Science.gov

Sample records for aerosol organic oxygen

  1. On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles

    SciTech Connect

    Pang, Y.; Turpin, B.J.; Gundel, L.A.

    2005-04-01

    This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 {+-} 0.2 for urban and 2.1 {+-} 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.

  2. Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Lea; Kostenidou, Evangelia; Mihalopoulos, Nikos; Worsnop, Douglas R.; Donahue, Neil M.; Pandis, Spyros N.

    2010-12-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiments (FAME-08 and FAME-09), which were part of the EUCAARI intensive campaigns. Quadrupole aerosol mass spectrometers (Q-AMSs) were employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the OA. The experiments provide unique insights into ambient oxidation of aerosol by measuring at the same site but under different photochemical conditions. NR-PM1 concentrations were about a factor of three lower during FAME-09 (winter) than during FAME-08 (summer). The OA sampled was significantly less oxidized and more variable in composition during the winter than during the early summer. Lower OH concentrations in the winter were the main difference between the two campaigns, suggesting that atmospheric formation of highly oxygenated OA is associated with homogeneous photochemical aging.

  3. The Correlation of Secondary Organic Aerosol with Odd Oxygen in Mexico City

    EPA Science Inventory

    Data from a mountain location intercepting the Mexico City emission plume demonstrate a strong correlation between secondary organic aerosol and odd-oxygen (O3 + NO2). The measured oxygenated-organic aerosol correlates with odd-oxygen measurements with an a...

  4. Oxygenated products of sesquiterpenes in secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    van Eijck, A.; Kampf, C.; Hoffmann, T.

    2012-04-01

    Secondary organic aerosol (SOA) has a huge impact on air quality and climate change. It influences the Earth radiative budget through absorbing, scattering and reflecting radiation as well as the formation of clouds because the particulates can act as cloud condensation nuclei (CCN). Furthermore, it plays an important role for human health. SOA is formed from gaseous precursors which get oxidized by ozone, OH- and NO3-radicals in the atmosphere. Due to their low vapor pressure these degradation products can nucleate to form new particles or they can condense on existing aerosol particles. Despite the major progress in research during the last few years the actual chemical composition as well as the contribution of various volatile organic compounds (VOCs) to the formation of secondary organic aerosol is still partially unknown. Recent studies indicate that sesquiterpenes play an important role in the formation of SOA because of the low volatility of their oxygenated products (Lee et al., 2006). Their emission is estimated to be about 14,8 Tg per year (Henze et al., 2008), however, these emission rates remain highly uncertain due to the lack of quantitative emission rate measurements. In addition, the knowledge about the actual atmospheric degradation mechanism and the main oxidation products of sesquiterpenes is quite limited. β-Caryophyllene, α-humulene, α-farnesene and β-farnesene are the most abundant sequiterpenes in many sesquiterpene emission profiles. But also aromadendren, α-bergamotene and δ-cadinene and germacrene-D can contribute significantly to some emission profiles (Duhl et al., 2008). To determine the major oxygenated products of sesquiterpenes in SOA, reaction chamber experiments with different sesquiterpenes and ozone were performed in a 100 L reaction chamber. To measure the time dependent formation of initial oxidation products, an APCI-IT-MS was directly connected to the reaction chamber. After 2 hours the APCI-IT-MS was replaced by a

  5. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  6. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

    NASA Astrophysics Data System (ADS)

    Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Pandis, S. N.

    2011-08-01

    A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m-3, predicted mean = 3.3 μg m-3) and O:C (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C well throughout the simulation period. By comparing measurements of the O:C from FAME-08, several sensitivity cases including a high oxygenation case, a low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging, keeping in mind that this study does not consider possibly important processes

  7. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

    NASA Astrophysics Data System (ADS)

    Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Pandis, S. N.

    2011-03-01

    A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m-3, predicted mean = 3.3 μg m-3) and O:C ratio (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C ratios well throughout the simulation period. By comparing measurements of the O:C ratio from FAME-08, several sensitivity cases including a high oxygenation case, low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging. However, many of the cases chosen for this study predict average

  8. On the Interpretation of Oxygenated Organic Aerosols (and their Subtypes) Arising from Factor Analysis of Aerosol Mass Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Zhang, Q.; Canagaratna, M. R.; Ulbrich, I. M.; Ng, N. L.; Aiken, A. C.; Decarlo, P. F.; Kroll, J.; Mohr, C.; Allan, J. D.; Worsnop, D. R.

    2008-12-01

    Zhang et al. (ES&T 2005; ACP 2005) first performed factor analysis (FA) of Aerodyne Aerosol Mass Spectrometer (AMS) complete organic aerosol (OA) mass spectra. This study showed that an oxygenated organic aerosol (OOA) factor accounted for 2/3 of the OA mass at an urban site in Pittsburgh and strongly linked OOA to secondary organic aerosols (SOA). Many subsequent studies and the application of more powerful solution algorithms such as Positive Matrix Factorization (PMF) to the same FA problem have demonstrated the importance of OOA at most locations (e.g. Volkamer et al., GRL, 2006; Zhang et al., GRL, 2007; Lanz et al., ACP, 2007 and ES&T, 2008; Ulbrich et al., ACPD, 2008). Multiple studies have also identified several subtypes of OOA (e.g. OOA-1 and OOA-2). This type of analysis offers new insights because it provides some chemical resolution on the total OA mass with high time and size resolution, and bypasses the limitations of techniques that only analyze tracers and which may favor more reduced species. However the chemical resolution is limited and careful interpretation of the FA output is required, including the use of database spectra, time series of external tracers, tracer ratios, back-trajectory analyses, size- distribution analyses, etc. This presentation will address the interpretation of total OOA and its subfactors across a large range of locations in urban, suburban, rural, remote, and forested areas, and will compare with the results of other source apportionment techniques. Based on data from multiple datasets we conclude that (1) anthropogenic SOA in and downwind of urban areas is an important source of OOA; (2) motor vehicles, meat cooking, and trash burning are unlikely to be sources of primary OOA; (3) SOA from biogenic and biomass burning precursors are also clear sources of OOA; (4) primary biomass burning OA (P-BBOA) typically shows significant differences with ambient OOA factors; (5) heterogeneous oxidation of urban POA may give rise to

  9. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2012-09-01

    A series of smog chamber (SC) experiments was conducted to identify driving factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of organic mass measured at m/z 44 (f44), a surrogate for carboxylic/organic acids as well as the atomic oxygen-to-carbon ratio (O : C), vs. f43, a surrogate for aldehydes, alcohols and ketones. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. On average, an OH exposure of 2.9 ± 1.3 × 107 cm-3 h is needed to increase f44 by 1% during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.5 and 15 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days oxidation time in the atmosphere, based on a global mean OH concentration of ∼1 × 106 cm-3. Not only is the α-pinene SOA more oxygenated at low organic mass loadings, but the functional dependence of oxygenation on mass loading is enhanced at atmospherically-relevant precursor concentrations. Since the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near

  10. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2013-07-01

    A series of smog chamber (SC) experiments was conducted to identify factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of particulate CO2+, a surrogate for carboxylic acids, vs. the fraction of C2H3O+, a surrogate for aldehydes, alcohols and ketones, as well as in the Van Krevelen space, where the evolution of the atomic hydrogen-to-carbon ratio (H : C) vs. the atomic oxygen-to-carbon ratio (O : C) is investigated. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. An OH exposure between 3 and 25 × 107 cm-3 h is needed to increase O : C by 0.05 during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 106 cm-3. α-Pinene SOA is more oxygenated at low organic mass loadings. Because the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate

  11. 2-Hydroxyterpenylic acid: An oxygenated marker compound for a-pinene secondary organic aerosol in ambient fine aerosol

    EPA Science Inventory

    An oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an α-pinene-related marker compound that is associated with aging processes. Owing to difficulties in producing this compound in suff...

  12. Investigation of the Correlation between Odd Oxygen and Secondary Organic Aerosol in Mexico City and Houston

    EPA Science Inventory

    Many recent models underpredict secondary organic aerosol (SOA) particulate matter(PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much b...

  13. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  14. LC-MS-MS-TOF analysis of oxygenated organic compounds in ambient aerosol

    NASA Astrophysics Data System (ADS)

    Roempp, A.; Moortgat, G.

    2003-04-01

    Ambient aerosol samples were taken at different sites across Europe. The fine mode aerosol was collected on quartz filters at flow rates of 160 L/min and 500 L/min. These samples were analyzed for organic acids (C>4) by an HPLC system coupled to a hybrid mass spectrometer. The mass spectrometer consists of a quadrupole mass analyzer, a quadrupole collision cell and a time-of-flight mass analyzer (TOF). Analytes were identified by standards when available or MS-MS experiments and exact mass measurements utilizing the high mass resolution of the TOF instrument. Monoterpenes (alpha-pinene, beta-pinene, sabinene, limonene, 3-carene) were ozonolyzed in the laboratory and compared with field samples. Besides the commonly measured organic acids (pinic, pinonic and norpinic acid) sabinic, caric and caronic acid were identified for the first time in ambient aerosol. In addition, nearly all samples showed significant concentrations of newly identified keto dicarboxylic acids (C9 - C12). Laboratory experiments were used to investigate the formation mechanisms of these compounds. By comparing laboratory measurements of wood combustion and field samples from the Eastern Mediterranean region, nitrocatechol was identified as a possible tracer for biomass burning. The data obtained is used to determine the role of biogenic sources in secondary organic aerosol formation.

  15. Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol.

    PubMed

    Flores, Rosa M; Doskey, Paul V

    2015-10-30

    Two, 3-step methods for derivatizing mono- and multi-functional species with carbonyl (CO), carboxylic acid (-COOH), and alcohol (-OH) moieties were compared and optimized. In Method 1, the CO, -COOH, and -OH moieties were converted (1) to methyloximes (R-CN-OCH3) with O-methylhydroxylamine hydrochloride (MHA), (2) to methyl esters (OC-R-OCH3) with (trimethylsilyl)diazomethane in methanol (TMSD/MeOH), and (3) to trimethylsilyl ethers [R-OSi(CH3)3] with N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS), respectively. Steps 1 and 3 of both methods were identical; however, in Step 2 of Method 2, -COOH moieties were derivatized with 10% (v/v) boron trifluoride (BF3) in MeOH or n-butanol (n-BuOH). The BF3/MeOH and BF3/n-BuOH were ineffective at converting species with more than 2-OH moieties. Average standard deviations for derivatization of 36 model compounds by the 3-step methods using TMSD/MeOH and BF3/(MeOH) were 7.4 and 14.8%, respectively. Average derivatization efficiencies for Methods 1 and 2 were 88.0 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of mono- and multi-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC×GC-ToF-MS were 0.3-54pgm(-3). Approximately 100 oxygenated organic species were identified and quantified in aerosol filtered from 39m(3) of air in an urban location. Levels of species were 0.013-17ngm(-3) and were nearly all above the Method 1 limit of detection. PMID:26427323

  16. Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen.

    PubMed

    Richards-Henderson, Nicole K; Pham, Andrew T; Kirk, Benjamin B; Anastasio, Cort

    2015-01-01

    Vegetation emits a class of oxygenated hydrocarbons--the green leaf volatiles (GLVs)--under stress or damage. Under foggy conditions GLVs might be a source of secondary organic aerosol (SOA) via aqueous reactions with hydroxyl radical (OH), singlet oxygen ((1)O2*), and excited triplet states ((3)C*). To examine this, we determined the aqueous kinetics and SOA mass yields for reactions of (3)C* and (1)O2* with five GLVs: methyl jasmonate (MeJa), methyl salicylate (MeSa), cis-3-hexenyl acetate (HxAc), cis-3-hexen-1-ol (HxO), and 2-methyl-3-butene-2-ol (MBO). Second-order rate constants with (3)C* and (1)O2* range from (0.13-22) × 10(8) M(-1) s(-1) and (8.2-60) × 10(5) M(-1) s(-1) at 298 K, respectively. Rate constants with (3)C* are independent of temperature, while values with (1)O2* show significant temperature dependence (Ea = 20-96 kJ mol(-1)). Aqueous SOA mass yields for oxidation by (3)C* are (84 ± 7)%, (80 ± 9)%, and (38 ± 18)%, for MeJa, MeSa, and HxAc, respectively; we did not measure yields for other conditions because of slow kinetics. The aqueous production of SOA from GLVs is dominated by (3)C* and OH reactions, which form low volatility products at a rate that is approximately half that from the parallel gas-phase reactions of GLVs. PMID:25426693

  17. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC OR HYDROXYL GROUPS. 2. ORGANIC TRACER COMPOUNDS FROM MONOTERPENES

    EPA Science Inventory

    A comparison was made of polar organic compounds found in the field with those produced in secondary organic aerosol from laboratory irradiations of natural hydrocarbons and oxides of nitrogen. The field samples comprised atmospheric particulate matter (PM2.5) collect...

  18. Hourly Measurement of the Concentration and Gas-Particle Partitioning of Oxygenated Organic Tracers in Ambient Aerosol: First Results from Berkeley, CA and Rural Alabama

    NASA Astrophysics Data System (ADS)

    Isaacman, G. A.; Kreisberg, N. M.; Yee, L.; Chan, A.; Worton, D. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Hourly and bi-hourly time-resolved measurements of organic tracer compounds in ambient aerosols have been successfully used to elucidate sources and formation pathways of atmospheric particulate matter. Here we extend the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SVTAG), a custom in-situ instrument that collects, desorbs, and analyzes ambient aerosol and semi-volatile compounds with hourly time resolution, to include on-line derivatization and a second, parallel collection cell that provides simultaneous collection of both particle-phase and particle-plus-gas-phase organic compounds. By introducing a silylating agent upon desorption, SVTAG can measure highly oxygenated compounds that are not easily detected using traditional gas chromatography including most of the previously reported oxygenated tracers for biogenic and anthropogenic secondary organic aerosol. The use of a pair of matched collection cells with parallel sampling and serial analysis provides direct gas-particle partitioning information. One cell collects the total organic fraction of compounds with volatilities lower than a C13 hydrocarbon, while the other cell samples through an activated carbon denuder to selectively remove the gas-phase components. Taken together these provide a direct measurement of gas-particle partitioning to yield a check on classical absorption based partitioning theory while deviations from this theory provide constraints on other driving factors in aerosol formation chemistry, such as oligomerization, salt formation, and acidity. We present here the capabilities and utility of the dual cell SVTAG with derivatization, with chemical insights gained from initial tests on ambient Berkeley air and the first results from a rural site in Alabama obtained during the Southern Oxidant and Aerosol Study (SOAS). Tracers for varying isoprene oxidation pathways are used to explore the influence of anthropogenic emissions; concentrations of 2-methyltetrols and 2-methyl

  19. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  20. Towards a better understanding of the origins, chemical composition and aging of oxygenated organic aerosols: case study of a Mediterranean industrialized environment, Marseille

    NASA Astrophysics Data System (ADS)

    El Haddad, I.; D'Anna, B.; Temime-Roussel, B.; Nicolas, M.; Boreave, A.; Favez, O.; Voisin, D.; Sciare, J.; George, C.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2013-08-01

    As part of the FORMES summer 2008 experiment, an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) was deployed at an urban background site in Marseille to investigate the sources and aging of organic aerosols (OA). France's second largest city and the largest port in the Mediterranean, Marseille, provides a locale that is influenced by significant urban industrialized emissions and an active photochemistry with very high ozone concentrations. Particle mass spectra were analyzed by positive matrix factorization (PMF2) and the results were in very good agreement with previous apportionments obtained using a chemical mass balance (CMB) approach coupled to organic markers and metals (El Haddad et al., 2011a). AMS/PMF2 was able to identify for the first time, to the best of our knowledge, the organic aerosol emitted by industrial processes. Even with significant industries in the region, industrial OA was estimated to contribute only ~ 5% of the total OA mass. Both source apportionment techniques suggest that oxygenated OA (OOA) constitutes the major fraction, contributing ~ 80% of OA mass. A novel approach combining AMS/PMF2 data with 14C measurements was applied to identify and quantify the fossil and non-fossil precursors of this fraction and to explicitly assess the related uncertainties. Results show with high statistical confidence that, despite extensive urban and industrial emissions, OOA is overwhelmingly non-fossil, formed via the oxidation of biogenic precursors, including monoterpenes. AMS/PMF2 results strongly suggest that the variability observed in the OOA chemical composition is mainly driven in our case by the aerosol photochemical age. This paper presents the impact of photochemistry on the increase of OOA oxygenation levels, formation of humic-like substances (HULIS) and the evolution of α-pinene SOA (secondary OA) components.

  1. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2013-06-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species challenging simple classification schemes. Traditional off-line chemical methods identified chemical classes based on the retention behavior on chromatographic columns and absorbing beds. Such approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, on-line aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for oxygenated organic aerosols (OOAs) classification on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS datasets suggested the occurrence of very oxidized OOAs which were postulated to correspond to the HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classification from the off-line methods. In this paper, we consider a case study representative for polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare to chemical classes of water-soluble organic carbon (WSOC) analysed off-line on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to H-NMR spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS sensu stricto) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups attributable to highly substituted carboxylic

  2. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2014-01-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species, challenging simple classification schemes. Traditional offline chemical methods identify chemical classes based on the retention behaviour on chromatographic columns and absorbing beds. Such an approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, online aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for the classification of oxygenated organic aerosols (OOAs) on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS data sets suggested the occurrence of very oxidized OOAs which were postulated to correspond to HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classifications from the offline methods. In this paper, we consider a case study representative of polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare them to chemical classes of water-soluble organic carbon (WSOC) analysed offline on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to proton nuclear magnetic resonance (NMR) spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS {sensu stricto}) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups

  3. Evolution of Organic Aerosols in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R.

    2009-12-01

    Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

  4. On the chemical nature of the oxygenated organic aerosol: implication in the formation and aging of α-pinene SOA in a Mediterranean environment, Marseille

    NASA Astrophysics Data System (ADS)

    El Haddad, I.; D'Anna, B.; Temime-Roussel, B.; Nicolas, M.; Boreave, A.; Favez, O.; Voisin, D.; Sciare, J.; George, C.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2012-08-01

    Organic Aerosol (OA) measurements were conducted during summer 2008 at an urban background site, in Marseille, France's second city and the largest port in the Mediterranean, an urban industrialized environment known for its active photochemistry. PM2.5 was collected using high volume samplers and analyzed for elemental and organic carbon, major ions (NH4+, NO3- and SO42-), humic-like-substances, organic markers (i.e. primary tracers and α-pinene oxidation products), elemental composition and radiocarbon content (14C). The real-time chemical characterization of submicron particles was also achieved using a compact time of flight aerosol mass spectrometer. Positive matrix factorization conducted on the organic aerosol mass spectra matrix revealed four factors, including traffic emissions (hydrocarbon-like OA, HOA), industrial emissions, semi-volatile (SV-OOA) and low-volatile (LV-OOA) oxygenated organic aerosol (OOA) related to oxidation processes. The results obtained were in excellent agreement with chemical mass balance source apportionments conducted in conjunction with organic markers and elements. It appears that while primary emissions contributed only 22% to the total OA (of which 23% was associated with industrial processes), OOA constituted the overwhelming fraction. Radiocarbon measurements suggest that about 80% of this fraction was of non-fossil origin, assigned predominantly to biogenic secondary organic aerosol. Non-fossil carbon appears to especially dominate the LV-OOA fraction, an aged long-range-transported OOA, marginally affected by local anthropogenic SOA. We also examined the relation between OOA and α-pinene SOA obtained based on the levels of α-pinene oxidation products. α-pinene SOA showed good correlation with SV-OOA, suggesting that the compounds used for estimating α-pinene SOA appear to pertain mainly to the moderately oxidized fraction. In contrast, LV-OOA was found to be intimately related to HUmic LIke substances (HULIS

  5. Evolution of Organic Aerosols in the Atmosphere.

    SciTech Connect

    Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Qi; Kroll, Jesse H.; DeCarlo, Peter F.; Allan, James D.; Coe, H.; Ng, N. L.; Aiken, Allison; Docherty, Kenneth S.; Ulbrich, Ingrid M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, Jason M.; Collins, Donald R.; Cubison, Michael J.; Dunlea, E. J.; Huffman, John A.; Onasch, Timothy B.; Alfarra, M. R.; Williams, Paul I.; Bower, K.; Kondo, Yutaka; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, Robert; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, Joel; Sueper, D.; Jayne, J. T.; Herndon, Scott C.; Trimborn, Achim; Williams, L. R.; Wood, Ezra C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, Urs; Worsnop, Douglas R.

    2009-12-11

    Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework that describes the atmospheric evolution of OA and is constrained and motivated by new, high time resolution, experimental characterizations of their composition, volatility, and oxidation state. OA and OA-precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of large amounts of oxygenated organic aerosol (OOA) mass that has comparable concentrations to sulfate aerosol over the Northern Hemisphere. Our new model framework captures the dynamic aging behavior observed in the atmosphere and the laboratory and can serve as a basis for improving parameterizations in regional and global models.

  6. On-line derivatization for hourly measurements of gas- and particle-phase Semi-Volatile oxygenated organic compounds by Thermal desorption Aerosol Gas chromatography (SV-TAG)

    NASA Astrophysics Data System (ADS)

    Isaacman, G.; Kreisberg, N. M.; Yee, L. D.; Worton, D. R.; Chan, A. W. H.; Moss, J. A.; Hering, S. V.; Goldstein, A. H.

    2014-07-01

    Laboratory oxidation studies have identified a large number of oxygenated organic compounds that can be used as tracers to understand sources and oxidation chemistry of atmospheric particulate matter. Quantification of these compounds in ambient environments has traditionally relied on low time-resolution collection of filter samples followed by offline sample treatment with a derivatizing agent to allow analysis by gas chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We present here an automated in situ instrument for the measurement of highly polar organic semi-volatile and low-volatility compounds in both the gas- and particle-phase with hourly time-resolution. The dual-cell Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG) with derivatization collects particle-only and combined particle-plus-vapor samples on two parallel sampling cells that are analyzed in series by thermal desorption into helium saturated with derivatizing agent. Introduction of MSTFA, a silylating agent, yields complete derivatization of all tested compounds, including alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In laboratory tests, derivatization is found to be highly reproducible (< 3% variability). During field deployment, a regularly injected internal standard is used to correct for variability in detector response, derivatization efficiency, desorption efficiency, and transfer efficiency. Error in quantification from instrument fluctuations is found to be less than 10% for hydrocarbons and less than 15% for all oxygenates for which a functionally similar internal standard is available. After internal standard corrections, calibration curves are found to be linear for all compounds over the span of one month with comparable response on both of the parallel sampling cells.

  7. Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG)

    NASA Astrophysics Data System (ADS)

    Isaacman, G.; Kreisberg, N. M.; Yee, L. D.; Worton, D. R.; Chan, A. W. H.; Moss, J. A.; Hering, S. V.; Goldstein, A. H.

    2014-12-01

    Laboratory oxidation studies have identified a large number of oxygenated organic compounds that can be used as tracers to understand sources and oxidation chemistry of atmospheric particulate matter. Quantification of these compounds in ambient environments has traditionally relied on low-time-resolution collection of filter samples followed by offline sample treatment with a derivatizing agent to allow analysis by gas chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We present here an automated in situ instrument for the measurement of highly polar organic semi-volatile and low-volatility compounds in both the gas- and particle-phase with hourly quantification of mass concentrations and gas-particle partitioning. The dual-cell semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) with derivatization collects particle-only and combined particle-plus-vapor samples on two parallel sampling cells that are analyzed in series by thermal desorption into helium saturated with derivatizing agent. Introduction of MSTFA (N-methyl-N-(trimethylsilyl)trifluoroacetamide), a silylating agent, yields complete derivatization of all tested compounds, including alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In laboratory tests, derivatization is found to be highly reproducible (< 3% variability). During field deployment, a regularly injected internal standard is used to correct for variability in detector response, consumption of the derivatization agent, desorption efficiency, and transfer losses. Error in quantification from instrument fluctuations is found to be less than 10% for hydrocarbons and less than 15% for all oxygenates for which a functionally similar internal standard is available, with an uncertainty of 20-25% in measurements of particle fraction. After internal standard corrections, calibration curves are found to be linear for all compounds over the span of 1 month, with comparable response on

  8. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V Ronald Brown during TEXAQS/GoMACCS 2006

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Takahama, S.; Liu, S.; Hawkins, L. N.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2009-04-01

    masses. Organosulfate groups were found in GAM and SAM, accounting for 1% and 3% of OM, respectively. Two thirds of the OM and oxygen-to-carbon (O/C) measured could be attributed to oil and wood combustion sources on the basis of mild or strong correlations to coemitted, nonvolatile trace metals, with the remaining one third being associated with atmospherically processed organic aerosol. The cloud condensation nuclei (CCN) fraction (normalized by total condensation nuclei) had weak correlations to the alcohol and amine group fractions and mild correlation with O/C, also varying inversely with alkane group fraction. The chemical components that influenced f(RH) were sulfate, organic, and nitrate fraction, but this contrast is consistent with the size-distribution dependence of CCN counters and nephelometers.

  9. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry.

    PubMed

    Berkemeier, Thomas; Steimer, Sarah S; Krieger, Ulrich K; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-05-14

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols. To demonstrate and quantify how moisture-induced phase changes can affect the gas uptake and chemical transformation of organic matter, we apply a kinetic multi-layer model to a comprehensive experimental data set of ozone uptake by shikimic acid. The bulk diffusion coefficients were determined to be 10(-12) cm(2) s(-1) for ozone and 10(-20) cm(2) s(-1) for shikimic acid under dry conditions, increasing by several orders of magnitude with increasing relative humidity (RH) due to phase changes from amorphous solid over semisolid to liquid. Consequently, the reactive uptake of ozone progresses through different kinetic regimes characterised by specific limiting processes and parameters. At high RH, ozone uptake is driven by reaction throughout the particle bulk; at low RH it is restricted to reaction near the particle surface and kinetically limited by slow diffusion and replenishment of unreacted organic molecules. Our results suggest that the chemical reaction mechanism involves long-lived reactive oxygen intermediates, likely primary ozonides or O atoms, which may provide a pathway for self-reaction and catalytic destruction of ozone at the surface. Slow diffusion and ozone destruction can effectively shield reactive organic molecules in the particle bulk from degradation. We discuss the potential non-orthogonality of kinetic parameters, and show how this problem can be solved by using comprehensive experimental data sets to constrain the kinetic model, providing mechanistic insights into the coupling of transport, phase changes, and chemical reactions of multiple species in complex systems. PMID:27095585

  10. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation: New Insights into the Formation and Fates of Highly Oxygenated Gas- and Particle-phase Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Nah, T.; Sanchez, J.; Boyd, C.; Ng, N. L.

    2015-12-01

    The nitrate radical (NO3), one of the most important oxidants in the nocturnal atmosphere, can react rapidly with a variety of biogenic volatile organic compounds (BVOCs) to form high mass concentrations of secondary organic aerosol (SOA) and organic nitrates (ON). Despite its critical importance in aerosol formation, the mechanisms and products from the NO3 oxidation of BVOCs have been largely unexplored, and the fates of their SOA and ON after formation are not well characterized. In this work, we studied the formation of SOA and ON from the NO3 oxidation of α-pinene and β-pinene and investigated for the first time how they evolve during dark and photochemical aging through a series of chamber experiments performed at the Georgia Tech Environmental Chamber (GTEC) facility. The α-pinene and β-pinene SOA are characterized using real-time gas- and particle-phase measurements, which are used to propose mechanisms for SOA and organic nitrate formation and aging. Highly oxygenated gas- and particle-phase ON (containing as many as 9 oxygen atoms) are detected during the NO3 reaction. In addition, the β-pinene SOA and α-pinene SOA exhibited drastically different behavior during photochemical aging. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either NOx reservoirs or sinks depending on the monoterpene precursor. Results from this study provide fundamental data for evaluating the contributions of NO3+monoterpene reactions to ambient OA measured in the Southeastern U.S.

  11. Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prévôt, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-01-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with time of day, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  12. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment - 2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prevot, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-05-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  13. Chromism of Model Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Rincon, Angela; Guzman, Marcelo; Hoffmann, Michael; Colussi, Agustin

    2008-03-01

    The optical properties of the atmospheric aerosol play a fundamental role in the Earth's radiative balance. Since more than half of the aerosol mass consists of complex organic matter that absorbs in the ultraviolet and visible regions of the spectrum, it is important to establish the identity of the organic chromophores. Here we report studies on the chromism vs. chemical composition of photolyzed (lambda longer than 305 nm) solutions of pyruvic acid, a widespread aerosol component, under a variety of experimental conditions that include substrate concentration, temperature and the presence of relevant spectator solutes, such ammonium sulfate. We use high resolution mass- and 13C NMR-spectrometries to track chemical speciation in photolyzed solutions as they undergo thermochromic and photobleaching cycles. Since the chemical identity of the components of these mixtures does not change in these cycles, in which photobleached solutions gradually recover their yellow color in the dark with non-conventional kinetics typical of aggregation processes, we infer that visible absorptions likely involve the intermolecular coupling of carbonyl chromophores in supramolecular assemblies made possible by the polyfunctional nature of the products of pyruvic acid photolysis.

  14. Aerosol from Organic Nitrogen in the Southeast United States

    EPA Science Inventory

    Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...

  15. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the

  16. Photochemistry of Model Organic Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Mang, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Nizkorodov, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Up to 90 percent of urban aerosol particles have been shown to contain organic molecules. Reactions of these particles with atmospheric oxidants and/or sunlight result in large changes in their composition, toxicity, and ability to act as cloud condensation nuclei. For this reason, chemistry of model organic aerosol particles initiated by oxidation and direct photolysis is of great interest to atmospheric, climate, and health scientists. Most studies in this area have focused on identifying the products of oxidation of the organic aerosols, while the products of direct photolysis of the resulting molecules remaining in the aerosol particle have been left mostly unexplored. We have explored direct photolytic processes occurring in selected organic aerosol systems using infrared cavity ringdown spectroscopy to identify small gas phase products of photolysis, and mass-spectrometric and photometric techniques to study the condensed phase products. The first model system was secondary organic aerosol formed from the oxidation of several monoterpenes by ozone in the presence and absence of NOx, under different humidities. The second system modeled after oxidatively aged primary organic aerosol particles was a thin film of either alkanes or saturated fatty acids oxidized in several different ways, with the oxidation initiated by ozone, chlorine atom, or OH. In every case, the general conclusion was that the photochemical processing of model organic aerosols is significant. Such direct photolysis processes are believed to age organic aerosol particles on time scales that are short compared to the particles' atmospheric lifetimes.

  17. Studies of organic aerosol and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Duong, Hanh To

    Atmospheric aerosols can influence society and the environment in many ways including altering the planet's energy budget, the hydrologic cycle, and public health. However, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change indicates that the anthropogenic radiative forcing associated with aerosol effects on clouds has the highest uncertainty in the future climate predictions. This thesis focuses on the nature of the organic fraction of ambient particles and how particles interact with clouds using a combination of tools including aircraft and ground measurements, models, and satellite data. Fine aerosol particles typically contain between 20 - 90% organic matter by mass and a major component of this fraction includes water soluble organic carbon (WSOC). Consequently, water-soluble organic species can strongly influence aerosol water-uptake and optical properties. However, the chemical composition of this fraction is not well-understood. PILS-TOC was used to characterize WSOC in ambient aerosol in Los Angeles, California. The spatial distribution of WSOC was found to be influenced by (i) a wide range of aerosol sources within this urban metropolitan area, (ii) transport of pollutants by the characteristic daytime sea breeze trajectory, (iii) topography, and (iv) secondary production during transport. Meteorology is linked with the strength of many of these various processes. Many methods and instruments have been used to study aerosol-cloud interactions. Each observational platform is characterized by different temporal/spatial resolutions and operational principles, and thus there are disagreements between different studies for the magnitude of mathematical constructs used to represent the strength of aerosol-cloud interactions. This work points to the sensitivity of the magnitude of aerosol-cloud interactions to cloud lifetime and spatial resolution of measurements and model simulations. Failure to account for above-cloud aerosol layers

  18. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1984-01-01

    The optical properties and chemical composition of thiolin, an organic solid synthesized by high-energy-electron irradiation in a plasma discharge (Sagan et al., 1984) to simulate the high-altitude aerosols of Titan, are investigated experimentally using monochromators, ellipsometers, and spectrometers (on thin films deposited by continuous dc discharge) and sequential and nonsequential pyrolytic gas chromatography/mass spectrometry (of the volatile component), respectively. The results are presented in tables and graphs and characterized. The real and imaginary elements of the complex refractive index in the visible are estimated as 1.65 and 0.004-0.08, respectively, in agreement with observations of Titan, and the IR absorption features include the nitrile band at 4.6 microns. The molecules identified in the volatile part of thiolin include complex species considered important in theoretical models of the origin of life on earth.

  19. The organic aerosols of Titan

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.; Nagy, B.

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from x-ray to microwave frequencies. Values of n (⋍1.65) and k (⋍0.004 to 0.08) in the visible are consistent with deductions made by ground-based and spaceborne observations of Titan. Many infrared absorption features are present in k(λ), including the 4.6 μm nitrile band. Molecular analysis of the volatile component of this tholin was performed by sequential and non-sequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition, acid hydrolysis produces a racemic mixture of biological and non-biological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  20. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Calcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1986-01-01

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan prepared by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from X-ray to microwave frequencies. Values of n (approx. 1.65) and k (approx. 0.004 to 0.08) in the visible are consistent with deductions made by groundbased and spaceborne observations of Titan. Many infrared absorption features are present in k(lambda), including the 4.6 micrometer nitrile band. Molecular analysis of the volatile components of this tholin was performed by sequential and nonsequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycylic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition,acid hydrolysis produces a racemic mixture of biological and nonbiological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  1. Organic Aerosols in Rural and Remote Atmospheric Environments: Insights from Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Ulbrich, I.; Dunlea, E.; Decarlo, P.; Huffman, A.; Allan, J.; Coe, H.; Alfarra, R.; Canagaratna, M.; Onasch, T.; Jayne, J.; Worsnop, D.; Takami, A.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Weimer, S.; Demerjian, K.; Drewnick, F.; Schneider, J.; Middlebrook, A.; Bahreini, R.; Cotrell, L.; Griffin, R.; Leaitch, R.; Li, S.; Hayden, K.; Rautiainen, J.

    2006-12-01

    Organic matter usually accounts for a large fraction of the fine particle mass in rural and remote atmospheres. However, little is known about the sources and properties of this material. Here we report findings on the characteristics and the major types of organic aerosols (OA) in urban downwind, high elevation, forested, and marine atmospheres based on analyses of more than 20 highly time resolved AMS datasets sampled from various locations in the mid-latitude Northern Hemisphere. Organic aerosol components are extracted from these datasets using a custom multiple component mass spectral analysis technique and the Positive Matrix Factorization (PMF) method. These components are evaluated according to their extracted mass spectra and correlations to aerosol species, such as sulfate, nitrate, and elemental carbon, and gas-phase tracer compounds, such as CO and NOx. We have identified a hydrocarbon-like organic aerosol (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations. We have also identified several oxygenated OA (OOA) components that show different fragmentation patterns and oxygen to carbon ratios in their mass spectra. Two OOA components a highly oxygenated that has mass spectrum resembling that of fulvic acid (a model compound representative for highly processed/oxidized organics in the environment) and a less oxygenated OOA component, whose spectrum is dominated with ions that are mainly associated with carbonyls and alcohols, are very frequently observed at various rural/remote sites. The oxygenated OOA component is more prevalent at downwind sites influenced by urban transport and the less oxygenated shows correlation to biogenic chamber OA at some locations. Compared to the total OOA concentration, HOA is generally very small and accounts for < 10% of the total OA mass at rural/remote sites. The comparisons between the concentrations of HOA and primary OA (POA) that would be predicted according to inert

  2. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary

  3. EVIDENCE FOR ORGANOSULFATES IN SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of α-pinene and isop...

  4. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-07-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  5. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  6. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  7. Oxidation enhancement of submicron organic aerosols by fog processing

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ge, X.; Collier, S.; Setyan, A.; Xu, J.; Sun, Y.

    2011-12-01

    During 2010 wintertime, a measurement study was carried out at Fresno, California, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) combined with a Scanning Mobility Particle Sizer (SMPS). Four fog events occurred during the first week of the campaign. While ambient aerosol was sampled into the HR-ToF-AMS, fog water samples were collected, and were later aerosolized and analyzed via HR-TOF-AMS in the laboratory. We performed Positive Matrix Factorization (PMF) on the AMS ambient organic mass spectra, and identified four OA factors: hydrocarbon-like OA (HOA) likely from vehicle emissions, cooking influenced OA (COA), biomass burning OA (BBOA) representing residential wood combustion, and an oxygenated OA (OOA) that has an average O/C ratio of 0.42. The time series of the OOA factor correlates best with that of sulfate (R2 =0.54 ) during fog events, suggesting that aqueous phase processing may have strongly affected OOA production during wintertime in Fresno. We further investigate the OOA compositions and elemental ratios before, during, and after the fog events, as well as those of dissolved organic matter (DOM) in fog waters to study the influence of aqueous phase processing on OA compositions. Results of fog sample analysis shows an enhancement of oxidation of DOM in 11 separate fog samples. Further factor analysis of the fog DOM data will elucidate the possible mechanisms by which fog processing enhances oxidation of aerosol. In addition, in order to investigate the influence of aqueous processing on OA, we used the Extended Aerosol Inorganic Model (E-AIM) (http://www.aim.env.uea.ac.uk/aim/aim.php) to estimate aerosol phase water contents based on the AMS measured aerosol composition. The predicted water content has a good correlation with sulfate and OOA . We will further explore the correlations between particle phase water with organic aerosol characteristics to discuss the influence of aqueous phase processing on

  8. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  9. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  10. Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.; Madronich, S.; Aiken, A. C.; Bessagnet, B.; Curci, G.; Fast, J.; Lamarque, J.-F.; Onasch, T. B.; Roux, G.; Schauer, J. J.; Stone, E. A.; Ulbrich, I. M.

    2009-09-01

    The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols - OA, including primary OA (POA) and secondary OA (SOA) - observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA) which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes), biogenic (i.e. monoterpenes and isoprene), and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2-10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA suggesting a

  11. Evolved gas analysis of secondary organic aerosols

    SciTech Connect

    Grosjean, D.; Williams, E.L. II; Grosjean, E. ); Novakov, T. )

    1994-11-01

    Secondary organic aerosols have been characterized by evolved gas analysis (EGA). Hydrocarbons selected as aerosol precursors were representative of anthropogenic emissions (cyclohexene, cyclopentene, 1-decene and 1-dodecene, n-dodecane, o-xylene, and 1,3,5-trimethylbenzene) and of biogenic emissions (the terpenes [alpha]-pinene, [beta]-pinene and d-limonene and the sesquiterpene trans-caryophyllene). Also analyzed by EGA were samples of secondary, primary (highway tunnel), and ambient (urban) aerosols before and after exposure to ozone and other photochemical oxidants. The major features of the EGA thermograms (amount of CO[sub 2] evolved as a function of temperature) are described. The usefulness and limitations of EGA data for source apportionment of atmospheric particulate carbon are briefly discussed. 28 refs., 7 figs., 4 tabs.

  12. OH-initiated heterogeneous aging of highly oxidized organic aerosol

    SciTech Connect

    Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E.; Worsnop, Douglas R.; Wilson, Kevin R.; Kroll, Jesse H.

    2011-12-05

    The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.

  13. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ∼12 μg m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from β-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  14. Reactive Oxygen Species in Combustion Aerosols

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.; See, S.

    2007-12-01

    Research on airborne particulate matter (PM) has received increased concern in recent years after it was identified as a major component of the air pollution mix that is strongly associated with premature mortality and morbidity. Particular attention has been paid to understanding the potential health impacts of fine particles (PM2.5), which primarily originate from combustion sources. One group of particulate-bound chemical components of health concern is reactive oxygen species (ROS), which include molecules such as hydrogen peroxide (H2O2), ions such as hypochlorite ion (OCl-), free radicals such as hydroxyl radical (·OH) and superoxide anion (·O2-) which is both an ion and a radical. However, the formation of ROS in PM is not clearly understood yet. Furthermore, the concentration of ROS in combustion particles of different origin has not been quantified. The primary objective of this work is to study the effect of transition metals on the production of ROS in PM2.5 by determining the concentrations of ROS and metals. Both soluble and total metals were measured to evaluate their respective associations with ROS. PM2.5 samples were collected from several outdoor and indoor combustion sources, including those emitted from on-road vehicles, food cooking, incense sticks, and cigarette smoke. PM2.5 samples were also collected from the background air in both the ambient outdoor and indoor environments to assess the levels of particulate-bound transition metals and ROS with no combustion activities in the vicinity of sampling locations. Results obtained from this comprehensive study on particulate-bound ROS will be presented and discussed.

  15. Photochemical Aging of Organic Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Mang, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Secondary Organic Aerosol (SOA) particles are produced in the atmosphere as a result of oxidation of volatile organic compounds (VOC). Primary Organic Aerosol (POA) particles are directly emitted in the atmosphere by their sources. This research focuses on the mechanisms of direct photochemical processes taking place in model SOA and POA particles, the role of such processes in aging of organic aerosol particles, and the effect of photochemistry on particles' physicochemical properties. To address these questions, artificial SOA and POA particles are investigated with several laboratory-based approaches relying on cavity ring-down spectroscopy and mass-spectrometry. SOA particles generated by dark oxidation of d-Limonene, alpha-Pinene, and beta-Pinene by ozone are all found to absorb radiation in the tropospheric actinic window. The UV absorption photolyzes SOA constituents resulting in a release of small VOC molecules back in the gas-phase, and considerable change in SOA chemical composition. For terpenes featuring a terminal double bond, the main SOA photolysis products are invariably found to be formaldehyde and formic acid. Similar observations are obtained for products of ozonolysis of thin films of unsaturated fatty acids and self-assembled monolayers of unsaturated alkenes. For the case of fatty acids, a very detailed mechanism of ozonolysis and subsequent photolysis is proposed. The photolytic activity is primarily attributed to organic peroxides and aldehydes. These results convincingly demonstrate that photochemical processes occurring inside SOA and POA particles age the particles on time scales that are shorter than typical lifetimes of aerosol particles in the atmosphere.

  16. Aircraft measurement of organic aerosols over China.

    PubMed

    Wang, Gehui; Kawamura, Kimitaka; Hatakeyama, Shiro; Takami, Akinori; Li, Hong; Wang, Wei

    2007-05-01

    Lower to middle (0.5-3.0 km altitude) tropospheric aerosols (PM2.5) collected by aircraft over inland and east coastal China were, for the first time, characterized for organic molecular compositions to understand anthropogenic, natural, and photochemical contribution to the air quality. n-Alkanes, fatty acids, sugars, polyacids are detected as major compound classes, whereas lignin and resin products, sterols, polycyclic aromatic hydrocarbons, and phthalic acids are minor species. Average concentrations of all the identified compounds excluding malic acid correspond to 40-50% of those reported on the ground sites. Relative abundances of secondary organic aerosol (SOA) components such as malic acid are much higher in the aircraft samples, suggesting an enhanced photochemical production over China. Organic carbon (OC) concentrations in summer (average, 24.3 microg m(-3)) were equivalent to those reported on the ground sites. Higher OC/EC (elemental carbon) ratios in the summer aircraft samples also support a significant production of SOA over China. High loadings of organic aerosols in the Chinese troposphere may be responsible to an intercontinental transport of the pollutants and potential impact on the regional and global climate changes. PMID:17539513

  17. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary

  18. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  19. Organic aerosol effects on fog droplet spectra

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Russell, Lynn M.

    2004-05-01

    Organic aerosol alters cloud and fog properties through surface tension and solubility effects. This study characterizes the role of organic compounds in affecting fog droplet number concentration by initializing and comparing detailed particle microphysical simulations with two field campaigns in the Po Valley. The size distribution and chemical composition of aerosol were based on the measurements made in the Po Valley Fog Experiments in 1989 and 1998-1999. Two types of aerosol with different hygroscopicity were considered: the less hygroscopic particles, composed mainly of organic compounds, and the more hygroscopic particles, composed mainly of inorganic salts. The organic fraction of aerosol mass was explicitly modeled as a mixture of seven soluble compounds [, 2001] by employing a functional group-based thermodynamic model [, 2002]. Condensable gases in the vapor phase included nitric acid, sulfuric acid, and ammonia. The maximum supersaturation in the simulation is 0.030% and is comparable to the calculation by [1992] inferred from measured residual particle fractions. The minimum activation diameters of the less and more hygroscopic particles are 0.49 μm and 0.40 μm, respectively. The predicted residual particle fractions are in agreement with measurements. The organic components of aerosol account for 34% of the droplet residual particle mass and change the average droplet number concentration by -10-6%, depending on the lowering of droplet surface tension and the interactions among dissolving ions. The hygroscopic growth of particles due to the presence of water-soluble organic compounds enhances the condensation of nitric acid and ammonia due to the increased surface area, resulting in a 9% increase in the average droplet number concentration. Assuming ideal behavior of aqueous solutions of water-soluble organic compounds overestimates the hygroscopic growth of particles and increases droplet numbers by 6%. The results are sensitive to microphysical

  20. Organic Aerosols as Cloud Condensation Nuclei

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.

    2002-05-01

    The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of

  1. Primary and secondary organic aerosols in urban air masses intercepted at a rural site

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng; Vlasenko, Alexander; Sjostedt, Steve; Chang, Rachel; Shantz, Nicole; Abbatt, Jonathan; Slowik, J. G.; Bottenheim, J. W.; Brickell, P. C.; Stroud, C.; Leaitch, W. Richard

    2010-11-01

    Measurements made at a rural site in central Ontario during May-June 2007 are used to investigate the composition of organic aerosol (OA) downwind of an urban region. Observations of aerosol organic carbon and oxygen containing fragments from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are combined with toluene to benzene ratios to estimate the relative importance of secondary organic aerosol (SOA) and primary organic aerosol (POA) to the total OA at the site during periods of significant urban influence. We estimate that SOA formed within 1-2 days of the anthropogenic source regions was 40-50% of the measured OA and that POA was 5-16% of the OA. The remaining 35-45% of the OA is assumed to have been present in the aerosol upwind of the source regions prior to entering the study domain as defined by trajectories and estimates of the potential photochemical aging time. The apportionment results were also compared to that of positive matrix factorization analysis. In addition, the measurements of the molar oxygen to carbon ratio (O/C) in the OA demonstrates that SOA becomes progressively more oxygenated with increasing photochemical age and at low total OA mass.

  2. Spectroscopic investigations of organic aerosol and its reaction with halogens, released by sea-salt activation

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Zetzsch, C.

    2009-04-01

    molecules like phosgene. Methyl groups (and possibly other C-H containing groups) on the aerosol particles are destroyed completely to form HCl and HBr. Also carbon oxygen bonds are affected by the reaction with these halogens. The heterogeneous reaction of organic aerosol with halogens leads to structural and functional changes of the aerosol particles and therefore to modified atmospheric behavior.

  3. Global modeling of organic aerosol: the importance of reactive nitrogen

    NASA Astrophysics Data System (ADS)

    Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H.

    2010-09-01

    Reactive nitrogen compounds, specifically NOx and NO3, likely influence global organic aerosol levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NOx-dependent terpene aerosol yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and relatively high aerosol yields from NO3 oxidation, biogenic hydrocarbon-NO3 reactions are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. By including aerosol from nitrate radical oxidation in GEOS-Chem, terpene aerosol approximately doubles and isoprene aerosol is enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3 Tg/yr) due to the relatively high volatility of organic-NO3 oxidation products. Globally, 69 to 88 Tg/yr of organic aerosol is predicted to be produced annually, of which 14-15 Tg/yr is from oxidation of monoterpenes and sesquiterpenes and 8-9 Tg/yr from isoprene.

  4. Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.; Chhabra, P. S.; Seinfeld, J. H.; Worsnop, D. R.

    2011-07-01

    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2H3O+, to total signal in the component mass spectrum). Such parameterization allows for the transformation of large database of ambient OOA components from the f44 (mostly CO2+, likely from acid groups) vs. f43 space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C) (Van Krevelen, 1950). Heald et al. (2010) examined the evolution of total OA in the Van Krevelen diagram. In this work total OA is deconvolved into components that correspond to primary (HOA and others) and secondary (OOA) organic aerosols. By deconvolving total OA into different components, we remove physical mixing effects between secondary and primary aerosols which allows for examination of the evolution of OOA components alone in the Van Krevelen space. This provides a unique means of following ambient secondary OA evolution that is analogous to and can be compared with trends observed in chamber studies of secondary organic aerosol formation. The triangle plot in Ng et al. (2010) indicates that f44 of OOA components increases with photochemical age, suggesting the importance of acid formation in OOA evolution. Once they are transformed with the new parameterization, the triangle plot of the OOA components from all sites occupy an area in Van Krevelen space which follows a ΔH:C/ΔO:C slope of ~ -0.5. This slope suggests that ambient OOA aging results in net changes in chemical composition that are equivalent to the addition of both acid and alcohol/peroxide functional groups without fragmentation (i.e. C-C bond breakage), and/or the addition of acid groups with fragmentation. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies.

  5. Study of the reaction of atomic oxygen with aerosols

    NASA Technical Reports Server (NTRS)

    Akers, F. I.; Wightman, J. P.

    1975-01-01

    The rate of disappearance of atomic oxygen was measured at several pressures in a fast flow pyrex reactor system with its walls treated with (NH4)2SO4 (s), H2SO4 (l), and NH4CL (s). Atomic oxygen, P-3 was generated by dissociation of pure, low pressure oxygen in a microwave discharge. Concentrations of atomic oxygen were measured at several stations in the reactor system using chemiluminescent titration with NO2. Recombination efficiencies calculated from experimentally determined wall recombination rate constants are in good agreement with reported values for clean Pyrex and an H2SO4 coated wall. The recombination efficiency for (NH4)2SO4, results in a slightly lower value than for H2S04. A rapid exothermic reaction between atomic oxygen and the NH4Cl wall coating prevented recombination efficiency determination for this coating. The results show that the technique is highly useful for wall recombination measurements and as a means of extrapolating to the case of free stream aerosol-gas interactions.

  6. Chemistry of secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Yee, Lindsay Diana

    The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the

  7. Secondary organic aerosol formation from the irradiation of simulated automobile exhaust.

    PubMed

    Kleindienst, T E; Corse, E W; Li, W; McIver, C D; Conver, T S; Edney, E O; Driscoll, D J; Speer, R E; Weathers, W S; Tejada, S B

    2002-03-01

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SOA) and how well their formation is described by recently developed models for SOA formation. The quality of a surrogate was tested by comparing its reactivity with that from irradiations of authentic automobile exhaust. Experiments for secondary particle formation using the surrogate were conducted in a fixed volume reactor operated in a dynamic mode. The mass concentration of the aerosol was determined from measurements of organic carbon collected on quartz filters and was corrected for the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. A functional group analysis of the aerosol made by Fourier transform infrared (FTIR) spectroscopy indicated PMID:11924857

  8. Natural organic compounds as tracers for biomass combustion in aerosols

    SciTech Connect

    Simoneit, B.R.T. |; Abas, M.R. bin |; Cass, G.R. |; Rogge, W.F. |; Mazurek, M.A.; Standley, L.J.; Hildemann, L.M.

    1995-08-01

    Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

  9. Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.; Chhabra, P. S.; Seinfeld, J. H.; Worsnop, D. R.

    2011-03-01

    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2H3O+, to total signal in the component mass spectrum). Such parameterization allows the transformation of large database of ambient OOA components from the f44 (mostly CO2+, likely from acid groups) vs. f43 space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C). Heald et al. (2010) suggested that the bulk composition of OA line up in the Van Krevelen diagram with a slope ~ -1; such slope can potentially arise from the physical mixing of HOA and OOA, and/or from chemical aging of these components. In this study, we find that the OOA components from all sites occupy an area in the Van Krevelen space, with the evolution of OOA following a shallower slope of ~ -0.5, consistent with the additions of both acid and alcohol functional groups without fragmentation, and/or the addition of acid groups with C-C bond breakage. The importance of acid formation in OOA evolution is consistent with increasing f44 in the triangle plot with photochemical age. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies.

  10. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  11. Sources and atmospheric transformations of semivolatile organic aerosols

    NASA Astrophysics Data System (ADS)

    Grieshop, Andrew P.

    dilution both cause it to evaporate. Gas-particle partitioning was parameterized using absorptive partitioning theory and the volatility basis-set framework. The dynamics of particle evaporation proved to be much slower than expected and measurements of aerosol composition indicate that particle composition varies with partitioning. These findings have major implications for the measurement and modeling of POA from combustion sources. Source tests need to be conducted at atmospheric concentrations and temperatures. Upon entering the atmosphere, organic aerosol emissions are aged via photochemical reactions. Experiments with dilute wood-smoke demonstrate the dramatic evolution these emissions undergo within hours of emission. Aging produced substantial new OA (doubling or tripling OA levels within hours) and changed particle composition and volatility. These changes are consistent with model predictions based on the partitioning and aging (via gas-phase photochemistry) of semi-volatile species represented with the basis-set framework. Aging of wood-smoke OA made created a much more oxygenated aerosol and formed material spectrally similar to oxygenated OA found widely in the atmosphere. The oxygenated aerosol is also similar that formed with similar experiments conducted with diesel engine emissions. Therefore, aging of emissions from diverse sources may produce chemically similar OA, complicating the establishment of robust source-receptor relationships.

  12. Mechanism for production of secondary organic aerosols and their representation in atmospheric models. Final report

    SciTech Connect

    Seinfeld, J.H.; Flagan, R.C.

    1999-06-07

    This document contains the following: organic aerosol formation from the oxidation of biogenic hydrocarbons; gas/particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols; and representation of secondary organic aerosol formation in atmospheric models.

  13. Aerosol Indirect effect on Stratocumulus Organization

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Heus, T.; Kollias, P.

    2015-12-01

    Large-eddy simulations are used to investigate the role of aerosol loading on organized Stratocumulus. We prescribed the cloud droplet number concentration (Nc) and considered it as the proxy for different aerosol loading. While the presence of drizzle amplifies the mesoscale variability as is in Savic-Jovcic and Stevens (JAS, 2008), two noticeable findings are discussed here: First, the scale of marine boundary layer circulation appears to be independent of aerosol loading, suggesting a major role of the turbulence. The precise role of the turbulence in stratocumulus organization is studied by modifying the large scale fluctuations from the LES domain. Second, while it is commonly thought that the whole circulation needs to be represented for robust cloud development, we find that stratocumulus dynamics, including variables like w'w' and w'w'w', are remarkably robust even if large scales are ignored by simply reducing the domain sizes. The only variable that is sensitive to the change of the scale is the amount of cloudiness. Despite their smaller cloud thickness and inhomogeneous macroscopic structure for low Nc, individual drizzling clouds have sizes that are commensurate with circulation scale. We observe an Nc threshold below which stratocumulus is thin enough so that a little decrease of Nc would lead to great change of cloud fraction. The simulated cloud albedo is more sensitive to in-cloud liquid water content than to the amount of cloudiness since the former decreases at least three times faster than the latter due to drizzle. The main impact of drizzle evaporation is observed to keep the sub-cloud layer moist and as a result to extend the lifetime of stratocumulus by a couple of hours.

  14. Heterogeneous oxidation of unsaturated organic aerosols

    NASA Astrophysics Data System (ADS)

    Nah, T.; Kessler, S. H.; Daumit, K. E.; Kroll, J. H.; Leone, S.; Wilson, K. R.

    2011-12-01

    A significant mass fraction of atmospheric aerosols is composed of a variety of oxidized organic compounds with varying functional groups that may affect the rate at which they chemically age. Here we study the heterogeneous reaction of OH radicals with different sub-micron, alkenoic acid particles: Oleic acid (OA), Linoleic acid (LA), and Linolenic acid (LNA), in the presence of H2O2 and O2. This work explores how OH addition reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. Particles are chemically aged in a photochemical flow tube reactor where they are exposed to OH radicals (~ 1E11 molecule cm-3 s) that are produced by the photolysis of H2O2 at 254 nm. The aerosols are then sized and their composition analyzed via Atmospheric Pressure Chemical Ionization mass spectrometry (APCI-MS). Kinetic measurements, done by tracking the decay of the alkenoic acid parent ion with increasing OH exposure, show that the reactive uptake coefficient, which is defined as the fraction of gas-phase collisions that result in a reaction, is larger than 1, indicating the presence of secondary chain chemistry occurring within the aerosol. The reactive uptake coefficient is found to scale linearly with the number of double bonds present in the molecule. In addition, the reactive uptake coefficient is found to depend sensitively upon the concentrations of O2 and H2O2 in the photochemical flow tube reactor, indicating that O2 and H2O2 play roles as propagators and terminators in the secondary chain reactions. Elemental analysis and mechanistic pathways will also be presented herein.

  15. Uptake of glyoxal by organic and Inorganic aerosol.

    PubMed

    Corrigan, Ashley L; Hanley, Sean W; De Haan, David O

    2008-06-15

    The uptake of glyoxal by a variety of organic and inorganic aerosol types was examined in a Teflon chamber. Rapid glyoxal uptake was observed for all liquid-phase aerosols at all relative humidity levels tested (< 5 to 50% RH). Even for aerosol with known water content, Henry's Law cannot predict glyoxal uptake: H* > (3 +/- 1.5) x 10(8) mol kg(-1) atm(-1) for l-tartaric acid, H* > (1 +/- 0.5) x 10(8) for dl-malic acid and H* = (2 +/- 1) x 10(7) for malonic acid aerosol. Other liquid-phase aerosol particles containing amine functional groups (arginine, aspartic acid, and glutamic acid) took up even more glyoxal (H* > 3 x 10(8)). The trend of higher glyoxal uptake onto aerosol containing more nucleophilic organic compounds suggests that glyoxal is reacting with organic compounds in the aerosol phase. Solid-phase aerosol showed RH-dependent glyoxal uptake, likely due to the existence of surface water layers. However, particle growth rates were the highestfor sodium sulfate aerosol. For organic aerosol, growth rates correlated with the acidity of the carboxylic acid groups of the aerosol material, suggesting that glyoxal uptake is enhanced by mildly acidic conditions. PMID:18605566

  16. A naming convention for atmospheric organic aerosol

    NASA Astrophysics Data System (ADS)

    Murphy, B. N.; Donahue, N. M.; Robinson, A. L.; Pandis, S. N.

    2014-06-01

    While the field of atmospheric organic aerosol scientific research has experienced thorough and insightful progress over the last half century, this progress has been accompanied by the evolution of a communicative and detailed yet, at times, complex and inconsistent language. The menagerie of detailed classification that now exists to describe organic compounds in our atmosphere reflects the wealth of observational techniques now at our disposal as well as the rich information provided by state-of-the-science instrumentation. However, the nomenclature in place to communicate these scientific gains is growing disjointed to the point that effective communication within the scientific community and to the public may be sacrificed. We propose standardizing a naming convention for organic aerosol classification that is relevant to laboratory studies, ambient observations, atmospheric models, and various stakeholders for air-quality problems. Because a critical aspect of this effort is to directly translate the essence of complex physico-chemical phenomena to a much broader, policy-oriented audience, we recommend a framework that maximizes comprehension among scientists and non-scientists alike. For example, to classify volatility, it relies on straightforward alphabetic terms (e.g., semivolatile, SV; intermediate volatility, IV; etc.) rather than possibly ambiguous numeric indices. This framework classifies organic material as primary or secondary pollutants and distinguishes among fundamental features important for science and policy questions including emission source, chemical phase, and volatility. Also useful is the addition of an alphabetic suffix identifying the volatility of the organic material or its precursor for when emission occurred. With this framework, we hope to introduce into the community a consistent connection between common notation for the general public and detailed nomenclature for highly specialized discussion. In so doing, we try to maintain

  17. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  18. SAMPLING DURATION DEPENDENCE OF SEMI-CONTINUOUS ORGANIC CARBON MEASUREMENTS ON STEADY STATE SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Semi-continuous organic carbon concentrations were measured through several experiments of statically generated secondary organic aerosol formed by hydrocarbon + NOx irradiations. Repeated, randomized measurements of these steady state aerosols reveal decreases in the observed c...

  19. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-08-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NOx) to ~45 % (high NOx) for α-pinene, ~15 % for toluene, ~25 % for C12 n-alkane, and ~10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA

  20. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-03-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for α-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling

  1. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  2. The Organic Aerosols of Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Sotin, Christophe; Lawrence, Kenneth; Beauchamp, Patricia M.; Zimmerman, Wayne

    2012-01-01

    One of Titan's many characteristics is the presence of a haze that veils its surface. This haze is composed of heavy organic particles and determining the chemical composition of these particles is a primary objective for future probes that would conduct in situ analysis. Meanwhile, solar occultations provide constraints on the optical characteristics of the haze layer. This paper describes solar occultation observations obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. These observations strongly constrain the optical characteristics of the haze layer. We detail the different steps involved in the processing of these data and apply them to two occultations that were observed at the South Pole and at the equator in order to investigate the latitudinal dependence of optical properties. The light curves obtained in seven atmospheric windows between 0.933-microns to 5-microns allow us to characterize atmospheric layers from 300 km to the surface. Very good fits of the light curves are obtained using a simple profile of number density of aerosols that is characterized by a scale height. The main difference between the South Pole and the equator is that the value of the scale height increases with altitude at the South Pole whereas it decreases at the equator. The vertically integrated amount of aerosols is similar at the two locations. The curve describing the cross-section versus wavelength is identical at the two locations suggesting that the aerosols have similar characteristics. Finally, we find that the two-way vertical transmission at 5-microns is as large as 80% at both locations.

  3. Hydroxydicarboxylic Acids: Markers for Secondary Organic Aerosol from the Photooxidation of a-Pinene

    EPA Science Inventory

    Detailed organic analysis of fine (PM 2.5) rural aerosol collected during summer at K-puszta, Hungary, a mixed deciduous/coniferous forest site, shows the presence of polar oxygenated compounds that are also formed in laboratory irradiated a-pinene/NOx/air m...

  4. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2014-05-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photooxidation of dilute exhaust from a fleet of gasoline and diesel motor vehicles and two gas-turbine engines. In experiments where POA was present in the chamber at the onset of photooxidation, positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A 2-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol for gasoline vehicles, diesel vehicles, and one of the gas-turbine engines. Experiments with the second gas-turbine engine required a 3-factor PMF solution with a POA factor and two SOA factors. Results from the PMF analysis were compared to the residual method for determining SOA and POA mass concentrations. The residual method apportioned a larger fraction of the organic aerosol mass as POA because it assumes that all mass at m / z 57 is associated with POA. The POA mass spectrum for the gasoline and diesel vehicles exhibited high abundances of the CnH2n+1 series of ions (m / z 43, 57, etc.) and was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient data sets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. POA mass spectra for the gas-turbine engines are enriched in the CnH2n-1 series of ions (m / z 41, 55, etc.), consistent with the composition of the lubricating oil used in these engines. The SOA formed from the three sources exhibits high abundances of m / z 44 and 43, indicative of mild oxidation. The SOA mass spectra are consistent with less-oxidized ambient SV-OOA (semivolatile oxygenated organic aerosols) and fall within the triangular region of f44 versus f43 defined by ambient measurements. However there is poor absolute agreement between the experimentally derived SOA mass

  5. Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene.

    PubMed

    Song, Chen; Zaveri, Rahul A; Shilling, John E; Alexander, M Lizabeth; Newburn, Matt

    2011-09-01

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of α-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from α-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of α-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the α-pinene SOA yields, suggesting that α-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species. PMID:21790137

  6. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect

    Zaveri, Rahul

    2014-03-28

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  7. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema

    Zaveri, Rahul

    2014-06-02

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  8. Aqueous phase processing of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, α-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 μg m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and α-pinene, whereas it

  9. THERMODYNAMIC MODELING OF LIQUID AEROSOLS CONTAINING DISSOLVED ORGANICS AND ELECTROLYTES

    EPA Science Inventory

    Many tropospheric aerosols contain large fractions of soluble organic material, believed to derive from the oxidation of precursors such alpha-pinene. The chemical composition of aerosol organic matter is complex and not yet fully understood.

    The key properties of solu...

  10. Small molecules as tracers in atmospheric secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  11. New evidence of an organic layer on marine aerosols

    NASA Astrophysics Data System (ADS)

    Tervahattu, Heikki; Hartonen, Kari; Kerminen, Veli-Matti; Kupiainen, Kaarle; Aarnio, Päivi; Koskentalo, Tarja; Tuck, Adrian F.; Vaida, Veronica

    2002-04-01

    An extraordinary episode of fine particles (diameter mainly <2.5 μm) occurred in Helsinki, southern Finland, at the end of February 1998. The air masses came from the North Atlantic Ocean and passed over France, Germany, and southern Scandinavia. Particles were collected during the episode as well as before and after it. Uncoated particle samples were adhered to an indium substrate and were studied by a scanning electron microscope (SEM) coupled with an energy dispersive X-ray microanalyzer (EDX). A great proportion of the particles behaved differently than aerosols previously studied by microscopic techniques. The particles (size mainly 0.5-1 μm) did not exhibit solid shape. They were ``bubbling'' or ``pulsating'' continually, enlarging in one part and shrinking in another. Some particles were broken down, especially when the beam of the electron microscope was focused on them. EDX analyses showed that the particles contained much carbon together with oxygen, sulfur, and sodium. Ion analyses by ion chromatography revealed high concentrations of sodium, sulfate, nitrate, and ammonium. The particles were identified as marine sea-salt aerosols, which had accumulated anthropogenic emissions and lost chloride during their flow through continental polluted air. The shape fluctuations and the high carbon content observed by SEM/EDX led to the conclusion that the aerosols were enclosed by an organic membrane. Direct insertion probe/mass spectrometry investigations showed remarkable amounts of fragmented aliphatic hydrocarbons, which were considered as an evidence of a lipid membrane on the surface of the particles. The impact of the posited organic film on the properties of sea-salt particles, as well as on Earth's climate, is discussed.

  12. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  13. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    -120 nm. Average mass concentrations were measured at 11.5 ug/m3 and 30.7 ug/m3 for fine and coarse mode, respectively. The elemental analysis shows that Fe, Si and Al dominate the coarse mode indicating strong contribution from soil dust resuspension whereas sulfur dominates the fine mode (0.8 micrograms/m3). Scattering coefficients typically range between 20 and 150 Mm-1 at 637 nm, and absorption varied between 10 to 60 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.80, indicating a significant contribution of primary soot particles to the aerosol population. Organic aerosol accounts for 70% of the aerosol mass, with nitrates accounting for 11.7%, ammonia 8.4%, sulfate 8.2% and chlorine 1.6% pf PM1 measured by AMS techniques. Most of the organic aerosol were oxygenated. Several new particle formation events were observed, with a clear increase in organic aerosol and VOCs amounts associated with new particle formation. The study allows the characterization of a unique fueled fleet emissions and its impact on atmospheric chemistry, particle formation and other atmospheric dynamic processes. This work was funded by Petrobras S/A

  14. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  15. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: Unified Method for Predicting Aerosol Composition and Formation.

    PubMed

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Kacarab, Mary; Cocker, David R

    2016-06-21

    Innovative secondary organic aerosol (SOA) composition analysis methods normalizing aerosol yield and chemical composition on an aromatic ring basis are developed and utilized to explore aerosol formation from oxidation of aromatic hydrocarbons. SOA yield and chemical composition are revisited using 15 years of University of California, Riverside/CE-CERT environmental chamber data on 17 aromatic hydrocarbons with HC:NO ranging from 11.1 to 171 ppbC:ppb. SOA yield is redefined in this work by normalizing the molecular weight of all aromatic precursors to the molecular weight of the aromatic ring [Formula: see text], where i is the aromatic hydrocarbon precursor. The yield normalization process demonstrates that the amount of aromatic rings present is a more significant driver of aerosol formation than the vapor pressure of the precursor aromatic. Yield normalization also provided a basis to evaluate isomer impacts on SOA formation. Further, SOA elemental composition is explored relative to the aromatic ring rather than on a classical mole basis. Generally, four oxygens per aromatic ring are observed in SOA, regardless of the alkyl substitutes attached to the ring. Besides the observed SOA oxygen to ring ratio (O/R ∼ 4), a hydrogen to ring ratio (H/R) of 6 + 2n is observed, where n is the number of nonaromatic carbons. Normalization of yield and composition to the aromatic ring clearly demonstrates the greater significance of aromatic ring carbons compared with alkyl carbon substituents in determining SOA formation and composition. PMID:27177154

  16. Can scooter emissions dominate urban organic aerosol?

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Platt, Stephen; Huang, Ru-Jin; Zardini, Alessandro; Clairotte, Micheal; Pieber, Simone; Pfaffenberger, Lisa; Fuller, Steve; Hellebust, Stig; Temime-Roussel, Brice; Slowik, Jay; Chirico, Roberto; Kalberer, Markus; Marchand, Nicolas; Dommen, Josef; Astorga, Covadonga; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    In urban areas, where the health impact of pollutants increases due to higher population density, traffic is a major source of ambient organic aerosol (OA). A significant fraction of OA from traffic is secondary, produced via the reaction of exhaust volatile organic compounds (VOCs) with atmospheric oxidants. Secondary OA (SOA) has not been systematically assessed for different vehicles and driving conditions and thus its relative importance compared to directly emitted, primary OA (POA) is unknown, hindering the design of effective vehicle emissions regulations. 2-stroke (2S) scooters are inexpensive and convenient and as such a popular means of transportation globally, particularly in Asia. European regulations for scooters are less stringent than for other vehicles and thus primary particulate emissions and SOA precursor VOCs from 2S engines are estimated to be much higher. Assessing the effects of scooters on public health requires consideration of both POA, and SOA production. Here, we quantify POA emission factors and potential SOA EFs from 2S scooters, and the effect of using aromatic free fuel instead of standard gasoline thereon. During the tests, Euro 1 and Euro 2 2S scooters were run in idle or simulated low power conditions. Emissions from a Euro 2 2S scooter were also sampled during regulatory driving cycles on a chassis dynamometer. Vehicle exhaust was introduced into smog chambers, where POA emission and SOA production were quantified using a high-resolution time-of-flight aerosol mass spectrometer. A high resolution proton transfer time-of-flight mass spectrometer was used to investigate volatile organic compounds and a suite of instruments was utilized to quantify CO, CO2, O3, NOX and total hydrocarbons. We show that the oxidation of VOCs in the exhaust emissions of 2S scooters produce significant SOA, exceeding by up to an order of magnitude POA emissions. By monitoring the decay of VOC precursors, we show that SOA formation from 2S scooter

  17. Measurement of fragmentation and functionalization pathways in the multistep heterogeneous oxidation of organic aerosol

    SciTech Connect

    Kroll, Jesse H.; Smith, Jared D.; Che, Dung L.; Kessler, Sean H.; Worsnop, Douglas R.; Wilson, Kevin R.

    2009-03-10

    The competition between the addition of polar, oxygen-containing functional groups (functionalization) and the cleavage of C-C bonds (fragmentation) has a governing influence on the change in volatility of organic species upon atmospheric oxidation, and hence on the loading of tropospheric organic aerosol. However the branching between these two channels is generally poorly constrained for oxidized organics. Here we determine functionalization/fragmentation branching ratios for organics spanning a range of oxidation levels, using the heterogeneous oxidation of squalane (C30H62) as a model system. Squalane particles are exposed to high concentrations of OH in a flow reactor, and measurements of particle mass and elemental ratios enable the determination of absolute elemental composition (number of oxygen, carbon, and hydrogen atoms) of the oxidized particles. At low OH exposures, the oxygen content of the organics increases, indicating that functionalization dominates, whereas at higher exposures the amount of carbon in the particles decreases, indicating the increasing importance of fragmentation processes. Once the organics are moderately oxidized (O/C~;;0.4), fragmentation completely dominates, and the increase in O/C ratio upon further oxidation is due to the loss of carbon rather than the addition of oxygen. These results suggest that fragmentation reactions may be key steps in the atmospheric formation and evolution of oxygenated organic aerosol (OOA).

  18. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  19. Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Junke; Wang, Yuesi; Huang, Xiaojuan; Liu, Zirui; Ji, Dongsheng; Sun, Yang

    2015-06-01

    Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m-3, which was higher than in summer (13±6.9 μg m-3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.

  20. Chemistry of organic aerosol formation in urban atmospheres. Final report

    SciTech Connect

    Seinfeld, J.H.; Flagan, R.C.

    1994-04-04

    Aerosol formation from the photooxidation of A-pinene/NOx and B-pinene/NOx mixtures has been investigated in a series of outdoor smog chamber experiments. Both hydrocarbons are potent aerosol formers and in areas containing significant vegetation, terpenes are estimated to be a significant contributor to secondary organic aerosol formation. To model organic aerosol formation, estimates of the vapor pressures of the condensable species are needed. To measure the vapor pressures of the low volatility species characteristic of organic aerosols the Tandem Differential Mobility Analyzer (TDMA) method introduced by Liu and McMurray has been further developed for this task. Initial experiments with compounds of known vapor pressure confirm the usefulness of the method.

  1. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  2. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  3. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  4. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  5. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  6. Modeling the role of alkanes, polycyclic aromatic hydrocarbons, and their oligomers in secondary organic aerosol formation.

    PubMed

    Pye, Havala O T; Pouliot, George A

    2012-06-01

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations over the United States. Oxidation of alkanes is predicted to produce more aerosol than oxidation of PAHs driven by relatively higher alkane emissions. SOA from alkanes and PAHs, although small in magnitude, can be a substantial fraction of the SOA from anthropogenic hydrocarbons, particularly in winter, and could contribute more if emission inventories lack intermediate volatility alkanes (>C(13)) or if the vehicle fleet shifts toward diesel-powered vehicles. The SOA produced from oxidation of alkanes correlates well with ozone and odd oxygen in many locations, but the lower correlation of anthropogenic oligomers with odd oxygen indicates that models may need additional photochemically dependent pathways to low-volatility SOA. PMID:22568386

  7. Observation of Organic Molecules at the Aerosol Surface.

    PubMed

    Wu, Yajing; Li, Wanyi; Xu, Bolei; Li, Xia; Wang, Han; McNeill, V Faye; Rao, Yi; Dai, Hai-Lung

    2016-06-16

    Organic molecules at the gas-particle interface of atmospheric aerosols influence the heterogeneous chemistry of the aerosol and impact climate properties. The ability to probe the molecules at the aerosol particle surface in situ therefore is important but has been proven challenging. We report the first successful observations of molecules at the surface of laboratory-generated aerosols suspended in air using the surface-sensitive technique second harmonic light scattering (SHS). As a demonstration, we detect trans-4-[4-(dibutylamino)styryl]-1-methylpyridinium iodide and determine its population and adsorption free energy at the surface of submicron aerosol particles. This work illustrates a new and versatile experimental approach for studying how aerosol composition may affect the atmospheric properties. PMID:27249662

  8. Rethinking organic aerosols: semivolatile emissions and photochemical aging.

    PubMed

    Robinson, Allen L; Donahue, Neil M; Shrivastava, Manish K; Weitkamp, Emily A; Sage, Amy M; Grieshop, Andrew P; Lane, Timothy E; Pierce, Jeffrey R; Pandis, Spyros N

    2007-03-01

    Most primary organic-particulate emissions are semivolatile; thus, they partially evaporate with atmospheric dilution, creating substantial amounts of low-volatility gas-phase material. Laboratory experiments show that photo-oxidation of diesel emissions rapidly generates organic aerosol, greatly exceeding the contribution from known secondary organic-aerosol precursors. We attribute this unexplained secondary organic-aerosol production to the oxidation of low-volatility gas-phase species. Accounting for partitioning and photochemical processing of primary emissions creates a more regionally distributed aerosol and brings model predictions into better agreement with observations. Controlling organic particulate-matter concentrations will require substantial changes in the approaches that are currently used to measure and regulate emissions. PMID:17332409

  9. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-09-01

    Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the

  10. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGESBeta

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-09

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in goodmore » agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  11. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGESBeta

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  12. Implementing marine organic aerosols into the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-01

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  13. Implementing marine organic aerosols into the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-01

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  14. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Slowik, J. G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; Peñuelas, J.; Jiménez, J. L.; Crippa, M.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-10-01

    PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O/C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O/C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the organic mass fragments at m/z 55, 57, and 44 is developed here and

  15. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of α-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  16. An interfacial mechanism for cloud droplet formation on organic aerosols

    NASA Astrophysics Data System (ADS)

    Ruehl, Christopher R.; Davies, James F.; Wilson, Kevin R.

    2016-03-01

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.

  17. An interfacial mechanism for cloud droplet formation on organic aerosols.

    PubMed

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. PMID:27013731

  18. SOURCES OF ORGANIC AEROSOL: SEMIVOLATILE EMISSIONS AND PHOTOCHEMICAL AGING

    EPA Science Inventory

    The proposed research integrates emissions testing, smog chamber experiments, and regional chemical transport models (CTMs) to investigate the sources of organic aerosol in urban and regional environments.

  19. A large source of low-volatility secondary organic aerosol.

    PubMed

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally. PMID:24572423

  20. A large source of low-volatility secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.

    2014-02-01

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  1. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-02-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (<10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O:C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  2. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-08-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (< 10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  3. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  4. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  5. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires Part 2: Analysis of aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2008-09-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit mass resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, the volatility and the level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the primary contribution after a few hours of aging under typical summertime conditions. Aging decreased the OA volatility of the total OA as measured with a thermodenuder; it also made the OA progressively more oxygenated in every experiment. With explicit knowledge of the condensed-phase mass spectrum (MS) of the primary emissions from each fire, each MS can be decomposed into primary and residual spectra throughout the experiment. The residual spectra provide an estimate of the composition of the photochemically produced OA. These spectra are also very similar to those of the oxygenated OA that dominates ambient AMS datasets. In addition, aged wood smoke spectra are shown to be similar to those from OA created by photo-oxidized dilute diesel exhaust and aged biomass-burning OA measured in urban and remote locations. This demonstrates that the oxygenated OA observed in the atmosphere can be produced by photochemical aging of dilute emissions from combustion of fuels containing both modern and fossil carbon.

  6. Reactive oxygen species formed in organic lithium-oxygen batteries.

    PubMed

    Schwager, Patrick; Dongmo, Saustin; Fenske, Daniela; Wittstock, Gunther

    2016-04-20

    Li-oxygen batteries with organic electrolytes are of general interest because of their theoretically high gravimetric energy density. Among the great challenges for this storage technology is the generation of reactive oxygen species such as superoxides and peroxides that may react with the organic solvent molecules and other cell components. The generation of such species has been assumed to occur during the charging reaction. Here we show that superoxide is formed also during the discharge reaction in lithium ion-containing dimethyl sulfoxide electrolytes and is released into the solution. This is shown independently by fluorescence microscopy after reaction with the selective reagent 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and by local detection using a microelectrode of a scanning electrochemcial microscope positioned in a defined distance of 10 to 90 μm above the gas diffusion electrode. PMID:26911793

  7. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  8. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Slowik, J. G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; Peñuelas, J.; Jiménez, J. L.; Crippa, M.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.

    2012-02-01

    PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional air quality and atmospheric parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O:C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O:C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the markers m/z 55, 57, and 44 is

  9. a Study of the Origin of Atmospheric Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  10. Submicron organic aerosol in Tijuana, Mexico, from local and Southern California sources during the CalMex campaign

    NASA Astrophysics Data System (ADS)

    Takahama, S.; Johnson, A.; Guzman Morales, J.; Russell, L. M.; Duran, R.; Rodriguez, G.; Zheng, J.; Zhang, R.; Toom-Sauntry, D.; Leaitch, W. R.

    2013-05-01

    The CalMex campaign was conducted from May 15 to June 30 of 2010 to study the properties and sources of air pollution in Tijuana, Mexico. In this study, submicron organic aerosol mass (OM) composition measured by Fourier Transform Infrared Spectroscopy (FTIR), Aerosol Chemical Speciation Monitor (ACSM), and X-ray spectromicroscopy are combined with statistical analysis and measurements of other atmospheric constituents. The average (±one standard deviation) OM concentration was 3.3 ± 1.7 μg m-3. A large source of submicron aerosol mass at this location was determined to be vehicular sources, which contributed approximately 40% to the submicron OM; largely during weekday mornings. The O/C ratio estimated from ACSM measurements was 0.64 ± 0.19; diurnal variations in this value and the more oxygenated fraction of OM as determined from Positive Matrix Factorization and classification analyses suggest the high degree of oxygenation originates from aged OM, rather than locally-produced secondary organic aerosol. A large contribution of this oxygenated aerosol to Tijuana from various source classes was observed; some fraction of this aerosol mass may be associated with non-refractory components, such as dust or BC. Backtrajectory simulations using the HYSPLIT model suggest that the mean wind vector consistently originated from the northwest region, over the Pacific Ocean and near the Southern California coast, which suggests that the origin of much of the oxygenated organic aerosol observed in Tijuana (as much as 60% of OM) may have been the Southern California Air Basin. The marine aerosol contribution to OM during the period was on average 23 ± 24%, though its contribution varied over synoptic rather than diurnal timescales. BB aerosol contributed 20 ± 20% of the OM during the campaign period, with notable BB events occurring during several weekend evenings.

  11. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  12. Redox activity of naphthalene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.

    2013-04-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.

  13. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  14. Modeling organic aerosols during MILAGRO: application of the CHIMERE model and importance of biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.; Madronich, S.; Aiken, A. C.; Bessagnet, B.; Curci, G.; Fast, J.; Lamarque, J. F.; Onasch, T. B.; Roux, G.; Ulbrich, I. M.

    2009-05-01

    The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols (OA, including primary OA (POA) and secondary OA (SOA)) observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA) which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes), biogenic (i.e. monoterpenes and isoprene), and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2-10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in SOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA suggesting a tendency of the model to excessively evaporate the freshly formed SOA. Predicted SOA concentrations in our base case

  15. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  16. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  17. Lubricating oil dominates primary organic aerosol emissions from motor vehicles.

    PubMed

    Worton, David R; Isaacman, Gabriel; Gentner, Drew R; Dallmann, Timothy R; Chan, Arthur W H; Ruehl, Christopher; Kirchstetter, Thomas W; Wilson, Kevin R; Harley, Robert A; Goldstein, Allen H

    2014-04-01

    Motor vehicles are major sources of primary organic aerosol (POA), which is a mixture of a large number of organic compounds that have not been comprehensively characterized. In this work, we apply a recently developed gas chromatography mass spectrometry approach utilizing "soft" vacuum ultraviolet photoionization to achieve unprecedented chemical characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA was characterized by number of carbon atoms (NC), number of double bond equivalents (NDBE) and degree of molecular branching. Vehicular POA was observed to predominantly contain cycloalkanes with one or more rings and one or more branched alkyl side chains (≥80%) with low abundances of n-alkanes and aromatics (<5%), similar to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring structures are most likely dominated by cyclohexane and cyclopentane rings and not larger cycloalkanes. High molecular weight combustion byproducts, that is, alkenes, oxygenates, and aromatics, were not present in significant amounts. The observed carbon number and chemical composition of motor vehicle POA was consistent with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional smaller contribution from unburned diesel fuel and a negligible contribution from unburned gasoline. PMID:24621254

  18. Importance of Unimolecular HO2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol.

    PubMed

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R

    2016-07-28

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C4H6O6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C4 functionalization product (C4H4O6) and three C3 fragmentation products (C3H4O4, C3H2O4, and C3H2O5). The C4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C4H4O6), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OSC), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OSC = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms. PMID:27397411

  19. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol.

    PubMed

    Tu, Peijun; Hall, Wiley A; Johnston, Murray V

    2016-04-19

    In this work, highly oxidized multifunctional molecules (HOMs) in fresh and aged secondary organic aerosol (SOA) derived from biogenic precursors are characterized with high-resolution mass spectrometry. Fresh SOA was generated by mixing ozone with a biogenic precursor (β-pinene, limonene, α-pinene) in a flow tube reactor. Aging was performed by passing the fresh SOA through a photochemical reactor where it reacted with hydroxyl radicals. Although these aerosols were as a whole not highly oxidized, molecular analysis identified a significant number of HOMs embedded within it. HOMs in fresh SOA consisted mostly of monomers and dimers, which is consistent with condensation of extremely low-volatility organic compounds (ELVOCs) that have been detected in the gas phase in previous studies and linked to SOA particle formation. Aging caused an increase in the average number of carbon atoms per molecule of the HOMs, which is consistent with particle phase oxidation of (less oxidized) oligomers already existing in fresh SOA. HOMs having different combinations of oxygen-to-carbon ratio, hydrogen-to-carbon ratio and average carbon oxidation state are discussed and compared to low volatility oxygenated organic aerosol (LVOOA), which has been identified in ambient aerosol based on average elemental composition but not fully understood at a molecular level. For the biogenic precursors and experimental conditions studied, HOMs in fresh biogenic SOA have molecular formulas more closely resembling LVOOA than HOMs in aged SOA, suggesting that aging of biogenic SOA is not a good surrogate for ambient LVOOA. PMID:27000653

  20. Limited influence of dry deposition of semivolatile organic vapors on secondary organic aerosol formation in the urban plume

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Aumont, B.; Lee-Taylor, J.; Karl, T.; Camredon, M.; Mouchel-Vallon, C.

    2013-06-01

    The dry deposition of volatile organic compounds (VOCs) and its impact on secondary organic aerosols (SOA) are investigated in the Mexico City plume. Gas-phase chemistry and gas-particle partitioning of oxygenated VOCs are modeled with the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) from C3 to C25 alkanes, alkenes, and light aromatics. Results show that dry deposition of oxidized gases is not an efficient sink for SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. Dry deposition competes with the gas-particle uptake, and only gases with fewer than ~12 carbons dry deposit while longer species partition to SOA. Because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition, thus increasing their atmospheric burden and lifetime. In the absence of this condensation, ~50% of the regionally produced mass would have been dry deposited.

  1. New Particle Formation and Secondary Organic Aerosol in Beijing

    NASA Astrophysics Data System (ADS)

    Hu, M.; Yue, D.; Guo, S.; Hu, W.; Huang, X.; He, L.; Wiedensohler, A.; Zheng, J.; Zhang, R.

    2011-12-01

    Air pollution in Beijing has been a major concern due to being a mega-city and green Olympic Games requirements. Both long term and intensive field measurements have been conducted at an Urban Air Quality Monitoring Station in the campus of Peking University since 2004. Aerosol characteristics vary seasonally depending on meteorological conditions and source emissions. Secondary compositions of SNA (sum of sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) become major fraction of fine particles, which may enhance aerosol impacts on visibility and climate change. The transformation processes of new particle formation (NPF) and secondary organic aerosol have been focused on. It was found that gaseous sulfuric acid, ammonia, and organic compounds are important precursors to NPF events in Beijing and H2SO4-NH3-H2O ternary nucleation is one of the important mechanisms. The contributions of condensation and neutralization of sulfuric acid, coagulation, and organics to the growth of the new particles are estimated as 45%, 34%, and 21%, respectively. Tracer-based method to estimate biogenic and anthropogenic SOA was established by using gas chromatography-mass spectrometry. Secondary organic tracers derived from biogenic (isoprene, α-pinene, β-caryophyllene) and anthropogenic (toluene) contributed 32% at urban site and 35% at rural site, respectively. Other source apportionment techniques were also used to estimate secondary organic aerosols, including EC tracer method, water soluble organic carbon content, chemical mass balance model, and AMS-PMF method.

  2. Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds.

    PubMed

    Singh, H; Chen, Y; Staudt, A; Jacob, D; Blake, D; Heikes, B; Snow, J

    2001-04-26

    The presence of oxygenated organic compounds in the troposphere strongly influences key atmospheric processes. Such oxygenated species are, for example, carriers of reactive nitrogen and are easily photolysed, producing free radicals-and so influence the oxidizing capacity and the ozone-forming potential of the atmosphere-and may also contribute significantly to the organic component of aerosols. But knowledge of the distribution and sources of oxygenated organic compounds, especially in the Southern Hemisphere, is limited. Here we characterize the tropospheric composition of oxygenated organic species, using data from a recent airborne survey conducted over the tropical Pacific Ocean (30 degrees N to 30 degrees S). Measurements of a dozen oxygenated chemicals (carbonyls, alcohols, organic nitrates, organic pernitrates and peroxides), along with several C2-C8 hydrocarbons, reveal that abundances of oxygenated species are extremely high, and collectively, oxygenated species are nearly five times more abundant than non-methane hydrocarbons in the Southern Hemisphere. Current atmospheric models are unable to correctly simulate these findings, suggesting that large, diffuse, and hitherto-unknown sources of oxygenated organic compounds must therefore exist. Although the origin of these sources is still unclear, we suggest that oxygenated species could be formed via the oxidation of hydrocarbons in the atmosphere, the photochemical degradation of organic matter in the oceans, and direct emissions from terrestrial vegetation. PMID:11323667

  3. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA

  4. Metal-organic frameworks for oxygen storage.

    PubMed

    DeCoste, Jared B; Weston, Mitchell H; Fuller, Patrick E; Tovar, Trenton M; Peterson, Gregory W; LeVan, M Douglas; Farha, Omar K

    2014-12-15

    We present a systematic study of metal-organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10,000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST-1 (Cu-BTC) and NU-125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST-1 and NU-125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU-125 has an increased excess capacity for oxygen of 237% and 98%, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications. PMID:25319881

  5. Evaluating Organic Aerosol Model Performance: Impact of two Embedded Assumptions

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Giroux, E.; Roth, H.; Yin, D.

    2004-05-01

    Organic aerosols are important due to their abundance in the polluted lower atmosphere and their impact on human health and vegetation. However, modeling organic aerosols is a very challenging task because of the complexity of aerosol composition, structure, and formation processes. Assumptions and their associated uncertainties in both models and measurement data make model performance evaluation a truly demanding job. Although some assumptions are obvious, others are hidden and embedded, and can significantly impact modeling results, possibly even changing conclusions about model performance. This paper focuses on analyzing the impact of two embedded assumptions on evaluation of organic aerosol model performance. One assumption is about the enthalpy of vaporization widely used in various secondary organic aerosol (SOA) algorithms. The other is about the conversion factor used to obtain ambient organic aerosol concentrations from measured organic carbon. These two assumptions reflect uncertainties in the model and in the ambient measurement data, respectively. For illustration purposes, various choices of the assumed values are implemented in the evaluation process for an air quality model based on CMAQ (the Community Multiscale Air Quality Model). Model simulations are conducted for the Lower Fraser Valley covering Southwest British Columbia, Canada, and Northwest Washington, United States, for a historical pollution episode in 1993. To understand the impact of the assumed enthalpy of vaporization on modeling results, its impact on instantaneous organic aerosol yields (IAY) through partitioning coefficients is analysed first. The analysis shows that utilizing different enthalpy of vaporization values causes changes in the shapes of IAY curves and in the response of SOA formation capability of reactive organic gases to temperature variations. These changes are then carried into the air quality model and cause substantial changes in the organic aerosol modeling

  6. Secondary organic aerosol from biogenic volatile organic compound mixtures

    NASA Astrophysics Data System (ADS)

    Hatfield, Meagan L.; Huff Hartz, Kara E.

    2011-04-01

    The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

  7. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  8. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds. PMID:17695910

  9. Parameterization of the influence of organic surfactants on aerosol activation

    NASA Astrophysics Data System (ADS)

    Abdul-Razzak, Hayder; Ghan, Steven J.

    2004-02-01

    Surface-active organic compounds, or surfactants, can affect aerosol activation by two mechanisms: lowering surface tension and altering the bulk hygroscopicity of the particles. A numerical model has been developed to predict the activation of aerosol particles consisting of an internally uniform chemical mixture of organic surfactants and inorganic salts in a parcel of air rising adiabatically at constant speed. Equations reflecting water balance of the air parcel were used together with a modified form of Köhler theory to model droplet nucleation while considering surface effects. We also extend a parametric representation of aerosol activation to the case of a mixture of inorganic salts and organic surfactants by modifying the Raoult term in Köhler theory (assuming additive behavior) and using a simplified relationship between surface tension and surfactant molar concentration to account for surface effects at the critical radius for activation. The close agreement (to within 10% for most and 20% for almost all conditions) between numerical and parametric results validates our modifications. Moreover, the form of the relationship is identical to an empirical relationship between surface tension and organic carbon concentration. Thus the modified form of the parameterization provides a framework that can account for the influence of observed organics on the activation of other salts. The modified form of the parameterization is tested successfully with the Po Valley model both for single aerosol size distribution and three-mode size distributions for marine, rural, and urban aerosols. Further measurements are required to extend the parameterization to other organic surfactants.

  10. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P.

    2004-08-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-TOF/MS). Over 10000 individual organic components were isolated from around 10µg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  11. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  12. Cluster analysis on mass spectra of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Spindler, C.; Kiendler-Scharr, A.; Kleist, E.; Mensah, A.; Mentel, T.; Tillmann, R.; Wildt, J.

    2009-04-01

    Biogenic secondary organic aerosols (BSOA) are of high importance in the atmosphere. The formation of SOA from the volatile organic compound (VOC) emissions of selected trees was investigated in the JPAC (Jülich Plant Aerosol Chamber) facility. The VOC (mainly monoterpenes) were transferred into a reaction chamber where vapors were photo-chemically oxidized and formed BSOA. The aerosol was characterized by aerosol mass spectrometry (Aerodyne Quadrupol-AMS). Inside the AMS, flash-vaporization of the aerosol particles and electron impact ionization of the evaporated molecules cause a high fragmentation of the organic compounds. Here, we present a classification of the aerosol mass spectra via cluster analysis. Average mass spectra are produced by combination of related single mass spectra to so-called clusters. The mass spectra were similar due to the similarity of the precursor substances. However, we can show that there are differences in the BSOA mass spectra of different tree species. Furthermore we can distinguish the influence of the precursor chemistry and chemical aging. BSOA formed from plants exposed to stress can be distinguished from BSOA formed under non stressed conditions. Significance and limitations of the clustering method for very similar mass spectra will be demonstrated and discussed.

  13. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Schwier, A. N.; Shapiro, E. L.; Mitroo, D.; McNeill, V. F.

    2010-02-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10-6 M-1 min-1 and kH3O+II≤10-3 M-1 min-1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS). Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  14. Equilibration timescale of atmospheric secondary organic aerosol partitioning

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Seinfeld, John H.

    2012-12-01

    Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, τeq, of SOA gas-particle partitioning using a state-of-the-art kinetic flux model. τeq is found to be of order seconds to minutes for partitioning of relatively high volatility organic compounds into liquid particles, thereby adhering to equilibrium gas-particle partitioning. However, τeq increases to hours or days for organic aerosol associated with semi-solid particles, low volatility, large particle size, and low mass loadings. Instantaneous equilibrium partitioning may lead to substantial overestimation of particle mass concentration and underestimation of gas-phase concentration.

  15. Formation of nitrogenated organic aerosols in the Titan upper atmosphere

    PubMed Central

    Imanaka, Hiroshi; Smith, Mark A.

    2010-01-01

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074

  16. Atmospheric processing of organic aerosols over the Pacific ocean during the CALNEX 2010 study

    NASA Astrophysics Data System (ADS)

    Hayden, K. L.; Massoli, P.; Canagaratna, M.; Onasch, T. B.; Li, S.; Nuaaman, I.; McLaren, R.; Vlasenko, A. L.; Worsnop, D. R.; Sueper, D.; Williams, E. J.; Quinn, P.

    2012-12-01

    The sources and composition of atmospheric aerosols are important to characterize in order to improve our understanding of their impact on air quality and climate. As part of the CALNEX field study, high resolution time-of-flight aerosol mass spectrometer (HR-AMS) data were collected every 5 minutes onboard the research vessel, RV-Atlantis from May 13-June 8, 2010. Sampling was alternated between ambient air pulled through a thermal denuder and directly sampling ambient (bypass); only the bypass measurements are considered here. The measurements were made along the California coastline from the Los Angeles basin to the ship channels near San Francisco. A wide range of emission sources and atmospheric ages were encountered including emissions from ships, industrial processes, urban centres (Los Angeles, San Francisco, Sacramento), marine emissions and biogenic sources. Three airmass regions distinguished by the extent of aerosol processing were identified: LA Basin with fresh to aged aerosol; clean marine with moderate to aged aerosol and northern California with moderately aged aerosol. Positive Matrix Factorization (PMF) analysis of the HR-AMS organic aerosol (OA) resulted in the identification of four interpretable components; hydrocarbon-like OA (HOA), low-volatility oxygenated OA (LV-OOA) and two semi-volatile oxygenated OA (SV-OOA). The two SV-OOA components are similar except that one component appears to be more correlated with primary emissions and the other influenced by biogenics. Interpretation of these factors is accomplished through comparison with a comprehensive suite of other measurements and the evolution of the OA composition is demonstrated through the application of the Van Krevelen space (H/C vs O/C).

  17. A study of the origin of atmospheric organic aerosols

    SciTech Connect

    Hildemann, L.M.

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat-cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied.

  18. A kinetic study of the interaction between atomic oxygen and aerosols

    NASA Technical Reports Server (NTRS)

    Akers, F. I.; Wightman, J. P.

    1976-01-01

    This study was concerned with the effects of NH4Cl and (NH4)2SO4 aerosols on the kinetics of disappearance of atomic oxygen. Atomic oxygen was generated by a 2.45-GHz microwave discharge and the kinetics of disappearance measured in a fast flow system using NO2 titration. Values of the recombination coefficient for heterogeneous wall recombination were determined for clean, H2SO4-coated, and (NH4)2SO4-coated Pyrex to be 0.000050, 0.000020, and 0.000019, respectively. A rapid exothermic chemical reaction was found to occur between atomic oxygen and an NH4Cl wall coating; the products were NH3, NO, H2O, and HCl. The NH4Cl aerosol was generated by gas phase reaction of NH3 with HCl. The aerosol particles were approximately spherical and nearly monodisperse with a mean diameter of 1.6 plus or minus 0.2 micron. The rate constant for the disappearance of atomic oxygen in the presence of NH4Cl aerosol was measured. No significant decrease was observed in the rate of disappearance of atomic oxygen in the presence of an (NH4)2SO4 aerosol at a concentration of 285 mg per cu m.

  19. Characterization of the Changes in Hygroscopicity of Ambient Organic Aerosol due to Oxidation by Gas Phase OH

    NASA Astrophysics Data System (ADS)

    Wong, J. P.; McWhinney, R. D.; Slowik, J. G.; Abbatt, J.

    2011-12-01

    Despite the ubiquitous nature of organic aerosols and their importance in climate forcing, the influence of chemical processes on their ability to act as cloud condensation nuclei (CCN) in the atmosphere remains uncertain. Changes to the hygroscopicity of ambient organic aerosol due to OH oxidation were explored at a remote forested (Whistler, British Columbia) and an urban (Toronto, Ontario) site. Organic aerosol was exposed to controlled levels of OH radicals in a portable flow tube reactor, the Toronto Photo-Oxidation Tube (TPOT). An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition due to OH-initiated oxidation. The CCN activity of size-selected particles was measured with a DMT Cloud Condensation Nuclei Counter (CCNc) to determine the hygroscopicity parameter, κ. Preliminary results suggest that gas phase OH oxidation increases the degree of oxygenation of organic aerosol, leading to increases in hygroscopicity. These results yield insights into the mechanism by which oxidation affects the hygroscopicity of ambient aerosol of various sources, and to constrain the main aging process that leads to the observation of increasing hygroscopicity with increasing oxidation of organic aerosol.

  20. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  1. Compound specific 13C- and 18O-isotope analysis of organic aerosols

    NASA Astrophysics Data System (ADS)

    Blees, Jan; Saurer, Matthias; Siegwolf, Rolf T. W.; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    . Elements other than carbon may provide valuable additional information. Here we report on the development of methods for the analysis of stable carbon and oxygen isotope ratios of organic compounds in aerosols, through GC-combustion-irMS and GC-pyrolysis-irMS. We apply these analyses to environmental aerosol samples and samples of smog-chamber experiments, with the aim of identifying isotopic signatures of sources and pathways. We will pay special attention to derivatisation techniques - notably alternatives to the often-used trimethylsilyl derivatives in GC-pyrolysis-irMS for δ18O analysis - and to compound separation and identification. We present initial data of combined δ13C and δ18O studies on (secondary) organic aerosol samples, and their added value for source apportionment studies.

  2. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's "warm ponds" on Titan.

  3. Photochemical aging of secondary organic aerosols generated from the photooxidation of polycyclic aromatic hydrocarbons in the gas-phase.

    PubMed

    Riva, Matthieu; Robinson, Ellis S; Perraudin, Emilie; Donahue, Neil M; Villenave, Eric

    2015-05-01

    Aging processes of secondary organic aerosol (SOA) may be a source of oxygenated organic aerosols; however, the chemical processes involved remain unclear. In this study, we investigate photochemical aging of SOA produced by the gas-phase oxidation of naphthalene by hydroxyl radicals and acenaphthylene by ozone. We monitored the SOA composition using a high-resolution time-of-flight aerosol mass spectrometer. We initiated SOA aging with UV photolysis alone and with OH radicals in the presence or absence of light and at different NOx levels. For naphthalene, the organic composition of the particulate phase seems to be dominated by highly oxidized compounds such as carboxylic acids, and aging data may be consistent with diffusion limitations. For acenaphthylene, the fate of oxidized products and the moderately oxidized aerosol seem to indicate that functionalization reactions might be the main aging process were initiated by the cumulative effect of light and OH radicals. PMID:25856309

  4. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  5. Modeling Organic Aerosols in a Megacity: Comparison of Simple and Complex Representations of the Volatility Basis Set Approach

    SciTech Connect

    Shrivastava, ManishKumar B.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Zaveri, Rahul A.; Jimenez, Jose L.; Saide, Pablo; Hodzic, Alma

    2011-07-13

    The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under

  6. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  7. Organic Aerosol Component (OACOMP) Value-Added Product

    SciTech Connect

    Fast, J; Zhang, Q; tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10–90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties accurately. This deficiency represents a large source of uncertainty in quantification of aerosol effects and prediction of future climate change. Evaluation and development of aerosol models require data products generated from field observations. Real-time, quantitative data acquired with aerosol mass spectrometers (AMS) (Canagaratna et al. 2007) are critical to this need. The AMS determines size-resolved concentrations of non-refractory (NR) species in submicrometer particles (PM1) with fast time resolution suitable for both ground-based and aircraft deployments. The high-resolution AMS (HR-AMS), which is equipped with a high mass resolution time-of-flight mass spectrometer, can be used to determine the elemental composition and oxidation degrees of OA (DeCarlo et al. 2006).

  8. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  9. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    EPA Science Inventory

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  10. Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere

    NASA Astrophysics Data System (ADS)

    Wonaschütz, A.; Coggon, M.; Sorooshian, A.; Modini, R.; Frossard, A. A.; Ahlm, L.; Mülmenstädt, J.; Roberts, G. C.; Russell, L. M.; Dey, S.; Brechtel, F. J.; Seinfeld, J. H.

    2013-10-01

    During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs): between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH) of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm-3), which lead to substantially increased cloud condensation nuclei (CCN) concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C) and water-soluble organic mass (WSOM) increased with plume age: from < 0.001 to 0.2, and from 2.42 to 4.96 μg m-3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94). High-resolution aerosol mass spectrometer (AMS) spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.

  11. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-05-01

    The high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements were first combined into positive matrix factorization (PMF) analysis to investigate the sources and evolution processes of atmospheric aerosols. The new approach is able to study the mixing of organic aerosols (OA) and inorganic species, the acidity of OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrices resolved 8 factors for the submicron aerosols measured at Queens College in New York City in summer 2009. The hydrocarbon-like OA (HOA) and cooking OA (COA) contain very minor inorganic species, indicating the different sources and mixing characteristics between primary OA and secondary species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized, of which the OA in SO4-OA shows the highest oxidation state (O/C = 0.69) among OA factors. The semi-volatile oxygenated OA comprises two components, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA). The MO-OOA represents a local photochemical product with the diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox (= O3+NO2). The much higher NO+/NO2+ fragment ion ratio in MO-OOA than that from ammonium nitrate alone provides evidence for the formation of organic nitrates. The amine-related nitrogen-enriched OA (NOA) contains ~25% of acidic inorganic salts, elucidating the formation of secondary OA from amines in acidic environments. The size distributions derived from 3-dimensional size-resolved mass spectra show distinct diurnal evolving behaviors for different OA factors, but overall a progressing evolution from smaller to larger particle mode as a function of oxidation states. Our results demonstrate that PMF analysis by incorporating inorganic aerosols is of importance for

  12. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  13. Secondary organic aerosol formation from the photo-oxidation of benzene

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Tortajada-Genaro, Luis Antonio

    2012-02-01

    The production of condensate compounds from the degradation of benzene by OH radical chemistry was studied. Secondary organic aerosol (SOA) formation was investigated in the EUPHORE ( European Photoreactor) simulation chambers. Experiments were performed under different OH-production conditions - addition of H 2O 2, NO or HONO -, in a high-volume reactor, with natural light and in the absence of seed aerosols. The consumption of precursor/reagents, the formation of gas-phase and particulate-phase products and the temporal evolution of aerosol were monitored. Several aerosol physical properties - mass concentration, overall aerosol yield, particle size distribution and density - were determined and found to be clearly dependent on OH radical production and NO x concentrations. Furthermore, the use of one and/or two products gas-particle partitioning absorption models allowed us to determine the aerosol yield curves. The SOA yield ranged from 1.6 to 9.7 %, with higher SOA formation under low-NO x conditions. Chemical characterization of the SOA was carried out, determining multi-oxygenated condensed organic compounds by a method based on the gas chromatography-mass spectrometry technique. Several ring-retaining and ring-cleavage products were identified and quantified. The compounds with the highest percentage contribution to the total aerosol mass were 4-nitrobenzene-1,2-diol, butenedioic acid, succinic acid and trans-trans-muconic. In addition, a multigenerational study was performed comparing with the photo-oxidations of phenol and catechol. The results showed that although the mass concentration of SOA produced was different, the physical and chemical properties were quite similar. Finally, we suggest a general mechanism to describe how changes in benzene degradation pathways - rate of OH generation and concentration of NO x - could justify the variation in SOA production and properties.

  14. Contributions of Organic Vapors to Aerosol Aging and Growth

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Wang, L.; Khalizov, A.

    2009-05-01

    Atmospheric aerosols impair visibility and human health, interfere with radiative transfer, and alter cloud formation. The major contributors include sulfate and organic aerosols from anthropogenic and biogenic activities, which are produced through a multitude of complex multiphase atmospheric processes by photochemical oxidation of emitted sulfur dioxide and volatile organic compounds (VOCs) into less volatile forms and gas-to-particle conversion. Condensation of organic vapors onto the pre-existing atmospheric aerosols, followed by chemical reactions within the particles medium, is believed to be one of the major pathways that contribute to particle growth. Recent research has focused on the total mass increase on pre- existing seed particles, but the chemistry that determines the efficiency of organic uptake remains to be elucidated. This talk will focus on the growth of nano- to sub-micron sulfuric acid droplets exposed organic vapors. Experiments performed at different relative humidity and using different organic vapors (i.e., small alpha-dicarbonyls and large aldehydes) will be presented. The chemical mechanisms and size dependence of the particle growth will be demonstrated. Implications of the present results to aging and growth of aerosols under ambient conditions will be discussed.

  15. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  16. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  17. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment

    SciTech Connect

    Aiken, Allison; Salcedo, D.; Cubison, Michael J.; Huffman, J.; DeCarlo, Peter; Ulbrich, Ingrid M.; Docherty, Kenneth S.; Sueper, D. T.; Kimmel, Joel; Worsnop, Douglas R.; Trimborn, Achim; Northway, Megan; Stone, Elizabeth A.; Schauer, James J.; Volkamer, Rainer M.; Fortner, Edward; de Foy, B.; Wang, Jian; Laskin, Alexander; Shutthanandan, V.; Zheng, Junsheng; Zhang, Renyi; Gaffney, Jeffrey S.; Marley, Nancy A.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luisa T.; Sosa, G.; Jimenez, Jose L.

    2009-09-11

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identifies three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning.

  18. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    SciTech Connect

    Madronich, Sasha

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  19. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    EPA Science Inventory

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles,...

  20. Glass transition measurements in mixed organic and organic/inorganic aerosol particles

    NASA Astrophysics Data System (ADS)

    Dette, Hans Peter; Qi, Mian; Schröder, David; Godt, Adelheid; Koop, Thomas

    2014-05-01

    The recent proposal of a semi-solid or glassy state of secondary organic aerosol (SOA) particles has sparked intense research in that area. In particular, potential effects of a glassy aerosol state such as incomplete gas-to-particle partitioning of semi-volatile organics, inhibited chemical reactions and water uptake, and the potential to act as heterogeneous ice nuclei have been identified so far. Many of these studies use well-studied proxies for oxidized organics such as sugars or other polyols. There are, however, few measurements on compounds that do exist in atmospheric aerosol particles. Here, we have performed studies on the phase state of organics that actually occur in natural SOA particles arising from the oxidation of alpha-pinene emitted in boreal forests. We have investigated the two marker compounds pinonic acid and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) and their mixtures. 3-MBCTA was synthesized from methyl isobutyrate and dimethyl maleate in two steps. In order to transfer these substances into a glassy state we have developed a novel aerosol spray drying technique. Dilute solutions of the relevant organics are atomized into aerosol particles which are dried subsequently by diffusion drying. The dried aerosol particles are then recollected in an impactor and studied by means of differential scanning calorimetry (DSC), which provides unambiguous information on the aerosols' phase state, i.e. whether the particles are crystalline or glassy. In the latter case DSC is used to determine the glass transition temperature Tg of the investigated samples. Using the above setup we were able to determine Tg of various mixtures of organic aerosol compounds as a function of their dry mass fraction, thus allowing to infer a relation between Tg and the O:C ratio of the aerosols. Moreover, we also studied the glass transition behavior of mixed organic/inorganic aerosol particles, including the effects of liquid-liquid phase separation upon drying.

  1. Photochemical aging of light-absorbing secondary organic aerosol material.

    PubMed

    Sareen, Neha; Moussa, Samar G; McNeill, V Faye

    2013-04-11

    Dark reactions of methylglyoxal with NH4(+) in aqueous aerosols yield light-absorbing and surface-active products that can influence the physical properties of the particles. Little is known about how the product mixture and its optical properties will change due to photolysis as well as oxidative aging by O3 and OH in the atmosphere. Here, we report the results of kinetics and product studies of the photochemical aging of aerosols formed by atomizing aqueous solutions of methylglyoxal and ammonium sulfate. Experiments were performed using aerosol flow tube reactors coupled with an aerosol chemical ionization mass spectrometer (Aerosol-CIMS) for monitoring gas- and particle-phase compositions. Particles were also impacted onto quartz windows in order to assess changes in their UV-visible absorption upon oxidation. Photooxidation of the aerosols leads to the formation of small, volatile organic acids including formic acid, acetic acid, and glyoxylic acid. The atmospheric lifetime of these species during the daytime is predicted to be on the order of minutes, with photolysis being an important mechanism of degradation. The lifetime with respect to O3 oxidation was observed to be on the order of hours. O3 oxidation also leads to a net increase in light absorption by the particles due to the formation of additional carbonyl compounds. Our results are consistent with field observations of high brown carbon absorption in the early morning. PMID:23506538

  2. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05), resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  3. Assessment of biogenic secondary organic aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, B. A.; Nguyen, T.; Pradhan, B.; Dangol, P.

    2012-12-01

    Biogenic contributions to secondary organic aerosol (SOA) in the Southeast Asian regional haze were assessed by measurement of particle-phase isoprene, monoterpene, and sesquiterpene photooxidation products in fine particles (PM2.5) at Godavari, Nepal, located in the Himalayas at an elevation of 1600 meters. Organic species were measured in solvent-extracts of filter samples using gas chromatography mass spectrometry (GCMS) and chemical derivatization. Molecular markers for primary aerosol sources—including motor vehicles, biomass burning, and detritus—and SOA tracers were measured. High concentrations of isoprene derivatives, particularly in the late summer months, point to biogenic SOA as a significant source of organic carbon in the Himalayan region. First-generation SOA products from alpha-pinene were detected in all samples, whereas multi-generation products were not, suggesting that monoterpenes were at an early stage of oxidation at Godavari. Biogenic SOA contributions to PM2.5 organic carbon in the 2005 monsoon and post-monsoon season ranged from 2-19% for isoprene, 1-5% for monoterpenes, and 1-4% for sesquiterpenes. Primary and secondary biogenic sources combined accounted for approximately half of observed organic aerosol, suggesting additional aerosol sources and/or precursors are significant in this region.

  4. Secondary organic aerosol in the global aerosol - chemical transport model Oslo CTM2

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Berntsen, T.; Myhre, G.; Isaksen, I. S. A.

    2007-11-01

    The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr-1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA) values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA) is the dominant OA component) than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%-60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes. Reducing the yield

  5. Molecular corridors and parameterizations of volatility in the evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pöschl, U.; Shiraiwa, M.

    2015-10-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the volatility of organic compounds containing oxygen, nitrogen and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  6. The thermodynamic and kinetic impacts of organics on marine aerosols

    NASA Astrophysics Data System (ADS)

    Crahan, Kathleen

    Organics can change the manner in which aerosols scatter radiation directly as hydrated aerosols and indirectly as in-cloud activated aerosols, through changing the solution activity, the surface tension, and the accommodation coefficient of the hydrated aerosol. This work explores the kinetic and thermodynamic impacts of the organic component of marine aerosols through data collected over four field campaigns and through several models used to reproduce observations. The Rough Evaporation Duct (RED) project was conducted in the summer of 2001 off the coast of Oahu using the Twin Otter Aircraft and the Floating Instrument Platform research platform for data collection. The Cloud-Aerosol Research in the Marine Atmosphere (CARMA) campaigns were conducted over three summers (2002, 2004, 2005) off the coast of Monterey, California. During the CARMA campaigns, a thick, moist, stratocumulus deck was present during most days, and the Twin Otter Aircraft was the primary research platform used to collect data. However, the research goals and exact instrumentation onboard the Twin Otter varied from campaign to campaign, and each data set was analyzed individually. Data collected from CARMA I were used to explore the mechanism of oxalic acid production in cloud droplets. Oxalate was observed in the clouds in excess to below cloud concentrations by an average of 0.11 mug m-3, suggesting an in-cloud production. The tentative identification in cloud water of an intermediate species in the aqueous oxalate production mechanism lends further support to an in-cloud oxalate source. The data sets collected during the RED campaign and the CARMA II and CARMA III campaigns were used to investigate the impact of aerosol chemical speciation on aerosol hygroscopic behavior. Several models were used to correlate the observations in the subsaturated regime to theory including an explicit thermodynamic model, simple Kohler theory, and a parameterization of the solution activity. These models

  7. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  8. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    PubMed

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z. PMID:19452899

  9. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  10. ANALYSIS OF ATMOSPHERIC ORGANIC AEROSOLS BY MASS SPECTROSCOPY

    EPA Science Inventory

    High resolution mass spectroscopy has been found to be a useful means of characterizing the organic fraction of urban aerosols. Quantitative accuracy, however, was limited, particularly for compounds of low abundance. Some ambiguities were found in the assignment of origins of io...

  11. Molecular transformations accompanying the aging of laboratory secondary organic aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aging of fresh secondary organic aerosol, generated by alpha-pinene ozonolysis in a flow tube reactor, was studied by passing it through a second reaction chamber where hydroxyl radicals were generated. Two types of experiments were performed: plug injection experiments where the particle mass a...

  12. PRODUCTION OF SECONDARY ORGANIC AEROSOL FROM MULTIPHASE TERPENE PHOTOOXIDATION

    EPA Science Inventory

    This project involves a field and laboratory study of the production of aerosol from the atmospheric photooxidation of biogenic volatile organic compounds (BVOCs), specifically the terpenes α- and β-pinene, using a unique combination of approaches that rely on produ...

  13. EVALUATION OF SECONDARY ORGANIC AEROSOL FORMATION IN WINTER. (R823514)

    EPA Science Inventory

    Three different methods are used to predict secondary organic aerosol (SOA)
    concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated
    Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as

  14. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  15. Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign

    NASA Astrophysics Data System (ADS)

    Rinaldi, M.; Gilardoni, S.; Paglione, M.; Sandrini, S.; Fuzzi, S.; Massoli, P.; Bonasoni, P.; Cristofanelli, P.; Marinoni, A.; Poluzzi, V.; Decesari, S.

    2015-10-01

    High-resolution aerosol mass spectrometer measurements were performed, for the first time, at the Mt. Cimone Global Atmosphere Watch (GAW) station between June and July 2012, within the EU project PEGASOS and the ARPA-Emilia-Romagna project SUPERSITO. Submicron aerosol was dominated by organics (63 %), with sulfate, ammonium and nitrate contributing the remaining 20, 9 and 7 %, respectively. Organic aerosol (OA) was in general highly oxygenated, consistent with the remote character of the site; our observations suggest that oxidation and secondary organic aerosol (SOA) formation processes occurred during aerosol transport to high altitudes. All of the aerosol component concentrations as well as the OA elemental ratios showed a clear daily trend, driven by the evolution of the planetary boundary layer (PBL) and by the mountain wind regime. Higher loadings and lower OA oxidation levels were observed during the day, when the site was within the PBL, and therefore affected by relatively fresh aerosol transported from lower altitudes. Conversely, lower loadings and higher OA oxidation levels were observed at night, when the top of Mt. Cimone resided in the free troposphere although affected by the transport of residual layers on several days of the campaign. Analysis of the elemental ratios in a Van Krevelen space shows that OA oxidation follows a slope comprised between -0.5 and -1, consistent with addition of carboxylic groups, with or without fragmentation of the parent molecules. The increase of carboxylic groups during OA ageing is confirmed by the increased contribution of organic fragments containing more than one oxygen atom in the free troposphere night-time mass spectra. Finally, positive matrix factorization was able to deconvolve the contributions of relatively fresh OA (OOAa) originating from the PBL, more aged OA (OOAb) present at high altitudes during periods of atmospheric stagnation, and very aged aerosols (OOAc) transported over long distances in the

  16. Aerosol Properties From Combined Oxygen A Band Radiances and Lidar

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Zhai, Peng-Wang; Hu, Yongxiang

    2015-01-01

    We have developed a new aerosol retrieval technique based on combing high-resolution A band spectra with lidar profiles. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution (17,000:1) measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers in the forward model. The algorithm has been developed to be applied to observations from the CALIPSO and OCO-2 satellites, flying in formation as part of the A-train constellation. We describe the approach and present simulated retrievals to illustrate performance potential.

  17. Products of BVOC oxidation: ozone and organic aerosols

    NASA Astrophysics Data System (ADS)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] < 7 ppbC / ppb) photochemical ozone formation was observed. For -pinene as individual BVOC as well as for the monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of

  18. Photochemical Aging of Organic Aerosols: A Laboratory Study

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitrios K.; Kostenidou, Evangelia; Gkatzelis, Georgios I.; Psichoudaki, Magdalini; Louvaris, Evangelos; Pandis, Spyros N.

    2014-05-01

    Organic aerosols (OA) are either emitted directly (primary OA) or formed (secondary OA) in the atmosphere and consist of an extremely complex mixture of thousands of organic compounds. Although the scientific community has put significant effort, in the past few decades, to understand organic aerosol (OA) formation, evolution and fate in the atmosphere, traditional models often fail to reproduce the ambient OA levels. Secondary organic aerosol (SOA) formed, in traditional laboratory chamber experiments, from the gas phase oxidation of known precursors, such as α-pinene, is semi-volatile and with an O:C ratio of around 0.4. In contrast, OA found in the atmosphere is significantly less volatile, while the O:C ratio often ranges from 0.5 to 1. In conclusion, there is a significant gap of knowledge in our understanding of OA formation and photochemical transformation in the atmosphere. There is increased evidence that homogeneous gas phase aging by OH radicals might be able to explain, at least in part, the significantly higher OA mass loadings observed and also the oxidation state and volatility of OA in the atmosphere. In this study, laboratory chamber experiments were performed to study the role of the continued oxidation of first generation volatile and semi-volatile species by OH radicals in the evolution of the SOA characteristics (mass concentration, volatility, and oxidation state). Ambient air mixtures or freshly formed SOA from α-pinene ozonolysis were used as the source of organic aerosols and semi-volatile species. The initial mixture of organic aerosols and gas phase species (volatile and semi-volatile) was then exposed to atmospheric concentrations of OH radicals to study the aging of aerosols. Experiments were performed with various OH radical sources (H2O2 or HONO) and under various NOx conditions. A suite of instruments was employed to characterize both the gas and the aerosol phase. A Scanning Mobility Particle Sizer (SMPS) and a High

  19. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  20. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data. PMID:24131283

  1. Influence of functional groups on organic aerosol cloud condensation nucleus activity.

    PubMed

    Suda, Sarah R; Petters, Markus D; Yeh, Geoffrey K; Strollo, Christen; Matsunaga, Aiko; Faulhaber, Annelise; Ziemann, Paul J; Prenni, Anthony J; Carrico, Christian M; Sullivan, Ryan C; Kreidenweis, Sonia M

    2014-09-01

    Organic aerosols in the atmosphere are composed of a wide variety of species, reflecting the multitude of sources and growth processes of these particles. Especially challenging is predicting how these particles act as cloud condensation nuclei (CCN). Previous studies have characterized the CCN efficiency for organic compounds in terms of a hygroscopicity parameter, κ. Here we extend these studies by systematically testing the influence of the number and location of molecular functional groups on the hygroscopicity of organic aerosols. Organic compounds synthesized via gas-phase and liquid-phase reactions were characterized by high-performance liquid chromatography coupled with scanning flow CCN analysis and thermal desorption particle beam mass spectrometry. These experiments quantified changes in κ with the addition of one or more functional groups to otherwise similar molecules. The increase in κ per group decreased in the following order: hydroxyl ≫ carboxyl > hydroperoxide > nitrate ≫ methylene (where nitrate and methylene produced negative effects, and hydroperoxide and nitrate groups produced the smallest absolute effects). Our results contribute to a mechanistic understanding of chemical aging and will help guide input and parametrization choices in models relying on simplified treatments such as the atomic oxygen:carbon ratio to predict the evolution of organic aerosol hygroscopicity. PMID:25118824

  2. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  3. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M.; Surratt, J. D.; Chan, A. W.; Schlling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J.

    2011-12-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI- TOFMS). A number of first- , second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  4. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2011-02-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  5. Influence of aerosol acidity on the chemical composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2010-11-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  6. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  7. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2011-08-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from

  8. Molecular Markers of Secondary Organic Aerosol in Mumbai, India.

    PubMed

    Fu, Pingqing; Aggarwal, Shankar G; Chen, Jing; Li, Jie; Sun, Yele; Wang, Zifa; Chen, Huansheng; Liao, Hong; Ding, Aijun; Umarji, G S; Patil, R S; Chen, Qi; Kawamura, Kimitaka

    2016-05-01

    Biogenic secondary organic aerosols (SOA) are generally considered to be more abundant in summer than in winter. Here, polar organic marker compounds in urban background aerosols from Mumbai were measured using gas chromatography-mass spectrometry. Surprisingly, we found that concentrations of biogenic SOA tracers at Mumbai were several times lower in summer (8-14 June 2006; wet season; n = 14) than in winter (13-18 February 2007; dry season; n = 10). Although samples from less than 10% of the season are extrapolated to the full season, such seasonality may be explained by the predominance of the southwest summer monsoon, which brings clean marine air masses to Mumbai. While heavy rains are an important contributor to aerosol removal during the monsoon season, meteorological data (relative humidity and T) suggest no heavy rains occurred during our sampling period. However, in winter, high levels of SOA and their day/night differences suggest significant contributions of continental aerosols through long-range transport together with local sources. The winter/summer pattern of SOA loadings was further supported by results from chemical transport models (NAQPMS and GEOS-Chem). Furthermore, our study suggests that monoterpene- and sesquiterpene-derived secondary organic carbon (SOC) were more significant than those of isoprene- and toluene-SOC at Mumbai. PMID:27045808

  9. Amphiphobic Polytetrafluoroethylene Membranes for Efficient Organic Aerosol Removal.

    PubMed

    Feng, Shasha; Zhong, Zhaoxiang; Zhang, Feng; Wang, Yong; Xing, Weihong

    2016-04-01

    Polytetrafluoroethylene (PTFE) membrane is an extensively used air filter, but its oleophilicity leads to severe fouling of the membrane surface due to organic aerosol deposition. Herein, we report the fabrication of a new amphiphobic 1H,1H,2H,2H-perfluorodecyl acrylate (PFDAE)-grafted ZnO@PTFE membrane with enhanced antifouling functionality and high removal efficiency. We use atomic-layer deposition (ALD) to uniformly coat a layer of nanosized ZnO particles onto porous PTFE matrix to increase surface area and then subsequently graft PFDAE with plasma. Consequently, the membrane surface showed both superhydrophobicity and oleophobicity with a water contact angle (WCA) and an oil contact angle (OCA) of 150° and 125°, respectively. The membrane air permeation rate of 513 (m(3) m(-2) h(-1) kPa(-1)) was lower than the pristine membrane rate of 550 (m(3) m(-2) h(-1) kPa(-1)), which indicates the surface modification slightly decreased the membrane air permeation. Significantly, the filtration resistance of this amphiphobic membrane to the oil aerosol system was much lower than the initial one. Moreover, the filter exhibited exceptional organic aerosol removal efficiencies that were greater than 99.5%. These results make the amphiphobic PTFE membranes very promising for organic aerosol-laden air-filtration applications. PMID:27002786

  10. Oxygen Ion Cleaning Of Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Deguchi, T. J.; Sasaki, G. R.; Champetier, R. J.

    1987-06-01

    An experiment using low energy oxygen ions to clean organic films from bare aluminum mirrors was performed. Film removal was determined by measuring the reflectance of the mirrors in the ultraviolet region of the spectrum. The results of this study show that complete removal of hydrocarbon films is obtainable. This method may not be fully effective in removing silicon-based polymers. The removal rate for a hydrocarbon oil contami nant was determined to be 2.1 X 10-14 Å/ion.

  11. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the

  12. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2009-03-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit-mass-resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, volatility and level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the OA mass after a few hours of aging under typical summertime conditions. Aging also decreased the volatility of the OA and made it progressively more oxygenated. The results also illustrate strengths of, and challenges with, using AMS data for source apportionment analysis. For example, the mass spectra of fresh and aged BBOA are distinct from fresh motor-vehicle emissions. The mass spectra of the secondary OA produced from aging wood smoke are very similar to those of the oxygenated OA (OOA) that dominates ambient AMS datasets, further reinforcing the connection between OOA and OA formed from photo-chemistry. In addition, aged wood smoke spectra are similar to those from OA created by photo-oxidizing dilute diesel exhaust. This demonstrates that the OOA observed in the atmosphere can be produced by photochemical aging of dilute emissions from different types of combustion systems operating on fuels with modern or fossil carbon. Since OOA is frequently the dominant component of ambient OA, the similarity of spectra of aged emissions from different sources represents an important challenge for AMS-based source apportionment studies.

  13. Nonequilibrium atmospheric secondary organic aerosol formation and growth.

    PubMed

    Perraud, Véronique; Bruns, Emily A; Ezell, Michael J; Johnson, Stanley N; Yu, Yong; Alexander, M Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L; Dabdub, Donald; Pankow, James F; Finlayson-Pitts, Barbara J

    2012-02-21

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO(3) radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO(3) reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  14. Nonequilibrium atmospheric secondary organic aerosol formation and growth

    PubMed Central

    Perraud, Véronique; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-01-01

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO3 radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO3 reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  15. A NEW NON-AMBIGUOUS ANALYTICAL TECHNIQUE FOR THE IDENTIFICATION OF AEROSOL OXYGENATED COMPOUNDS

    EPA Science Inventory

    The most important organic products identified in the particle phase from field samples and from smog chamber experiments are polar oxygenated compounds containing one, two, three or more oxygenated functional groups (e.g. hydroxyl, carboxylic acid, ketone). Current procedures ...

  16. Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Florou, K.; Kaltsonoudis, C.; Tsiflikiotou, M.; Vratolis, S.; Eleftheriadis, K.; Pandis, S. N.

    2015-10-01

    The concentration and chemical composition of non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9-14 μg m-3. The contribution of sulfate was around 38 %, while organic aerosol (OA) contributed approximately 45 % in both cases. PM1 nitrate levels were low (2 %). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases PM1 was acidic. Positive matrix factorization (PMF) was applied to the high-resolution organic aerosol mass spectra obtained by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). For Patras, five OA sources could be identified: 19 % very oxygenated OA (V-OOA), 38 % moderately oxygenated OA (M-OOA), 21 % biogenic oxygenated OA (b-OOA), 7 % hydrocarbon-like OA (HOA-1) associated with traffic sources and 15 % hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens, the corresponding source contributions were: V-OOA (35 %), M-OOA (30 %), HOA-1 (18 %) and HOA-2 (17 %). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22 % in Patras and 35 % in Athens) but not dominant.

  17. Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Florou, K.; Kaltsonoudis, C.; Tsiflikiotou, M.; Vratolis, S.; Eleftheriadis, K.; Pandis, S. N.

    2015-02-01

    The concentration and chemical composition of the non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the Eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9-14 μg m-3. The contribution of sulphate was around 38%, while organic aerosol (OA) contributed approximately 45% in both cases. PM1 nitrate levels were low (2%). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases the PM1 was acidic. Positive matrix factorization (PMF) was applied to the high resolution organic aerosol mass spectra obtained by an Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS). For Patras five OA sources could be identified: 19% very oxygenated OA (V-OOA), 38% moderately oxygenated OA (M-OOA), 21% biogenic oxygenated OA (b-OOA), 7% hydrocarbon-like OA (HOA-1) associated with traffic sources and 15% hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens the corresponding source contributions were: V-OOA (35%), M-OOA (30%), HOA-1 (18%) and HOA-2 (17%). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the Eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22% in Patras and 33% in Athens) but not dominant.

  18. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets.

    PubMed

    Lee, Ben H; Mohr, Claudia; Lopez-Hilfiker, Felipe D; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A; Campuzano-Jost, Pedro; Jimenez, Jose L; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J; Wild, Robert J; Brown, Steven S; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B; Starn, Tim; Baumann, Karsten; Edgerton, Eric S; Liu, Jiumeng; Shilling, John E; Miller, David O; Brune, William; Schobesberger, Siegfried; D'Ambro, Emma L; Thornton, Joel A

    2016-02-01

    Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (∼2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment. PMID:26811465

  19. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions

    PubMed Central

    Gentner, Drew R.; Isaacman, Gabriel; Worton, David R.; Chan, Arthur W. H.; Dallmann, Timothy R.; Davis, Laura; Liu, Shang; Day, Douglas A.; Russell, Lynn M.; Wilson, Kevin R.; Weber, Robin; Guha, Abhinav; Harley, Robert A.; Goldstein, Allen H.

    2012-01-01

    Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region’s fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies. PMID:23091031

  20. Aerosol Size Distribution Response to Anthropogenically Driven Historical Changes in Biogenic Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; D'Andrea, S.; Acosta Navarro, J. C.; Farina, S.; Scott, C.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.

    2014-12-01

    Emissions of biological volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. A recent model reconstruction of BVOC emissions over the past millennium predicted the changes in the three dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstruction predicted that in global averages isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show both increases and decreases in certain regions due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. We use these modeled estimates of these three dominant BVOC classes' emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation and global aerosol size distributions using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000. This change in N80 was predominantly driven by a shift towards crop/grazing land that produces less BVOC than the natural vegetation. Similar sensitivities to year 1000 vs. year 2000 BVOC emissions exist when anthropogenic emissions are turned off. This large decrease in N80 could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  1. Speciated organic composition of atmospheric aerosols: Development and application of a Thermal desorption Aerosol Gas chromatograph (TAG)

    NASA Astrophysics Data System (ADS)

    Williams, Brent James

    This dissertation describes the invention and first applications of an in-situ instrument, Ṯhermal desorption A&barbelow;erosol G&barbelow;as chromatograph (TAG), capable of automated hourly measurements of speciated organic compounds in atmospheric aerosols. Atmospheric particles alter the Earth's radiation balance and hydrological cycle and are detrimental to human health. There are hundreds to thousands of different compounds present in the carbonaceous component of atmospheric particles. These organic marker compounds offer information on atmospheric aerosol sources, formation processes, and transformation processes. TAG is the first instrument to achieve automated in-situ hourly measurements, improving upon traditional 12--24 hour filter-based methods and making it possible to analyze changes in organic aerosol speciation over timescales ranging from hours to seasons. Reported here are results from TAG development and laboratory-based testing, as well as new findings from two separate field campaigns. The first field study took place in Nova Scotia as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). Hourly TAG measurements were used to define several aerosol sources, including aged anthropogenics from the US, oxidized biogenic aerosol from Maine/Canada, local oxidized biogenics, local anthropogenic contributions to primary organic aerosol (POA), and a potential marine or dairy source. The second field deployment was in southern California during the Study of Organic Aerosol at Riverside (SOAR). Particle sources included several types of oxidized secondary organic aerosol (SOA), vehicle emissions, food cooking, biomass burning, and primary and secondary biogenics. SOA-associated aerosol dominated POA-associated aerosol in both locations, with SOA comprising an approximate 90% (60%) of the total organic aerosol mass in Nova Scotia (Riverside, CA), and in Riverside, summertime afternoon SOA

  2. Drying-Induced Evaporation of Secondary Organic Aerosol during Summer.

    PubMed

    El-Sayed, Marwa M H; Amenumey, Dziedzorm; Hennigan, Christopher J

    2016-04-01

    This study characterized the effect of drying on the concentration of atmospheric secondary organic aerosol (SOA). Simultaneous measurements of water-soluble organic carbon in the gas (WSOCg) and particle (WSOCp) phases were carried out in Baltimore, MD during the summertime. To investigate the effect of drying on SOA, the WSOCp measurement was alternated through an ambient channel (WSOCp) and a "dried" channel (WSOCp,dry) maintained at ∼35% relative humidity (RH). The average mass ratio between WSOCp,dry and WSOCp was 0.85, showing that significant evaporation of the organic aerosol occurred due to drying. The average amount of evaporated water-soluble organic matter (WSOM = WSOC × 1.95) was 0.6 μg m(-3); however, the maximum evaporated WSOM concentration exceeded 5 μg m(-3), demonstrating the importance of this phenomenon. The systematic difference between ambient and dry channels indicates a significant and persistent source of aqueous SOA formed through reversible uptake processes. The wide-ranging implications of the work are discussed, and include: new insight into atmospheric SOA formation; impacts on particle measurement techniques; a newly identified bias in PM2.5 measurements using the EPA's Federal Reference and Equivalent Methods (FRM and FEM); atmospheric model evaluations; and the challenge in relating ground-based measurements to remote sensing of aerosol properties. PMID:26910726

  3. Evaluation of secondary organic aerosol formation in winter

    NASA Astrophysics Data System (ADS)

    Strader, Ross; Lurmann, Fred; Pandis, Spyros N.

    Three different methods are used to predict secondary organic aerosol (SOA) concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as a tracer of primary organic carbon. The second method relies on a Lagrangian trajectory model that simulates the formation, transport, and deposition of secondary organic aerosol. The model includes a recently developed gas-particle partitioning mechanism. Results from both methods are in good agreement with the chemical speciation of organic aerosol during IMS95 and suggest that most of the OC measured during IMS95 is of primary origin. Under suitable conditions (clear skies, low winds, low mixing heights) as much as 15-20 μg C m -3 of SOA can be produced, mainly due to oxidation of aromatics. The low mixing heights observed during the winter in the area allow accumulation of SOA precursors and the acceleration of SOA formation. Clouds and fog slow down the production of secondary compounds, reducing their concentrations by a factor of two or three from the above maximum levels. In addition, it appears that there is significant diurnal variation of SOA concentration. A strong dependence of SOA concentrations on temperature is observed, along with the existence of an optimal temperature for SOA formation.

  4. ORGANIC AEROSOL SAMPLING AND ANALYSIS METHODS RESEARCH

    EPA Science Inventory

    Carbonaceous material is a major component of ambient PM at all locations in the U.S. and it is composed of two major classes: organic carbon (OC, composed of hundreds of individual compounds) and elemental carbon (EC, also referred to as soot, black carbon, or light adsorbing ca...

  5. Marine organic aerosol and oceanic biological activity: what we know and what we need (Invited)

    NASA Astrophysics Data System (ADS)

    Facchini, M.

    2009-12-01

    Observations carried out in the North Atlantic as well as in other marine locations evidenced a seasonal dependence of sub micron particle chemical composition on biological oceanic activity and a potentially important marine aerosol organic component from primary and/or secondary formation processes associated to marine vegetation and its seasonal cycle. Primary organics generated by bubble bursting in high biological activity periods are almost entirely water insoluble (WIOM up to 96 ± 2 % )and are constituted by aggregation of lipopolysaccharides exuded by phytoplankton with dominant surface tension character. In many marine environments the secondary organic fraction is dominated by MSA and by several oxygenated species (mainly carboxylic acids). New measurements also show the potential importance of secondary organic N species (biogenic amine salts ). However a large fraction of the secondary organic fraction (SOA) is still not characterized and the precursors are not identified. For modeling marine organics, besides reducing the uncertainty in the knowledge of the chemical composition and new precursors, it is of crucial importance to link marine aerosol organic composition to satellite products that could be better proxy for marine biological activity and of its decomposition products than chlorophyll-a.

  6. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with

  7. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    NASA Astrophysics Data System (ADS)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-02-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10) in ambient air. Receptor modeling was performed with positive matrix factorization (PMF) for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60%, 22% and 17% of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  8. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    NASA Astrophysics Data System (ADS)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-09-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10) in ambient air. Receptor modeling was performed with positive matrix factorization (PMF) for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon-like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  9. Secondary organic aerosol: a comparison between foggy and nonfoggy days.

    PubMed

    Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L

    2011-09-01

    Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well. PMID:21790145

  10. Synthesis of fluorinated organic compounds using oxygen difluoride

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1971-01-01

    Oxygen difluoride synthesis is a much simpler, higher-yield procedure than reactions originally followed to synthesize various fluorinated organic compounds. Extreme care is taken in working with oxygen difluoride as its reactions present severe explosion hazard.

  11. Lessons Learned About Organic Aerosol Formation in the Southeast U.S. Using Observations and Modeling

    EPA Science Inventory

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA). In this work, modeling of isoprene SOA via heterogeneous uptake is explored and compared to observations from the Southern Oxidant and Aerosol Study (SOAS).

  12. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  13. Composition and formation of organic aerosol particles in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Wiedemann, K.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Artaxo, P.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R. C.; Smith, M.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O.

    2012-04-01

    We applied scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-NEXAFS) analysis to investigate the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a natural background aerosol. The samples were found to be dominated by secondary organic aerosol (SOA) particles in the fine and primary biological aerosol particles (PBAP) in the coarse mode. Lab-generated SOA-samples from isoprene and terpene oxidation as well as pure organic compounds from spray-drying of aqueous solution were measured as reference samples. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol in the submicron size range and its internal mixing state. The lab-generated SOA and pure organic compounds occurred as spherical and mostly homogenous droplet-like particles, whereas the Amazonian SOA particles comprised a mixture of homogeneous droplets and droplets having internal structures due to atmospheric aging. In spite of the similar morphological appearance, the Amazon samples showed considerable differences in elemental and functional group composition. According to their NEXAFS spectra, three chemically distinct types of organic material were found and could be assigned to the following three categories: (1) particles with a pronounced carboxylic acid (COOH) peak similar to those of laboratory-generated SOA particles from terpene oxidation; (2) particles with a strong hydroxy (COH) signal similar to pure carbohydrate particles; and (3) particles with spectra resembling a mixture of the first two classes. In addition to the dominant organic component, the NEXAFS spectra revealed clearly resolved potassium (K) signals for all analyzed particles. During the rainy season and in the absence of anthropogenic influence, active biota is

  14. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  15. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    PubMed

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors. PMID:24600999

  16. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols.

    PubMed

    Aregahegn, Kifle Z; Nozière, Barbara; George, Christian

    2013-01-01

    Secondary organic aerosols (SOA), which are produced by the transformations of volatile organic compounds in the atmosphere, play a central role in air quality, public health, visibility and climate, but their formation and aging remain poorly characterized. This study evidences a new mechanism for SOA formation based on photosensitized particulate-phase chemistry. Experiments were performed with a horizontal aerosol flow reactor where the diameter growth of the particles was determined as a function of various parameters. In the absence of gas-phase oxidant, experiments in which ammonium sulfate seeds containing glyoxal were exposed to gas-phase limonene and UV light exhibited a photo-induced SOA growth. Further experiments showed that this growth was due to traces of imidazole-2-carboxaldehyde (IC) in the seeds, a condensation product of glyoxal acting as an efficient photosensitizer. Over a 19 min irradiation time, 50 nm seed particles containing this compound were observed to grow between 3.5 and 30 +/- 3% in the presence of either limonene, isoprene, alpha-pinene, beta-pinene, or toluene in concentrations between 1.8 and 352 ppmv. The other condensation products of glyoxal, imidazole (IM) and 2,2-bi1H-imidazole (BI), also acted as photosensitizer but with much less efficiency under the same conditions. In the atmosphere, glyoxal and potentially other gas precursors would thus produce efficient photosensitizers in aerosol and autophotocatalyze SOA growth. PMID:24601000

  17. COMPUTATIONAL CHEMISTRY METHOD FOR PREDICTING VAPOR PRESSURES AND ACTIVITY COEFFICIENTS OF POLAR ORGANIC OXYGENATES IN PM2.5

    EPA Science Inventory

    Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...

  18. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  19. In Situ Chemical Characterization of Organic Aerosol Surfaces using Direct Analysis in Real Time

    NASA Astrophysics Data System (ADS)

    Chan, M.; Nah, T.; Wilson, K. R.

    2012-12-01

    Obtaining in situ information on the molecular composition of atmospheric aerosol is important for understanding the sources, formation mechanisms, aging and physiochemical properties of atmospheric aerosol. Most recently, we have used Direct Analysis in Real Time (DART), which is a "soft" atmospheric pressure ionization technique, for in situ chemical characterization of a variety of laboratory generated organic aerosol and heterogeneous processing oleic acid aerosol. A stream of aerosol particles is crossed with a thermal flow of metastable He atoms (produced by the DART source) in front of an inlet of a mass spectrometer. The thermally desorbed analytes are subsequently ionized with minimal fragmentation by reactive species in the DART ionization source (e.g., metastable He atoms). The ion signal scales with the aerosol surface area rather than aerosol volume, suggesting that aerosol particles are not completely vaporized in the ionization region. The DART can thus measure the chemical composition as a function of aerosol depth. Probing aerosol depth is determined by the thermal desorption rates of aerosol particles. Here, we investigate how the experimental parameters (e.g., DART gas temperature and residence time) and the physiochemical properties of aerosol particles (e.g., enthalpy of vaporization) affect the probing aerosol depth and the desorption-ionization mechanism of aerosol particles in the DART using a series of model organic compounds. We also demonstrate the potential application of DART for in situ chemically analyzing wet aerosol particles undergoing oxidation reactions.

  20. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2013-09-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photo-oxidation of dilute gasoline and diesel motor vehicle exhaust. In half of the experiments POA was present in the chamber at the onset of photo-oxidation. In these experiments positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A two-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol in all but one experiment. In the other half of the experiments, POA was not present at the onset of photo-oxidation; these experiments are considered "pure SOA" experiments. The POA mass spectrum was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient datasets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. The SOA in all experiments had a constant composition over the course of photo-oxidation, and did not appear to age with continued oxidation. The SOA mass spectra for the various gasoline and diesel vehicles were similar to each other, but markedly different than ambient oxidized organic aerosol factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of -0.68 and -0.43, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry. These experiments also provide insight to the mixing behavior of the POA and SOA. Analysis of the time series of the POA factor concentration and a basis-set model both indicate that for all but one of the vehicles tested here, the POA and SOA seem to mix and form a single organic aerosol phase.

  1. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  2. Mass Spectral Observations of Submicron Aerosol Particles and Production of Secondary Organic Aerosol at an Anthropogenically Influenced Site during the Wet Season of GoAmazon2014

    NASA Astrophysics Data System (ADS)

    de Sá, S. S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Hu, W.; Newburn, M. K.; Ferreira De Brito, J.; Artaxo, P.; Shilling, J. E.; Souza, R. A. F. D.; Manzi, A. O.; Alexander, M. L.; Jimenez, J. L.; Martin, S. T.

    2014-12-01

    As part of GoAmazon2014, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed to characterize the composition, size, and spectral markers present in submicron atmospheric aerosol particles at a site downwind of Manaus, Brazil, in the central Amazon basin. The focus was on the influence of biogenic-anthropogenic interactions on the measured aerosol particles, especially as related to the formation of secondary organic aerosol (SOA). Through a combination of meteorology, emissions, and chemistry, the research site was affected by biogenic emissions from the tropical rainforest that were periodically mixed with urban outflow from the Manaus metropolitan area. Results from the first intensive operation period, from 1 February to 31 March 2014, show that for the wet season the PM1 mass concentration had typical values on order of 1 to 2 μg/m3. The organic species were dominant, followed by sulfate. The mass-diameter distribution of the particle population had a prevailing mode between 300 and 400 nm (vacuum aerodynamic diameter, dva), and at times a smaller mode at finer size was also present. Highly oxidized organic material was frequently observed, characterized by a dominant peak at m/z 44. There was a diel trend in the elemental oxygen-to-carbon (O:C) ratio peaking in the afternoon. The analysis of the results aims at delineating the anthropogenic impact on the measurements. Multivariate statistical analysis by positive-matrix factorization (PMF) is applied to the time series of organic particle mass spectra. The factors and their loadings provide information on the relative and time-varying contributions of different sources and processes affecting the organic component of the aerosol particle phase. Relationships between AMS results and measurements from co-located instruments that provide information on anthropogenic and biogenic gas and particle tracers are investigated, toward the goal of improving the understanding of

  3. The Radiative Forcing from Biogenic Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Forster, P.; Spracklen, D. V.; Carslaw, K. S.; Arnold, S.; Rap, A.

    2012-12-01

    Vegetation emits biogenic volatile organic compounds (BVOCs), such as monoterpenes, isoprene and sesquiterpenes, into the atmosphere. Once emitted, BVOCs rapidly undergo reactions with the hydroxyl radical, ozone and the nitrate radical to yield a range of lower volatility oxidation products. These compounds are of sufficiently low volatility to partition into the aerosol phase, forming secondary organic aerosol (SOA). Increasingly, there are indications that organic compounds, specifically the oxidation products of terpenes, may contribute to the process of new particle formation as well as the growth of existing particles. The formation of SOA can influence the Earth's radiative balance by absorbing and scattering radiation (the direct effect) and by altering the properties of clouds (the indirect effect), via their action as cloud condensation nuclei (CCN). Biogenic SOA formed from the oxidation products of isoprene and monoterpenes has been shown to be CCN active under atmospherically relevant conditions, indicating that complex climate feedbacks may result from the emission of BVOCs. Using a global aerosol microphysics model (GLOMAP), and offline radiative transfer code, we simulate a present day aerosol indirect radiative forcing of between -0.07 and - 0.81 W.m-2, for the emission of BVOCs, due to a simulated increase in the number of particles able to act as CCN. The forcing obtained per emission is not spatially uniform, with monoterpenes in the southern hemisphere being most efficient at inducing a radiative change. We find a strong sensitivity to the treatment of concurrent anthropogenic emissions. In the present day, biogenic secondary organic material is more efficient at perturbing CCN number concentrations, but when anthropogenic emissions from 1750 are included in our simulations, the lower background aerosol concentration results in a more significant radiative response. The largest uncertainty in the forcing obtained however, comes from the

  4. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  5. Preservation of organs from brain dead donors with hyperbaric oxygen.

    PubMed

    Bayrakci, Benan

    2008-08-01

    Hyperbaric oxygen therapy is a technology that involves oxygen treatment at supra-atmospheric pressures in high concentrations, generating increased levels of physically dissolved oxygen in blood plasma. This form of transported oxygen, compared with oxygen chemically bound to hemoglobin, is able to enter tissues with minimal or almost no blood flow. Experimental studies have suggested that hyperoxemia provided by hyperbaric oxygen may be beneficial in the treatment of reperfusion injury. Organs procured from brain-dead hyperbaric oxygen-treated donors may have less cellular injury from ischemia, reperfusion, and no-reflow phenomenon, thus yielding organs in an optimized state for transplantation. This current report consists of a gratifying experience about hyperbaric oxygen treatment playing a possible role on preservation of donor organs in vivo. In the siblings reported here, improved organ function prior to transplantation and the successful organ functioning after transplantation suggests the possible beneficial effect of hyperbaric oxygen treatment on the ischemic insult generated from brain death and repetitive cardiac arrests. Hyperbaric oxygen seems to be a promising candidate as a bridge to transplantation, keeping the donated organs viable until the harvesting procedure can take place for potential brain dead donors. This experience may lead to further investigations on hyperbaric oxygen's role in donor organ preservation. PMID:18672481

  6. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with

  7. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  8. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2015-05-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle-phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids to phase-separated particles to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40 to 90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids; (2) forcing a single phase but accounting for non-ideal interactions through activity coefficient calculations; and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation of the inorganic and organic components is assumed at all RH values, with water uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  9. Influence of particle phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2014-12-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids, to phase-separated particles, to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40-90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids, (2) forcing a single phase, but accounting for non-ideal interactions through activity coefficient calculations, and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation between the inorganic and organic components is assumed at all RH values, with water-uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  10. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  11. Secondary Organic Aerosol Formation in Aerosol Water by Photochemical Reactions of Gaseous Mixture of Monoterpene and Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Lim, H.; Yi, S.; Park, J.; Cho, H.; Jung, K.

    2011-12-01

    There exist large uncertainties in model predictions for climate change and regional air quality. It could be caused by incomplete integration of secondary organic aerosol (SOA) formation in atmospheric chemical models. Recent laboratory studies have found SOA formation through chemical reactions on aerosol surface and in aerosol water. Water soluble organics formed by photochemical degradation of biogenic organics including isoprene and anthropogenic aromatics are predicted to form substantial amount of SOA through the newly found pathways. Although SOA formation in bulk aqueous solution was reported for laboratory experiments of various precursors (e.g., water soluble carbonyls and phenols), little is known for SOA formation in real aerosol water. In this study, photochemical reactions of the gaseous mixture of monoterpene and hydrogen peroxide were examined to investigate SOA formation through reactions in real aerosol phase water. SOA formation was conducted using a flow tube reactor (ID 30 cm x L 150 cm, FEP) and a smog chamber using FEP film in the presence of dry and wet seed particles. Acidity and chemical composition of seed aerosol were also controlled as important parameters influencing SOA formation. Particle size distribution and aerosol composition were analyzed to account for differences in SOA formation mechanisms and yields for dry and wet particles. The differences might be mainly associated with SOA formation in aerosol phase water. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0000221).

  12. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J. L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Laaksonen, A.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2014-06-01

    Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.

  13. Source contributions to organic aerosol in the eastern United States

    NASA Astrophysics Data System (ADS)

    Lane, Timothy Edward

    Organic aerosols (OA) and elemental carbon (EC) are important components of atmospheric particulate matter (PM), potentially posing health hazards and contributing to global climate change. Secondary organic aerosol (SOA) is formed when condensable products from the oxidation of volatile organic compounds (VOCs) in the gas phase partition into the aerosol phase. Implementation of effective control strategies for organic PM2.5 (organic particles with diameters less than 2.5 mum) requires the quantification of the contribution of each source to the ambient OA and EC concentrations. The overall goal of this work is to determine which sources contribute the most to the organic aerosol concentrations across the eastern US. First, a source-resolved model is developed to predict the contribution of eight different sources to primary organic aerosol concentrations. Primary organic aerosol (OA) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. The results of the source-resolved model are compared to the results of chemical mass balance (CMB) models for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for several of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OA and EC are discussed along with problems in the current emission inventory for certain sources. Next, the importance of isoprene as a source of SOA is determined using PMCAMx to predict the isoprene SOA concentration across the eastern US. Isoprene, the most abundant non-methane hydrocarbon

  14. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Rubach, F.; Tillmann, R.; Wahner, A.; Wu, H.-C.; Mentel, Th. F.

    2013-03-01

    Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m-3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86-0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also

  15. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan

    2016-04-01

    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  16. Significant Contributions of Isoprene to Summertime Secondary Organic Aerosol in Eastern United States.

    PubMed

    Ying, Qi; Li, Jingyi; Kota, Sri Harsha

    2015-07-01

    A modified SAPRC-11 (S11) photochemical mechanism with more detailed treatment of isoprene oxidation chemistry and additional secondary organic aerosol (SOA) formation through surface-controlled reactive uptake of dicarbonyls, isoprene epoxydiol and methacrylic acid epoxide was incorporated in the Community Multiscale Air Quality Model (CMAQ) to quantitatively determine contributions of isoprene to summertime ambient SOA concentrations in the eastern United States. The modified model utilizes a precursor-origin resolved approach to determine secondary glyoxal and methylglyoxal produced by oxidation of isoprene and other major volatile organic compounds (VOCs). Predicted OC concentrations show good agreement with field measurements without significant bias (MFB ∼ 0.07 and MFE ∼ 0.50), and predicted SOA reproduces observed day-to-day and diurnal variation of Oxygenated Organic Aerosol (OOA) determined by an aerosol mass spectrometer (AMS) at two locations in Houston, Texas. On average, isoprene SOA accounts for 55.5% of total predicted near-surface SOA in the eastern U.S., followed by aromatic compounds (13.2%), sesquiterpenes (13.0%) and monoterpenes (10.9%). Aerosol surface uptake of isoprene-generated glyoxal, methylglyoxal and epoxydiol accounts for approximately 83% of total isoprene SOA or more than 45% of total SOA. A domain wide reduction of NOx emissions by 40% leads to a slight decrease of domain average SOA by 3.6% and isoprene SOA by approximately 2.6%. Although most of the isoprene SOA component concentrations are decreased, SOA from isoprene epoxydiol is increased by ∼16%. PMID:26029963

  17. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Ying; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-03-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  18. Oxygen Isotope Anomaly in the Carbonate Fractions of Aerosols and its Potential to Assess Urban Pollution

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abramian, A.; Dominguez, G.; Jackson, T.; Thiemens, M. H.

    2008-12-01

    Mineral dust is emitted into the atmosphere from arid regions in Asia yearly, accounting for ~36% of global aerosol emissions, 5900 Tg yr-1 [IPCC 2007]. Increasing anthropogenic emissions and persistent dust emissions not only have reduced the air quality in Asia itself, but are also affecting the pollutant deposition into the Pacific Ocean and air quality in downwind areas. The carbonate component of mineral dust (calcite (CaCO3) and dolomite (CaMg(CO3)2) is particularly reactive and can comprise as much as 30% of the total mineral dust aerosol, depending on the source region [Claquin et al., 1999]. Carbonate can affect atmospheric chemical processes and aerosol characteristics because the acid neutralizing capacity of this species facilitates the heterogeneous conversion of sulphate and nitrate. Understanding heterogeneous reactions occurring on the surface of aerosol particles will lead to a better understanding of the fate and transport of molecules in the troposphere as well as to resolve their role in air quality and pollution. The primary goal of this work is to develop an isotope methodology for carbonates that can be used as a chemical marker for the origin of polluted air plumes and chemical transformation during the long range transport of air masses. We will discuss the carbon and oxygen isotope composition of the CO2 released from the fine (< 1 μm) and coarse (> 1 μm) particles collected at two different sites [Mt. Soledad (800 ft) and Scripps Pier, La Jolla, California] and its possible utility as a tracer to identify the long-range transport of aerosol from local pollution events. The degree of urban influence of sampled air parcels at each site was quantified through back-trajectory analysis of NOAA HYSPLIT output data. Interestingly, the isotopes of oxygen did not follow standard mass dependent relationship (δ17O ~ 0.52 δ18O) rather have excess 17O (Δ17O = δ17O- 0.52δ18O) ranging from 0.9 to 3.9 per mil. A highly significant correlation (r2

  19. Global modeling of organic aerosol: the importance of reactive nitrogen (NOx and NO3)

    NASA Astrophysics Data System (ADS)

    Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H.

    2010-11-01

    Reactive nitrogen compounds, specifically NOx and NO3, likely influence global organic aerosol levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NOx-dependent monoterpene and sesquiterpene aerosol yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and relatively high aerosol yields from NO3 oxidation, biogenic hydrocarbon-NO3 reactions are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. By including aerosol from nitrate radical oxidation in GEOS-Chem, terpene (monoterpene + sesquiterpene) aerosol approximately doubles and isoprene aerosol is enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3 Tg/yr) due to the relatively high volatility of organic-NO3 oxidation products in the yield parameterization. Globally, 69 to 88 Tg/yr of organic aerosol is predicted to be produced annually, of which 14-15 Tg/yr is from oxidation of monoterpenes and sesquiterpenes and 8-9 Tg/yr from isoprene.

  20. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry.

    PubMed

    Fang, Wenzheng; Gong, Lei; Zhang, Qiang; Cao, Maoqi; Li, Yuquan; Sheng, Liusi

    2012-04-01

    Isoprene is a significant source of atmospheric organic aerosol; however, the secondary organic aerosol (SOA) formation and involved chemical reaction pathways have remained to be elucidated. Recent works have shown that the photo-oxidation of isoprene leads to form SOA. In this study, the chemical composition of SOA from the OH-initiated photo-oxidation of isoprene, in the absence of seed aerosols, was investigated through the controlled laboratory chamber experiments. Thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) was used in conjunction with the environmental chamber to study SOA formation. The mass spectra obtained at different photon energies and the photoionization efficiency (PIE) spectra of the SOA products can be obtained in real time. Aided by the ionization energies (IE) either from the ab initio calculations or the literatures, a number of SOA products were proposed. In addition to methacrolein, methyl vinyl ketone, and 3-methyl-furan, carbonyls, hydroxycarbonyls, nitrates, hydroxynitrates, and other oxygenated compounds in SOA formed in laboratory photo-oxiadation experiments were identified, some of them were investigated for the first time. Detailed chemical identification of SOA is crucial for understanding the photo-oxidation mechanisms of VOCs and the eventual formation of SOA. Possible reaction mechanisms will be discussed. PMID:22397593

  1. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  2. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  3. Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

    2013-08-01

    The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR‧), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR‧ functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH

  4. Relating hygroscopicity and composition of organic aerosol particulate matter

    SciTech Connect

    Duplissy, J.; DeCarlo, P. F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, T.; Gysel, M.; Aiken, A. C.; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, D. R.; Collins, D. R.; Tomlinson, J.; Baltensperger, U.

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg = 2.2 × f44 - 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. Finally, the use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.

  5. Predicting secondary organic aerosol formation rates in southeast Texas

    NASA Astrophysics Data System (ADS)

    Russell, Matthew; Allen, David T.

    2005-04-01

    Rates of secondary organic aerosol (SOA) formation, due to the reactions of aromatics and monoterpenes, were estimated for southeast Texas by incorporating a modified version of the Statewide Air Pollution Research Center's chemical mechanism (SAPRC99) into the Comprehensive Air Quality Model with extensions (CAMx version 3.10). The model included explicit representation of the reactions of five SOA precursors (α-pinene, β-pinene, sabinene, d-limonene, and Δ3-carene). Reactions of each SOA precursor with O3, OH radical, and NO3 radical were included. The model also included separate reactions for low- and high-SOA-yield aromatic groups with the OH radical. SOA yields in the mechanisms were estimated using compound-specific yield information (ΔSOA/ΔHC) derived from smog chamber experiments conducted by J. R. Odum and colleagues and R. J. Griffin and colleagues. The form of the SOA yield model was based on the work of J. R. Odum and colleagues and is a function of existing organic aerosol concentrations. Existing organic aerosol concentrations were estimated on the basis of ambient measurements of total organic carbon in southeast Texas. The reactions of monoterpenes (predominantly α-pinene and β-pinene) with ozone led to the most regional SOA formation, followed by monoterpenes with the nitrate radical. Aromatic-OH reactions led to less regional SOA formation compared to monoterpenes; however, this formation occurs close to the urban and industrial areas of Houston. In contrast, SOA formation due to the reactions of monoterpenes occurred in the forested areas north of the urban area. The results of this study are in qualitative agreement with estimates of SOA formation based on ambient data from the same time period.

  6. Semicontinuous automated measurement of organic carbon in atmospheric aerosol samples.

    PubMed

    Lu, Chao; Rashinkar, Shilpa M; Dasgupta, Purnendu K

    2010-02-15

    A fully automated measurement system for ambient aerosol organic carbon, capable of unattended operation over extended periods, is described. Particles are collected in a cyclone with water as the collection medium. The collected sample is periodically aspirated by a syringe pump into a holding loop and then delivered to a wet oxidation reactor (WOR). Acid is added, and the WOR is purged to measure dissolved CO(2) or inorganic carbonates (IC) as evolved CO(2). The IC background can often be small and sufficiently constant to be corrected for, without separate measurement, by a blank subtraction. The organic material is now oxidized stepwise or in one step to CO(2). The one-step oxidation involves UV-persulfate treatment in the presence of ozone. This treatment converts organic carbon (OC) to CO(2), but elemental carbon is not oxidized. The CO(2) is continuously purged from solution and collected by two sequential miniature diffusion scrubbers (DSs), a short DS preceding a longer one. Each DS consists of a LiOH-filled porous hydrophobic membrane tube with terminal stainless steel tubes that function as conductance-sensing electrodes. As CO(2) is collected by the LiOH-filled DSs, hydroxide is converted into carbonate and the resulting decrease in conductivity is monitored. The simultaneous use of the dual short and long DS units bearing different concentrations of LiOH permits both good sensitivity and a large dynamic range. The limit of detection (LOD, S/N = 3) is approximately 140 ng of C. With a typical sampling period of 30 min at a sampling rate of 30 L/min, this corresponds to an LOD of 160 ng/m(3). The approach also provides information on the ease of oxidation of the carbonaceous aerosol and hence the nature of the carbon contained therein. Ambient aerosol organic carbon data are presented. PMID:20092351

  7. Formation of secondary organic aerosol from isoprene oxidation over Europe

    NASA Astrophysics Data System (ADS)

    Karl, M.; Tsigaridis, K.; Vignati, E.; Dentener, F.

    2009-01-01

    The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr-1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of particulate organic matter (POM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates POM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr-1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Tropospheric isoprene SOA production over Europe in summer more than doubles when, in addition to pre-existing carbonaceous aerosols, condensation of semi volatile vapours on ammonium and sulphate aerosols is considered. Consequently, smog chamber experiments on SOA formation should be

  8. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  9. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  10. Effects of aerosol phase and water uptake for understanding organic aerosol oxidation

    NASA Astrophysics Data System (ADS)

    Fitzgerald, C.; Gallimore, P. J.; Fuller, S.; Lee, J.; Garrascon, V.; Achakulwisut, P.; Björkegren, A.; Spring, D. R.; Pope, F. D.; Kalberer, M.

    2012-04-01

    Oxidation reactions of atmospheric organic aerosols strongly influence many important processes in the atmosphere such as aerosol-cloud interactions or heterogeneous chemistry. We present results of an experimental laboratory study with three organic model aerosol systems (maleic, arachidonic and oleic acid) investigating the effect of particle phase and humidity on the oxidative processing of the particle. Two experimental techniques are combined in this investigation. An electrodynamic balance is used to levitate single particles and assess changes in particle size and mass (due to water uptake and/or loss of volatile oxidation products) and phase (liquid or solid) during and after chemical processing with ozone. An aerosol flow tube was used to investigate the detailed chemical composition of the oxidized aerosol with offline ultra-high resolution mass spectrometry. The role of water (i.e., relative humidity) in the oxidation scheme of the three carboxylic acids is very compound specific and the particle phase has a strong effect on the particle processing. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. Maleic and arachidonic acid change their phase from liquid to solid upon oxidation or upon changes in humidity and efficient oxidative processing of the particle bulk can only occur when the particle is in liquid form. A detailed oxidation mechanism for maleic acid is presented taking the strong effects of water into account. In contrast, oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In

  11. Identification and quantification of individual chemical compounds in biogenic secondary organic aerosols using GCxGC-VUV/EI-HRTOFMS

    NASA Astrophysics Data System (ADS)

    Decker, M.; Worton, D. R.; Isaacman, G. A.; Chan, A. W.; Ruehl, C.; Zhao, Y.; Wilson, K. R.; Goldstein, A. H.

    2012-12-01

    Atmospheric aerosols have adverse effects on human health and air quality and affect radiative forcing and thus climate. While the organic fraction of aerosols is substantial, the sources and chemistry leading to the formation of secondary organic aerosols are very poorly understood. Characterizing individual compounds present in organic aerosol provides insights into the sources, formation mechanisms and oxidative transformations that have taken place. Fifteen aerosol samples collected over a 5 day period at the Blodgett Forest Research Station in the Sierra Nevada Mountains, part of the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in July 2009, were analyzed using comprehensive two dimensional gas chromatography with high resolution time of flight mass spectrometry (GCxGC-HRTOFMS). Approximately 600 compounds were observed in each sample as significant peaks in the chromatogram. Of these, around a third were identified by matching the unique electron ionization (EI) mass spectrum of each compound to the NIST library of characteristic fragmentation patterns. One filter sample was also analyzed using vacuum ultraviolet ionization (VUV) instead of EI. This 'soft' ionization technique results in much less fragmentation yielding the molecular ion of each compound, from which the exact mass was determined. If the formula of the EI library matched compound equaled the high mass resolution VUV molecular weight within a certain tolerance (< 30 ppm), then the library match was considered confirmed; 226 compounds were identified in this way. Using the VUV technique 234 additional compounds that were not in the EI mass spectral database were assigned chemical formulas based on the observed molecular weights. The chemical formulas in conjunction with the location of the compound in the GCxGC chromatogram were used to provide further classification of these compounds based on their likely functionalization. The broad array of observed oxygenated

  12. Molecular dynamics studies of organic-coated nano aerosols

    NASA Astrophysics Data System (ADS)

    Chakraborty, Purnendu

    2008-10-01

    Atmospheric aerosols play an important role in atmospheric processes. These aerosol particles can affect climate through scattering, transmission and absorption of radiation as well as acting as cloud condensation nuclei. It has recently been found that fatty acids reside on the surfaces of marine and continental aerosols. In this research, an attempt has been made to understand the structures and properties of such organic coated aerosols using Molecular Dynamics simulation. The model particle consisted of a water droplet coated with fatty acid. The density profile (using both Coarse-Grained and Atomistic/United atom models) demonstrated that such aerosol particles have an inverted micelle structure consisting of an aqueous core and with the hydrophobic hydrocarbon tails exposed to the atmosphere. For smaller chains, with the organic molecules directed radially outwards from the water---organic interface) the normal pressure profile showed that the organic coating is under tension resulting in a 'negative' surface tension. As a result, such particles would have an inverse Kelvin vapor pressure effect and would be able to process water vapor despite the hydrophobic surface. Following the work on surface tension, the rate of water uptake by coated aerosols was computed. It was found that the sticking coefficient of water vapor on such particles was about a sixth of that on pure water droplets. This may seem to imply that the net condensation rate is lower, but we also need to take into account the evaporation of water from such particles. With a significant reduction in the evaporation rate (the coating lends greater stability to the particle resulting in reduced evaporation rate), the equilibrium vapor pressure of water on such particles reduced, resulting in a "net water attractor". Thus if such structures were created in sufficient concentration, they might be important contributors in the cloud condensation process. Next the effect of longer Fatty acid molecules

  13. Organic Aerosol Nucleation and Growth at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Tröstl, Jasmin; Lethipalo, Katrianne; Bianchi, Federico; Sipilä, Mikko; Nieminen, Tuomo; Wagner, Robert; Frege, Carla; Simon, Mario; Weingartner, Ernest; Gysel, Martin; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    It is well known that atmospheric aerosols influence the climate by changing Earth's radiation balance (IPCC 2007 and 2013). Recent models have shown (Merikanto et al. 2009) that aerosol nucleation is one of the biggest sources of low level cloud condensation nuclei. Still, aerosol nucleation and growth are not fully understood. The driving force of nucleation and growth is sulfuric acid. However ambient nucleation and growth rates cannot be explained by solely sulfuric acid as precursor. Recent studies have shown that only traces of precursors like ammonia and dimethylamine enhance the nucleation rates dramatically (Kirkby et al. 2011, Almeida et al., 2013). Thus the role of different aerosol precursor needs to be studied not only in ambient but also in very well controlled chamber experiments. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment enables conducting experiments very close to atmospheric conditions and with a very low contaminant background. The latest CLOUD experiments focus on the role of organics in aerosol nucleation and growth. For this purpose, numerous experiments with alpha-pinene have been conducted at the CERN CLOUD chamber. Several state-of-the-art instruments were used to cover the whole complexity of the experiment. Chamber conditions were set to 40% relative humidity and 5° C. Atmospheric concentrations of SO2, O3, HONO, H2O and alpha-pinene were injected to the chamber. Different oxidation conditions were used, yielding different levels of oxidized organics: (1) OH radicals, (2) Ozone with the OH scavenger H2 (pure ozonolysis) and (3) both. SO2 was injected to allow for sulfuric acid production. Optical UV fibers were used to enable photochemical reactions. A high field cage (30 kV) can be turned on to remove all charged particles in the chamber to enable completely neutral conditions. Comparing neutral conditions to the beam conditions using CERN's proton synchrotron, the fraction of ion-induced nucleation can be studied. Using

  14. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 µm. The aerosol yield w...

  15. 77 FR 14279 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ...The EPA is taking direct final action to amend the National Volatile Organic Compound Emission Standards for Aerosol Coatings final rule, which is a rule that establishes national reactivity-based emission standards for the aerosol coatings category (aerosol spray paints) under the Clean Air Act, published elsewhere in the Federal Register. This direct final action adds three compounds:......

  16. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  17. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate

  18. Secondary organic aerosol composition from C12 alkanes.

    PubMed

    Schilling Fahnestock, Katherine A; Yee, Lindsay D; Loza, Christine L; Coggon, Matthew M; Schwantes, Rebecca; Zhang, Xuan; Dalleska, Nathan F; Seinfeld, John H

    2015-05-14

    The effects of structure, NOx conditions, relative humidity, and aerosol acidity on the chemical composition of secondary organic aerosol (SOA) are reported for the photooxidation of three C12 alkanes: n-dodecane, cyclododecane, and hexylcyclohexane. Acidity was modified through seed particle composition: NaCl, (NH4)2SO4, and (NH4)2SO4 + H2SO4. Off-line analysis of SOA was carried out by solvent extraction and gas chromatography-mass spectrometry (GC/MS) and direct analysis in real-time mass spectrometry. We report here 750 individual masses of SOA products identified from these three alkane systems and 324 isomers resolved by GC/MS analysis. The chemical compositions for each alkane system provide compelling evidence of particle-phase chemistry, including reactions leading to oligomer formation. Major oligomeric species for alkane SOA are peroxyhemiacetals, hemiacetals, esters, and aldol condensation products. Furans, dihydrofurans, hydroxycarbonyls, and their corresponding imine analogues are important participants in these oligomer-producing reactions. Imines are formed in the particle phase from the reaction of the ammonium sulfate seed aerosol with carbonyl-bearing compounds present in all the SOA systems. Under high-NO conditions, organonitrate products can lead to an increase of aerosol volume concentration by up to a factor of 5 over that in low-NO conditions. Structure was found to play a key role in determining the degree of functionalization and fragmentation of the parent alkane, influencing the mean molecular weight of the SOA produced and the mean atomic O:C ratio. PMID:24814371

  19. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants

    NASA Astrophysics Data System (ADS)

    Ito, T.; Nenes, A.; Johnson, M. S.; Meskhidze, N.; Deutsch, C.

    2016-06-01

    Dissolved oxygen in the mid-depth tropical Pacific Ocean has declined in the past several decades. The resulting expansion of the oxygen minimum zone has consequences for the region's ecosystem and biogeochemical cycles, but the causes of the oxygen decline are not yet fully understood. Here we combine models of atmospheric chemistry, ocean circulation and biogeochemical cycling to test the hypothesis that atmospheric pollution over the Pacific Ocean contributed to the redistribution of oxygen in deeper waters. We simulate the pollution-induced enhancement of atmospheric soluble iron and fixed nitrogen deposition, as well as its impacts on ocean productivity and biogeochemical cycling for the late twentieth century. The model reproduces the magnitude and large-scale pattern of the observed oxygen changes from the 1970s to the 1990s, and the sensitivity experiments reveal the reinforcing effects of pollution-enhanced iron deposition and natural climate variability. Despite the aerosol deposition being the largest in mid-latitudes, its effect on oceanic oxygen is most pronounced in the tropics, where ocean circulation transports added iron to the tropics, leading to an increased regional productivity, respiration and subsurface oxygen depletion. These results suggest that anthropogenic pollution can interact and amplify climate-driven impacts on ocean biogeochemistry, even in remote ocean biomes.

  20. Secondary organic aerosol formation through fog processing of VOCs

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Hutchings, J. W.

    2010-07-01

    Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX) have been determined in highly concentrated amounts (>1 ug/L) in intercepted clouds in northern Arizona (USA). These VOCs are found in concentrations much higher than predicted by partitioning alone. The reactivity of BTEX in the fog/cloud aqueous phase was investigated through laboratory studies. BTEX species showed fast degradation in the aqueous phase in the presence of peroxides and light. Observed half-lives ranged from three and six hours, substantially shorter than the respective gas phase half-lives (several days). The observed reaction rates were on the order of 1 ppb/min but decreased substantially with increasing concentrations of organic matter (TOC). The products of BTEX oxidation reactions were analyzed using HPLC-UV and LCMS. The first generation of products identified included phenol and cresols which correspond to the hydroxyl-addition reaction to benzene and toluene. Upon investigating of multi-generational products, smaller, less volatile species are predominant although a large variety of products is found. Most reaction products have substantially lower vapor pressure and will remain in the particle phase upon droplet evaporation. The SOA generation potential of cloud and fog processing of BTEX was evaluated using simple calculations and showed that in ideal situations these reactions could add up to 9% of the ambient aerosol mass. In more conservative scenarios, the contribution of the processing of BTEX was around 1% of ambient aerosol concentrations. Overall, cloud processing of VOC has the potential to contribute to the atmospheric aerosol mass. However, the contribution will depend upon many factors such as the irradiation, organic matter content in the droplets and droplet lifetime.

  1. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Logue, J. M.; Donahue, N. M.; Robinson, A. L.

    2009-02-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) emissions from flaming and smoldering hard- and soft-wood fires under plume-like conditions. This was done by exposing the dilute emissions from a small wood stove to UV light in a smog chamber and measuring the gas- and particle-phase pollutant concentrations with a suite of instruments including a Proton Transfer Reaction Mass Spectrometer (PTR-MS), an Aerosol Mass Spectrometer (AMS) and a thermodenuder. The measurements highlight how atmospheric processing can lead to considerable evolution of the mass and volatility of biomass-burning OA. Photochemical oxidation produced substantial new OA, increasing concentrations by a factor of 1.5 to 2.8 after several hours of exposure to typical summertime hydroxyl radical (OH) concentrations. Less than 20% of this new OA could be explained using a state-of-the-art secondary organic aerosol model and the measured decay of traditional SOA precursors. The thermodenuder data indicate that the primary OA is semivolatile; at 50°C between 50 and 80% of the fresh primary OA evaporated. Aging reduced the volatility of the OA; at 50°C only 20 to 40% of aged OA evaporated. The predictions of a volatility basis-set model that explicitly tracks the partitioning and aging of low-volatility organics was compared to the chamber data. The OA production can be explained by the oxidation of low-volatility organic vapors; the model can also reproduce observed changes in OA volatility and composition. The model was used to investigate the competition between photochemical processing and dilution on OA concentrations in plumes.

  2. Improving Molecular Level Chemical Speciation of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Worton, D. R.; Decker, M.; Isaacman, G. A.; Chan, A.; Wilson, K. R.; Goldstein, A. H.

    2013-12-01

    A substantial fraction of fine mode aerosols are organic with the majority formed in the atmosphere through oxidation of gas phase compounds emitted from a variety of natural and man-made sources. As a result, organic aerosols are comprised of thousands of individual organic species whose complexity increases exponentially with carbon number and degree of atmospheric oxidation. Chemical characterization of individual compounds present in this complex mixture provides information on sources and transformation processes that are critical for apportioning organic carbon from an often convoluted mixture of sources and to constrain oxidation mechanisms needed for atmospheric models. These compounds also affect the physical and optical properties of the aerosol but the vast majority remain unidentified and missing from published mass spectral libraries because of difficulties in separating and identifying them. We have developed improved methodologies for chemical identification in order to better understand complex environmental mixtures. Our approach has been to combine two-dimensional gas chromatography with high resolution time of flight mass spectrometry (GC×GC-HRTOFMS) and both traditional electron ionization (EI) and vacuum ultraviolet (VUV) photoionization. GC×GC provides improved separation of individual compounds over traditional one dimensional GC and minimizes co-elution of peaks resulting in mass spectra that are virtually free of interferences. VUV ionization is a ';soft' ionization technique that reduces fragmentation and enhances the abundance of the parent or molecular ion, which when combined with high resolution mass spectrometry can provide molecular formulas for chromatographic peaks. We demonstrate our methodology by applying it to identify more than 500 individual compounds in aerosol filter samples collected at Blodgett Forest, a rural site in the Sierra Nevada Mountains. Using the EI NIST mass spectral library and molecular formulas determined

  3. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  4. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  5. Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Brook, J.; Chang, R. Y.-W.; Evans, G. J.; Hayden, K.; Jeong, C.-H.; Li, S.-M.; Liggio, J.; Liu, P. S. K.; McGuire, M.; Mihele, C.; Sjostedt, S.; Vlasenko, A.; Abbatt, J. P. D.

    2011-03-01

    As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS) were deployed at two sites in southwestern Ontario from 17 June to 11 July 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA), direct emissions, and a factor tentatively attributed to the reactive uptake of isoprene and/or condensation of its early generation reaction products. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1) fresh emissions from Detroit/Windsor and (2) regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production. However, the rate of SOA production decreases with airmass age from an initial value of ~10.1 μg m-3 ppmvCO-1 h-1 for the first ~10 h of plume processing to near-zero in an aged airmass (i.e. after several days). The initial SOA production rate is comparable to the observed rate in Mexico City over similar timescales.

  6. Contribution of Organic Vapors to the Growth of Secondary Aerosols

    NASA Astrophysics Data System (ADS)

    Wang, L.; Khalizov, A.; Zhang, R.

    2008-12-01

    Processes governing the growth of atmospheric aerosols represent an important aspect of anthropogenic climate forcing but remain poorly understood. Condensation of organic vapors onto the pre-existing atmospheric aerosols, potentially followed by chemical reactions within the particles medium, is believed to be one of the major pathways that contribute to particle growth. Recent research has focused on the total mass increase on pre-existing seed particles, but the chemistry that determines the efficiency of organic uptake remains to be elucidated. In this study, attenuated total reflection- Fourier transform infrared spectroscopy (ATR-FT-IR) was used to study the formation of new chemical bonds in the sub-micron sulfuric acid droplets deposited on ATR crystal and subjected to exposure to organic vapors (2,4-hexadienal and glyoxal). The observation of new functional groups, together with the dependence of the absorption intensity on the relative humidity, indicates that the uptake of 2,4-hexadienal is through an aldol condensation reaction and uptake of glyoxal is an acid-catalyzed hydration followed by self-reaction of hydrated and carbonyl forms to form cyclic acetal structures. The evolvement of infrared absorption features also suggests that the uptake of both compounds is at least partly reversible.

  7. Organic nitrate aerosol formation via NO3 + BVOC in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-06-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOC) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are calculated and correlated to gas and aerosol organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol as measured by Aerosol Mass Spectrometry (AMS) and Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) suggests a range of molar yield of aerosol phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to terpenes and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 0.5 % of the total organic nitrate in the aerosol-phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading comparable to that of organic nitrate produced via NO3 + BVOC.

  8. Molecular Corridor Based Approach for Description of Evolution of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Li, Y., Sr.; Poeschl, U.; Shiraiwa, M.

    2015-12-01

    Organic aerosol is ubiquitous in the atmosphere and its major component is secondary organic aerosol (SOA). Formation and evolution of SOA is a complex process involving coupled chemical reactions and mass transport in the gas and particle phases (Shiraiwa et al., 2014). Current air quality models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation, resulting in the significant underprediction of observed SOA concentrations, which precludes reliable quantitative predictions of aerosols and their environmental impacts. Recently, it has been suggested that the SOA chemical evolution can be represented well by "molecular corridor" with a tight inverse correlation between molar mass and volatility of SOA oxidation products (Shiraiwa et al., 2014). Here we further analyzed the structure, molar mass and volatility of 31,000 unique organic compounds. These compounds include oxygenated organic compounds as well as nitrogen- and sulfur-containing organics such as amines, organonitrates, and organosulfates. Results show that most of those compounds fall into this two-dimensional (2-D) space, which is constrained by two boundary lines corresponding to the volatility of n -alkanes CnH2n+2 and sugar alcohols CnH2n+2On. A method to predict the volatility of nitrogen- and sulfur- containing compounds is developed based on those 31,000 organic compounds. It is shown that the volatility can be well predicted as a function of chemical composition numbers, providing a way to apply this 2-D space to organic compounds observed in real atmosphere. A comprehensive set of observation data from laboratory experiments, field campaigns and indoor measurements is mapped to the molecular corridor. This 2-D space can successfully grasp the properties of organic compounds formed in different atmospheric conditions. The molecular corridor represents a new framework in which chemical and physical properties as

  9. Quantification of Semi-Volatile gas-phase Organic Compounds (SVOCs) & Organic Aerosol species and the role of SVOCs in Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Khan, M. H.; Holzinger, R.

    2013-12-01

    A Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS) with different sampling systems (multi-stage denuder for gas phase and impact on a collector for aerosol phase) has been deployed in summer 2013 during the Southern Oxidant and Aerosol Study (SOAS) at the SEARCH ground site, Centreville, Alabama for in-situ gas phase and aerosol measurements on an hourly time resolution. A bunch of DB-1 column (0.53 mm x 5.0 μm) is used in the denuder for capturing the bulk of SVOCs and a collection-thermal-desorption (CTD) cell is used for collecting aerosol particles. Several hundreds semivolatile organic compounds (SVOCs) in gas phase and aerosol phases have been detected. The high mass resolution capabilities of ~5000, low detection limit (<0.05 pptv for gas species, <0.01 ng m-3 for aerosol species) and good physical and chemical characterization of SVOCs with the TD-PTR-MS allows constraining both, the quantity and the chemical composition. The SEARCH site was highly impacted by Biogenic Volatile Organic Compounds (BVOCs) and occasionally influenced by anthropogenic pollution. BVOCs and their oxidation products are capable of partitioning into the particle phase, so their simultaneous quantification in both phases has been used to determine the gas/particle-phase partitioning. Our results show the expected diurnal variation based on the changes of air temperature for many species. The results from this study give valuable insights into sources and processing of Secondary Organic Aerosols (SOAs) that can be used to improve parameterization algorithms in regional and global climate models.

  10. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; Decarlo, P. F.; Kleinman, L.; Fast, J.

    2010-06-01

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2-4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40-60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar

  11. Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Ceburnis, Darius; Monahan, Ciaran; Worsnop, Douglas R.; Bialek, Jakub; Kulmala, Markku; KurtéN, Theo; Ehn, Mikael; Wenger, John; Sodeau, John; Healy, Robert; O'Dowd, Colin

    2012-06-01

    Measurements of marine aerosol chemistry, using state-of-the-art mass spectrometry, as well as aerosol microphysics, hygroscopicity and cloud condensation nuclei (CCN) activity were undertaken during new particle growth events. The events were detected in air advecting over North East (NE) Atlantic waters during the EUCAARI Intensive Observation Period in June 2008 at Mace Head, Ireland. During these growth events, the aerosol mass spectrometers illustrated increases in accumulation mode aerosol phase nitrogenated and aliphatic compounds thought to condense from the gas phase. Since the composition changes observed in the accumulation mode occurred simultaneously to the growth of the accumulation, Aitken and nucleation modes, the growth of both the nucleation mode and the Aitken mode is attributed to the condensation of these species. Nitrogenated compounds like amines are also plausible candidates in the nucleation process, as suggested by quantum mechanic calculations. It is also plausible that amides and organic nitrites, also identified by the mass spectrometers, are possible candidate chemical compounds, suggesting that multiple types of chemical species may be contributing. Given that these open ocean aerosol formation and growth events occur in very clean polar marine air masses, we suggest that the organic compounds responsible for particle formation and growth are mainly of biogenic origin. Despite increasing the particle number concentration, the initial effect is to suppress hygroscopicity and CCN activity.

  12. Biotic stress: a significant contributor to organic aerosol in Europe?

    NASA Astrophysics Data System (ADS)

    Bergström, R.; Hallquist, M.; Simpson, D.; Wildt, J.; Mentel, T. F.

    2014-12-01

    We have investigated the potential impact on organic aerosol formation from biotic stress-induced emissions (SIE) of organic molecules from forests in Europe (north of lat. 45° N). Emission estimates for sesquiterpenes (SQT), methyl salicylate (MeSA) and unsaturated C17 compounds, due to different stressors, are based on experiments in the Jülich Plant Atmosphere Chamber (JPAC), combined with estimates of the fraction of stressed trees in Europe based on reported observed tree damage. SIE were introduced in the EMEP MSC-W chemical transport model and secondary organic aerosol (SOA) yields from the SIE were taken from the JPAC experiments. Based on estimates of current levels of infestation and the JPAC aerosol yields, the model results suggest that the contribution to SOA in large parts of Europe may be substantial. It is possible that SIE contributes as much, or more, to organic aerosol than the constitutive biogenic VOC emissions, at least during some periods. Based on the assumptions in this study, SIE-SOA are estimated to constitute between 50 and 70 % of the total biogenic SOA (BSOA) in a current-situation scenario where the biotic stress in northern and central European forests causes large SIE of MeSA and SQT. An alternative current-situation scenario with lower SIE, consisting solely of SQT, leads to lower SIE-SOA, between 20 and 40 % of the total BSOA. Hypothetical future scenarios with increased SIE, due to higher degrees of biotic stress, show that SOA formation due to SIE can become even larger. Unsaturated C17 BVOC (biogenic volatile organic compounds) emitted by spruce infested by the forest-honey generating bark louse, Cinara pilicornis, have a high SOA-forming potential. A model scenario investigating the effect of a regional, episodic infestation of Cinara pilicornis in Baden-Württemberg, corresponding to a year with high production of forest honey, shows that these types of events could lead to very large organic aerosol formation in the

  13. Organic aerosol components derived from 25 AMS datasets across Europe using a newly developed ME-2 based source apportionment strategy

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Di Marco, C. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J.-L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2013-09-01

    Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of EUCAARI and the intensive campaigns of EMEP during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we propose a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 datasets accounting for urban, rural, remote and high altitude sites and therefore it is likely suitable for the treatment of AMS-related ambient datasets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling evaluation purposes.

  14. Organic aerosol volatility parameterizations and their impact on atmospheric composition and climate

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Bauer, S.

    2015-12-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions. Here we will present a thorough study of the most popular organic aerosol parameterizations with regard to volatility in global models, studied within the same host global model, the GISS ModelE2: primary and secondary organic aerosols both being non-volatile, secondary organic aerosols semi-volatile (2-product model), and all organic aerosols semi-volatile (volatility-basis set). We will also present results on the role aerosol microphysical calculations play on organic aerosol concentrations. The changes in aerosol distribution as a result of the different parameterizations, together with their role on gas-phase chemistry and climate, will be presented.

  15. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  16. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  17. The role of low volatile organics on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Yli-Pirilä, P.; Vesterinen, M.; Korhonen, H.; Keskinen, H.; Romakkaniemi, S.; Hao, L.; Kortelainen, A.; Joutsensaari, J.; Worsnop, D. R.; Virtanen, A.; Lehtinen, K. E. J.

    2014-02-01

    Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates into an underestimation of SOA contribution to radiative forcing of atmospheric aerosol. Here we show that the underestimation of SOA yields can be partly explained by wall losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected into a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized volatile organic compounds (OVOC) of very low volatility in the chamber. If these oxidized organic compounds form in the gas phase, their wall losses will have significant implications on their partitioning between the gas and particle phase. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment, while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event can be of the order of 10-5 μg m-3.

  18. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Hapsari Budisulistiorini, Sri; Baumann, Karsten; Edgerton, Eric S.; Bairai, Solomon T.; Mueller, Stephen; Shaw, Stephanie L.; Knipping, Eladio M.; Gold, Avram; Surratt, Jason D.

    2016-04-01

    A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ˜ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is well correlated with the m/z 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The

  19. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher J.; Brune, William H.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-02-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ˜ 0.1 % upon extraction with pure water and increases to ˜ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Upon extraction of SOA samples from OH photooxidation of isoprene, we also detected OH yields of around ˜ 0.1 %, which increases upon addition of Fe2+. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  20. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Pöschl, U.; Shiraiwa, M.

    2015-11-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ~ 0.1 % upon extraction with pure water and increases to ~ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  1. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher. J.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, and limonene) is ~ 0.1% upon extraction with pure water, and which increases to ~ 1.5% in the presence of iron ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical hydrogen peroxide Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  2. Volatility of organic aerosol and its components in the megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.

    2016-02-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and

  3. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and

  4. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics - Part 2: Product identification using Aerosol-CIMS

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Shapiro, E. L.; Schwier, A. N.; McNeill, V. F.

    2009-07-01

    We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize secondary organic material formed by methylglyoxal with ammonium sulfate in aqueous aerosol mimics. Bulk reaction mixtures were diluted and atomized to form submicron aerosol particles. Organics were detected using Aerosol-CIMS in positive and negative ion mode using I- and H3O+·(H2O)n as reagent ions. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These results support previous observations by us and others that ammonium sulfate plays a critical role in the SOA formation chemistry of dicarbonyl compounds.

  5. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  6. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2013-02-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  7. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2012-08-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  8. Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas M.; Seaman, Vincent Y.; Charles, M. Judith; Holzinger, Rupert; Goldstein, Allen H.

    2006-08-01

    Biogenic volatile organic compound (BVOC) emissions, such as isoprene and terpenes, can be oxidized to form less volatile carbonyls, acids, and multifunctional oxygenated products that may condense to form secondary organic aerosols (SOA). This research was designed to assess the contribution of oxidized BVOC emissions to SOA in coniferous forests by collecting high-volume particulate samples for 6 days and 5 nights in the summer of 2003. The samples were analyzed for acids, carbonyls, polyols and alkanes to quantify oxidized BVOCs. Terpene and isoprene oxidation products were among the most abundant chemical species detected with the exception of hexadecanoic acid, octadecanoic acid and two butyl esters of unknown origin. The terpene oxidation products of pinonic acid, pinic acid, nopinone and pinonaldehyde showed clear diurnal cycles with concentrations two- to eight-fold higher at night. These cycles resulted from the diurnal cycles in gaseous terpene concentrations and lower temperatures that enhanced condensation of semivolatile chemicals onto aerosols. The terpene-derived compounds averaged 157 ± 118 ng/m3 of particulate organic matter while the isoprene oxidation compounds, namely the 2-methyltetrols and 2-methylglyceric acid, accounted for 53 ± 19 ng/m3. Together, the terpene and isoprene oxidation products represented 36.9% of the identified organic mass of 490 ± 95 ng/m3. PM10 organic matter loadings in the region were approximately 2.1 ± 1.2 μg/m3, so about 23% of the organic matter was identified and at least 8.6% was oxidized BVOCs. The BVOC oxidation products we measured were significant, but not dominant, contributors to the regional SOA only 75 km downwind of the Sacramento urban area.

  9. High-Resolution Mass Spectroscopic Analysis of Secondary Organic Aerosol Generated by Ozonolysis of Isoprene

    SciTech Connect

    Nguyen, Tran B; Bateman, Adam P; Bones, David L; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-02-01

    The chemical composition of secondary organic aerosol (SOA) generated from the ozonolysis of isoprene (C5H8) in the presence of an OH scavenger was examined using high-resolution electrospray ionization mass spectrometry (ESI-MS). The chemical composition of SOA is complex, with more than 1000 assigned peaks observed in the positive and negative ion mode spectra. Only a small fraction of peaks corresponds to known products of isoprene oxidation, such as pyruvic acid, glycolic acid, methylglyoxal, etc. The absolute majority of the detected peaks correspond to highly oxidized oligomeric constituents of SOA, with an average O:C molar ratio of ~0.6. The corresponding organic mass (OM) to organic oxygen (OO) ratio is OM/OO ~2.4. Approximately 8% of oxygen atoms in SOA are in the form of peroxides as quantified with an iodide test. Double bond equivalency (DBE) factors, representing the sum of all double bonds and rings, increase by 1 for every 2-3 additional carbon atoms in the molecule. The prevalent oligomer building blocks are therefore carbonyls or carboxylic acids with a C2-C3 skeleton. Kendrick analysis suggests that simple aldehydes, specifically formaldehyde, acetaldehyde, and methylglyoxal can serve as monomeric building blocks in the observed oligomers. The large number of reactive functional groups, especially organic peroxides and carbonyls, suggests that isoprene/O3 SOA should be prone to chemical and photochemical aging.

  10. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Russell, L. M.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2010-07-01

    (together, 90% by mass), identified as the marine and combustion factors, respectively. Measurements of particle concentrations in the study region compared with concentrations estimated from MODIS aerosol optical depth indicate that continental outflow results in MBL particle concentrations elevated up to 2 times the background level (less than 300 cm-3) away from shore and up to 10 times the background level at the coast. The presence of both coastal fossil fuel combustion and marine sources of oxygenated organic aerosol results in little change in the oxygenated fraction and oxygen to carbon ratio (O/C) along the outflow of the region's dominant organic particle source.

  11. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  12. Characterisation of regional ambient biomass burning organic aerosol mixing ratios

    NASA Astrophysics Data System (ADS)

    Jolleys, M.; Coe, H.; McFiggans, G.; Capes, G.; Allan, J. D.; Crosier, J.; Williams, P.; Allen, G.; Bower, K.; Jimenez, J. L.; Russell, L. M.; Grutter, M.; Baumgardner, D.

    2012-12-01

    No evidence for a regional additional source of secondary organic aerosol (SOA) has been identified in measurements of biomass burning-influenced ambient air masses. Measurements included in this study were obtained from the deployment of an Aerodyne Quadrupole Aerosol Mass Spectrometer during four field campaigns, involving both research aircraft flights and ground-based measurements. OA concentrations normalised to excess CO (OA/dCO) show strong regional and local scale variability, with a difference of almost a factor of five across fresh OA emissions between campaigns. Average OA/dCO is typically higher in the near-field than at a greater distance from source, indicating an absence of significant SOA formation, despite evidence to suggest OA becomes increasingly oxidized with age. This trend is in contrast with observations of anthropogenic OA in urban environments, where OA/dCO is consistently shown to increase with distance from source. There is no such agreement in the case of biomass burning OA (BBOA) amongst the literature base, with conflicting examples relating to the influence of SOA on aerosol loadings. A wide range of average initial emission ratios (ERs) close to source are observed both within the datasets analysed here and within the literature, together with considerable variability in individual OA/dCO values throughout fresh biomass burning plumes. The extent of this variability far outweighs any increase in OA/dCO in the few instances it is observed here, suggesting that source conditions are of greater importance for the propagation of BBOA loadings within the ambient atmosphere. However, the implications of ageing on OA/dCO variability appear to be highly uncertain, with little consistency between observed trends for different locations. Furthermore, the exact effects of the fire conditions influencing emissions from biomass burning events remain poorly constrained. These uncertainties regarding the evolution of biomass burning emissions

  13. Delineating the effect of El-Nino Southern Oscillations using oxygen and sulfur isotope anomalies of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza Quintero, M. M.; Jackson, T.; McCabe, J.; Savarino, J. P.; Thiemens, M. H.

    2013-12-01

    Sulfate aerosols, unlike greenhouse gases, contribute to global cooling by acting as cloud condensation nuclei in the troposphere and by directly reflecting solar radiation in the stratosphere. To understand the long-term effect of natural and anthropogenic sulfate aerosol on the climate cycle, it is critical to obtain a clear picture of the factors controlling the transport and transformation of sulfate aerosols. We have employed both oxygen triple isotopes and sulfur quadruple isotopes on sulfates from Antarctic ice samples to define the oxidation history, long range transport dynamics, and sources of sulfate aerosols over time. The measurements are used to deconvolve the impact of natural and anthropogenic aerosols on the stratospheric sulfate aerosol composition. Sulfate aerosols were extracted from a snow pit at the South Pole (1979-2002) with a high resolution temporal (6 month) record of the winter and summer seasons covering two largest volcanic events, Pinatubo and El-chichon and three largest ENSO events of the century. All three oxygen and four sulfur isotopes were measured on the extracted sulfate (Shaheen et al., 2013). The high temperature pyrolysis (1000oC) of silver sulfate yielded O2 and SO2. The oxygen triple isotopic composition of the O2 gas was used to determine the oxidation history of sulfate aerosol and SO2 gas obtained during this reaction was utilized to measure sulfur quadruple isotopes following appropriate reaction chemistry (Farquhar et al., 2001). The data revealed that oxygen isotope anomalies in Antarctic aerosols (Δ17O = 0.8-3.7‰) from 1990 to 2001 are strongly linked to the variation in ozone levels in the upper stratosphere/lower stratosphere. The variations in ozone levels are reflective of the intensity of the ENSO events and changes in relative humidity in the atmosphere during this time period. Sulfate concentrations and sulfur quadruple isotopic composition and associated anomalies were used to elucidate the sources of

  14. Investigating water soluble organic aerosols: Sources and evolution

    NASA Astrophysics Data System (ADS)

    Hecobian, Arsineh N.

    Many studies are being conducted on the different properties of organic aerosols (OA-s) as it is first emitted into the atmosphere and the consequent changes in these characteristics as OA-s age and secondary organic aerosol (SOA) is produced and in turn aged. This thesis attempts to address some of the significant and emerging issues that deal with the formation and transformation of water-soluble organic aerosols in the atmosphere. First, a proven method for the measurement of gaseous sulfuric acid, negative ion chemical ionization mass spectrometry (CIMS), has been modified for fast and sensitive measurements of particulate phase sulfuric acid (i.e. sulfate). The modifications implemented on this system have also been the subject of preliminary verifications for measurements of aerosol phase oxalic acid (an organic acid). Second, chemical and physical characteristics of a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS experiment are presented here. A statistical summary of the emission (or enhancement) ratios relative to carbon monoxide is presented for various gaseous and aerosol species. Extensive investigations of fire plume evolutions were undertaken during the second part of this field campaign. For four distinct Boreal fires, where plumes were intercepted by the aircraft over a wide range of down-wind distances, emissions of various compounds and the effect of aging on them were investigated in detail. No clear evidence of production of secondary compounds (e.g., WSOC and OA) was observed. High variability in emissions between the different plumes may have obscured any clear evidence of changes in the mass of various species with increasing plume age. Also, the lack if tropospheric oxidizing species (e.g., O3 and OH) may have contributed to the lack of SOA formation. Individual intercepts of smoke plumes in this study were segregated by source regions. The normalized excess mixing

  15. Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhou, Shengzhen; Wang, Tao; Wang, Zhe; Li, Weijun; Xu, Zheng; Wang, Xinfeng; Yuan, Chao; Poon, C. N.; Louie, Peter K. K.; Luk, Connie W. Y.; Wang, Wenxing

    2014-05-01

    Organic aerosols influence human health and global radiative forcing. However, their sources and evolution processes in the atmosphere are not completely understood. To study the aging and production of organic aerosols in a subtropical environment, we measured hourly resolved organic carbon (OC) and element carbon (EC) in PM2.5 at a receptor site (Tung Chung, TC) in Hong Kong from August 2011 to May 2012. The average OC concentrations exhibited the highest values in late autumn and were higher during the daytime than at night. The secondary organic carbon (SOC) concentrations, which were estimated using an EC-tracer method, comprised approximately half of the total OC on average. The SOC showed good correlation with odd oxygen (Ox = O3 + NO2) in the summer and autumn seasons, suggestive of contribution of photochemical activities to the formation of secondary organic aerosols (SOA). We calculated production rates of SOA using the photochemical age (defined as -Log10(NOx/NOy)) in urban plumes from the Pearl River Delta (PRD) region and Hong Kong during pollution episodes in summer and autumn. The CO-normalized SOC increased with the photochemical age, with production rates ranging from 1.31 to 1.82 μg m-3 ppmv-1 h-1 in autumn and with a larger rate in summer (3.86 μg m-3 ppmv-1 h-1). The rates are in the range of the rates observed in the outflow from Mexico City, the eastern U.S. and Los Angeles. Microscopic analyses of the individual aerosol particles revealed large contrasts of aerosol physico-chemical properties on clean and smoggy days, with thick organic coatings internally mixed with inorganic sulfate for all particle sizes in the aged plumes from the PRD region.

  16. Collection and analysis of inorganic and water soluble organic aerosols over Maryland and Virginia

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; Ziemba, L. D.; Beyersdorf, A. J.; Phinney, K.; Conny, J.; Dickerson, R. R.

    2012-12-01

    Aerosols aloft have slower removal than those near the ground, in part, because dry and wet deposition rates result in longer lifetimes and greater range of influence. Knowledge of deposition rates and range of transport for different species are important for developing local and regional air quality policy. Currently, the vertical distribution of organic aerosols (OA's) and their polar, oxidized fraction is largely unknown. Comprehensive methods to analyze aerosol composition collected in the boundary layer and the lower free troposphere are lacking. During DISCOVER AQ 2011, both the NASA P3 and Cessna 402B collected aerosols, through shrouded aerosol inlets, onto Teflon and quartz fiber filters. Collection occurred in both the boundary layer and lower free troposphere over Maryland and Virginia, USA. After extraction with water and optimizing separation via ion chromatography, commonly identified secondary organic aerosols can be separated based on their functionality as mono-, di-, or polycarboxylic acids. Inorganic aerosol components can simultaneously be separated and identified with the same method. Individual organic acid compound analysis with detection limits in the low ppb range can be achieved when conductivity/ultraviolet/ and mass spectrometric detectors are placed in tandem. Additionally, thermo optical analysis can be used to determine the mass fraction of water soluble organic carbon versus the total collected mass. This research is designed to provide information on the vertical distribution of particulate organic carbon in the atmosphere, its optical properties, information on aerosol transport in the lower free troposphere, and to provide water soluble organic aerosol structural characterization.

  17. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, P.; Platt, U.; Zetzsch, C.

    2012-01-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS released from simulated natural halogen sources like salt pans. Subsequently the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which result in new functional groups, changed UV/VIS absorption, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  18. Kinetics, products, and mechanisms of secondary organic aerosol formation.

    PubMed

    Ziemann, Paul J; Atkinson, Roger

    2012-10-01

    Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO

  19. Formation of secondary organic aerosol from isoprene oxidation over Europe

    NASA Astrophysics Data System (ADS)

    Karl, M.; Tsigaridis, K.; Vignati, E.; Dentener, F.

    2009-09-01

    The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr-1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of organic matter (OM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates OM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr-1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights in isoprene SOA formation mechanisms

  20. Organic aerosol mass spectral signatures from wood-burning emissions: Influence of burning conditions and wood type

    NASA Astrophysics Data System (ADS)

    Weimer, S.; Alfarra, M. R.; Schreiber, D.; Mohr, M.; PréVôT, A. S. H.; Baltensperger, U.

    2008-05-01

    Wood-burning for domestic heating purposes is becoming more important owing to the increasing use of wood as a renewable fuel. Particle emissions from residential wood combustion contribute substantially to particulate matter during winter. An Aerodyne quadrupole aerosol mass spectrometer was used to study the variability of the mass spectra of organic aerosol particles emitted from the burning of different wood types as a function of burning conditions and burning technologies. Previously found wood-burning mass fragment markers in ambient air and for levoglucosan such as m/z 60, 73, and 29 were confirmed as a feature of wood-burning aerosol. They were enhanced during the flaming phase and reduced in the smoldering phase when burning was conducted in a small wood stove. The mass spectra during the smoldering phase were dominated by oxygenated species and exhibited a strong resemblance to the mass spectrum of fulvic acid which is used as a model compound for highly oxidized aerosol. A strong resemblance between the mass spectra of fulvic acid and organic particles emitted during wood-burning in an automatic furnace was found. In general, we found larger differences in the mass spectra between flaming and smoldering phases of one wood type than between different wood types within the same phase. Furthermore it was observed that during one experiment where white fir bark was burned the contribution of polycyclic aromatic hydrocarbons to the total organic matter was very high (˜30%) compared to other wood-burning experiments (0.4-2.2%).

  1. Secondary Organic Aerosol Formation from Glyoxal: Effects of Seed Aerosol on Particle Composition

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Waxman, Eleanor; Coburn, Sean; Klein, Felix; Koenig, Theodore; Krapf, Manuel; Kumar, Nivedita; Wang, Siyuan; Baltensperger, Urs; Dommen, Josef; Prévôt, Andre; Volkamer, Rainer

    2014-05-01

    Conventional models of secondary organic aerosol (SOA) production neglect aqueous-phase processing mechanisms, thereby excluding potentially important SOA formation pathways. These missing pathways may be an important factor in the inability of current models to fully explain SOA yields and oxidation states. Molecules identified as important precursors to SOA generated through aqueous-phase include glyoxal, which is an oxidation product of numerous organic gases. Glyoxal SOA formation experiments were conducted in the PSI smog chamber as a function of seed composition, relative humidity (RH, 60 to 85%), and the presence/absence of gaseous ammonia, affecting particle acidity. In a typical experiment, the chamber was filled with the selected seed aerosol (NaCl, (NH4)2SO4, NaNO3, or K2SO4), after which glyoxal was generated by the brief (i.e. a few minutes) exposure of acetylene to UV light. The experiment was then allowed to proceed undisturbed for several hours. Each experiment consisted of several UV exposures, followed by a dilution phase at constant RH to investigate the gas/particle partitioning behavior of the generated SOA. Gas-phase glyoxal was monitored by an LED-CE-DOAS system, while the particle composition was measured using online aerosol mass spectrometry (Aerodyne HR-ToF-AMS) and offline analysis of collected filter samples. SOA composition was observed to depend strongly on seed type, with increased imidazole formation evident during experiments with (NH4)2SO¬4 and K2SO4 seeds relative to those with NaCl and NaNO3. Additionally, experiments conducted in the presence of ammonia showed large enhancements in both imidazole content and total SOA yield. Analysis of mass spectral markers indicates reversible uptake of glyoxal but irreversible particle-phase production of the imidazole-containing SOA. Positive matrix factorization (PMF) using the Multilinear Engine (ME-2) was applied to the AMS mass spectral time series to quantify factors related to

  2. Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1).

    PubMed

    Docherty, Kenneth S; Stone, Elizabeth A; Ulbrich, Ingrid M; DeCarlo, Peter F; Snyder, David C; Schauer, James J; Peltier, Richard E; Weber, Rodney J; Murphy, Shane M; Seinfeld, John H; Grover, Brett D; Eatough, Delbert J; Jimenez, Jose L

    2008-10-15

    Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionmenttechniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each ofthese methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of approximately 45% were observed during peak morning traffic periods. These results are contraryto previous estimates of SOAthroughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed. PMID:18983089

  3. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-02-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.

  4. Photochemistry of Secondary Organic Aerosol Components in Water and Ice

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Tran, V. T.; Lignell, H.; Nizkorodov, S.; Shemesh, D.; Gerber, R.

    2011-12-01

    Secondary organic aerosol (SOA) can nucleate clouds in the atmosphere and may be scavenged by previously formed cloud droplets. Significant concentrations of dissolved organic matter are typically present in cloud droplets, snow, and ice particles, however the photochemical transformations of these organic components in liquid aqueous solutions and in ice are poorly understood. An apparatus was constructed to measure the absorption spectra of frozen aqueous solutions in the presence of ultra-violet (UV) light. We can monitor the disappearance of the original reactant as a function of UV exposure time with UV-Visible spectroscopy and identify products with gas chromatography-mass spectrometry. Initial experiments with methylhydroperoxide, the simplest organic peroxide, which is readily detectable in solid and liquid cloud particles, reveal no change in the absorption spectra between the liquid and frozen solution. With these photolysis experiments, we can establish quantum yields of methylhydroperoxide photodissociation and allow for the comparison between liquid and ice phase chemistry. Additional experiments with pinonic acid, a significant product formed from alpha-pinene ozonolysis, and a mixture of common SOA constituents will allow us to determine quantum yields and reveal important insight in the understanding of the cloud processing of water soluble SOA by sunlight.

  5. Exploring matrix effects on photochemistry of organic aerosols

    PubMed Central

    Lignell, Hanna; Hinks, Mallory L.; Nizkorodov, Sergey A.

    2014-01-01

    This work explores the effect of the environment on the rate of photolysis of 2,4-dinitrophenol (24-DNP), an important environmental toxin. In stark contrast to the slow photolysis of 24-DNP in an aqueous solution, the photolysis rate is increased by more than an order of magnitude for 24-DNP dissolved in 1-octanol or embedded in secondary organic material (SOM) produced by ozonolysis of α-pinene. Lowering the temperature decreased the photolysis rate of 24-DNP in SOM much more significantly than that of 24-DNP in octanol, with effective activation energies of 53 kJ/mol and 12 kJ/mol, respectively. We discuss the possibility that the increasing viscosity of the SOM matrix constrains the molecular motion, thereby suppressing the hydrogen atom transfer reaction to the photo-excited 24-DNP. This is, to our knowledge, the first report of a significant effect of the matrix, and possibly viscosity, on the rate of an atmospheric photochemical reaction within SOM. It suggests that rates of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus altitude. The results further suggest that photochemistry in SOM may play a key role in transformations of atmospheric organics. For example, 24-DNP and other nitro-aromatic compounds should readily photodegrade in organic particulate matter, which has important consequences for predicting their environmental fates and impacts. PMID:25201953

  6. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    SciTech Connect

    John H. Seinfeld

    2011-12-08

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  7. Effect of Organic Sea Spray Aerosol on Global and Regional Cloud Condensation Nuclei Concentrations

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Nenes, A.; Moore, R.; Adams, P. J.

    2009-12-01

    Physical processes on the ocean surface (bubble bursting) result in formation of sea spray aerosol. It is now recognized that this aerosol source includes a significant amount of organic matter (O’Dowd et al. 2004). Higher amounts of aerosol lead to higher cloud condensation nuclei (CCN) concentrations, which perturb climate by brightening clouds in what is known as the aerosol indirect effect (Twomey 1977). This work quantifies the marine organic aerosol global emission source as well the effect of the aerosol on CCN by implementing an organic sea spray source function into a series of global aerosol simulations. The new organic sea spray source function correlates satellite retrieved chlorophyll concentrations to fraction of organic matter in sea spray aerosol (O’Dowd et al. 2008). Using this source function, a global marine organic aerosol emission rate of 17.2 Tg C yr-1 is estimated. Effect on CCN concentrations (0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to a general circulation model (Adams and Seinfeld 2002). Upon including organic sea spray aerosol in global simulations, changes in CCN concentrations are induced by the changed aerosol composition as well as the ability of the organic matter to serve as surfactants. To explore surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations (Moore et al. 2008). Preliminary findings suggest that organic sea spray aerosol exerts a localized influence on CCN(0.2%) concentrations. Surfactant effects appear to be the most important impact of marine organic aerosol on CCN(0.2%), as changes in aerosol composition alone have a weak influence, even in regions of high organic sea spray emissions. 1. O’Dowd, C.D., Facchini, M.C. et al., Nature, 431, (2004) 2. Twomey, S., J. Atmos. Sci., 34, (1977) 3. O’Dowd C.D et al. Geophys. Res. Let., 35, (2008) 4

  8. The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition

    NASA Astrophysics Data System (ADS)

    Docherty, K. S.; Aiken, A. C.; Huffman, J. A.; Ulbrich, I. M.; Decarlo, P. F.; Sueper, D.; Worsnop, D. R.; Snyder, D. C.; Grover, B. D.; Eatough, D. J.; Goldstein, A. H.; Ziemann, P. J.; Jimenez, J. L.

    2011-02-01

    Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR) to investigate sources and chemical composition of fine particles (PMf) in the inland region of Southern California. This paper briefly summarizes the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July-15 August) and provides detailed intercomparisons of complementary measurements and average PMf composition during this period. Daily meteorology and gas-phase species concentrations were highly repetitive with meteorological and gas-phase species concentrations displaying clear diurnal cycles and weekday/weekend contrast, with organic aerosol (OA) being the single largest component contributing approximately one-third of PMf mass. In contrast with historical characterizations of OA in the region, several independent source apportionment efforts attributed the vast majority (~80%) of OA mass during SOAR-1 to secondary organic aerosol (SOA). Given the collocation of complementary aerosol measurements combined with a dominance of SOA during SOAR-1, this paper presents new results on intercomparisons among several complementary measurements and on PMf composition during this period. Total non-refractory submicron (NR-PM1) measurements from a high-resolution aerosol mass spectrometer (HR-AMS) are compared with measurements by tapered element oscillating microbalances (TEOM) including a filter dynamics measurement system (TEOMFDMS). NR-PM1 is highly correlated with PM2.5 TEOMFDMS measurements and accounts for the bulk of PM2.5 mass with the remainder contributed primarily by refractory material. In contrast, measurements from a heated TEOM show substantial losses of semi-volatile material, including ammonium nitrate and semi-volatile organic material. Speciated HR-AMS measurements are also consistent and highly correlated with several complementary measurements, including those of a collocated compact AMS

  9. Field Studies for Secondary Organic Aerosol in the Transboundary Air

    NASA Astrophysics Data System (ADS)

    Irei, S.; Takami, A.; Sadanaga, Y.; Nozoe, S.; Hayashi, M.; Hara, K.; Arakaki, T.; Hatakeyama, S.; Miyoshi, T.; Yokouchi, Y.; Bandow, H.

    2014-12-01

    To study formation of secondary organic aerosol (SOA) in the air outflowed from the Chinese continent and its fraction in an urban city located in downwind, we have conducted field studies at two background sites and one urban site in the western Japan: the Cape Hedo Aerosol and Atmospheric Monitoring Station (26.9˚N, 128.3˚E), the Fukue Atmospheric Monitoring Station (32.8˚N, 128.7˚E), and Fukuoka University (33.6˚N, 130.4˚E), respectively. During the studies, stable carbon isotope ratio (δ13C) of low-volatile water-soluble organic carbon (LV-WSOC) was measured in 24 h collected filter samples of total suspended particulate matter. Concentration of fine organic aerosol and the proportion of the signal at m/z 44 (ions from the carboxyl group) in the organic mass spectra (f44) were also measured by Aerodyne aerosol mass spectrometers. Limited to the Fukue site only, mixing ratios of trace gas species, such as aromatic hydrocarbons, NOx, and NOy, were also measured using GC-FID and NOx and NOyanalyzers for estimation of photochemical age (t[OH]). A case study in December 2010 showed that plots of δ13C versus f44 showed systematic variations at Hedo and Fukue. However, their trends were opposite. At Fukue the trend was consistent in the plot of δ13C of LV-WSOC versus t[OH] estimated by the NOx/NOy or the hydrocarbon ratios, indicating influence of SOA. The systematic trends aforementioned qualitatively agreed with a binary mixture model of SOA with background LV-WSOC having the f44 of ~0.06 and the δ13C of -17‰ or higher, implication of some influence of primary emission associated with C4plants. Given that the LV-WSOC at the urban Fukuoka site was a binary mixture, a mass balance for δ13C was constructed below. In the equation, δ13CMix, δ13CLocal, δ13CTrans, and FLocal are δ13C of binary LV-WSOC mixture, δ13C of LV-WSOC from local emission origin, δ13C of LV-WSOC from transboundary pollution origin, and a fraction of LV-WSOC from local emission

  10. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies

    NASA Astrophysics Data System (ADS)

    Cubison, M. J.; Ortega, A. M.; Hayes, P. L.; Farmer, D. K.; Day, D.; Lechner, M. J.; Brune, W. H.; Apel, E.; Diskin, G. S.; Fisher, J. A.; Fuelberg, H. E.; Hecobian, A.; Knapp, D. J.; Mikoviny, T.; Riemer, D.; Sachse, G. W.; Sessions, W.; Weber, R. J.; Weinheimer, A. J.; Wisthaler, A.; Jimenez, J. L.

    2011-12-01

    Biomass burning (BB) is a large source of primary and secondary organic aerosols (POA and SOA). This study addresses the physical and chemical evolution of BB organic aerosols. Firstly, the evolution and lifetime of BB POA and SOA signatures observed with the Aerodyne Aerosol Mass Spectrometer are investigated, focusing on measurements at high-latitudes acquired during the 2008 NASA ARCTAS mission, in comparison to data from other field studies and from laboratory aging experiments. The parameter f60, the ratio of the integrated signal at m/z 60 to the total signal in the organic component mass spectrum, is used as a marker to study the rate of oxidation and fate of the BB POA. A background level of f60~0.3% ± 0.06% for SOA-dominated ambient OA is shown to be an appropriate background level for this tracer. Using also f44 as a tracer for SOA and aged POA and a surrogate of organic O:C, a novel graphical method is presented to characterise the aging of BB plumes. Similar trends of decreasing f60 and increasing f44 with aging are observed in most field and lab studies. At least some very aged BB plumes retain a clear f60 signature. A statistically significant difference in f60 between highly-oxygenated OA of BB and non-BB origin is observed using this tracer, consistent with a substantial contribution of BBOA to the springtime Arctic aerosol burden in 2008. Secondly, a summary is presented of results on the net enhancement of OA with aging of BB plumes, which shows large variability. The estimates of net OA gain range from ΔOA/ΔCO(mass) = -0.01 to ~0.05, with a mean ΔOA/POA ~19%. With these ratios and global inventories of BB CO and POA a global net OA source due to aging of BB plumes of ~8 ± 7 Tg OA yr-1 is estimated, of the order of 5 % of recent total OA source estimates. Further field data following BB plume advection should be a focus of future research in order to better constrain this potentially important contribution to the OA burden.

  11. Contribution of Primary and Secondary Sources to Organic Aerosol and PM2.5 at SEARCH Network Sites

    EPA Science Inventory

    Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. La...

  12. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate. PMID:20944744

  13. Contribution of sulfate and organic aerosols to cloud condensation nuclei at Point Reyes, California

    SciTech Connect

    Rivera-Carpio, C.A.; Corrigan, C.E.; Novakov, T.; Penner, J.E.

    1995-12-01

    We have determined mass size distributions of major aerosol species by the Micro Orifice Uniform Deposit Impactor (MOUDI) and simultaneously measured aerosol number size distributions and CCN number concentrations (at 0.5% supersaturation) at a Pacific coastal site (Point Reyes, California). Number size distributions were calculated from the impactor data from which the mass contributions of sulfate, organic, and seasalt aerosols to CCN number concentrations were estimated. The derived and measured size distributions and the derived and measured CCN number concentrations were found to be in good agreement. Our results demonstrate that organic aerosols, depending on the meteorological conditions, may contribute a variable and often dominant fraction to the CCN concentrations.

  14. Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere.

    PubMed

    Koop, Thomas; Bookhold, Johannes; Shiraiwa, Manabu; Pöschl, Ulrich

    2011-11-21

    Recently, it has been proposed that organic aerosol particles in the atmosphere can exist in an amorphous semi-solid or solid (i.e. glassy) state. In this perspective, we analyse and discuss the formation and properties of amorphous semi-solids and glasses from organic liquids. Based on a systematic survey of a wide range of organic compounds, we present estimates for the glass forming properties of atmospheric secondary organic aerosol (SOA). In particular we investigate the dependence of the glass transition temperature T(g) upon various molecular properties such as the compounds' melting temperature, their molar mass, and their atomic oxygen-to-carbon ratios (O:C ratios). Also the effects of mixing different compounds and the effects of hygroscopic water uptake depending on ambient relative humidity are investigated. In addition to the effects of temperature, we suggest that molar mass and water content are much more important than the O:C ratio for characterizing whether an organic aerosol particle is in a liquid, semi-solid, or glassy state. Moreover, we show how the viscosity in liquid, semi-solid and glassy states affect the diffusivity of those molecules constituting the organic matrix as well as that of guest molecules such as water or oxidants, and we discuss the implications for atmospheric multi-phase processes. Finally, we assess the current state of knowledge and the level of scientific understanding, and we propose avenues for future studies to resolve existing uncertainties. PMID:21993380

  15. Combined measurements of organic aerosol isotopic and chemical composition to investigate day-night differences in carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Holzinger, Rupert; Meijer, Harro A. J.; Röckmann, Thomas

    2014-05-01

    PM2.5 filter samples have been collected during the Pegasos (Mai, 2012) and Actris (June/July 2012) campaigns at the CESAR site near Cabauw, the Netherlands. This site lies in a rural location surrounded by major urban centers and highways and is a good location for measuring the regional aerosol contamination in the Netherlands. High volume filter samples were taken over several days, but the aerosol was collected on separate filters during day and night time periods. We analyzed these filters for carbon isotopes (14C and 13C) and detailed chemical composition of the organic fraction, which can be a powerful tool, for investigating sources and processing of the organic aerosol. Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol. We use a method to measure d13C values of OC desorbed from the filter samples in He at different temperature steps. The chemical composition of the organic fraction at the same temperature steps can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The PTR-MS method is applied to the filter samples as well to aerosol collected in situ by a impaction using a Collection-Thermal-Desorption Cell. First results show that the mass concentration of the carbonaceous aerosol is higher during night time than during day time, dominated by a strong increase of biogenic organic aerosol. This is at least partially caused by a shallow night time boundary layer combined with decreased traffic sources and increased condensation of semi-volatile biogenic gases during night-time. Evidence for the role of semi-volatile compounds in enhancing organic carbon (OC) night time concentrations comes from several observations: (1) semi-volatile OC with desorption temperatures lower than 250 °C increases

  16. The thermodynamic properties of organic oxygen compounds

    NASA Astrophysics Data System (ADS)

    Chirico, R. D.; Steele, W. V.; Hossenlopp, A.; Nguyen, A.; Archer, D. G.; Strube, M. M.

    1988-01-01

    The principles of group additivity are used to compare a series of cyclic hydrocarbons with the corresponding oxygen-containing analogs. The strengths and limitations of the group-additivity method are demonstrated and recommendations are made for measurements essential to the improvement of the accuracy of the predicted properties. The ideal-gas enthalpies of formation and ideal-gas entropies (which are used in combination to calculate Gibbs energies) are considered.

  17. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  18. A study of a singlet-oxygen generator with a twisted aerosol flow

    SciTech Connect

    Adamenkov, A A; Vyskubenko, B A; Il'in, S P; Krukovskii, I M

    2002-06-30

    The results of a study of a singlet-oxygen generator (SOG) with a twisted aerosol flow are presented. The output parameters of the generator obtained in experiments exceed the corresponding characteristics reported earlier in the literature. The maximum chemical efficiency of the reactor amounts to {approx} 70%. The flux density of the electron energy stored by the excited oxygen molecules in the reaction zone is above 1.5 kJ cm{sup -2} s{sup -1}. The measured singlet-oxygen yield is {approx} 60% at a pressure of 100 Torr. Adding a buffer gas (N{sub 2}) to chlorine ensures an increase in the outlet pressure up to 250 Torr without a decrease in the singlet-oxygen yield. The utilisation of chlorine under such conditions exceeds 95 %. The SOG design with a twisted flow ensures atmospheric pressure of the waste solution at the reactor outlet, thus significantly simplifying the development of a system for liquid recycling. (active media)

  19. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol

    NASA Astrophysics Data System (ADS)

    Kiss, Gyula; Varga, BáLint; Galambos, IstváN.; Ganszky, Ildikó

    2002-11-01

    Atmospheric fine aerosol (dp < 1.5 μm) was collected at a rural site in Hungary from January to September 2000. The total carbon concentration ranged from 5 to 13 μg m-3 and from 3 to 6 μg m-3 in the first three months and the rest of the sampling period, respectively. On average, water-soluble organic carbon (WSOC) accounted for 66% of the total carbon concentration independent of the season. A variable fraction of the water-soluble organic constituents (38-72% of WSOC depending on the sample) was separated from inorganic ions and isolated in pure organic form by using solid phase extraction on a copolymer sorbent. This fraction was experimentally characterized by an organic matter to organic carbon mass ratio of 1.9, and this value did not change with the seasons. Furthermore, the average elemental composition (molar ratio) of C:H:N:O ≈ 24:34:1:14 of the isolated fraction indicated the predominance of oxygenated functional groups, and the low hydrogen to carbon ratio implied the presence of unsaturated or polyconjugated structures. These conclusions were confirmed by UV, fluorescence, and Fourier transform infrared (FTIR) studies. On the basis of theoretical considerations, the organic matter to organic carbon mass ratio was estimated to be 2.3 for the nonisolated water-soluble organic fraction, resulting in an overall ratio of 2.1 for the WSOC. In order to extend the scope of this estimation to the total organic carbon, which is usually required in mass closure calculations, the aqueous extraction was followed by sequential extraction with acetone and 0.01 M NaOH solution. As a result, a total organic matter to total organic carbon mass ratio of 1.9-2.0 was estimated, but largely on the basis of experimental data.

  20. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-06-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp < 0.96 μm. Non-exchangeable aliphatic (H-C), unsaturated aliphatic (H-C-C=), oxygenated saturated aliphatic (H-C-O), acetalic (O-CH-O) and aromatic (Ar-H) protons were determined by proton nuclear magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 1.5 < dp < 3.0 μm to 73.9 ± 12.3 nmol m-3 for particles with dp < 0.49 μm. The molar H / C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R-H was the most abundant group, representing about 45% of measured total non-exchangeable organic hydrogen concentrations, followed by H-C-O (27%) and H-C-C= (26%). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest

  1. Functional characterization of the water-soluble organic carbon of size fractionated aerosol in the Southern Mississippi Valley

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-02-01

    The chemical content of the water soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to: (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for the period when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp < 0.96 μm. Non-exchangeable aliphatic (H-C), unsaturated aliphatic (H-C-C=), oxygenated saturated aliphatic (H-C-O), acetalic (O-CH-O) and aromatic (Ar-H) protons were determined by proton nuclear magnetic resonance. The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 0.96 < dp < 1.5 μm to 73.9 ± 12.3 nmol m-3 for particles with dp < 0.49 μm, resulting in molar H / C ratios of 0.48 ± 0.05 to 0.92 ± 0.09 observed in combustion-related organic aerosol. The R-H was the most abundant group representing about 45% of measured total non-exchangeable organic hydrogen concentration followed by H-C-O (27%) and H-C-C= (26%). Levoglucosan, amines, ammonium and methanosulfonate were tentatively identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosol and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative

  2. Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Lewandowski, M.; Jaoui, M.; Offenberg, J. H.; Krug, J. D.; Kleindienst, T. E.

    2015-04-01

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA) have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ m-3 air sample volume) and the percent change in secondary organic carbon (SOC). The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, and extend the previous analysis of isoprene. The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m-3 increase in H+ was approximately a factor of 3 less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m-3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

  3. Temperature response of the submicron organic aerosol from temperate forests

    NASA Astrophysics Data System (ADS)

    Leaitch, W. Richard; Macdonald, Anne Marie; Brickell, Peter C.; Liggio, John; Sjostedt, Steve J.; Vlasenko, Alexander; Bottenheim, Jan W.; Huang, Lin; Li, Shao-Meng; Liu, Peter S. K.; Toom-Sauntry, Desiree; Hayden, Katherine A.; Sharma, Sangeeta; Shantz, Nicole C.; Wiebe, H. Allan; Zhang, Wendy; Abbatt, Jonathan P. D.; Slowik, Jay G.; Chang, Rachel Y.-W.; Russell, Lynn M.; Schwartz, Rachel E.; Takahama, Satoshi; Jayne, John T.; Ng, Nga Lee

    2011-12-01

    Observations from four periods (three late springs and one early summer) at temperate forest sites in western and eastern Canada offer the first estimation of how the concentrations of submicron forest organic aerosol mass (SFOM) from the oxidation of biogenic volatile organic compounds (BVOC) vary over the ambient temperature range of 7 °C to 34 °C. For the measurement conditions of clear skies, low oxides of nitrogen and within approximately one day of emissions, 50 estimates of SFOM concentrations show the concentrations increase exponentially with temperature. The model that is commonly used to define terpene emissions as a function of temperature is able to constrain the range of the SFOM values across the temperature range. The agreement of the observations and model is improved through the application of an increased yield of SFOM as the organic mass concentration increases with temperature that is based on results from chamber studies. The large range of SFOM concentrations at higher temperatures leaves open a number of questions, including the relative contributions of changing yield and of isoprene, that may be addressed by more ambient observations at higher temperatures.

  4. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation and Growth

    SciTech Connect

    Perraud, Veronique M.; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. L.; Zelenyuk, Alla; Imre, D.; Chang, W. L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-02-21

    Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA) account for a significant portion of total airborne particles. They are formed in reactions of organic gases that produce low volatility and semi-volatile organic compounds (SVOCs). Current atmospheric models assume that SOA are liquids into which SVOCs undergo equilibrium partitioning and grow the particles. However a large discrepancy between model predictions and field measurements of SOA is commonly observed. We report here laboratory studies of the oxidation of a-pinene by ozone and nitrate radicals and show that particle composition is actually consistent with a kinetically determined growth mechanism, and not with equilibrium partitioning between the gas phase and liquid particles. If this is indeed a general phenomenon in air, the formulation of atmospheric SOA models will have to be revised to reflect this new paradigm. This will have significant impacts on quantifying the role of SOA in air quality, visibility, and climate.

  5. Organic aerosol emission ratios from the laboratory combustion of biomass fuels

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew D.; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin R.; Lee, Taehyoung; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Sullivan, Amy P.

    2014-11-01

    Organic aerosol (OA) emission ratios (ER) have been characterized for 67 burns during the second Fire Laboratory at Missoula Experiment. These fires involved 19 different species representing 6 major fuels, each of which forms an important contribution to the U.S. biomass burning inventory. Average normalized ΔOA/ΔCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding differen-ces between separate plumes in ambient measurements. This variability is strongly influenced by highly contrasting ΔOA levels between burns and the increased partitioning of semivolatile organic compounds to the particle phase at high ΔOA concentrations. No correlation across all fires was observed between ΔOA/ΔCO and modified combustion efficiency (MCE), which acts as an indicator of the proportional contributions of flaming and smoldering combustion phases throughout each burn. However, a negative correlation exists with MCE for some coniferous species, most notably Douglas fir, for which there is also an influence from fuel moisture content. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as measured by aerosol mass spectrometer provides an indication of oxygenation as influenced by combustion processes at source, with ΔOA/ΔCO decreasing with increasing f44 for all fuel types. Inconsistencies in the magnitude of the effects associated with each potential influence on ΔOA/ΔCO emphasize the lack of a single dominant control on fire emissions, and a dependency on both fuel properties and combustion conditions.

  6. Secondary Organic Aerosol from biogenic VOCs over West Africa during AMMA

    NASA Astrophysics Data System (ADS)

    Capes, G.; Murphy, J. G.; Reeves, C. E.; McQuaid, J. B.; Hamilton, J. F.; Hopkins, J. R.; Crosier, J.; Williams, P. I.; Coe, H.

    2009-01-01

    This paper presents measurements of organic aerosols above subtropical West Africa during the wet season using data from the UK Facility for Airborne Atmospheric Measurements (FAAM) aircraft. Measurements of biogenic volatile organic compounds (BVOC) at low altitudes over these subtropical forests were made during the African Monsoon Multidisciplinary Analysis (AMMA) field experiment during July and August 2006 mainly above Benin, Nigeria and Niger. Data from an Aerodyne Quadrupole Aerosol Mass Spectrometer show a median organic aerosol loading of 1.08 μg m-3 over tropical West Africa, which represents the first regionally averaged assessment of organic aerosol mass (OM) in this region during the wet season. This is in good agreement with predictions based on aerosol yields from isoprene and monoterpenes during chamber studies and model predictions based on partitioning schemes, contrasting markedly with the large under representations of OM in similar models when compared with data from mid latitudes.

  7. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Achakulwisut, P.; Pope, F. D.; Davies, J. F.; Spring, D. R.; Kalberer, M.

    2011-12-01

    Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5-90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160-200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This

  8. Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Zhao, D. F.; Segev, L.; Schlag, P.; Kiendler-Scharr, A.; Fuchs, H.; Watne, Å. K.; Bluvshtein, N.; Mentel, Th. F.; Hallquist, M.; Rudich, Y.

    2014-06-01

    influence of anthropogenic VOCs on the oxygenated organic aerosol as well as the atmospheric implications are discussed.

  9. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and lab studies

    NASA Astrophysics Data System (ADS)

    Cubison, M. J.; Ortega, A. M.; Hayes, P. L.; Farmer, D. K.; Day, D.; Lechner, M. J.; Brune, W. H.; Apel, E.; Diskin, G. S.; Fisher, J. A.; Fuelberg, H. E.; Hecobian, A.; Knapp, D. J.; Mikoviny, T.; Riemer, D.; Sachse, G. W.; Sessions, W.; Weber, R. J.; Weinheimer, A. J.; Wisthaler, A.; Jimenez, J. L.

    2011-04-01

    Biomass burning (BB) is a large source of primary and secondary organic aerosols (POA and SOA). This study addresses the physical and chemical evolution of BB organic aerosols. Firstly, the evolution and lifetime of BB POA and SOA signatures observed with the Aerodyne Aerosol Mass Spectrometer are investigated, focusing on measurements at high-latitudes acquired during the 2008 NASA ARCTAS mission, in comparison to data from other field studies and from laboratory aging experiments. The parameter f60, the ratio of the integrated signal at m/z 60 to the total signal in the organic component mass spectrum, is used as a marker to study the rate of oxidation and fate of the BB POA. A background level of f60~0.3% ±0.06% for SOA-dominated ambient OA is shown to be an appropriate background level for this tracer. Using also f44 as a tracer for SOA and aged POA, a novel graphical method is presented to characterise the aging of BB plumes. Similar trends of decreasing f60 and increasing f44 with aging are observed in most field and lab studies. At least some very aged BB plumes retain a clear f60 signature. A statistically significant difference in f60 between highly-oxygenated OA of BB and non-BB origin is observed using this tracer, consistent with a substantial contribution of BBOA to the springtime Arctic aerosol burden in 2008. Secondly, a summary is presented of results on the net enhancement of OA with aging of BB plumes, which shows large variability. The estimates of net OA gain range from ΔOA/ΔCO(mass) =-0.01 to ~0.07, with a mean ΔOA/POA ~25%. With these ratios and global inventories of BB CO and POA a global net OA source due to aging of BB plumes of ~9 Tg OA yr-1 is estimated, of the order of 5% of recent total OA source estimates. Further field data following BB plume advection should be a focus of future research in order to better constrain this potentially important contribution to the OA burden.

  10. Investigations of Global Chemistry-Climate Interactions and Organic Aerosol Using Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Pye, Havala Olson Taylor

    Aerosol, or particulate matter (PM), is an important component of the atmosphere responsible for negative health impacts, environmental degradation, reductions in visibility, and climate change. In this work, the global chemical transport model, GEOS-Chem, is used as a tool to examine chemistry-climate interactions and organic aerosols. GEOS-Chem is used to simulate present-day (year 2000) and future (year 2050) sulfate, nitrate, and ammonium aerosols and investigate the potential effects of changes in climate and emissions on global budgets and U.S. air quality. Changes in a number of meteorological parameters, such as temperature and precipitation, are potentially important for aerosols and could lead to increases or decreases in PM concentrations. Although projected changes in sulfate and nitrate precursor emissions favor lower PM concentrations over the U.S., projected increases in ammonia emissions could result in higher nitrate concentrations. The organic aerosol simulation in GEOS-Chem is updated to include aerosol from primary semivolatile organic compounds (SVOCS), intermediate volatility compounds (IVOCs), NOx dependent terpene aerosol, and aerosol from isoprene + NO3 reaction. SVOCs are identified as the largest global source of organic aerosol even though their atmospheric transformation is highly uncertain and emissions are probably underestimated. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and high aerosol yields from NO3 oxidation, biogenic hydrocarbons reacting with the nitrate radical are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. Globally, 69 to 88 Tg/yr of aerosol is predicted to be produced annually, approximately 22 to 24 Tg/yr of which is from biogenic hydrocarbons.

  11. Estimating the contribution of organic acids to northern hemispheric continental organic aerosol

    NASA Astrophysics Data System (ADS)

    Yatavelli, Reddy L. N.; Mohr, Claudia; Stark, Harald; Day, Douglas A.; Thompson, Samantha L.; Lopez-Hilfiker, Felipe D.; Campuzano-Jost, Pedro; Palm, Brett B.; Vogel, Alexander L.; Hoffmann, Thorsten; Heikkinen, Liine; ńijälä, Mikko; Ng, Nga L.; Kimmel, Joel R.; Canagaratna, Manjula R.; Ehn, Mikael; Junninen, Heikki; Cubison, Michael J.; Petäjä, Tuukka; Kulmala, Markku; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2015-07-01

    Using chemical ionization mass spectrometry to detect particle-phase acids and aerosol mass spectrometry (AMS) measurements from Colorado, USA, and two studies in Hyytiälä, Finland, we quantify the fraction of organic aerosol (OA) mass that is composed of molecules with acid functional groups (facid). Molecules containing one or more carboxylic acid functionality contributed approximately 29% (45-51%) of the OA mass in Colorado (Finland). Organic acid mass concentration correlates well with AMS m/z 44 (primarily CO2+), a commonly used marker for highly oxidized aerosol. Using the average empirical relationship between AMS m/z 44 and organic acids in these three studies, together with m/z 44 data from 29 continental northern hemispheric (NH) AMS data sets, we estimate that molecules containing carboxylic acid functionality constitute on average 28% (range 10-50%) of NH continental OA mass with typically higher values at rural/remote sites and during summer and lower values at urban sites and during winter.

  12. Real-time measurements of ambient aerosols in a polluted Indian city: Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Bhattu, Deepika; Gupta, Tarun; Tripathi, Sachchida N.; Canagaratna, Manjula R.

    2015-09-01

    A detailed time-resolved chemical characterization of ambient nonrefractory submicron aerosols (NR-PM1) was conducted for the first time in India. The measurements were performed during the winter (November 2011 to January 2012) in a heavily polluted city of Kanpur, which is situated in the Indo-Gangetic Plain. Real-time measurements provided new insights into the sources and evolution of organic aerosols (OA) that could not be obtained using previously deployed filter-based measurements at this site. The average NR-PM1 loading was very high (>100 µg/m3) throughout the study, with OA contributing approximately 70% of the total aerosol mass. Source apportionment of the OA using positive matrix factorization revealed large contributions from fresh and aged biomass burning OA throughout the entire study period. A back trajectory analysis showed that the polluted air masses were affected by local sources and distant source regions where the burning of paddy residues occurs annually during winter. Several fog episodes were encountered during the study, and the OA composition varied between foggy and nonfoggy periods, with higher oxygen to carbon (O/C) ratios during the foggy periods. The evolution of OA and their elemental ratios (O:C and H:C) were investigated for the possible effects of fog processing.

  13. Sources and source processes of organic nitrogen aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  14. A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Kroll, J. H.; Pandis, S. N.; Robinson, A. L.

    2011-09-01

    We discuss the use of a two-dimensional volatility-oxidation space (2-D-VBS) to describe organic-aerosol chemical evolution. The space is built around two coordinates, volatility and the degree of oxidation, both of which can be constrained observationally or specified for known molecules. Earlier work presented the thermodynamics of organics forming the foundation of this 2-D-VBS, allowing us to define the average composition (C, H, and O) of organics, including organic aerosol (OA) based on volatility and oxidation state. Here we discuss how we can analyze experimental data, using the 2-D-VBS to gain fundamental insight into organic-aerosol chemistry. We first present a well-understood "traditional" secondary organic aerosol (SOA) system - SOA from α-pinene + ozone, and then turn to two examples of "non-traditional" SOA formation - SOA from wood smoke and dilute diesel-engine emissions. Finally, we discuss the broader implications of this analysis.

  15. A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Kroll, J. H.; Pandis, S. N.; Robinson, A. L.

    2012-01-01

    We discuss the use of a two-dimensional volatility-oxidation space (2-D-VBS) to describe organic-aerosol chemical evolution. The space is built around two coordinates, volatility and the degree of oxidation, both of which can be constrained observationally or specified for known molecules. Earlier work presented the thermodynamics of organics forming the foundation of this 2-D-VBS, allowing us to define the average composition (C, H, and O) of organics, including organic aerosol (OA) based on volatility and oxidation state. Here we discuss how we can analyze experimental data, using the 2-D-VBS to gain fundamental insight into organic-aerosol chemistry. We first present a well-understood "traditional" secondary organic aerosol (SOA) system - SOA from α-pinene + ozone, and then turn to two examples of "non-traditional" SOA formation - SOA from wood smoke and dilute diesel-engine emissions. Finally, we discuss the broader implications of this analysis.

  16. Carbon in southeastern U.S. aerosol particles: Empirical estimates of secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Blanchard, Charles L.; Hidy, George M.; Tanenbaum, Shelley; Edgerton, Eric; Hartsell, Benjamin; Jansen, John

    Fine particles in the southeastern United States are rich in carbon: Southeastern Aerosol Research and Characterization (SEARCH) network measurements from 2001 through 2004 indicate that fine particles less than 2.5 μm aerodynamic diameter (PM 2.5) at two inland urban sites, Atlanta, GA and Birmingham, AL, contain 9 and 11% black carbon (BC) by mass, respectively, on average. For neighboring rural or urban Gulf Coast sites, the range is 4-7% BC. Organic carbon (OC) ranges from 25 to 27% in the inland cities, and 19-24% at the rural or Gulf Coast locations. Evidence in the literature suggests that a substantial fraction of the OC found in the Southeast is produced by atmospheric chemical reactions of volatile organic compounds (VOCs). Estimation of the fraction of OC from primary and secondary sources is difficult from first principles, because the chemistry is complex and incompletely understood, and the emission sources are both anthropogenic and natural. As an alternative, measurement-based models can be used to estimate empirically the primary and secondary source contributions. Three complementary empirical models are described and applied using the SEARCH database. The methods include (a) a multiple regression model employing markers for primary and secondary carbon using gas and particle data, (b) a carbon mass balance using carbon and CO data, along with certain assumptions about the OC/CO ratios in primary emissions for different urban and rural conditions, and (c) exploitation of isotopic measurements of carbon along with the BC and OC data. Secondary organic carbon (SOC) represents ˜20-60% of mean OC, depending upon location and season. The results are sensitive to estimates of emissions of primary OC and BC.

  17. Towards Quantifying the Contribution of Ship Emissions to the Aerosol Environment in San Diego Using Multi-oxygen Isotopic Analysis of Aerosol Nitrate

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Jackson, T.; Nguyen, B.; Barnett, B.; Thiemens, M. H.

    2006-12-01

    The rise of global trade has also brought along an increase in the amount of ship traffic off the coast of Southern California. Ship emissions are currently poorly regulated, but the combustion of high-sulfur fuels by these ships is expected to contribute significant amounts of NOx, SOx, and PM into the atmosphere. The emissions from these ships are potentially very significant, yet measurements of ship plume aerosols are limited and their contributions to the ambient air quality of San Diego is unknown. The task of isolating the contribution of ocean vessels to San Diego's urban environment is complicated by the complexity of sources of the local urban environment of San Diego as well as Los Angeles. Here, we will present the results of a 1 year plus study whose principal goal is to quantify the contribution that ship plumes make to the particulate environment in San Diego. For over the past year, we have been collecting aerosol samples at Scripps Pier in La Jolla. Here we present the preliminary results of a yearlong study of the anionic concentrations as well as the oxygen isotope composition of aerosol nitrate. Samples were collected twice a week using a multistage (4 stages) aerosol collector. These samples were hydrated and their anionic (chlorine, nitrate, and sulfate) concentrations were determined using standard techniques. Meteorological back-trajectory analysis (Hysplit) was used to identify sampling days whose air masses were "oceanic". These days display elevated concentrations of anions when compared to pristine oceanic aerosols. Using standard techniques, we isolated the NO3 component of these aerosols and measured their oxygen isotopic compositions of these samples using Isotope Ratio Mass Spectrometry (IRMS). We find that aerosol masses which are likely impacted by ship emissions display a peculiar anti-correlation between the Δ17O (~eq δ17O - 0.52×δ18O) of nitrate in the fine (<1.5 micron) and coarse (>1.5 micron) aerosol sizes. The magnitude

  18. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosols

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J. R.; Makar, P.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Lu, G.; Gordon, M.; Mihele, C.

    2011-12-01

    The volatility of the organic aerosol (OA) fraction has received a great deal of attention of late in light of new volatility-based modelling approaches and the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol (POA) species and their subsequent oxidation may contribute significantly to SOA downwind of sources. To assess the importance of the temperature dependence of these primary organic aerosol species a temperature controlled inlet capable of heating and cooling was coupled to a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and was deployed in Southern Ontario as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER) 2010 field campaign. The instrument and inlet system were mounted on a mobile platform to measure upwind and downwind of the roadway. Changes in"volatility" were observed when the mobile lab moved from an upwind to a downwind location, clearly demonstrating the impact of the roadway. Measured OA mass changes observed ranged from 0.5 to ~1 %/°C over a range of 15 degrees below to 25 degrees above ambient, depending on the location of the mobile lab and meteorological conditions at the time. Positive Matrix Factorization (PMF) was applied to the complete data set (ambient and temperature controlled data) and yielded a 3 factor solution with factors consistent with hydro carbon like organic aerosol (HOA), aged organic aerosol (OOA-1) and a fresher organic aerosol (OOA-2). Mass changes as a function of temperature were observed for all three factors and were found to be similar over the temperature range studied. The potential use of this data for deriving parameters such as average molecular mass of semi-volatile (SVOC) and intermediate volatility organic (IVOC) gases taken up onto organic aerosol using the parameterization of gas-particle partitioning of Pankow (1994) will be discussed.

  19. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-06-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.

  20. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Jathar, Shantanu H; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  1. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  2. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  3. Organic nitrogen in PM2.5 aerosol at a forest site in the Southeast US

    EPA Science Inventory

    There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facilit...

  4. Contribution of Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and Measurements

    EPA Science Inventory

    In a region heavily influenced by anthropogenic and biogenic atmospheric emissions, recent field measurements have attributed one third of urban organic aerosol by mass to isoprene epoxydiols (IEPOX). These aerosols arise from the gas phase oxidation of isoprene, the formation of...

  5. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  6. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    from aliphatic or aromatic precursors is coupled to the formation of carboxylic acids by saturation of reactive radical sites with oxygen, but carboxylic acids themselves can be destroyed by RHS, leading to further fragmentation of the carbon structure. References Cai, X., and Griffin, R. J.: Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms, J. Geophys. Res., 111, D14206/14201-D14206/14214, 2006. Cai, X., Ziemba, L. D., and Griffin, R. J.: Secondary aerosol formation from the oxidation of toluene by chlorine atoms, Atmos. Environ., 42, 7348-7359, 2008. Ofner, J., Krüger, H.-U., and Zetzsch, C.: Circular multireflection cell for optical spectroscopy, Appl. Opt., 49, 5001-5004, 2010. Ofner, J., Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C.: Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys., 12, 5787-5806, 2012.

  7. Estimating the influence of the secondary organic aerosols on present climate using ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Tsigaridis, K.; Feichter, J.

    2011-01-01

    In recent years, several field measurement campaigns have highlighted the importance of the organic fraction of aerosol mass, and with such spatial diversity that one may assert that these aerosols are ubiquitous in the troposphere, with particular importance in continental areas. Investigation of the chemical composition of organic aerosol remains a work in progress, but it is now clear that a significant portion of the total organic mass is composed of secondary organic material, that is, aerosol chemically formed from gaseous volatile organic carbon (VOC) precursors. A number of such precursors, of both biogenic and anthropogenic origin, have been identified. Experimental, inventory building and modelling studies have followed. Laboratory studies have yielded information on the chemical pathways that lead to secondary organic aerosol (SOA) formation, and provided the means to estimate the aerosol yields from a given precursor-oxidant reaction. Global inventories of anthropogenic VOC emissions, and of biogenic VOC emitter species distribution and their emission potential have been constructed. Models have been developed that provide global estimates of precursor VOC emissions, SOA formation and atmospheric burdens of these species. This paper estimates the direct and indirect effects of these aerosols using the global climate-aerosol model ECHAM5-HAM. For year 2000 conditions, we estimate a global annual mean shortwave (SW) aerosol direct effect due to SOA of -0.3 W m-2. The model predicts a positive SW indirect effect due to SOA amounting to +0.23 W m-2, arising from enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink for small particles. Longwave effects are small. Finally, we indicate of areas of research into SOA that are required in order to better constrain our estimates of the influence of aerosols on the climate system.

  8. Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons

    PubMed Central

    2014-01-01

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed. PMID:25229208

  9. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; Baker, K. R.; Hayes, P. L.; Jimenez, J. L.; Koo, B.; Pye, H. O. T.

    2015-10-01

    Community Multiscale Air Quality (CMAQ) model simulations utilizing the volatility basis set (VBS) treatment for organic aerosols (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of organic aerosol (OA) in southern California. CMAQ-VBS (OA lumped by volatility, semivolatile POA) underpredicted total organic carbon (OC) at CSN (-25.5 % Normalized Median Bias (NMdnB)) and IMPROVE (-63.9 % NMdnB) locations and total OC was underpredicted to a greater degree compared to the CMAQ-AE6 (9.9 and -55.7 % NMdnB, respectively; semi-explicit OA treatment, SOA lumped by parent hydrocarbon, nonvolatile POA). However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA indicated that CMAQ-VBS better represented the diurnal profile and the primary/secondary split of OA. CMAQ-VBS secondary organic aerosol (SOA) underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate of SOA) concentration by a factor of 5.2 (4.7 μg m-3 measured vs. 0.9 μg m-3 modeled), a considerable improvement to CMAQ-AE6 SOA predictions, which were approximately 24× lower than the average AMS OOA concentration. We use two new methods, based on species ratios and on a simplified SOA parameterization from the observations, to apportion the SOA underprediction for CMAQ-VBS to too slow photochemical oxidation (estimated as 1.5× lower than observed at Pasadena using - log (NOx: NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2× for Pasadena), and too low emissions or too high dispersion for the Pasadena site (estimated to be 1.6 to 2.3× too low/high). The first and third factors will be similar for CMAQ-AE6, while the intrinsic SOA formation

  10. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    DOE PAGESBeta

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-03-29

    In this paper, Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA) as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA) formation. CMAQ-VBS insteadmore » treats POA as semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC) at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA) concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS). We use two new methods, one based on species ratios (SOA/ΔCO and SOA/Ox) and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 × lower than observed at Pasadena using -log(NOx:NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2 × for Pasadena), and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 × too low/excessive). The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation

  11. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    NASA Astrophysics Data System (ADS)

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-03-01

    Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA) as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA) formation. CMAQ-VBS instead treats POA as semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC) at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA) concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS). We use two new methods, one based on species ratios (SOA/ΔCO and SOA/Ox) and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 × lower than observed at Pasadena using -log(NOx : NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2 × for Pasadena), and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 × too low/excessive). The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation efficiency for that model is

  12. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    DOE PAGESBeta

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-03-29

    Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA) as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA) formation. CMAQ-VBS instead treats POA asmore » semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC) at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA) concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS). We use two new methods, one based on species ratios (SOA/ΔCO and SOA/Ox) and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 ×  lower than observed at Pasadena using −log(NOx : NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2 ×  for Pasadena), and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 ×  too low/excessive). The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation

  13. Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska

    NASA Astrophysics Data System (ADS)

    Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon

    2016-04-01

    We investigated total suspended particles (TSP) collected from central Alaska, USA for molecular compositions of secondary organic aerosol (SOA) derived from the oxidation of biogenic volatile organic compounds (BVOCs). Isoprene-, α-/β-pinene- and β-caryophyllene-SOA tracers were determined using gas chromatography-mass spectrometry. The concentration ranges of isoprene, α-/β-pinene and β-caryophyllene oxidation products were 0.02-18.6 ng m-3 (ave. 4.14 ng m-3), 0.42-8.24 ng m-3 (2.01 ng m-3) and 0.10-9 ng m-3 (1.53 ng m-3), respectively. Isoprene-SOA tracers showed higher concentrations in summer (ave. 8.77 ng m-3), whereas α-/β-pinene- and β-caryophyllene-SOA tracers exhibited highest levels in spring (3.55 ng m-3) and winter (4.04 ng m-3), respectively. β-Caryophyllinic acid and levoglucosan showed a positive correlation, indicating that biomass burning may be a major source for β-caryophyllene. We found that mean contributions of isoprene oxidation products to organic carbon (OC) and water-soluble organic (WSOC) (0.56% and 1.2%, respectively) were higher than those of α-/β-pinene (0.31% and 0.55%) and β-caryophyllene (0.08% and 0.13%). Using a tracer-based method, we estimated the concentrations of secondary organic carbon (SOC) produced from isoprene, α-/β-pinene and β-caryophyllene to be 0.66-718 ngC m-3 (ave. 159 ngC m-3), 7.4-143 ngC m-3 (35 ngC m-3) and 4.5-391 ngC m-3 (66.3 ngC m-3), respectively. Based on SOA tracers, this study suggests that isoprene is a more important precursor for the production of biogenic SOA than α-/β-pinene and β-caryophyllene in subarctic Alaska.

  14. Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors.

    PubMed

    Minguillón, M C; Pérez, N; Marchand, N; Bertrand, A; Temime-Roussel, B; Agrios, K; Szidat, S; van Drooge, B; Sylvestre, A; Alastuey, A; Reche, C; Ripoll, A; Marco, E; Grimalt, J O; Querol, X

    2016-07-18

    Source contributions of organic aerosol (OA) are still not fully understood, especially in terms of quantitative distinction between secondary OA formed from anthropogenic precursors vs. that formed from natural precursors. In order to investigate the OA origin, a field campaign was carried out in Barcelona in summer 2013, including two periods characterized by low and high traffic conditions. Volatile organic compound (VOC) concentrations were higher during the second period, especially aromatic hydrocarbons related to traffic emissions, which showed a marked daily cycle peaking during traffic rush hours, similarly to black carbon (BC) concentrations. Biogenic VOC (BVOC) concentrations showed only minor changes from the low to the high traffic period, and their intra-day variability was related to temperature and solar radiation cycles, although a decrease was observed for monoterpenes during the day. The organic carbon (OC) concentrations increased from the first to the second period, and the fraction of non-fossil OC as determined by (14)C analysis increased from 43% to 54% of the total OC. The combination of (14)C analysis and Aerosol Chemical Speciation Monitor (ACSM) OA source apportionment showed that the fossil OC was mainly secondary (>70%) except for the last sample, when the fossil secondary OC only represented 51% of the total fossil OC. The fraction of non-fossil secondary OC increased from 37% of total secondary OC for the first sample to 60% for the last sample. This enhanced formation of non-fossil secondary OA (SOA) could be attributed to the reaction of BVOC precursors with NOx emitted from road traffic (or from its nocturnal derivative nitrate that enhances night-time semi-volatile oxygenated OA (SV-OOA)), since NO2 concentrations increased from 19 to 42 μg m(-3) from the first to the last sample. PMID:27119273

  15. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    PubMed

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs. PMID:19708365

  16. Direct optical excitation of singlet oxygen in organic solvents

    NASA Astrophysics Data System (ADS)

    Bagrov, I. V.; Kiselev, V. M.; Kislyakov, I. M.; Sosnov, E. N.

    2014-04-01

    Efficient excitation of singlet oxygen is demonstrated for several organic solvents (CS2, CCl4, and C6F14) that are irradiated using LED in the visible spectral range in the absorption bands of the O2-O2 collision complexes at the corresponding cooperative transitions. It is shown that the two-photon interaction of the pumping radiation in the Herzberg I band of molecular oxygen with its excitation to the 3Σ{/u +} state and the subsequent collisional relaxation to the 1Σ g and 1Δ g singlet states contributes to the excitation of singlet oxygen.

  17. Evolution of Organic Aerosols in the Atmosphere: A Synthesis of Emerging Approaches

    NASA Astrophysics Data System (ADS)

    Canagaratna, Manjula R.; Jimenez, J. L.; Donahue, N. M.; Kroll, J. H.; Heald, C. L.; Cappa, C. D.; Prevot, A. S. H.; Worsnop, D. R.; Ng, N. L.; AMS Oa Evolution Team

    2010-05-01

    Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. In this presentation we will summarize several emerging approaches to describe the atmospheric evolution of OA that are constrained by high-time-resolution measurements of their composition, volatility, and oxidation state, including and building on the recent Jimenez et al. paper (Science, Dec. 2009). OA and OA-precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA) mass with concentrations comparable to sulfate aerosol throughout the Northern Hemisphere. We identify two types of OOA, semivolatile OOA (SV-OOA) and low-volatility OOA (LV-OOA), with LV-OOA being more aged and hygroscopic. LV-OOA is effectively non-volatile and will not return to the gas-phase under any plausible atmospheric conditions (Cappa et al., ACPD, 2010). The evolution of ambient OOA can be captured in a 2-dimensional diagram based on AMS fragments; chamber SOA mostly falls in the same region of the diagram but does not reach the levels of aging observed in the atmosphere, due to too little oxidation and sometimes too high concentrations (Ng et al., ACPD, 2009). When plotted in a Van Krevelen diagram (H/C vs O/C), the OA evolution in multiple field studies from Mexico City to the pristine Amazon basin is consistent with the addition of carboxylic acids (Heald et al., GRL, submitted, 2009). A two-dimensional basis set using organic O/C and volatility (C*) as its coordinates can reproduce the lab and field observations and should allow faster model development because it is experimentally verifiable (Jimenez et al., Science, 2009; Donahue et al., in prep., 2010). An alternative 2D basis set based on carbon number and mean carbon oxidation state provides very useful insights about the nature and evolution of gas and particulate-phase organic species (Kroll et al., in

  18. Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.

    PubMed

    Mihara, Toshiyuki; Mochida, Michihiro

    2011-11-01

    To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM. PMID:21877700

  19. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  20. Single-particle measurements of phase partitioning between primary and secondary organic aerosols.

    PubMed

    Robinson, Ellis Shipley; Donahue, Neil M; Ahern, Adam T; Ye, Qing; Lipsky, Eric

    2016-07-18

    Organic aerosols provide a measure of complexity in the urban atmosphere. This is because the aerosols start as an external mixture, with many populations from varied local sources, that all interact with each other, with background aerosols, and with condensing vapors from secondary organic aerosol formation. The externally mixed particle populations start to evolve immediately after emission because the organic molecules constituting the particles also form thermodynamic mixtures - solutions - in which a large fraction of the constituents are semi-volatile. The external mixtures are thus well out of thermodynamic equilibrium, with very different activities for many constituents, and yet also have the capacity to relax toward equilibrium via gas-phase exchange of semi-volatile vapors. Here we describe experiments employing quantitative single-particle mass spectrometry designed to explore the extent to which various primary organic aerosol particle populations can interact with each other or with secondary organic aerosols representative of background aerosol populations. These methods allow us to determine when these populations will and when they will not mix with each other, and then to constrain the timescales for that mixing. PMID:27092377

  1. Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    Fatty acid salts and "humic" materials, found in abundance in atmospheric particles, are both anionic surfactants. Such materials are known to form organic aggregates or colloids in solution at very low aqueous concentrations. In a marine aerosol, micelle aggregates can form at a low fatty acid salt molality of ˜10 -3 m. In other types of atmospheric particles, such as biomass burning, biogenic, soil dust, and urban aerosols, "humic-like" materials exist in sufficient quantities to form micelle-like aggregates in solution. I show micelle formation limits the ability of surface-active organics in aerosols to reduce the surface tension of an atmospheric particle beyond about 10 dyne cm -1. A general phase diagram is presented for anionic surfactants to explain how surface-active organics can change the water uptake properties of atmospheric aerosols. Briefly such molecules can enhance and reduce water uptake by atmospheric aerosols at dry and humid conditions, respectively. This finding is consistent with a number of unexplained field and laboratory observations. Dry electron microscope images of atmospheric particles often indicate that organics may coat the surface of particles in the atmosphere. The surfactant phase diagram is used to trace the particle path back to ambient conditions in order to determine whether such coatings can exist on wet ambient aerosols. Finally, I qualitatively highlight how organic aggregate formation in aerosols may change the optical properties and chemical reactivity of atmospheric particles.

  2. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  3. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  4. Aqueous secondary organic aerosol (SOA) production from the oxidation of phenols by triplet excited state organics

    NASA Astrophysics Data System (ADS)

    Smith, J.; Yu, L.; Zhang, Q.; Anastasio, C.

    2011-12-01

    Recent literature has shown that atmospheric condensed-phase chemistry can play a significant role in the evolution of organic aerosols, including the formation of secondary organic aerosol (SOA). SOA formation from the oxidation of volatile organic compounds (VOCs) in the aqueous phase has largely focused on oxidations involving the hydroxyl radical and other oxidants, such as photochemically created triplet excited states, have not been fully investigated. Phenolic compounds are one of the primary carbon emission classes from biomass and wood combustion and have significant water solubility. Once in the aqueous phase, phenolic compounds can react with the triplet excited states of non-phenolic aromatic carbonyls (NPCs), particle-bound organics that are also emitted in large quantities from wood combustion. The oxidation of phenolic species in the condensed phase by triplet excited states can result in the production of SOA. A main goal of this study was to investigate bulk solution reaction kinetics under atmospherically relevant conditions in order to ascertain how these reactions can impact aqueous-phase SOA production. In our experiments, we studied the reactions of five phenols (phenol, guaiacol, syringol, catechol, and resorcinol) with the triplet state of 3,4-dimethoxybenzaldehyde (34-DMB) during simulated solar radiation. We have characterized the impacts of pH, ionic strength and reactant concentrations on the reaction behavior of this system. In addition, we analyzed the SOA formed using high-resolution aerosol mass spectrometry, ion chromatography, and liquid chromatography-mass spectrometry to infer the reaction mechanisms. Our evidence suggests that under atmospherically relevant conditions, triplet excited states can be the dominant oxidant of phenolics and contribute significantly to the total SOA budget.

  5. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  6. Enhancement in Secondary Organic Aerosol Formation in the Presence of Preexisting Organic Particle.

    PubMed

    Ye, Jianhuai; Gordon, Catherine A; Chan, Arthur W H

    2016-04-01

    Atmospheric models of secondary organic aerosol (SOA) typically assume organic species form a well-mixed phase. As a result, partitioning of semivolatile oxidation products into the particle phase to form SOA is thought to be enhanced by preexisting organic particles. In this work, the physicochemical properties that govern such enhancement in SOA yield were examined. SOA yields from α-pinene ozonolysis were measured in the presence of a variety of organic seeds which were chosen based on polarity and phase state at room temperature. Yield enhancement was only observed with seeds of medium polarities (tetraethylene glycol and citric acid). Solid hexadecanol seed was observed to enhance SOA yields only in chamber experiments with longer mixing time scales, suggesting that the mixing process for SOA and hexadecanol may be kinetically limited at shorter time scales. Our observations indicate that, in addition to kinetic limitations, intermolecular interactions also play a significant role in determining SOA yields. Here we propose for the first time to use the Hansen solubility framework to determine aerosol miscibility and predict SOA yield enhancement. These results highlight that current models may overestimate SOA formation, and parametrization of intermolecular forces is needed for accurate predictions of SOA formation. PMID:26963686

  7. Photolytic processing of secondary organic aerosols dissolved in cloud droplets

    SciTech Connect

    Bateman, Adam P; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-05-26

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

  8. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers

  9. Model Representation of Secondary Organic Aerosol in CMAQ v4.7

    EPA Science Inventory

    Numerous scientific upgrades to the representation of secondary organic aerosol (SOA) are incorporated into the Community Multiscale Air Quality (CMAQ) modeling system. Additions include several recently identified SOA precursors: benzene, isoprene, and sesquiterpenes; and pathwa...

  10. A global perspective on aerosol from low-volatility organic compounds

    NASA Astrophysics Data System (ADS)

    Pye, H. O. T.; Seinfeld, J. H.

    2010-02-01

    Organic aerosol from primary semivolatile and intermediate volatility compounds is estimated using a global chemical transport model. Semivolatile organic compound (SVOC, saturation concentrations between about 0.1 and 104 μg/m3) oxidation is predicted to be a much larger global source of net aerosol production than oxidation of traditional parent hydrocarbons (terpenes, isoprene, and aromatics). Using a prescribed rate constant and reduction in volatility, the yield of aerosol (defined as the net mass of aerosol formed divided by the total mass of the parent hydrocarbon emitted) from SVOCs is predicted to be about 75% on a global, annually averaged basis. Intermediate volatility compound (IVOC, saturation concentrations between about 104 and 106 μg/m3) emissions and oxidation are highly uncertain since they are not typically measured. The use of a naphthalene-like surrogate with different high-NOx and low-NOx parameterizations produces an aerosol yield of about 30% or roughly 5 Tg/yr of aerosol from IVOC oxidation on a global basis. Estimates of the total global organic aerosol source presented here range between 60 and 100 Tg/yr. This range reflects uncertainty in the parameters for SVOC volatility, SVOC oxidation, SVOC emissions, and IVOC emissions, as well as wet deposition. The highest estimates result if SVOC emissions are significantly underestimated (by more than a factor of 2) or if wet deposition of the gas-phase semivolatile species is less effective than previous estimates. Compared to a traditional non-volatile primary organic aerosol model without IVOCs, the global estimate of organic aerosol production is at most roughly 10% higher than previous studies. Additional information is needed to constrain the emissions and treatment of SVOCs and IVOCs, which have traditionally not been included in models. Comparisons to winter organic carbon observations over the US indicate that SVOC emissions are significantly underestimated by the traditional POA

  11. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, Ph.; Platt, U.; Zetzsch, C.

    2012-07-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy), changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS)), or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  12. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea

  13. Ozonolysis of a series of biogenic organic volatile compounds and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Bernard, François; Quilgars, Alain; Cazaunau, Mathieu; Grosselin, Benoît.; Daele, Véronique; Mellouki, Abdelwahid; Winterhalter, Richard; Moortgat, Geert K.

    2010-05-01

    Secondary organic aerosols are formed via nucleation of atmospheric organic vapours on pre-existing particles observed in various rural environments where the organic fraction represents the major part of the observed nano-particle (Kavouras and Stephanou, 2002; Kulmala et al., 2004a). However, nucleation of organic vapors appears to be unlikely thermodynamically in relevant atmospheric conditions (Kulmala et al., 2004b). In this work, a systematic study has been conducted to investigate the aerosol formation through the ozonolysis of a series of monotepenes using a newly developed aerosol flow reactor and the ICARE indoor simulation chamber. The nucleation thresholds have been determined for SOA formed through the reaction of ozone with a-Pinene, sabinene, myrcene and limonene in absence of any observable existing particles. The measurements were performed using the flow reactor combined to a particle counter (CPC 3022). Number concentrations of SOA have been measured for different concentration of consumed monoterpenes. The data obtained allow us to estimate the nucleation threshold for a range of 0.2 - 45 ppb of consumed monoterpenes. The nucleation threshold values obtained here (≤ 1 ppb of the consumed monoterpenes) have been found to be lower than the previously reported ones (Berndt et al., 2003; Bonn and Moortgat, 2003; Koch et al., 2000; Lee and Kamens, 2005). The ICARE simulation chamber has been used to study the mechanism of the reaction of ozone with various acyclic terpenes (myrcene, ocimene, linalool and a-farnesene) and to derive the SOA mass formation yield. The time-concentration profiles of reactants and products in gas-phase were obtained using in-situ Fourier Transform Infrared Spectroscopy. In addition, the number and mass concentrations of SOA have been monitored with a Scanning Mobility Particle Sizer. The chemical composition of the SOA formed has been tentatively characterised using Liquid Chromatography - Mass Spectrometry. The results

  14. Heterogeneous sources of oxygenated hydrocarbons in the tropical free troposphere: Field evidence for a biogeochemical cycle of marine organic carbon?

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Apel, E. C.; Baidar, S.; Coburn, S.; Dix, B. K.; Hornbrook, R. S.; Pierce, R.; Ortega, I.; Romashkin, P.; Wang, S.

    2013-12-01

    Oceans cover 70% of the Earth surface, and the amount of dissolved organic carbon (DOC) contained in the world's oceans is comparable to that of atmospheric CO2. Yet oceans are currently believed to be a net-receptor for organic carbon that is emitted over land. Recent our observations of very short-lived and very water soluble oxygenated hydrocarbons, like glyoxal, in the remote marine boundary layer (MBL) above the Pacific Ocean (Sinreich et al., 2010, ACP) remain as of yet unexplained by atmospheric models. Organic carbon is relevant in the atmosphere because it influences the reactive chemical removal pathways of climate active gases (i.e., ozone, methane, dimethyl-sulfide), and can modify aerosols (e.g., secondary organic aerosol, SOA). This presentation provides a comprehensive field evidence that small oxygenated molecules (glyoxal, methyl ethyl ketone, butanal) from marine sources are widespread also in the tropical free troposphere. The data were collected as part of the Tropical Ocean tRoposphere Exchange experiment TORERO during Jan/Feb 2012 by means of an innovative payload of optical spectroscopic-, mass spectrometric-, and remote sensing instruments aboard the NSF/NCAR GV aircraft (HIAPER), and aboard a NOAA ship. We have measured oxygenated hydrocarbons, and volatile organic compounds (some 50+ species), aerosol size distributions, photolysis frequencies and other parameters over the full tropospheric air column (0-15km altitude) between 40N to 40S latitude over the eastern tropical Pacific Ocean. We investigate the source mechanism, present source estimates of the organic carbon flux, and compare it with other sources of organic carbon from marine sources. We also present results from numerical models that suggest a strong impact of these molecules on the oxidative capacity of the tropical free troposphere, where most of tropospheric ozone mass resides, 60-80% of the global methane destruction occurs, and mercury oxidation rates are accelerated at

  15. The chemical composition of organic nitrogen in marine rainwater and aerosols

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Hastings, M. G.; Peters, A.; Sigman, D. M.

    2010-12-01

    which are known secondary anthropogenic compounds detected in continental rainwater. This suggests that the lifetime of these compounds is insufficient for transport to the remote marine atmosphere. Possible explanations for the differences between continental and marine samples include 1) anthropogenic emissions might lead to more secondary formation closer to the source regions, 2) there are more oxidants in air masses dominated by anthropogenic emissions leading to higher O:C ratios, or 3) higher NOx concentrations produce more water soluble carbonyls and thus more secondary formation via aqueous reactions in the anthropogenic environment. The marine rainwater and aerosols also had a large number of mixed functional compounds (i.e., sulfur and phosphorous present with nitrogen) suggesting a potentially increased importance of organic S and organic P in remote marine environments. In addition to the detailed compositional information above, we will also discuss the influence of air mass origin on the sources of WSON using air mass back trajectory data, and the potential inter-relationships of inorganic N and WSON will be investigated using the nitrogen and oxygen isotopic ratios of nitrate.

  16. Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas-Chromatography

    NASA Astrophysics Data System (ADS)

    Roskamp, M.; Lou, W.; Pankow, J. F.; Harley, P. C.; Turnipseed, A.; Barsanti, K. C.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality. However, field and laboratory research indicate that the body of knowledge around the identities, quantities and oxidation processes of these compounds in the ambient atmosphere is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). VOCs emitted to the atmosphere largely are of biogenic origin (Guenther et al., 2006), and many studies of ambient secondary organic aerosol (SOA) suggest that SOA is largely of biogenic origin (albeit closely connected to anthropogenic activities, e.g., de Gouw and Jimenez, 2009). Accurate modeling of SOA levels and properties will require a more complete understanding of biogenic VOCs (BOCs) and their atmospheric oxidation products. For example, satellite measurements indicate that biogenic VOC emissions are two to three times greater than levels currently included in models (Heald et al., 2010). Two-dimensional gas chromatography (GC×GC) is a powerful analytical technique that shows much promise in advancing the state-of-knowledge regarding BVOCs and their role in SOA formation. In this work, samples were collected during BEACHON-RoMBAS (Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) in July and August of 2011. The field site was a Ponderosa Pine forest near Woodland, CO, inside the Manitou Experimental Forest, which is operated by the US Forest Service. The area is characteristic of the central Rocky Mountains and trace gas monitoring indicates that little anthropogenic pollution is transported from the nearby urban areas (Kim et al. 2010 and references therein). Ambient and enclosure samples were collected on ATD (adsorption/thermal desorption) cartridges and analyzed for BVOCs using two-dimensional gas chromatography (GC×GC) with time of flight mass spectrometry (TOFMS) and flame ionized detection (FID). Measurements of

  17. Contributions of Acid-Catalysed Processes to Secondary Organic Aerosol Mass - A Modelling pproach

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Feingold, G.; Kreidenweis, S. M.

    2005-12-01

    A significant fraction of secondary organic aerosol (SOA) mass is formed by chemical and/or physical processes. However, the amount of organic material found in ambient organic aerosols cannot be explained with current models. Recently, several laboratory studies have been published which suggest that also acid-catalyzed processes that occur either in particles or at their surfaces (heterogeneous) might contribute significantly to mass formation. However, to date there is no general conclusion about the efficiency of such processes due to the great diversity of species and experimental conditions. We present a compilation of literature data (thermodynamic and kinetic) of these processes. The aerosol yields of (i) additional species which are thought previously not contribute to SOA formation (e.g. isoprene, aliphatic aldehydes) and (ii) species which form apparently higher SOA masses on acidic seed aerosols are reported and compared to input data of previous SOA models. Available kinetic data clearly exclude aldol condensation as a significant process for SOA formation on a time scale of typical aerosol life times. Using aerosol size distributions and gas phase concentrations measured during NEAQS2002 as model input data, we show that (even under assumption of equilibrium conditions) these additional processes only contribute a minor fraction to the organic aerosol mass.

  18. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  19. Phase, composition and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Wingen, L. M.; Perraud, V.; Finlayson-Pitts, B. J.

    2015-12-01

    Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and electrospray ionization mass spectrometry (ESI-MS), or measured on line using direct analysis in real time (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semi-solid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of Criegee intermediates play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  20. Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Wingen, Lisa M.; Perraud, Véronique; Finlayson-Pitts, Barbara J.

    2016-03-01

    Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS), or measured online using direct analysis in real-time mass spectrometry (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semisolid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of SCI play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  1. Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations.

    PubMed

    Bahreini, R; Middlebrook, A M; Brock, C A; de Gouw, J A; McKeen, S A; Williams, L R; Daumit, K E; Lambe, A T; Massoli, P; Canagaratna, M R; Ahmadov, R; Carrasquillo, A J; Cross, E S; Ervens, B; Holloway, J S; Hunter, J F; Onasch, T B; Pollack, I B; Roberts, J M; Ryerson, T B; Warneke, C; Davidovits, P; Worsnop, D R; Kroll, J H

    2012-08-01

    In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ∼0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ∼0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted. PMID:22788666

  2. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  3. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2014-10-01

    Emissions of biogenic volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. Recent model reconstructions of BVOC emissions over the past millennium predicted changes in dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstructions predicted that global isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show regional variability due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in direct plus indirect aerosol radiative effect of >0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2

  4. Reconciling Organic Aerosol Volatility, Hygroscopicity, and Oxidation State During the Colorado DISCOVER-AQ Deployment

    NASA Astrophysics Data System (ADS)

    Hite, J. R.; Moore, R.; Martin, R.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.; Nenes, A.

    2014-12-01

    The organic fraction of submicron aerosol can profoundly impact radiative forcing on climate directly, through enhancement of extinction, or indirectly through modulation of cloud formation. Semi-volatile constituents of organic ambient aerosol are of particular interest as their partitioning between the vapor and aerosol phases is not well constrained by current atmospheric models and appears to play an important role in the formation of cloud condensation nuclei (CCN) as suggested by recent research. An experimental setup consisting of a DMT CCN counter and SMPS downstream of a custom-built thermodenuder assembly was deployed during the summer 2014 DISCOVER-AQ field campaign to retrieve simultaneous, size-resolved volatility and hygroscopicity - through the use of scanning mobility CCN analysis (SMCA). Housed in the NASA Langley mobile laboratory, a suite of complimentary measurements were made available onboard including submicron aerosol composition and oxidation state provided by an HR-ToF-AMS, and aerosol optical properties provided by a range of other instruments including an SP2. Air masses sampled from locations across the Central Colorado region include influences from regional aerosol nucleation/growth events, long-range transport of Canadian biomass burning aerosols, cattle feedlot emissions and influences of the Denver urban plume - amidst a backdrop of widespread oil and gas exploration. The analysis focuses on the reconciliation of the retrieved aerosol volatility distributions and corresponding hygroscopicity and oxidation state observations, including the use of AMS factor analysis.

  5. Concentrations and sources of organic carbon aerosols in the free troposphere over North America

    NASA Astrophysics Data System (ADS)

    Heald, Colette L.; Jacob, Daniel J.; Turquety, SolèNe; Hudman, Rynda C.; Weber, Rodney J.; Sullivan, Amy P.; Peltier, Richard E.; Atlas, Eliot L.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John S.; Neuman, J. Andrew; Flocke, Frank M.; Seinfeld, John H.

    2006-12-01

    Aircraft measurements of water-soluble organic carbon (WSOC) aerosol over NE North America during summer 2004 (ITCT-2K4) are simulated with a global chemical transport model (GEOS-Chem) to test our understanding of the sources of organic carbon (OC) aerosol in the free troposphere (FT). Elevated concentrations were observed in plumes from boreal fires in Alaska and Canada. WSOC aerosol concentrations outside of these plumes average 0.9 ± 0.9 μg C m-3 in the FT (2-6 km). The corresponding model value is 0.7 ± 0.6 μg C m-3, including 42% from biomass burning, 36% from biogenic secondary organic aerosol (SOA), and 22% from anthropogenic emissions. Previous OC aerosol observations over the NW Pacific in spring 2001 (ACE-Asia) averaged 3.3 ± 2.8 μg C m-3 in the FT, compared to a model value of 0.3 ± 0.3 μg C m-3. WSOC aerosol concentrations in the boundary layer (BL) during ITCT-2K4 are consistent with OC aerosol observed at the IMPROVE surface network. The model is low in the boundary layer by 30%, which we attribute to secondary formation at a rate comparable to primary anthropogenic emission. Observed WSOC aerosol concentrations decrease by a factor of 2 from the BL to the FT, as compared to a factor of 10 decrease for sulfate, indicating that most of the WSOC aerosol in the FT originates in situ. Despite reproducing mean observed WSOC concentrations in the FT to within 25%, the model cannot account for the variance in the observations (R = 0.21). Covariance analysis of FT WSOC aerosol with other measured chemical variables suggests an aqueous-phase mechanism for SOA generation involving biogenic precursors.

  6. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Tsigaridis, K.; Feichter, J.

    2011-08-01

    Secondary organic aerosol (SOA) has been introduced into the global climate-aerosol model ECHAM5/HAM. The SOA module handles aerosols originating from both biogenic and anthropogenic sources. The model simulates the emission of precursor gases, their chemical conversion into condensable gases, the partitioning of semi-volatile condenable species into the gas and aerosol phases. As ECHAM5/HAM is a size-resolved model, a new method that permits the calculation of partitioning of semi-volatile species between different size classes is introduced. We compare results of modelled organic aerosol concentrations against measurements from extensive measurement networks in Europe and the United States, running the model with and without SOA. We also compare modelled aerosol optical depth against measurements from the AERONET network of grond stations. We find that SOA improves agreement between model and measurements in both organic aerosol mass and aerosol optical depth, but does not fully correct the low bias that is present in the model for both of these quantities. Although many models now include SOA, any overall estimate of the direct and indirect effects of these aerosols is still lacking. This paper makes a first step in that direction. The model is applied to estimate the direct and indirect effects of SOA under simulated year 2000 conditions. The modelled SOA spatial distribution indicates that SOA is likely to be an important source of free and upper tropospheric aerosol. We find a negative shortwave (SW) forcing from the direct effect, amounting to -0.31 Wm-2 on the global annual mean. In contrast, the model indicates a positive indirect effect of SOA of +0.23 Wm-2, arising from the enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink of small particles. In the longwave, model results are a direct effect of +0.02 Wm-2 and an indirect effect of -0.03 Wm-2.

  7. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  8. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  9. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ling-Yan; Huang, Xiao-Feng; Xue, Lian; Hu, Min; Lin, Yun; Zheng, Jun; Zhang, Renyi; Zhang, Yuan-Hang

    2011-06-01

    The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China while also noted for its severe air pollution, especially in the urban environments. In order to understand in depth the aerosol chemistry and the emission sources in PRD, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in the Hong Kong-Shenzhen metropolitan area between 25 October and 2 December 2009. Ten minute-resolved measurement data were analyzed, and an average mass concentration of 44.5 ± 34.0 μg m-3 was calculated for the entire campaign. On average, organic matter was the most abundant PM1 component accounting for 39.7% of the total mass, followed by sulfate (24.5%), black carbon (measured by aethalometer, 14.0%), ammonium (10.2%), nitrate (10.0%), and chloride (1.6%). Moreover, organic matter comprised an increasing fraction of the PM1 loading as the PM1 loading increased, denoting its key role in particulate pollution in this region. Calculations of organic elemental composition based on the high-resolution organic mass spectra obtained indicated that C, H, O, and N on average contributed 33.8%, 55.1%, 10.2%, and 0.9%, respectively, to the total atomic numbers of organic aerosol (OA), which corresponded to an OM/OC ratio (the ratio of organic matter mass/organic carbon mass) of 1.57 ± 0.08. Positive matrix factorization analysis was then conducted on the high-resolution organic mass spectral data set. Four OA components were identified, including a hydrocarbon-like (HOA), a biomass burning (BBOA), and two oxygenated (LV-OOA and SV-OOA) components, which on average accounted for 29.5%, 24.1%, 18.8%, and 27.6%, respectively, of the total organic mass. The HOA was found to have contributions from both fossil fuel combustion and cooking emissions, while the BBOA was well correlated with acetonitrile, a known biomass burning marker. The LV-OOA and SV-OOA corresponded to more aged and

  10. A metal-organic framework-derived bifunctional oxygen electrocatalyst

    NASA Astrophysics Data System (ADS)

    Xia, Bao Yu; Yan, Ya; Li, Nan; Wu, Hao Bin; Lou, Xiong Wen (David); Wang, Xin

    2016-01-01

    Oxygen electrocatalysis is of great importance for many energy storage and conversion technologies, including fuel cells, metal-air batteries and wate