U/I shows double-lobed profiles with amplitude that increases with the disk rotation. Conclusions: Our results suggest that the line profiles, especially the polarized ones, emerging from gaseous disks differ significantly from the profiles predicted by simple approximations. Even in the case of the simple two-level atom model, we obtain line profiles that are diverse in shape, but typically symmetric in Stokes Q and antisymmetric in Stokes U. A clear indicator of disk rotation is

  19. Analysis of aerosol optical properties from continuous sun-sky radiometer measurements at Halley and Rothera, Antarctica over seven years

    NASA Astrophysics Data System (ADS)

    Campanelli, Monica; Estellés, Victor; Colwell, Steve; Shanklin, Jonathan; Ningombam, Shantikumar S.

    2015-04-01

    The Antarctic continent is located far from most anthropogenic emission sources on the planet, it has limited areas of exposed rock and human activities are less developed. Air circulation over Antarctica also seems to prevent the direct transport of air originating from anthropogenic sources of pollution at lower latitudes. Therefore Antarctica is considered an attractive site for studying aerosol properties as unaltered as possible by human activity. Long term monitoring of the optical and physical properties is necessary for observing possible changes in the atmosphere over time and understanding if such changes are due to human activity or natural variation. Columnar aerosol optical and physical properties can be obtained from sun-sky radiometers, very compact instruments measuring spectral direct and diffuse solar irradiance at the visible wavelengths and using fast and efficient inversion algorithms. The British Antarctic Survey has continuously operated two Prede Pom-01 sun-sky radiometers in Antarctica as part of the ESR-European Skynet Radiometers network (www.euroskyrad.net, Campanelli et al, 2012). They are located at Halley and Rothera, and have operated since 2009 and 2008 respectively. In the present study the aerosol optical thickness, single scattering albedo, Ångström exponent, volume size distribution and refractive index were retrieved from cloud-screened measurements of direct and diffuse solar irradiance using the Skyrad 4.2 pack code (Nakajima et al., 1986). The analysis of the daily and yearly averages showed an important increase of the absorbing properties of particles at Halley from 2013 to the beginning of 2014 related to the increasing presence of smaller particles (from 2012) but with a non-significant variation of aerosol optical depth. The same increase of absorption was visible at Rothera only in 2013. Air pressure measurements, wind directions and intensity, and vertical profiles from radio-soundings, together with HYSPLIT model

  20. Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1999-01-01

    Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.

  1. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble

  2. Deriving atmospheric visibility from satellite retrieved aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Schneider, Ch.; Popp, Ch.; Wunderle, S.

    2009-04-01

    Atmospheric visibility is a measure that reflects different physical and chemical properties of the atmosphere. In general, poor visibility conditions come along with risks for transportation (e.g. road traffic, aviation) and can negatively impact human health since visibility impairment often implies the presence of atmospheric pollution. Ambient pollutants, particulate matter, and few gaseous species decrease the perceptibility of distant objects. Common estimations of this parameter are usually based on human observations or devices that measure the transmittance of light from an artificial light source over a short distance. Such measurements are mainly performed at airports and some meteorological stations. A major disadvantage of these observations is the gap between the measurements, leaving large areas without any information. As aerosols are one of the most important factors influencing atmospheric visibility in the visible range, the knowledge of their spatial distribution can be used to infer visibility with the so called Koschmieder equation, which relates visibility and atmospheric extinction. In this study, we evaluate the applicability of satellite aerosol optical depth (AOD) products from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) to infer atmospheric visibility on large spatial scale. First results applying AOD values scaled with the planetary boundary layer height are promising. For the comparison we use a full automated and objective procedure for the estimation of atmospheric visibility with the help of a digital panorama camera serving as ground truth. To further investigate the relation between the vertical measure of AOD and the horizontal visibility data from the Aerosol Robotic Network (AERONET) site Laegeren (Switzerland), where the digital camera is mounted, are included as well. Finally, the derived visibility maps are compared with synoptical observations in central

  3. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmüller, Klaus; Pozzer, Andrea; Metzger, Swen; Stenchikov, Georgiy L.; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  4. Mechanical characterization of unplasticised polyvinylchloride thick pipes by optical methods

    NASA Astrophysics Data System (ADS)

    Mihaylova, E.; Potelon, B.; Reddy, S.; Toal, V.; Smith, C.

    2004-06-01

    In this work a number of techniques (electronic speckle pattern interferometry, holographic interferometry, strain gauge and finite element method) are brought to bear in order to establish consistency in the results of strain measurement. This is necessary if optical non-destructive testing methods, such as those used here, are to gain acceptance for routine industrial use. The FE model provides a useful check. Furthermore, ESPI fringe data facilitates the extension of FE models, an approach that is of growing importance in component testing. The use of in-plane and out-of-plane sensitive electronic speckle pattern interferometry (ESPI) for non-destructive material characterization of thick unplasticised polyvinylchloride (uPVC) pipes is presented. A test rig has been designed for stressing pipes by internal pressure. ESPI gives a complete mapping of the displacement field over the area imaged by the video camera. The results for the strain of uPVC obtained from ESPI data and from strain gauges are in good agreement. The value of Young's modulus has been obtained from the fringe data and compared with results obtained using holographic interferometry and from strain gauge measurements. The FE model also produces fringe data that is consistent with the ESPI results.

  5. Validation of Retrieved Aerosol Optical Properties over Northeast Asia for Five Years from GOSAT TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, S.; KIM, M.; Choi, M.; Go, S.; Lim, H.; Goo, T. Y.; Nakajima, T.; Kuze, A.; Shiomi, K.; Yokota, T.

    2015-12-01

    An aerosol retrieval algorithm was developed from Thermal And Near infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT). The algorithm retrieves aerosol optical depth (AOD), size distribution of aerosol, and aerosol type in 0.1 degree grid resolution by look-up tables, which is used in retrieving optical properties of aerosol using inversion products from Aerosol Robotic NETwork (AERONET) sun-photometer observation. To improve the accuracy of aerosol algorithm, first, this algorithm considered the annually estimated radiometric degradation factor of TANSO-CAI suggested by Kuze et al. (2014). Second, surface reflectance was determined by two methods: one using the clear sky composite method from CAI measurements and the other the database from MODerate resolution Imaging Sensor (MODIS) surface reflectance data. At a given pixel, the surface reflectance is selected by using normalized difference vegetation index (NDVI) depending on season (Hsu et al., 2013). In this study, the retrieved AODs were compared with those of AERONET and MODIS dataset for different season over five years. Comparisons of AODs between AERONET and CAI show reasonable agreement with correlation coefficients of 0.65 ~ 0.97 and regression slopes between 0.7 and 1.2 for the whole period, depending on season and sites. Moreover, those between MODIS and CAI for the same period show agreements with correlation coefficients of 0.7 ~ 0.9 and regression slopes between 0.7 and 1.0, depending on season and regions. The results show reasonably good correlation, however, the largest error source in aerosol retrieval has been surface reflectance of TANSO-CAI due to its 3-days revisit orbit characteristics.

  6. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  7. Thick optical films for the conduction of optical and infrared radiation

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-01-01

    Experimental results are presented for the characteristics of thick optical films, which can be used to direct and conduct optical and IR radiation, for the case of light concentration onto solar cells. Incident light is trapped within a thin, flat sheet of transparent material by a diffuse selective surface on the back of the transparent layer, and so directed that total internal reflection occurs, with some of the captured light finding its way back to the photovoltaic cells attached to the back of the layer. A Monte Carlo computer model is used to analyze this system, whose achievable gain depends on layer thickness, trapping material refraction index, and solar cell shape and size. Results indicate that gains of a factor of two in power output are obtainable for the case of sparsely-packed solar cell arrays and lower factors for more densely-packed arrays.

  8. Aerosol's optical and physical characteristics and direct radiative forcing during a shamal dust storm, a case study

    NASA Astrophysics Data System (ADS)

    Saeed, T. M.; Al-Dashti, H.; Spyrou, C.

    2014-04-01

    Dust aerosols are analyzed for their optical and physical properties during an episode of a dust storm that blew over Kuwait on 26 March 2003 when the military Operation Iraqi Freedom was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March. The synoptic sequence leading to the dust storm and the associated wind fields are discussed. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26 and 27 March respectively while the Ångstrom coefficient, α870/440, dropped to -0.0234 and -0.0318. Particulate matter concentration of 10 μm diameter or less, PM10, peaked at 4800 μg m-3 during dust storm hours of 26 March. Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved aerosol optical depth (AOD) by Deep Blue algorithm and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI) exhibited high values. Latitude-longitude maps of AOD and AI were used to deduce source regions of dust transport over Kuwait. The vertical profile of the dust layer was simulated using the SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by -60 Wm-2 and surface level by -175 Wm-2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 K day-1 between 3 and 5 km, dropped to 1.5 K day-1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 K day-1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to cool the atmosphere slightly reaching a maximum rate of -0.1 K day-1 at 6 km.

  9. Evaluation of CALIOP 532-nm Aerosol Optical Depth Over Opaque Water Clouds

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Kar, J.; Trepte, C.; Hu, Y.; Schuster, G.

    2015-01-01

    With its height-resolved measurements and near global coverage, the CALIOP lidar onboard the CALIPSO satellite offers a new capability for aerosol retrievals in cloudy skies. Validation of these retrievals is difficult, however, as independent, collocated and co-temporal data sets are generally not available. In this paper, we evaluate CALIOP aerosol products above opaque water clouds by applying multiple retrieval techniques to CALIOP Level 1 profile data and comparing the results. This approach allows us to both characterize the accuracy of the CALIOP above-cloud aerosol optical depth (AOD) and develop an error budget that quantifies the relative contributions of different error sources. We focus on two spatial domains: the African dust transport pathway over the tropical North Atlantic and the African smoke transport pathway over the southeastern Atlantic. Six years of CALIOP observations (2007-2012) from the northern hemisphere summer and early fall are analyzed. The analysis is limited to cases where aerosol layers are located above opaque water clouds so that a constrained retrieval technique can be used to directly retrieve 532 nm aerosol optical depth and lidar ratio. For the moderately dense Sahara dust layers detected in the CALIOP data used in this study, the mean/median values of the lidar ratios derived from a constrained opaque water cloud (OWC) technique are 45.1/44.4 +/- 8.8 sr, which are somewhat larger than the value of 40 +/- 20 sr used in the CALIOP Level 2 (L2) data products. Comparisons of CALIOP L2 AOD with the OWC-retrieved AOD reveal that for nighttime conditions the L2 AOD in the dust region is underestimated on average by approx. 26% (0.183 vs. 0.247). Examination of the error sources indicates that errors in the L2 dust AOD are primarily due to using a lidar ratio that is somewhat too small. The mean/median lidar ratio retrieved for smoke is 70.8/70.4 +/- 16.2 sr, which is consistent with the modeled value of 70 +/- 28 sr used in the

  10. Midinfrared optical properties of petroleum oil aerosols. Final report

    SciTech Connect

    Gurton, K.P.; Bruce, C.W.

    1994-08-01

    The mass normalized absorption and extinction coefficients were measured for fog oil aerosol at 3.4 micrometers with a combined photoacoustic and transmissometer system. An extinction spectral profile was determined over a range of infrared (IR) wavelengths from 2.7 to 4.0 micrometers by an IR scanning transmissometer. The extinction spectrum was mass normalized by referencing it to the photoacoustic portion of the experiment. A corresponding Mie calculation was conducted and compared with the above measurements. Agreement is good for the most recent optical coefficients. An extrapolation of this data to other similar petroleum products such as kerosene or diesel fuel that exhibit similar bulk absorption characteristics were briefly examined.

  11. Aerosol Optical Depth: A study using Thailand based Brewer Spectrophotometers

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Sudhibrabha, Sumridh; Hanprasert, Kesrin

    2015-12-01

    The Aerosol Optical Depth (AOD) was retrieved from the direct-sun Brewer observation by the application of the Beer's law for the years 1997-2011 at two monitoring sites in Thailand (Bangkok and Songkhla). AOD values measured in Bangkok exhibited higher values than Songkhla. In addition, AOD values were higher in the morning and evening in Bangkok. In contrast, the AOD values in Songkhla were slightly lower during the mornings and late afternoons. The variation of AOD was seasonal in Bangkok, with the higher values found in summer (from Mid-February to Mid-May) compared with rainy season (Mid-May to Mid-October), whilst there was no clear seasonal pattern of AOD in Songkhla.

  12. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  13. The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    NASA Astrophysics Data System (ADS)

    Lamare, M. L.; Lee-Taylor, J.; King, M. D.

    2016-01-01

    Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow) show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.

  14. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  15. Sensitivity of aerosol optical depth, single scattering albedo, and phase function calculations to assumptions on physical and chemical properties of aerosol

    EPA Science Inventory

    In coupled chemistry-meteorology simulations, the calculation of aerosol optical properties is an important task for the inclusion of the aerosol effects on the atmospheric radiative budget. However, the calculation of these properties from an aerosol profile is not uniquely defi...

  16. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  17. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  18. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography.

    PubMed

    Ehrlich, Joshua R; Peterson, Jeffrey; Parlitsis, George; Kay, Kristine Y; Kiss, Szilárd; Radcliffe, Nathan M

    2011-03-01

    As choroidal changes have been suggested in glaucoma, we examined peripapillary choroidal thickness (CT) in patients with and without primary open-angle glaucoma (POAG) using spectral-domain optical coherence tomography (SD-OCT). We collected measurements retrospectively on 70 eyes of 70 patients consecutively undergoing SD-OCT. POAG (n = 31) and suspect eyes (n = 39) had two reliable and repeatable Humphrey 24-2 visual fields with glaucoma hemifield test outside or within normal limits, respectively. A 360-degree peripapillary scan was performed using the standard protocol for retinal nerve fiber layer (RNFL) assessment. Using provided software, two independent masked investigators manually segmented CT as the area of visible choroidal vasculature. Agreement between investigators was determined using Lin's concordance correlation coefficient (CCC). A single masked observer determined clock hours of parapapillary atrophy (PPA) and the presence of ßPPA for each optic nerve quadrant. Correlation between RNFL and CT was assessed; two-sample t-tests were used to determine differences in RNFL and CT between POAG and suspect eyes; and linear regression was used to model changes in RNFL and CT. We found that independent measurements of CT by two observers were highly correlated (Lin's CCC for global CT; ρ(c) = 0.93, p < 0.001). RNFL and CT measurements were not significantly correlated for any peripapillary location (|r| ≤ 0.15, p ≥ 0.22). Global CT (ß = -1.94, 95% confidence interval [CI] -2.76, -1.13) but not RNFL thickness (ß = -0.18, 95% CI -0.58, 0.22) decreased significantly with age. Compared to suspect eyes, eyes with POAG had significantly thinner RNFL measurements at all locations (p ≤ 0.005) but CT measurements did not differ between groups for any location (p ≥ 0.13). Adjusting for glaucoma status and age, total (ß = 3.15 95% CI -0.24, 6.53) and ß clock hours of PPA (ß = 1.33, 95% CI -1.72, 4.38) were not significantly

  19. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  20. A study of aerosol optical properties using a lightweight optical particle spectrometer and sun photometer from an unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Telg, H.; Murphy, D. M.; Bates, T. S.; Johnson, J. E.; Gao, R. S.

    2015-12-01

    A miniaturized printed optical particle spectrometer (POPS) and sun photometer (miniSASP) have been developed recently for unmanned aerial systems (UAS) and balloon applications. Here we present the first scientific data recorded by the POPS and miniSASP from a Manta UAS during a field campaign on Svalbard, Norway, in April 2015. As part of a payload composed of five different aerosol instruments (absorption photometer, condensation particle counter, filter sampler, miniSASP and POPS) we collected particle size distributions, the optical depth (OD) and the sky brightness from 0 to 3000 m altitude. The complementary measurement approaches of the miniSASP and POPS allow us to calculate aerosol optical properties such as the aerosol optical depth and the angstrom exponent or the asymmetry parameter independently. We discuss deviation between results with respect to aerosol properties, e.g. hygroscopicity and absorption, as well as instrumental limitations.

  1. Background Southeast United States Aerosol Optical Properties and Their Dependence Upon Meteorology

    NASA Astrophysics Data System (ADS)

    Pawlyszyn, C.; West, M.; Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Aerosol effects on SE U.S. radiation budget are highly-seasonal. Aerosol loading is much higher in summer, due largely to high levels of biogenic secondary organic aerosol and sulfates. Aerosol loading is lowest in winter. Aerosol optical properties relevant to radiative forcing have been measured continuously at the Appalachian Atmospheric Interdisciplinary Research facility (AppalAIR) since the summer of 2009. AppalAIR is the only site in the eastern US to house co-located NOAA ESRL and NASA AeroNET instrumentation and is located in the mountains of Boone, NC. Lower tropospheric sub-micron (PM1) light scattering and absorption coefficients measured over seven summers and six winters are presented here, in addition to PM1 organic and sulfate aerosol mass concentrations measured during summers 2012-2013 as well as winter 2013. The objective is to determine the influence of aerosol sources and meteorology along the air mass back-trajectories on aerosol loading and composition. PM1 aerosol mass was dominated by organic aerosol and sulfate during the periods measured. Aerosol light scattering and organic aerosol concentrations were positively correlated during summer with temperature and solar flux along the parcel back-trajectory and negatively-correlated with rainfall along the back-trajectory. Wet deposition was a major factor in the difference between the upper and lower scattering coefficient quartiles for both summer and winter. Summer PM1 light scattering coefficient declined by approximately 30-40% since 2009, with smaller decreases during winter months. Long-term studies of aerosol optical properties from the regionally-representative AppalAIR site are necessary to determine the relationships between changing SE U.S. air quality and aerosol effects on regional climate and weather.

  2. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  3. Aerosol optical properties and radiative effects in the Yangtze Delta region of China

    NASA Astrophysics Data System (ADS)

    Xia, Xiangao; Li, Zhanqing; Holben, Brent; Wang, Pucai; Eck, Tom; Chen, Hongbin; Cribb, Maureen; Zhao, Yanxia

    2007-11-01

    One year's worth of aerosol and surface irradiance data from September 2005 to August 2006 were obtained at Taihu, the second supersite for the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). Aerosol optical properties derived from measurements by a Sun photometer were analyzed. The aerosol data were used together with surface irradiance data to quantitatively estimate aerosol effects on surface shortwave radiation (SWR) and photosynthetically active radiation (PAR). The annual mean aerosol optical depth at 500 nm is 0.77, and mean Ångstrom wavelength exponent is 1.17. The annual mean aerosol single scattering albedo and mean aerosol asymmetry factor at 440 nm are 0.90 and 0.72, respectively. Both parameters show a weak seasonal variation, with small values occurring during the winter and larger values during the summer. Clear positive relationships between relative humidity and aerosol properties suggest aerosol hygroscopic growth greatly modifies aerosol properties. The annual mean aerosol direct radiative forcing at the surface (ADRF) is -38.4 W m-2 and -17.8 W m-2 for SWR and PAR, respectively. Because of moderate absorption, the instantaneous ADRF at the top of the atmosphere derived from CERES SSF data is close to zero. Heavy aerosol loading in this region leads to -112.6 W m-2 and -45.5 W m-2 reduction in direct and global SWR, but 67.1 W m-2 more diffuse SWR reaching the surface. With regard to PAR, the annual mean differences in global, direct and diffuse irradiance are -23.1 W m-2, -65.2 W m-2 and 42.1 W m-2 with and without the presence of aerosol, respectively.

  4. Optical properties and radiative forcing of urban aerosols in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Li, S.; Liu, J.; Talbot, R.; Mao, H. T.; Yang, X. Q.; Fu, C. B.; Yin, C. Q.; Zhu, J. L.; Che, H. Z.; Zhang, X. Y.

    2014-02-01

    Continuous measurements of atmospheric aerosols were made in Nanjing, a megacity in China, from 18 January to 18 April, 2011 (Phase 1) and from 22 April 2011 to 21 April 2012 (Phase 2). Aerosol characteristics, optical properties, and direct radiative forcing (DRF) were studied through interpretations of these measurements. We found that during Phase 1, mean PM2.5, black carbon (BC), and aerosol scattering coefficient (Bsp) in Nanjing were 76.1 ± 59.3 μg m-3, 4.1 ± 2.2 μg m-3, and 170.9 ± 105.8 M m-1, respectively. High pollution episodes occurred during Spring and Lantern Festivals when hourly PM2.5 concentrations reached 440 μg m-3, possibly due to significant discharge of fireworks. Temporal variations of PM2.5, BC, and Bsp were similar to each other. It is estimated that inorganic scattering aerosols account for about 49 ± 8.6% of total aerosols while BC only accounted for 6.6 ± 2.9%, and nitrate was larger than sulfate. In Phase 2, optical properties of aerosols show great seasonality. High relative humidity (RH) in summer (June, July, August) likely attributed to large optical depth (AOD) and small Angstrom exponent (AE) of aerosols. Due to dust storms, AE of total aerosols was the smallest in spring (March, April, May). Annual mean 550-nm AOD and 675/440-nm AE were 0.6 ± 0.3 and 1.25 ± 0.29 for total aerosols, 0.04 ± 0.02 and 1.44 ± 0.50 for absorbing aerosols, 0.48 ± 0.29 and 1.64 ± 0.29 for fine aerosols, respectively. Annual single scattering albedo of aerosols ranged from 0.90 to 0.92. Real time wavelength-dependent surface albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to assess aerosol DRFs. Both total and absorbing aerosol DRFs had significant seasonal variations in Nanjing and they were the strongest in summer. Annual mean clear sky TOA DRF (including daytime and nighttime) of total and absorbing aerosols was about -6.9 and +4.5 W m-2, respectively. Aerosol DRFs were found to be sensitive to surface

  5. A merged aerosol dataset based on MODIS and MISR Aerosol Optical Depth products

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Gautam, Ritesh; Venkatachalam, Parvatham

    2016-05-01

    Aerosol Optical Depth (AOD) products available from MODIS and MISR observations are widely used for aerosol characterization, and global/environmental change studies. These products are based on different retrieval-algorithms, resolutions, sampling, and cloud-screening schemes, which have led to global/regional biases. Thus a merged product is desirable which bridges this gap by utilizing strengths from each of the sensors. In view of this, we have developed a "merged" AOD product based on MODIS and MISR AOD datasets, using Bayesian principles which takes error distributions from ground-based AOD measurements (from AERONET). Our methodology and resulting dataset are especially relevant in the scenario of combining multi-sensor retrievals for satellite-based climate data records; particularly for long-term studies involving AOD. Specifically for MISR AOD product, we also developed a methodology to produce a gap-filled dataset, using geostatistical methods (e.g. Kriging), taking advantage of available MODIS data. Merged and spatially-complete AOD datasets are inter-compared with other satellite products and with AERONET data at three stations- Kanpur, Jaipur and Gandhi College, in the Indo-Gangetic Plains. The RMSE of merged AOD (0.08-0.09) is lower than MISR (0.11-0.20) and MODIS (0.15-0.27). It is found that merged AOD has higher correlation with AERONET data (r within 0.92-0.95), compared to MISR (0.74-0.86) and MODIS (0.69-0.84) data. In terms of Expected Error, the accuracy of valid merged AOD is found to be superior as percent of merged AOD within error envelope are larger (71-92%), compared to MISR (43-61%) and MODIS (50-70%).

  6. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season

    NASA Astrophysics Data System (ADS)

    Peers, F.; Bellouin, N.; Waquet, F.; Ducos, F.; Goloub, P.; Mollard, J.; Myhre, G.; Skeie, R. B.; Takemura, T.; Tanré, D.; Thieuleux, F.; Zhang, K.

    2016-04-01

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in five Aerosol Comparisons between Observations and Models (Goddard Chemistry Aerosol Radiation and Transport (GOCART), Hadley Centre Global Environmental Model 3 (HadGEM3), European Centre Hamburg Model 5-Hamburg Aerosol Module 2 (ECHAM5-HAM2), Oslo-Chemical Transport Model 2 (OsloCTM2), and Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations.

  7. Quantitative retrieval of aerosol optical properties by means of ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, Matthias; Gasteiger, Josef; Geiß, Alexander

    2016-04-01

    In the last few years extended networks of ceilometers have been established by several national weather services. Based on improvements of the hardware performance of these single-wavelength backscatter lidars and their 24/7 availability they are increasingly used to monitor mixing layer heights and to derive profiles of the particle backscatter profile. As a consequence they are used for a wide range of applications including the dispersion of volcanic ash plumes, validation of chemistry transport models and air quality studies. In this context the development of automated schemes to detect aerosol layers and to identify the mixing layer are essential, in particular as the latter is often used as a proxy for air quality. Of equal importance is the calibration of ceilometer signals as a pre-requisite to derive quantitative optical properties. Recently, it has been emphasized that the majority of ceilometers are influenced by water vapor absorption as they operate in the spectral range of 905 - 910 nm. If this effect is ignored, errors of the aerosol backscatter coefficient can be as large as 50%, depending on the atmospheric water vapor content and the emitted wavelength spectrum. As a consequence, any other derived quantity, e.g. the extinction coefficient or mass concentration, would suffer from a significant uncertainty in addition to the inherent errors of the inversion of the lidar equation itself. This can be crucial when ceilometer derived profiles shall be used to validate transport models. In this presentation, the methodology proposed by Wiegner and Gasteiger (2015) to correct for water vapor absorption is introduced and discussed.

  8. Seasonal variability of optical properties of aerosols in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Vrekoussis, M.; Liakakou, E.; Koçak, M.; Kubilay, N.; Oikonomou, K.; Sciare, J.; Mihalopoulos, N.

    during winter (-30W m 2). Using aerosol optical thickness measurements in the area, we obtain radiative forcing estimates at the top of the atmosphere (TOA) ranging from -12.6 to -2.3 W m 2 for summer and winter, respectively. These values are up to five times higher than that induced by the greenhouse gases (2.4 Wm -2) but opposite in sign.

  9. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...

  10. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China.

    PubMed

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui; Liu, Chao

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol-radiation and aerosol-cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core-shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ±6% and ±14% for external mixture and ±9% and ±31% for core-shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate.

  11. Macular thickness as a predictor of loss of visual sensitivity in ethambutol-induced optic neuropathy.

    PubMed

    Peng, Chun-Xia; Zhang, Ai-di; Chen, Bing; Yang, Bing-Jian; Wang, Qiu-Hong; Yang, Mo; Wei, Shi-Hui

    2016-03-01

    Ethambutol is a common cause of drug-related optic neuropathy. Prediction of the onset of ethambutol-induced optic neuropathy and consequent drug withdrawal may be an effective method to stop visual loss. Previous studies have shown that structural injury to the optic nerve occurred earlier than the damage to visual function. Therefore, we decided to detect structural biomarkers marking visual field loss in early stage ethambutol-induced optic neuropathy. The thickness of peripapillary retinal nerve fiber layer, macular thickness and visual sensitivity loss would be observed in 11 ethambutol-induced optic neuropathy patients (22 eyes) using optical coherence tomography. Twenty-four healthy age- and sex-matched participants (48 eyes) were used as controls. Results demonstrated that the temporal peripapillary retinal nerve fiber layer thickness and average macular thickness were thinner in patients with ethambutol-induced optic neuropathy compared with healthy controls. The average macular thickness was strongly positively correlated with central visual sensitivity loss (r (2) =0.878, P=0.000). These findings suggest that optical coherence tomography can be used to efficiently screen patients. Macular thickness loss could be a potential factor for predicting the onset of ethambutol-induced optic neuropathy. PMID:27127488

  12. Macular thickness as a predictor of loss of visual sensitivity in ethambutol-induced optic neuropathy

    PubMed Central

    Peng, Chun-xia; Zhang, Ai-di; Chen, Bing; Yang, Bing-jian; Wang, Qiu-hong; Yang, Mo; Wei, Shi-hui

    2016-01-01

    Ethambutol is a common cause of drug-related optic neuropathy. Prediction of the onset of ethambutol-induced optic neuropathy and consequent drug withdrawal may be an effective method to stop visual loss. Previous studies have shown that structural injury to the optic nerve occurred earlier than the damage to visual function. Therefore, we decided to detect structural biomarkers marking visual field loss in early stage ethambutol-induced optic neuropathy. The thickness of peripapillary retinal nerve fiber layer, macular thickness and visual sensitivity loss would be observed in 11 ethambutol-induced optic neuropathy patients (22 eyes) using optical coherence tomography. Twenty-four healthy age- and sex-matched participants (48 eyes) were used as controls. Results demonstrated that the temporal peripapillary retinal nerve fiber layer thickness and average macular thickness were thinner in patients with ethambutol-induced optic neuropathy compared with healthy controls. The average macular thickness was strongly positively correlated with central visual sensitivity loss (r2 =0.878, P=0.000). These findings suggest that optical coherence tomography can be used to efficiently screen patients. Macular thickness loss could be a potential factor for predicting the onset of ethambutol-induced optic neuropathy. PMID:27127488

  13. Satellite and in-situ derived aerosol optical properties over the TCAP campaign region

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Ferrare, R. A.; Barnard, J.; Berkowitz, C. M.; Chapman, E.; Comstock, J. M.; Fast, J. D.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kassianov, E.; Kluzek, C. D.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.

    2012-12-01

    The direct radiative effect of natural and anthropogenic aerosol is one of the largest uncertainties in the prediction of climate change at regional and global scales. The uncertainties in atmospheric radiative forcing are in part a result of limited knowledge of aerosol optical properties. In this presentation we discuss in-situ and satellite derived aerosol optical properties obtained within the Two-Column Aerosol Project (TCAP) campaign region, and explore their links with aerosol chemical and physical properties. The TCAP field campaign is designed to provide observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns along the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located at Cape Cod. In contrast to the aircraft IOP, the AMF will be operated continuously until the summer of 2013.The surface observations will test the veracity of cloud and radiative transfer models over a wider range of conditions than can be observed via the short-term aircraft IOPs. In this presentation we will examine the spectral dependence of the aerosol optical properties with a focus on in-situ as well as remote sensing observations during the summer (July) over the TCAP region. We will also use multiple years of observations from MODIS, CALIPSO, and OMI satellite sensors and develop the climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol layer altitudes to put the TCAP observations into a larger perspective. In addition, in-situ observations of light scattering and absorption coefficients made using the G-1, and AOD and aerosol features derived from the NASA High Spectral Resolution Lidar

  14. The rapid and precise determination of the optical thickness of thin coatings in a vacuum.

    PubMed

    van Heel, A C; van Vonno, W

    1967-05-01

    The classical interference experiment with a double slit is adapted for measuring the optical thickness (n - 1)d of transparent and slightly absorbing thin films on transparent or reflecting substrates and for measuring the geometrical thickness d of metal films on reflecting substrates. Also, a method is described for measuring in vacuum the optical thickness of transparent or slightly absorbing thin films on transparent substrates. Results are given of measurements on magnesium fluoride, silicon monoxide, and zinc sulfide films. The influence of admitting air into the vacuum chamber has been investigated. With the available arrangements, a precision of lambda/1000 in the determination of the optical or geometrical thickness is easily obtainable for all film thicknesses. A thickness determination can he completed in about 1 min.

  15. Evaluation of cell sorting aerosols and containment by an optical airborne particle counter.

    PubMed

    Xie, Mike; Waring, Michael T

    2015-08-01

    Understanding aerosols produced by cell sorting is critical to biosafety risk assessment and validation of containment efficiency. In this study an Optical Airborne Particle Counter was used to analyze aerosols produced by the BD FACSAria and to assess the effectiveness of its aerosol containment. The suitability of using this device to validate containment was directly compared to the Glo-Germ method put forth by the International Society for Advancement of Cytometry (ISAC) as a standard for testing. It was found that high concentrations of aerosols ranging from 0.3 µm to 10 µm can be detected in failure mode, with most less than 5 µm. In most cases, while numerous aerosols smaller than 5 µm were detected by the Optical Airborne Particle Counter, no Glo-Germ particles were detected, indicating that small aerosols are under-evaluated by the Glo-Germ method. The results demonstrate that the Optical Airborne Particle Counter offers a rapid, economic, and quantitative analysis of cell sorter aerosols and represents an improved method over Glo-Germ for the task of routine validation and monitoring of aerosol containment for cell sorting. PMID:26012776

  16. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; Reid, J. S.; Giles, D. M.; Dubovik O.; O'Neill, N. T.; Smirnov, A.; Wang, P.; Xia, X.

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  17. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  18. Measurement of absolute optical thickness of mask glass by wavelength-tuning Fourier analysis.

    PubMed

    Kim, Yangjin; Hbino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-07-01

    Optical thickness is a fundamental characteristic of an optical component. A measurement method combining discrete Fourier-transform (DFT) analysis and a phase-shifting technique gives an appropriate value for the absolute optical thickness of a transparent plate. However, there is a systematic error caused by the nonlinearity of the phase-shifting technique. In this research the absolute optical-thickness distribution of mask blank glass was measured using DFT and wavelength-tuning Fizeau interferometry without using sensitive phase-shifting techniques. The error occurring during the DFT analysis was compensated for by using the unwrapping correlation. The experimental results indicated that the absolute optical thickness of mask glass was measured with an accuracy of 5 nm.

  19. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  20. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  1. Thickness identification of epitaxial Bi2Te3 via optical contrast

    NASA Astrophysics Data System (ADS)

    Vajner, Cooper; Yan, Haoming; Guo, Lingling; Mathews, Melissa; Kuhlman, Michael; Benefield, Shellby; Ulrich, Steven; Zolghadr, Ehsan; Kung, Patrick; Li, Lin; Araujo, Paulo T.; Wang, Hung-Ta

    2016-06-01

    Two-dimensional (2D) nanosheet thickness identification is effective for rapidly determining thickness-dependent properties of 2D materials. Bismuth telluride (Bi2Te3) is a 2D material known for its promising thermoelectric properties and potential dissipationless charge transport in the topological surface states. To date, thickness measurements of Bi2Te3 2D nanosheets are mainly carried out via atomic force microscope or Raman spectroscopy. Here, we investigate a practical, rapid, inexpensive, and non-invasive thickness measurement technique that utilizes the optical contrast of Bi2Te3 2D nanosheets on a mica substrate (i.e., as-grown) and a SiO2/Si substrate (i.e., transferred). The reflected optical intensity and the corresponding contrast are studied as a function of Bi2Te3 thickness, illumination wavelength, and substrate thickness. Disagreement between experimental and calculated optical contrast values is observed, which is ascribed to the thickness-dependent refractive indices of Bi2Te3, mica thickness error, and the deviation from normal light incidence. Despite thin film interference in mica, the monotonic relationship between nanosheet’s contrast and thickness makes mica a better substrate for identifying Bi2Te3 thickness. In addition, a brief recipe is provided for such a thickness identification method to be generally applied in any laboratory.

  2. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  3. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.

  4. Basic optics, aerosol optics, and the role of scattering for sky radiance

    NASA Astrophysics Data System (ADS)

    Horvath, Helmuth

    2014-05-01

    The radiance of the night sky is determined by the available light and the scattering properties of the atmosphere (particles and gases). The scattering phase function of the aerosol has a strong dependence on the scattering angle, and depending on the viewing direction different parts of the atmosphere and the ground reflectivity give the most important contribution. The atmospheric radiance cannot be altered by optical instruments. On the other hand the light flux of a distant star increases with the size of the telescope, thus fainter stars become visible. Light extinction, scattering function, atmospheric radiance, ground reflectivity, color effects and others are discussed in detail and a simple theoretical treatment is given.

  5. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  6. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-10

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1–0.15 and 0.9–1.0, respectively. Themore » derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  7. Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization

    NASA Astrophysics Data System (ADS)

    Xia, X.; Che, H.; Zhu, J.; Chen, H.; Cong, Z.; Deng, X.; Fan, X.; Fu, Y.; Goloub, P.; Jiang, H.; Liu, Q.; Mai, B.; Wang, P.; Wu, Y.; Zhang, J.; Zhang, R.; Zhang, X.

    2016-01-01

    Spatio-temporal variation of aerosol optical properties and aerosol direct radiative effects (ADRE) are studied based on high quality aerosol data at 21 sunphotometer stations with at least 4-months worth of measurements in China mainland and Hong Kong. A parameterization is proposed to describe the relationship of ADREs to aerosol optical depth at 550 nm (AOD) and single scattering albedo at 550 nm (SSA). In the middle-east and south China, the maximum AOD is always observed in the burning season, indicating a significant contribution of biomass burning to AOD. Dust aerosols contribute to AOD significantly in spring and their influence decreases from the source regions to the downwind regions. The occurrence frequencies of background level AOD (AOD < 0.10) in the middle-east, south and northwest China are very limited (0.4%, 1.3% and 2.8%, respectively). However, it is 15.7% in north China. Atmosphere is pristine in the Tibetan Plateau where 92.0% of AODs are <0.10. Regional mean SSAs at 550 nm are 0.89-0.90, although SSAs show substantial site and season dependence. ADREs at the top and bottom of the atmosphere for solar zenith angle of 60 ± 5° are -16--37 W m-2 and -66--111 W m-2, respectively. ADRE efficiency shows slight regional dependence. AOD and SSA together account for more than 94 and 87% of ADRE variability at the bottom and top of the atmosphere. The overall picture of ADRE in China is that aerosols cool the climate system, reduce surface solar radiation and heat the atmosphere.

  8. Optical Properties of Wintertime Aerosols from Residential Wood Burning in Fresno, CA: Results from DISCOVER-AQ 2013.

    PubMed

    Zhang, Xiaolu; Kim, Hwajin; Parworth, Caroline L; Young, Dominique E; Zhang, Qi; Metcalf, Andrew R; Cappa, Christopher D

    2016-02-16

    The optical properties, composition and sources of the wintertime aerosols in the San Joaquin Valley (SJV) were characterized through measurements made in Fresno, CA during the 2013 DISCOVER-AQ campaign. PM2.5 extinction and absorption coefficients were measured at 405, 532, and 870 nm along with refractory black carbon (rBC) size distributions and concentrations. BC absorption enhancements (Eabs) were measured using two methods, a thermodenuder and mass absorption coefficient method, which agreed well. Relatively large diurnal variations in the Eabs at 405 nm were observed, likely reflecting substantial nighttime emissions of wood burning organic aerosols (OA) from local residential heating. Comparably small diurnal variations and absolute nighttime values of Eabs were observed at the other wavelengths, suggesting limited mixing-driven enhancement. Positive matrix factorization analysis of OA mass spectra from an aerosol mass spectrometer resolved two types of biomass burning OA, which appeared to have different chemical composition and absorptivity. Brown carbon (BrC) absorption was estimated to contribute up to 30% to the total absorption at 405 nm at night but was negligible (<10%) during the day. Quantitative understanding of retrieved BrC optical properties could be improved with more explicit knowledge of the BC mixing state and the distribution of coating thicknesses. PMID:26771892

  9. VIIRS Aerosol Optical Depth (AOD) Products for Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Huff, A. K.; Zhang, H.; Kondragunta, S.; Laszlo, I.

    2014-12-01

    The air quality community uses satellite aerosol optical depth (AOD) for a variety of applications, including daily air quality forecasting, retrospective event analysis, and justification for Exceptional Events. AOD is suitable for ambient air quality applications because is related to particulate matter (e.g., PM2.5) concentrations in the atmosphere; higher values of AOD correspond to higher concentrations of particulate matter. AOD is useful for identifying and tracking areas of high PM2.5 concentrations that correspond to air quality events, such as wildfires, dust storms, or haze episodes. Currently, the air quality community utilizes AOD from the MODIS instrument on NASA's polar-orbiting Terra and Aqua satellites and from NOAA's GOES geostationary satellites (e.g, GASP). The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi-NPP satellite is making AOD measurements that are similar to MODIS AOD, but with higher spatial resolution. Two AOD products are available from VIIRS: the 750 m nadir resolution Intermediate Product (IP) and the 6 km resolution Environmental Data Record (EDR) product, which is aggregated from IP measurements. These VIIRS AOD products offer a substantial increase in spatial resolution compared to the MODIS AOD 3 km and 10 km AOD products, respectively. True color (RGB) imagery is also available from VIIRS as a decision aid for air quality applications. It serves as a complement to AOD measurements by providing visible information about areas of smoke, haze, and blowing dust in the atmosphere. Case studies of VIIRS AOD and RGB data for recent air quality events will be presented, with a focus on wildfires, and the relative pros and cons of the VIIRS AOD IP and EDR for air quality applications will be discussed in comparison to MODIS AOD products. Improvements to VIIRS aerosol products based on user feedback as part of the NOAA Satellite Air Quality Proving Ground (AQPG) will be outlined, and an overview of future

  10. a Novel Index for Atmospheric Aerosol Types Categorization with Spectral Optical Depths from Satellite Retrieval

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Liu, Gin-Rong; Liu, Chian-Yi

    2016-06-01

    In general, the type of atmospheric aerosols can be efficiently identified with the characteristics of optical properties, such as Ångström exponent (AE) and single scattering albedo (SSA). However, the retrieval of SSA is not frequently available to global area which may cause the difficulty in the identification of aerosol type. Since aerosol optical depth (AOD) can be easily requested, a novel index in terms of AOD, Normalized Gradient Aerosol Index (NGAI), is proposed to get over the constraint on SSA providing. With the NGAI derived from MODIS AOD products, the type of atmospheric aerosols can be clearly categorized between mineral dusts, biomass burning and anthropogenic pollutants. The results of aerosol type categorization show the well agreement with the ground-based observations (AERONET) in AE and SSA properties, implying that the proposed index equips highly practical for the application of aerosols type categorization by means of remote sensing. In addition, the fraction of AOD compositions can be potentially determined according to the value of index after compared with the products of CALIPSO Aerosol Subtype.

  11. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  12. Providing Size-Resolved Mixing State Inputs to Improve Aerosol Optics Models: Comparison of ACE-Asia Aerosol Chemical Measurements for Different Source Regions With Simultaneous Optical Measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Poon, G.; Guazzotti, S.; Sodeman, D.; Holecek, J.; Spencer, M.; Prather, K.

    2005-12-01

    Measurements made of the aerodynamic size and chemical composition of single aerosol particles on board the R/V Ronald H. Brown sailing between Hawaii and the Sea of Japan during ACE-Asia in 2001 revealed a complex mixture of mineral dust, organic carbon, elemental carbon, sulfates, nitrates, chloride, ammonium, and sea salt. The air mass source regions included influences from the Pacific Ocean, Miyakejima volcano, Gobi and Taklimakan Deserts, Shanghai, Japan, and Korea. The particle composition sampled from each of these regions showed unique changes in the aerosol's mixing state. This complexity presents major challenges in accurately modeling the optical properties of the Asian aerosol. The degree of closure between the measured chemical and optical properties of this aerosol and those predicted by models has been presented by Quinn et al. [JGR, 109, D19S01, doi: 10.1029/2003JD004010, 2004]. Differences between measured and calculated aerosol absorption coefficients were partly attributed to the assumption of internally mixed homogeneous spheres for the aerosol population. Good correlations between measured and calculated aerosol mass and light scattering were found but relied on particle shapes not confirmed by measurements. To better our understanding of the relationship between aerosol chemistry and optical measurements, and provide more detailed inputs to improve the predictions of optical models, we present size-resolved single-particle mixing state results obtained by an ATOFMS for the seven air mass source regions described by Quinn et al. (2004). Our results do not support the assumption of a homogeneous internally mixed aerosol population for many of the source regions. Particular focus is given to the mixing state and chemical associations of sulfate, nitrate, chloride, ammonium, OC, EC, dust, and sea salt. We demonstrate the segregation of ammonium, sulfate, and nitrate within individual particles throughout the study and discuss the different

  13. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  14. Optical Characteristics of Aerosols and Clouds Retrieved from Sky Radiometer Data of SKYNET

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Irie, H.; Takamura, T.

    2015-12-01

    SKYNET is an observation network to collect data related to aerosols, clouds, and radiation using a variety of ground-based instruments. The sky radiometer, manufactured by PREDE Co. Ltd., Japan, is one of the SKYNET instruments. Present research activities have made it possible to retrieve not only optical characteristics of aerosols and clouds, but also columnar water vapor and ozone concentrations using data of this instrument. This study analyzes sky radiometer data of various sites to understand optical characteristics of aerosols of different backgrounds. Several interesting results were obtained. For example, the light-absorption capacity of dust aerosols was observed to depend on not only mixed pollutants but also on aerosol size. We further studied the effects of aerosols on atmospheric heat budget using such observation data and a radiative transfer model. The results showed clear spatial and temporal variations of aerosol radiative forcing at the surface as well as top of atmosphere (TOA). Sky radiometer data of selected super sites of SKYNET were also analyzed to understand the optical characteristics of clouds. Such retrieved cloud parameters were validated using irradiances measured at the surface as well as MODIS cloud parameters. Though differences exist with respect to MODIS cloud parameters, irradiances calculated using sky radiometer retrieved cloud parameters agree fairly well with observed values.

  15. Increasing trend of Aerosol Optical Depth and Its Effect on Rainfall over

    NASA Astrophysics Data System (ADS)

    Mehdi, Waseem; Singh, Ramesh; Prasad, Anup

    Since last two decades, the aerosol optical depth has increased due to urbanization and industrialization. The nature of the aerosols over the Indo-Gangetic plains is found to be very dynamic and its transport depends on the meteorological conditions. The aerosol optical parameters vary during summer and winter seasons. The Indo-Gangetic plains is affected by the intense dusts during pre-monsoon/summer season and the anthropogenic activities control the nature of aerosols during winter season. The meteorological conditions and nature of the boundary layer play an important role in the climatic change during winter season, as a result million of people get affected due to the intense formation of haze, fog and smog in the Indo-Gangetic plains. Detailed analysis of TOMS, MODIS, MISR, AIRS and TRIMM have been carried out to study the aerosol parameters and rainfall. The increasing trend of aerosol optical depth from western part to the eastern parts of the Indo-Gangetic plains is found using multi sensor data at most of the locations during summer and winter seasons. The rainfall derived from TRIMM and GPCP data show increasing and also decreasing trend. The observed rainfall trend will be discussed in terms of the nature of the aerosol parameters which are found to be different due to the source of pollutants.

  16. Aerosol optical properties in the Marine Environment during the TCAP-I campaign

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Barnard, J.; Berkowitz, C. M.; Burton, S. P.; Chapman, E. G.; Comstock, J. M.; Fast, J. D.; Ferrare, R. A.; Connor, F. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kluzek, C.; Mei, F.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk-Imre, A.

    2013-12-01

    The role of direct radiative forcing by atmospheric aerosol is one of the largest sources of uncertainty in predicting climate change. Much of this uncertainty comes from the limited knowledge of observed aerosol optical properties. In this presentation we discuss derived aerosol optical properties based on measurements made during the summer 2012 Two-Column Aerosol Project-I (TCAP) campaign and relate these properties to the corresponding chemical and physical properties of the aerosol. TCAP was designed to provide simultaneous, in-situ observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns over the Atlantic Ocean near the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft, winter IOP using G-1 aircraft in February 2013, and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located on Cape Cod. In this presentation we examine the spectral dependence of the aerosol optical properties measured from the aircraft over the TCAP-I domain, with an emphasis on in-situ derived intensive properties measured by a 3-λ Nephelometer, a Particle Soot Absorption Photometer (PSAP), a humidograph (f(RH)), and a Single Particle Soot Photometer (SP2). Preliminary results indicate that the aerosol are more light-absorbing as well as more hygroscopic at higher altitudes (2-4 km) compared to the corresponding values made within residual layers near the surface (0-2 km altitude). The average column (0-4 km) single scattering albedo (ω) and hygroscopic scattering factor (F) are found to be ~0.96 and 1.25, respectively. Additional results on key aerosol intensive properties such as the angstrom exponent (å), asymmetry parameter (g), backscattering fraction (b), and gamma parameter (

  17. Coupled escape probability for an asymmetric spherical case: Modeling optically thick comets

    SciTech Connect

    Gersch, Alan M.; A'Hearn, Michael F.

    2014-05-20

    We have adapted Coupled Escape Probability, a new exact method of solving radiative transfer problems, for use in asymmetrical spherical situations. Our model is intended specifically for use in modeling optically thick cometary comae, although not limited to such use. This method enables the accurate modeling of comets' spectra even in the potentially optically thick regions nearest the nucleus, such as those seen in Deep Impact observations of 9P/Tempel 1 and EPOXI observations of 103P/Hartley 2.

  18. Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony

    1997-01-01

    NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.

  19. Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

    NASA Astrophysics Data System (ADS)

    Andersson, Emma; Kahnert, Michael

    2016-05-01

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between -28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from -50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  20. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  1. Change of retinal nerve fiber layer thickness in patients with nonarteritic inflammatory anterior ischemic optic neuropathy.

    PubMed

    Liu, Tingting; Bi, Hongsheng; Wang, Xingrong; Wang, Guimin; Li, Haiyan; Wu, Hui; Qu, Yi; Wen, Ying; Cong, Chenyang; Wang, Daoguang

    2012-12-15

    In this study, 16 patients (19 eyes) with nonarteritic anterior ischemic optic neuropathy in the acute stage (within 4 weeks) and resolving stage (after 12 weeks) were diagnosed by a series of complete ophthalmic examinations, including fundus examination, optical coherence tomography and fluorescein fundus angiography, and visual field defects were measured with standard automated perimetry. The contralateral uninvolved eyes were used as controls. The retinal nerve fiber layer thickness was determined by optical coherence tomography which showed that the mean retinal nerve fiber layer thickness and the retinal nerve fiber layer thickness from temporal, superior, nasal and inferior quadrants were significantly higher for all measurements in the acute stage than the corresponding normal values. In comparison, the retinal nerve fiber layer thickness from each optic disc quadrant was found to be significantly lower when measured at the resolving stages, than in the control group. Statistical analysis on the correlation between optic disc nerve fiber layer thickness and visual defects demonstrated a positive correlation in the acute stage and a negative correlation in the resolving stage. Our experimental findings indicate that optical coherence tomography is a useful diagnostic method for nonarteritic anterior ischemic optic neuropathy and can be used to evaluate the effect of treatment.

  2. The spatial-temporal variations in optical properties of atmosphere aerosols over China and its application in remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, H.; Cheng, T.

    2013-12-01

    The atmospheric and climate response to the aerosol forcing are assessed by climate models regionally and globally under the past, present and future conditions. However, large uncertainties exist because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. Reduction in these uncertainties requires long-term monitoring of detailed properties of different aerosol types. China is one of the heavily polluted areas with high concentration of aerosols in the world. The complex source, composition of China aerosol led to the worse accuracy of aerosol radiative forcing assessment in the world, which urgently calls for improvements on the understanding of China regional aerosol properties. The spatial-temporal properties of aerosol types over China are studied using the radiance measurements and inversions data at 4 Aerosol Robotic Network (AERONET) stations. Five aerosol classes were identified including a coarse-size dominated aerosol type (presumably dust) and four fine-sized dominated aerosol types ranging from non-absorbing to highly absorbing fine aerosols. The mean optical properties of different aerosol types in China and their seasonal variations were also investigated. Based on the cluster analysis, the improved ground-based aerosol model is applied to the MODIS dark target inversion algorithm. Validation with MODIS official product and CE318 is also included.

  3. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  4. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    SciTech Connect

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E.

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  5. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B. J.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.

    2015-01-01

    A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allowed "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic-carbon (OC)-elemental-carbon (EC) measurements. Optical sensing was calibrated with transfer standards traceable to absolute R and T measurements, adjusted for loading effects to report spectral light absorption (as absorption optical depth (τa, λ)), and verified using diesel exhaust samples. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~ 635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black-carbon (BC) and brown-carbon (BrC) contributions and their optical properties in the near infrared to the near ultraviolet parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  6. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.

    2014-09-01

    A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allows "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic carbon (OC)-elemental carbon (EC) measurements. Optical sensing is calibrated with transfer standards traceable to absolute R and T measurements and adjusted for loading effects to determine spectral light absorption (as absorption optical depth [τa, λ]) using diesel exhaust samples as a reference. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black carbon (BC) and brown carbon (BrC) contributions and their optical properties in the near-IR to the near-UV parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  7. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  8. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts

    PubMed Central

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-01-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: <5, 5–10 and >10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy. PMID:27588090

  9. The optically thick C III spectrum. I - Term populations and multiplet intensities at lower optical depths

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1992-01-01

    The C III spectrum is studied quantitatively under both optically thin and optically thick conditions, yielding term populations and line/multiplet intensities for column lengths from zero to 10 exp 18/sq cm. The roles of escape probabilities and line profiles in the calculation are discussed in some detail. It is shown that use of the fully integrated escape factor, rather than the more appropriate monodirectional escape probability, can lead to appreciable errors in calculated intensities. The results for populations and intensities make it possible to identify two unassigned features in the solar EUV spectrum of Vernazza and Reeves (1978) as C III multiplets, and to establish that an unidentified infrared solar feature at 8500.32 A, seen in both absorption (Fraunhofer) and emission (chromospheric) spectra, is the C III transition 2s3s(1S)-2s3p(1P). Voigt parameters for the C III lines and multiplets, obtained by a modified semiclassical method are tabulated. A new, unambiguous notation for the numerous line ratios present in a typical spectrum, which is argued to be an improvement over present arbitrary notations, is proposed and used.

  10. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  11. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  12. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  13. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    SciTech Connect

    Ding, Guowen Clavero, César; Schweigert, Daniel; Le, Minh

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  14. Aerosol optical properties and types over the tropical urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Kaskaoutis, D. G.; Rani Sharma, Anu; Kvs, Badarinath; Kambezidis, H. D.

    India is densely populated, industrialized and in the recent years has witnessed an impressive economic development. Aerosols over and around India not only affect the Indian monsoon but also the global climate. The growing population coupled with revolution in industry has resulted in higher demands for energy and transport. With more and more urbanization the usage pattern of fossil and bio-fuels are leading to changes in aerosol properties, which may cause changes in precipitation and can decelerate the hydrological cycle. Over urban areas of India aerosol emissions from fossil fuels such as coal, petrol and diesel oil dominate. Further-more, the Indian subcontinent exhibits different land characteristics ranging from vegetated areas and forests to semiarid and arid environments and tall mountains. India experiences large seasonal climatic variations, which result in extreme temperatures, rainfall and relative humidity. These meteorological and climatic features introduce large variabilities in aerosol op-tical and physico-chemical characteristics at spatial and temporal scales. In the present study, seasonal variations in aerosol properties and types were analysed over tropical urban region of Hyderabad, India during October 2007-September 2008 using MICROTOPS II sun photometer measurements. Higher aerosol optical depth (AOD) values are observed in premonsoon, while the variability of the ˚ngstrüm exponent (α) seems to be more pronounced with higher values A in winter and premonsoon and lower in the monsoon periods. The AOD at 500 nm (AOD500 ) is very large over Hyderabad, varying from 0.46±0.17 in postmonsoon to 0.65±0.22 in premon-soon periods. A discrimination of the different aerosol types over Hyderabad is also attempted using values of AOD500 and α380-870. Such discrimination is rather difficult to interpret since a single aerosol type can partly be identified only under specific conditions (e.g. anthropogenic emissions, biomass burning or dust

  15. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  16. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  17. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Healy, R. M.; Riemer, N.; West, M.; Wang, J. M.; Jeong, C.-H.; Wenger, J. C.; Evans, G. J.; Abbatt, J. P. D.; Lee, A. K. Y.

    2015-11-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particles was 0.02-0.08 and 0.72-0.93, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  18. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGES

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol -Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  19. Modeling of microphysics and optics of aerosol particles in the marine environments

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady

    2013-05-01

    We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0 - 25 m, U = 3 - 18 km s-1, X ≤ 120 km and RH = 40 - 98%. The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied for the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ = 0.2-12 μm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory. The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results. Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.

  20. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  1. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  2. Long-term changes of aerosol optical and radiative properties and their role in global dimming and brightening

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.; Papadimas, C. D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I.

    2009-04-01

    Global dimming and brightening (GDB) have profound effects on the Earth's environment. For example, GDB counteracts or supplements greenhouse warming. Atmospheric aerosols, through their interaction with solar radiation (direct, indirect and semi-direct effects) can affect GDB. Changes in aerosol burden or other physical and optical properties can modify tendencies of GDB. For example, satellite observations of aerosol amounts, available since the early 1980s, but only over the oceans, indicate a downward trend since about 1990, consistent with the observed brightening during this period. There is a need, however, to investigate similar trends, but also over land, and to relate them with contemporary GDB. The seasonal and inter-annual variability of the natural, but also anthropogenic aerosol direct radiative effect on solar radiation at the Earth's surface (DREsurf) and the contribution of aerosols to global dimming and brightening (GDB) is estimated over the period 1984-2001. This is achieved by using a spectral radiative transfer model together with Total Ozone Mapping Spectrometer (TOMS) aerosol optical thickness (AOT) and other satellite (International Satellite Cloud Climatology Project, ISCCP-D2), NCEP/NCAR reanalysis and Global Aerosol Data Set (GADS) data for surface and atmospheric parameters. The major findings are mostly related to natural and less to anthropogenic aerosols because of limitations of the TOMS observational technique. The model results indicate that aerosols exert a strong surface cooling over the globe by reducing locally the incoming surface solar radiation by up to 70 W m-2. This direct radiative effect averaged over the globe for the period 1984-2001, is equivalent to 5 W m-2, associated with 6.5 and 3.5 W m-2, for the Northern and Southern Hemispheres, respectively. However, this aerosol DREsurf effect shows an important inter-annual variability as large as 200%. A strong solar brightening, or decreased aerosol DREsurf, by as much as

  3. Laser ablation of a Terfenol-D microparticle aerosol and subsequent supersonic nanoparticle impaction for magnetostrictive thick films

    NASA Astrophysics Data System (ADS)

    O'Brien, Daniel Thomas

    This dissertation describes using microparticles of the (giant) magnetostrictive material Terfenol-D (Tb0.3Dy0.7Fe1.92) in the Laser Ablation of Microparticle (LAM) aerosols process for the generation of nanoparticles and their subsequent supersonic impaction to form nanostructured magnetostrictive thick films. Solid Terfenol-D was ground to a powder having diameters from 0.3 to 3 mum. This microparticle powder was then aerosolized and ablated by a KrF ultraviolet, pulsed laser in a continuously flowing aerosol process. The nanoparticles formed from the ablation were then accelerated through a supersonic nozzle into vacuum where they impacted onto a substrate at room temperature forming a film. The nanoparticles were amorphous, as shown by x-ray diffraction analysis of the deposited films and by Transmission Electron Microscopy of individual particles, and had a size distribution typical of the LAM process: 3 to 20 nm in diameter with a mean size less than 10 nm. The deposited films were characterized using the cantilever method to determine magnetostriction and elastic modulus. Values of magnetostriction were on the order of 15 ppm for LAM deposited films. The films were porous, due to their granular nature, reducing the elastic modulus to about 15 GPa. The reduced magnetostriction (1/30 that of comparable thin films) was due to oxidation. Spectroscopic analysis of the ablation plasma provided data in determining the source of the oxidation. Calculations showed that the extent of oxidation in the films was dependent on the microparticle feedstock size. For typical aerosol densities used in the LAM process, calculations showed that material made from microparticles having a diameter larger than 3 mum was not significantly affected by background gas impurities or by an oxide shell on the microparticles, whereas 0.3 mum diameter microparticles resulted in completely oxidized nanoparticles and hence films that were completely oxidized. From the behavior of the

  4. The Aerosol Limb Imager: acousto-optic imaging of limb-scattered sunlight for stratospheric aerosol profiling

    NASA Astrophysics Data System (ADS)

    Elash, B. J.; Bourassa, A. E.; Loewen, P. R.; Lloyd, N. D.; Degenstein, D. A.

    2016-03-01

    The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype instrument. The long-term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track. The instrument design uses a large-aperture acousto-optic tunable filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicates that the radiance measurements are of high quality, and we have used these to retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650 to 1000 nm, along with one moment of the particle size distribution. Those preliminary results are promising and development of a satellite prototype of ALI within the Canadian Space Agency is ongoing.

  5. CALIPSO and MODIS Observations of Increases in Aerosol Optical Depths near Marine Stratocumulus

    NASA Astrophysics Data System (ADS)

    Coakley, J. A.; Tahnk, W. R.

    2009-12-01

    Aerosols not only affect droplet sizes and number concentrations in marine stratocumulus but in turn the near cloud environment gives rise to changes in the aerosol particle concentrations and sizes. In addition, the clouds serve as reflectors that illuminate the adjacent cloud-free air. This extra illumination leads to overestimates of aerosol optical depths and fine mode fractions retrieved from multispectral satellite imagery. Large cloud-free ocean regions bounded on both ends, or if sufficiently large (>100 km), on at least one end by layers of marine stratocumulus, as deduced from CALIPSO lidar returns, were examined to deduce the effects of the clouds on the properties of nearby aerosols. CALIPSO aerosol optical depths composited for more than a year and covering the global oceans, 60°S-60°N, reveal that the fractional increase in aerosol optical depth in going from a cloud-free 5-km region more than 10 to 15 km from a cloud boundary to one adjacent the clouds is 10%-15% at both 532 and 1064 nm for both daytime and nighttime observations. All of the changes are statistically significant at the 90% confidence level or greater. The associated reduction in the 532/1064 Ånsgtröm Exponent is 0.023 for the nighttime observations, but owing to a poorer signal to noise ratio, no change in the Exponent is detected for the daytime observations. For comparison, the MODIS aerosol optical depths collocated with the daytime CALIPSO optical depths suggest that the fractional increases in aerosol optical depths in going from a cloud-free 10-km region 15 km from a cloud boundary to one adjacent the clouds is about 5% at both 550 and 850 nm. The associated reduction in the 550/850 Ånsgtröm Exponent is 0.053. The changes in aerosol properties die away within 10 to 20 km from the marine stratocumulus. The increases in aerosol scattering and reductions in Ånsgtröm Exponent suggest that near the clouds, the aerosol particles become larger. The fine mode fraction found in

  6. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  7. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China

    NASA Astrophysics Data System (ADS)

    Shi, Chanzhen; Wang, Shanshan; Liu, Rui; Zhou, Rui; Li, Donghui; Wang, Wenxin; Li, Zhengqiang; Cheng, Tiantao; Zhou, Bin

    2015-02-01

    Aerosol optical property is essential to the tropospheric ozone formation mechanism while it was rarely measured in ozone-rich environment for a specific study. With the retrieved products of the sun-photometer, a comparative investigation was conducted on aerosol optical depth (AOD), single scattering albedo (SSA) and size distribution during ozone-polluted episodes and clean background. Contrary to expectations, aerosol loading was found to be positively-correlated with ozone concentration: daily averaged AOD at 500 nm in ozone episodes (~ 0.78) displayed 2.4 times higher than that in clean days (~ 0.32). Large Ångström exponent (~ 1.51) along with heavy aerosol loading indicated a considerable impact of fine particles on optical extinction. The dynamic diurnal fluctuation of these parameters also implied a complex interaction between aerosols and photo-chemical reactions. The bimodal lognormal distribution pattern for aerosol size spectra exhibited in both ozone-polluted and clean days. The occurrence of maximum volume concentration (~ 0.28) in fine mode (radius < 0.6 μm) was observed at 3 p.m. (local time), when ozone was substantially generated. Pronounced scattering feature of aerosol was reproduced in high-concentration ozone environment. SSA tended to increase continuously from morning (~ 0.91 at 440 nm) to afternoon (~ 0.99), which may be associated with secondary aerosol formation. The scattering aerosol (with moderately high aerosol loading) may favor the ozone formation through increasing solar flux in boundary layer. Utilizing the micro-pulse lidar (MPL), a more developed planet boundary layer (PBL, top height ~ 1.96 km) was discovered during ozone-polluted days than clean condition (~ 1.4 km). In episodes, the maximum extinction ratio (~ 0.5 km- 1) was presented at a height of 1.2 km in the late afternoon. The humidity profile by sounding also showed the extreme value at this altitude. It suggested that optical extinction was mainly attributed to

  8. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  9. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode. PMID:24455916

  10. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  11. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  12. Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition.

    PubMed

    Kwon, Oh-Yun; Na, Hyun-Jun; Kim, Hyung-Jun; Lee, Dong-Won; Nam, Song-Min

    2012-01-01

    Two types of ceramic-polymer composite thick films were deposited on Cu substrates by an aerosol deposition process, and their properties were investigated to fabricate optimized ceramic-based polymer composite thick films for application onto integrated substrates with the advantage of plasticity. When polymers with different mechanical properties, such as polyimide (PI) and poly(methyl methacrylate) (PMMA), are used as starting powders together with α-Al2O3 powder, two types of composite films are formed with different characteristics - surface morphologies, deposition rates, and crystallite size of α-Al2O3. Through the results of micro-Vickers hardness testing, it was confirmed that the mechanical properties of the polymer itself are associated with the performances of the ceramic-polymer composite films. To support and explain these results, the microstructures of the two types of polymer powders were observed after planetary milling and an additional modeling test was carried out. As a result, we could conclude that the PMMA powder is distorted by the impact of the Al2O3 powder, so that the resulting Al2O3-PMMA composite film had a very small amount of PMMA and a low deposition rate. In contrast, when using PI powder, the Al2O3-PI composite film had a high deposition rate due to the cracking of PI particles. Consequently, it was revealed that the mechanical properties of polymers have a considerable effect on the properties of the resulting ceramic-polymer composite thick films.

  13. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  14. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  15. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  16. Aerosols optical propertites in Titan's Detached Haze Layer

    NASA Astrophysics Data System (ADS)

    Seignovert, Benoît; Rannou, Pascal; Lavvas, Panayotis; Cours, Thibaud; West, Robert A.

    2016-06-01

    Titan's Detached Haze Layer (DHL) first observed in 1983 by Rages and Pollack during the Voyager 2 [1] is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 [2]. Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere [3-5]. In this study we perform UV photometric analyses on ISS observations taken from 2005 to 2007 based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer size, fractal dimension and local density).

  17. Airborne Sunphotometry of Aerosol Optical Depth and Columnar Water Vapor During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Schmid, B.; Russell, P. B.; Livingston, J. M.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    During the Intensive Field Campaign (IFC) of the Aerosol Characterization Experiment - Asia (ACE-Asia), March-May 2001, the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated during 15 of the 19 research flights aboard the NCAR C- 130, while its 14-channel counterpart (AATS- 14) was flown successfully on all 18 research flights of a Twin Otter aircraft operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Monterey, CA. ACE-Asia was the fourth in a series of aerosol characterization experiments and focused on aerosol outflow from the Asian continent to the Pacific basin. Each ACE was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. The Ames Airborne Tracking Sunphotometers measured solar beam transmission at 6 (380-1021 nm, AATS-6) and 14 wavelengths (353-1558 nm, AATS-14) respectively, yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction and water vapor concentration. The wavelength dependence of AOD and extinction indicates that supermicron dust was often a major component of the aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in data flights analyzed to date 34 +/- 13% of full-column AOD(525 nm) was above 3 km. In contrast, only 10 +/- 4% of CWV was above 3 km. In this paper, we will show first sunphotometer-derived results regarding the spatial variation of AOD and CWV, as well as the vertical distribution of aerosol extinction and water vapor concentration. Preliminary comparison studies between our AOD/aerosol extinction data and results from: (1) extinction products derived using in situ measurements and (2) AOD retrievals using the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite will also be presented.

  18. Analysis of the origin of peak aerosol optical depth in springtime over the Gulf of Tonkin.

    PubMed

    Shan, Xiaoli; Xu, Jun; Li, Yixue; Han, Feng; Du, Xiaohui; Mao, Jingying; Chen, Yunbo; He, Youjiang; Meng, Fan; Dai, Xuezhi

    2016-02-01

    By aggregating MODIS (moderate-resolution imaging spectroradiometer) AOD (aerosol optical depth) and OMI (ozone monitoring instrument) UVAI (ultra violet aerosol index) datasets over 2010-2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin (17-23 °N, 105-110 °E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP (cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km. In contrast, aerosol loading in the low atmosphere (below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula (NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring. PMID:26969552

  19. Analysis of the origin of peak aerosol optical depth in springtime over the Gulf of Tonkin.

    PubMed

    Shan, Xiaoli; Xu, Jun; Li, Yixue; Han, Feng; Du, Xiaohui; Mao, Jingying; Chen, Yunbo; He, Youjiang; Meng, Fan; Dai, Xuezhi

    2016-02-01

    By aggregating MODIS (moderate-resolution imaging spectroradiometer) AOD (aerosol optical depth) and OMI (ozone monitoring instrument) UVAI (ultra violet aerosol index) datasets over 2010-2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin (17-23 °N, 105-110 °E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP (cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km. In contrast, aerosol loading in the low atmosphere (below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula (NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring.

  20. Does Optic Nerve Head Size Variation Affect Circumpapillary Retinal Nerve Fiber Layer Thickness Measurement by Optical Coherence Tomography?

    PubMed Central

    Huang, David; Chopra, Vikas; Lu, Ake Tzu-Hui; Tan, Ou; Francis, Brian; Varma, Rohit

    2012-01-01

    Purpose. To determine the relationship between retinal nerve fiber layer (RNFL) thickness, optic disc size, and image magnification. Methods. The cohort consisted of 196 normal eyes of 101 participants in the Advanced Imaging for Glaucoma Study (AIGS), a multicenter, prospective, longitudinal study to develop advanced imaging technologies for glaucoma diagnosis. Scanning laser tomography was used to measure disc size. Optical coherence tomography (OCT) was used to perform circumpapillary RNFL thickness measurements using the standard fixed 3.46-mm nominal scan diameter. A theoretical model of magnification effects was developed to relate RNFL thickness (overall average) with axial length and magnification. Results. Multivariate regression showed no significant correlation between RNFL thickness and optic disc area (95% confidence interval [CI] = −0.9 to 4.1 μm/mm2, P = 0.21). Linear regression showed that RNFL thickness depended significantly on axial length (slope = −3.1 μm/mm, 95% CI = −4.9 to −1.3, P = 0.001) and age (slope = −0.3 μm/y, 95% CI = −0.5 to −0.2, P = 0.0002). The slope values agreed closely with the values predicted by the magnification model. Conclusions. There is no significant association between RNFL thickness and optic disc area. Previous publications that showed such an association may have been biased by the effect of axial length on fundus image magnification and, therefore, both measured RNFL thickness and apparent disc area. The true diameter of the circumpapillary OCT scan is larger for a longer eye (more myopic eye), leading to a thinner RNFL measurement. Adjustment of measured RNFL thickness by axial length, in addition to age, may lead to a tighter normative range and improve the detection of RNFL thinning due to glaucoma. PMID:22743319

  1. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  2. Wintertime Experimental investigation of Morphology, Mixing States and Columnar Optical Properties of Aerosols over a Desert location in India

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Kumar, T.; Sharma, C.; Prasad, M. V. S. N.; Singh, S.; Agnihotri, R.; Arya, B. C.; Gupta, B.; Naaraayanan, T.; Gautam, S.; Kumar, D.; Sood, K. N.; Tawale, J. S.; Sharma, A. K.; Mitra, A. K.

    2014-12-01

    Indian Desert (The Thar Desert) is considered as the source of mineral dust in the Indo-Gangetic Plain (IGP) especially in pre-monsoon period due to large scale convective activities during hot summer. To study the physico-chemical characteristics of aerosols over the Thar Desert (Jaisalmer, Rajasthan) during winter (December, 2013), a field campaign has been carried out in Jaisalmer in Rajasthan state. Experiments were conducted inside the city as well as far from the city. The faraway location is close to international border of another country i.e. Pakistan. PM2.5 and PM10 were collected within the city while PM5 was collected far from the city. Particles were collected on Teflon filters for bulk analysis with Fourier Transform Infrared Spectroscopy (FTIR), on Tin substrate for individual particle morphology and elemental composition analysis with Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and on the Cu-TEM grid for individual particle morphology and mixing state characterization using High Resolution-Transmission Electron Microscope (HRTEM). Together with this, aerosol size distribution observation and columnar spectral aerosol optical properties have been carried out with OPC (Optical Particle Counter, GRIMM Model 1.108) and hand held Microtops-II, respectively. HRTEM analysis reveals occurrence of carbonaceous fractals found in various mixing states 1) aged with some hygroscopic species 2) embedded in sulfate host 3) semi-externally mixed with sulfate and other species. Core-shell particles were also observed with varying core composition (carbon, typical mineral dust, and calcite) and shell thickness (shell comprising of water). The back trajectory analysis reveals the source of wind from Karachi and Islamabad from Pakistan which may be the potential source of carbonaceous species over the sampling site. SEM-EDS analysis reveals occurrence of mineral dust 1) pure mineral dust (Ca and Si rich) 2) polluted mineral

  3. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.

  4. A Comparison of Aerosol Optical, Microphysical, and Chemical Measurements between LAX and Long Beach Harbor

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Chen, G.; Winstead, E.; Ziemba, L. D.; Beyersdorf, A. J.; Diskin, G. S.; Nenes, A.; Lathem, T. L.; Arctas Science Team

    2010-12-01

    In the summer of 2008, measurements of aerosols were made on-board the NASA DC-8 over the state of California, as part of the second phase of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) on behalf of the California Air resources Board (CARB). The DC-8 made four flights, between 18 June and 26 June, totaling 33 hours, to examine California’s atmosphere to better understand the chemical dynamics of smog and greenhouse gases over the state. The NASA DC-8 had a suite of aerosol instruments, capable of measuring the number concentrations, optical properties, and size distributions of aerosols between 0.003 and 1500 um. In this presentation, we will compare aerosol observations made at two areas within the Los Angeles Basin, Los Angeles International airport (LAX) and Long Beach Harbor. LAX is in the middle of the second most populated metropolitan area in the United States and is the fifth busiest airport in the world, while Long Beach Harbor (20 miles south of LAX) is the world’s 2nd busiest container port. Initial results suggest a greater aerosol loading and additional presence of ultrafine aerosols during the week due to vehicular emissions. We will also present analysis of aerosol observations as a function of time of day from the four missed approaches at LAX and four over flights of Long Beach Harbor.

  5. Lidar and Sunphotometer observations of aerosol optical properties over Egbert, ON

    NASA Astrophysics Data System (ADS)

    Srinivasan, T.; O'Neill, N. T.; Strawbridge, K. B.; Freemantle, J.

    2006-05-01

    Optical properties of aerosols are routinely monitored using Lidar and Sunphotometer/Sky radiometer measurements over Egbert, ON. The objectives of this monitoring program are to better understand the optical coherency of these active and passive remote sensing techniques and eventually to achieve a climatology of extensive parameters such as the extinction-to-backscatter ratio required for lidar optical depth retrievals. Observations made within the context of this program revealed some interesting events related to the long and short range transport of smoke aerosols to the observing site. An interesting case study on June 2, 2003 showed smoke layers between 4 and 9 km in both the Zenith and Scanning Lidar data. Co-located CIMEL Sunphotometric/Sky radiometric measurements also showed an increase in fine mode aerosol optical depths corresponding to the Lidar smoke layer observations. Data from some of the AERONET stations in the Eastern US also indicated the presence of these smoke layers. A detailed study of backtrajectories and MODIS imagery indicate that the source of these smoke layers was the intense forest fire activity that occurred during the whole of the summer of 2003 in the Lake Baikal region of Siberia. In addition an interesting regional smoke event which originated from Lake Nipigon (Northwestern Ontario) forest fires was observed on June 23, 2005. Optical and physical properties observed and retrieved for these long and short range cases of smoke aerosol transport will be analyzed and compared.

  6. Optically thick cascade to the O I 3s 3S state in the Earth's thermosphere

    NASA Technical Reports Server (NTRS)

    Cotton, Daniel M.; Chakrabarti, Supriya; Gladstone, G. Randall

    1993-01-01

    The electron impact excitation cross section for the O I (1304 A) emission is enhanced in the terrestrial thermosphere owing to an optically thick cascade mechanism. Values for the contribution of the cascade have been calculated and deduced from measured 1304-A airglow emissions to between o and 200%. We have developed a model to calculate a large portion of the optically thick cascade contribution, including contributions from the radiative entrapment of the O I (1040, 1027, and 989 A) lines. High-resolution spectroscopic data from a sounding rocket experiment are analyzed using this model. The optically thick cascade contribution for the three lower lying states was evaluated to be 24.5% and compares well with recent calculations. The data, however, support a total contribution of 40%. The 15.5% difference is likely due to the contribution from higher Rydberg states.

  7. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  8. Satellite and correlative measurements of the stratospheric aerosol. I An optical model for data conversions

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Swissler, T. J.; Mccormick, M. P.; Chu, W. P.; Pepin, T. J.

    1981-01-01

    A description is presented of an empirically based model of stratospheric aerosol optical properties (size distributions and refractive indices) and their variations. The need for such a model arose in the data validation and archival programs for two satellite sensors, SAM II and SAGE. These programs require the ability to convert measurements of a given aerosol macroproperty (e.g., volume extinction coefficient, volume backscatter coefficient, particle number or mass per unit volume) to best estimates of other aerosol macroproperties, and to assess quantitatively the uncertainties in the conversion process. The described model provides the information on size distributions, refractive indices and their variations necessary for these tasks, and also defines a procedure for combining the model information with empirical data in a way that facilitates automatic data processing. Although the model was developed for use in the satellite validation and archival programs, it also has proven useful in other studies of stratospheric aerosol.

  9. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  10. Retrieval of optical and microphysical properties of aerosols from a hybrid multiwavelength lidar dataset

    NASA Astrophysics Data System (ADS)

    Sawamura, Patricia

    Over the past decade the development of inversion techniques for the retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations) and aerosol optical properties (e.g. complex index of refraction and single scattering albedo) from multiwavelength lidar systems brought a new perspective in the study of the vertical distribution of aerosols. In this study retrievals of such parameters were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL) measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study to our knowledge in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for eleven cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.

  11. Determination of the broadband optical properties of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  12. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  13. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality. PMID:26953969

  14. Optical properties of different aerosol types: seven years of combined Raman- elastic backscatter lidar measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Giannakaki, E.; Balis, D. S.; Amiridis, V.; Zerefos, C.

    2009-11-01

    We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001-2007. The largest optical depths are observed for Saharan dust and smoke aerosol loads. For "local" and "continental polluted" aerosols the measurements indicate moderate aerosol loads. However, measurements associated with the "local" path show lower values of free tropospheric contribution (37% versus 46% for "continental polluted") and thus, enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for "continental clean" aerosols. The largest lidar ratios, of the order of 70 sr are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values was estimated for well defined aerosol categories, which provides a statistical measure of the lidar ratio's dependency on aerosol-size, which is a useful tool for elastic lidar systems. Scatter plot between lidar ratio values and Ångström exponent values for "local" and "continental polluted" aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for "clean continental" aerosols we found constantly low lidar ratios almost independent of size.

  15. Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2015-04-01

    Obtaining continuous aerosol-optical-depth (AOD) measurements is a difficult task due to the cloud-cover problem. With the main motivation of overcoming this problem, an AOD-predicting model is proposed. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the Ångström exponent against the AOD. A new empirical algorithm was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET due to frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The calibrated model coefficients have a coefficient of determination, R2, of 0.72. The predicted AOD of the model was generated based on these calibrated coefficients and compared against the measured data through standard statistical tests, yielding a R2 of 0.68 as validation accuracy. The error in weighted mean absolute percentage error (wMAPE) was less than 0.40% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Performance of our model was compared against selected LIDAR data to yield good correspondence. The predicted AOD can enhance measured short- and long-term AOD and provide supplementary information for climatological studies and monitoring aerosol variation.

  16. Observed changes in aerosol physical and optical properties before and after precipitation events

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Dong, Yan; Dong, Zipeng; Du, Chuanli; Chen, Chuang

    2016-08-01

    Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter <0.8 μm [measured using an aerodynamic particle sizer (APS)], and fine particles with diameter <0.1 μm [measured using a scanning mobility particle sizer (SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution (measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100-120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.

  17. Simultaneous analysis of edge quality parameters for submillimeter-thick silicon wafer bar with Fourier optics

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Chaitavon, Kosom

    2011-02-01

    This paper proposes an edge quality assessment system for a submillimeter thick wafer bar suitable for semiconductor and hard disk drive industries. Our key approach is based on Fourier optics analysis in a retro-reflective optical architecture featuring nondestructive and noncontact measurement. In our proposed design, a collimated optical beam is incident on a submillimeter thick wafer bar from its side. In this way, part of the optical beam is reflected back and is then Fourier transformed on a two-dimensional image sensor. By investigating the far-field diffraction pattern, important parameters of the wafer bar such as thickness, surface parallelism, edge parallelism, and surface defect can simultaneously be analyzed. To our knowledge, this is the first time that these important parameters are analyzed by only one system. Other key features include low cost and vibration insensitivity. Our field test study using a 635-nm wavelength laser and a 15-cm plano-convex lens for specified 246-μm thick rectangular wafer bars shows that our retro-reflective approach can measure the bar thickness within its specified +/-10 μm. It can also simultaneously evaluate the remaining desired parameters and can distinguish nicely edged bars from poorly edged bars. Other key features include low cost, ease of implementation, robustness, and low component counts.

  18. A Simple Empirical Equation to Calculate Cloud Optical Thickness Using Shortwave Broadband Measurements

    SciTech Connect

    Barnard, James C.; Long, Charles N.

    2004-07-01

    In this paper, we present an empirical equation that can be used to estimate shortwave cloud optical thickness from measurements and analysis of shortwave broadband irradiances. When applied to a time series of broadband observations, this method can predict cloud optical thickness distributions that are very similar to those obtained using the Min algorithm (Min and Harrison, 1996). When considering a number of geographically diverse sites, medians of equation-derived distributions and Min-derived distributions differ by less than 10%. The equation is designed for fully overcast skies, surface albedos less than 0.3, and the cosine of the solar zenith angle must be greater than 0.15.

  19. Effects of data assimilation on the global aerosol key optical properties simulations

    NASA Astrophysics Data System (ADS)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  20. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  1. The Determinants of Macular and Peripapillary Retinal Thickness Using Optical Coherence Tomography.

    PubMed

    Nakhjavanpour, Neda; Sedaghat, Mohammad Reza; Payandeh, Abolfazl; Ostadimoghaddam, Hadi

    2016-01-01

    Retinal nerve fiber layer thickness is an important factor in early diagnosis of posterior pole dysfunctions, assessment of treatment effect, and disease progress. The aim of this study was to compare the macular and peripapillary retinal thickness between genders and among refractive error types in healthy subjects. In addition, effective determinants of the thickness were ascertained. This cross-sectional study was conducted on 58 subjects (116 eyes), which had been referred to the Toos eye clinic of Mashhad, northeast of Iran, for refractive error surgery from September 2012 to June 2013. We used Optical Coherence Tomography for retinal thickness measurements. The mean±SD spherical equivalence was estimated to be -2.06±0.36 dioptres (range: -11.50, 7.38), axial length 23.89±0.14 mm, average peripapillary thickness 89.91±0.94 μm, average macular thickness 274.68±1.84 μm, and overall macular volume 9.89±0.07 mm3.Multiple linear regression modeling was indicated that axial length and gender had significant effect on average macular thickness. Axial length also showed substantial effect on average peripapillary thickness. Retinal thickness measurement regardless of refractive error type could lead to bias in disease diagnosis. The results of the present study might be used to enhance the assessment precision of ocular diseases. PMID:27530565

  2. Full-field optical thickness profilometry of semitransparent thin films with transmission densitometry

    SciTech Connect

    Johnson, Jay; Harris, Tequila

    2010-05-20

    A novel bidirectional thickness profilometer based on transmission densitometry was designed to measure the localized thickness of semitransparent films on a dynamic manufacturing line. The densitometer model shows that, for materials with extinction coefficients between 0.3 and 2.9 D/mm, 100-500 {mu}m measurements can be recorded with less than {+-}5% error at more than 10,000 locations in real time. As a demonstration application, the thickness profiles of 75 mmx100 mm regions of polymer electrolyte membrane (PEM) were determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient was determined to be 1.4 D/mm, with an average thickness error of 4.7%.

  3. Fabrication of large diffractive optical elements in thick film on a concave lens surface

    NASA Astrophysics Data System (ADS)

    Xie, Yongjun; Lu, Zhenwu; Li, Fengyou

    2003-05-01

    We demonstrate experimentally the technique of fabricating large diffractive optical elements (DOEs) in thick film on a concave lens surface (mirrors) with precise alignment by using the strategy of double exposure. We adopt the method of double exposure to overcome the difficulty of processing thick photoresist on a large curved substrate. A uniform thick film with arbitrary thickness on a concave lens can be obtained with this technique. We fabricate a large concentric circular grating with a 10-im period on a concave lens surface in film with a thickness of 2.0 im after development. It is believed that this technique can also be used to fabricate larger DOEs in thicker film on the concave or convex lens surface with precise alignment. There are other potential applications of this technique, such as fabrication of micro-optoelectromechanical systems (MOEMS) or microelectromechanical systems (MEMS) and fabrication of microlens arrays on a large concave lens surface or convex lens surface with precise alignment.

  4. Satellite Estimates of Single Scattering Albedo and Optical Depth of Biomass Burning Carbonaceous Aerosols

    NASA Technical Reports Server (NTRS)

    Torres, O.; Herman, J. R.; Bhartia, P. K.; Hsu, N. C.

    1998-01-01

    Satellite based estimates of aerosol single scattering albedo (ssa), over both land and water surfaces, have been obtained for the first time using measurements of backscattered radiation in the near ultraviolet by the Total Ozone Mapping Spectrometer (TOMS). The retrieval of ssa and aerosol optical depth is based on the strong spectral contrast in the near-UV resulting from the interaction between the particle absorption and scattering (both Rayleigh and Mie) processes. We use the multi-year data set on backscattered radiances by the TOMS family of instruments to analyze the time and space variability of biomass burning generated carbonaceous aerosols. Results of a comparative analysis of satellite derived optical depth and available sunphotometer measurements will also be presented.

  5. Optical properties of urban aerosols in the region Bratislava-Vienna I. Methods and tests

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Jovanović, O.; Gangl, M.

    Aerosol optical data obtained by means of ground-based methods are applied to determine microphysical properties of aerosols in the atmosphere of Vienna-city. The measured aerosol extinction coefficient σA serves as a source of information on the ambient aerosols. A large database of extinction efficiency factors for a set of irregularly shaped as well as the spherical particles of various sizes is pre-calculated and employed in the inversion procedure. The assumed particle models differ in chemical composition and are representative for most typical aerosol systems in the urban atmospheres. All database records are taken into a regularization scheme to solve the inverse problem for aerosol size distribution using measured extinction data. In addition, subsidiary data on spectral sky radiance are successfully incorporated into the mathematical model to retrieve the information on aerosol effective refractive index in the visible. As for Vienna, the aerosol extinction is a decreasing function of wavelength in visible spectrum—it indicates the predominance of sub-micrometer-sized particles in the atmosphere. The surface distribution function s( r)=d S/d r of aerosol particles customarily peaks at radii r≈0.2-0.3 μm, while the volume distribution function v( r)=d V/d r˜ rs( r) has a mode at radii about 0.3-0.4 μm. Analysing size distributions d V/d log( r) for irregularly shaped particles it is shown that the daily profile of this function is smoothly evolving and almost typically accounts for a first mode at radii between 0.8 and 0.9 μm.

  6. Non-contact high precision measurement of surface form tolerances and central thickness for optical elements

    NASA Astrophysics Data System (ADS)

    Lou, Ying

    2010-10-01

    The traditional contact measuring methods could not satisfy the current optical elements measuring requirements. Noncontact high precision measuring theory, principle and instrument of the surface form tolerances and central thickness for optical elements were studied in the paper. In comparison with other types of interferometers, such as Twyman-Green and Mach-Zehnder, a Fizeau interferometer has the advantages of having fewer optical components, greater accuracy, and is easier to use. Some relations among the 3/A(B/C), POWER/PV and N/ΔN were studied. The PV with POWER removed can be the reference number of ΔN. The chromatic longitudinal aberration of a special optical probe can be used for non-contanct central thickness measurement.

  7. Broadly tunable resonant Raman gain and cw lasing in an optically thick Doppler-broadened medium

    NASA Astrophysics Data System (ADS)

    Popov, Alexander K.; Myslivets, Sergei A.; Hinze, Ulf; Tiemann, E.; Wellegehausen, Bernd; Tartakovsky, Gennady

    1999-09-01

    Interactive numerical simulator, based on MATLAB/SIMULINK platform, for virtual experimentation and optimization of frequency tunable optically pumped dimer laser has been created. Nonperturbative theory considering features of quantum coherence and interference effects at Doppler broadened transitions under two strong driving fields accounting for collisions and other kinetic processes in vapor-gas mixture as well as for propagation effects in optically thick medium is developed. The results are in good agreement with real experiments.

  8. Atmospheric aerosol optical parameters, deep convective clouds and hail occurence - a correlation study

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Andrei, Simona; Toanca, Florica; Stefan, Sabina

    2016-04-01

    Among the severe weather phenomena, whose frequency has increased during the past two decades, hail represents a major threat not only for agriculture but also for other economical fields. Generally, hail are produced in deep convective clouds, developed in an unstable environment. Recent studies have emphasized that besides the state of the atmosphere, the atmospheric composition is also very important. The presence of fine aerosols in atmosphere could have a high impact on nucleation processes, initiating the occurrence of cloud droplets, ice crystals and possibly the occurrence of graupel and/or hail. The presence of aerosols in the atmosphere, correlated with specific atmospheric conditions, could be predictors of the occurrence of hail events. The atmospheric investigation using multiwavelength Lidar systems can offer relevant information regarding the presence of aerosols, identified using their optical properties, and can distinguish between spherical and non-spherical shape, and liquid and solid phase of these aerosols. The aim of this study is to analyse the correlations between the presence and the properties of aerosols in atmosphere, and the production of hail events in a convective environment, using extensive and intensive optical parameters computed from lidar and ceilometer aerosols measurements. From these correlations, we try to evaluate if these aerosols can be taken into consideration as predictors for hail formation. The study has been carried out in Magurele - Romania (44.35N, 26.03E, 93m ASL) using two collocated remote sensing systems: a Raman Lidar (RALI) placed at the Romanian Atmospheric 3D Observatory and a ceilometer CL31 placed at the nearby Faculty of Physics, University of Bucharest. To evaluate the atmospheric conditions, radio sounding and satellite images were used. The period analysed was May 1st - July 15th, 2015, as the May - July period is climatologically favorable for deep convection events. Two hail events have been

  9. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  10. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  11. Optical thickness as related to pollutant episodes and the concentration of visibility degrading pollutants

    NASA Technical Reports Server (NTRS)

    Prospero, J. M.; Savoie, D.; Snowdon, T.; Ewbank, P.

    1983-01-01

    A network of six sun photometers was placed in the central and northeast United States during the months of July through October, 1931. The objective of the program was to obtain measurements of atmospheric turbidity which can be related to the concentration of visibility-degrading pollutants in the atmosphere. These measurements serve as ground truth for a program to develop remote sensing techniques for measuring the vertically integrated aerosol concentrations in pollution episodes. The sun photometers measure the direct solar radiation in four passbands: 380 nm, 500 nm, 875 nm and 940 nm. The first three passbands will be used for measuring the aerosol optical depth and the last for measuring precipitable water.

  12. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  13. Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2014-02-16

    In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

  14. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    EPA Science Inventory

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  15. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  16. Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography

    PubMed Central

    Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.

    2014-01-01

    Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773

  17. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    to characterize the planetary boundary layer height (PBL) and the transition zone thickness, for the RACORO and CARES and CalNex campaigns as we have done for previous campaigns. 4. Investigated how optical properties measured by HSRL vary near clouds. 5. Assessed model simulations of aerosol spatial distributions and optical and microphysical properties.

  18. Retinal Nerve Fiber Layer Thickness in Children with Optic Pathway Gliomas

    PubMed Central

    Avery, Robert A.; Liu, Grant T.; Fisher, Michael J.; Quinn, Graham E.; Belasco, Jean B.; Phillips, Peter C.; Maguire, Maureen G.; Balcer, Laura J.

    2010-01-01

    Purpose To determine the relation of high-contrast visual acuity (VA) and low-contrast letter acuity with retinal nerve fiber layer (RNFL) thickness in children with optic pathway gliomas. Design Cross-sectional convenience sample, with prospective data collection, from a tertiary care children’s hospital of patients with optic pathway gliomas associated with Neurofibromatosis type 1, sporadic OPG and Neurofibromatosis type 1 without OPG. Methods Patients performed best corrected VA testing using surrounded HOTV optotypes and low-contrast letter acuity (5%, 2.5% and 1.25% low contrast Sloan letter charts). Mean RNFL thickness (microns) was measured by a Stratus optical coherence tomography (Carl Zeiss Meditec, Dublin, CA) using the fast RNFL thickness protocol. Eyes were classified as having abnormal vision if they had high-contrast VA > 0.1 logMAR or visual field loss. The association of subject age, glioma location and RNFL thickness with both VA and low-contrast letter acuity scores was evaluated by one-way analysis of variance and linear regression, using the generalized estimating equation approach to account for within-patient intereye correlations. Results Eighty-nine eyes of patients with optic pathway gliomas were included and 41 were classified as having abnormal VA or visual field loss. Reduced RNFL thickness was significantly associated with higher logMAR scores for both VA (P < 0.001) and all low-contrast letter acuity charts (P < 0.001) when accounting for age and glioma location. Conclusions Eyes of most children with optic pathway gliomas and decreased RNFL thickness had abnormal visual acuity or visual field loss. PMID:21232732

  19. Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.

    2012-01-01

    This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.

  20. Optical properties and cross-sections of biological aerosols

    NASA Astrophysics Data System (ADS)

    Thrush, E.; Brown, D. M.; Salciccioli, N.; Gomes, J.; Brown, A.; Siegrist, K.; Thomas, M. E.; Boggs, N. T.; Carter, C. C.

    2010-04-01

    There is an urgent need to develop standoff sensing of biological agents in aerosolized clouds. In support of the Joint Biological Standoff Detection System (JBSDS) program, lidar systems have been a dominant technology and have shown significant capability in field tests conducted in the Joint Ambient Breeze Tunnel (JABT) at Dugway Proving Ground (DPG). The release of biological agents in the open air is forbidden. Therefore, indirect methods must be developed to determine agent cross-sections in order to validate sensor against biological agents. A method has been developed that begins with laboratory measurements of thin films and liquid suspensions of biological material to obtain the complex index of refraction from the ultraviolet (UV) to the long wave infrared (LWIR). Using that result and the aerosols' particle size distribution as inputs to Mie calculations yields the backscatter and extinction cross-sections as a function of wavelength. Recent efforts to model field measurements from the UV to the IR have been successful. Measurements with aerodynamic and geometric particle sizers show evidence of particle clustering. Backscatter simulations of these aerosols show these clustered particles dominate the aerosol backscatter and depolarization signals. In addition, these large particles create spectral signatures in the backscatter signal due to material absorption. Spectral signatures from the UV to the IR have been observed in simulations of field releases. This method has been demonstrated for a variety of biological simulant materials such as Ovalbumin (OV), Erwinia (EH), Bacillus atrophaeus (BG) and male specific bacteriophage (MS2). These spectral signatures may offer new methods for biological discrimination for both stand-off sensing and point detection systems.

  1. Aerosols optical properties in Titan's Detached Haze Layer

    NASA Astrophysics Data System (ADS)

    Seignovert, Benoit; Rannou, Pascal; Lavvas, Panayotis; West, Robert

    2016-10-01

    Titan's Detached Haze Layer (DHL) was first observed in 1983 by Rages and Pollack during the Voyager 2 is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 (West et al. 2011). Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere (Rannou et al. 2000, Lavvas et al. 2009, Cours et al. 2011).In this talk we will present the UV photometric analyses based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer radius and local density) performed on ISS observations taken from 2005 to 2007.References:- Rages and Pollach, Icarus 55 (1983)- West, et al., Icarus 38 (2011)- Rannou, et al., Icarus 147 (2000)- Lavvas, et al., Icarus 201 (2009)- Cours, et al., ApJ Lett. 741 (2015)

  2. Aerosol Optical Properties and Chemical Composition Measured on the Ronald H. Brown During ACE-Asia

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Miller, T. L.; Coffman, D.

    2001-12-01

    Measurements of aerosol chemical, physical, and optical properties were made onboard the NOAA R/V Ronald H. Brown during the ACE-Asia Intensive Field Program to characterize Asian aerosol as it was transported across the Pacific Ocean. The ship traveled across the Pacific from Hawaii to Japan and into the East China Sea and the Sea of Japan. Trajectories indicate that remote marine air masses were sampled on the transit to Japan. In the ACE-Asia study region air masses from Japan, China, Mongolia, and the Korea Peninsula were sampled. A variety of aerosol types were encountered including those of marine, volcanic, crustal, and industrial origin. Presented here, for the different air masses encountered, are aerosol optical properties (scattering and absorption coefficients, single scattering albedo, Angstrom Exponent, and aerosol optical depth) and chemical composition (major ions, total organic and black carbon, and trace elements). Scattering by submicron aerosol (55 % RH and 550 nm) was less than 20 1/Mm during the transit from Hawaii to Japan. In continental air masses, values ranged from 60 to 320 1/Mm with the highest submicron scattering coefficients occurring during prefrontal conditions with a low marine boundary layer height and trajectories from Japan. For the continental air masses, the ratio of scattering by submicron to sub-10 micron aerosol during polluted conditions averaged 0.8 and during a dust event 0.41. Aerosol optical depth (500 nm) ranged from 0.08 during the Pacific transit to 1.3 in the prefrontal conditions described above. Optical depths during dust events ranged from 0.2 to 0.6. Submicron non-sea salt (nss) sulfate concentrations ranged from 0.5 ug/m-3 during the Pacific transit to near 30 ug/m-3 during the prefrontal conditions described above. Black carbon to total carbon mass ratios in air masses from Asia averaged 0.18 with highest values (0.32) corresponding to trajectories crossing the Yangtze River valley.

  3. The Aerosol Coarse Mode: Its Importance for Light Scattering Enhancement and Columnar Optical Closure Studies

    NASA Astrophysics Data System (ADS)

    Zieger, P.

    2015-12-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of importance for radiative forcing calculations but is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, the particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Here, we will present insights from measurements of f(RH) across Europe (Zieger et al., 2013) and will demonstrate why the coarse mode is important when modeling or predicting f(RH) from auxiliary aerosol in-situ measurements. We will show the implications by presenting the results of a recently performed columnar optical closure study (Zieger et al., 2015). This study linked ground-based in-situ measurements (with the help of airborne aerosol size distribution measurements) to columnar aerosol optical properties derived by a co-located AERONET sun photometer. The in situ derived aerosol optical depths (AOD) were clearly correlated with the directly measured values of the AERONET sun photometer but were substantially lower compared to the directly measured values (factor of ˜ 2-3). Differences became greater for longer wavelengths. The disagreement between in situ derived and directly measured AOD was hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the forest's canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers from long-range transport were observed for parts of the campaign which could have explained some of the disagreement. Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different

  4. High-throughput measurement of polymer film thickness using optical dyes

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien

    2005-01-01

    Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.

  5. A new technique to measure the thickness of micromachined structures using an optical microscope

    NASA Astrophysics Data System (ADS)

    Ahmad, F.; Dennis, J. O.; Khir, M. H. Md.; Hamid, N. H.; Yar, A.

    2014-10-01

    This paper presents a quick and straightforward method to measure the thickness of the micro structures using optical microscope. In optical microscopy, for depth of focus (DOF) method there are two surfaces required, one as a reference. In case of live dies specially in CMOS MEMS the thickness of silicon attached to the CMOS thin layers can't be find accurately because of unavailability of reference surface. The main focus of this paper is the measurement of thickness of silicon attached to the CMOS thin layers as well as CMOS layers itself specially in the broken form. Normally thickness is the vertical displacement of the structures but when these structures are broken it very hard to clamp the microstructures in horizontal position that is why a special sample holder is prepared and reported and sample holding technique to hold the samples in the horizontal position is introduced. Leica DM 12000 optical microscope is used to measure and mark the thickness of CMOS layers and silicon attached to these layers.

  6. On the optical measurement of corneal thickness. II. The measuring conditions and sources of error.

    PubMed

    Olsen, T; Nielsen, C B; Ehlers, N

    1980-12-01

    The optical measurement of corneal thickness based on oblique viewing of the optical section of the cornea is complicated by the finite width of the incident slit beam. In this report the theoretical and practical aspects of the effect of the slit width on the thickness reading are analysed. In practice, it was not possible to make slit-width independent thickness readings which were reproducible from one observer to another. In addition, the observed slit-width error was found to vary from one patient to another. The lack of reproducible estimate of the corneal thickness is attributed to difficulties associated with an exact definition of the edges of the visible bands of the optical section, which are determined by biological properties of the cornea as well as perceptive properties of the observer. Although inter-observer errors up to 0.02 mm were found, the intra-observer error amounted to only 0.005-0.006 mm (SD) between consecutive readings. Presumably this high intra-observer reproducibility is the result of the auxiliary pin-lights used. Changes in corneal thickness, measured by the same observer, can therefore be determined with great accuracy.

  7. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  8. Long-term observations of aerosol optical properties at Wuhan, an urban site in Central China

    NASA Astrophysics Data System (ADS)

    Wang, Lunche; Gong, Wei; Xia, Xiangao; Zhu, Jun; Li, Jun; Zhu, Zhongmin

    2015-01-01

    Aerosol optical properties including aerosol optical depth (AOD), Ångström exponent (α), single scattering albedo (SSA), aerosol size distribution and refractive index at urban Wuhan in Central China are investigated based on the measurements from a CIMEL sun-photometer during 2007-2013. AOD500 nm is found to be relatively high all year round and the highest value 1.52 occurs in June 2012 and the lowest (0.57) in November 2012. α shows a significant monthly variation, with the highest value in June 2010 (1.71) and the lowest value (0.78) in April 2012. Analysis of AOD and α frequencies indicate that this region is populated with fine-mode particles. Monthly variations of SSA for total, fine and coarse-mode particles are closely related to the aerosol hygroscopic growth, fossil fuel and biomass burning. The aerosol volume size distributions (bi-modal pattern) show distinct differences in particle radius for different seasons, the radius for fine-mode particles generally increase from spring to summer month, for example, the highest peak is around radius 0.15 μm in March, while the peak radius is around 0.25 μm in June. Finally, monthly statistics of real and imaginary parts of the complex refractive index are analyzed, the highest averages of real (1.50) and imaginary parts (0.0395) are found in spring and autumn, respectively at wavelength 440-1020 nm.

  9. Aerosol optical properties in the southeastern United States in summer - Part 1: Hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N. L.; Anderson, B. E.; Attwood, A. R.; Beyersdorf, A.; Campuzano-Jost, P.; Carlton, A. G.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Ng, N. L.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Washenfelder, R. A.; Welti, A.; Xu, L.; Ziemba, L. D.; Murphy, D. M.

    2015-09-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made during May-September 2013 in the southeastern United States (US) under fair-weather, afternoon conditions with well-defined planetary boundary layer structure. Optical extinction at 532 nm was directly measured at three relative humidities and compared with extinction calculated from measurements of aerosol composition and size distribution using the κ-Köhler approximation for hygroscopic growth. Using this approach, the hygroscopicity parameter κ for the organic fraction of the aerosol must have been < 0.10 to be consistent with 75 % of the observations within uncertainties. This subsaturated κ value for the organic aerosol in the southeastern US is consistent with several field studies in rural environments. We present a new parameterization of the change in aerosol extinction as a function of relative humidity that better describes the observations than does the widely used power-law (gamma, γ) parameterization. This new single-parameter κext formulation is based upon κ-Köhler and Mie theories and relies upon the well-known approximately linear relationship between particle volume (or mass) and optical extinction (Charlson et al., 1967). The fitted parameter, κext, is nonlinearly related to the chemically derived κ parameter used in κ-Köhler theory. The values of κext we determined from airborne measurements are consistent with independent observations at a nearby ground site.

  10. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly. PMID:27295588

  11. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly.

  12. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    NASA Astrophysics Data System (ADS)

    Kasanický, Martin; Lenhard, Richard; Kaduchová, Katarína; Malcho, Milan

    2015-05-01

    A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  13. Performance analysis of optical coherence tomography in the context of a thickness estimation task

    NASA Astrophysics Data System (ADS)

    Huang, Jinxin; Yao, Jianing; Cirucci, Nick; Ivanov, Trevor; Rolland, Jannick P.

    2015-12-01

    Thickness estimation is a common task in optical coherence tomography (OCT). This study discusses and quantifies the intensity noise of three commonly used broadband sources, such as a supercontinuum source, a superluminescent diode (SLD), and a swept source. The performance of the three optical sources was evaluated for a thickness estimation task using both the fast Fourier transform (FFT) and maximum-likelihood (ML) estimators. We find that the source intensity noise has less impact on a thickness estimation task compared to the width of the axial point-spread function (PSF) and the trigger jittering noise of a swept source. Findings further show that the FFT estimator yields biased estimates, which can be as large as 10% of the thickness under test in the worst case. The ML estimator is by construction asymptotically unbiased and displays a 10× improvement in precision for both the supercontinuum and SLD sources. The ML estimator also shows the ability to estimate thickness that is at least 10× thinner compared to the FFT estimator. Finally, findings show that a supercontinuum source combined with the ML estimator enables unbiased nanometer-class thickness estimation with nanometer-scale precision.

  14. Performance analysis of optical coherence tomography in the context of a thickness estimation task.

    PubMed

    Huang, Jinxin; Yao, Jianing; Cirucci, Nick; Ivanov, Trevor; Rolland, Jannick P

    2015-12-01

    Thickness estimation is a common task in optical coherence tomography (OCT). This study discusses and quantifies the intensity noise of three commonly used broadband sources, such as a supercontinuum source, a superluminescent diode (SLD), and a swept source. The performance of the three optical sources was evaluated for a thickness estimation task using both the fast Fourier transform (FFT) and maximum-likelihood (ML) estimators. We find that the source intensity noise has less impact on a thickness estimation task compared to the width of the axial point-spread function (PSF) and the trigger jittering noise of a swept source. Findings further show that the FFT estimator yields biased estimates, which can be as large as 10% of the thickness under test in the worst case. The ML estimator is by construction asymptotically unbiased and displays a 10× improvement in precision for both the supercontinuum and SLD sources. The ML estimator also shows the ability to estimate thickness that is at least 10× thinner compared to the FFT estimator. Finally, findings show that a supercontinuum source combined with the ML estimator enables unbiased nanometer-class thickness estimation with nanometer-scale precision. PMID:26378988

  15. A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves

    PubMed Central

    Vukusic, P.; Kelly, R.; Hooper, I.

    2008-01-01

    Broadband optical reflectors generally function through coherent scattering from systems comprising one of three designs: overlapped; chirped; or chaotic multilayer reflectors. For each, the requirement to scatter a broad band of wavelengths is met through the presence of a variation in nanostructural periodicity running perpendicular to the systems' outer surfaces. Consequently, the requisite total thickness of the multilayer can often be in excess of 50 μm. Here, we report the discovery and the microwave-assisted characterization of a natural system that achieves excellent optical broadband reflectivity but that is less than 1 μm thick. This system, found on the wing scales of the butterfly Argyrophorus argenteus, comprises a distinctive variation in periodicity that runs parallel to the reflecting surface, rather than perpendicular to it. In this way, the requirement for an extensively thick system is removed. PMID:19042180

  16. Thickness dependent optical and electrical properties of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Lal, C.; Dhaka, M. S.

    2016-05-01

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows that the electrical resistivity is observed to be decreased with thickness.

  17. Characterization of retinal nerve fiber layer thickness changes associated with Leber's hereditary optic neuropathy by optical coherence tomography.

    PubMed

    Zhang, Yixin; Huang, Houbin; Wei, Shihui; Qiu, Huaiyu; Gong, Yan; Li, Hongyang; Dai, Yanli; Jiang, Zhaocai; Liu, Zihao

    2014-02-01

    In the present study, the changes in the retinal nerve fiber layer (RNFL) thickness associated with Leber's hereditary optic neuropathy (LHON) were examined by Cirrus high definition-optical coherence tomography (OCT), and the correlation between the RNFL thickness and the best corrected visual acuity (BCVA) was evaluated. A cross-sectional study was performed. Sixty-eight eyes from patients with LHON and 30 eyes from healthy individuals were scanned. Affected eyes were divided into 5 groups according to disease duration: Group 1, ≤3 months; group 2, 4-6 months; group 3, 7-9 months; group 4, 10-12 months; and group 5, >12 months. The RNFL thickness of the temporal, superior, nasal and inferior quadrants and the 360° average were compared between the LHON groups and the control group. The eyes in groups 1 and 2 were observed to have a thicker RNFL in the superior, nasal and inferior quadrants and a higher 360°-average RNFL thickness compared with those of the control group (P<0.05), the RNFL was observed to be thinner in the temporal quadrant in groups 1 and 2. The eyes in groups 3 and 4 showed a thinner RNFL in the temporal (P=0.001), superior and inferior (both P<0.05) quadrants, and a lower 360°-average RNFL thickness as compared with controls (P=0.001). No significant correlation was identified between BCVA and RNFL thickness. RNFL thickness was observed to undergo a unique process from thickening to thinning in the patients with LHON. Changes in different quadrants occurred at different time periods and the BCVA was not found to be correlated with RNFL thickness.

  18. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  19. Assessment of OMI near-UV aerosol optical depth over Central and East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhao; Gu, Xingfa; Xu, Hui; Yu, Tao; Zheng, Fengjie

    2016-01-01

    Several essential improvements have been made in recent Ozone Monitoring Instrument (OMI) near-ultraviolet (UV) aerosol retrieval algorithm version (OMAERUV version 1.4.2), but few regional validations for its aerosol optical depth (AOD) product are conducted. This paper assessed the OMAERUV AOD product over Central and East Asia. The OMAERUV Level 2.0 AOD product was compared with Aerosol Robotic Network (AERONET) Level 2.0 direct Sun AOD measurement over 10 years (2005-2014) at 27 selected AERONET sites. A combined comparison of OMAERUV-AERONET AOD at 25 (2) sites was carried out and yielded correlation coefficient (ρ) of 0.63 (0.77), slope of 0.53 (0.57), y intercept of 0.18 (0.13), and 50.71% (57.24%) OMAERUV AOD fall within the expected uncertainty boundary (larger by 0.1 or ±30%) at 380 nm (440 nm). The more accurate (ρ > 0.70) OMAERUV retrievals are reported over eastern and northern China and South Korea. The two primary reasons for the underestimation of OMAERUV AOD over China are as follows: (1) the use of single-channel (388 nm) retrieval method retrieves scattering AOD and not total AOD, and (2) the spectral dependence of the imaginary part of the refractive index in the near-UV region assumed in the algorithm may not be representative of aerosols found over China. The comparisons for three predominant aerosol types indicate that smoke aerosol exhibits the best performance, followed by dust and nonabsorbing aerosol. It is consistent with the characteristic of near-UV wavelength that it is more sensitive to absorbent particles. The comprehensive yearly (2005-2014) comparison at 25 sites and comparison between two periods (2005-2006 and 2009-2014) at selected four sites show no discernible decrease of temporal trend, which indicates that the OMAERUV algorithm successfully maintains its quality of aerosol product despite post-2008 row anomaly instrument problem.

  20. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; You, Chao; Zhu, Zhikun

    2016-04-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is may be partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35°N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  1. Retinal Nerve Fiber Layer Thickness Measurement Comparison Using Spectral Domain and Swept Source Optical Coherence Tomography

    PubMed Central

    Ha, Ahnul; Lee, Seung Hyen; Lee, Eun Ji

    2016-01-01

    Purpose To investigate the retinal nerve fiber layer (RNFL) thickness concordance when measured by spectral domain (SD) and swept source (SS) optical coherence tomography (OCT), and to compare glaucoma-discriminating capability. Methods RNFL thicknesses were measured with the scan circle, centered on the optic nerve head, in 55 healthy, 41 glaucoma suspected, and 87 glaucomatous eyes. The RNFL thickness measured by the SD-OCT (sdRNFL thickness) and SS-OCT (ssRNFL thickness) were compared using the t-test. Bland-Altman analysis was performed to examine their agreement. We compared areas under the receiver operating characteristics curve and examined sdRNFL and ssRNFL thickness for discriminating glaucomatous eyes from healthy eyes, and from glaucoma suspect eyes. Results The average ssRNFL thickness was significantly greater than sdRNFL thickness in healthy (110.0 ± 7.9 vs. 100.1 ± 6.8 µm, p < 0.001), glaucoma suspect (96.8 ± 9.3 vs. 89.6 ± 7.9 µm, p < 0.001), and glaucomatous eyes (74.3 ± 14.2 vs. 69.1 ± 12.4 µm, p = 0.011). Bland-Altman analysis showed that there was a tendency for the difference between ssRNFL and sdRNFL to increase in eyes with thicker RNFL. The area under the curves of the average sdRNFL and ssRNFL thickness for discriminating glaucomatous eyes from healthy eyes (0.984 vs. 0.986, p = 0.491) and glaucoma suspect eyes (0.936 vs. 0.918, p = 0.132) were comparable. Conclusions There was a tendency for ssRNFL thickness to increase, compared with sdRNFL thickness, in eyes with thicker RNFL. The ssRNFL thickness had comparable diagnostic capability compared with sdRNFL thickness for discriminating glaucomatous eyes from healthy eyes and glaucoma suspect eyes. PMID:27051263

  2. Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia

    NASA Astrophysics Data System (ADS)

    Ma, Yongjing; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    Observation and analysis of the optical properties of atmospheric aerosols in a South Asian tropical rain forest showed that the annual mean aerosol optical depth (AOD) and aerosol Ångström exponent (α) at 500 nm were 0.47 ± 0.30 (± value represents the standard deviation) and 1.35 ± 0.32, respectively, from 2012 to 2014, similar with that of Amazon region. Aerosol optical properties in this region varied significantly between the dry and wet seasons. The mean AOD and α were 0.50 ± 0.32 and 1.41 ± 0.28, respectively, in the dry season and 0.41 ± 0.20 and 1.13 ± 0.41 in the wet season. Because of the combustion of the rich biomass in the dry season, fine modal smoke aerosols increased, which led to a higher AOD and smaller aerosol control mode than in the wet season. The average atmospheric humidity in the wet season was 85.50%, higher than the 79.67% during the dry season. In the very damp conditions of the wet season, the aerosol control mode was relatively larger, while AOD appeared to be lower because of the effect of aerosol hygroscopic growth and wet deposition. The trajectories were similar both in dry and wet, but with different effects on the aerosol concentration. The highest AOD values 0.66 ± 0.34 (in dry) and 0.45 ± 0.21 (in wet) both occurred in continental air masses, while smaller (0.38-0.48 in dry and 0.30-0.35 in wet) in oceanic air masses. The range of AOD values during the wet season was relatively narrow (0.30-0.45), but the dry season range was wider (0.38-0.66). For the Ångström exponent, the range in the wet season (0.74-1.34) was much greater than that in the dry season (1.33-1.54).

  3. Long term measurements of aerosol optical properties at a primary forest site in Amazonia

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Artaxo, P.; Müller, T.; Wiedensohler, A.; Paixão, M.; Cirino, G. G.; Arana, A.; Swietlicki, E.; Roldin, P.; Fors, E. O.; Wiedemann, K. T.; Leal, L. S. M.; Kulmala, M.

    2013-03-01

    A long term experiment was conducted in a primary forest area in Amazonia, with continuous in-situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in the Amazon Basin. Two major classes of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January-June), naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July-December), transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm-1 to 22 Mm-1, whereas absorption at 637 nm increased from 0.5 Mm-1 to 2.8 Mm-1 from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode (PM2) particles (40-80% of PM10 mass), while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA) did not show a significant seasonal variability, in average 0.86 ± 0.08 at 637 nm for dry aerosols. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this primary forest site the radiative balance was dominated by the cloud cover, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency absolute values were below -3.5 W m-2 in 70% of the wet season days and in 46% of the dry season days. Besides the seasonal variation, the influence of out-of-Basin aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected, characterized by a consistent increase on particle scattering (factor 2.5) and absorption coefficients (factor 5). Episodes of biomass burning and mineral dust

  4. Long term measurements of aerosol optical properties at a pristine forest site in Amazonia

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Artaxo, P.; Müller, T.; Wiedensohler, A.; Paixão, M.; Cirino, G. G.; Arana, A.; Swietlicki, E.; Roldin, P.; Fors, E. O.; Wiedemann, K. T.; Leal, L. S. M.; Kulmala, M.

    2012-09-01

    A long term experiment was conducted in a pristine area in the Amazon forest, with continuous in situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in Amazonia. Two types of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January-June), naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July-December), transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm-1 to 22 Mm-1, whereas absorption at 637 nm increased from 0.5 Mm-1 to 2.8 Mm-1 from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode particles (40-80% of PM10 mass), while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA) did not show a significant seasonal variability, in average 0.86 ± 0.08 at 637 nm for dry particles. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this pristine forest site the radiative balance was dominated by the cloud cover, or, in other words, the aerosol indirect effect predominated over the direct effect, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency was below -3.5 W m-2 in 70% of the wet season days and in 46% of the dry season days. These values are lower than the ones reported in the literature, which are based on remote sensing data. Besides the seasonal variation, the influence of external aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected

  5. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment.

    PubMed

    Verma, S; Bhanja, S N; Pani, S K; Misra, A

    2014-04-01

    We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in

  6. Relation between aerosol particles and their optical properties: a case study for São Paulo-Brazil

    NASA Astrophysics Data System (ADS)

    Miranda, Regina; Andrade, Maria de Fatima

    2013-04-01

    from mineral dust (Al, Si, Ca, Fe), anthropogenic particles and the burning of diesel (S), as well as from industries and residual oil combustion. Considering the trace element values obtained through EDXRF analysis, Angstron coefficients and Aerosol Optical Thickness (AOT 500 nm) were correlated (Pearson Correlation) to particulate and chemical elements. Soil elements have a positive correlation, fine particles are strong correlated to AOT. Elements like Fe, Si and Ca are usually related to larger particles and lower Angstron coefficients.

  7. Effect of optic nerve sheath fenestration for idiopathic intracranial hypertension on retinal nerve fiber layer thickness.

    PubMed

    Starks, Victoria; Gilliland, Grant; Vrcek, Ivan; Gilliland, Connor

    2016-01-01

    The objective of the study was to evaluate whether optic nerve sheath fenestration in patients with idiopathic intracranial hypertension was associated with improvement in visual field pattern deviation and optical coherence tomography retinal nerve fiber layer thickness.The records of 13 eyes of 11 patients who underwent optic nerve sheath fenestration were reviewed. The subjects were patients of a clinical practice in Dallas, Texas. Charts were reviewed for pre- and postoperative visual field pattern deviation (PD) and retinal nerve fiber layer thickness (RNFL).PD and RNFL significantly improved after surgery. Average PD preoperatively was 8.51 DB and postoperatively was 4.80 DB (p = 0.0002). Average RNFL preoperatively was 113.63 and postoperatively was 102.70 (p = 0.01). The preoperative PD and RNFL did not correlate strongly.Our results demonstrate that PD and RNFL are improved after optic nerve sheath fenestration. The pre- and postoperative RNFL values were compared to the average RNFL value of healthy optic nerves obtained from the literature. Post-ONSF RNFL values were significantly closer to the normal value than preoperative. RNFL is an objective parameter for monitoring the optic nerve after optic nerve sheath fenestration. This study adds to the evidence that OCT RNFL may be an effective monitoring tool for patients with IIH and that it continues to be a useful parameter after ONSF.

  8. [Optical properties of aerosol during haze-fog episodes in Beijing].

    PubMed

    Yu, Xing-Na; Li, Xin-Mei; Deng, Zen-Grandeng; De, Qing-Yangzong; Yuan, Shuai

    2012-04-01

    The purpose of this study is to investigate the optical properties of aerosol during haze-fog episodes in Beijing. The aerosol optical depth (AOD), Angstrom exponent (alpha), size distribution and single scattering albedo (omega) during haze-fog episodes were analyzed between 2002 and 2008 using AERONENT data. During haze-fog episodes, the aerosol optical depth showed a decreasing trend with wavelengths, and showed high values with an average 1.34 at 440 nm. The magnitude of Angstrom exponent was relatively high during haze-fog episodes and the mean values reached 1.11. The frequency distribution of alpha was up to 94% when alpha > 0.9, indicating the predominance of fine particles during haze-fog episodes in Beijing. The aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The maxima (peaks) radius of fine mode showed an increasing trend with AOD, however, those of coarse mode showed a decreasing trend with AOD. The size distribution showed a distinct difference in dominant mode for the different AOD. The single scattering albedo showed an increasing trend with AOD during haze-fog episodes in Beijing. The mean value of omega was 0.89 at the four wavelengths and the omega exhibited a low sensitivity to wavelengths.

  9. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  10. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    NASA Technical Reports Server (NTRS)

    Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory

    2011-01-01

    To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.

  11. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    PubMed

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p < 0.001). With calcified cartilage included, the correlation was ρ = 0.85 (p < 0.001). The mean cartilage SOS (1,636 m/s) was in agreement with the literature. However, SOS and the other properties of cartilage lacked any statistically significant correlation. Interpretation - OCT can give an accurate measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  12. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  13. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  14. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  15. How do A-train Sensors Inter-Compare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study based Assessment

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.

    2013-12-01

    a prime requirement. Jethva, H., O. Torres, L. A. Remer, P. K. Bhartia (2013), A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 51(7), pp. 3862-3870, doi: 10.1109/TGRS.2012.2230008. Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433. Waquet, F., J. Riedi, L. C. Labonnote, P. Goloub, B. Cairns, J.-L. Deuzeand, and D. Tanre (2009), Aerosol remote sensing over clouds using a-train observations, J. Atmos. Sci., 66(8), 2468-2480, doi: http://dx.doi.org/10.1175/2009JAS3026.1 Torres, O., H. Jethva, and P. K. Bhartia (2012), Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies, J. Atmos. Sci., 69(3), 1037-1053, doi: http://dx.doi.org/10.1175/JAS-D-11-0130.

  16. Quantification of biofilm thickness using a swept source based optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Ratheesh Kumar, M.; Murukeshan, V. M.; Seah, L. K.; Shearwood, C.

    2015-07-01

    Optical coherence tomography (OCT) is a non-invasive, non-contact optical measurement and imaging technique that relies on low coherence interferometry. Apart from bio-imaging applications, the applicability of OCT can be extended to metrological investigations because of the inherent capability of optical interferometry to perform precise measurement with high sensitivity. In this paper, we demonstrate the feasibility of OCT for the measurement of the refractive index and thickness of bacterial biofilm structures grown in a flow cell. In OCT, the depth profiles are constructed by measuring the magnitude and time delay of back reflected light from the scattering sites by means of optical interferometry. The optical distance between scattering points can be obtained by measuring the separation between the point spread functions (PSF) at the respective points in the A-scan data. The refractive index of the biofilm is calculated by measuring the apparent shift in the position of the PSF corresponding to a reference surface, caused by the biofilm growth. In our experiment, the base layer of the flow cell is used as the reference surface. It is observed that the calculated refractive index of the biofilm is close to that of water, and agrees well with the previously reported value. Finally, the physical thickness of the biofilm is calculated by dividing the optical path length by the calculated value of refractive index.

  17. Automated Solar Tracking Spectrophotometer for Remote Sensing of Column Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Rainwater, B.; Arnott, W. P.; Moosmuller, H.; Karr, D.

    2012-12-01

    Aerosols in the atmosphere are poorly understood in terms of how they affect weather and climate. In an effort to advance this knowledge, an automated solar tracking spectrophotometer has been constructed to measure direct solar radiation from the ultraviolet to infrared. This instrument facilitates determination of solar irradiance, precipitable water, aerosol optical depth (AOD), and the Ångström turbidity exponent related to aerosol size distribution. Measurements with a CIMEL CE-318 sun photometer (part of the global NASA AERONET network) and a manual solar spectrophotometer are being used to evaluate the accuracy of our instrument. Upon successful evaluation, this instrument will provide a basis for research into spectral information that will supplement CIMEL measurements. Presented is the design of this instrument and measurement comparisons with the aforementioned instruments for the air above Reno, Nevada, USA.

  18. Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation

    NASA Astrophysics Data System (ADS)

    Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.

    2015-03-01

    In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.

  19. Observations of Aerosol Optical Properties over 15 AERONET Sites in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, J. D.; Lagrosas, N.; Uy, S. N.; Holben, B. N.; Dorado, S.; Tobias, V., Jr.; Anh, N. X.; Po-Hsiung, L.; Janjai, S.; Salinas Cortijo, S. V.; Liew, S. C.; Lim, H. S.; Lestari, P.

    2014-12-01

    Mean column-integrated optical properties from ground sun photometers of the Aerosol Robotic Network (AERONET) are studied to provide an overview of the characteristics of aerosols over the region as part of the 7 Southeast Asian Studies (7-SEAS) mission. The 15 AERONET sites with the most available level 2 data products are selected from Thailand (Chiang Mai, Mukdahan, Songkhla and Silpakorn University), Malaysia (University Sains Malaysia), Laos (Vientiane), Vietnam (Bac Giang, Bac Lieu and Nha Trang), Taiwan (National Cheng Kung University and Central Weather Bureau Taipei), Singapore, Indonesia (Bandung) and the Philippines (Manila Observatory and Notre Dame of Marbel University). For all 15 sites, high angstrom exponent values (α>1) have been observed. Chiang Mai and USM have the highest mean Angstrom exponent indicating the dominance of fine particles that can be ascribed to biomass burning and urbanization. Sites with the lowest Angstrom exponent values include Bac Lieu (α=1.047) and Manila Observatory (α=1.021). From the average lognormal size distribution curves, Songkhla and NDMU show the smallest annual variation in the fine mode region, indicating the observed fine aerosols are local to the sites. The rest of the sites show high variation which could be due to large scale forcings (e.g., monsoons and biomass burnings) that affect aerosol properties in these sites. Both high and low single scattering albedo at 440 nm (ω0440) values are found in sites located in major urban areas. Silpakorn University, Manila Observatory and Vientiane have all mean ω0440 < 0.90. Singapore and CWB Taipei have ω0440 > 0.94. The discrepancy in ω0 suggests different types of major emission sources present in urban areas. The absorptivity of urban aerosols can vary depending on the strength of traffic emissions, types of fuel combusted and automobile engines used, and the effect of biomass burning aerosols during the dry season. High aerosol optical depth values (τa550

  20. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-09-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.

  1. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2016-02-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.

  2. Passive Remote Sensing of Aerosols

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    Remote sensing of aerosol optical and microphysical properties got a resurgence in the 1970s when John Reagan and Ben Herman initiated a program to develop and implement a surface-based sunphotometer system to monitor spectral aerosol optical thickness at the University of Arizona. In this presentation I will review the state of the technology used to monitor aerosol optical and microphysical properties, including the determination of spectral aerosol optical thickness and total ozone content. This work continued with John Reagan developed a surface-based spectral flux radiometer to implement Ben Herman's idea to determine the imaginary part of the complex refractive index of aerosols using the recently developed diffuse-direct technique. Progress made both in surface-based instrumentation, inversion theory for analyzing such data, and in satellite observations of aerosol optical and microphysical properties will be reviewed to highlight the state of knowledge after 30 years of expanded capability and introduction of novel new capabilities, both from the ground and from spacecraft.

  3. In situ observations of aerosol physical and optical properties in northern India

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Hyvarinen, A.; Hooda, R. K.; Raatikainen, T. E.; Sharma, V.; Komppula, M.

    2012-12-01

    The southern Asia, including India, is exposed to substantial quantities of particulate air pollution originating mainly from fossil fuel combustion and biomass burning. Besides serious adverse health effects, these aerosols cause a large reduction of solar radiation at the surface accompanied by a substantial atmospheric heating, which is expected to have significant influences on the air temperature, crop yields, livestock and water resources over the southern Asia. The various influences by aerosols in this region depend crucially on the development of aerosol emissions from household, industrial, transportation and biomass burning sectors. The main purpose of this study is to investigate several measured aerosol optical and physical properties. We take advantage of observations from two measurement stations which have been established by the Finnish Meteorological Institute and The Energy and Resources Institute. Another station is on the foothills of Himalayas, in Mukteshwar, about 350 km east of New Delhi at elevation about 2 km ASL. This site is considered as a rural background site. Measurements of aerosol size distribution (7-500 nm), PM10, PM2.5, aerosol scattering and absorption coefficients and weather parameters have been conducted since 2006. Another station is located at the outskirts of New Delhi, in Gual Pahari, about 35 km south of city centre. It is considered as an urban backg