Science.gov

Sample records for aerosol ot aot

  1. Rotational reorientation dynamics of Aerosol-OT reverse micelles formed in near-critical propane

    SciTech Connect

    Heitz, M.P.; Bright, F.V.

    1996-06-01

    The rotational reorientation kinetics of two fluorescent solutes (rhodamine 6G, R6G, and rhodamine 101, R101) have been determined in sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) reverse micelles formed in liquid and near-critical propane. We show that the amount of water loading ([water]/[AOT], R), continuous phase density, and temperature all influence the solute rotational dynamics. In all cases, the decay of anisotropy data (i.e., frequency-dependent differential polarized phase angle and polarized modulation ratio) are well described by a bi-exponential decay law. We find that the faster rotational correlation times are similar to but slightly less than the values predicted for an individual AOT reverse micelle rotating in propane. The recovered rotational correlation times range from 200 to 500 ps depending on experimental conditions. This faster rotational process is explained in terms of lateral diffusion of the fluorophore along the water/headgroup interfacial region within the reverse micelle. The recovered values for the slower rotational correlation times range from 7 to 18 ns. These larger rotational reorientation times are assigned to varying micelle-micelle (i.e., tail-tail) interactions in the low-density, highly compressible fluid region. We also quantify the contribution of the reverse micellar {open_quotes}aggregate{close_quotes} to the total decay of anisotropy. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  2. Effect of hydration degree of aerosol OT reversed micelles and surfactant concentration in heptane on spectral and catalytic properties of catalase.

    PubMed

    Eryomin, A N; Metelitza, D I

    1999-09-01

    The influence of micelle hydration degree (w0) and AOT concentration on fluorescence, circular dichroism (CD), catalytic activity, and stability of catalase in Aerosol OT (AOT) reversed micelles in heptane was investigated. The quantitative parameters--differential fluorescence of catalase (DeltaI), protein molar ellipticity ([theta]lambda), initial rate of catalytic reaction, catalase efficiency (kcat/Km), and rate constant of enzyme inactivation (kin, sec-1)--decreased with increasing AOT concentration in micellar systems, reflecting the interaction of solubilized catalase with the AOT micellar aggregates in heptane. The dependences of all these parameters on increasing hydration degree of micelles (w0) were characterized by the appearance of maxima at w0 of 8, 15-18, and 26-30. These maxima are suggested to reflect three different states of catalase in the micellar system, distinguished by their conformations and catalytic activity, which is determined by the micellar microenvironment of the enzyme. PMID:10521722

  3. Activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micelles.

    PubMed

    Sarcar, S; Jain, T K; Maitra, A

    1992-02-20

    The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307 degrees C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.

  4. Monitoring of urban air pollution from MODIS and AERONET Aerosol Optical Thickness (AOT) data

    NASA Astrophysics Data System (ADS)

    Tijani, K.; Chiaradia, M.; Guerriero, L.; Pasquariello, G.; Morea, A.; Nutricato, R.; Preziosa, G.

    2012-12-01

    Air pollution, caused by fuel industries and urban traffic and its environmental impact, are of considerable interest to studies in air quality. In this paper, the monitoring of the air pollution over urban areas in Italy through Aerosol Optical Thickness (AOT) data retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements is presented. The high spatio-temporal frequency of MODIS AOT products (twice per day at 470nm, 1km full resolution) demonstrates that this satellite can be potentially used to routinely monitor the air pollution over land, especially urban area, which is the main source of aerosol particles. In this work AOT data derived by MODIS from November 2010 to February 2011 (winter period) and from May 2011 to August 2011 (summer period) were compared with AOT measurements from 6 different Aerosol Robotic Network (AERONET) stations over Italy (Bari, Lecce, Roma, Ispra, Potenza, Etna). The statistical analysis shows a good agreement between the ground based AOT measurements and the values retrieved using space based sensors, as shown in Figure 1. For all the stations the mean error is negligible, with a correlation ranging from 0.725 (in the worst case) to 0.96 (see Table 1). Moreover, LANDSAT-panchromatic images were used to discriminate urban and rural areas, based on the typical finger-like projections of urban land uses. The results of this study will be presented and commented. Acknowledgements This work was funded by Apulian Region in the framework of the ECOURB project. (Analisi e Modelli di inquinamento atmosferico e termico per sistemi di ECOlabeling URBano, 2009-2012). Figure 1: Scatter plot between AOT derived from MODIS and AERONET for Lecce City in summer period from May 2011 to August 2011. Y = - 0.023+0.86x (fit) ; Table 1: Statistical Analysis Report on the difference between AOT derived from MODIS and AERONET from May 2011 to August 2011 (summer period) for 6 different Aerosol Robotic Network (AERONET) stations

  5. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  6. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles.

    PubMed

    Lundgren, J S; Heitz, M P; Bright, F V

    1995-10-15

    We investigate the effects of hydration on acrylodan-labeled bovine and human serum albumin (BSA-Ac and HSA-Ac) in aerosol-OT (AOT) reverse micelles solubilized in n-heptane. Time-resolved fluorescence intensity decay experiments reveal a dipolar relaxation process surrounding the acrylodan cybotactic region. This process is best described by a two-term rate law wherein the average relaxation increases with increased hydration. However, the actual rate constants describing the relaxation process either remain unchanged or actually decrease with increased hydration. The results illustrate that the fractional contribution associated with the individual relaxation pathways causes the observed changes in relaxation dynamics. The recovered rotational reorientation dynamics of the acrylodan residue are also affected by the extent of protein hydration. As hydration is increased, the semiangle through which the acrylodan residue precesses increases by 10 degrees for both protein systems. Interestingly, the recovered semiangles for the native proteins equal those recovered at lower hydration when the proteins are sequestered within the AOT reverse micelle. These results demonstrate the importance of hydration on protein behavior in environments where water is limited (e.g., biosensor interfaces and sol--gel-derived biocomposites).

  7. Distribution of polyphenols and a surfactant component in skin during Aerosol OT microemulsion-enhanced intradermal delivery.

    PubMed

    Yutani, Reiko; Morita, Shin-ya; Teraoka, Reiko; Kitagawa, Shuji

    2012-01-01

    As for most other polyphenols, intradermal delivery of curcumin and resveratrol is limited; however, it was significantly improved by a microemulsion using Aerosol OT (Aerosol OT microemulsion) and Tween 80 (Tween 80 microemulsion) as surfactants. Aerosol OT microemulsion was more effective and the incorporation ratio of these polyphenols into skin by Aerosol OT microemulsion was five-fold or ten-fold that by Tween 80 microemulsion. To clarify the mechanism of the enhancement we examined the distribution of these polyphenols and the surfactant component, Aerosol OT, using excised guinea pig skin and Yucatan micropig (YMP) skin. During permeation, polyphenols distributed deep in the skin. In particular, a small molecule, resveratrol, was mainly present in the dermis in YMP skin. Aerosol OT also distributed deep in the skin. These findings suggest the possible involvement of the interaction of surfactant molecules with skin components in the enhanced delivery process of polyphenols. The distribution ratio between the dermis and epidermis of the polyphenols, including quercetin, in the presence of Aerosol OT microemulsion decreased with the increase of molecular weight in YMP skin, suggesting the possibility that distribution to the dermis is regulated by the molecular size.

  8. Retrieval of Maps of PM2.5 Aerosol in the Problematic California Valleys: Bright, Speckled Reflectances, Thin AOT, but High Pollution

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.

    2015-12-01

    The San Joaquin Valley suffers from severe episodes of respirable aerosol (PM2.5) in wintertime. We provide maps of aerosol episodes using daily snapshots of PM2.5 and its changing features despite numerous difficulties inherent to sampling the region, with special focus on the DISCOVER-AQ period, Jan-Feb 2013, which had many supporting measurements. Both high pollution and retrieval difficulties tend to occur in many Mediterranean agricultural regions. One difficulty is the relatively bright surfaces with considerable exposed soil. NASA's MAIAC and MODIS Deep Blue retrieval techniques are shown to have considerable skill even at low aerosol optical thickness (AOT) values, as evaluated by concurrent AERONET sunphotometer measurements. More significantly, these AOT values can correspond to high daytime PM2.5 since aerosol mixed layer depth is thin and variable, 200m - 600 m. The thin layers derive from typical subsidence of dry air between more stormy periods. This situation provides an advantage: water vapor column is also almost completely limited to a similar mixed layer depth, and can thus serve as a measure of aerosol dilution. The ratio of AOT to column-water-vapor from MODIS products provides two advantages: (1) it can provide a measure related to particle density, via a mixed-layer proxy, and (2) it can ratio out some errors that crop up in the retrieval of very low AOT, e.g. bidirectional reflectance and other angular dependences. These effects are combined, so we disentangle them using AERONET data. Data from the NASA Langley HSRL-2 lidar and in-situ measurements from DISCOVER-AQ are also helpful. At the time of abstract submission, sporadic errors in the column water estimates provide the greatest limitation. Looking to the near future, we suggest why the use of geostationary TEMPO data will allow multiple sampling opportunities per day, supplementary or alternative information for AOT, aerosol absorption, and even column water.

  9. A Comparison of Seasonal and Interannual Variability of Soil Dust Aerosols Over the Atlantic Ocean as Inferred by the Toms AI and AVHRR AOT Retrievals

    NASA Technical Reports Server (NTRS)

    Cakmur, R. V.; Miller, R. L.; Tegen, Ina; Hansen, James E. (Technical Monitor)

    2001-01-01

    The seasonal cycle and interannual variability of two estimates of soil (or 'mineral') dust aerosols are compared: Advanced Very High Resolution Radiometer (AVHRR) aerosol optical thickness (AOT) and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Both data sets, comprising more than a decade of global, daily images, are commonly used to evaluate aerosol transport models. The present comparison is based upon monthly averages, constructed from daily images of each data set for the period between 1984 and 1990, a period that excludes contamination from volcanic eruptions. The comparison focuses upon the Northern Hemisphere subtropical Atlantic Ocean, where soil dust aerosols make the largest contribution to the aerosol load, and are assumed to dominate the variability of each data set. While each retrieval is sensitive to a different aerosol radiative property - absorption for the TOMS AI versus reflectance for the AVHRR AOT - the seasonal cycles of dust loading implied by each retrieval are consistent, if seasonal variations in the height of the aerosol layer are taken into account when interpreting the TOMS AI. On interannual time scales, the correlation is low at most locations. It is suggested that the poor interannual correlation is at least partly a consequence of data availability. When the monthly averages are constructed using only days common to both data sets, the correlation is substantially increased: this consistency suggests that both TOMS and AVHRR accurately measure the aerosol load in any given scene. However, the two retrievals have only a few days in common per month so that these restricted monthly averages have a large uncertainty. Calculations suggest that at least 7 to 10 daily images are needed to estimate reliably the average dust load during any particular month, a threshold that is rarely satisfied by the AVHRR AOT due to the presence of clouds in the domain. By rebinning each data set onto a coarser grid, the availability of

  10. Combining AOT, Angstrom Exponent and PM concentration data, with PSCF model, to distinguish fine and coarse aerosol intrusions in Southern France

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2016-05-01

    In this paper, a cluster analysis of backward air mass trajectories, arriving in Avignon (Southern France), was combined with a Potential Source Contribution Function (PSCF) model on a 0.5° × 0.5° resolution grid, in order to indicate possible aerosol intrusions. A strict triple criterion was constructed from Aerosol Optical Thickness (AOT), Angstrom Exponent (AE), and PM (PM10 and PM2.5) concentration measurements, aiming to distinguish more effectively Episodes of Fine, Coarse and Overall Aerosols (FAE, CAE and OAE respectively). Large fractions of FAE (60.0%) and CAE (40.6%) were strongly attributed to the prevalence of Eastern and South-Southwest (S-SW) airflows respectively, whereas these distinct trajectory clusters also gathered large fractions of OAE (90.2% cumulatively). According to PSCF results, FAE events were strongly associated with the influence of air masses traveling over North Italy and Southern Germany, hence the impact of urban and industrial combustion was emerged. Main sources of coarse aerosols were principally isolated over the Mediterranean, thus the import of sea spray and dust from the Sahara desert is presumed. Satellite AOT observations were used for a more detailed identification of an intense 5-day intrusion of coarse aerosols. Short range slow moving air mass trajectories, were proven to be a clear marker of atmospheric stagnation, based on a wind speed analysis, triggering the accumulation of locally emitted anthropogenic aerosols (mainly PM2.5) and lack of city ventilation.

  11. Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.

    PubMed

    Bhattarai, Ajaya; Wilczura-Wachnik, H

    2014-01-30

    The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer.

  12. Ultrafast energy transfer in water-AOT reverse micelles.

    PubMed

    Cringus, Dan; Bakulin, Artem; Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S; Wiersma, Douwe A

    2007-12-27

    A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model system for nanoscopic water droplets surrounded by a soft-matter boundary. Femtosecond nonlinear infrared spectroscopy in the OH-stretching region of H2O fully confirms the core/shell model, in which the entrapped water molecules partition onto two molecular subensembles: a bulk-like water core and a hydration layer near the ionic surfactant headgroups. These two distinct water species display different relaxation kinetics, as they do not exchange vibrational energy. The observed spectrotemporal ultrafast response exhibits a local character, indicating that the spatial confinement influences approximately one molecular layer located near the water-amphiphile boundary. The core of the encapsulated water droplet is similar in its spectroscopic properties to the bulk phase of liquid water, i.e., it does not display any true confinement effects such as droplet-size-dependent vibrational lifetimes or rotational correlation times. Unlike in bulk water, no intermolecular transfer of OH-stretching quanta occurs among the interfacial water molecules or from the hydration shell to the bulk-like core, indicating that the hydrogen bond network near the H2O/AOT interface is strongly disrupted. PMID:18047308

  13. Temperature control of pattern formation in the Ru(bpy)(3)(2+)-catalyzed BZ-AOT system.

    PubMed

    McIlwaine, Rachel; Vanag, Vladimir K; Epstein, Irving R

    2009-03-14

    Using temperature as a control parameter, we observe a transition from stationary Turing patterns at T = 15-20 degrees C to traveling waves at T = 50 degrees C (and above) in the Ru(bpy)(3)(2+)-catalyzed Belousov-Zhabotinsky (BZ) reaction incorporated into the water nanodroplets of a water-in-oil aerosol OT (AOT) microemulsion. At constant chemical composition, molar ratio and droplet fraction, the transition takes place via a series of stable patterns, including oscillatory Turing patterns (at 35-40 degrees C) and reversed oscillatory Turing patterns (at 50 degrees C). We attribute the pattern transitions to a temperature-induced percolation transition of the BZ-AOT microemulsion, implying a change from isolated water nanodroplets to a system-spanning network of water channels. PMID:19240935

  14. Correlation between AERONET AOT and VIIRS EDR AOT: A new EDR cell

    NASA Astrophysics Data System (ADS)

    Molinie, J.; Henry, J. L.; Clement, J.; Euphrasie-Clotilde, L.; Brute, F. N.

    2015-12-01

    Every year, a huge mass of desert dusts lifted from Saharan and sub Saharan regions is injected over the Atlantic Ocean and bring to the Caribbean and the American continent. Guadeloupe a West Indies island, is affected by the presence of dusts particles which impact the air quality and acts on human health. The effect produced by the particles in the atmosphere can be observed by satellite. VIIRS is one the latest tools provided by NASA, to help scientific community to have a better understanding of aerosol behavior. In this job we try to found a link between ground measurement AOT and VIIRS data.In Guadeloupe, AOT measurements have been performed with sun photometer of AERONET network. We calculated AOT at 500 nm mean daily sun photometer data in order to compare them with AOT EDR 550 data computed by NOAA Aerosol calibration and validation team. Three AOT EDR cells, located over the ocean and close to the East coast of the island of have been chosen to evaluate the correlation between ground and satellite data. We obtained using data performed from May to December 2012, correlation coefficient range between 0.8 and 0.87. We observed numerous AOT EDR 550 have been computed with a number of IP pixel, nAOT very low. We proposed to used only cases with nAOT equal or higher than 10. The correlation coefficients improved and reached 0.9. However, those good results have been obtained with a day number reduced by almost 50 per cent.In order to keep a good correlation and a higher number of day we rebuilt a cell by merging two cells. We obtained a new cell with an AOT EDR value equal to the mean AOT EDR of the two parents' value and a nAOT the sum of the previous nAOTs. The results with the new nAOT equal of higher than 10 is, r =0.91 and we keep 75 per cent of the cases.

  15. Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: Morphology, crystal structure, and their optical properties

    NASA Astrophysics Data System (ADS)

    Abazari, Reza; Sanati, Soheila

    2013-12-01

    Orthorhombic structure of lanthanum ferrite nanoparticles (LaFeO3 NPs) with perovskite type phase has been synthesized with water-in-oil (W/O) microemulsion consisted of water/dioctyl sulfosuccinate sodium (aerosol-OT)/isooctane at room temperature. It has been shown that aerosol-OT reverse microemulsion solution is appropriate for synthesizing perovskite LaFeO3 NPs in the absence of any co-surfactants. Field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FT-IR) have been adopted for characterization of surface morphology, size, phase composition, structure, and optical properties of the considered NPs. Furthermore, the optical properties of LaFeO3 NPs have been further analyzed via photoluminescence (PL) spectroscopy. As shown by the physicochemical characterizations, our prepared NPs via aerosol-OT reverse microemulsion solution are spherical and nearly uniform (with a size of about 24.65 nm). Besides, they include an orthorhombic phase while no impurities are observed. Single phase lanthanum ferrite NPs have successfully been prepared at 500 °C. Moreover, UV-Vis spectrum indicates that the LaFeO3 NPs synthesized through this technique can be considered as a type of photo-catalytic materials.

  16. Dynamics in the interior of AOT lamellae investigated with two-dimensional infrared spectroscopy.

    PubMed

    Kumar, S K Karthick; Tamimi, A; Fayer, Michael D

    2013-04-01

    The dynamics inside the organic regions of aerosol-OT (AOT)/water mixtures in the lamellar mesophase, bicontinuous cubic (BC) phase, and in an analogous molecule without the charged sulfonate headgroup are investigated by observing spectral diffusion, orientational relaxation and population relaxation using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy and IR pump-probe experiments on the asymmetric CO stretch of a vibrational probe, tungsten hexacarbonyl (W(CO)6). The water layer thickness between the bilayer planes in the lamellar phase was varied. For comparison, the dynamics of W(CO)6 in the normal liquid bis(2-ethylhexyl) succinate (EHS), which is analogous to AOT but has no charged sulfonate headgroup, were also studied. The 2D IR experiments measure spectral diffusion, which results from the structural evolution of the system. Spectral diffusion is quantified by the frequency-frequency correlation function (FFCF). In addition to a homogeneous component, the FFCFs are biexponential decays with fast and slow time components of ∼12.5 and ∼150 ps in the lamellar phase. Both components of the FFCF are independent of the number of water molecules per headgroup for the lamellae, but they slow somewhat in the BC phase. The dynamics in the ordered phases are in sharp contrast to the dynamics in EHS, which displays fast and slow components of the FFCF of 5 and 80 ps, respectively. As the hydration level of AOT increases, vibrational lifetime decreases, suggesting some change in the local environment of W(CO)6 with water content.

  17. Trend estimates of AERONET-observed and model-simulated AOT percentiles between 1993 and 2013

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Pozzer, Andrea; Chang, Dong Yeong; Lelieveld, Jos

    2016-04-01

    Recent Aerosol Optical thickness (AOT) trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope±2σ = 0.75 ± 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires.

  18. Trend Estimates of AERONET-Observed and Model-Simulated AOTs Between 1993 and 2013

    NASA Technical Reports Server (NTRS)

    Yoon, J.; Pozzer, A.; Chang, D. Y.; Lelieveld, J.; Kim, J.; Kim, M.; Lee, Y. G.; Koo, J.-H.; Lee, J.; Moon, K. J.

    2015-01-01

    Recently, temporal changes in Aerosol Optical Thickness (AOT) have been investigated based on model simulations, satellite and ground-based observations. Most AOT trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope+/-2(sigma) = 0.75 +/- 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires. In most of the selected regions of interest, EMAC-simulated trends are mainly attributed to the significant changes of the dominant aerosols; e.g., significant decrease in sea salt and water soluble compounds over Central America, increase in dust over Northern Africa and Middle East, and decrease in black carbon and organic carbon over

  19. Trend estimates of AERONET-observed and model-simulated AOTs between 1993 and 2013

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Pozzer, A.; Chang, D. Y.; Lelieveld, J.; Kim, J.; Kim, M.; Lee, Y. G.; Koo, J.-H.; Lee, J.; Moon, K. J.

    2016-01-01

    Recently, temporal changes in Aerosol Optical Thickness (AOT) have been investigated based on model simulations, satellite and ground-based observations. Most AOT trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope±2σ = 0.75 ± 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires. In most of the selected regions of interest, EMAC-simulated trends are mainly attributed to the significant changes of the dominant aerosols; e.g., significant decrease in sea salt and water soluble compounds over Central America, increase in dust over Northern Africa and Middle East, and decrease in black carbon and organic carbon over Australia.

  20. Unexpected increasing AOT trends over northwest Bay of Bengal in the early postmonsoon season

    SciTech Connect

    Kishcha, P.; Starobinets, B.; Long, Charles N.; Alpert, P.

    2012-12-13

    The main point of our study is that aerosol trends can be created by changes in meteorology without changes in aerosol source strength. Over the 10 year period 2000–2009, in October, Moderate Resolution Imaging Spectroradiometer (MODIS) showed strong increasing aerosol optical thickness (AOT) trends of approximately 14% yr-1 over northwest Bay of Bengal (BoB) in the absence of AOT trends over the east of the Indian subcontinent. This was unexpected because sources of anthropogenic pollution were located over the Indian subcontinent and aerosol transport from the Indian subcontinent to northwest BoB was carried out by prevailing winds. In October, winds over the east of the Indian subcontinent were stronger than winds over northwest BoB, which resulted in wind convergence and accumulation of aerosol particles over northwest BoB. Moreover, there was an increasing trend in wind convergence over northwest BoB. This led to increasing trends in the accumulation of aerosol particles over northwest BoB and, consequently, to strong AOT trends over this area. In contrast to October, November showed no increasing AOT trends over northwest BoB or the nearby Indian subcontinent. The lack of AOT trends over northwest BoB corresponds to a lack of trends in wind convergence in that region. Finally, December domestic heating by the growing population resulted in positive AOT trends of similar magnitude over land and sea. Our findings illustrate that in order to explain and predict trends in regional aerosol loading, meteorological trends should be taken into consideration together with changes in aerosol source strength.

  1. Master: 3 OT

    NASA Astrophysics Data System (ADS)

    Balanutsa, P.; Lipunov, V.; Buckley, D.; Tlatov, A.; Gorbovskoy, E.; Tyurina, N.; Kuznetsov, A.; Kornilov, V.; Kuvshinov, D.; Popova, E.; Vlasenko, D.; Shumkov, V.; Potter, S.; Kniazev, A.; Budnev, N.; Gress, O.; Ivanov, K.; Senik, V.; Dormidontov, D.; Parhomenko, A. V.

    2016-08-01

    MASTER-Kislovodsk auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 21h 33m 50.58s +06d 51m 22.5s on 2016-07-27.94690 UT. The OT unfiltered magnitude is 17.8m (limit 18.0m).

  2. Relationship between Column AOT and Surface PM2.5 over the U.S.

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    The quantitative use of the satellite observations of aerosol for local air quality forecast/study will be explored by examining the relationship between the column Aerosol Optical Thickness (AOT) and the surface PM2.5 at different locations and seasons over the U.S. We use the global model GOCART, the MODIS satellite data, and the EPA surface measurements to demonstrate the feasibility of satellite data application for air quality study.

  3. Joint AOT-Single Scattering Albedo Retrieval in Algorithm MAIAC

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.

    2015-12-01

    Multi-Angle Implementation of Atmospheric Correction (MAIAC) is a new algorithm which uses time series analysis and processing of groups of pixels for advanced cloud detection and retrieval of aerosol and surface bidirectional reflectance properties. MAIAC C6+ re-processing of MODIS data record, scheduled to begin in November 2015, will create a suite of products MCD19. Due to high 1km resolution, MAIAC provides information about fine scale aerosol variability required in different applications such as urban air quality analysis. During the past year, we developed a new MAIAC capability to retrieve Single Scattering Albedo (SSA) from MODIS by adapting OMI heritage approach of O. Torres. We will describe MAIAC retrieval approach, AERONET AOT and SSA validation for different world biomass burning regions, and will compare MAIAC results with other sensors.

  4. The influence of the structure and the composition of water/AOT-Tween 85/IPM microemulsion system on transdermal delivery of 5-fluorouracil.

    PubMed

    Yanyu, Xiao; Fang, Liu; Qineng, Ping; Hao, Cai

    2012-12-01

    The purpose of this study was to investigate the influence of the structure and the composition of water/Aerosol-OT (AOT)-Tween 85/isopropylmyristate (IPM) microemulsion system (WATI) on transdermal delivery of 5-fluorouracil (5-FU). The structure of WATI was characterized by measuring surface tension, density, viscosity, electric conductivity, and differential scanning calorimetry. The effect of the drug loading, water content, component compositions and the amount of mixed surfactant on permeation of 5-FU through mice skin was evaluated by using Franz-type diffusion cells. The results in vitro implied that WATI was W/O microemulsion when the water content was below 20 wt% at fixed 20 wt% of mixed surfactant at 25°C, then might be transformed to a bicontinuous structure, finally, formed O/W microemulsion with water content over 30 wt%. Increase of the drug loading can directly facilitate the penetration of the drug across the skin. Drug diffusion after 12 h from the bicontinuous microemulsion (795.1 ± 22.3 µg·cm(-2)) would be fastest compared to that from the W/O microemulsion (650.2 ± 11.7 µg·cm(-2)) and the O/W microemulsion (676.6 ± 14.8 µg·cm(-2)). The combination of AOT and IPM could bring about synergistic effect on the skin enhancement, however, Tween 85 in WATI decreased the cumulative permeation amount of 5-FU. The content of mixed surfactant had no effect on the permeation of 5-FU at fixed surfactant/cosurfactant ratio (K(m) = 2). Thus, the increased transdermal delivery the hydrophilic drug of 5-FU was found to be concerned with both of the structure and the composition of WATI. PMID:22324326

  5. Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems.

    PubMed

    Kini, Gautam C; Biswal, Sibani Lisa; Wong, Michael S; Miller, Clarence A

    2012-11-01

    Nanoemulsions were formed spontaneously by diluting water-in-oil (W/O) or brine-in-oil (B/O) microemulsions of a hydrocarbon (octane), anionic surfactant (Aerosol-OT or AOT) and water or NaCl brine in varying levels of excess brine. The water-continuous nanoemulsions were characterized by interfacial tension, dynamic light scattering, electrophoresis, optical microscopy and phase-behavior studies. The mechanism of emulsification was local supersaturation and resulting nucleation of oil during inversion. For nanoemulsions formed at low salinities with Winsor I phase behavior, octane drops grew from initial diameters of 150-250 nm to 480-1000 nm over 24h, depending on salinity. Growth was caused by mass transfer but seemed to approach the asymptotic stage of Ostwald ripening described by the Lifshitz-Slyozov-Wagner (LSW) theory only for dilution with salt-free water. Near the higher cross-over salinity (Winsor III), the nanoemulsions showed much slower growth with droplet size consistently remaining below 200 nm over 24h and reaching 250 nm after 1 week. Birefringence indicated the presence of liquid crystal for these conditions, which could have contributed to the slow growth rate. At even higher salinity levels in the Winsor II domain, W/O/W multiple emulsions having drops greater than 1 μm in diameter were consistently recorded for the first 5-7h, after which size decreased to values below 1 μm. The number and size of internal water droplets in multiple emulsion drops was found to decrease over time, suggesting coalescence of internal droplets with the continuous water phase and mass transfer of water from internal droplets to continuous phase as possible mechanisms of the observed drop shrinkage. Electrophoresis studies showed the nanoemulsions to be highly negatively charged (zeta potentials of -60 mV to -120 mV). The high charge on octane droplets helped assure stability to flocculation and coalescence, thereby allowing mass transfer to control growth in the

  6. Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems.

    PubMed

    Kini, Gautam C; Biswal, Sibani Lisa; Wong, Michael S; Miller, Clarence A

    2012-11-01

    Nanoemulsions were formed spontaneously by diluting water-in-oil (W/O) or brine-in-oil (B/O) microemulsions of a hydrocarbon (octane), anionic surfactant (Aerosol-OT or AOT) and water or NaCl brine in varying levels of excess brine. The water-continuous nanoemulsions were characterized by interfacial tension, dynamic light scattering, electrophoresis, optical microscopy and phase-behavior studies. The mechanism of emulsification was local supersaturation and resulting nucleation of oil during inversion. For nanoemulsions formed at low salinities with Winsor I phase behavior, octane drops grew from initial diameters of 150-250 nm to 480-1000 nm over 24h, depending on salinity. Growth was caused by mass transfer but seemed to approach the asymptotic stage of Ostwald ripening described by the Lifshitz-Slyozov-Wagner (LSW) theory only for dilution with salt-free water. Near the higher cross-over salinity (Winsor III), the nanoemulsions showed much slower growth with droplet size consistently remaining below 200 nm over 24h and reaching 250 nm after 1 week. Birefringence indicated the presence of liquid crystal for these conditions, which could have contributed to the slow growth rate. At even higher salinity levels in the Winsor II domain, W/O/W multiple emulsions having drops greater than 1 μm in diameter were consistently recorded for the first 5-7h, after which size decreased to values below 1 μm. The number and size of internal water droplets in multiple emulsion drops was found to decrease over time, suggesting coalescence of internal droplets with the continuous water phase and mass transfer of water from internal droplets to continuous phase as possible mechanisms of the observed drop shrinkage. Electrophoresis studies showed the nanoemulsions to be highly negatively charged (zeta potentials of -60 mV to -120 mV). The high charge on octane droplets helped assure stability to flocculation and coalescence, thereby allowing mass transfer to control growth in the

  7. Short term variability of aerosol optical thickness at Belsk for the period 2002-2010

    NASA Astrophysics Data System (ADS)

    Pietruczuk, Aleksander

    2013-11-01

    In this work variability of aerosol optical thickness (AOT) measured at Belsk, Poland is studied as well as modification of AOT during airmass advection towards Belsk. AOT measurements taken at Belsk and at AERONET stations located in eastern Germany, Belarus and Scandinavia are used as well as satellite measurements of AOT taken by MODIS instrument onboard Terra and Aqua satellites. Directions of airmass advection are determined by means of cluster analysis of airmass backward-trajectories. Changes of AOT at Belsk from day to day varies around zero regardless of time lag between measurements. The standard deviation of these measurements increases with increasing time lag. In case of advection from west and north direction such standard deviation is reduced. It gives good perspective for a persistent forecast of next day AOT. Analysis of AOT changes during airmass advection toward Belsk reveals two modes of AOT changes distributions. One of them with small increase of AOT and second one with larger increase of AOT, so-called loading mode. Loading mode dominates in case of advection from south direction whilst the first mode of AOT changes dominates in case of advection from other directions. Mean increase of AOT associated with the first mode is 0.034 ± 0.003. Analysis of backward-trajectories shows that aerosol loading occurs over urban/industrial regions located south and south-west of Belsk. Substantial aerosol loading is found during seasonal biomass burning episodes in Eastern Europe.

  8. [An Improved DDV Method to Retrieve AOT for HJ CCD Image in Typical Mountainous Areas].

    PubMed

    Zhao, Zhi-qiang; Li, Ai-nong; Bian, Jin-hu; Huang, Cheng-quan

    2015-06-01

    Domestic HJ CCD imaging applications in environment and disaster monitoring and prediction has great potential. But, HJ CCD image lack of Mid-Nir band can not directly retrieve Aerosol Optical Thickness (AOT) by the traditional Dark Dense Vegetation (DDV) method, and the mountain AOT changes in space-time dramatically affected by the mountain environment, which reduces the accuracy of atmospheric correction. Based on wide distribution of mountainous dark dense forest, the red band histogram threshold method was introduced to identify the mountainous DDV pixels. Subsequently, the AOT of DDV pixels were retrieved by lookup table constructed by 6S radiative transfer model with assumption of constant ratio between surface reflectance in red and blue bands, and then were interpolated to whole image. MODIS aerosol product and the retrieved AOT by the proposed algorithm had very good consistency in spatial distribution, and HJ CCD image was more suitable for the remote sensing monitoring of aerosol in mountain areas, which had higher spatial resolution. Their fitting curve of scatterplot was y = 0.828 6x-0.01 and R2 was 0.984 3 respectively. Which indicate the improved DDV method can effectively retrieve AOT, and its precision can satisfy the atmospheric correction and terrain radiation correction for Hj CCD image in mountainous areas. The improvement of traditional DDV method can effectively solve the insufficient information problem of the HJ CCD image which have only visible light and near infrared band, when solving radiative transfer equation. Meanwhile, the improved method fully considered the influence of mountainous terrain environment. It lays a solid foundation for the HJ CCD image atmospheric correction in the mountainous areas, and offers the possibility for its automated processing. In addition, the red band histogram threshold method was better than NDVI method to identify mountain DDV pixels. And, the lookup table and ratio between surface reflectance

  9. [An Improved DDV Method to Retrieve AOT for HJ CCD Image in Typical Mountainous Areas].

    PubMed

    Zhao, Zhi-qiang; Li, Ai-nong; Bian, Jin-hu; Huang, Cheng-quan

    2015-06-01

    Domestic HJ CCD imaging applications in environment and disaster monitoring and prediction has great potential. But, HJ CCD image lack of Mid-Nir band can not directly retrieve Aerosol Optical Thickness (AOT) by the traditional Dark Dense Vegetation (DDV) method, and the mountain AOT changes in space-time dramatically affected by the mountain environment, which reduces the accuracy of atmospheric correction. Based on wide distribution of mountainous dark dense forest, the red band histogram threshold method was introduced to identify the mountainous DDV pixels. Subsequently, the AOT of DDV pixels were retrieved by lookup table constructed by 6S radiative transfer model with assumption of constant ratio between surface reflectance in red and blue bands, and then were interpolated to whole image. MODIS aerosol product and the retrieved AOT by the proposed algorithm had very good consistency in spatial distribution, and HJ CCD image was more suitable for the remote sensing monitoring of aerosol in mountain areas, which had higher spatial resolution. Their fitting curve of scatterplot was y = 0.828 6x-0.01 and R2 was 0.984 3 respectively. Which indicate the improved DDV method can effectively retrieve AOT, and its precision can satisfy the atmospheric correction and terrain radiation correction for Hj CCD image in mountainous areas. The improvement of traditional DDV method can effectively solve the insufficient information problem of the HJ CCD image which have only visible light and near infrared band, when solving radiative transfer equation. Meanwhile, the improved method fully considered the influence of mountainous terrain environment. It lays a solid foundation for the HJ CCD image atmospheric correction in the mountainous areas, and offers the possibility for its automated processing. In addition, the red band histogram threshold method was better than NDVI method to identify mountain DDV pixels. And, the lookup table and ratio between surface reflectance

  10. MASTER: QSO flare and OTs

    NASA Astrophysics Data System (ADS)

    Gress, O.; Shumkov, V.; Pogrosheva, T.; Lipunov, V.; Rebolo, R.; Serra-Ricart, M.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Ivanov, K.; Vladimirov, V.; Lopez, C.; Podesta, F.; Saffe, C.

    2016-10-01

    MASTER-OAFA auto-detection system (Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 01h 50m 52.97s -45d 10m 15.9s on 2016-10-06.21896 UT with unfiltered m_OT=17.4m (limit 20.6m).

  11. Autoregressive spatially varying coefficients model for predicting daily PM2.5 using VIIRS satellite AOT

    NASA Astrophysics Data System (ADS)

    Schliep, E. M.; Gelfand, A. E.; Holland, D. M.

    2015-12-01

    There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.

  12. Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2005-05-01

    A number of global aerosol products of varying quality, strengths, and weaknesses have been generated. Presented here are synthetic analyses with regard to the quality, compatibility, and synergy of two long-term global (1983-2000) aerosol products derived from the advanced very high resolution radiometer (AVHRR) and the Total Ozone Mapping Spectrometer (TOMS). Four essential aerosol parameters, namely, aerosol optical thickness (AOT) from AVHRR under the Global Aerosol Climatology Project (GACP), TOMS AOT, Ångström exponent (AE) from AVHRR, and TOMS aerosol index (AI) are analyzed together with various ancillary data sets on meteorological fields, ocean color, and ground-based AOT measurements. While the two satellite products reveal some common features, significant discrepancies exist. Reflectances measured at ultraviolet and visible wavelengths from the two sensors are incompatible in terms of the magnitude of AE computed from AOT derived from the two channels. The spatial distributions of the aerosol products from AVHRR and TOMS are complimentary in revealing different aspects of aerosol characteristics. In-depth analyses were carried out over several regions under the influence of different types of aerosols such as biomass burning, dust, sea salt, air pollution, and their mixtures. A classification algorithm was developed to identify dominant types of aerosols around the globe using aerosol products from the two instruments. Aerosol type information is used to develop and apply relationships between the AVHRR AOT and the TOMS AOT. The latter was used to extend the AOT at 0.55 μm over land around the globe. Comparisons of monthly mean AOTs with AERONET monthly mean AOTs showed a general agreement to within an estimated error range of ±0.08 ± 0.20τ. Finally, a comparison between the estimated AOT with Moderate Resolution Imaging Spectroradiometer (MODIS) AOT over land showed good agreement in terms of magnitude and seasonality, suggesting a means of

  13. Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP

    NASA Astrophysics Data System (ADS)

    Toth, Travis D.; Zhang, Jianglong; Campbell, James R.; Reid, Jeffrey S.; Vaughan, Mark A.

    2016-08-01

    Temporal variability in the vertical distribution of aerosol optical thickness (AOT) derived from the 0.532 µm aerosol extinction coefficient is described using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations over 8.5 years (June 2006 to December 2014). Temporal variability of CALIOP column-integrated AOT is largely consistent with total column AOT trends from several passive satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and the Sea-viewing Wide Field-of-view Sensor. Globally, a 0.0002 AOT per year positive trend in deseasonalized CALIOP total column AOT for daytime conditions is attributed to corresponding changes in near-surface (i.e., 0.0-0.5 km or 0.5-1.0 km above ground level (agl)) aerosol particle loading, while a -0.0006 AOT per year trend during nighttime is attributed to elevated (i.e., 1.0-2.0 km or >2.0 km agl) aerosols. Regionally, increasing daytime CALIOP AOTs are found over Southern Africa and India, mostly due to changes in aerosol loading at the 1.0-2.0 km and 0.0-0.5 km agl layers, respectively. Decreasing daytime CALIOP AOTs are observed over Northern Africa, Eastern U.S., and South America (due mostly to elevated aerosol loading), while the negative CALIOP AOT trends found over Eastern China, Europe, and Western U.S. are due mostly to aerosol layers nearer the surface. To our knowledge, this study is the first to provide both a globally comprehensive estimation of the temporal variation in aerosol vertical distribution and an insight into passive sensor column AOT trends in the vertical domain.

  14. A new assessment method of outdoor tobacco smoke (OTS) exposure

    NASA Astrophysics Data System (ADS)

    Cho, Hyeri; Lee, Kiyoung

    2014-04-01

    Outdoor tobacco smoke (OTS) is concerned due to potential health effects. An assessment method of OTS exposure is needed to determine effects of OTS and validate outdoor smoking policies. The objective of this study was to develop a new method to assess OTS exposure. This study was conducted at 100 bus stops including 50 centerline bus stops and 50 roadside bus stops in Seoul, Korea. Using real-time aerosol monitor, PM2.5 was measured for 30 min at each bus stop in two seasons. ‘Peak analysis' method was developed to assess short term PM2.5 exposure by OTS. The 30-min average PM2.5 exposure at each bus stop was associated with season and bus stop location but not smoking activity. The PM2.5 peak occurrence rate by the peak analysis method was significantly associated with season, bus stop location, observed smoking occurrence, and the number of buses servicing a route. The PM2.5 peak concentration was significantly associated with season, smoking occurrence, and the number of buses servicing a route. When a smoker was standing still at the bus stop, magnitude of peak concentrations were significantly higher than when the smoker walking-through the bus stop. People were exposed to high short-term PM2.5 peak levels at bus stops, and the magnitude of peak concentrations were highest when a smoker was located close to the monitor. The magnitude of peak concentration was a good indicator helped distinguish nearby OTS exposure. Further research using ‘peak analysis' is needed to measure smoking-related exposure to PM2.5 in other outdoor locations.

  15. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  16. Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

    PubMed Central

    Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry

    2014-01-01

    In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664

  17. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  18. Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth

    2012-01-01

    We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.

  19. Diversity of Aerosol Optical Thickness in analysis and forecasting modes of the models from the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Lynch, P.

    2014-12-01

    With the emergence of global aerosol models intended for operational forecasting use at global numerical weather prediction (NWP) centers, the International Cooperative for Aerosol Prediction (ICAP) was founded in 2010. One of the objectives of ICAP is to develop a global multi-model aerosol forecasting ensemble (ICAP-MME) for operational and basic research use. To increase the accuracy of aerosol forecasts, several of the NWP centers have incorporated assimilation of satellite and/or ground-based observations of aerosol optical thickness (AOT), the most widely available and evaluated aerosol parameter. The ICAP models are independent in their underlying meteorology, as well as aerosol sources, sinks, microphysics and chemistry. The diversity of aerosol representations in the aerosol forecast models results in differences in AOT. In addition, for models that include AOT assimilations, the diversity in assimilation methodology, the observed AOT data to be assimilated, and the pre-assimilation treatments of input data also leads to differences in the AOT analyses. Drawing from members of the ICAP latest generation of quasi-operational aerosol models, five day AOT forecasts and AOT analyses are analyzed from four multi-species models which have AOT assimilations: ECMWF, JMA, NASA GSFC/GMAO, and NRL/FNMOC. For forecast mode only, we also include the dust products from NOAA NGAC, BSC, and UK Met office in our analysis leading to a total of 7 dust models. AOT at 550nm from all models are validated at regionally representative Aerosol Robotic Network (AERONET) sites and a data assimilation grade multi-satellite aerosol analysis. These analyses are also compared with the recently developed AOT reanalysis at NRL. Here we will present the basic verification characteristics of the ICAP-MME, and identify regions of diversity between model analyses and forecasts. Notably, as in many other ensemble environments, the multi model ensemble consensus mean outperforms all of the

  20. MASTER: PSN in PGC135878 and OTs

    NASA Astrophysics Data System (ADS)

    Balanutsa, P.; Shumkov, V.; Lipunov, V.; Buckley, D.; Lopez, R. Rebolo; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Gress, O.; Ricart, M. Serra; Israelian, G.; Potter, S.; Kniazev, A.

    2016-06-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 18h 02m 41.87s +09d 03m 12.9s on 2016-06-05.16160 UT. The OT unfiltered magnitude is (limit 19.1m).The OT is seen in 10 images.

  1. VARIATIONS OF MERIDIONAL AEROSOL DISTRIBUTION AND SOLAR DIMMING

    SciTech Connect

    Kishcha, P.; Starobinets, B.; Kalashnikova, O.; Long, Charles N.; Alpert, P.

    2009-06-08

    Meridional distribution of aerosol optical thickness (AOT) over the ocean was analyzed by using the eight-year MISR and MODIS-Terra data sets, from March 2000 to February 2008, as well as the five-year MODIS-Aqua data set, from July 2002 to June 2007. The three independent sensors show that there was a pronounced meridional aerosol asymmetry. It was found that there were strong seasonal variations in the hemispheric aerosol asymmetry: it was pronounced during the half-year period, from March to August (the most pronounced asymmetry was observed from April to July). There was no noticeable asymmetry during the season from September to December. Not only has the Northern hemisphere, where the main sources of aerosols are located, but also the Southern hemisphere contributed to the formation of noticeable aerosol asymmetry. The increase in AOT, averaged over the Northern hemisphere during the season of pronounced hemispheric aerosol asymmetry, was accompanied by a decrease in AOT, averaged over the Southern hemisphere. In both hemispheres, amplitudes of seasonal AOT variations decreases from mid-latitudes (60N - 30N and 30S - 60S) to low latitudes (30N - 0 and 0 - 30S) respectively, indicating that the contribution of AOT averaged over mid-latitudes to the formation of pronounced meridional hemispheric asymmetry and its seasonal variations is more significant than the contribution of AOT averaged over low latitudes. For the season of prominent hemispheric aerosol asymmetry, from April to July, during the eight-year period under consideration, a declining long-term tendency of AOT prevailed at latitudes between 30oN and 60oN, suggesting brightening over the cloud-free ocean.

  2. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan

    2005-01-01

    Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.

  3. Integral physicochemical properties of reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Shubenkova, E. G.; Poshelyuzhnaya, E. G.; Lutaeva, I. A.

    2016-08-01

    The effect the degree of hydration has on optical and electrophysical properties of water/AOT/ n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.

  4. Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma.

    PubMed

    Shahryari, Alireza; Rafiee, Mahmoud Reza; Fouani, Youssef; Oliae, Nasrin Alipour; Samaei, Nader Mansour; Shafiee, Mohammad; Semnani, Shahryar; Vasei, Mohammad; Mowla, Seyed Javad

    2014-01-01

    Long noncoding RNAs (lncRNAs) have emerged as new regulators of stem cell pluripotency and tumorigenesis. The SOX2 gene, a master regulator of pluripotency, is embedded within the third intron of a lncRNA known as SOX2 overlapping transcript (SOX2OT). SOX2OT has been suspected to participate in regulation of SOX2 expression and/or other related processes; nevertheless, its potential involvement in tumor initiation and/or progression is unclear. Here, we have evaluated a possible correlation between expression patterns of SOX2OT and those of master regulators of pluripotency, SOX2 and OCT4, in esophageal squamous cell carcinoma (ESCC) tissue samples. We have also examined its potential function in the human embryonic carcinoma stem cell line, NTERA2 (NT2), which highly expresses SOX2OT, SOX2, and OCT4. Our data revealed a significant coupregulation of SOX2OT along with SOX2 and OCT4 in tumor samples, compared to the non-tumor tissues obtained from the margin of same tumors. We also identified two novel splice variants of SOX2OT (SOX2OT-S1 and SOX2OT-S2) which coupregulated with SOX2 and OCT4 in ESCCs. Suppressing SOX2OT variants caused a profound alteration in cell cycle distribution, including a 5.9 and 6.9 time increase in sub-G1 phase of cell cycle for SOX2OT-S1 and SOX2OT-S2, respectively. The expression of all variants was significantly diminished, upon the induction of neural differentiation in NT2 cells, suggesting their potential functional links to the undifferentiated state of the cells. Our data suggest a part for SOX2OT spliced variants in tumor initiation and/or progression as well as regulating pluripotent state of stem cells.

  5. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  6. An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models

    SciTech Connect

    Kinne, Stefan; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, Olivier; Chin, M.; Collins, W.; Dentener, F.; Diehl, T.; Easter, Richard C.; Feichter, H.; Fillmore, D.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Herzog, M.; Horrowitz, L.; Isaksen, I.; Iversen, T.; Kirkevag, A.; Kloster, S.; Koch, D.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Lesins, G.; Liu, Xiaohong; Lohmann, U.; Montanaro, V.; Myhre, G.; Penner, Joyce E.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-29

    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment global fields for mass and for mid-visible aerosol optical thickness (aot) were compared among aerosol component modules of 21 different global models. There is general agreement among models for the annual global mean of component combined aot. At 0.12 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca 0.14) and space (MODIS-MISR composite ca 0.16). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture have remained. Of particular concern is the large model diversity for contributions by dust and carbon, because it leads to significant uncertainty in aerosol absorption (aab). Since not only aot but also aab influence the aerosol impact on the radiative energy-balance, aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) and space (e.g. correlations between retrieved aerosol and cloud properties).

  7. MASTER-SAAO: short OT detection

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Lipunov, V.; Chazov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Balanutsa, P.; Kornilov, V.; Gress, O.; Potter, S.

    2016-09-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 00h 45m 26.42s -88d 32m 00.3s on 2016-09-23.96355 UT. The OT unfiltered m=18.7m (mlim=20.8m).

  8. MASTER: 2 PSNe and 3 OTs

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Gress, O.; Balanutsa, P.; Lipunov, V.; Buckley, D.; Rebolo Lopez, R.; Serra Ricart, M.; Podesta, R.; Levato, H.; Tiurina, N.; Gorbovskoy, E.; Kuznetsov, A.; Kornilov, V.; Shumkov, V.; Lodieu, N.; Saffe, C.; Lopez, C.; Podesta, F.; Rabinovich, J.; Ivanov, K.; Budnev, N.

    2016-09-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 05h 42m 31.15s -26d 25m 33.9s on 2016-09-20.06426 UT. The OT unfiltered m=17.3m (mlim=18.7m).

  9. MASTER-OAFA discovery: new bright OT

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Balanutsa, P.; Pogrosheva, T.; Lipunov, V.; Podesta, R.; Levato, H.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Lopez, C.; Podesta, F.; Saffe, C.; Potter, S.

    2016-10-01

    MASTER-OAFA auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 18h 06m 06.62s -62d 13m 31.3s on 2016-10-19.03627 UT. The OT unfiltered (limit 19.1m).

  10. MASTER-SAAO: bright outbursting OT

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Lipunov, V.; Buckley, D.; Kornilov, V.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Gress, O.; Kuznetsov, A.; Kuvshinov, D.; Vladimirov, V.; Gorbunov, I.; Vlasenko, D.; Popova, E.; Potter, S.; Kniazev, A.; Shurpakov, S.

    2016-04-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 21h 29m 20.71s -62d 08m 52.2s on 2016-04-27.985 UT. The OT unfiltered magnitude is 17.3m (the limit is 19.3m).

  11. Master-Iac Master-Saao OTs

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Vladimirov, V.; Lipunov, V.; Lopez, R. Rebolo; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Balanutsa, P.; Kornilov, V.; Gorbunov, I.; Gress, O.; Shumkov, V.; Ricart, M. Serra; Israelian, G.; Potter, S.; Kniazev, A.

    2016-06-01

    MASTER-IAC auto-detection system( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 20h 58m 16.98s +23d 58m 12.6s on 2016-06-09.03890 UT. The OT unfiltered magnitude is 17.5m (limit 19.4m).

  12. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    SciTech Connect

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; Long, Charles N.; Kalashnikova, Olga; Alpert, Pinhas

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOT asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.

  13. New Statistical Model for Variability of Aerosol Optical Thickness and its Application to Analysis of Global Satellite Datasets

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Geogdzhayev, I. V.; Cairns, B.; Mishchenko, M. I.

    2013-05-01

    We present a novel statistical model AOTVM for variability of aerosol optical thickness (AOT). Mathematically this model is based on summation of multiple realizations of certain binary Markov process. It allows for construction of realistic examples of AOT time series, which have 1-point (lognormal PDF) and 2-point (structure function) statistics consistent with each other. Unlike commonly used scale-invariant (fractal) variability models having power-law structure functions, AOTVM's second order structure function converges to a constant (double of AOT's variance) at large lags (where the AOT values at different points become essentially independent from each other). This structure function has simple analytical form convenient for use in remote sensing data analysis. Aerosol variability in AOTVM is characterized by 3 parameters independent from the mean AOT. The first parameter is the ratio between AOT's standard deviation and its mean representing the relative magnitude of AOT variability. The second parameter is the characteristic size of inhomogeneity in AOT field. It quantifies the loss of dependence between AOT values at two points in space with the increase of distance between them. The third parameter is the Hurst exponent characterizing AOT's turbulent behavior at small scales. The proposed variability model was evaluated using MODIS Terra satellite AOT product (collection 5 level 2). We took one-year-long (2006) global AOT dataset (at 550 nm wavelength) and computed means, variances, and structure functions for the data from overlapping 10 by 10 degree cells (with ocean and land treated separately). This provided a set of AOT statistics on a grid with 5-degree resolution. We demonstrated that the structure functions derived from the satellite data can be closely fitted by AOTVM's analytical expressions. These fits provide global long-term datasets of the 3 model parameters described above, thus, adding to the information content of the satellite

  14. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-10-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  15. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-01-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  16. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  17. MASTER: 2 OT discovered in Argentina

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Pogrosheva, T.; Lipunov, V.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Vladimirov, V.; Gress, O.; Ivanov, K.; Chazov, V.; Lopez, C.; Podesta, F.; Saffe, C.

    2016-10-01

    MASTER-OAFA, located in Argentina, with auto-detection system (Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L) discovered OT source at (RA, Dec) = 03h 19m 42.92s -45d 30m 13.9s on 2016-10-27.27597 UT. The OT unfiltered magnitude is 16.9m (mlim=20.8m).

  18. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  19. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    DOE PAGES

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; Long, Charles N.; Kalashnikova, Olga; Alpert, Pinhas

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore » asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less

  20. Electron processes in AOT reverse micelles. Part 2. Influence of oil phase. Pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Gebicki, J. L.; Bednarek, P.

    2000-11-01

    Reverse micellar systems formed of AOT, i.e. sodium bis(2-ethyl-1-hexyl) sulfo-succinate, in different hydrocarbons, without water, dry micelles, and in the presence of water, wet micelles, have been studied by means of pulse radiolysis. Different localization sites of hydrated electron within wet reverse micelle including a triad e aq-/Na +/SO 3- rad (absorption band peaking around 610 nm) are proposed and discussed to explain the influence of the ratio [water]/[AOT] and of the kind of alkane on the position and half-width of the absorption spectrum of the hydrated electron. Sulfite radical, necessary to form such triad, is released as a result of electron interaction with AOT molecule within reverse micelles (RM) containing water. A product of direct electron attachment to AOT molecule, AOT radical anion, has been observed spectrophotometrically only in dry AOT RM at ambient temperature (absorption band peaking around 330 nm).

  1. Does the Madden-Julian Oscillation Influence Aerosol Variability?

    NASA Astrophysics Data System (ADS)

    Tian, B.; Waliser, D. E.; Kahn, R. A.; Li, Q.; Yung, Y. L.; Tyranowski, T.; Geogdzhayev, I. V.; Mishchenko, M. I.; Torres, O.; Smirnov, A.

    2007-12-01

    We investigate the modulation of aerosols by the Madden-Julian Oscillation (MJO) using satellite-based global aerosol products, including aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, and aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites. A composite analysis is performed for boreal winter, and the global pentad rainfall data from the NOAA Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) are used to identify MJO events. The MJO composites exhibit large variations in the TOMS AI and MODIS/AVHRR AOT over the equatorial Indian and western Pacific Oceans where MJO convection is active, as well as the tropical Africa and Atlantic Ocean where MJO convection is relatively weak but the background aerosol level is relatively high. A strong inverse linear relationship between the TOMS AI and rainfall anomalies, but a weaker, less coherent positive correlation between the MODIS/AVHRR AOT and rainfall anomalies, were found. The Aerosol Robotic Network AOT pattern at Kaashidoo (73.5°E, 4.9°N) and Nauru (167°E, 0.5°S) is more consistent with MODIS and AVHRR. These results indicate a connection between the MJO, its associated rainfall and circulation variability, and the observed aerosol variations. Several physical and non-physical factors that may contribute to the observed aerosol-rainfall relationship, such as aerosol humidification effect, wet deposition, surface wind speed, phytoplankton, different sensor sensitivities (absorbing versus non-absorbing aerosols and upper versus lower tropospheric aerosols), sampling issue, and cloud contamination, are discussed. However, a clear causal explanation for the observed patterns remains elusive. Further investigation is needed to unravel this complex aerosol-rainfall relationship.

  2. Aerosol retrieval from SNPP/VIIRS: Analysis of technique and data quality

    NASA Astrophysics Data System (ADS)

    Laszlo, Istvan

    2013-04-01

    The aerosol environmental data records (EDR) derived from the measurements of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite are the aerosol optical thickness (AOT), aerosol particle size parameter (APSP, characterized in terms of the Angstrom Exponent, AE), and suspended matter (SM). These EDRs go through various evaluations to assess their level of maturity. This presentation provides an analysis of the VIIRS aerosol retrieval technique in comparison with the MODIS technique and of the work and results the SNPP/JPSS Calibration/Validation Team has performed for these maturity levels up to date. The VIIRS AOT products have been compared with aerosol products derived from MODIS observations onboard the NASA Earth Observing System (EOS) satellite (Aqua), and with AERONET products and observations. All comparisons have been applied to a uniform time sample. Qualitative and quantitative analysis of the VIIRS aerosol EDRs have showed that VIIRS AOT over ocean is comparable to those from MODIS and AERONET. Over land, the VIIRS AOT was initially biased high; this bias has subsequently been reduced significantly by updating the pre-launch values of the spectral surface ratios used in the AOT retrieval.

  3. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Reid, J. S.; Benedetti, A.; Colarco, P. R.; da Silva, A.; Lu, S.; Sekiyama, T.; Tanaka, T. Y.; Baldasano, J. M.; Basart, S.; Brooks, M. E.; Eck, T. F.; Iredell, M.; Hansen, J. A.; Jorba, O. C.; Juang, H.-M. H.; Lynch, P.; Morcrette, J.-J.; Moorthi, S.; Mulcahy, J.; Pradhan, Y.; Razinger, M.; Sampson, C. B.; Wang, J.; Westphal, D. L.

    2015-01-01

    Here we present the first steps in developing a global multi-model aerosol forecasting ensemble intended for eventual operational and basic research use. Drawing from members of the International Cooperative for Aerosol Prediction (ICAP) latest generation of quasi-operational aerosol models, 5-day aerosol optical thickness (AOT) forecasts are analyzed for December 2011 through November 2012 from four institutions: European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA), NASA Goddard Space Flight Center (GSFC), and Naval Research Lab/Fleet Numerical Meteorology and Oceanography Center (NRL/FNMOC). For dust, we also include the National Oceanic and Atmospheric Administration-National Geospatial Advisory Committee (NOAA NGAC) product in our analysis. The Barcelona Supercomputing Centre and UK Met Office dust products have also recently become members of ICAP, but have insufficient data to be included in this analysis period. A simple consensus ensemble of member and mean AOT fields for modal species (e.g., fine and coarse mode, and a separate dust ensemble) is used to create the ICAP Multi-Model Ensemble (ICAP-MME). The ICAP-MME is run daily at 00:00 UTC for 6-hourly forecasts out to 120 h. Basing metrics on comparisons to 21 regionally representative Aerosol Robotic Network (AERONET) sites, all models generally captured the basic aerosol features of the globe. However, there is an overall AOT low bias among models, particularly for high AOT events. Biomass burning regions have the most diversity in seasonal average AOT. The Southern Ocean, though low in AOT, nevertheless also has high diversity. With regard to root mean square error (RMSE), as expected the ICAP-MME placed first over all models worldwide, and was typically first or second in ranking against all models at individual sites. These results are encouraging; furthermore, as more global operational aerosol models come online, we expect their inclusion in a robust

  4. Impact of Spatial Resolution on Surface PM2.5 Monitoring using Satellite-derived Aerosol Optical Thickness

    NASA Astrophysics Data System (ADS)

    Kondragunta, S.

    2012-12-01

    Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. The VIIRS instrument provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR). The air quality and public health community has been using the 10-km Aqua and Terra MODIS (Moderate resolution Imaging Spectroradiometer) AOT products as a proxy to monitor surface PM2.5 (particulate mass for particles smaller than 2.5 μm in median diameter). The United States Environmental Protection Agency (USEPA) monitors surface PM2.5 because high concentrations have adverse human health impacts. The monitoring stations are not dense, especially in the rural regions, requiring the EPA and scientific community to use satellite-derived AOT as a proxy to derive surface PM2.5. VIIRS AOT will provide continuity to the use of MODIS AOT and its two different spatial resolutions provide an opportunity to test the impact of spatial resolution on the AOT-PM2.5 relationship. A preliminary comparison of VIIRS best quality aerosol products with in situ L1.5 AERONET data using nearest neighbor matchup criteria for one month (May 2012) shows that the IP and EDR AOT bias is 0.204 and 0.153 respectively, and the precision of IP and EDR AOT is 0.319 and 0.235 respectively. A comparison to Aqua MODIS for the same time period also shows that VIIRS AOT is biased high over land but the magnitudes of bias and precision are lower. Given that this evaluation places the VIIRS aerosol products at the beta maturity level (product is minimally validated, may contain significant errors, and not appropriate for quantitative applications) and algorithm refinements are forthcoming, this study compares the collocated satellite-derived AOT and surface PM2.5 relationship for summer 2012 using

  5. Preparation of Nanowire Silica Inside Self-Assembled Sodium Bis(2-ethylhexyl) Sulfosuccinate (AOT) Gels.

    PubMed

    Lai, Wei-Chi; Hong, Li-Tzuen

    2016-09-22

    In conventional sol-gel methods, gel formation occurs due to aggregation of particles into irregular shapes of larger size. In this study, we conducted hydrolysis-condensation reactions of tetraethyl orthosilicate (TEOS) within water-laden channels inside the space created by self-assembled AOT molecules to prepare regular and nanosized silica in self-assembled sodium bis(2-ethylhexyl) sulfosuccinate (AOT) gels. The AOT gels were obtained by adding small amounts of water to organic solvents containing high concentrations of AOT. Adding silica significantly influenced the rheological properties and microstructures of these AOT/silica gels. Rheological studies showed that the storage modulus G' and loss modulus G″ of the AOT gel systems became very close and even crossed, indicating that the gel is "weak"; however, for the AOT/silica gel systems, the rheological data demonstrated that G' is greater than G″ at all frequencies, indicative of a real gel with a G' of approximately 10(5) pa. Small-angle X-ray scattering (SAXS) results showed that the gels initially had a hexagonal close-packed cylindrical structure with long-range order and transitioned to nonclose-packed cylindrical structures without long-range order as the silica formed. The cylinder is expected to comprise stacks of silica molecules surrounded by AOT molecules, and the radius of the cylinder is close to the sum of the length of one AOT molecule and half the size of one silica molecule. The rheological and SAXS data show that silica in the AOT/silica systems grew in the axial direction due to the confinement of these cylindrical structures, leading to nanowire silica structures. After removal of the AOT components, the nanowire silica was approximately 5-10 nm in diameter, as observed using transmission electron microscopy (TEM). PMID:27602986

  6. Preparation of Nanowire Silica Inside Self-Assembled Sodium Bis(2-ethylhexyl) Sulfosuccinate (AOT) Gels.

    PubMed

    Lai, Wei-Chi; Hong, Li-Tzuen

    2016-09-22

    In conventional sol-gel methods, gel formation occurs due to aggregation of particles into irregular shapes of larger size. In this study, we conducted hydrolysis-condensation reactions of tetraethyl orthosilicate (TEOS) within water-laden channels inside the space created by self-assembled AOT molecules to prepare regular and nanosized silica in self-assembled sodium bis(2-ethylhexyl) sulfosuccinate (AOT) gels. The AOT gels were obtained by adding small amounts of water to organic solvents containing high concentrations of AOT. Adding silica significantly influenced the rheological properties and microstructures of these AOT/silica gels. Rheological studies showed that the storage modulus G' and loss modulus G″ of the AOT gel systems became very close and even crossed, indicating that the gel is "weak"; however, for the AOT/silica gel systems, the rheological data demonstrated that G' is greater than G″ at all frequencies, indicative of a real gel with a G' of approximately 10(5) pa. Small-angle X-ray scattering (SAXS) results showed that the gels initially had a hexagonal close-packed cylindrical structure with long-range order and transitioned to nonclose-packed cylindrical structures without long-range order as the silica formed. The cylinder is expected to comprise stacks of silica molecules surrounded by AOT molecules, and the radius of the cylinder is close to the sum of the length of one AOT molecule and half the size of one silica molecule. The rheological and SAXS data show that silica in the AOT/silica systems grew in the axial direction due to the confinement of these cylindrical structures, leading to nanowire silica structures. After removal of the AOT components, the nanowire silica was approximately 5-10 nm in diameter, as observed using transmission electron microscopy (TEM).

  7. Aerosol Typing by 3-Wavelength Elastic Lidar Signals Over the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Rita; Burlizzi, Pasquale

    2016-06-01

    Elastic lidar signals at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sunphotometer measurements collocated in space and time have been used to retrieve columnar lidar ratio (LR) values at the lidar wavelengths by a constrained iterative inversion procedure. Then, the relationships of LRs with AOTs, Ångström exponents, fine mode fractions (η), and fine mode radii (Rf) have been investigated for the aerosol typing. η and Rf values have been retrieved from a graphical framework. It is shown that the implemented methodology has allowed identifying three main aerosol types over the Central Mediterranean which are designed as urban/industrial, marine-polluted, and mixed-dust. Results on the relationships of LRs with AOTs, Å, η, and Rf for each aerosol type represent main paper results.

  8. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  9. Global satellite analysis of the relation between aerosols and short-lived trace gases

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, K. F.; Wang, J.; Kurosu, T. P.; Krotkov, N.; Chance, K.; Levelt, P. F.

    2011-02-01

    The spatial and temporal correlations between concurrent satellite observations of aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) are used to infer information on the global composition of aerosol particles. When averaging the satellite data over large regions and longer time periods, we find significant correlation between MODIS AOT and OMI trace gas columns for various regions in the world. This shows that these enhanced aerosol and trace gas concentrations originate from common sources, such as fossil fuel combustion, biomass burning, and organic compounds released from the biosphere. This leads us to propose that satellite-inferred AOT to NO2 ratios for regions with comparable photochemical regimes can be used as indicators for the relative regional pollution control of combustion processes. Indeed, satellites observe low AOT to NO2 ratios over the eastern United States and western Europe, and high AOT to NO2 ratios over comparably industrialized regions in eastern Europe and China. Emission databases and OMI SO2 observations over these regions suggest a much stronger sulfur contribution to aerosol formation than over the well-regulated areas of the eastern United States and western Europe. Furthermore, satellite observations show AOT to NO2 ratios are a factor 100 higher over biomass burning regions than over industrialized areas, reflecting the unregulated burning practices with strong primary particle emissions in the tropics compared to the heavily controlled combustion processes in the industrialized Northern Hemisphere. Simulations with a global chemistry transport model (GEOS-Chem) capture most of these variations, although on regional scales significant differences are found. Wintertime aerosol concentrations show strongest correlations with NO2 throughout most of the

  10. Aerosol Retrieval and Atmospheric Correction for MERIS Data over Lakes

    NASA Astrophysics Data System (ADS)

    Floricioiu, D.; Rott, H.

    2004-05-01

    One of the objectives of the ENVISAT project AO-164 on "Environmental Research in the Eastern Alps" is the development of algorithms for retrieval of water quality parameters of lakes from MERIS data. In order to test and validate atmospheric correction algorithms and to provide basic data for the development of algorithms for retrieval of limnological parameters and aerosol loadings, several field campaigns were carried out in summer 2003 on the lakes Garda (Italy) and Mondsee (Austria) parallel to MERIS overflights. Field measurements of aerosol optical thickness (AOT) were used as input for atmospheric correction by means of the 6S model, and field spectra measured above the water surface were used to validate the at-surface reflectance derived from MERIS data. The agreement between field and MERIS reflectance spectra is in general good. Some differences are found at short wavelengths which can be attributed to insufficient knowledge of aerosol properties. The sensitivity of the radiative transfer model to changes in AOT and the aerosol model was investigated. For a day with strong variability in the aerosol loading the spatial gradient of AOT was estimated from MERIS data and compared with the temporal evolution of AOT at a field measurement site.

  11. Quality and compatibility analyses of global aerosol products derived from the advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer

    NASA Astrophysics Data System (ADS)

    Jeong, Myeong-Jae; Li, Zhanqing; Chu, D. Allen; Tsay, Si-Chee

    2005-05-01

    There exist numerous global aerosol products derived from various satellite sensors, but little insight has been gained about their compatibility and quality. This study presents a comparison of two prominent global aerosol products derived over oceans from the advanced very high resolution radiometer (AVHRR) under the Global Aerosol Climatology Project (GACP) (Mishchenko et al., 1999) and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Tanré et al., 1997). The comparisons are for monthly mean aerosol optical thickness (AOT) and Ångström exponent (α) at a spatial resolution of 1 × 1 degree. The two monthly AOT products showed substantial discrepancies, with a tendency of higher values from MODIS than from GACP/AVHRR, especially near the coasts of major aerosol outbreak regions. Individual monthly AOT values have poor correlation, but their regional means are moderately correlated (correlation coefficient 0.5 < R < 1.0). While cloud screening has often been argued to be a major factor explaining large discrepancies, this study shows that differences in aerosol models in the two retrieval algorithms can lead to large discrepancies. Contributions of the size distribution are more significant than the refractive index. The noisiness of the GACP/AVHRR aerosol retrievals seem to be partially influenced by radiometric uncertainties in the AVHRR system, but it is unlikely a major factor to explain the observed systematic discrepancies between the MODIS and GACP/AVHRR AOTs. For α, correlations between MODIS and GACP/AVHRR are lower (0.2 < R < 0.7) than AOT. The MODIS α shows a well-behaved dependence on the AOT contingent upon the aerosol type, while the GACP/AVHRR α has little correlation with the AOT. The high sensitivity in the selection of aerosol models to radiometric errors may be a primary reason for the worse comparison of α. Part of the discrepancies in α is attributed to different aerosol size distributions.

  12. Extension, validation, and analysis of the multi-decadal GACP/AVHRR aerosol optical thickness record

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Geogdzhayev, I. V.

    2015-12-01

    The main product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans based on channel-1 and -2 radiances from successively flown AVHRR instruments. We extend the previous GACP dataset by four years though the end of 2009 using NOAA-17 and -18 AVHRR data recalibrated against MODIS radiances according to Heidinger et al. (2010), thereby making the GACP record almost three decades long. The temporal overlap of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. A comprehensive set of monthly mean AOT data from coastal and insular AERONET stations was used to validate GACP retrievals for the period 1995-2009. To put the GACP performance in broader perspective, we also compared AERONET and MODIS Aqua level-2 data for 2003-2009 using the same methodology. Monthly mean AOTs from the two over-the-ocean satellite datasets are well correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrated that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The previously identified negative trend in the global GACP AOT which started in the late 1980s and continued into the early 2000s was confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This result is consistent with the MODIS and MISR AOT records as well as with the recent gradual reversal from brightening to dimming revealed by surface flux measurements in many aerosol producing regions. Thus the robustness of the GACP

  13. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    NASA Astrophysics Data System (ADS)

    Zhang, Wanzhong; Qiao, Xueliang; Chen, Jianguo

    2006-11-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag4+ intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6 nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields.

  14. What drives the aerosol distribution in Guangdong - the most developed province in Southern China?

    NASA Astrophysics Data System (ADS)

    Li, Lili; Wang, Yunpeng

    2014-08-01

    This paper uses Moderate Resolution Imaging Spectroradiometer (MODIS) data to investigate the spatial and temporal variations of aerosol optical thickness (AOT) over Guangdong, the most developed province in China, during 2010-2012. Linear regression and self-organizing maps (SOM) are used to investigate the relationship between AOT and its affecting factors, including Normalized Difference Vegetation Index (NDVI), elevation, urbanized land fraction, and several socio-economic variables. Results show that the highest values of τ0.55 mainly occur over the rapidly-developing Pearl River Delta (PRD) region and the eastern coast. Seasonal averaged AOT is highest in summer (0.416), followed by spring (0.351), winter (0.292), and autumn (0.254). From unary linear regression and SOM analysis, AOT is shown to be strongly negatively correlated to NDVI (R2 = 0.782) and elevation (R2 = 0.731), and positively correlated with socio-economic factors, especially GDP, industry and vehicle density (R2 above 0.73), but not primary industry. Multiple linear regression between AOT and the contributing factors shows much higher R2 values (>0.8), indicative of the clear relationships between AOT and variables. This study illustrates that human activities have strong impacts on aerosols distribution in Guangdong Province. Economic and industrial developments, as well as vehicle density, are the main controlling factors on aerosol distribution.

  15. MASTER: PSN in PGC858421 and OTs

    NASA Astrophysics Data System (ADS)

    Tiurina, N.; Balanutsa, P.; Lipunov, E. Popova V.; Buckley, D.; Gorbovskoy, E.; Kuznetsov, A.; Kornilov, V.; Vlasenko, D.; Gress, O.; Shurpakov, S.; Potter, S.; Kniazev, A.

    2016-07-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 14h 47m 32.66s -19d 12m 42.1s on 2016-07-09.87385 UT. PSN unfiltered magnitude is (limit 19.8m).

  16. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  17. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences

    NASA Astrophysics Data System (ADS)

    Lynch, Peng; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Hogan, Timothy F.; Hyer, Edward J.; Curtis, Cynthia A.; Hegg, Dean A.; Shi, Yingxi; Campbell, James R.; Rubin, Juli I.; Sessions, Walter R.; Turk, F. Joseph; Walker, Annette L.

    2016-04-01

    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1 × 1° and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how

  18. Investigations of the March 2006 African dust storm using ground-based column-integrated high spectral resolution infrared (8-13 μm) and visible aerosol optical thickness measurements: 1. Measurement procedures and results

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.; Ricchiazzi, P.

    2009-06-01

    The infrared (IR) aerosol optical thickness (AOT) spectra of Saharan dust measured during the Portable Infrared Aerosol Transmission Experiment (PIRATE) are reported. Saharan dust optical thickness (extinction) spectra from 8 to 13 μm were obtained using column-integrated solar transmission measurements in Puerto Rico in July 2005 and Senegal in January and March 2006 (during a dust plume) using a Fourier transform infrared (FTIR) spectrometer. The FTIR measured the solar spectral irradiance in the IR in the presence of Saharan dust, and the AOT was determined by comparing the measured spectra to modeled downwelling spectra without dust for the same atmospheric temperature profile, solar zenith angle, water vapor, and ozone concentrations. The modeled dust-free spectra are generated using the Santa Barbara Disort Atmospheric Radiative Transfer (SBDART) program. The measured dust AOT is compared with modeled AOT spectra obtained using Mie theory with dust indices of refraction from Volz and Fouquart with assumed lognormal size distributions. When the visible AOT values from nearby Aerosol Robotic Network (AERONET) sensors are compared to the IR AOT values, results from various dust loadings show that the IR dust AOT at 9.5 μm is typically only one third that of the visible (670 nm) dust AOT, but there is some evidence that this ratio could increase for larger dust size distributions. The surface IR dust forcing is determined to be about -0.4 W/m2 by summing the dusty and clear irradiance differences.

  19. Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Geogdzhayev, Igor V.; Travis, Larry D.; Cairns, Brian; Lacis, Andrew A.

    2010-01-01

    We use the full duration of collocated pixel-level MODIS-Terra and MISR aerosol optical thickness (AOT) retrievals and level 2 cloud-screened quality-assured AERONET measurements to evaluate the likely individual MODIS and MISR retrieval accuracies globally over oceans and land. We show that the use of quality-assured MODIS AOTs as opposed to the use of all MODIS AOTs has little effect on the resulting accuracy. The MODIS and MISR relative standard deviations (RSTDs) with respect to AERONET are remarkably stable over the entire measurement record and reveal nearly identical overall AOT performances of MODIS and MISR over the entire suite of AERONET sites. This result is used to evaluate the likely pixel-level MODIS and MISR performances on the global basis with respect to the (unknown) actual AOTs. For this purpose, we use only fully compatible MISR and MODIS aerosol pixels. We conclude that the likely RSTDs for this subset of MODIS and MISR AOTs are 73% over land and 30% over oceans. The average RSTDs for the combined [AOT(MODIS)+AOT(MISR)]/2 pixel-level product are close to 66% and 27%, respectively, which allows us to recommend this simple blend as a better alternative to the original MODIS and MISR data. These accuracy estimates still do not represent the totality of MISR and quality-assured MODIS pixel-level AOTs since an unaccounted for and potentially significant source of errors is imperfect cloud screening. Furthermore, many collocated pixels for which one of the datasets reports a retrieval, whereas the other one does not may also be problematic.

  20. Remote sensing of aerosols over snow using infrared AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, L. G.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Schultz, E.; Burrows, J. P.

    2011-01-01

    Infrared (IR) retrievals of aerosol optical thickness (AOT) are challenging because of the low reflectance of aerosol layer at longer wavelengths. In this paper we present a closer analysis of this problem, performed with radiative transfer (RT) simulations for coarse and accumulation mode of four main aerosol components. It shows the strong angular dependence of aerosol IR reflectance at low solar elevations resulting from significant asymmetry of aerosol phase function at these wavelengths. This results in detectable values of aerosol IR reflectance at certain non-nadir observation angles providing the advantage of multiangle remote sensing instruments for a retrieval of AOT at longer wavelengths. Such retrievals can be of importance e.g. in case of a very strong effect of the surface on the top of atmosphere (TOA) reflectance in the visible range of spectrum. In current work, a new method to retrieve AOT over snow has been developed using the measurements of Advanced Along Track Scanning Radiometer (AATSR) on board the ENVISAT satellite. The algorithm uses AATSR channel at 3.7 μm and utilizes its dual-viewing observation technique implying the forward view with an observation zenith angle around 55 degrees and the nadir view. It includes cloud/snow discrimination, extraction of the atmospheric reflectance out of measured brightness temperature (BT) at 3.7 μm, interpolation of look-up tables (LUTs) for a given aerosol reflectance. The algorithm uses LUTs, separately simulated with RT forward calculations. The resulting AOT at 500 nm is estimated from the value at 3.7 μm using a fixed Angström parameter. The presented method has been validated against ground-based Aerosol Robotic Network (AERONET) data for 4 high Arctic stations and shows good agreement. A case study has been performed at W-Greenland on 5 July 2008. The day before was characterized by a noticeable dust event. The retrieved AOT maps of the region show a clear increase of AOT in the

  1. Remote sensing of aerosols over snow using infrared AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, L. G.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Schultz, E.; Burrows, J. P.

    2011-06-01

    Infrared (IR) retrievals of aerosol optical thickness (AOT) are challenging because of the low reflectance of aerosol layer at longer wavelengths. In this paper we present a closer analysis of this problem, performed with radiative transfer (RT) simulations for coarse and accumulation mode of four main aerosol components. It shows the strong angular dependence of aerosol IR reflectance at low solar elevations resulting from the significant asymmetry of aerosol phase function at these wavelengths. This results in detectable values of aerosol IR reflectance at certain non-nadir observation angles providing the advantage of multiangle remote sensing instruments for a retrieval of AOT at longer wavelengths. Such retrievals can be of importance e.g. in case of a very strong effect of the surface on the top of atmosphere (TOA) reflectance in the visible spectral range. In the current work, a new method to retrieve AOT of the coarse and accumulation mode particles over snow has been developed using the measurements of Advanced Along Track Scanning Radiometer (AATSR) on board the ENVISAT satellite. The algorithm uses AATSR channel at 3.7 μm and utilizes its dual-viewing observation technique, implying the forward view with an observation zenith angle of around 55 degrees and the nadir view. It includes cloud/snow discrimination, extraction of the atmospheric reflectance out of measured brightness temperature (BT) at 3.7 μm, and interpolation of look-up tables (LUTs) for a given aerosol reflectance. The algorithm uses LUTs, separately simulated with RT forward calculations. The resulting AOT at 500 nm is estimated from the value at 3.7 μm using a fixed Angström parameter. The presented method has been validated against ground-based Aerosol Robotic Network (AERONET) data for 4 high Arctic stations and shows good agreement. A case study has been performed at W-Greenland on 5 July 2008. The day before was characterized by a noticeable dust event. The retrieved AOT maps of

  2. Analyzing signatures of aerosol-cloud interactions from satelliteretrievals and the GISS GCM to constrain the aerosol indirecteffect

    SciTech Connect

    Menon, S.; Del Genio, A.D.; Kaufman, Y.; Bennartz, R.; Koch, D.; Loeb, N.; Orlikowski, D.

    2007-10-01

    Evidence of aerosol-cloud interactions are evaluated using satellite data from MODIS, CERES, AMSR-E, reanalysis data from NCEP and data from the NASA Goddard Institute for Space Studies climate model. We evaluate a series of model simulations: (1) Exp N- aerosol direct radiative effects; (2) Exp C- Like Exp N but with aerosol effects on liquid-phase cumulus and stratus clouds; (3) Exp CN- Like Exp C but with model wind fields nudged to reanalysis data. Comparison between satellite-retrieved data and model simulations for June to August 2002, over the Atlantic Ocean indicate the following: a negative correlation between aerosol optical thickness (AOT) and cloud droplet effective radius (R{sub eff}) for all cases and satellite data, except for Exp N; a weak but negative correlation between liquid water path (LWP) and AOT for MODIS and CERES; and a robust increase in cloud cover with AOT for both MODIS and CERES. In all simulations, there is a positive correlation between AOT and both cloud cover and LWP (except in the case of LWP-AOT for Exp CN). The largest slopes are obtained for Exp N, implying that meteorological variability may be an important factor. The main fields associated with AOT variability in NCEP/MODIS data are warmer temperatures and increased subsidence for less clean cases, not well captured by the model. Simulated cloud fields compared with an enhanced data product from MODIS and AMSR-E indicate that model cloud thickness is over-predicted and cloud droplet number is within retrieval uncertainties. Since LWP fields are comparable this implies an under-prediction of R{sub eff} and thus an over-prediction of the indirect effect.

  3. Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.

    2014-01-01

    We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results

  4. Long term characterization of aerosol optical properties: Implications for radiative forcing over the desert region of Jodhpur, India

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vizaya; Safai, P. D.; Raju, M. P.

    2015-08-01

    AOT data for eight years period (2004-2012) using the MICROTOPS II Sun photometer has been used to study the wavelength dependent optical characteristics of aerosols over Jodhpur, situated in the desert region in NW India. The daily mean AOT at 500 nm for the present study period was 0.66 ± 0.14 with an average Angstrom exponent as 0.71 ± 0.20. Linear regression analysis of monthly AOT and Angstrom Exponent indicated an increasing trend of both. Seasonal variations of daily AOT and α as well as spectral dependence of seasonal mean AOT are presented. Diurnal variation of AOT and α in different season is studied. Impact of dust storm events on the aerosol characteristics over Jodhpur during the study period is studied. AOT values derived from MICROTOPS II were cross checked with Sun Sky Radiometer (Model POM-01, Prede Inc.) data for the period from May 2011 to April 2012 and were found to be in good agreement. Short wave aerosol radiative forcing (ARF) was computed for one year period of May 2011 to April 2012. Spectral variation of AOT, SSA and ASP showed more AOT and ASP during pre monsoon period when SSA was comparatively low; indicating towards more prevalence of coarse size absorbing dust in this period. The ARF at SUF and TOA was negative during all the seasons indicating dominance of scattering type aerosols mainly dust particles whereas that at ATM was positive in all the seasons indicating heating of the atmosphere, especially more during pre monsoon (+40.5 W/m2) than during rest of the year (+19.5 W/m2). A high degree of correlation between ARF at the SUF with AOT (R2 = 0.94) indicated that ARF is a strong function of AOT. The radiative forcing efficiency inferred to scattering nature of aerosols at SUF (-4.2 W/m2/AOD) and TOA (-63.2 W/m2/AOD) indicating cooling at surface and top of the atmosphere whereas, there was warming of the atmosphere in between (+59 W/m2/AOD). The atmospheric heating rates varied from 0.49 K/day in post monsoon to 1.13 K/day in

  5. On relationship between aerosols and PM2.5

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko

    2015-04-01

    Since aerosol optical thickness (AOT) is a key parameter of aerosols and description of the Earth's radiation budget, it is widely measured from ground sun photometer network NASA/AERONET [Holben et al., 1998] and from satellite. Fine and surface level aerosol particle called PM2.5, whose diameter is 2.5 μ m or less, is a well-known parameter for understanding polluted level of air. Smirnov et al. reported a good agreement between ground based AERONET AOT (870 nm) and dust concentrations at Barbados [Smirnov et al., 2000]. Wang and Christopher founded a good correlation between satellite based MODIS AOT product and PM2.5 in Alabama area [Wang and 2003]. Long range transported dusts, particularly Asian dust events, are easy to change the vertical profile of aerosol extinction. The vertical profile is important to estimate PM information because both AOT information measured from ground or satellite are integrated value of aerosol extinction from ground to space, i.e. columnar AOT. Thus, we have also proposed correlations between ground level PM2.5 and AERONET AOT (670 nm) in two cases of ordinary air condition and dusty days [Sano et al., 2010]. In this work, we investigate the relationship between PM2.5 and AERONET AOT considering LIDAR measurements. Note that all of instruments are set up at the roof of the University building (50 m) and collocated in 10 m area. Surface-level AOT is derived from AERONET AOT multiplied by an averaged vertical aerosol extinction given by LIDAR. Note that the definition of surface-level AOT in this work is assumed as AOT up to 500 m height. Introduction of surface-level AOT enables to avoid the contamination of dusty aerosol signal existing at high altitude from columnar AOT. The cloud aerosol imager (CAI) on GOSAT satellite has four observing wavelengths, 380, 670, 870 nm, and 1.6 μ m. In this work three channels are selected to estimate aerosol information. Look-up table (LUT) method is applied to estimate the optical properties

  6. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  7. MASTER OT 015347+303844 discovery

    NASA Astrophysics Data System (ADS)

    Balanutsa, P.; Gorbovskoy, E.; Lipunov, V.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Tyurina, N.; Kuvshinov, D.; Chazov, V.; Kuznetsov, A.; Zimnukhov, D.; Kornilov, M.; Tlatov, A.; Parhomenko, A. V.; Dormidontov, D.; Yurkov, V.; Sergienko, Yu.; Varda, D.; Krushinski, V.; Zalozhnih, I.; Kopytova, T.; Popov, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Lenok, V.; Chuvalaev, O.; Poleschuk, V.; Gres, O.

    2010-10-01

    MASTER auto-detection system at Kislovodsk detected a new transient source at the position (R.A., Dec) = 01h 53m 47.24s , +30d 38m 44s.0 (J2000) with a typical uncertainty of 0.2" at 2010-10-01 23:25:48 (UT). The V magnitude is about 17.9 +-0.1 ( exposition 180s, m_lim = 19.0 ). The OT is seen at next 7 images up 2010-10-12 in R and V. OT is blue: R-V=1.43 at 2010-10-01.9 . There is no minor planet and any object brighter 21 mag in DSS at this place.

  8. Improved aerosol retrieval algorithm using Landsat images and its application for PM10 monitoring over urban areas

    NASA Astrophysics Data System (ADS)

    Luo, Nana; Wong, Man Sing; Zhao, Wenji; Yan, Xing; Xiao, Fei

    2015-02-01

    Aerosol retrieval using MODerate resolution Imaging Spectroradiometer (MODIS) has been well researched over the past decade. However, the application is limited to global- and regional-scale studies, which may not be applicable for urban areas due to its low spatial resolution. To overcome the limitation, this paper proposed an improved aerosol retrieval algorithm for Landsat images (ImAero-Landsat) at spatial resolution of 30 m. This ImAero-Landsat algorithm has been improved in the following two aspects: (i) it does not require a comprehensive look up table and thus it is more efficient in AOT retrieval; and (ii) it can be operated in both bright and dark surfaces. The derived aerosol optical thickness (AOT) images were validated with AErosol RObotic NETwork (AERONET) measurements as well as MODIS MOD04 AOT products. Small root mean square errors (RMSEs) of 0.11 and 0.14 and mean absolute difference (MAD) of 0.07 and 0.11 between ImAero-Landsat AOT, with MODIS MOD04 and AERONET products were observed. By correlating with ground based PM10 concentrations, the ImAero-Landsat method outperforms (r2 = 0.32) than MOD04 AOT products (r2 = 0.23). In addition, the accuracy of estimating PM10 can be improved to r2 = 0.55 when the derived AOT was integrated with meteorological parameters. The accuracy is similar to the results derived from AERONET AOT (r2 = 0.62). This study offers a simple and accurate method to investigate aerosol optical thickness at detailed city-scale. Environmental authorities may use the derived methods for deriving aerosol distribution maps and pinpointing the sources of pollutants in urban areas.

  9. Extension and statistical analysis of the GACP aerosol optical thickness record

    NASA Astrophysics Data System (ADS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Li, Jing; Rossow, William B.; Liu, Li; Cairns, Brian

    2015-10-01

    The primary product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans. It is based on channel-1 and -2 radiance data from the Advanced Very High Resolution Radiometer (AVHRR) instruments flown on successive National Oceanic and Atmospheric Administration (NOAA) platforms. We extend the previous GACP dataset by four years through the end of 2009 using NOAA-17 and -18 AVHRR radiances recalibrated against MODerate resolution Imaging Spectroradiometer (MODIS) radiance data, thereby making the GACP record almost three decades long. The temporal overlap of over three years of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. The temporal overlap of the NOAA-17 and -18 instruments is used to introduce a small additive adjustment to the channel-2 calibration of the latter resulting in a consistent record with increased data density. The Principal Component Analysis (PCA) of the newly extended GACP record shows that most of the volcanic AOT variability can be isolated into one mode responsible for ~ 12% of the total variance. This conclusion is confirmed by a combined PCA analysis of the GACP, MODIS, and Multi-angle Imaging SpectroRadiometer (MISR) AOTs during the volcano-free period from February 2000 to December 2009. We show that the modes responsible for the tropospheric AOT variability in the three datasets agree well in terms of correlation and spatial patterns. A previously identified negative AOT trend which started in the late 1980s and continued into the early 2000s is confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This

  10. Aerosol Optical Thickness From the SeaWiFS and MODIS Sensors Over the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Kwiatkowska, E.; Franz, B. A.; McClain, C. R.

    2006-12-01

    Presently, a suite of 12 aerosol models are used for atmospheric correction purposes to retrieve water-leaving radiances in the visible and near IR spectral bands of the SeaWiFS and MODIS sensors. These models are based on Shettle and Fenn's (1979) aerosol models of tropospheric and oceanic aerosols. As a part of the atmospheric correction effort, the Ocean Biology Processing Group (OBPG) also reports the aerosol optical thickness (AOT) for the scene. We have compared the AOT from the SeaWiFS and MODIS with the AERONET retrievals over the Chesapeake Bay, and found that the satellite-retrieved AOT in the 865/869 bands of SeaWiFS/MODIS sensors are generally higher than the AERONET retrievals. We attribute the overestimation of AOT mostly due to the backscattering of downwelling solar irradiance by phytoplankton, CDOM and non-algal suspended particles in the Bay. Results from simulation studies, and from the comparison of satellite-derived AOT and the AERONET in the visible and near IR bands will be presented.

  11. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  12. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  13. Investigations of the March 2006 African dust storm using ground-based column-integrated high spectral resolution infrared (8-13 μm) and visible aerosol optical thickness measurements: 2. Mineral aerosol mixture analyses

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.

    2009-07-01

    The mineral aerosol mixture composition for the March 2006 Saharan dust storm is assessed in this paper on the basis of the analysis of visible to near-infrared (VIS-NIR) and infrared (IR) aerosol optical thickness (AOT) spectra obtained during the Portable Infrared Aerosol Transmission Experiment (PIRATE). The AOT spectra from 8 to 13 μm were determined using column-integrated solar transmission measurements using a Fourier transform infrared spectrometer. To determine the mineralogy and mixture composition of the dust, we determined the expected mineralogy of dust from the Algerian source region in a dust storm environment. Then we computed the modeled VIS-IR AOT spectra using Mie theory for external and internal mixtures. We compared the modeled VIS-NIR AOT spectra and derived index of refraction and single-scattering albedo with the measured values from AERONET and compared the modeled IR AOT spectra with the values from our IR measurements. The fit between the measured and modeled values was best when we used an extinction resonance correction to the Mie theory results to better account for the exact wavelengths and shapes of some of the AOT peaks for mineral particles. The mineralogy and mixture composition of the best dust model includes external mixtures, internal mixtures, and mineralogy dominated by quartz, illite, and calcite. The modeled mean radius was determined, and several modes were computed in agreement with AERONET results.

  14. Nighttime Aerosol Optical Thickness Retrievals Via the VIIRS Day/Night Band and the Effects of Lunar Contamination

    NASA Astrophysics Data System (ADS)

    McHardy, T. M.; Zhang, J.; Reid, J. S.; Miller, S. D.; Hyer, E. J.; Kuehn, R.

    2015-12-01

    Using Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method for retrieving aerosol optical thickness (AOT) values at night via the examination of the dispersion of radiance values above an artificial light source ,dubbed the "variance method", is presented. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime AOT using artificial light sources. Nighttime DNB AOT retrievals from the variance method are compared with an AOT value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column integrated from one High Spectral Resolution Lidar (HSRL) site at Huntsville, AL during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. An emphasis is placed on sensitivity studies performed to examine the effects of lunar illumination on VIIRS DNB AOT retrievals made via the variance method. Although the small sample size of this study limits the conclusiveness thus far, investigation reveals that lunar contamination may have a smaller impact on VIIRS DNB AOT retrievals made using this method than previously thought. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.

  15. Aerosol single scattering albedo and its contribution to radiative forcing dung EAST- AIRE

    NASA Astrophysics Data System (ADS)

    Lee, K.; Li, Z.

    2007-12-01

    Quantification of aerosol single scattering albedo (SSA) can improve determining aerosol radiative property. Combination technique using MODIS and ground-based Hazemeter measurement data by the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) over China is proposed to retrieve SSA. The accuracy of the retrieval of SSA increases with the aerosol loading and the uncertainties in the SSA retrieval are 0.02~0.03 (AOT=1.0) and up to 0.03~0.05 (AOT=0.5) at 0.47¥ìm, respectively. The comparison of one- year data of retrieved SSA values with those from AERONET inversion product are ~0.03 (RMSD) and ~0.02 (mean bias), respectively. Estimated SSA values were range from 0.89 to 0.93 over the study area. Since SSA is an important factor of aerosol radiative forcing, these will help to understood the study of aerosol climate effects.

  16. Meridional Distribution of Aerosol Optical Thickness over the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, P.; Silva, Arlindo M.; Starobinets, B.; Long, C. N.; Kalashnikova, O.; Alpert, P.

    2015-01-01

    Previous studies showed that, over the global ocean, there is hemispheric asymmetry in aerosols and no noticeable asymmetry in cloud fraction (CF). In the current study, we focus on the tropical Atlantic (30 Deg N 30 Deg S) which is characterized by significant amounts of Saharan dust dominating other aerosol species over the North Atlantic. We found that, by contrast to the global ocean, over a limited area such as the tropical Atlantic, strong meridional asymmetry in dust aerosols was accompanied by meridional CF asymmetry. During the 10-year study period (July 2002 June 2012), NASA Aerosol Reanalysis (aka MERRAero) showed that, when the meridional asymmetry in dust aerosol optical thickness (AOT) was the most pronounced (particularly in July), dust AOT averaged separately over the tropical North Atlantic was one order of magnitude higher than dust AOT averaged over the tropical South Atlantic. In the presence of such strong meridional asymmetry in dust AOT in July, CF averaged separately over the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic by 20%. Our study showed significant cloud cover, up to 0.8 - 0.9, in July along the Saharan Air Layer which contributed to above-mentioned meridional CF asymmetry. Both Multi-Angle Imaging SpectroRadiometer (MISR) measurements and MERRAero data were in agreement on seasonal variations in meridional aerosol asymmetry. Meridional asymmetry in total AOT over the Atlantic was the most pronounced between March and July, when dust presence over the North Atlantic was maximal. In September and October, there was no noticeable meridional asymmetry in total AOT and meridional CF distribution over the tropical Atlantic was almost symmetrical.

  17. Airborne High Spectral Resolution Lidar Measurements of Aerosol Distributions and Properties during the NASA DISCOVER-AQ Missions

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Scarino, A. J.; Burton, S. P.; Harper, D. B.; Cook, A. L.; Berkoff, T.; Rogers, R. R.; Seaman, S. T.; Fenn, M. A.; Sawamura, P.; Clayton, M.; Mueller, D.; Chemyakin, E.; Anderson, B. E.; Beyersdorf, A. J.; Ziemba, L. D.; Crawford, J. H.

    2015-12-01

    The NASA Langley Research Center airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, were deployed for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) missions. DISCOVER-AQ provided systematic and concurrent observations of column-integrated, surface, and vertically-resolved distributions of aerosols and trace gases to improve the interpretation of satellite observations related to air quality. HSRL-1, deployed during the first DISCOVER-AQ mission over the Washington DC-Baltimore region, measured profiles of aerosol backscatter and depolarization (532, 1064 nm) and aerosol extinction and optical thickness (AOT) (532 nm). HSRL-2, the first airborne multiwavelength HSRL, was deployed for the following three DISCOVER-AQ missions over the California Central Valley, Houston, and Denver. HSRL-2 measures profiles of aerosol backscatter and depolarization (355, 532, 1064 nm) and aerosol extinction and AOT (355, 532 nm). Additional HSRL-2 data products include aerosol type, mixed layer depth, and range-resolved aerosol microphysical parameters. The HSRL measurements reveal the temporal, spatial, and vertical variability of aerosol optical properties over these locations. HSRL measurements show that surface PM2.5 concentrations were better correlated with near surface aerosol extinction than AOT scaled by the mixed layer height. During the missions over Washington DC-Baltimore, Houston, and Denver, only about 20-65% of AOT was within the mixed layer. In contrast, nearly all of the AOT was within the mixed layer over the California Central Valley. HSRL-2 retrievals of aerosol fine mode volume concentration and effective radius compare well with coincident airborne in situ measurements and vary with relative humidity. HSRL-2 retrievals of aerosol fine mode volume concentration were also used to derive PM2.5 concentrations which compare well with surface PM2.5 measurements.

  18. Current Status of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, S.; Laszlo, I.; Liu, H.; Zhang, H.; Huang, J.; Remer, L. A.; Ciren, P.; Huang, H.

    2013-12-01

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR). The VIIRS AOT is expected to provide continuity to the 10-km Aqua and Terra MODIS (Moderate resolution Imaging Spectroradiometer) AOT products that the air quality and public health community has been using. The VIIRS aerosol product suite also includes less mature products such as Suspended Matter (SM) and Aerosol Particle Size Parameter (APSP). An extensive validation of VIIRS best quality aerosol products with ground based L1.5 AERONET data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. Analysis of SM shows that the algorithm predominantly picks smoke both over land and ocean which is not in agreement with retrievals from Multi-angle Imaging SpectroRadiometer (MISR) and Cloud Aerosol Lidar and Infrared Pathfinder Space Observations (CALIPSO). Similarly, the Angstrom Exponent (AE) retrieval used as a proxy for particle size has no skill over land and only a marginal skill over ocean when compared to AERONET; although a bias of ~0.2 for over ocean retrievals meets specification (0.3), the correlation is low and the standard deviation is ~0.6 and does not meet specification (0.3). This evaluation places the VIIRS AOT product at the provisional maturity level (product is validated, may contain some errors, and ready for operational evaluation). However, several algorithm updates which include a better approach to retrieve surface reflectance are forthcoming. Current status of the aerosol

  19. Estimation of aerosol type from airborne hyperspectral data: a new technique designed for industrial plume characterization

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Marion, R.; Foucher, P.-Y.; Briottet, X.

    2012-11-01

    The determination of the aerosol type in a plume from remotely sensed data without any a priori knowledge is a challenging task. If several methods have already been developed to characterize the aerosols from multi or hyperspectral data, they are not suited for industrial particles, which have specific physical and optical properties, changing quickly and in a complex way with the distance from the source emission. From radiative transfer equations, we have developed an algorithm, based on a Look-Up Table approach, enabling the determination of the type of this kind of particles from hyperspectral data. It consists in the selection of pixels pairs, located at the transitions between two kinds of grounds (or between an illuminated and a shadow area), then in the comparison between normalized estimated Aerosol Optical Thicknesses (AOTs) and pre-calculated AOTs. The application of this algorithm to simulated data leads to encouraging results: the selection of only six pixels pairs allows the algorithm to differentiate aerosols emitted by a metallurgical plant from biomass burning particles, urban aerosols and particles from an oil depot explosion, regardless the size and the aerosol concentration. The algorithm performances are better for a relatively high AOT but the single scattering approximation does not enable the characterization of thick plumes (AOT above 2.0). However, the choice of transitions (type of grounds) does not seem to significantly affect the results.

  20. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  1. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  2. Fourier transform infrared spectroscopy of azide and cyanate ion pairs in AOT reverse micelles

    NASA Astrophysics Data System (ADS)

    Owrutsky, Jeffrey C.; Pomfret, Michael B.; Barton, David J.; Kidwell, David A.

    2008-07-01

    Evidence for ion pair formation in aqueous bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles (RMs) was obtained from infrared spectra of azide and cyanate with Li+, Na+, K+, and NH4+ counterions. The anions' antisymmetric stretching bands near 2000 cm-1 are shifted to higher frequency (blueshifted) in LiAOT and to a lesser extent in NaAOT, but they are very similar to those in bulk water with K+ and NH4+ as the counterions. The shifts are largest for low values of wo=[water]/[AOT] and approach the bulk value with increasing wo. The blueshifts are attributed to ion pairing between the anions and the counterions. This interpretation is reinforced by the similar trend (Li+>Na+>K+) for producing contact ion pairs with the metal cations in bulk dimethyl sulfoxide (DMSO) solutions. We find no evidence of ion pairs being formed in NH4AOT RMs, whereas ammonium does form ion pairs with azide and cyanate in bulk DMSO. Studies are also reported for the anions in formamide-containing AOT RMs, in which blueshifts and ion pair formation are observed more than in the aqueous RMs. Ion pairs are preferentially formed in confined RM systems, consistent with the well established ideas that RMs exhibit reduced polarity and a disrupted hydrogen bonding network compared to bulk water and that ion-specific effects are involved in mediating the structure of species at interfaces.

  3. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  4. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  5. MASTER discoveries: dwarf novae, PSN, OT in Andromeda direction

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Gress, O.; Balanutsa, P.; Lipunov, V.; Rebolo Lopez, R.; Serra Ricart, M.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Kornilov, V.; Ivanov, K.

    2016-09-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 00h 41m 26.22s +41d 43m 50.0s on 2016-09-02.12339 UT. The OT unfiltered magnitude is 19.7m, mlim=20.0 The OT is seen in 14 images.

  6. Size and diffusion phenomena of AOT/alcohol/water system in the presence of morin by dynamic light scattering.

    PubMed

    Bhattarai, Ajaya; Wilczura-Wachnik, Hanna

    2015-01-30

    Presented paper is a continuation of our studies on morin interaction with AOT (sodium bis(2-ethylhexyl) sulfosuccinate) reversed micelles solutions in two solvents: ethanol and n-decanol. Now we focused on morin influence on size and diffusion phenomena in the system morin/solvent/AOT/water. In this paper precise measurements of dynamic light scattering (DLS) of the effects of temperature, solvents (alcohols), water on the size and diffusion of AOT reversed micelles in the morin/AOT/alcohol/water system are reported. The concentrations of AOT were varied from 0.51 to 0.78mol/L. Morin concentration in during auto-correlation function registration was not the same in each solvent because of its different solubility depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=(H2O)/(AOT) and was equal 0 and 30 in ethanol, and 0 in n-decanol. DLS measurements were done at 298.15 and 308.15K. DLS experiment involved on detection two relaxation modes (fast and slow) in the systems containing AOT reversed micelles, water, morin and solvents (ethanol and n-decanol). The DLS data clearly show the solvent influence as well as morin presence on AOT reversed micelles size and consequently their diffusion coefficients. Contrary to n-decanol strong competition between morin and ethanol molecules in AOT reversed micelles palisade layer has been found. It suggests that morin molecules replaced ethanol in AOT reversed micelles and locate in their palisade layer strongly increasing AOT reversed micelles size. Furthermore, it was found a sharp increase in correlation radii of slow modes of AOT reversed micelles containing morin molecules and their diffusion coefficients diminishing.

  7. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  8. An online aerosol retrieval algorithm using OMI near-UV observations based on the optimal estimation method

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2015-06-01

    An online version of the OMI (Ozone Monitoring Instrument) near-ultraviolet (UV) aerosol retrieval algorithm was developed to retrieve aerosol optical thickness (AOT) and single scattering albedo (SSA) based on the optimal estimation (OE) method. Instead of using the traditional look-up tables for radiative transfer calculations, it performs online radiative transfer calculations with the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model to eliminate interpolation errors and improve stability. The OE-based algorithm has the merit of providing useful estimates of uncertainties simultaneously with the inversion products. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in Northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved AOT and SSA. The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The estimated retrieval noise and smoothing error perform well in representing the envelope curve of actual biases of AOT at 388 nm between the retrieved AOT and AERONET measurements. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface albedo at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for future studies.

  9. Relationship between aerosol characteristics and altitude based on multi-measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Ohshima, Tsubasa; Fujito, Toshiyuki; Sano, Itaru; Mukai, Sonoyo

    2010-10-01

    The suspending particulate matter (PM2.5) is a typical indicator of small particles in the atmosphere. Accordingly in order to monitor the air quality, sampling of PM2.5 has been widely undertaken over the world, especially in the urban cities. On the other hand, it is known that the sun photometry provides us with the aerosol information, e.g. aerosol optical thickness (AOT), aerosol size information and so on. Simultaneous measurements of PM2.5 and the AOT have been performed at a NASA/AERONET (Aerosol Robotics Network) site in urban city of Higashi-Osaka in Japan since March 2004, and successfully provided a linear correlation between PM2.5 and AOT in separately considering with several cases, e.g. usual, anthropogenic aerosols, dust aerosols and so on. This fact suggests that the vertical distribution also should be taken into account separately for each aerosol type. In this work, vertical profiles of atmospheric aerosols are considered based on combination use of photometric data with AERONET, LIDAR (Light Detection and Ranging) measurements and model simulations.

  10. MASTER-IAC: PSN in PGC1671957 and bright OT

    NASA Astrophysics Data System (ADS)

    Balanutsa, P.; Lipunov, V.; Rebolo Lopez, R.; Serra Ricart, M.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Kornilov, V.; Gress, O.; Ivanov, K.; Shumkov, V.

    2016-09-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 23h 36m 08.12s +22d 32m 33.1s on 2016-09-07.05299 UT. The OT unfiltered magnitude is 17.8m (limit 20.1m).

  11. MASTER-IAC: high amplitude (>8m) bright OT

    NASA Astrophysics Data System (ADS)

    Lipunov, V.; Lopez, R. Rebolo; Ricart, M. Serra; Tiurina, N.; Gorbovskoy, E.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gress, O.; Ivanov, K.; Shumkov, V.; Balanutsa, P.; Pogrosheva, T.; Rabinovich, J.; Vlasenko, D.; Shurpakov, S.; Kuvshinov, D.

    2016-09-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 03h 51m 09.53s +15d 28m 56.9s on UT. The OT unfiltered magnitude is (mlim=18.6m).

  12. MASTER: very bright OT in Large Magellanic cloud direction

    NASA Astrophysics Data System (ADS)

    Gorbovskoy, E.; Lipunov, V.; Buckley, D.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Gorbunov, I.; Kuznetsov, A.; Gress, O.; Vladimirov, V.; Popova, E.; Vlasenko, D.; Kuvshinov, D.; Potter, S.

    2016-05-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 05h 10m 32.58s -69d 21m 30.4s on 2016-05-10.72797 UT. The OT unfiltered magnitude is (limit 17.6m).

  13. 75 FR 51169 - OTS Minority Depository Institutions Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Office of Thrift Supervision OTS Minority Depository Institutions Advisory Committee AGENCY: Department... Minority Depository Institutions Advisory Committee will renew for a two-year period beginning August 2...), and with the approval of the Secretary of the Treasury to announce the renewal of the OTS...

  14. 12 CFR 500.10 - The OTS or The Office.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true The OTS or The Office. 500.10 Section 500.10 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY AGENCY ORGANIZATION AND FUNCTIONS General Organization § 500.10 The OTS or The Office. The Office of Thrift Supervision (referred...

  15. MASTER-IAC: bright QSO flare and OT discovery

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Popova, E.; Gress, O.; Lipunov, V.; Lopez, R. Rebolo; Serra-Ricart, M.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Kuznetsov, A.; Kuvshinov, D.; Vlasenko, D.; Chazov, V.; Israelyan, G.; Lodieu, N.; Budnev, N.; Ivanov, K.; Shurpakov, S.

    2016-07-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L )discovered OT source at (RA, Dec) = 19h 18m 40.69s +42d 21m 03.3s on 2016-07-25.00863 UT. The OT magnitude in unfiltered is 17.9m (limit 18.7m).

  16. Master-Iac Master-Saao 2 bright OTs

    NASA Astrophysics Data System (ADS)

    Gress, O.; Pogrosheva, T.; Lipunov, V.; Lopez, R. Rebolo; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Gorbunov, I.; Kuznetsov, A.; Popova, E.; Kuvshinov, D.; Serra-Ricart, M.; Israelian, G.; Potter, S.; Kniazev, A.

    2016-05-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 00h 10m 21.33s +73d 15m 16.5s on 2016-05-24.18141 UT. The OT unfiltered magnitude is 15.7m (limit 18.1m).

  17. MASTER: PSN in PGC032587 and new OTs

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Popova, E.; Lipunov, V.; Lopez, R. Rebolo; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Chazov, V.; Gress, O.; Ivanov, K.; Vladimirov, V.; Vlasenko, D.; Kuvshinov, D.; Serra-Ricart, M.; Israelyan, G.; Potter, S.; Kniazev, A.

    2016-06-01

    MASTER-IAC auto-detection system Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 discovered OT source at (RA, Dec) = 10h 51m 45.85s +55d 23m 12.4s on 2016-05-31.97997 UT. The OT unfiltered magnitude is 18.3 (limit 20.1m).

  18. MASTER-IAC: very bright high amplitude OT

    NASA Astrophysics Data System (ADS)

    Gress, O.; Lipunov, V.; Lopez, R. Rebolo; Serra-Ricart, M.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Kuznetsov, A.; Kuvshinov, D.; Vlasenko, D.; Vladimirov, V.; Popova, E.; Chazov, V.; Israelyan, G.; Lodieu, N.; Budnev, N.; Ivanov, K.

    2016-07-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 20h 48m 06.68s +13d 54m 23.3s on 2016-07-24.16661 UT. The OT unfiltered magnitude is (limit 18.5m).

  19. Aerosol Optical Thickness in the Presence and Absence of African Dust using AERONET and Microtops II Sunphotometers

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Raizada, S.; Tepley, C. A.; Venero, I.; Zurcher, F.; Mayol-Bracero, O. L.

    2011-12-01

    As part of the Puerto Rico African Dust and Cloud Study (PRADACS) Project, we present a comparison of the aerosol optical thickness (AOT) between the AERONET sunphotometer (CIMEL Electronique 318A) located at Cape San Juan (CSJ, 18° 23' N, 65° 37' E), Puerto Rico, and the radiometers (Microtops II) of the Arecibo Observatory. Data were collected at CSJ during the summer period of 2011, when African dust was present most of the time. Preliminary results showed, for both instruments, AOT values around of 0.4 when there were high concentrations of African dust over the island Puerto Rico. The AOT correlations between the two instruments were very good, with a slope of 0.8 and r2 of 0.9 for all wavelengths. The main differences observed were on the values above 0.6. We will show the temporal behavior of AOT for the two instruments and the spatial differences between them.

  20. Risk-based evaluation of Allowed Outage Times (AOTs) considering risk of shutdown

    SciTech Connect

    Mankamo, T.; Kim, I.S.; Samanta, P.K.

    1992-12-31

    When safety systems fail during power operation, Technical Specifications (TS) usually limit the repair within Allowed Outage Time (AOT). If the repair cannot be completed within the AOT, or no AOT is allowed, the plant is required to be shut down for the repair. However, if the capability to remove decay heat is degraded, shutting down the plant with the need to operate the affected decay-heat removal systems may impose a substantial risk compared to continued power operation over a usual repair time. Thus, defining a proper AOT in such situations can be considered as a risk-comparison between the repair in frill power state with a temporarily increased level of risk, and the altemative of shutting down the plant for the repair in zero power state with a specific associated risk. The methodology of the risk-comparison approach, with a due consideration of the shutdown risk, has been further developed and applied to the AOT considerations of residual heat removal and standby service water systems of a boiling water reactor (BWR) plant. Based on the completed work, several improvements to the TS requirements for the systems studied can be suggested.

  1. Risk-based evaluation of Allowed Outage Times (AOTs) considering risk of shutdown

    SciTech Connect

    Mankamo, T. ); Kim, I.S.; Samanta, P.K. )

    1992-01-01

    When safety systems fail during power operation, Technical Specifications (TS) usually limit the repair within Allowed Outage Time (AOT). If the repair cannot be completed within the AOT, or no AOT is allowed, the plant is required to be shut down for the repair. However, if the capability to remove decay heat is degraded, shutting down the plant with the need to operate the affected decay-heat removal systems may impose a substantial risk compared to continued power operation over a usual repair time. Thus, defining a proper AOT in such situations can be considered as a risk-comparison between the repair in frill power state with a temporarily increased level of risk, and the altemative of shutting down the plant for the repair in zero power state with a specific associated risk. The methodology of the risk-comparison approach, with a due consideration of the shutdown risk, has been further developed and applied to the AOT considerations of residual heat removal and standby service water systems of a boiling water reactor (BWR) plant. Based on the completed work, several improvements to the TS requirements for the systems studied can be suggested.

  2. 76 FR 7630 - Open Meeting of the OTS Minority Depository Institutions Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... Office of Thrift Supervision Open Meeting of the OTS Minority Depository Institutions Advisory Committee... OTS Minority Depository Institutions Advisory Committee (MDIAC) will convene a meeting on Tuesday..., the Office of Thrift Supervision is announcing that the OTS Minority Depository Institutions...

  3. 75 FR 13344 - Open Meeting of the OTS Minority Depository Institutions Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Office of Thrift Supervision Open Meeting of the OTS Minority Depository Institutions Advisory Committee... OTS Minority Depository Institutions Advisory Committee (MDIAC) will convene a meeting on Wednesday... Supervision is announcing that the OTS Minority Depository Institutions Advisory Committee will convene...

  4. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  5. Long-term variability of aerosol optical thickness in Eastern Europe over 2001-2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction

    NASA Astrophysics Data System (ADS)

    Chubarova, N. Y.; Poliukhov, A. A.; Gorlova, I. D.

    2015-07-01

    The aerosol properties of the atmosphere were obtained within the framework of the AERONET program at the Moscow State University Meteorological Observatory (Moscow MSU MO) over 2001-2014 period. The quality data control has revealed the necessity of their additional cloud and NO2 correction. The application of cloud correction according to hourly visual cloud observations provides a decrease in average aerosol optical thickness (AOT) at 500 nm of up to 0.03 compared with the standard dataset. We also show that the additional NO2 correction of the AERONET data is needed in large megalopolis, like Moscow, with 12 million residents and the NOx emission rates of about 100 kt yr-1. According to the developed method we estimated monthly mean NO2 content, which provides an additional decrease of 0.01 for AOT at 340 nm, and of about 0.015 - for AOT at 380 and 440 nm. The ratios of NO2 optical thickness to AOT at 380 and 440 nm are about 5-6 % in summer and reach 15-20 % in winter when both factors have similar effects on UV irradiance. Seasonal cycle of AOT at 500 nm is characterized by a noticeable summer and spring maxima, and minimum in winter conditions, changing from 0.08 in December and January up to 0.3 in August. The application of the additional cloud correction removes a local AOT maximum in February, and lowered the December artificial high AOT values. The pronounced negative AOT trends of about -1-5 % yr-1 have been obtained for most months, which could be attributed to the negative trends in emissions (E) of different aerosol precursors of about 116 Gg yr-2 in ESOx, 78 Gg yr-2 in ENMVOC, and 272 Gg yr-2 in ECO over European territory of Russia. No influence of natural factors on temporal AOT variations has been revealed.

  6. Effects of bile salts on percolation and size of AOT reversed micelles.

    PubMed

    Yang, Hui; Erford, Karen; Kiserow, Douglas J; McGown, Linda B

    2003-06-15

    The effects of two trihydroxy bile salts, sodium taurocholate (NaTC) and 3-[(3-cholamidylpropyl)dimethylammonio]-1-propane sulfonate (CHAPS), on the size, shape and percolation temperature of reversed micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane were studied. The percolation temperature of the reversed micelles decreased upon inclusion of bile salts, indicating increased water uptake. Dynamic light scattering (DLS) measurements showed consistent enlargement of reversed micelles upon addition of the bile salts; the hydrodynamic radius increased sixfold in the presence of 10 mM CHAPS and doubled in the presence of 5 mM NaTC. Inclusion of the enzyme yeast alcohol dehydrogenase (YADH) increased the percolation temperature and distorted the spherical structure of the AOT reversed micelles. The spherical structure was restored upon addition of bile salt. These results may help to explain the increase in activity of YADH in AOT reversed micelles upon addition of bile salts.

  7. Synergism of MODIS Aerosol Remote Sensing from Terra and Aqua

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.

    2003-01-01

    The MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors, aboard the Earth Observing System (EOS) Terra and Aqua satellites, are showing excellent competence at measuring the global distribution and properties of aerosols. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution from MODIS daytime data over land and ocean surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 microns over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. Since the beginning of its operation, the quality of Terra-MODIS aerosol products (especially AOT) have been evaluated periodically by cross-correlation with equivalent data sets acquired by ground-based (and occasionally also airborne) sunphotometers, particularly those coordinated within the framework of the AErosol Robotic NETwork (AERONET). Terra-MODIS AOT data have been found to meet or exceed pre-launch accuracy expectations, and have been applied to various studies dealing with local, regional, and global aerosol monitoring. The results of these Terra-MODIS aerosol data validation efforts and studies have been reported in several scientific papers and conferences. Although Aqua-MODIS is still young, it is already yielding formidable aerosol data products, which are also subjected to careful periodic evaluation similar to that implemented for the Terra-MODIS products. This paper presents results of validation of Aqua-MODIS aerosol products with AERONET, as well as comparative evaluation against corresponding Terra-MODIS data. In addition, we show interesting independent and synergistic applications of MODIS aerosol data from

  8. Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Zhang, Hai; Superczynski, Stephen; Ciren, Pubu; Holben, Brent N.; Petrenko, Maksym

    2016-06-01

    The new-generation polar-orbiting operational environmental sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite, provides critical daily global aerosol observations. As older satellite sensors age out, the VIIRS aerosol product will become the primary observational source for global assessments of aerosol emission and transport, aerosol meteorological and climatic effects, air quality monitoring, and public health. To prove their validity and to assess their maturity level, the VIIRS aerosol products were compared to the spatiotemporally matched Aerosol Robotic Network (AERONET) measurements. Over land, the VIIRS aerosol optical thickness (AOT) environmental data record (EDR) exhibits an overall global bias against AERONET of -0.0008 with root-mean-square error (RMSE) of the biases as 0.12. Over ocean, the mean bias of VIIRS AOT EDR is 0.02 with RMSE of the biases as 0.06. The mean bias of VIIRS Ocean Ångström Exponent (AE) EDR is 0.12 with RMSE of the biases as 0.57. The matchups between each product and its AERONET counterpart allow estimates of expected error in each case. Increased uncertainty in the VIIRS AOT and AE products is linked to specific regions, seasons, surface characteristics, and aerosol types, suggesting opportunity for future modifications as understanding of algorithm assumptions improves. Based on the assessment, the VIIRS AOT EDR over land reached Validated maturity beginning 23 January 2013; the AOT EDR and AE EDR over ocean reached Validated maturity beginning 2 May 2012, excluding the processing error period 15 October to 27 November 2012. These findings demonstrate the integrity and usefulness of the VIIRS aerosol products that will transition from S-NPP to future polar-orbiting environmental satellites in the decades to come and become the standard global aerosol data set as the previous generations' missions come to an end.

  9. Short-term Aerosol Trends: Reality or Myth?

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Zubko, Viktor

    2009-01-01

    The main questions addressed in this slide presentation involve short-term trends of MODIS aerosol optical thickness (AOT) over 6 years: (1) Why are the trends different in different regions? (2) How are these trends so high? (3) Why are they "coherent" in many areas? (4) Are these changes in aerosol concentrations real, i.e., are they monotonic changes in emissions? Several views of the Spatial Distribution of AOT from Terra are shown. In conclusion there are several trends: (1) There is a broad spatial inhomogenueity in AOT trends over 6 years of MODIS Terra and Aqua (2) Some of the areas demonstrate clear positive trends related to increase of emission (e.g., Eastern China) (3) Strong trends in some other areas are superficial and might be attributed, in part, to: (3a) Least squares linear trend sensitivity to outliers (need to use more robust linear fitting method) (3b) Spatial and temporal shifts or trends in meteorological conditions, especially in wind patterns responsible for aerosol transport (6) Aerosol trends should be studied together with changes in meteorology patterns as they might closely linked together

  10. Application of Polarization to the MODIS Aerosol Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine R.; Kaufman, Yoram J.

    2004-01-01

    Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.

  11. Photoisomerization and reorientational mobility of symmetric carbocyanines in AOT/alkane/polar solvent microemulsions

    NASA Astrophysics Data System (ADS)

    Dandapat, Manika; Basu, Saswati; Ghosh, Deborin; Mandal, Debabrata

    2014-07-01

    Molecular motion of carbocyanine fluorophores DOCI, DODCI and DTDCI were studied in AOT/n-heptane microemulsions containing added polar solvents: water, methanol or acetonitrile. The response varied remarkably depending on the nature of the fluorophore and polar solvent. When the amount of added polar solvent was low, molecular mobility was invariably retarded, due to a combination of electrostatic and hydrophobic forces that induce the guest fluorophore to cling to the AOT molecules of the host reverse micelle. However, at high amounts of added methanol or water, these interactions diminished considerably, causing increase in the mobility of the guest fluorophores up to different extents.

  12. Model-Based Estimation of Sampling-Caused Uncertainty in Aerosol Remote Sensing for Climate Research Applications

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan

    2014-01-01

    To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant

  13. Remote sensing of cirrus clouds and aerosols by a sun photometer in Tunisia

    NASA Astrophysics Data System (ADS)

    Chtioui, H.; Mansour, F. B.; Elouragini, S.; Flamant, P. H.

    2006-04-01

    Some ground based measurements of solar radiation by using a sun photometer, have been conducted in Tunisia during the period of November 2000-February 2002. Five key measurement sites were selected: Three Sites (Tunis, Sousse, Gabes) are located on the Mediterranean coast and Two sites (Gafsa, Tozeur) on the boarder of Sahara. Over a total of 149 measurement days, 21 days are identified as clear sky, 114 days as Cirrus clouds and 14 days as aerosols. Aerosols and Cirrus clouds Optical Thickness (AOT) are derived from photometric measurements at 532 nm wavelength. Spatial and temporal variabilities of AOT are presented and discussed in this paper. Cirrus clouds were frequently observed at Gafsa and Tozeur where saharan aerosol events are expected to be more frequent than cirrus clouds. The mediterranean sea and saharan aerosols are suspected to have the main role in cirrus clouds formation, by providing water vapor and high concentrations of cloud condensation and ice forming nuclei.

  14. Retrieval of aerosol optical thickness over snow using AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; von Hoyningen-Huene, Wolfgang; Rozanov, Vladimir; Kokhanovsky, Alexander; Burrows, John P.

    Remote sensing of aerosols experiences lack of products over very bright surfaces, such as deserts and snow, due to difficulties with the subtraction of the surface reflection contribution, when a small error in accounting for surface reflectance can cause a large error in retrieved aerosol optical thickness (AOT). Cloud screening over bright surface is also not easy because of low contrast between clouds and surface in visible range of spectrum, and additional infrared chan-nels are not always available. Luckily, AATSR instrument onboard ENVISAT has necessary features to solve both of these problems. In current work we present an improved version of discussed earlier [1,2] dual-view algorithm to retrieve AOT over snow. The retrieval algorithm still consists of cloud screening, based on spectral shape analysis of AATSR pixel in order to extract clear snow pixels, and of AOT retrieval over snow and water. Current version of AOT retrieval over open ocean now contains improved accounting for ocean reflectance (in previous version the ocean was assumed to be absolutely black). The AOT retrieval over snow has been improved to account more accurately for the bidirectional features of the surface reflection function. For this we now use the approach described in [4] instead of [3], which has been used in the previous version of the retrieval. The accuracy of both approaches [3] and [4] has been evaluated via comparison to forward radiative-transfer model for the case of a very bright surface. The new algorithm has been applied to various scenes in European Arctic and Alaska in different scales, up to global AOT maps. The correspondence of AOT over snow to AOT over water is quite good, which proves the reliability of the retrieval. The algorithm has been validated against AERONET and other Arctic ground based AOT data and shows reasonably good correlation. The presented cloud screening method has been validated via comparison to MODIS cloud mask and Micro Pulse Lidar data

  15. Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.

    PubMed

    Jayasooriya, Upali A; Clayden, Nigel J; Steytler, David C; Oganesyan, Vasily S; Peck, Jamie N T; Khasanov, Rustem; Scheuermann, Robert; Stoykov, Alexey

    2016-01-26

    The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit. PMID:26716949

  16. Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.

    PubMed

    Jayasooriya, Upali A; Clayden, Nigel J; Steytler, David C; Oganesyan, Vasily S; Peck, Jamie N T; Khasanov, Rustem; Scheuermann, Robert; Stoykov, Alexey

    2016-01-26

    The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit.

  17. MASTER: very bright high amplitude(>7.2m) OT

    NASA Astrophysics Data System (ADS)

    Balanutsa, V.; Balanutsa, P.; Lipunov, V.; Lopez, R. Rebolo; Serra-Ricart, M.; Gorbovskoy, E.; Tiurina, N.; Kornilov, V.; Kuznetsov, A.; Kuvshinov, D.; Vlasenko, D.; Vladiirov, V.; Popova, E.; Chazov, V.; Israelyan, G.; Lodieu, N.; Budnev, N.; Gress, O.; Ivanov, K.

    2016-07-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 20h 53m 16.61s -10d 56m 33.1s on 2016-07-24.10765 UT. The OT unfiltered (W=0.2B+0.8R, calibrated by USNO-B1) magnitude is 14.8 (limit 18.7m).

  18. MASTER: OT discovered during inspection of HESE 58537957 trigger

    NASA Astrophysics Data System (ADS)

    Tyurina, N.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Kuvshinov, D.; Vlasenko, D.; Gress, O.; Ivanov, K.; Shumkov, V.; Potter, S.

    2016-08-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 13h 08m 45.02s -32d 32m 54.9s on 2016-08-24.73811 UT during inspection of HESE alert ( 58537957 trigger number ) http://gcn.gsfc.nasa.gov/notices_amon/58537957_128340.amon . The OT unfiltered magnitude is 19.6m (limit 20.5m).

  19. OT promotes closer interpersonal distance among highly empathic individuals

    PubMed Central

    Mankuta, David; Shamay-Tsoory, Simone G.

    2015-01-01

    The space between people, or ‘interpersonal distance’, creates and defines the dynamics of social interactions and is a salient cue signaling responsiveness and feeling comfortable. This distance is implicit yet clearly felt, especially if someone stands closer or farther away than expected. Increasing evidence suggests that Oxytocin (OT) serves as a social hormone in humans, and that one of its roles may be to alter the perceptual salience of social cues. Considering that empathic ability may shape the way individuals process social stimuli, we predicted that OT will differentially affect preferred interpersonal distance depending on individual differences in empathy. Participants took part in two interpersonal distance experiments: In the first, they had to stop a (computer visualized) protagonist when feeling most comfortable; in the second, they were asked to choose the room in which they would later discuss intimate topics with another. Both experiments revealed an interaction between the effect of OT and empathy level. Among highly empathic individuals, OT promoted the choice of closer interpersonal distances. Yet, OT had an opposite effect on individuals with low empathic traits. We conclude that the enhancement of social cues following OT administration may have opposite effects on individuals with different empathic abilities. PMID:24509491

  20. OT promotes closer interpersonal distance among highly empathic individuals.

    PubMed

    Perry, Anat; Mankuta, David; Shamay-Tsoory, Simone G

    2015-01-01

    The space between people, or 'interpersonal distance', creates and defines the dynamics of social interactions and is a salient cue signaling responsiveness and feeling comfortable. This distance is implicit yet clearly felt, especially if someone stands closer or farther away than expected. Increasing evidence suggests that Oxytocin (OT) serves as a social hormone in humans, and that one of its roles may be to alter the perceptual salience of social cues. Considering that empathic ability may shape the way individuals process social stimuli, we predicted that OT will differentially affect preferred interpersonal distance depending on individual differences in empathy. Participants took part in two interpersonal distance experiments: In the first, they had to stop a (computer visualized) protagonist when feeling most comfortable; in the second, they were asked to choose the room in which they would later discuss intimate topics with another. Both experiments revealed an interaction between the effect of OT and empathy level. Among highly empathic individuals, OT promoted the choice of closer interpersonal distances. Yet, OT had an opposite effect on individuals with low empathic traits. We conclude that the enhancement of social cues following OT administration may have opposite effects on individuals with different empathic abilities. PMID:24509491

  1. Correlating MODIS aerosol optical thickness data with ground-based PM 2.5 observations across Texas for use in a real-time air quality prediction system

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Smith, Solar; Faruqui, Shazia J.

    Investigations have been conducted at the Center for Space Research (CSR) into approaches to correlate MODIS aerosol optical thickness (AOT) values with ground-based, PM 2.5 observations made at continuous air monitoring station locations operated by the Texas Commission on Environmental Quality (TCEQ). These correlations are needed to more fully utilize real-time MODIS AOT analyses generated at CSR in operational air quality forecasts issued by TCEQ using a trajectory-based forecast model developed by NASA. Initial analyses of two data sets collected during 3 months in 2003 and all of 2004 showed linear correlations in the 0.4-0.5 range in the data collected over Texas. Stronger correlations (exceeding 0.9) were obtained by averaging these same data over longer timescales but this approach is considered unsuitable for use in issuing air quality forecasts. Peculiarities in the MODIS AOT analyses, referred to as hot spots, were recognized while attempting to improve these correlations. It is demonstrated that hot spots are possible when pixels that contain surface water are not detected and removed from the AOT retrieval algorithms. An approach to reduce the frequency of hot spots in AOT analyses over Texas is demonstrated by tuning thresholds used to detect inland water surfaces and remove pixels that contain them from the analysis. Finally, the potential impact of hot spots on MODIS AOT-PM 2.5 correlations is examined through the analysis of a third data set that contained sufficient levels of aerosols to mask inland water surfaces from the AOT algorithms. In this case, significantly stronger correlations, that exceed the 0.9 value considered suitable for use in a real-time air quality prediction system, were observed between the MODIS AOT observations and ground-based PM 2.5 measurements.

  2. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  3. Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances From the SeaWiFS and MODIS Sensors Over the Chesapeake Bay Area (Case 2 Water)

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Kwiatkowska, E. J.; Franz, B. A.; McClain, C. R.

    2007-12-01

    Presently, a suite of 12 aerosol models are used for atmospheric correction purposes to retrieve normalized water-leaving radiances in the visible bands of the SeaWiFS and MODIS sensors. These aerosol models are based on Shettle and Fenn's models (1979) of tropospheric and oceanic aerosols. Over most of the open oceans of the world (case 1 water), the atmospheric correction algorithm has been shown to work reasonably well. However, over case 2 waters, (for example Chesapeake Bay) the algorithm often yields negative water- leaving radiances, particularly, in the blue bands of the two sensors. In addition, over the coastal areas, the retrieved aerosol optical thickness (AOT) in the 865/869 bands are often higher than the in situ AERONET retrievals. Our analysis of the AERONET data show that Shettle and Fenn's aerosol models are not representative of the aerosols generally found over the coastal region of the Eastern United States. We show that use of wrong aerosol models often results in negative water-leaving radiances. Also, the backscattering of the solar irradiance in the near IR bands by phytoplankton and non-algal suspended particles results in overestimation of AOT. Based on the AERONET data, we have developed a set of new aerosol models for the atmospheric correction over Chesapeake Bay. Results from the new aerosol models, including comparison of satellite-derived AOT and the AERONET in the visible and near IR bands, will be presented.

  4. Atmospheric Transport of Arid Aerosol from Desert Regions of Central Asia

    NASA Astrophysics Data System (ADS)

    Chen, Boris; Solomon, Paul; Sitnov, Sergei; Grechko, Evgeny; Maximenkov, Leonid; Artamonova, Maria; Pogarski, Fedor

    2010-05-01

    Investigation of atmospheric transport of arid aerosol from Central Asia was held within the ISTC project 3715. Particular attention was paid to the removal of aerosol from the Aral Sea region and its further transport, because aerosol and pollutants emission from Central Asia affect the airspace of the entire Asian continent. At the same time measurements of aerosols in the atmosphere of Central Asia are holding in a small number of stations, and currently available data are insufficient to define the initial conditions and/or verification of models of long-range transport. To identify sources of pollution transported from Central Asia, in Kyrgyzstan measurement and sampling of air were organized: at the station on the northern slope of the Kirgiz Range, 30 km south of Bishkek, at an altitude of 1700 m above sea level (Bishkek Site, 42,683N; 74,694E ), and on permanent alpine Teploklyuchenka lidar station in the Central Tien Shan at an altitude of 2000 m above sea level (Lidar Site, 42,467N; 78,533E). The chemical analysis of collected aerosol and soils samples was carried out. Measurements of aerosol at these stations have been merged with the simulation of the trajectories of air masses in the study region and with the satellite (the Terra and Aqua satellites) observations of aerosol optical thickness in this region. Satellite data for the region 43-47 N, and 58-62 E (Aral Sea) from April 2008 to September 2009 were analyzed. The moments were selected, when the value of aerosol optical thickness (AOT) was greatest (more than 0.5), and the transport from the Aral Sea region to the observation sites took place. For each of these days, the forward trajectories, which started at 6 points within the region, were calculated using the HYSPLIT model. The days, on which the trajectories reached the BISHKEK and LIDAR sites, were determined from the data obtained. Calculations on the basis of the RAMS model were performed for these days. These calculations were performed

  5. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure

  6. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  7. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  8. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho; Li, Zhanqing; Wong, Man Sing; Xin, Jinyuan; Wang, Yuesi; Hao, Wei-Min; Zhao, Fengsheng

    2007-11-01

    Single scattering albedo (SSA) governs the strength of aerosols in absorbing solar radiation, but few methods are available to directly measure this important quantity. There currently exist many ground-based measurements of spectral transmittance from which aerosol optical thickness (AOT) are retrieved under clear sky conditions. Reflected radiances at the top of the atmosphere as measured by a spaceborne spectroradiometer are sensitive to both AOT and SSA. On the basis of extensive radiative transfer simulations, it is demonstrated that the combined use of the two measurements allows for the retrieval of SSA at a reasonable accuracy under moderate to heavy aerosol loadings. Retrieval of SSA is most sensitive to AOT and surface reflectance. The accuracy of SSA retrievals increases with aerosol loading. The uncertainties in SSA retrievals are 0.02 ˜ 0.03 for AOT = 1.0 and 0.03 ˜ 0.05 for AOT = 0.5 at 0.47 μm. The proposed retrieval method is applied to 1 a worth of Moderate Resolution Imaging Spectroradiometer (MODIS) Level-1 calibrated reflected radiances matched with surface spectral transmittances acquired at 24 stations of the Chinese Sun Hazemeter Network established under the auspices of the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). Measurements made under high-turbidity conditions (AOT > 0.4) were used. All the stations are located in relatively remote and thus spatially representative locations. From the retrieved values, the first gross map of SSA across China is generated. The retrieved SSA values were compared with those retrieved independently from AERONET sites in China. The root-mean-square deviation (RMSD) is on the order of 0.03, and the mean difference is ˜0.02. The nationwide means of AOT, Ångström exponent, and SSA (at 0.5 μm) in 2005 are 0.69 ± 0.17, 1.06 ± 0.26, and 0.89 ± 0.04, respectively.

  9. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  10. Anomalous change in interfacial tension induced by collapses of AOT microemulsions at heptane/water interface

    NASA Astrophysics Data System (ADS)

    Takahashi, Masahiko; Yui, Hiroharu; Ikezoe, Yasuhiro; Sawada, Tsuguo

    2004-05-01

    Dynamic behavior of water-in-oil microemulsions at the oil/water interface was investigated using the quasi-elastic laser scattering method. We observed an anomalous rebound behavior of interfacial tension γ induced by collapses of microemulsions and adsorptions of AOT molecules at the interface. γ rapidly decreased and reached a minimum value (5.5 mN/m) at about 500 s after the preparation of the interface, and then increased gradually for about 2000 s to the equilibrium value (8.0 mN/m). We considered the mechanism of the rebound behavior in terms of transient change in interfacial thickness induced by the collapses of AOT microemulsions.

  11. Spatial variation of aerosol optical properties in North China Plain

    NASA Astrophysics Data System (ADS)

    Fan, Xuehua

    2013-04-01

    The column-integrated optical properties of aerosol in Beijing and Xianghe situated at North China Plain were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites. Only version 2 and level 2 quality-assured data were presented and analyzed in this paper. Time intervals differ for the two sites, with Beijing having 9 years of data (Mar.-May, 2001; Apr., 2002-Dec., 2011),while Xianghe having 6 years of data (Mar.-Apr., 2001;Sep., 2004-Dec.,2011). Monthly mean 500 nm AOT values reach a maximum in June (0.95) and exceed 0.55 from March through September, and the minimum values occur during the late fall and winter months of November through February at Beijing. The monthly mean AOT values at Xianghe are very close to those measured at Beijing. The absolute differences of AOT between the two sites are less than 0.1 except in June and July. The reason of large difference in June and July is the frequently cloud contamination in summer result in the monthly means over the two sites computed from a large number of measurements of different date. The monthly averaged AOT with the same date in June and July are re-computed and the absolute difference of AOT between Beijing and Xianghe reduced to 0.01 and 0.03 in June and July respectively. The monthly mean Angstrom Exponent (AE) in Beijing and Xianghe sites are very close, with the absolute difference less than 0.075. The monthly mean AE in the two sites varied between ~1.0 and ~1.3 except in spring (March-May), therefore clearly dominated by fine mode aerosol for most of the year. All monthly averaged SSA at Beijing showed much lower value as compared to Xianghe though the seasonal variations are similar for the two sites, which indicates that aerosol absorption is greater in Beijing. All monthly averaged imaginary part of refractive index at Beijing has much higher value than Xianghe. The absolute differences of SSA between the two sites range from 0.016 to 0.037 except that

  12. Initial Assessment of NPP/VIIRS Aerosol Environmental Data

    NASA Astrophysics Data System (ADS)

    Laszlo, I.; Kondragunta, S.; Remer, L. A.

    2012-12-01

    The aerosol environment data records (EDR) derived from the measurements of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite are the aerosol optical thickness (AOT), aerosol particle size parameter (APSP, characterized in terms of the Angstrom Exponent, AE), and suspended matter (SM). These EDRs go through various evaluations to assess their level of maturity, which are defined by a set of criteria. This presentation provides an overview of the work and results the NPP/JPSS Calibration/Validation Team has performed for the first of the maturity levels, Beta. For this level, the VIIRS AOT and APSP products have been compared with aerosol products derived from MODIS observations onboard the NASA Earth Observing System (EOS) satellite (Aqua), and with AERONET products and observations. SM has been compared with CALIPSO products. All comparisons have been applied to a uniform time sample (2 May 2012 to 2 June 2012). Qualitative and quantitative analysis of the VIIRS aerosol EDRs indicate that AOT both over land and ocean, and APSP over ocean have reached Beta maturity. However, neither APSP over land, nor SM qualifies for Beta level at this time. Qualitatively, one standard deviation of VIIRS AOT EDR products fall within ±0.09 ±10% of collocated MODIS retrievals over land and ±0.02 ±10% over ocean. The same VIIRS product falls within ±0.13 ±15% of collocated AERONET over land and ±0.04 ±5% over ocean. In all cases, the VIIRS AOT over land product is biased high (0.07 to 0.15) against comparable products in a global sense. The VIIRS Angstrom Exponent EDR product over ocean shows correlation when compared with MODIS, but is biased high. Preliminary AERONET analysis at coastal stations shows APSP falling within approximately ±0.40 of AERONET. Preliminary AERONET analysis at coastal stations shows APSP falling within approximately ±0.40 of AERONET. VIIRS Angstrom Exponent

  13. Variability of aerosol properties over Eastern Europe observed from ground and satellites in the period from 2003 to 2011

    NASA Astrophysics Data System (ADS)

    Bovchaliuk, A.; Milinevsky, G.; Danylevsky, V.; Goloub, P.; Dubovik, O.; Holdak, A.; Ducos, F.; Sosonkin, M.

    2013-01-01

    The paper presents the study of aerosol variability in the period from 2003 to 2011 over Eastern Europe region with latitude ranging from 40° N to 60° N and longitude from 20° E to 50° E. The analysis was based on the POLDER/PARASOL and POLDER-2/ADEOS satellites and AERONET ground-based sunphotometer observations. The aerosol optical thickness (AOT) of the studied area is characterized by the values (referenced to 870 nm wavelength) ranging from 0.05 to 0.2 except the period of July-August 2010 with strong forest and peat wildfires when the AOT typical values range from 0.3 to 0.5. The analysis of seasonal dynamics of aerosol loading has revealed two AOT high value peaks. The first peak observed in April-May is the result of solitary transportation of Sahara dust in the atmosphere over Eastern Europe, infrequent agricultural fires, transportation of sea salt aerosols by southern winds to Ukraine and Moldova from the Black and Azov Seas. The second peak in August-September is associated with forest and peat wildfires, considerable transportation of Sahara dust and presence of soil dust aerosols due to harvesting activity. The maximum values of AOT are observed in May 2006 (0.1-0.15), April 2009 (0.07-0.15) and August 2010 (0.2-0.5). Furthermore, the study has identified a distinct pattern of anthropogenic aerosols over the industrial areas, especially in the central Ukraine, eastern Belarus, as well as Moscow, Nizhny Novgorod and Stavropol regions in Russia. The comparison of the fine mode AOT (particle radius < 0.3 μm) derived by standard algorithm POLDER/PARASOL from reflected polarized radiances with those recomputed from AERONET inversions was performed over a number of AERONET sites: over Kyiv and Sevastopol sites for the period of 2008-2009 and over Moscow, Minsk, Belsk, and Moldova sites for the period of 2005-2009. The correlation coefficients are 0.78 for Moscow, 0.76 - Minsk, 0.86 - Belsk, 0.93 - Kyiv, 0.81 - Moldova and 0.63 for Sevastopol sites. The

  14. Time Series Analysis of Satellie-Measured Vegetation Phenology and Aerosol Optical Thickness over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, S.

    2015-04-01

    The spatiotemporal influences of climatic factors and atmospheric aerosol on vegetative phenological cycles of the Korean Peninsula was analysed based on four major forest types. High temporal-resolution satellite data can overcome limitations of ground-based phenological studies with reasonable spatial resolution. Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) (MOD13Q1 and MYD13Q1) and aerosol (MOD04_D3) data were downloaded from the USGS Earth Observation and Science (EROS) Data Center and NASA Goddard Space Flight Center. Harmonic analysis was used to describe and compare the periodic phenomena of the vegetative phenology and atmospheric aerosol optical thickness (AOT). The method transforms complex timeseries to a sum of various sinusoidal functions, or harmonics. Each harmonic curve, or term (or Fourier series), from time-series data us defined by a unique amplitude and a phase, indicating the half of the height and the peak time of a curve. Therefore, the mean, phase, and amplitude of harmonic terms of the data provided the temporal relationships between AOT and VI time series. The phenological characteristics of evergreen forest, deciduous forest, and grassland were similar to each other, but the inter-annual VI amplitude of mixed forest was differentiated from the other forest types. Overall, forests with high VI amplitude reached their maximum greenness earlier, and the phase of VI, or the peak time of greenness, was significantly influenced by air temperature. AOT time-series showed strong seasonal and inter-annual variations. Generally, aerosol concentrations were peaked during late spring and early summer. However, inter-annual AOT variations did not have significant relationships with those of VI. Weak relationships between inter-annual AOT and VI variations indicate that the impacts of aerosols on vegetation growth may be limited for the temporal scale investigated in the region.

  15. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  16. Issues in Data Fusion for Satellite Aerosol Measurements for Applications with GIOVANNI System at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Gopalan, Arun; Zubko, Viktor; Leptoukh, Gregory G.

    2008-01-01

    We look at issues, barriers and approaches for Data Fusion of satellite aerosol data as available from the GES DISC GIOVANNI Web Service. Daily Global Maps of AOT from a single satellite sensor alone contain gaps that arise due to various sources (sun glint regions, clouds, orbital swath gaps at low latitudes, bright underlying surfaces etc.). The goal is to develop a fast, accurate and efficient method to improve the spatial coverage of the Daily AOT data to facilitate comparisons with Global Models. Data Fusion may be supplemented by Optimal Interpolation (OI) as needed.

  17. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  18. Comparison of In Situ Aerosol Data from the ACE-Asia 2001 Experiment

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K. D.; Pietras, C.; Miller, M. A.; Reynolds, R. M.; Frouin, R.; Quinn, P. K.; Deschamps, P. Y.; Werdell, P. J.; Fargion, G. S.

    2002-05-01

    The Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) is an international, multidisciplinary project to further knowledge about atmospheric aerosols. ACE-Asia included an intensive field measurement campaign during the spring of 2001 off the coasts of China, Japan and Korea. The Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project participated in the ACE-Asia cruise of the R/V Ronald H. Brown, which departed from Hawaii on 2001/03/15, sailed west to the Sea of Japan, and finished in Yokosuka, Japan on 2001/04/19. The SIMBIOS Project compares and merges data projects from multiple ocean color missions. As In Situ data are essential for merger and comparison of satellite ocean color measurements, the Project is interested in instrumentation devopment and data base building. The SeaWiFS Bio-optical Archive and Storage System (SeaBASS) is the database used and maintained by the SIMBIOS project. The ACE-Asia cruise was an excellent opportunity to compare data from a variety of maritime sun photometers, as several aerosol conditions were experienced. These included low Aerosol Optical Thickness (AOT) maritime conditions near Hawaii and extremely high AOT dust conditions in the Sea of Japan. Concurrant measurements were made with the PREDE POM-01 Mark II radiometer, a Laboratoire d'Optique Atmosphérique (LOA) SIMBAD, a Laboratorie d'Optique Atmosphérique (LOA) SIMBAD-a, two Solar Light, Inc. Microtops II's, and Brookhaven National Laboratory's Fast Rotating Shadowband Radiometer (FRSR). In addition, a Micro Pulse Lidar (MPL) was deployed that provides vertical aerosol distributions. Data were processed utilizing new algorithms to screen errors due to improper pointing at the sun, a problem previously recognized for the Microtops II. Comparisons of AOT at 500nm and Angstrom Exponent were made for all the instruments. The hand held, direct solar sun photometers (Microtops II, SIMBAD and SIMBADa

  19. Estimation of aerosol direct forcing by Asian dust using sun/sky radiometer and lidar measurement

    NASA Astrophysics Data System (ADS)

    Won, J. G.; Yoon, S. C.; Holben, B.

    2002-12-01

    Appropriate optical parameters of aerosols are critical part for estimating aerosol direct forcing. We suggest a method of determining aerosol parameters for the radiative transfer model, CRM released by NCAR, from AERONET inversion data set. AERONET inversion provides size distribution and complex refractive indices at 4 wavelengths, 440, 670, 870 and 1020nm. Mie calculation can produce the aerosol optical parameters, such as aerosol optical thickness (AOT), single scattering albedo (SSA), asymmetry factor(g) and by using regression fitting method on log-log plane, the parameters at 19 channels of short wavelength region can be retrieved. With this method, it becomes possible to use ground-base solar radiance measurement data for calculating aerosol direct forcing without assuming the specific aerosol type in advance. We investigated the differences of aerosol forcing by dust and non-dust aerosols. Out of AERONET data collected in Apr. 2001, the properties of Asian dust aerosols were examined, which have the characteristics of bigger AOT, bigger SSA (bigger solar radiance reflection) and less wavelength dependence of SSA and g. This difference makes larger aerosol direct forcing at TOA and less atmospheric absorption. The aerosol profiles measured by lidar are also applied for radiative transfer calculation. The profiles of short wave radiation flux and heating rate by dust were investigated for two Asian dust events, one was elevated dust event and the other was dust event settling into the PBL. Instantaneous heating rate larger than 2K/day was estimated within dust aerosol layer and several differences of radiation flux profiles due to the aerosol profiles were investigated.

  20. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  1. 12 CFR 500.10 - The OTS or The Office.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false The OTS or The Office. 500.10 Section 500.10 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY AGENCY ORGANIZATION AND... supervision of savings associations by regulatory staff to ensure the safety and soundness of the industry....

  2. 12 CFR 574.7 - Determination by the OTS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SAVINGS ASSOCIATIONS § 574.7 Determination by the OTS. (a) Acquisition by a company. (1) The Office shall... section are not met. Acquisitions involving mergers with an interim association shall also be subject to... company are composed of persons who, at the time of acquisition, are executive officers and directors...

  3. 12 CFR 510.5 - Release of unpublished OTS information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... disclosed under the Freedom of Information Act, see 5 U.S.C. 552, and 31 CFR 1.1-1.6; and (iv) Requests for... motions in the case that may bear on the asserted relevance of the information being sought from the OTS... Washington, DC, in accordance with paragraph (c) of this section. (3) Appearance by person served. Except...

  4. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  5. Teaching the Moving Child: OT Insights That Will Transform Your K-3 Classroom

    ERIC Educational Resources Information Center

    Berkey, Sybil M.

    2009-01-01

    Because sensorimotor and environmental factors have a profound effect on children's learning, every teacher should know how to weave strategies from occupational therapy (OT) into their everyday instruction. This is the guidebook K-3 teachers need to "think like an OT"--and form effective partnerships with OTs in their schools--so all students can…

  6. 75 FR 63895 - Open Meeting of the OTS Minority Depository Institutions Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Office of Thrift Supervision Open Meeting of the OTS Minority Depository Institutions Advisory Committee... OTS Minority Depository Institutions Advisory Committee (MDIAC) will convene a meeting on Wednesday.... SUPPLEMENTARY INFORMATION: By this notice, the Office of Thrift Supervision is announcing that the OTS...

  7. 12 CFR 563b.115 - How will OTS review my business plan?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false How will OTS review my business plan? 563b.115... business plan? (a) OTS will review your business plan to determine that it demonstrates a safe and sound... determination, OTS will consider how you have addressed the applicable factors of § 563b.105. No single...

  8. 12 CFR 550.560 - When may the OTS revoke my fiduciary powers?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false When may the OTS revoke my fiduciary powers? 550.560 Section 550.560 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY... § 550.560 When may the OTS revoke my fiduciary powers? The OTS may revoke your fiduciary powers if...

  9. 12 CFR 516.270 - How long is the OTS review period?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false How long is the OTS review period? 516.270 Section 516.270 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPLICATION PROCESSING PROCEDURES OTS Review Standard Treatment § 516.270 How long is the OTS review period? (a)...

  10. 12 CFR 516.270 - How long is the OTS review period?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false How long is the OTS review period? 516.270 Section 516.270 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPLICATION PROCESSING PROCEDURES OTS Review Standard Treatment § 516.270 How long is the OTS review period? (a)...

  11. 12 CFR 516.270 - How long is the OTS review period?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true How long is the OTS review period? 516.270 Section 516.270 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPLICATION PROCESSING PROCEDURES OTS Review Standard Treatment § 516.270 How long is the OTS review period? (a)...

  12. 75 FR 38188 - Closed Meeting of the OTS Mutual Savings Association Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Office of Thrift Supervision Closed Meeting of the OTS Mutual Savings Association Advisory Committee.... SUMMARY: The OTS Mutual Savings Associations Advisory Committee (MSAAC) will convene a meeting on... the OTS Mutual Savings Association Advisory Committee will convene a closed meeting on Wednesday,...

  13. A decade of dust: Asian dust and springtime aerosol load in the U.S. Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Hsu, N. C.; Jaffe, D. A.; Jeong, M.-J.; Gong, S. L.

    2009-02-01

    We integrate SeaWiFS aerosol optical thickness (AOT) over the Taklamakan and Gobi Deserts with U.S. aerosol observations to study surface aerosol variability in the Northwest U.S. in relation to Asian dust emissions. The results indicate that ~50% of the interannual variability in springtime average PM2.5 and PM10 can be explained by changes in Asian dust emissions. On a seasonal timescale, variations in dust emissions appear to be more important in determining the total material crossing the Pacific than the variations in meteorology represented by the PNA or the LRT3 indices. We are able to explain ~80% of the interannual variability using three variables: AOT, a transport index, and regional precipitation. This suggests that a strong source, favorable transport and sufficient residence time are needed for Asian dust to have a maximum seasonal impact in the Northwest. The results contextualize case studies and demonstrate the utility of the Deep Blue algorithm.

  14. Real Effect or Artifact of Cloud Cover on Aerosol Optical Thickness?

    SciTech Connect

    Jeong, M-J.; Li, Z.

    2005-03-18

    Aerosol measurements over the Southern Great Plains (SGP) Cloud And Radiation Test bed (CART) site under Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program characterize the temporal variability, vertical distribution, and optical properties of aerosols in the region. They were made by the Cimel sunphotometer and Multifilter Rotating Shadow-band Radiometer (MFRSR), Raman Lidar, In situ Aerosol Profiling (IAP) flights, and the Aerosol Observing System (AOS). The spatial variability of aerosols relies a network of MFRSR at the Central Facility (CF) and Extended Facilities (EF), together with satellite remote sensing. The current state-of-art satellite-based estimates over land--e.g., MODerate resolution Imaging Scanner (MODIS) aerosol optical thickness--still suffer from large uncertainties. Contamination due to sub-pixel and/or thin cirrus clouds is believed to be one of the major sources of uncertainties. Retrievals near clouds are discouraged to use, which reduces considerably the amount of useful data. In this regard, cloud is considered as an artifact. However, cloud could have a real impact on AOT by changing humidity, which affects aerosol through the aerosol swelling effect. As a preliminary study, we first investigate the effects of cloud cover and humidity on the retrievals of AOT from ground-based Cimel sunphotometer measurements, in order to help us sort out the real influence and artifact. In general, it is very difficult to verify and quantify the effects of cloud on satellite retrieval of aerosol quantities. Speculation and warning of cloud contamination have been made whenever there is a correlation between the retrieved AOT and cloud fraction or their spatial variabilities, while it has also been argued that aerosol humidification effect (AHE) might be at work. The ample measurements available from ARM over the SGP region may allow us to unravel this complex issue. Our ultimate goals are to (1) evaluate various effects on the

  15. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops

    NASA Astrophysics Data System (ADS)

    Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L.; Pleijel, H.

    Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.

  16. Sensitivity of spectral reflectance to aerosol optical properties in UV and visible wavelength range: Preparatory study for aerosol retrieval from Geostationary Environmental Monitoring Spectrometer (GEMS)

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Lee, J.

    2011-12-01

    Asia, with its rapid increase in industrialization and population, has been receiving great attention as one of important source regions of pollutants including aerosols and trace gases. Since the spatio-temporal distribution of the pollutants varies rapidly, demands to monitor air quality in a geostationary satellite have increased recently. In these perspectives, the Ministry of Environment of Korea initiated a geostationary satellite mission to launch the Geostationary Environmental Monitoring Spectrometer (GEMS) onboard the GEO-KOMPSAT in 2017-2018 timeframe. From the Ozone Monitoring Instrument (OMI) measurements, it has been found that the low surface reflectance and strong interaction between aerosol absorption and molecular scattering in UV wavelength range can be advantageous in retrieving aerosol optical properties, such as aerosol optical thickness (AOT) and optical type (or single scattering albedo), over the source regions as well as ocean areas. In addition, GEMS is expected to have finer spatial resolution compared to OMI (13 x 24 km2 at nadir), thereby less affected by sub-pixel clouds. In this study, we present sensitivity of spectral reflectance to aerosol optical properties in ultraviolet (UV) and visible wavelength range for a purpose to retrieve aerosol optical properties from GEMS. The so called UV-VIS algorithm plans to use spectral reflectance in 350-650 nm. The algorithm retrieves AOT and aerosol type using an inversion method, which adopts pre-calculated lookup table (LUT) for a set of assumed aerosol models. For the aerosol models optimized in Asia areas, the inversion data of Aerosol Robotic Network (AERONET) located in the target areas are selectively used to archive aerosol optical properties. As a result, major aerosol types representing dust, polluted dust, and absorbing/non-absorbing anthropogenic aerosols are constructed and used for the LUT calculations. We analyze the effect of cloud contamination on the retrieved AOT by

  17. A novel technique for estimating aerosol optical thickness trends using meteorological parameters

    NASA Astrophysics Data System (ADS)

    Emetere, Moses E.; Akinyemi, M. L.; Akin-Ojo, O.

    2016-02-01

    Estimating aerosol optical thickness (AOT) over regions can be tasking if satellite data set over such region is very scanty. Therefore a technique whose application captures real-time events is most appropriate for adequate monitoring of risk indicators. A new technique i.e. arithmetic translation of pictorial model (ATOPM) was developed. The ATOPM deals with the use mathematical expression to compute other meteorological parameters obtained from satellite or ground data set. Six locations within 335 × 230 Km2 area of a selected portion of Nigeria were chosen and analyzed -using the meteorological data set (1999-2012) and MATLAB. The research affirms the use of some parameters (e.g. minimum temperature, cloud cover, relative humidity and rainfall) to estimate the aerosol optical thickness. The objective of the paper was satisfied via the use of other meteorological parameters to estimate AOT when the satellite data set over an area is scanty.

  18. Variability of aerosol properties over Eastern Europe observed from ground and satellites in the period from 2003 to 2011

    NASA Astrophysics Data System (ADS)

    Bovchaliuk, A.; Milinevsky, G.; Danylevsky, V.; Goloub, P.; Dubovik, O.; Holdak, A.; Ducos, F.; Sosonkin, M.

    2013-07-01

    The paper presents some results of the study on aerosol variability in the period from 2003 to 2011 over the Eastern Europe region, with latitude ranging from 40° N to 60° N and longitude from 20° E to 50° E. The analysis was based on the POLDER/PARASOL and POLDER-2/ADEOS satellites and AERONET (AErosol RObotic NETwork) ground-based sun photometer observations. The aerosol optical thickness (AOT) of the studied area is characterized by values (referenced to 870 nm wavelength) ranging from 0.05 to 0.2, except for in the period of July-August 2010 with strong forest and peat wildfires when the AOT typical values range from 0.3 to 0.5 according to both retrievals. The analysis of seasonal dynamics of aerosol loading has revealed two AOT high value peaks. The spring peak observed in April-May is the result of solitary transportation of Saharan dust in the atmosphere over Eastern Europe, infrequent agricultural fires, transportation of sea salt aerosols by southern winds to Ukraine and Moldova from the Black and Azov seas. The autumn peak in August-September is associated with forest and peat wildfires, considerable transportation of Saharan dust and the presence of soil dust aerosols due to harvesting activity. The maximum values of AOT are observed in May 2006 (0.1-0.15), April 2009 (0.07-0.15) and August 2010 (0.2-0.5). Furthermore, the study has identified a distinct pattern of anthropogenic aerosols over the industrial areas, especially in central Ukraine and eastern Belarus as well as Moscow region in Russia. The comparison of the AOT derived by standard algorithm POLDER/PARASOL with those recomputed from AERONET inversions for fine mode particles with radius < 0.3 μm was performed over several AERONET sites. The correlation coefficients for the POLDER/AERONET AOT retrieval comparisons are equal: 0.78 for Moscow site, 0.76 - Minsk, 0.86 - Belsk, 0.81 - Moldova (period 2005-2009), 0.93 - Kyiv and 0.63 for Sevastopol sites (2008-2009). The deviations are

  19. Effect of Mannosylerythritol lipid-A on light scattering of AOT/D2O/Octane

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil

    2016-09-01

    The light scattering technique is used for the study of interaction of Mannosylerythritol lipid-A on AOT/D2O/Octane. The collective diffusion of AOT/D2O droplets soluble in Octane mixed with lipid is founded from a correlation function of light scattering. We focus on the variation of the dynamic behavior of droplets as a function of the lipid concentrations and the size of droplets. The increase of concentration of Mannosylerythritol lipid-A on microemulsion decreases the dynamic of droplets. The SAXS experiment shows the size and the interaction of the droplets change by increase of Mannosylerythritol lipid-A concentration. A hard sphere model can describe the interaction of lipid with AOT/D2O droplets.

  20. Interference experiment with the Sirio-OTS satellites

    NASA Astrophysics Data System (ADS)

    Lombardi, P.; Migliorini, P.; Saggese, E.

    1983-06-01

    During an orbit transfer of the Sirio satellite an interference experiment with the OTS satellite carried was performed. Both satellites may transmit in the 11.6 GHz band. A BPSK signal was transmitted to the satellites and received by stations with programmed tracking systems. Receiving stations registered the signal power intensity and the bit errors in 1 sec time samples. The satellites do not interfere if their angular distance is larger than twice the beam aperture of the receiving antenna.

  1. Optimization of OT-MACH Filter Generation for Target Recognition

    NASA Technical Reports Server (NTRS)

    Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.

  2. Validation of the on-line aerosol retrieval and error characterization algorithm from the OMI Near-UV observations during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Ahn, C.; Kim, J.; Bhartia, P. K.; Torres, O.; Spurr, R. J. D.; Liu, X.; Chance, K.; Holben, B. N.

    2014-12-01

    One of the representative advantages of using ultraviolet channel to retrieve aerosol optical property is that the results are less affected by the uncertainty of surface reflectance database. The retrieved aerosol products have relatively uniform quality at both land and ocean except the ice-snow surface. The near UV technique of aerosol remote sensing has additional merit that it has long period database since TOMS (Total Ozone Mapping Spectrometer) including aerosol absorption properties. Thus the retrieved product using the near UV technique using TOMS and OMI (Ozone Monitoring Instrument) measurement is quite appropriate for climatological research. For such purposes, assessment of accuracy of the retrieved product is essential to evaluate the radiative forcing of the aerosols. In this study, the error characterizations of the near UV technique using OMI measurements have been performed with the optimal estimation method during the DRAGON-NE Asia 2012 campaign. In order to avoid the interpolation error, we developed the on-line retrieval scheme based on the traditional near UV method. The retrieval noise and smoothing error of retrieved AOT (Aerosol Optical Thickness) were compared with the biases between 380 nm AOT from AERONET and retrieved 388 nm AOT. They showed positive correlations which infer the possibility of the estimated errors using the optimal estimation method to be used to evaluate the error of retrieved products. Forward model parameter errors were analyzed separately which depends on the quality of the used database, thus can be reduced by improving the database.

  3. Fixed ground antenna radome (FGAR) type 1/3 OT&E integrations and OT&E operational

    NASA Astrophysics Data System (ADS)

    Baker, Leonard H.; Sedgwick, Harold G.

    1995-05-01

    This test report documents the Operational Test and Evaluation (OT&E) Integration and OT&E Operational testing performed on the Type I/Ill, Fixed Ground Antenna Radome (FGAR). The Type I/Ill FGAR is used with the Air Route Surveillance Radar (ARSR)) -1/2 and AN/FPS military radars. The testing was performed at the Federal Aviation Administration (FAA) Technical Center's Elwood En Route Beacon Test Facility (ERBTF) and the Northwest Mountain Region's Trinidad En Route Radar Facility (TAD), Colorado. The testing included: (1) characterization of the primary and secondary radar's electromagnetic performance; (2) human factors; (3) physical characteristics; and (4) physical performance. The electromagnetic performance testing showed no degradation of the primary or secondary radars; there were no human factor problems found; and only minor problems were identified during the physical characteristics and physical performance tests. The testing determined that the FGAR meets the Operational Suitability and Operational Effectiveness requirements of the FAA.

  4. Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanre, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-01-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid- 2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by 0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  5. Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanre, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-01-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  6. Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanré, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-05-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Ångström exponent. At the same time, it shows an increasing trend in the single scattering albedo, by ˜0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  7. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Kaltsonoudis, C.; Tsiflikiotou, M.; Louvaris, E.; Russell, L. M.; Pandis, S. N.

    2013-09-01

    Aerosol produced during the burning of olive tree branches was characterized with both direct source sampling (using a mobile smog chamber) and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8-10% black carbon (BC), 5% potassium, 3-4% sulfate, 2-3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA) consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O : C) ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034-0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O : C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs) such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF) was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%), HOA (hydrocarbon-like organic aerosol, 11.3%) and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.9 g kg-1. Assuming that half of the olive tree branches pruned is burned in Greece, 2300 ± 600 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in Mediterranean countries.

  8. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Kaltsonoudis, C.; Tsiflikiotou, M.; Louvaris, E.; Russell, L. M.; Pandis, S. N.

    2013-03-01

    Aerosol produced during the burning of olive tree branches was characterized with both direct source-sampling (using a mobile smog chamber) and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8-10% black carbon (BC), 5% potassium, 3-4% sulfate, 2-3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA) consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O:C) ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034-0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O:C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs) such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF) was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%), HOA (hydrocarbon-like organic aerosol, 11.3%) and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.2 g kg-1. Assuming that half of the olive tree branches pruned is burned in Greece 2280 ± 140 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in the Mediterranean countries.

  9. Distinct impact of different types of aerosols on surface solar radiation in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhao, Chuanfeng; Zhou, Lijing; Wang, Yang; Liu, Xiaohong

    2016-06-01

    Observations of surface direct solar radiation (DSR) and visibility, particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5), together with the aerosol optical thickness (AOT) taken from Moderate-Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer, were investigated to gain insight into the impact of aerosol pollution on surface solar radiation in China. The surface DSR decreased during 2004-2014 compared with 1993~2003 over eastern China, but no clear reduction was observed in remote regions with cleaner air. Significant correlations of visibility, PM2.5, and regionally averaged AOT with the surface DSR over eastern China indicate that aerosol pollution greatly affects the energy available at the surface. The net loss of surface solar radiation also reduces the surface ground temperature over eastern China. However, the slope of the linear variation of the radiation with respect to atmospheric visibility is distinctly different at different stations, implying that the main aerosol type varies regionally. The largest slope value occurs at Zhengzhou and indicates that the aerosol absorption in central China is the highest, and lower slope values suggest relatively weakly absorbing types of aerosols at other locations. The spatial distribution of the linear slopes agrees well with the geographical distribution of the absorbing aerosols derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and Ozone Monitoring Instrument over China. The regional correlation between a larger slope value and higher absorbance properties of aerosols indicates that the net effects of aerosols on the surface solar energy and corresponding climatic effects are dependent on both aerosol amount and optical properties.

  10. Regulation of functional KCNQ1OT1 lncRNA by β-catenin

    PubMed Central

    Sunamura, Naohiro; Ohira, Takahito; Kataoka, Miki; Inaoka, Daigo; Tanabe, Hideyuki; Nakayama, Yuji; Oshimura, Mitsuo; Kugoh, Hiroyuki

    2016-01-01

    Long noncoding RNAs (lncRNAs) have been implicated in many biological processes through epigenetic mechanisms. We previously reported that KCNQ1OT1, an imprinted antisense lncRNA in the human KCNQ1 locus on chromosome 11p15.5, is involved in cis-limited silencing within an imprinted KCNQ1 cluster. Furthermore, aberration of KCNQ1OT1 transcription was observed with a high frequency in colorectal cancers. However, the molecular mechanism of the transcriptional regulation and the functional role of KCNQ1OT1 in colorectal cancer remain unclear. Here, we show that the KCNQ1OT1 transcriptional level was significantly increased in human colorectal cancer cells in which β-catenin was excessively accumulated in the nucleus. Additionally, overexpression of β-catenin resulted in an increase in KCNQ1OT1 lncRNA-coated territory. On the other hand, knockdown of β-catenin resulted in significant decrease of KCNQ1OT1 lncRNA-coated territory and an increase in the mRNA expression of the SLC22A18 and PHLDA2 genes that are regulated by KCNQ1OT1. We showed that β-catenin can promote KCNQ1OT1 transcription through direct binding to the KCNQ1OT1 promoter. Our evidence indicates that β-catenin signaling may contribute to development of colorectal cancer by functioning as a novel lncRNA regulatory factor via direct targeting of KCNQ1OT1. PMID:26868975

  11. A study of aerosol optical properties at the global GAW station Bukit Kototabang, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurhayati, N.; Nakajima, Teruyuki

    2012-01-01

    There have been very few studies carried out in Indonesia on the atmospheric aerosol optical properties and their impact on the earth climate. This study utilized solar radiation and aerosol measurement results of Indonesian GAW station Bukit Kototabang in Sumatra. The radiation data of nine years were used as input to a radiation simulation code for retrieving optically equivalent parameters of aerosols, i.e., aerosol optical thickness (AOT), coarse particle to fine particle ratio ( γ-ratio), and soot fraction. Retrieval of aerosol properties shows that coarse particles dominated at the station due to high relative humidity (RH) reaching more than 80% throughout the year. AOT time series showed a distinct two peak structure with peaks in MJJ and NDJ periods. The second peak corresponds to the period of high RH suggesting it was formed by active particle growth with large RH near 90%. On the other hand the time series of hot spot number, though it is only for the year of 2004, suggests the first peak was strongly contributed by biomass burning aerosols. The γ-ratio took a value near 10 throughout the year except for November and December when it took a larger value. The soot fraction varies in close relation with the γ-ratio, i.e. low values when γ was large, as consistent with our proposal of active particle growth in the high relative periods.

  12. Characterization of aerosols over oceanic regions around India during pre-monsoon 2006

    NASA Astrophysics Data System (ADS)

    Kalapureddy, M. C. R.; Devara, P. C. S.

    Ship cruise observations of aerosol optical properties have been carried out over oceanic areas around India during pre-monsoon season of 2006. The results reveal rather significant day-to-day variability in aerosol optical thickness (AOT). Aerosol loading is found to be relatively high over the Bay of Bengal (BoB) i.e., AOT at 500 nm is 0.36 ± 0.12 which is higher than those over Arabian Sea (AS) i.e., 0.23 ± 0.09 and North Indian Ocean (NIO) i.e., 0.26 ± 0.10. Dominance of fine-mode ( α = 1.21 ± 0.11) and coarse-mode ( α = 0.86 ± 0.20) aerosol particles has been observed, respectively, over the BoB and AS regions. Second order Angstrom exponent shows predominant positive and negative curvatures over BoB and AS, respectively. High fine-mode aerosol loading over BoB is found to be associated with air masses originating from northeastern Indo-Gangetic plains and southeastern Myanmar. The observed short wave solar flux decrease due to aerosol extinction is found to be 24, 19 and 21 W m -2 for the BoB, AS and NIO, respectively.

  13. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  14. The retrieval of aerosol optical thickness over snow using AATSR observations

    NASA Astrophysics Data System (ADS)

    Istomina, L. G.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Burrows, J. P.

    2009-12-01

    Remote sensing of aerosols experiences lack of products over very bright surfaces, such as deserts and snow, due to difficulties with surface subtraction, when a small error in accounting for surface reflectance can cause a large error in retrieved aerosol optical thickness (AOT). Cloud screening over bright surface is also not easy because of low contrast between clouds and surface in visible area of spectrum, and additional infrared channels are not always available. Luckily, AATSR instrument on board ENVISAT has necessary features to solve both of these problems. In current work we present an improved version of discussed earlier [1,2] dual-view algorithm to retrieve AOT over snow. The retrieval algorithm still consists of cloud screening, based on spectral shape analysis of AATSR pixel in order to extract clear snow pixels, and of AOT retrieval over snow and water. Current version of AOT retrieval over open ocean now contains improved accounting for ocean reflectance (in previous version the ocean was assumed to be absolutely black). The AOT retrieval over snow is also improved. Instead of using the approximate expression for top-of-atmosphere reflectance (see, e.g., [3]), we now use the accurate analytical expression for it [4], which accounts for bidirectional reflection properties of the surface and for multiple scattering between given point of surface, atmosphere and neighbor points of surface. As before, we don't use any pre-assumed model to account for the surface, but derive the ratio of surface reflectances for two views, necessary for retrieval with AATSR data (forward, where observation zenith angle equals to 55°, and nadir), using measured top-of-atmosphere reflectances in visible channel. The algorithm has been applied to various scenes in European Arctic and Alaska in different scales, up to global AOT maps. The correspondence of AOT over snow to AOT over water is quite good, which proves the reliability of the retrieval. The algorithm has been

  15. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  16. Statistical properties of aerosol-cloud-precipitation interactions in South America

    NASA Astrophysics Data System (ADS)

    Jones, T. A.; Christopher, S. A.

    2010-03-01

    Given the complex interaction between aerosol, cloud, and atmospheric properties, it is difficult to extract their individual effects to observed rainfall amount. This research uses principle component analysis (PCA) that combines Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products, NCEP Reanalysis atmospheric products, and rainrate estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to assess if aerosols affect warm rain processes. Data collected during September 2006 over the Amazon basin in South America during the biomass-burning season are used. The goal of this research is to combine these observations into a smaller number of variables through PCA with each new variable having a unique physical interpretation. In particular, we are concerned with PC variables whose weightings include aerosol optical thickness (AOT), as these may be an indicator of aerosol indirect effects. If they are indeed occurring, then PC values that include AOT should change as a function of rainrate. To emphasize the advantage of PCA, changes in aerosol, cloud, and atmospheric observations are compared to rainrate. Comparing no-rain, rain, and heavy rain only (>5 mm h-1) samples, we find that cloud thicknesses, humidity, and upward motion are all greater during rain and heavy rain conditions. However, no statistically significant difference in AOT exists between each sample, indicating that atmospheric conditions are more important to rainfall than aerosol concentrations as expected. If aerosols are affecting warm process clouds, it would be expected that stratiform precipitation would decrease as a function increasing aerosol concentration through either Twomey and/or semi-direct effects. PCA extracts the latter signal in a variable labeled PC2, which explains 15% of the total variance and is second in importance the variable (PC1) containing the broad atmospheric conditions. PC2 contains weightings showing that AOT is

  17. Statistical properties of aerosol-cloud-precipitation interactions in South America

    NASA Astrophysics Data System (ADS)

    Jones, T. A.; Christopher, S. A.

    2009-10-01

    Given the complex interaction between aerosol, cloud, atmospheric properties, it is difficult to extract their individual effects to observed rainfall amount. This research uses principle component analysis (PCA) that combines Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products, NCEP Reanalysis atmospheric products, and rainrate estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to assess the specific combinations of these inputs that most affect warm rain processes. Data collected during September 2006 over the South America, which includes the Amazon basin, are used as aerosols, clouds, and precipitation are all present in this region at this time. The goal of this research is to combine these observations into a smaller number of variables through PCA with each having a unique physical interpretation. In particular, we are concerned with PC variables whose weightings include aerosol optical thickness (AOT), as these may be an indicator of aerosol indirect effects. If they are indeed occurring, then PC values that include AOT should change as a function of rainrate. To emphasize the advantage of PCA, changes in aerosol, cloud, and atmospheric observations are compared to rainrate. Comparing no-rain, rain, and heavy rain (>5 mm h-1) samples, cloud thicknesses, humidity, and upward motion are all larger for the rain and heavy rain samples. However, no statistically significant difference in AOT exists, indicating that atmospheric conditions are more important to rainfall than aerosol concentrations as expected. If aerosols are affecting warm process clouds, it would be expected that stratiform precipitation would decrease as a function increasing aerosol concentration through either Twomey and/or semi-direct effects. PCA extracts the latter signal in a variable labeled PC2, which explains 15% of the total variance and is second in importance the variable (PC1) containing the broad atmospheric

  18. Impact of aerosols on the OMI tropospheric NO2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model?

    NASA Astrophysics Data System (ADS)

    Chimot, J.; Vlemmix, T.; Veefkind, J. P.; de Haan, J. F.; Levelt, P. F.

    2015-08-01

    The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO2 for more than a decade. Numerous studies have drawn attention to the complexities related to measurements of tropospheric NO2 in the presence of aerosols. Fine particles affect the OMI spectral measurements and the length of the average light path followed by the photons. However, they are not explicitly taken into account in the current OMI tropospheric NO2 retrieval chain. Instead, the operational OMI O2-O2 cloud retrieval algorithm is applied both to cloudy scenes and to cloud free scenes with aerosols present. This paper describes in detail the complex interplay between the spectral effects of aerosols, the OMI O2-O2 cloud retrieval algorithm and the impact on the accuracy of the tropospheric NO2 retrievals through the computed Air Mass Factor (AMF) over cloud-free scenes. Collocated OMI NO2 and MODIS Aqua aerosol products are analysed over East China, in industrialized area. In addition, aerosol effects on the tropospheric NO2 AMF and the retrieval of OMI cloud parameters are simulated. Both the observation-based and the simulation-based approach demonstrate that the retrieved cloud fraction linearly increases with increasing Aerosol Optical Thickness (AOT), but the magnitude of this increase depends on the aerosol properties and surface albedo. This increase is induced by the additional scattering effects of aerosols which enhance the scene brightness. The decreasing effective cloud pressure with increasing AOT represents primarily the absorbing effects of aerosols. The study cases show that the actual aerosol correction based on the implemented OMI cloud model results in biases between -20 and -40 % for the DOMINO tropospheric NO2 product in cases of high aerosol pollution (AOT ≥ 0.6) and elevated particles. On the contrary, when aerosols are relatively close to the surface or mixed with NO2, aerosol correction based on the cloud model results in

  19. New Global Deep Blue Aerosol Product over Land and Ocean from VIIRS, and Its comparisons with MODIS

    NASA Astrophysics Data System (ADS)

    Hsu, N. Y. C.; Bettenhausen, C.; Sayer, A. M.; Lee, J.; Tsay, S. C.; Carletta, N.

    2015-12-01

    The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. VIIRS was designed to have similar capabilities to MODIS, with similar visible/infrared spectral channels, and spatial/ temporal resolution. However, small but significant differences in several key channels used in aerosol retrievals between MODIS and VIIRS mean that significant effort is required to revise aerosol models and surface reflectance determination modules previously developed using MODIS data. In this study, we will show the global (land and ocean) distribution of aerosols from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical thickness (AOT) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOT.

  20. Climatology of aerosol properties and clear-sky shortwave radiative effects using Lidar and Sun photometer observations in the Dakar site

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Goloub, P.; Derimian, Y.; Tanré, D.; Podvin, T.; Blarel, L.; Deroo, C.; Marticorena, B.; Diallo, A.; Ndiaye, T.

    2016-06-01

    This paper presents the analysis of nearly a decade of continuous aerosol observations performed at the Mbour site (Senegal) with Sun photometer, Lidar, and Tapered Electromagnetic Oscillating Microbalance. This site is influenced all year-round by desert dust and sporadically, in wintertime, by biomass burning particles. Different patterns are revealed for winter and summer, seasons associated to air masses of different origin. The summer (wet season) is characterized by a high aerosol loading (optical thickness, AOT, around 0.57 at 532 nm) composed of large and weakly absorbing particles (Angstrom exponent, α, of 0.23 and single-scattering albedo, ϖ0, of 0.94 at 532 nm). A lower aerosol loading (AOT = 0.32) is observed during winter (dry season) for finer and absorbing particles (α = 0.48 and ϖ0 = 0.87) revealing the presence of biomass burning aerosols and a greater proportion of local emissions. This latter anthropogenic contribution is visible at weekly and daily scales through AOT cycles. A decrease of about 30% in AOT has been featured in autumn since 2003. The derivation of the extinction profiles highlights a dust transport close to the ground during winter and in an aloft layer (up to 5 km) during summer. Accurate calculations of the daily aerosol radiative effect in clear-sky conditions are finally addressed. From spring to winter, seasonal shortwave radiative forcing averages of 14.15, 11.15, 8.92, and 12.06 W m-2 have been found respectively. Up to 38% of the solar clear-sky atmospheric heating can be attributed to the aerosols in this site.

  1. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  2. Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2014-01-01

    This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.

  3. A Novel Method to Retrieve Aerosol Optical Thickness from High-Resolution Optical Satellite Images for Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Wilson, R. T.; Milton, E. J.

    2015-12-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  4. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development.

    PubMed

    Amaral, Paulo P; Neyt, Christine; Wilkins, Simon J; Askarian-Amiri, Marjan E; Sunkin, Susan M; Perkins, Andrew C; Mattick, John S

    2009-11-01

    The Sox2 gene is a key regulator of pluripotency embedded within an intron of a long noncoding RNA (ncRNA), termed Sox2 overlapping transcript (Sox2ot), which is transcribed in the same orientation. However, this ncRNA remains uncharacterized. Here we show that Sox2ot has multiple transcription start sites associated with genomic features that indicate regulated expression, including highly conserved elements (HCEs) and chromatin marks characteristic of gene promoters. To identify biological processes in which Sox2ot may be involved, we analyzed its expression in several developmental systems, compared to expression of Sox2. We show that Sox2ot is a stable transcript expressed in mouse embryonic stem cells, which, like Sox2, is down-regulated upon induction of embryoid body (EB) differentiation. However, in contrast to Sox2, Sox2ot is up-regulated during EB mesoderm-lineage differentiation. In adult mouse, Sox2ot isoforms were detected in tissues where Sox2 is expressed, as well as in different tissues, supporting independent regulation of expression of the ncRNA. Sox2dot, an isoform of Sox2ot transcribed from a distal HCE located >500 kb upstream of Sox2, was detected exclusively in the mouse brain, with enrichment in regions of adult neurogenesis. In addition, Sox2ot isoforms are transcribed from HCEs upstream of Sox2 in other vertebrates, including in several regions of the human brain. We also show that Sox2ot is dynamically regulated during chicken and zebrafish embryogenesis, consistently associated with central nervous system structures. These observations provide insight into the structure and regulation of the Sox2ot gene, and suggest conserved roles for Sox2ot orthologs during vertebrate development.

  5. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate

  6. Direct radiative forcing of aerosols in cloudy condition using CALIPSO satellite data

    NASA Astrophysics Data System (ADS)

    Oikawa, E.; Nakajima, T.; Winker, D. M.

    2013-12-01

    The aerosol direct effect occurs by direct scattering and absorption of solar and thermal radiation. Shortwave direct aerosol radiative forcing (DARF) under clear-sky condition is estimated about 5 Wm-2 from satellite retrievals and model simulations [Yu et al., 2006ACP]. Simultaneous observations of aerosols and clouds are very limited, thus it is difficult to validate the estimation of DARF under cloudy-sky condition. In 2006, the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite was launched with the space-borne lidar, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). This enabled us to get data of the vertical distribution of aerosols and clouds all over the world. Oikawa et al. [2013JGR] estimated DARF under clear-sky, cloudy-sky, and all-sky conditions using CALIPSO and MODIS (Moderate resolution Imaging Spectrometer) data. Over Atlantic Ocean off southwest Africa, biomass burning aerosols are transported above low-level clouds and cause large positive DARF [Oikawa et al., 2013JGR; Chand et al., 2009Nat. Geosci.; De Graaf et al., 2012JGR; Takemura et al., 2005JGR]. We calculate DARF using CALIOP Level 2 Cloud and Aerosol Layer Products Version 3 and the method of Oikawa et al. [2013]. In this study, we focus on the case that aerosols exist above clouds (above-cloud case) in 2007. Over Atlantic Ocean off southwest Africa, DARF caused by smoke aerosols is +7.1 Wm-2 in September. On the other hand, aerosol optical thickness (AOT) of smoke is small as close to 0 Wm-2 in spring season. Over North Pacific, yellow sand and industrial smoke are transported from Asia and DARF is +5.2 Wm-2 in May. Dust AOT at 532 nm is 0.014 and polluted dust AOT at 532 nm is 0.052; in other words, a large part of dust emitted from Taklamakan and Gobi deserts are mixed with the industrial smoke and transported to the Pacific Ocean according to the CALIPSO algorithms.

  7. Aerosol source plume physical characteristics from space-based multiangle imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph A.; Li, W.-H.; Moroney, Catherine; Diner, David J.; Martonchik, John V.; Fishbein, Evan

    2007-06-01

    Models that assess aerosol effects on regional air quality and global climate parameterize aerosol sources in terms of amount, type, and injection height. The multiangle imaging spectroradiometer (MISR) aboard NASA's Terra satellite retrieves total column aerosol optical thickness (AOT), and aerosol type over cloud-free land and water. A stereo-matching algorithm automatically retrieves reflecting-layer altitude wherever clouds or aerosol plumes have discernable spatial contrast, with about 500-m accuracy, at 1.1-km horizontal resolution. Near-source biomass burning smoke, volcanic effluent, and desert dust plumes are observed routinely, providing information about aerosol amount, particle type, and injection height useful for modeling applications. Compared to background aerosols, the plumes sampled have higher AOT, contain particles having expected differences in Angstrom exponent, size, single-scattering albedo, and for volcanic plume and dust cloud cases, particle shape. As basic thermodynamics predicts, thin aerosol plumes lifted only by regional winds or less intense heat sources are confined to the boundary layer. However, when sources have sufficient buoyancy, the representative plumes studied tend to concentrate within discrete, high-elevation layers of local stability; the aerosol is not uniformly distributed up to a peak altitude, as is sometimes assumed in modeling. MISR-derived plume heights, along with meteorological profile data from other sources, make it possible to relate radiant energy flux observed by the moderate resolution imaging spectroradiometer (MODIS), also aboard the Terra spacecraft, to convective heat flux that plays a major role in buoyant plume dynamics. A MISR climatology of plume behavior based on these results is being developed.

  8. Potential source identification for aerosol concentrations over a site in Northwestern India

    NASA Astrophysics Data System (ADS)

    Payra, Swagata; Kumar, Pramod; Verma, Sunita; Prakash, Divya; Soni, Manish

    2016-03-01

    The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 μm) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 μm). Particles smaller than 0.8 μm (at aerodynamic size) constitute ~ 99% of all particles in winter and ~ 90% of particles in summer season. However, particles greater than 2 μm contribute ~ 3% and ~ 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from Thar Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 μm is the key contributor in winter for higher ANC.

  9. Raman Lidar Measurements of the Aerosol Extinction-to-Backscatter Ratio Over the Southern Great Plains

    SciTech Connect

    Ferrare, Richard; Turner, David D.; Brasseur, L. H.; Feltz, W. F.; Dubovik, O.; Tooman, Tim P.

    2001-09-16

    We derive profiles of the aerosol extinction-to-backscatter ratio, Sa, at 355 nm using aerosol extinction and backscatter profiles measured during 1998 and 1999 by the operational Raman lidar at the Department of Energy Atmospheric Radiation Measurement program Southern Great Plains site in north central Oklahoma. Data from this Raman/Rayleigh-Mie lidar, which measures Raman scattering from nitrogen as well as the combined molecular (Rayleigh) and aerosol (Mie) scattering at the laser wavelength, are used to derive aerosol extinction and backscattering independently as a function of altitude. Because this lidar operates at 355 nm, where molecular backscattering is comparable with aerosol backscattering, Sa retrievals are generally limited to conditions where the aerosol extinction at 355 nm is > 0.03 km-1. The mean value of Sa at 355 nm derived for this period was 60 sr with a standard deviation of 12 sr. Sa was generally about 5-10 sr higher during high aerosol optical thickness (AOT) (> 0.3) conditions than during low AOT (< 0.1). A similar increase in Sa was found when the relative humidity increased from 30 to 80%. Large (> 15%) variations in the vertical profile of Sa occurred about 30% of the time, which implies significant variability in the vertical distribution of aerosol size distribution, shape, and/or composition often occurs. The Raman lidar measurements of Sa were compared with estimates of particle size and refractive index derived from an algorithm that uses ground-based Sun photometer measurements of Sun and sky radiance. For 17 cases of coincident Raman lidar and Sun and sky radiance measurements, Sa was linearly correlated with the aerosol fine mode effective radius and the volume ratio of fine/coarse particles.

  10. Validation of MODIS aerosol product with in-situ AERONET data (a study case in Hermosillo, Sonora, Mexico)

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Leyva-Contreras, A.; Bonifaz, R.; Llamas, R.

    2009-12-01

    The aerosol optical thickness (AOT) is known as blocking particles which avoid the transmission of solar radiation coming from the Sun, and is defined as the integral of the coefficient of extinction over a vertical column of the Atmosphere. This coefficient of extinction is also defined as the limited fraction of the irradiance over the trajectory at a specific wavelength. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor provides aerosol data products all over the planet. However this data requires constant evaluation and validation using in-situ data such as the provided by the network of photometers managed by AERONET (Aerosol Robotic Network). In this work, the procedure of validation of the MODIS AOT data using AERONET data in the wavelengths of 660 and 675 nm is presented. It is expected that using validate remote sensing data which provides spatial and temporal information about the AOT will help to a better understanding of the behavior of the complex atmospheric conditions which characterize the NW of Mexico and SW of the US such as the Mexican monsoon.

  11. Long-term changes in the aerosol optical thickness in moscow and correction under strong atmospheric turbidity

    NASA Astrophysics Data System (ADS)

    Gorbarenko, E. V.; Rublev, A. N.

    2016-03-01

    We have estimated and compensated the error in long-term series of the aerosol optical thickness (AOT) calculated from the data on direct integral solar radiation measured by a standard actinometer at the Meteorological Observatory of the Moscow State University (MO MSU) for strong atmospheric turbidity conditions. The necessary corrections have been obtained by the Monte-Carlo simulation of the actinometry measurements for different atmospheric conditions, taking into account the angular size of the field of view of the instrument; and a special correctional formula has been obtained. This correction formula has been applied for all timed AOT values of above 0.5 observed at the MO MSU for the entire time period from 1955 to 2013. Changes in the long-term average AOT values in Moscow occurred only when the smoky haze from the forest and peat fires affected the aerosol turbidity of the atmosphere. Here, the significant decreasing trend of aerosol optical depth of the atmosphere from 1955 to 2013 has been retained with the same confidence level.

  12. 12 CFR 502.20 - How does OTS determine my condition component?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false How does OTS determine my condition component? 502.20 Section 502.20 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY ASSESSMENTS AND FEES Assessments Savings Associations-Calculation of Assessments § 502.20 How does OTS determine my condition component? (a) If you are...

  13. MASTER-Kislovodsk: bright OT (PSN or CV, ampl>5.2m)

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N.; Shumkov, V.; Lipunov, V.; Tlatov, A.; Rebolo, R.; Serra-Ricart, M.; Senik, V.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Vladimirov, V.; Vlasenko, D.; Dormidontov, D.; Parkhomenko, A.; Gress, O.; Ivanov, K.; Budnev, N.

    2016-10-01

    MASTER-Kislovodsk auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 10h 06m 29.13s +22d 26m 43.8s with unfiltered m_OT=16.8m on 2016-10-09 00:56:53.746UT.

  14. 12 CFR 502.60 - When will OTS adjust, add, waive, or eliminate a fee?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false When will OTS adjust, add, waive, or eliminate... TREASURY ASSESSMENTS AND FEES Fees § 502.60 When will OTS adjust, add, waive, or eliminate a fee? Under unusual circumstances, the Director may deem it necessary or appropriate to adjust, add, waive,...

  15. 12 CFR 502.60 - When will OTS adjust, add, waive, or eliminate a fee?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false When will OTS adjust, add, waive, or eliminate... TREASURY ASSESSMENTS AND FEES Fees § 502.60 When will OTS adjust, add, waive, or eliminate a fee? Under unusual circumstances, the Director may deem it necessary or appropriate to adjust, add, waive,...

  16. 12 CFR 555.300 - Must I inform OTS before I use electronic means or facilities?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Must I inform OTS before I use electronic means... THE TREASURY ELECTRONIC OPERATIONS Requirements Applicable to All Savings Associations § 555.300 Must I inform OTS before I use electronic means or facilities? (a) General. A savings association...

  17. The 1000-th MASTER detection and SALT limit: Fast Doublet OT

    NASA Astrophysics Data System (ADS)

    Balanutsa, P.; Lipunov, V.; Gorbovskoy, E.; Buckley, D.; Kniazev, A.; Tiurina, N.; Kornilov, V.; Samus, N.; Kuznetsov, A.; Vlasenko, D.; Gorbunov, I.; Popova, E.; Vladimirov, V.; Shumkov, V.; Potter, S.; Kotze, M.; Gress, O.; Budnev, N.; Yazev, S.; Ivanov, K.; Tlatov, A.; Senik, V.; Dormidontov, D.; Parhomenko, A. V.; Yurkov, V.; Sergienko, Yu.; Gabovich, A.; Sinyakov, E.; Rebolo, R.; Serra-Ricart, M.; Lodieu, N.; Israelian, G.; Suarez-Andres, L.; Levato, Hugo; Astronomicas, Carlos Saffe Instituto de Ciencias; Espacio, de la Tierra y. del; Podesta, Ricardo; Mallamaci, Claudio; Lopez, Carlos; Podesta, Federico

    2015-12-01

    MASTER-SAAO (Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171) discovered the 1000th OT source at (RA, Dec) = 05h 10m 14.58s -29d 09m 00.6s on 2015-12-16.97115 UT. The OT unfiltered magnitude is 18.8m (the limit is 20.4m).

  18. 12 CFR 516.10 - How does OTS compute time periods under this part?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false How does OTS compute time periods under this part? 516.10 Section 516.10 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPLICATION PROCESSING PROCEDURES § 516.10 How does OTS compute time periods under this part? In...

  19. 12 CFR 516.10 - How does OTS compute time periods under this part?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false How does OTS compute time periods under this part? 516.10 Section 516.10 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPLICATION PROCESSING PROCEDURES § 516.10 How does OTS compute time periods under this part? In...

  20. 75 FR 24775 - Open Meeting of the OTS Mutual Savings Association Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Office of Thrift Supervision Open Meeting of the OTS Mutual Savings Association Advisory Committee AGENCY... Savings Associations Advisory Committee (MSAAC) will convene a telephonic meeting on Friday, May 21, 2010..., the Office of Thrift Supervision is announcing that the OTS Mutual Savings Association...

  1. 75 FR 76524 - Closed Meeting of the OTS Mutual Savings Association Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... Office of Thrift Supervision Closed Meeting of the OTS Mutual Savings Association Advisory Committee.... SUMMARY: The OTS Mutual Savings Associations Advisory Committee (MSAAC) will convene a meeting on Monday... Savings Association Advisory Committee will convene a closed meeting on Monday, December 20,...

  2. 75 FR 61572 - Open Meeting of the OTS Mutual Savings Association Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Office of Thrift Supervision Open Meeting of the OTS Mutual Savings Association Advisory Committee AGENCY... Savings Associations Advisory Committee (MSAAC) will convene a meeting on Wednesday, October 20, 2010... the OTS Mutual Savings Association Advisory Committee will convene a meeting on Wednesday, October...

  3. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    applications. The HSRL products are used to apportion AOT by type and vertical location in the column, and to characterize the frequency of cases where multiple types are present in the column. Resolving scenes with multiple types in the column is not possible with passive imaging radiometer and polarimeter measurements. The HSRL aerosol type also has higher resolution than the CALIPSO layer-wise product and provides insight into the performance of CALIPSO layer separation. Information about the vertical distribution of aerosol types is useful for estimating radiative forcing, understanding aerosol lifetime and transport, and assessing the predictions of transport models. CALIPSO has been a pathfinder, providing the first long-term global data set of aerosol vertical distribution. Based on our results, a future satellite lidar similar to CALIPSO, but with the addition of polarization sensitivity at 1064 nm and the HSRL technique at 532 nm, could provide a significant advance in characterizing the vertical distribution of aerosol.

  4. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; Omar, A.

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  5. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  6. Estimation of surface-level PM concentration based on aerosol type classification and near-surface AOD over Korea

    NASA Astrophysics Data System (ADS)

    Kim, Kwanchul; Noh, Youngmin; Lee, Kwon H.

    2016-04-01

    Surface-level PM distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of aerosol type classification and near-surface AOD over Jeju, Korea. For this purpose, data from various instruments such as satellites, sunphotometer, and Micro-pulse Lidar (MPL) was used during March 2008 and October 2009. Initial analyses of comparison with sunphotometer AOD and PM concentration showed some relatively poor relationship over Jeju, Korea. Since the AERONET L2 data has significant number of observations with high AOT values paired to low surface-level PM values, which were believed to be the effect of long-rage transport aerosols like as Asian dust and biomass burning. Stronger correlations (exceeding R = 0.8) were obtained by screening long-rage transport aerosols and calculating near-surface AOT considering aerosol profiles data from MPL and HYSPLIT air mass trajectory. The relationship found between corrected satellite observed AOD and surface-level PM concentration over Jeju is very similar. An approach to reduce the discrepancy between satellite observed AOD and PM concentration is demonstrated by tuning thresholds used to detect aerosol type from sunphotometer inversion data. Finally, the satellite observed AOD-surface PM concentration correlation is significantly improved. Our study clearly demonstrates that satellite observed AOD is a good surrogate for monitoring PM air quality over Korea.

  7. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  8. Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests.

    PubMed

    Anav, Alessandro; De Marco, Alessandra; Proietti, Chiara; Alessandri, Andrea; Dell'Aquila, Alessandro; Cionni, Irene; Friedlingstein, Pierre; Khvorostyanov, Dmitry; Menut, Laurent; Paoletti, Elena; Sicard, Pierre; Sitch, Stephen; Vitale, Marcello

    2016-04-01

    Tropospheric ozone (O3) produces harmful effects to forests and crops, leading to a reduction of land carbon assimilation that, consequently, influences the land sink and the crop yield production. To assess the potential negative O3 impacts to vegetation, the European Union uses the Accumulated Ozone over Threshold of 40 ppb (AOT40). This index has been chosen for its simplicity and flexibility in handling different ecosystems as well as for its linear relationships with yield or biomass loss. However, AOT40 does not give any information on the physiological O3 uptake into the leaves since it does not include any environmental constraints to O3 uptake through stomata. Therefore, an index based on stomatal O3 uptake (i.e. PODY), which describes the amount of O3 entering into the leaves, would be more appropriate. Specifically, the PODY metric considers the effects of multiple climatic factors, vegetation characteristics and local and phenological inputs rather than the only atmospheric O3 concentration. For this reason, the use of PODY in the O3 risk assessment for vegetation is becoming recommended. We compare different potential O3 risk assessments based on two methodologies (i.e. AOT40 and stomatal O3 uptake) using a framework of mesoscale models that produces hourly meteorological and O3 data at high spatial resolution (12 km) over Europe for the time period 2000-2005. Results indicate a remarkable spatial and temporal inconsistency between the two indices, suggesting that a new definition of European legislative standard is needed in the near future. Besides, our risk assessment based on AOT40 shows a good consistency compared to both in-situ data and other model-based datasets. Conversely, risk assessment based on stomatal O3 uptake shows different spatial patterns compared to other model-based datasets. This strong inconsistency can be likely related to a different vegetation cover and its associated parameterizations. PMID:26492093

  9. Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests.

    PubMed

    Anav, Alessandro; De Marco, Alessandra; Proietti, Chiara; Alessandri, Andrea; Dell'Aquila, Alessandro; Cionni, Irene; Friedlingstein, Pierre; Khvorostyanov, Dmitry; Menut, Laurent; Paoletti, Elena; Sicard, Pierre; Sitch, Stephen; Vitale, Marcello

    2016-04-01

    Tropospheric ozone (O3) produces harmful effects to forests and crops, leading to a reduction of land carbon assimilation that, consequently, influences the land sink and the crop yield production. To assess the potential negative O3 impacts to vegetation, the European Union uses the Accumulated Ozone over Threshold of 40 ppb (AOT40). This index has been chosen for its simplicity and flexibility in handling different ecosystems as well as for its linear relationships with yield or biomass loss. However, AOT40 does not give any information on the physiological O3 uptake into the leaves since it does not include any environmental constraints to O3 uptake through stomata. Therefore, an index based on stomatal O3 uptake (i.e. PODY), which describes the amount of O3 entering into the leaves, would be more appropriate. Specifically, the PODY metric considers the effects of multiple climatic factors, vegetation characteristics and local and phenological inputs rather than the only atmospheric O3 concentration. For this reason, the use of PODY in the O3 risk assessment for vegetation is becoming recommended. We compare different potential O3 risk assessments based on two methodologies (i.e. AOT40 and stomatal O3 uptake) using a framework of mesoscale models that produces hourly meteorological and O3 data at high spatial resolution (12 km) over Europe for the time period 2000-2005. Results indicate a remarkable spatial and temporal inconsistency between the two indices, suggesting that a new definition of European legislative standard is needed in the near future. Besides, our risk assessment based on AOT40 shows a good consistency compared to both in-situ data and other model-based datasets. Conversely, risk assessment based on stomatal O3 uptake shows different spatial patterns compared to other model-based datasets. This strong inconsistency can be likely related to a different vegetation cover and its associated parameterizations.

  10. Aerosol retrieval from twilight photographs taken by a digital camera

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2014-12-01

    Twilight sky, one of the most beautiful sights seen in our daily life, varies day by day, because atmospheric components such as ozone and aerosols also varies day by day. Recent studies have revealed the effects of tropospheric aerosols on twilight sky. In this study, we develop a new algorithm for aerosol retrievals from twilight photographs taken by a digital single reflex-lens camera in solar zenith angle of 90-96˚ with interval of 1˚. A radiative transfer model taking spherical-shell atmosphere, multiple scattering and refraction into account is used as a forward model, and the optimal estimation is used as an inversion calculation to infer the aerosol optical and radiative properties. The sensitivity tests show that tropospheric (stratospheric) aerosol optical thickness is responsible to the distribution of twilight sky color and brightness near the horizon (in viewing angles of 10˚ to 20˚) and aerosol size distribution is responsible to the angular distribution of brightness near the solar direction. The AOTs are inferred with small uncertainties and agree very well with that from the Skyradiometer. In this conference, several case studies using the algorithm will be shown.

  11. Variation of aerosol characteristics in the detail scale of time and space

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Nakata, M.; Sano, I.

    2012-04-01

    In this work, we intend to demonstrate the spatial and temporal variation of atmospheric aerosols around AERONET/Osaka site. Osaka is the second big city in Japan and a typical Asian urban area. It is well known that the aerosol distribution in Asia is complicated due to the increasing emissions of anthropogenic aerosols in association with economic growth and in addition behavior of natural dusts significantly varies with the seasons. Therefore local spatially and temporally resolved measurements of atmospheric particles in Asian urban city are meaningful. We equip various ground measurement devices of atmosphere in the campus of Kinki University (KU). The data supplied by the Cimel instrument are analyzed with a standard AERONET (Aerosol Robotics Network) processing system. It provides us with Aerosol optical thickness (AOT), the Ångström exponent and so on. We set up a PM sampler and a standard instrument of NIES/LIDAR network attached to our AERONET site. The PM sampler provides particle information about the concentrations of PM2.5, PM10 and OBC separately. In addition to the simultaneous measurements, we make observation of the air quality at several locations in the neighbour-hood using portable sun-photometers (Solar-Light Company Microtops-2). The simultaneous measurements of aerosols and numerical model simulations indicate that the spatial and temporal factors influence the characterization of atmospheric particles especially in dust event. Then we observe the air quality at such several locations within a few 10 km area from KU, as Izumi and Nara, in ordinal days and dust days. Izumi site locates near industrial area and Nara is in the east of KU beyond the mountain-Ikoma. It is found from the simultaneous measurements at these three sites that AOT at Izumi in ordinal days is the highest and Nara's lowest. It indicates that the Ikoma-mountains block off the polluted air from the west. However in dust days, AOT at Nara is as large as that at Higashi

  12. The forward and backward transport processes in the AOT/hexane reversed micellar extraction of soybean protein.

    PubMed

    Chen, Jun; Chen, Fengliang; Wang, Xianchang; Zhao, Xiaoyan; Ao, Qiang

    2014-10-01

    Soybean protein was taken as a model protein to investigate two aspects of the protein extraction by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles: (1) the forward protein extraction from the solid state, and the effect of pH, AOT concentration, alcohol and water content (W0) on the transfer efficiency; (2) the back-transfer, the capability of the protein to be recovered from the micellar solution. The experimental results led to the conclusion that the highest forward extraction efficiency of soybean protein was reached at AOT concentration 180 mmol l(-1), aqueous pH 7.0, KCl concentration 0.05 mol l(-1), 0.5 % (v/v) alcohol, W0 18. Under these conditions, the forward extraction efficiency of soybean protein achieved 70.1 %. It was noted that the percentage of protein back extraction depended on the salt concentration and pH value. Around 92 % of protein recovery was obtained after back extraction. PMID:25328237

  13. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    . Analysis of the aerosol and water vapor data collected by the Raman lidar during the 2003 Aerosol IOP indicated that the sensitivity of the lidar was significantly lower than when the lidar was initially deployed. A detailed analysis after the IOP of the long-term dataset demonstrated that the lidar began degrading in early 2002, and that it lost approximately a factor of 4 in sensitivity between 2002 and 2004. We participated in the development of the remediation plan for the system to restore its initial performance. We conducted this refurbishment and upgrade from May- September 2004. This remediation lead to an increase in the signal-to-noise ratio of 10 and 30 for the Raman lidar's water vapor mixing ratio and aerosol backscatter coefficient data, respectively as compared to the signal strengths when the system was first deployed. The DOE ARM Aerosol Lidar Validation Experiment (ALIVE), which was conducted during September 2005, evaluated the impact of these modifications and upgrades on the SGP Raman lidar measurements of aerosol extinction and optical thickness. The CARL modifications significantly improved the accuracy and temporal resolution of the aerosol measurements. Aerosol extinction profiles measured by the Raman lidar were also used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter-Comparison in global models (AEROCOM) (http://nansen.ipsl.jussieu.fr/AEROCOM/aerocomhome.html) project. There was a wide range in how the models represent the aerosol extinction profiles over the ARM SGP site, even though the average annual AOT represented by the various models and measured by CARL and the Sun photometer were in general agreement, at least within the standard deviations of the averages. There were considerable differences in the average vertical distributions among the models, even among models that had similar average aerosol optical thickness. Deviations between mean

  14. Micellar interactions in water-AOT based droplet microemulsions containing hydrophilic and amphiphilic polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Spehr, Tinka Luise; Wipf, Robert; Moers, Christian; Frey, Holger; Stühn, Bernd

    2013-11-01

    We investigate the influence of addition of hydrophilic and amphiphilic polymer on percolation behavior and micellar interactions in AOT-based water-in-oil droplet microemulsions. We focus on two series of samples having constant molar water to surfactant ratio W = 20 and constant droplet volume fraction Φ = 30%, respectively. From dielectric spectroscopy experiments, we extract the bending rigidity of the surfactant shell by percolation temperature measurements. Depending on droplet size, we find stabilization and destabilization of the surfactant shell upon addition of hydrophilic poly(ethylene glycol) (PEG) (Mn = 3100 g mol-1) and amphiphilic poly(styrene)-b-poly(ethylene glycol) copolymer with comparable length of the hydrophilic block. Complementary small angle X-ray scattering experiments corroborate the finding of stabilization for smaller droplets and destabilization of larger droplets. Subsequent analysis of dielectric spectra enables us to extract detailed information about micellar interactions and clustering by evaluating the dielectric high frequency shell relaxation. We interpret the observed results as a possible modification of the inter-droplet charge transfer efficiency by addition of PEG polymer, while the amphiphilic polymer shows a comparable, but dampened effect.

  15. Dielectric depolarisation and concerted collective dynamics in AOT reverse micelles with and without ubiquitin.

    PubMed

    Schmollngruber, Michael; Braun, Daniel; Oser, Daniel; Steinhauser, Othmar

    2016-02-01

    In this computational study we present molecular dynamics (MD) simulations of reverse micelles, i.e. nano-scale water pools encapsulated by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and dissolved in isooctane. Although consisting of highly polar components, such micro-emulsions exhibit surprisingly low dielectric permittivity, both static and frequency-dependent. This finding is well supported by experimental dielectric measurements. Furthermore, the computational dielectric spectra of reverse micelles with and without the polar protein ubiquitin are almost identical. A detailed component analysis of our simulated systems reveals the underlying mechanism of the observed dielectric depolarisation. While each component by itself would make a remarkable contribution to the static dielectric permittivity, mutual compensation leads to the observed marginal net result. This compensatory behavior is maintained for all but the highest frequencies. Dielectric model theory adapted to the peculiarities of reverse micelles provides an explanation: embedding a system in a cavity engulfed by a low dielectric medium automatically leads to depolarization. In this sense experiment, simulation and theory are in accordance.

  16. Thermal deactivation kinetics of Pseudomonas fluorescens lipase entrapped in AOT/isooctane reverse micelles.

    PubMed

    Park, Kyung Min; Kwon, Chang Woo; Choi, Seung Jun; Son, Young-Hwan; Lim, Seokwon; Yoo, Yoonjung; Chang, Pahn-Shick

    2013-10-01

    Thermostability of the lipase (EC 3.1.1.3) was found to be increased by the enzyme-entrapment in 50 mM AOT/isooctane reverse micelles. The half-life (15.75 h) of Pseudomonas fluorescens lipase entrapped in reverse micelles at 70 °C was 9.72- and 11.41-fold longer than those solubilized in a glycerol pool or in 10 mM phosphate buffer (pH 8.0), respectively. The enzyme deactivation model considering a two-step series-type was employed, and deactivation constants for the second step (k₂) at all temperatures were drastically decreased after the lipase was entrapped in reverse micelles. In particular, k₂ (0.0354 h⁻¹) at 70 °C in reverse micelles was 12.33- and 13.14-fold lower than in a glycerol pool or in the phosphate buffer, respectively. The deactivation energies (from k₁, k₂) for the lipase entrapped in the reverse micelles, solubilized in a glycerol pool, or in the aqueous buffer were 7.51, 26.35 kcal/mol, 5.93, 21.08 kcal/mol, and 5.53, 17.57 kcal/mol, respectively.

  17. 12 CFR 502.26 - How does OTS calculate the semi-annual assessment for savings and loan holding companies?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-site supervision of a noncomplex, low risk savings and loan holding company structure. OTS will... company is the registered holding company at the highest level of ownership in a holding company structure, unless OTS designates another savings and loan holding company in the holding company structure. OTS...

  18. 12 CFR 550.70 - Must I obtain OTS approval or file a notice before I exercise fiduciary powers?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... before I exercise fiduciary powers? 550.70 Section 550.70 Banks and Banking OFFICE OF THRIFT SUPERVISION... I obtain OTS approval or file a notice before I exercise fiduciary powers? You should refer to the following chart to determine if you must obtain OTS approval or file a notice with OTS before you...

  19. 12 CFR 550.70 - Must I obtain OTS approval or file a notice before I exercise fiduciary powers?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... before I exercise fiduciary powers? 550.70 Section 550.70 Banks and Banking OFFICE OF THRIFT SUPERVISION... I obtain OTS approval or file a notice before I exercise fiduciary powers? You should refer to the following chart to determine if you must obtain OTS approval or file a notice with OTS before you...

  20. 12 CFR 550.70 - Must I obtain OTS approval or file a notice before I exercise fiduciary powers?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... before I exercise fiduciary powers? 550.70 Section 550.70 Banks and Banking OFFICE OF THRIFT SUPERVISION... I obtain OTS approval or file a notice before I exercise fiduciary powers? You should refer to the following chart to determine if you must obtain OTS approval or file a notice with OTS before you...

  1. 12 CFR 550.70 - Must I obtain OTS approval or file a notice before I exercise fiduciary powers?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... before I exercise fiduciary powers? 550.70 Section 550.70 Banks and Banking OFFICE OF THRIFT SUPERVISION... I obtain OTS approval or file a notice before I exercise fiduciary powers? You should refer to the following chart to determine if you must obtain OTS approval or file a notice with OTS before you...

  2. 12 CFR 550.70 - Must I obtain OTS approval or file a notice before I exercise fiduciary powers?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... before I exercise fiduciary powers? 550.70 Section 550.70 Banks and Banking OFFICE OF THRIFT SUPERVISION... I obtain OTS approval or file a notice before I exercise fiduciary powers? You should refer to the following chart to determine if you must obtain OTS approval or file a notice with OTS before you...

  3. 12 CFR 550.100 - What factors may the OTS consider in its review of my application?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false What factors may the OTS consider in its review... factors may the OTS consider in its review of my application? The OTS may consider the following factors.... (g) The needs of the community to be served. (h) Any other facts or circumstances that the...

  4. 12 CFR 550.100 - What factors may the OTS consider in its review of my application?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true What factors may the OTS consider in its review... factors may the OTS consider in its review of my application? The OTS may consider the following factors.... (g) The needs of the community to be served. (h) Any other facts or circumstances that the...

  5. 12 CFR 550.100 - What factors may the OTS consider in its review of my application?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true What factors may the OTS consider in its review... factors may the OTS consider in its review of my application? The OTS may consider the following factors.... (g) The needs of the community to be served. (h) Any other facts or circumstances that the...

  6. New developments in the representation of Saharan dust sources in the aerosol-climate model ECHAM6-HAM2

    NASA Astrophysics Data System (ADS)

    Heinold, Bernd; Tegen, Ina; Schepanski, Kerstin; Banks, Jamie R.

    2016-02-01

    In the aerosol-climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT).The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters.An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.

  7. Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Takamura, T.; Nakajima, T.; Estellés, V.; Irie, H.; Kuze, H.; Campanelli, M.; Sinyuk, A.; Lee, S.-M.; Sohn, B. J.; Pandithurai, G.; Kim, S.-W.; Yoon, S. C.; Martinez-Lozano, J. A.; Hashimoto, M.; Devara, P. C. S.; Manago, N.

    2016-02-01

    SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (ΔΩ). The disk scan method (scan area: 1° × 1° area of solar disk) of SKYNET is noted to produce stable wavelength-dependent ΔΩ values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks.

  8. Towards climatological study on the characteristics of aerosols in Central Africa and Mediterranean sites

    NASA Astrophysics Data System (ADS)

    Benkhalifa, Jamel; Chaabane, Mabrouk

    2016-02-01

    The atmosphere contains molecules, clouds and aerosols that are sub-millimeter particles having a large variability in size, shape, chemical composition, lifetime and contents. The aerosols concentration depends greatly on the geographical situation, meteorological and environmental conditions, which makes aerosol climatology difficult to assess. Setting up a solar photometer (automatic, autonomous and portable instrument) on a given site allows carrying out the necessary measurements for aerosol characterization. The particle microphysical and optical properties are obtained from photometric measurements. The objective of this study is to analyze the spatial variability of aerosol optical thickness (AOT) in several Mediterranean regions and Central Africa, we considered a set of simultaneous data in the AErosol RObotic NETwork (AERONET) from six sites, two of which are located in Central Africa (Banizoumbou and Zinder Airport) and the rest are Mediterranean sites (Barcelona, Malaga, Lampedusa, and Forth Crete). The results have shown that the physical properties of aerosols are closely linked to the climate nature of the studied site. The optical thickness, single scattering albedo and aerosols size distribution can be due to the aging of the dust aerosol as they are transported over the Mediterranean basin.

  9. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  10. The Vertical Distribution of Aerosols Over the Atmospheric Radiation Measurement Southern Great Plains Site Measured versus Modeled

    SciTech Connect

    Ferrare, R.; Turner, D.D.; Clayton, M.; Guibert, S.; Schulz, M.; Chin, M.

    2005-03-18

    Aerosol extinction profiles measured by the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidar are used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter- Comparison in global models (AEROCOM) project. This project seeks to diagnose aerosol modules of global models and subsequently identify and eliminate weak components in aerosol modules used for global modeling; AEROCOM activities also include assembling data sets to be used in the evaluations. The AEROCOM average aerosol extinction profiles typically show good agreement with the Raman lidar profiles for altitudes above about 2 km; below 2 km the average model profiles are significantly (30-50%) lower than the Raman lidar profiles. The vertical variability in the average aerosol extinction profiles simulated by these models is less than the variability in the corresponding Raman lidar pro files. The measurements also show a much larger diurnal variability than the Interaction with Chemistry and Aerosols (INCA) model, particularly near the surface where there is a high correlation between aerosol extinction and relative humidity.

  11. Variations of aerosol microstructure under the effect of smokes as assessed from the results of inverting the data of spectral optical measurements

    NASA Astrophysics Data System (ADS)

    Makienko, E. V.; Kabanov, D. M.; Rakhimov, R. F.; Sakerin, S. M.

    2006-11-01

    In this paper we discuss the results of the spectral aerosol optical thickness (AOT) of the atmosphere obtained in 1999, 2003 and 2004 during the periods, when significant increase of the atmospheric turbidity was observed under the effect of near Tomsk forest fire smokes and smokes coming with remote transfer of air masses. Measurements of the spectral transparency of the atmosphere were carried out by means of a multi-wavelength sun photometer in the wavelength range 0.37-4 μm. The dynamics of the daily mean values AOT is considered at presence of smoke in the atmosphere during several days, as well corresponding transformation of the aerosol microstructure obtained from solution of the inverse problem.

  12. A novel method to retrieve Aerosol Optical Thickness from high-resolution optical satellite images using an extended version of the Haze Optimized Transform (HOTBAR)

    NASA Astrophysics Data System (ADS)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  13. A Study of DNA Adsorption Kinetics on OTS Surfaces

    NASA Astrophysics Data System (ADS)

    Barone, Joseph; Fang, Xiaohua; Li, Bingquan; Seo, Young-Soo; Samuilov, Vladimir; Rafailovich, Miriam; Sokolov, Jonathan

    2003-03-01

    The evaporation kinetics of droplets containing DNA were studied as a function of DNA molecular weight, DNA concentration, and buffer concentration.The contact angle and overall droplet morphology were observed using a KSV contact angle goniometer as a function of time. Simultaneously, the DNA distribution and adsorption kinetics were measured with confocal microscopy. The DNA droplets were deposited on hydrophobic OTS-covered silicon surfaces and stained with ethidium bromide solution. Up to three stages were found during DNA droplet drying process, depending on the DNA concentration. The results also show that a ring is formed at the air/solid /liquid interface in a manner similar to that reported for a colloidal suspension by Robert D. Deegan et.a. [Physical Review E, Vol 62, No.1, July 2000, p756-765] The absorbed amount of DNA was obtained by measuring the intensity in the ring. The dynamics and DNA morphology are affected by both the molecular weight and the DNA concentration. Supported by NSF-MRSEC program (DMR-9632525)

  14. OT2_ccodella_2: Where is chlorine in shocked regions?

    NASA Astrophysics Data System (ADS)

    Codella, C.

    2011-09-01

    As part of the GT Herschel Program CHESS we detected for the first time hydrogen chlorine in a protostellar shock, L1157-B1 (Codella et al. 2011). One of the most surprising results of this work was the lack of enhancement in the abundance of HCl with respect to dense interstellar clouds, implying that HCl is not enhanced by the passage of a shock. This means that either chlorine is not sputtered during the passage of the shock (unlikely as Si is sputtered) or that HCl is not the main reservoir of clorine in shocked regions (unlike in dense interstellar clouds). In this proposal we propose to observe HCl in a sample of shocked regions in order to determine whether this result is unique to L1157-B1. We stress that given the weakness of the HCl emission in shocks and the strong atmospheric water absorption at the requested frequency (626 GHz), the present experiment cannot be reasonably performed from ground, making of Herschel OT2 the last chance to reach the present goals.

  15. Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting

    NASA Astrophysics Data System (ADS)

    Rubin, J. I.; Reid, J. S.; Hansen, J. A.; Anderson, J. L.; Collins, N.; Hoar, T. J.; Hogan, T.; Lynch, P.; McLay, J.; Reynolds, C. A.; Sessions, W. R.; Westphal, D. L.; Zhang, J.

    2015-10-01

    An ensemble-based forecast and data assimilation system has been developed for use in Navy aerosol forecasting. The system makes use of an ensemble of the Navy Aerosol Analysis Prediction System (ENAAPS) at 1° × 1°, combined with an Ensemble Adjustment Kalman Filter from NCAR's Data Assimilation Research Testbed (DART). The base ENAAPS-DART system discussed in this work utilizes the Navy Operational Global Analysis Prediction System (NOGAPS) meteorological ensemble to drive offline NAAPS simulations coupled with the DART Ensemble Kalman Filter architecture to assimilate bias-corrected MODIS Aerosol Optical Thickness (AOT) retrievals. This work outlines the optimization of the 20-member ensemble system, including consideration of meteorology and source-perturbed ensemble members as well as covariance inflation. Additional tests with 80 meteorological and source members were also performed. An important finding of this work is that an adaptive covariance inflation method, which has not been previously tested for aerosol applications, was found to perform better than a temporally and spatially constant covariance inflation. Problems were identified with the constant inflation in regions with limited observational coverage. The second major finding of this work is that combined meteorology and aerosol source ensembles are superior to either in isolation and that both are necessary to produce a robust system with sufficient spread in the ensemble members as well as realistic correlation fields for spreading observational information. The inclusion of aerosol source ensembles improves correlation fields for large aerosol source regions such as smoke and dust in Africa, by statistically separating freshly emitted from transported aerosol species. However, the source ensembles have limited efficacy during long range transport. Conversely, the meteorological ensemble produces sufficient spread at the synoptic scale to enable observational impact through the ensemble data

  16. Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting

    NASA Astrophysics Data System (ADS)

    Rubin, Juli I.; Reid, Jeffrey S.; Hansen, James A.; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Hogan, Timothy; Lynch, Peng; McLay, Justin; Reynolds, Carolyn A.; Sessions, Walter R.; Westphal, Douglas L.; Zhang, Jianglong

    2016-03-01

    An ensemble-based forecast and data assimilation system has been developed for use in Navy aerosol forecasting. The system makes use of an ensemble of the Navy Aerosol Analysis Prediction System (ENAAPS) at 1 × 1°, combined with an ensemble adjustment Kalman filter from NCAR's Data Assimilation Research Testbed (DART). The base ENAAPS-DART system discussed in this work utilizes the Navy Operational Global Analysis Prediction System (NOGAPS) meteorological ensemble to drive offline NAAPS simulations coupled with the DART ensemble Kalman filter architecture to assimilate bias-corrected MODIS aerosol optical thickness (AOT) retrievals. This work outlines the optimization of the 20-member ensemble system, including consideration of meteorology and source-perturbed ensemble members as well as covariance inflation. Additional tests with 80 meteorological and source members were also performed. An important finding of this work is that an adaptive covariance inflation method, which has not been previously tested for aerosol applications, was found to perform better than a temporally and spatially constant covariance inflation. Problems were identified with the constant inflation in regions with limited observational coverage. The second major finding of this work is that combined meteorology and aerosol source ensembles are superior to either in isolation and that both are necessary to produce a robust system with sufficient spread in the ensemble members as well as realistic correlation fields for spreading observational information. The inclusion of aerosol source ensembles improves correlation fields for large aerosol source regions, such as smoke and dust in Africa, by statistically separating freshly emitted from transported aerosol species. However, the source ensembles have limited efficacy during long-range transport. Conversely, the meteorological ensemble generates sufficient spread at the synoptic scale to enable observational impact through the ensemble data

  17. Degradation of carbofuran derivatives in restricted water environments: basic hydrolysis in AOT-based microemulsions.

    PubMed

    Morales, Jorge; Manso, José A; Cid, Antonio; Lodeiro, Carlos; Mejuto, Juan Carlos

    2012-04-15

    The effect of sodium bis(2-ethylhexyl)sulfosuccinate/isooctane/water microemulsions on the stability of 2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate (carbofuran, CF), 3-hydroxy-2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate (3-hydroxycarbofuran, HCF) and 3-keto-2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate (3-ketocarbofuran, KCF) in basic media has been studied. The presence of these microheterogeneous media implies a large basic hydrolysis of CF and HCF on increasing surfactant concentration and, also, on increasing water content in the microemulsion. The hydrolysis rate constants are approximately 2- and 10-fold higher than those in pure water for HCF and CF, respectively. In contrast, a steep descent in the rate of decomposition for KCF was observed. These behaviours can be ascribed to the presence of CF derivatives both in the hydrophilic phase and in the lipophilic phase, while the hydroxyl ions are only restricted to the water pool of the microemulsion (hydrophilic phase). The kinetic rate constants for the basic hydrolysis in AOT-based microemulsions have been obtained on the basis of a pseudophase model. Taking into account that an important part of soils are colloids, the possibility of the presence of restricted water environments implies that soil composition and its structure will play an important role in the stability of these carbamates. In fact, we observed that the presence of these restricted aqueous media in the environment, in particular in watersheds and in wastewaters, could reduce significantly the half-life of these pesticides (33% and 91% for HCF and CF, respectively).

  18. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Jianglong; Reid, Jeffrey S.; Christensen, Matthew; Benedetti, Angela

    2016-05-01

    A major continental-scale biomass burning smoke event from 28-30 June 2015, spanning central Canada through the eastern seaboard of the United States, resulted in unforecasted drops in daytime high surface temperatures on the order of 2-5 °C in the upper Midwest. This event, with strong smoke gradients and largely cloud-free conditions, provides a natural laboratory to study how aerosol radiative effects may influence numerical weather prediction (NWP) forecast outcomes. Here, we describe the nature of this smoke event and evaluate the differences in observed near-surface air temperatures between Bismarck (clear) and Grand Forks (overcast smoke), to evaluate to what degree solar radiation forcing from a smoke plume introduces daytime surface cooling, and how this affects model bias in forecasts and analyses. For this event, mid-visible (550 nm) smoke aerosol optical thickness (AOT, τ) reached values above 5. A direct surface cooling efficiency of -1.5 °C per unit AOT (at 550 nm, τ550) was found. A further analysis of European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), United Kingdom Meteorological Office (UKMO) near-surface air temperature forecasts for up to 54 h as a function of Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOT data across more than 400 surface stations, also indicated the presence of the daytime aerosol direct cooling effect, but suggested a smaller aerosol direct surface cooling efficiency with magnitude on the order of -0.25 to -1.0 °C per unit τ550. In addition, using observations from the surface stations, uncertainties in near-surface air temperatures from ECMWF, NCEP, and UKMO model runs are estimated. This study further suggests that significant daily changes in τ550 above 1, at which the smoke-aerosol-induced direct surface cooling effect could be comparable in magnitude with model uncertainties, are rare events on a global scale. Thus, incorporating

  19. First retrieval of data regarding spatial distribution of Asian dust aerosol from the Geostationary Ocean Color Imager

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho; Ryu, Joo Hyung; Ahn, Jae Hyun; Kim, Young Joon

    2012-12-01

    Aerosol optical thickness (AOT) was retrieved from the Geostationary Ocean Color Imager (GOCI) on board the Communication, Ocean, and Meteorological Satellite (COMS) for the first time. AOT values were retrieved over the ocean at a spatial scale of 0.5 × 0.5 km2 by using the look-up table (LUT)-based separation technique. The radiative transfer model (RTM) was used for different models of atmosphere-ocean environmental conditions, taking into account the realistic variability of scattering and absorption. Ocean surface properties affected by whitecaps and pigment content were also taken into account. The results show that the radiance observed by the GOCI amounts to only 5% of the radiation that penetrated the ocean and, consequently, 95% of the radiation is scattered in the atmosphere or reflected at the ocean surface in the visible wavelengths longer than 0.6 ìm. Within these wavelengths, radiance variations at the top of atmosphere (TOA) due to pigment variations are within 10%, while the radiance variation due to wind speed is considerably higher. For verification of GOCI-retrieved AOTs, comparison between GOCI and ground-based sunphotometer measurement at Gosan, Korea (126.10°E, 33.23°N)) showed good correlation (r = 0.99). The GOCI observations obtained by using the proposed technique showed promising results for the daily monitoring of atmospheric aerosol loading as well as being useful for environmental supervisory authorities.

  20. 12 CFR 516.250 - Will OTS require me to publish a new public notice?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... application, you submitted new or additional information, or a major issue of law or a change in circumstances... matters is appropriate because of the significance of the new information or circumstances. (b) OTS...

  1. First report on the occurrence of Theileria sp. OT3 in China.

    PubMed

    Tian, Zhancheng; Liu, Guangyuan; Yin, Hong; Xie, Junren; Wang, Suyan; Yuan, Xiaosong; Wang, Fangfang; Luo, Jin

    2014-04-01

    Theileria sp. OT3 was firstly detected and identified from clinically healthy sheep in Xinjiang Uygur Autonomous Region of China (XUAR) through comparing the complete 18S rDNA gene sequences available in GenBank database and the phylogenetic status based on the internal transcribed spacers (ITS1, ITS2) as well as the intervening 5.8S coding region of the rRNA gene by the methods of a partitioned multi-locus analysis in BEAST and Maximum likelihood analysis in PhyML. Moreover, the findings were confirmed by the species-specific PCR for Theileria sp. OT3 and the prevalence of Theileria sp. OT3 was 14.9% in the north of XUAR. This study is the first report on the occurrence of Theileria sp. OT3 in China.

  2. Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Arleth, Lise; Pedersen, Jan Skov

    2001-06-01

    Microemulsions consisting of AOT water, and decane or iso-octane are studied in the region of the phase diagram where surfactant covered water droplets are formed. The polydispersity and shape fluctuations of the microemulsion droplets are determined and compared in the two different alkane types. Conductivity measurements show that there is a pronounced dependence of the temperature behavior of the microemulsion on the type of alkane used. In both cases the microemulsion droplets start to form larger aggregates when the temperature increases. But in the system with decane this aggregation temperature occurs at a temperature about 10 °C lower than in a similar system with iso-octane. Aggregation phenomena are avoided and the two systems are at approximately the same reduced temperature with respect to the aggregation temperature when the temperature of the AOT/D2O/decane microemulsion is 10 °C and the temperature of the AOT/D2O/iso-octane microemulsion is 20 °C. Contrast variation small-angle neutron scattering measurements are performed at these temperatures on systems with volume fractions of 5% D2O+AOT by varying the scattering length density of the alkane. The small-angle scattering for 11 different contrasts evenly distributed around the match points are studied for each sample. The scattering data for the different contrasts are analyzed using a molecular constrained model for ellipsoidal droplets of water covered by AOT, interacting as polydisperse hard spheres. All contrasts are fitted simultaneously by taking the different contrast factors into account. The analysis show that at the same reduced temperature with respect to the aggregation temperature the droplet size, polydispersity index, the size of the shape fluctuations are similar in the two systems. A polydispersity index (σ/R of the Gaussian size distribution) of 16% and an average axis ratio of the droplets of 1.56 is found in the AOT/D2O/decane microemulsion. In the AOT/D2O/iso-octane system

  3. MASTER discovery: blue bright OT during FERMI 496473540 (GRB160925A) inspection

    NASA Astrophysics Data System (ADS)

    Gress, O.; Lipunov, V.; Buckley, D.; Tiurina, N.; Gorbovskoy, E.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Vladimirov, V.; Shumkov, V.; Pogrosheva, T.; Rebolo Lopez, R.; Serra Ricart, M.; Podesta, R.; Levato, H.; Potter, S.; Lodieu, N.; Saffe, C.; Lopez, C.; Podesta, F.

    2016-09-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 22h 28m 17.90s -14d 56m 57.4s on 2016-09-25.75053 UT during automatically inspection of Fermi trigger 496473540 ( http://gcn.gsfc.nasa.gov/other/496473540.fermi ). The OT unfiltered magnitude is (limit 19.7m).

  4. Effects of Hypergravity Exposure on Plasma Oxytocin (OT) Concentrations in Pregnant and Lactating Rat Dams

    NASA Technical Reports Server (NTRS)

    Baer, Lisa A.; Wade, Charles E.; Plaut, Karen; Ronca, April E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    From pregnancy to weaning there is a progressive elevation of plasma oxytocin (OT) levels associated with nursing activity, irrespective of litter size. In the present study, we analyzed the effects of continuous 1.5G, 1.75G and 2.0G hypergravity exposure on OT plasma concentration in prepartum (Gestation Day 20) (G20) and lactating (Postnatal day) (P10) rat dams. For this study, litter size was controlled with a yoking procedure established in our lab where individual control litters were yoked-matched to individual hypergravity litters. We reviewed all data at hypergravity irrespective of gravitational level and compared the values with the controls in both G20 (HG, n=15;SC, n=9) and P10 (HG, n=21;SC, n=16). Results showed that over time, we did observe the expected OT increase in both groups. In G20 dams, measurement of OT concentrations showed no significance. However, at P10, measurements of OT concentrations suggest a reduction of about 20% compared to established controls in our laboratory, 0.9+/-0.09 ng/ml for the controls and 0.7+/-0.06 ng/ml for centrifuged animals (p<0.02). These data suggest that exposure to centrifugation may reduce OT levels during lactation. When these plasma samples were obtained, the dams were removed from the litters, and values were not adjusted for the size of the litters. The reduction in OT with centrifugation may reflect a decrease in nursing activity or a decreased responsiveness of the mammary hypothalamic axis. In addition, we have analyzed data on plasma prolactin concentrations and mammary gland development, which may give additional insight to the results of our OT measurements.

  5. North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises

    PubMed Central

    Kanitz, T; Ansmann, A; Engelmann, R; Althausen, D

    2013-01-01

    Shipborne aerosol lidar observations were performed aboard the research vessel Polarstern in 2009 and 2010 during three north-south cruises from about 50°N to 50°S. The aerosol data set provides an excellent opportunity to characterize and contrast the vertical aerosol distribution over the Atlantic Ocean in the polluted northern and relatively clean southern hemisphere. Three case studies, an observed pure Saharan dust plume, a Patagonian dust plume east of South America, and a case of a mixed dust/smoke plume west of Central Africa are exemplarily shown and discussed by means of their optical properties. The meridional transatlantic cruises were used to determine the latitudinal cross section of the aerosol optical thickness (AOT). Profiles of particle backscatter and extinction coefficients are presented as mean profiles for latitudinal belts to contrast northern- and southern-hemispheric aerosol loads and optical effects. Results of lidar observations at Punta Arenas (53°S), Chile, and Stellenbosch (34°S), South Africa, are shown and confirm the lower frequency of occurrence of free-tropospheric aerosol in the southern hemisphere than in the northern hemisphere. The maximum latitudinal mean AOT of 0.27 was found in the northern tropics (0– 15°N) in the Saharan outflow region. Marine AOT is typically 0.05 ± 0.03. Particle optical properties are presented separately for the marine boundary layer and the free troposphere. Concerning the contrast between the anthropogenically influenced midlatitudinal aerosol conditions in the 30– 60°N belt and the respective belt in the southern hemisphere over the remote Atlantic, it is found that the AOT and extinction coefficients for the vertical column from 0–5km (total aerosol column) and 1–5km height (lofted aerosol above the marine boundary layer) are a factor of 1.6 and 2 higher at northern midlatitudes than at respective southern midlatitudes, and a factor of 2.5 higher than at the clean marine southern

  6. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  7. Impact of aerosols on the OMI tropospheric NO2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model?

    NASA Astrophysics Data System (ADS)

    Chimot, J.; Vlemmix, T.; Veefkind, J. P.; de Haan, J. F.; Levelt, P. F.

    2016-02-01

    The Ozone Monitoring Instrument (OMI) has provided daily global measurements of tropospheric NO2 for more than a decade. Numerous studies have drawn attention to the complexities related to measurements of tropospheric NO2 in the presence of aerosols. Fine particles affect the OMI spectral measurements and the length of the average light path followed by the photons. However, they are not explicitly taken into account in the current operational OMI tropospheric NO2 retrieval chain (DOMINO - Derivation of OMI tropospheric NO2) product. Instead, the operational OMI O2 - O2 cloud retrieval algorithm is applied both to cloudy and to cloud-free scenes (i.e. clear sky) dominated by the presence of aerosols. This paper describes in detail the complex interplay between the spectral effects of aerosols in the satellite observation and the associated response of the OMI O2 - O2 cloud retrieval algorithm. Then, it evaluates the impact on the accuracy of the tropospheric NO2 retrievals through the computed Air Mass Factor (AMF) with a focus on cloud-free scenes. For that purpose, collocated OMI NO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua aerosol products are analysed over the strongly industrialized East China area. In addition, aerosol effects on the tropospheric NO2 AMF and the retrieval of OMI cloud parameters are simulated. Both the observation-based and the simulation-based approach demonstrate that the retrieved cloud fraction increases with increasing Aerosol Optical Thickness (AOT), but the magnitude of this increase depends on the aerosol properties and surface albedo. This increase is induced by the additional scattering effects of aerosols which enhance the scene brightness. The decreasing effective cloud pressure with increasing AOT primarily represents the shielding effects of the O2 - O2 column located below the aerosol layers. The study cases show that the aerosol correction based on the implemented OMI cloud model results in biases

  8. OT2_smalhotr_3: Herschel Extreme Lensing Line Observations (HELLO)

    NASA Astrophysics Data System (ADS)

    Malhotra, S.

    2011-09-01

    We request 59.8 hours of Herschel time to observe 20 normal star-forming galaxies in the [CII] 158 micron and [OI] 63 micron lines. These galaxies lie at high redshift (1OT1, 49 high redshift IR luminous galaxies were approved for spectroscopy, but only two so-called normal galaxies were included. This is an imbalance that should be corrected, to balance Herschel's legacy.

  9. Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Zubko, V.; Gopalan, A.

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.

  10. Effect of photochemical self-action of carbon-containing aerosol: Wildfires

    NASA Astrophysics Data System (ADS)

    Konovalov, I. B.; Berezin, E. V.; Beekmann, M.

    2016-05-01

    It has been shown by numerical simulation that the rate of formation of secondary organic aerosols (SOAs) in smoke plumes caused by vegetation and peat fires under real conditions can significantly depend on the aerosol optical thickness (AOT). The AOT determines the photodissociation rate and hydroxyl radical concentration, which in turn determines the rate of SOA generation as a result of oxidation of semivolatile organic compounds. Quantitative analysis has been carried out for the situation that took place in European Russia during the 2010 Russian wildfires. The state-of-the-art 3D chemical transport model is used in this study; the simulations are optimized and validated using the data of monitoring of the particulate matter in the Moscow region and Finland. The findings indicate that it is important to allow for this effect in studies focused on the analysis and prediction of air pollution due to wildfires, as well as climate and weather studies, whose results may depend on the assumptions about the content and properties of atmospheric carbon-containing aerosol.

  11. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  12. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  13. In situ X-ray polymerization: from swollen lamellae to polymer-surfactant complexes.

    PubMed

    Agzenai, Yahya; Lindman, Björn; Alfredsson, Viveka; Topgaard, Daniel; Renamayor, Carmen S; Pacios, Isabel E

    2014-01-30

    The influence of the monomer diallyldimethylammonium chloride (D) on the lamellar liquid crystal formed by the anionic surfactant aerosol OT (AOT) and water is investigated, determining the lamellar spacings by SAXS and the quadrupolar splittings by deuterium NMR, as a function of the D or AOT concentrations. The cationic monomer D induces a destabilization of the AOT lamellar structure such that, at a critical concentration higher than 5 wt %, macroscopic phase separation takes place. When the monomer, which is dissolved in the AOT lamellae, is polymerized in situ by X-ray initiation, a new collapsed lamellar phase appears, corresponding to the complexation of the surfactant with the resulting polymer. A theoretical model is employed to analyze the variation of the interactions between the AOT bilayers and the stability of the lamellar structure.

  14. Silver nanoparticles in hydrogels and microemulsions—a comparative account of their properties and bio-activity

    NASA Astrophysics Data System (ADS)

    Ray, Debajyoti; Chatterjee, Saptarshi; Sarkar, Keka; De, Swati

    2014-09-01

    Stable silver nanoparticles were prepared in sodium Aerosol OT (AOT) based microemulsions and hydrogels. The various gel and microemulsion compositions used for nanoparticle synthesis were obtained from the phase diagram of the AOT/n-heptane/H2O system. It was found that only in gels can AOT play a dual role of stabilizer as well as reducing agent. In microemulsions, AOT acts as a stabilizer only. In gels, the commonly used NaBH4 reduction results in spherical silver nanoparticles while the AOT based reduction yields highly facetted particles. In microemulsion however, larger particles of undefined shapes are formed in low yield while for the gels, a large number of particles are formed. The synthesized silver nanoparticles show strong antibacterial activity.

  15. Temporal consistency of lidar observations during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Totems, Julien; Ancellet, Gérard; Pelon, Jacques; Sicard, Michaël

    2016-03-01

    We performed synergetic daytime and nighttime active and passive remote-sensing observations at Minorca (Balearic Islands, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ˜ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote-sensing measurements, coupled with satellite observations, allowed the documentation of (i) dust particles up to 5 km (above sea level) in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid-troposphere. For the field campaign period, we also show linearity with SEVIRI retrievals of the aerosol optical thickness despite 35 % relative bias, which is discussed as a function of aerosol type.

  16. Temporal consistency of lidar observables during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Menorca Island in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Totems, J.; Ancellet, G.; Pelon, J.; Sicard, M.

    2015-11-01

    We performed synergetic daytime and night-time active and passive remote sensing observations at Menorca (Balearic Island, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ∼ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote sensing measurements, coupled with satellite observations, allowed to document (i) dust particles up to 5 km a.s.l. in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid troposphere. We show also linearity with SEVIRI retrievals of the aerosol optical thickness within 35 % relative bias, which is discussed as a function of aerosol type.

  17. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  18. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  19. OmniTread OT-4 serpentine robot: new features and experiments

    NASA Astrophysics Data System (ADS)

    Borenstein, Johann; Hansen, Malik

    2007-04-01

    Serpentine robots are slender, multi-segmented vehicles designed to provide greater mobility than conventional wheeled or tracked robots. Serpentine robots are thus ideally suited for urban search and rescue, military intelligence gathering, and for surveillance and inspection tasks in hazardous and hard-to-reach environments. One such serpentine robot, developed at the University of Michigan, is the "OmniTread OT-4." The OT-4 comprises seven segments, which are linked to each other by 2-degree-of-freedom joints. The OT-4 can climb over obstacles that are much higher than the robot itself, propel itself inside pipes of different diameters, and traverse even the most difficult terrain, such as rocks or the rubble of a collapsed structure. The foremost and unique design characteristic of the OT-4 is the use of pneumatic bellows to actuate the joints. These bellows allow simultaneous control of position and stiffness for each joint. Controllable stiffness is of crucial importance in serpentine robots, which require stiff joints to cross gaps and compliant joints to conform to rough terrain for effective propulsion. Another unique feature of the OmniTread design is the maximal coverage of all four sides with driven tracks. This design makes the robot indifferent to roll-overs, which are happen frequently when the slender bodies of serpentine robots travel over rugged terrain. This paper describes the OmniTread concept as well as its latest technical features, and an extensive Experiment Results Section documents the abilities of the OT-4.

  20. Relating material surface heterogeneity to protein adsorption: the effect of annealing of micro-contact-printed OTS patterns

    PubMed Central

    HODGKINSON, GERALD; HLADY, VLADIMIR

    2009-01-01

    We have investigated the influence of micrometer- and sub-micrometer-scale surface heterogeneities in patterned octadecyltrichlorosilane (OTS) films on human serum albumin (HSA) adsorption and its spatial distribution. 5-μm-wide OTS patterns were created on glass substrates by micro-contact printing and in some instances subsequent annealing was used to alter OTS molecule distribution within the patterns. Scanning force microscopy (SFM), advancing water contact angles and water vapor condensation figures were used to characterize the OTS films and to assess the nature of the heterogeneities within the various surface areas. High-resolution fluorescence microscopy was used to record images of fluorescently labeled albumin on OTS patterned films and fluorescence intensity was quantified and converted into the adsorbed amount. Adsorbed albumin was also characterized through SFM measurements. Combined SFM topography and lateral force microscopy (LFM) imaging revealed that micro-contact printing of OTS onto glass both replicated the stamp pattern and created small islands within the non-stamped regions between the patterns. The OTS coverage within stamped regions was not fully continuous but improved with subsequent annealing. Annealing also resulted in OTS island growth within the non-stamped regions and decreased average wettability on both the stamped and non-stamped areas. The extent of albumin adsorption was not proportional to OTS coverage, but correlated with the sub-μm distribution of OTS chains. We inferred that the surface distribution of ligands such as OTS on a sub-μm length scale determines the nature of albumin adsorption and its kinetics. PMID:19693285

  1. MASTER OT J000008.72-334156.5 is probably a M-star flare

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Blagorodnova, N.; Cenko, S. B.; MIll, A.

    2015-10-01

    Following ATel #8166, we obtained a 300sec R-band image at the location of MASTER OT J000008.72-334156.5 with DEIMOS mounted on the Keck 2 telescope on 2015-10-18 UT and found a point-like source with R=21.7 mag. We also noticed a source at the same location in WISE with W1=16.6 mag. Therefore, we conclude that MASTER OT J000008.72-334156.5 is probably a galactic M-star flare.

  2. A global outer-rise/outer-trench-slope (OR/OTS) earthquake study

    NASA Astrophysics Data System (ADS)

    Wartman, J. M.; Kita, S.; Kirby, S. H.; Choy, G. L.

    2009-12-01

    Using improved seismic, bathymetric, satellite gravity and other geophysical data, we investigated the seismicity patterns and focal mechanisms of earthquakes in oceanic lithosphere off the trenches of the world that are large enough to be well recorded at teleseismic distances. A number of prominent trends are apparent, some of which have been previously recognized based on more limited data [1], and some of which are largely new [2-5]: (1) The largest events and the highest seismicity rates tend to occur where Mesozoic incoming plates are subducting at high rates (e.g., those in the western Pacific and the Banda segment of Indonesia). The largest events are predominantly shallow normal faulting (SNF) earthquakes. Less common are reverse-faulting (RF) events that tend to be deeper and to be present along with SNF events where nearby seamounts, seamount chains and other volcanic features are subducting [Seno and Yamanaka, 1996]. Blooms of SNF OR/OTS events usually occur just after and seaward of great interplate thrust (IPT) earthquakes but are far less common after smaller IPT events. (2) Plates subducting at slow rates (<20 mm/a) often show sparse OR/OTS seismicity. It is unclear if such low activity is a long-term feature of these systems or is a consequence of the long return times of great IPT earthquakes (e.g., the sparse OR/OTS seismicity before the 26 December 2004 M9.2 Sumatra earthquake and many subsequent OR/OTS events). (3) OR/OTS shocks are generally sparse or absent where incoming plates are very young (<20 Ma) (e.g., Cascadia, southern Mexico, Nankai, and South Shetlands). (4) Subducting plates of intermediate age (20 to about 65 Ma) display a diversity of focal mechanisms and seismicity patterns. In the Philippines, NE Indonesia, and Melanesia, bands of reverse faulting events occur at or near the trench and SNF earthquakes are restricted to OR/OTS sites further from the trench. (5) Clustering of OR/OTS events of all types commonly occurs where

  3. The peptide Z-Aib-Aib-Aib-L-Ala-OtBu.

    PubMed

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2014-04-01

    The title peptide, N-benzyloxycarbonyl-α-aminoisobutyryl-α-aminoisobutyryl-α-aminoisobutyryl-L-alanine tert-butyl ester or Z-Aib-Aib-Aib-L-Ala-OtBu (Aib is α-aminoisobutyric acid, Z is benzyloxycarbonyl and OtBu indicates the tert-butyl ester), C27H42N4O7, is a left-handed helix with a right-handed conformation in the fourth residue, which is the only chiral residue. There are two 4→1 intramolecular hydrogen bonds in the structure. In the lattice, molecules are hydrogen bonded to form columns along the c axis.

  4. The achiral tetrapeptide Z-Aib-Aib-Aib-Gly-OtBu.

    PubMed

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2014-11-01

    The title achiral peptide N-benzyloxycarbonyl-α-aminoisobutyryl-α-aminoisobutyryl-α-aminoisobutyrylglycine tert-butyl ester or Z-Aib-Aib-Aib-Gly-OtBu (Aib is α-aminoisobutyric acid, Z is benzyloxycarbonyl, Gly is glycine and OtBu indicates the tert-butyl ester), C26H40N4O7, is partly hydrated (0.075H2O) and has two different conformations which together constitute the asymmetric unit. Both molecules form incipient 310-helices. They differ in the relative orientation of the N-terminal protection group and at the C-terminus. There are two 4→1 intramolecular hydrogen bonds.

  5. The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie

    2008-01-01

    Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the

  6. DO3SE model applicability and O3 flux performance compared to AOT40 for an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma').

    PubMed

    Assis, Pedro I L S; Alonso, Rocío; Meirelles, Sérgio T; Moraes, Regina M

    2015-07-01

    Phytotoxic ozone (O3) levels have been recorded in the Metropolitan Region of São Paulo (MRSP). Flux-based critical levels for O3 through stomata have been adopted for some northern hemisphere species, showing better accuracy than with accumulated ozone exposure above a threshold of 40 ppb (AOT40). In Brazil, critical levels for vegetation protection against O3 adverse effects do not exist. The study aimed to investigate the applicability of O3 deposition model (Deposition of Ozone for Stomatal Exchange (DO3SE)) to an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma') under the MRSP environmental conditions, which are very unstable, and to assess the performance of O3 flux and AOT40 in relation to O3-induced leaf injuries. Stomatal conductance (g s) parameterization for 'Paluma' was carried out and used to calculate different rate thresholds (from 0 to 5 nmol O3 m(-2) projected leaf area (PLA) s(-1)) for the phytotoxic ozone dose (POD). The model performance was assessed through the relationship between the measured and modeled g sto. Leaf injuries were analyzed and associated with POD and AOT40. The model performance was satisfactory and significant (R (2) = 0.56; P < 0.0001; root-mean-square error (RMSE) = 116). As already expected, high AOT40 values did not result in high POD values. Although high POD values do not always account for more injuries, POD0 showed better performance than did AOT40 and other different rate thresholds for POD. Further investigation is necessary to improve our model and also to check if there is a critical level of ozone in which leaf injuries arise. The conclusion is that the DO3SE model for 'Paluma' is applicable in the MRSP as well as in temperate regions and may contribute to future directives. PMID:25772875

  7. DO3SE model applicability and O3 flux performance compared to AOT40 for an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma').

    PubMed

    Assis, Pedro I L S; Alonso, Rocío; Meirelles, Sérgio T; Moraes, Regina M

    2015-07-01

    Phytotoxic ozone (O3) levels have been recorded in the Metropolitan Region of São Paulo (MRSP). Flux-based critical levels for O3 through stomata have been adopted for some northern hemisphere species, showing better accuracy than with accumulated ozone exposure above a threshold of 40 ppb (AOT40). In Brazil, critical levels for vegetation protection against O3 adverse effects do not exist. The study aimed to investigate the applicability of O3 deposition model (Deposition of Ozone for Stomatal Exchange (DO3SE)) to an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma') under the MRSP environmental conditions, which are very unstable, and to assess the performance of O3 flux and AOT40 in relation to O3-induced leaf injuries. Stomatal conductance (g s) parameterization for 'Paluma' was carried out and used to calculate different rate thresholds (from 0 to 5 nmol O3 m(-2) projected leaf area (PLA) s(-1)) for the phytotoxic ozone dose (POD). The model performance was assessed through the relationship between the measured and modeled g sto. Leaf injuries were analyzed and associated with POD and AOT40. The model performance was satisfactory and significant (R (2) = 0.56; P < 0.0001; root-mean-square error (RMSE) = 116). As already expected, high AOT40 values did not result in high POD values. Although high POD values do not always account for more injuries, POD0 showed better performance than did AOT40 and other different rate thresholds for POD. Further investigation is necessary to improve our model and also to check if there is a critical level of ozone in which leaf injuries arise. The conclusion is that the DO3SE model for 'Paluma' is applicable in the MRSP as well as in temperate regions and may contribute to future directives.

  8. Changes in the bending modulus of AOT based microemulsions induced by the incorporation of polymers in the water core.

    PubMed

    Kuttich, Björn; Grefe, Ann-Kathrin; Stühn, Bernd

    2016-08-14

    The bending modulus κ is known to be a crucial parameter for the stability of the droplet phase in microemulsion systems. For AOT based water in oil microemulsions the bending modulus of the surfactant has values close to kBT but can be influenced by the presence of polymers. In this work we focus on the water soluble polymer polyethylene glycol and how it influences the bending modulus. An increase by a factor of three is found. For the correct evaluation of the bending modulus via percolation temperatures and droplet radii, thus by dielectric spectroscopy and small angle X-ray scattering, the determination of the radii right at the percolation temperature is crucial as we will show, although it is often neglected. In order to precisely determine the droplet radii we will present a global fitting model which provides reliable results with a minimum number of free fitting parameters. PMID:27416768

  9. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  10. MASTER-OAFA discovery: bright high amplitude(>7.5m) OT and PSN in bright spiral pgc131693in

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Gress, O.; Lipunov, V.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tyurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Kuvshinov, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Lopez, C.; Lopez, C.; Podesta, F

    2016-09-01

    MASTER-OAFA auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 22h 33m 13.74s -40d 38m 36.9s on 2016-09-19.12230 UT. The OT unfiltered magnitude is (mlim=18.4m).

  11. Long non-coding RNA SOX2OT: expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis

    PubMed Central

    Shahryari, Alireza; Jazi, Marie Saghaeian; Samaei, Nader M.; Mowla, Seyed J.

    2015-01-01

    SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA which harbors one of the major regulators of pluripotency, SOX2 gene, in its intronic region. SOX2OT gene is mapped to human chromosome 3q26.3 (Chr3q26.3) locus and is extended in a high conserved region of over 700 kb. Little is known about the exact role of SOX2OT; however, recent studies have demonstrated a positive role for it in transcription regulation of SOX2 gene. Similar to SOX2, SOX2OT is highly expressed in embryonic stem cells and down-regulated upon the induction of differentiation. SOX2OT is dynamically regulated during the embryogenesis of vertebrates, and delimited to the brain in adult mice and human. Recently, the disregulation of SOX2OT expression and its concomitant expression with SOX2 have become highlighted in some somatic cancers including esophageal squamous cell carcinoma, lung squamous cell carcinoma, and breast cancer. Interestingly, SOX2OT is differentially spliced into multiple mRNA-like transcripts in stem and cancer cells. In this review, we are describing the structural and functional features of SOX2OT, with an emphasis on its expression signature, its splicing patterns and its critical function in the regulation of SOX2 expression during development and tumorigenesis. PMID:26136768

  12. 12 CFR 516.220 - If OTS requests additional information to complete my application, how will it process my...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... complete my application, how will it process my application? 516.220 Section 516.220 Banks and Banking... Standard Treatment § 516.220 If OTS requests additional information to complete my application, how will it... your response. OTS will notify you that it has extended the period before the end of the initial...

  13. 12 CFR 516.220 - If OTS requests additional information to complete my application, how will it process my...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... complete my application, how will it process my application? 516.220 Section 516.220 Banks and Banking... Standard Treatment § 516.220 If OTS requests additional information to complete my application, how will it... your response. OTS will notify you that it has extended the period before the end of the initial...

  14. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    NASA Astrophysics Data System (ADS)

    Panwar, Chhagan; Vyas, B. M.

    2016-05-01

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (Reff), integrated content of total aerosols (Nt), columnar content of accumulation and coarse size aerosols particles concentration (Na) (size < 0.5 µm) and (Nc) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 1013 m2 μm-1 at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 1010 to 1011 m2/μm-1 occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 1012 m2μm-3 is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0.4 to 0.6 µm) in cold months. Several other interesting features of changing nature of monthly spectral AOT

  15. Optimal Diphthongs: An OT Analysis of the Acquisition of Spanish Diphthongs

    ERIC Educational Resources Information Center

    Krause, Alice

    2013-01-01

    This dissertation investigates the acquisition of Spanish diphthongs by adult native speakers of English. The following research questions will be addressed: 1) How do adult native speakers of English pronounce sequences of two vowels in their L2 Spanish at different levels of acquisition? 2) Can OT learnability models, specifically the GLA,…

  16. OGLE-IV Pre-discovery Observations of MASTER OT J010603.18-744715.8

    NASA Astrophysics Data System (ADS)

    Mroz, P.; Udalski, A.

    2016-10-01

    Shumkov et al. (ATel #9621) reported the discovery of a bright optical transient MASTER OT J010603.18-744715.8 toward the Small Magellanic Cloud. The object is located in the fields SMC727 and SMC734 that are regularly monitored by the OGLE-IV Survey.

  17. Spectroscopy and photometry of MASTER OT J004126.22+414350.0 in the Andromeda direction

    NASA Astrophysics Data System (ADS)

    Williams, S. C.; Hornoch, K.; Henze, M.; Darnley, M. J.

    2016-09-01

    MASTER OT J004126.22+414350.0 was discovered on 2016 Sep 02.12339 UT (ATel #9470). The transient is coincident with M31N 2013-11b (ATel #9470), which was originally identified as an M31 nova candidate (ATel #5569), but later found to be more likely a red LPV (ATel #5640, #5744).

  18. MASTER: young PSN(Ia) in bright PGC054958 and OTs

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Shurpakov, S.; Lipunov, V.; Lopez, R. Rebolo; Buckley, D.; Ricart, Serra; Israelyan, G.; Potter, S.; Kniazev, A.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Vlasenko, D.; Gorbunov, I.; Kuvshinov, D.; Vladimirov, V.; Popova, E.

    2016-04-01

    MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 15h 23m 33.04s +09d 21m 25.6s on 2016-04-04.09646 UT. PSN unfiltered magnitude is 17.7m (limit 19.5m).

  19. 78 FR 54403 - Removal of Transferred OTS Regulations Regarding Recordkeeping and Confirmation Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ...\\ \\2\\ 76 FR 39247 (July 6, 2011). Although section 312(b)(2)(B)(i)(II) of the Dodd-Frank Act, codified... them, as appropriate. \\3\\ 76 FR 47652 (Aug. 5, 2011). One of the OTS's rules transferred to the FDIC... confirmation requirements in appropriate circumstance.\\6\\ \\4\\ 44 FR 43260, 43261 (July 24, 1979). \\5\\ See 44...

  20. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  1. Assessing Aerosol Mixed Layer Heights from the NASA Larc Airborne High Spectral Resolution Lidar (HSRL) during the Discover-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Sawamura, P.; Collins, J. E., Jr.; Seaman, S. T.; Cook, A. L.; Harper, D. B.; Follette-Cook, M. B.; daSilva, A.; Randles, C. A.

    2014-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD, during January and February 2013 over the San Joaquin Valley of California, during September 2013 over Houston, TX and during July and August 2014 over Denver, CO. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the mixed layer (ML) height. Analysis of the ML height at these four locations is presented, including temporal and horizontal variability and comparisons between land and water, including the Chesapeake Bay and Galveston Bay. Using the ML heights, the distribution of AOT relative to the ML heights is determined, which is relevant for assessing the long-range transport of aerosols. The ML heights are also used to help relate column AOT measurements and extinction profiles to surface PM2.5 concentrations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from both chemical regional models and global forecast models.

  2. 12 CFR 502.27 - How does OTS determine the risk/complexity component for a savings and loan holding company?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false How does OTS determine the risk/complexity...-Calculation of Assessments § 502.27 How does OTS determine the risk/complexity component for a savings and loan holding company? (a) OTS computes the risk/complexity component for responsible savings and...

  3. Intercomparison of satellite aerosol retrieval algorithms based on the simulated measurements of the intensity and polarization of reflected solar light for various types of underlying surfaces

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander

    2014-05-01

    Atmospheric aerosol has a profound influence on climate, the global cloud field, and human health. Therefore, the microphysical (size and shape of particles, chemical composition, and concentration) and optical (optical thickness, single scattering albedo) properties of atmospheric aerosol have been thoroughly studied using the ground-based and satellite observation systems. The main optical parameter is aerosol optical thickness (AOT). AOT can be derived from measurements of direct solar light by a sun-photometer positioned on the ground, a ship, or an aircraft. Simultaneously, AOT can be derived using an optical instrument orbiting the planet. The ground measurements provide the most accurate values of the AOT, as they provide a direct measure of the attenuation of solar radiation. Satellite measurements require the development of the complex retrieval software, because the satellite signal contains both contribution from the surface and atmospheric aerosol. The contributions of molecular scattering and absorption must be accounted for as well. There have been numerous attempts to compare the spectral AOT derived from the ground and satellite measurements, with the accuracy of satellite retrievals is usually checked against ground measurements collocated in time and space. However, such inter-comparisons cannot be perfect because the direct solar light beam attenuation measurements from the ground and reflected solar light measurements provide different spatial sampling of atmosphere. This is not a big issue in the ideal case of a cloudless sky with homogeneously distributed aerosol particles. However, in practice, some residual clouds (e.g., Cirrus) or contrails can influence the signal measured on the ground and also from orbit. Moreover, atmospheric aerosol is not always homogeneously distributed in space. This will make the direct inter-comparison of both techniques difficult. Yet another possibility is to compare results of retrievals from different

  4. Effects of Spatial Resolution on the Simulated Dust Aerosol Lifecycle: Implications for Dust Event Magnitude and Timing in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, Peter R.; daSilva, A.

    2011-01-01

    The NASA GEOS-5 atmospheric transport model simulates global aerosol distributions with an online aerosol module. GEOS-5 may be run at various horizontal spatial resolutions depending on the research application. For example, long integration climate simulations are typically run at 2 deg or 1 deg grid spacing, whereas aerosol reanalysis and forecasting applications may be performed at O.5 deg or 0.25 deg resolutions. In this study, we assess the implications of varying spatial resolution on the simulated aerosol fields, with a particular focus on dust. Dust emissions in GEOS-5 are calculated with one of two parameterizations, one based on the Goddard Chemistry, Aerosol, Radiation, and Transport (GO CART) model and another based on the Dust Entrainment and Deposition (DEAD) model. Emission fluxes are parameterized in terms of the surface wind speed, either the 10-m (GO CART) or friction (DEAD) wind speed. We consider how surface wind speeds and thus the dust emission rates are a function of the model spatial resolution. We find that spatial resolution has a significant effect on the magnitude of dust emissions, as higher resolution versions of the model have typically higher surface wind speeds. Utilizing space-borne observations from MISR, MODIS, and CALIOP, we find that simulated Aerosol Optical Thickness (AOT) distributions respond differently to spatial resolution over the African and Asian source regions, highlighting the need to regional dust emission tuning. When compared to ground-based observations from AERONET, we found improved timing of dust events with as spatial resolution was increased. In an attempt to improve the representation of the dust aerosol lifecycle at coarse resolutions, we found that incorporating the effects of sub-grid wind variability in a course resolution simulation led to improved agreement with observed AOT magnitudes, but did not impact the timing of simulated dust events.

  5. Sequential adsorption of an irreversibly adsorbed nonionic surfactant and an anionic surfactant at an oil/aqueous interface.

    PubMed

    Kirby, Stephanie M; Anna, Shelley L; Walker, Lynn M

    2015-04-14

    Aerosol-OT (AOT) and Tween 80 are two of the main surfactants in commercial dispersants used in response to oil spills. Understanding how multicomponent surfactant systems interact at oil/aqueous interfaces is crucial for improving both dispersant design and application efficacy. This is true of many multicomponent formulations; a lack of understanding of competition for the oil/water interface hinders formulation optimization. In this study, we have characterized the sequential adsorption behavior of AOT on squalane/aqueous interfaces that have been precoated with Tween 80. A microtensiometer is used to measure the dynamic interfacial tension of the system. Tween 80 either partially or completely irreversibly adsorbs to squalane/aqueous interfaces when rinsed with deionized water. These Tween 80 coated interfaces are then exposed to AOT. AOT adsorption increases with AOT concentration for all Tween 80 coverages, and the resulting steady-state interfacial tension values are interpreted using a Langmuir isotherm model. In the presence of 0.5 M NaCl, AOT adsorption significantly increases due to counterion charge screening of the negatively charged head groups. The presence of Tween 80 on the interface inhibits AOT adsorption, reducing the maximum surface coverage as compared to a clean interface. Tween 80 persists on the interface even after exposure to high concentrations of AOT.

  6. Sequential adsorption of an irreversibly adsorbed nonionic surfactant and an anionic surfactant at an oil/aqueous interface.

    PubMed

    Kirby, Stephanie M; Anna, Shelley L; Walker, Lynn M

    2015-04-14

    Aerosol-OT (AOT) and Tween 80 are two of the main surfactants in commercial dispersants used in response to oil spills. Understanding how multicomponent surfactant systems interact at oil/aqueous interfaces is crucial for improving both dispersant design and application efficacy. This is true of many multicomponent formulations; a lack of understanding of competition for the oil/water interface hinders formulation optimization. In this study, we have characterized the sequential adsorption behavior of AOT on squalane/aqueous interfaces that have been precoated with Tween 80. A microtensiometer is used to measure the dynamic interfacial tension of the system. Tween 80 either partially or completely irreversibly adsorbs to squalane/aqueous interfaces when rinsed with deionized water. These Tween 80 coated interfaces are then exposed to AOT. AOT adsorption increases with AOT concentration for all Tween 80 coverages, and the resulting steady-state interfacial tension values are interpreted using a Langmuir isotherm model. In the presence of 0.5 M NaCl, AOT adsorption significantly increases due to counterion charge screening of the negatively charged head groups. The presence of Tween 80 on the interface inhibits AOT adsorption, reducing the maximum surface coverage as compared to a clean interface. Tween 80 persists on the interface even after exposure to high concentrations of AOT. PMID:25798716

  7. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    USGS Publications Warehouse

    Guo, S.; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  8. Aerosols correction of the OMI tropospheric NO2 retrievals over cloud-free scenes: Different methodologies based on the O2-O2 477 nm band

    NASA Astrophysics Data System (ADS)

    Chimot, Julien; Vlemmix, Tim; Veefkind, Pepijn; Levelt, Pieternel

    2016-04-01

    variation of O2-O2 SCD and continuum reflectance as a function of effective cloud parameters in case of low effective cloud fraction values is requested for applying an aerosol correction. The updates of the OMI O2-O2 cloud algorithm, based on the scheduled new OMI cloud LUT, will be presented in terms of impacts of the effective cloud retrievals and reduced biases of tropospheric NO2 columns over cloud-free scenes dominated by aerosols in China. A 2nd approach is investigated, assuming a more explicit aerosol correction. Previous analyses pointed out that the O2-O2 spectra contain information about aerosols: the continuum reflectance is primarily constrained by the Aerosol Optical thickness (AOT) while the O2-O2 Slant Column Density (SCD) mostly results from the combination of AOT and aerosols altitude. We have developed a first prototype algorithm allowing to retrieve information about AOT and aerosol altitude from the O2-O2 DOAS fit. We will discuss preliminary sensitivities and the potential accuracy of the associated explicit aerosol correction, without the use of effective cloud parameters.

  9. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Koren, Ilan; Remer, Lorraine A.; Rosenfeld, Daniel; Rudich, Yinon

    2005-08-01

    evaluation and writing the paper.Freely available online through the PNAS open access option.Abbreviations: MODIS, Moderate Resolution Imaging Spectroradiometer; AOT, aerosol optical thickness; LWP, liquid water path; AERONET, Aerosol Robotic Network.

  10. Spectral Classification of MASTER OT J015539.85+485955.6 as a dwarf nova

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, I. A.

    2015-11-01

    MASTER OT J015539.85+485955.6 was identified as either a possible supernova candidate in PGC212862 or a galactic dwarf nova in outburst in Atel #8262. The transient was observed using the SPRAT spectrograph of the Liverpool Telescope (La Palma) with a spectral range of 4000 - 8000 Angstroms and a resolution R=350 on 2015-11-09 at 22:40UT.

  11. MASTER-SAAO: bright PSN in PGC600519 and 2 OTs

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Balanutsa, P.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Gress, O.; Shumkov, V.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Vladimirov, V.; Vlasenko, D.; Potter, S.

    2016-10-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 10h 54m 40.86s , -39d 13m 19s.0 on 2016-10-08 02:56:46.019UT with . This PSN is in 2.9"E,7"N from the center of PGC600519 and is seen on 8 images.

  12. 78 FR 76768 - Removal of Transferred OTS Regulations Regarding Disclosure and Reporting of CRA-Related...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... on July 6, 2011.\\2\\ \\2\\ 76 FR 39247 (July 6, 2011). Although section 312(b)(2)(B)(i)(II) of the Dodd... rescinding them, as appropriate. \\3\\ 76 FR 47652 (Aug. 5, 2011). One of the OTS rules transferred to the FDIC...)(1). \\8\\ 66 FR 2052 (Jan. 10, 2001). \\9\\ Id. Section 48 of the FDI Act, created by section 711 of...

  13. Asiago spectroscopic classification of MASTER OT J211223.35+144645.1

    NASA Astrophysics Data System (ADS)

    Ascenzi, S.; Yang, S.; Tomasella, L.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Elias-Rosa, N.; Ochner, P.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2016-06-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of MASTER OT J211223.35+144645.1 (Atel #9174), discovered by MASTER-IAC auto-detection system (Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171) The observation was performed with the Asiago 1.82 m Copernico Telescope (+AFOSC; range 340-820 nm; resolution 1.4 nm).

  14. Identification of new SOX2OT transcript variants highly expressed in human cancer cell lines and down regulated in stem cell differentiation.

    PubMed

    Saghaeian Jazi, Marie; Samaei, Nader Mansour; Ghanei, Mostafa; Shadmehr, Mohammad Behgam; Mowla, Seyed Javad

    2016-02-01

    Long non-coding RNAs are manifested as a new paradigm of molecular effectors in a wide range of human diseases. Human SOX2 overlapping transcript (SOX2OT) gene can generate six lncRNA transcript variants which are functionally assumed to be correlated with cellular differentiation and carcinogenesis. However, the circumstances determining expressional and functional differences between SOX2OT transcript variants remain to be explored. Here, we studied the expression of all SOX2OT transcript variants specifically in five human cancer cell lines by real-time RT-PCR. Changes of the new SOX2OT transcript variants expression were measured during the NT2 teratocarcinoma cell line neuronal-like differentiation and were compared to pluripotency regulators, SOX2 and OCT4A gene expressions. Surprisingly, we identified two new SOX2OT transcripts, named SOX2OT-7, SOX2OT-8 which lack exon 8. We discovered that beside active proximal and distal SOX2OT promoters, different cancer cell lines express high levels of some SOX2OT transcript variants differentially by alternative splicing. Significantly, both SOX2OT-7 and SOX2OT-8 are highly expressed in human cancer cell lines coinciding with SOX2, one of the pluripotency regulators. Our results revealed that SOX2OT-7 is almost the most abundant form of SOX2OT transcript variants in the examined cancer cell lines particularly in NT2 teratocarcinoma cell line where its expression falls upon neuronal-like differentiation similar to SOX2 and OCT4A. We suggest that at least some of SOX2OT transcripts are significantly associated with cancer and stem cell related pathways.

  15. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  16. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  17. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  18. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia

    NASA Astrophysics Data System (ADS)

    Masmoudi, M.; Chaabane, M.; Medhioub, K.; Elleuch, F.

    The aerosol optical thickness (AOT) τa computed from the spectral sun photometer in Thala (Tunisia) exhibited variability ranging from approximately 0.03 to greater than 2.0 at 870 nm for March-October 2001. These measurements are compared to the aerosol optical thickness computed in Ouagadougou (Burkina-Faso), Banizoumbou (Niger), IMC Oristano (Sardinia) and Rome Tor Vergata (Italy). Analysis of τa data from this observation network suggests that there is a high temporal and spatial variability of τa in the different sites. The Angström wavelength exponent α was found to vary with the magnitude of the aerosol optical thickness, with values as high as 1.5 for very low τa, and values of -0.1 for high τa situations. The relationship between the two parameters τa and α is investigated. Values of the turbidity coefficient β have been determined in Thala (Tunisia) for 8 months in 2001 based on a direct fitting method of the Angström power law expression using sun photometer data. The monthly averaged values of the turbidity coefficient β vary between 0.15 and 0.33. The months of July and October experienced the highest turbidity, while April experienced the lowest aerosol loading on average. The turbidity shows a maximum and minimum values for the Southwest and the Northwest wind directions, respectively. The single scattering albedo ωo for the 870 nm wavelength obtained from solar aureole data in Thala is analysed according to the particles' origin.

  19. GLOBE Aerosol Field Campaign - U.S. Pilot Study 2016

    NASA Technical Reports Server (NTRS)

    Pippin, Margaret; Marentette, Christina; Bujosa, Robert; Taylor, Jessica; Lewis, Preston

    2016-01-01

    During the spring of 2016, from April 4 - May 27, sixteen GLOBE schools participated in the GLOBE Aerosol Field Campaign - U.S. Pilot Study. Thirteen teachers from these schools had previously participated in the NASA LEARN program (Long-term Experience in Authentic Research with NASA) where they were GLOBE trained in Atmosphere protocols, and engaged in 1-3 years of research under the mentorship of NASA scientists. Each school was loaned two aerosol instruments for the Campaign duration, either 2 GLOBE sun photometers, 2 Calitoo sun photometers, or 1 of each. This allowed for students to make measurements side-by-side and in the case of the Calitoos, to compare AOT results immediately with each other for better consistency in data collection. Additionally, as part of the Field Campaign evaluation, multiple instruments allow for an assessment of the ease of use of each instrument for grade level of students, whether in middle school or high school. Before the Campaign, all GLOBE and Calitoo instruments were 'checked out' against an AERONET, then checked again upon return after the Campaign. By examining all data, before, during and after the Campaign, this gives an indication of instrument performance and proficiency obtained by the students. Support was provided to each teacher and their students at the level requested, via email, phone or video conferencing.

  20. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  1. Satellite Characterization of Fire Emissions of Aerosols and Gases Relevant to Air-Quality Modeling

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Ellison, L.; Yue, Y.; Wang, J.

    2015-12-01

    Because of the transient and widespread nature of wildfires and other types of open biomass burning, satellite remote sensing has become an indispensable technique for characterizing their smoke emissions for modeling applications, especially at regional to global scales. Fire radiative energy (FRE), whose instantaneous rate of release or fire radiative power (FRP) is measurable from space, has been found to be proportional to both the biomass consumption and emission of aerosol particulate matter. We have leveraged this relationship to generate a global, gridded smoke-aerosol emission coefficients (Ce) dataset based on FRP and aerosol optical thickness (AOT) measurements from the MODIS sensors aboard the Terra and Aqua satellites. Ce is a simple coefficient to convert FRE to smoke aerosol emissions, in the same manner as traditional emission factors are used to convert burned biomass to emissions. The first version of this Fire Energetics and Emissions Research (FEER.v1) global gridded Ce product at 1°x1° resolution is available at http://feer.gsfc.nasa.gov/. Based on published emission ratios, the FEER.v1 Ce product for total smoke aerosol has also been used to generate similar products for specific fire-emitted aerosols and gases, including those that are regulated as 'criteria pollutants' under the US Environmental Protection Agency's National Ambient Air Quality Standards (NAAQS), such as particulate matter (PM) and carbon monoxide (CO). These gridded Ce products were used in conjunction with satellite measurements of FRP to derive emissions of several smoke constituents, which were applied to WRF-Chem fully coupled meteorology-chemistry-aerosol model simulations, with promising results. In this presentation, we analyze WRF-Chem simulations of surface-level concentrations of various pollutants based on FEER.v1 emission products to illustrate their value for air-quality modeling, particularly in parts of Africa and southeast Asia where ground-based air

  2. Long-Term Global Aerosol Products from NASA Reanalysis MERRA-2 Available at GES DISC

    NASA Astrophysics Data System (ADS)

    Shen, S.; Ostrenga, D.; Vollmer, B.

    2015-12-01

    Over 35 years of model simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are published in summer 2015 at NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). The data have been grouped into five datasets, including variables such as: dust column mass density, dust column mass density - PM 2.5, dust deposition, SO2 column mass density, aerosol optical depth analysis, total aerosol extinction AOT 550nm, black carbon emission etc. The data are available at hourly or 3-hourly and monthly at horizontal spatial resolution of 0.5x0.625 degrees (latitude x longitude) and 72 eta coordinate levels extending to 0.01 hPa for 3-dimensional variables. This presentation will document data access services at GES DISC and how to explore the data through the online visualization tool (Giovanni). As use cases, aerosol transportation of selected events will be demonstrated: a) SO2 column mass density from volcano Sierra Negra (Oct 2005), stayed in the tropical atmosphere for about 20 days; b) dust column mass density from a Asian dust storm in April 2001, transported dust from Asia across Pacific to North America in about one week; and c) black carbon column mass density from a wildfire late July to early September 2010 in Russia.

  3. Accuracy of fuzzy burned area mapping as a function of the aerosol parameterization of atmospheric correction

    NASA Astrophysics Data System (ADS)

    Azar, Ramin; Stroppiana, Daniela; Bresciani, Mariano; Giardino, Claudia; Boschetti, Mirco; Brivio, Pietro A.

    2013-10-01

    Mediterranean forests are every year affected by wildfires which have a significant effect on the ecosystem. Mapping burned areas is an important field of application for optical remote sensing techniques and several methodologies have been developed in order to improve mapping accuracy. We developed an automated procedure based on spectral indices and fuzzy theory for mapping burned areas from atmospherically corrected Landsat TM images. The algorithm proved to provide consistent accuracy over Mediterranean areas. We further tested algorithm's performance to assess the influence of the atmospheric correction on the accuracy of burned areas. In particular, we ran the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) code with different Atmospheric Optical Thickness (AOT) levels and two aerosol models (continental and maritime) on one TM image acquired over Portugal (12/08/2003). Burned area maps derived from atmospherically corrected images and from the non corrected image (Top Of Atmosphere, TOA) have been analyzed. In the output burned areas maps the omission error varies in the range 4.6-6.5% and the commission error fluctuates between 11.9 and 22.2%; the highest omission (commission) errors occur with the continental (maritime) model. The accuracy of burned area maps derived from non corrected image is very low, with omission error greater than 90%. These results show that, although atmospheric correction is needed for the application of the algorithm, the AOT value does not significantly affect the performance.

  4. Tropical Atlantic Dust and Smoke Aerosol Variabilities Related to the Madden-Julian Oscillation in MODIS and MISR Observations

    NASA Technical Reports Server (NTRS)

    Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.

    2012-01-01

    In this study, MODIS fine mode fraction and MISR non-spherical fraction are 2used to derive dust and smoke AOT components (tau(sub dust) and tau(sub smoke)) over the tropical Atlantic, and their variabilities related to the Madden-Julian Oscillation (MJO) are then investigated. Both MODIS and MISR show a very similar dust and smoke winter climatology. tau(sub dust) is found to be the dominant aerosol component over the tropical Atlantic while tau(sub smoke) is significantly smaller than tau(sub dust). The daily MODIS and MISR tau(sub dust) are overall highly correlated, with the correlation coefficients typically about 0.7 over the North Atlantic. The consistency between the MODIS and MISR dust and smoke aerosol climatology and daily variations give us confidence to use these two data sets to investigate their relative contributions to the total AOT variation associated with the MJO. However, unlike the MISR dust discrimination, which is based on particle shape retrievals, the smoke discrimination is less certain, based on assumed partitioning of maritime aerosol for both MISR and MODIS. The temporal evolution and spatial patterns of the tau(sub dust) anomalies associated with the MJO are consistent between MODIS and MISR. The tau(sub dust) anomalies are very similar to those of tau anomalies, and are of comparable magnitude. In contrast, the MJO-related tau(sub smoke) anomalies are rather small, and the tau(sub mar) anomalies are negligible. The consistency between the MODIS and MISR results suggests that dust aerosol is the dominant component on the intra-seasonal time scale over the tropical Atlantic Ocean.

  5. Changes in radiative forcing in Amazonia: the influence of clouds and aerosols controlling carbon budget

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo

    2016-07-01

    Surface radiation fluxes are critically important in photosynthetic processes that controls carbon assimilation and losses in tropical forests. Clouds and aerosols control the surface radiation fluxes in Amazonia, and the ratio of diffuse and direct radiation directly affects photosynthetic plant processes. Biomass burning emissions changes the atmosphere aerosol loading. The background aerosol optical thickness in wet season Amazonia is about 0.1 at 550 nm, while during the dry season AOT can reach values as high as 3-4 over large areas. The increase in diffuse radiation significantly enhance photosynthesis. Remote sensing measurements using MODIS and AERONET were used to measure the large scale aerosol distribution over Amazonia, and LBA flux towers provided the carbon balance over several sites. The enhancement in carbon uptake for AOD between 0.1 and 1 can reach 45%. For AOD above 1, the reduction in the direct flux starts to dominate and a strong reduction in carbon uptake is observed. Cloud cover also has a huge impact on carbon balance in Amazonia, but it is more difficult to quantify. These effects controls carbon balance in Amazonia.

  6. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles.

    PubMed

    Sostarecz, Audra G; Gaidamauskas, Ernestas; Distin, Steve; Bonetti, Sandra J; Levinger, Nancy E; Crans, Debbie C

    2014-04-22

    We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats.

  8. MASTER OT J095503.19-355149.4 - a probable Dwarf Nova

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Kniazev, A.; Potter, S. B.; Lipunov, V.; Tiurina, N.; Gorbovskoy, E.

    2016-02-01

    Followup optical imaging and spectroscopic observations with SALT of the optical transient MASTER OT J095503.19-355149.4, tentatively identified (ATel #8741) as the optical counterpart of the Fermi GBM trigger 478121068 (GCN #19092), were conducted on 2016-02-26.78 UT. From un-calibrated g', r' and i' exposures (30 sec each) with the SALTICAM CCD camera, the transient appeared to be approximately 1 mag brighter (V ~ 17) than the MASTER-SAAO observations of the previous night (reported in ATel #8741) and was also seen to be a relatively red object compared to other stars in the field.

  9. Spectroscopic classification of PSN J13144705+5405055 (= MASTER OT J131447.05+540505.5)

    NASA Astrophysics Data System (ADS)

    Vanni, S.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Ochner, P.; Tomasella, L.; Turatto, M.

    2012-11-01

    We report that optical spectroscopy (range 340-820 nm; resolution 1.3 nm) obtained on Nov. 8.18 UT with the Asiago 1.82-m Copernico Telescope (+ AFOSC), shows that PSN J13144705+5405055 (= MASTER OT J131447.05+540505.5) is a type-Ia SN at a redshift z~0.033 (Sloan Digital Sky Survey Data Release 3). The best match was found with type-Ia SN 2002bo (Benetti et al. 2004, MNRAS, 348, 261) about 3-4 weeks after the B band maximum light.

  10. Complete Genome Sequence of the Larvicidal Bacterium Lysinibacillus sphaericus Strain OT4b.25

    PubMed Central

    Rey, Andrés; Silva-Quintero, Laura

    2016-01-01

    Lysinibacillus sphaericus OT4b.25 is a native Colombian strain isolated from coleopteran larvae in an oak forest near Bogotá D.C.; this strain has shown high levels of pathogenic activity against Culex quinquefasciatus larvae in laboratory assays compared to that of other members of the same species. Using Pacific Biosciences sequencing technology, we propose a chromosomal contig of 4,665,775 bp that, according to comparative analysis, is highly similar to that of reference strain L. sphaericus C3-41. PMID:27151786

  11. Synthesis and structure of [Na11(OtBu)10(OH)]: 1H NMR shift of a hydroxide ion encapsulated in a 21-vertex alcoholate cage.

    PubMed

    Geier, Jens; Grützmacher, Hansjörg

    2003-12-01

    [Na11(OtBu)10(OH)], a hydroxide enclosing 21-vertex cage compound, was found to crystallize from mixtures of sodium tert.butanolate with sodium hydroxide. Its structure can be derived from the known (NaOtBu)6-hexaprismane by replacing one butanolate unit with OH- and capping the latter with five additional units of NaOtBu. The hydroxide shows a signal at -3.21 ppm in the 1H NMR spectrum.

  12. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  13. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  14. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  15. Long-term changes of aerosol optical and radiative properties and their role in global dimming and brightening

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.; Papadimas, C. D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I.

    2009-04-01

    Global dimming and brightening (GDB) have profound effects on the Earth's environment. For example, GDB counteracts or supplements greenhouse warming. Atmospheric aerosols, through their interaction with solar radiation (direct, indirect and semi-direct effects) can affect GDB. Changes in aerosol burden or other physical and optical properties can modify tendencies of GDB. For example, satellite observations of aerosol amounts, available since the early 1980s, but only over the oceans, indicate a downward trend since about 1990, consistent with the observed brightening during this period. There is a need, however, to investigate similar trends, but also over land, and to relate them with contemporary GDB. The seasonal and inter-annual variability of the natural, but also anthropogenic aerosol direct radiative effect on solar radiation at the Earth's surface (DREsurf) and the contribution of aerosols to global dimming and brightening (GDB) is estimated over the period 1984-2001. This is achieved by using a spectral radiative transfer model together with Total Ozone Mapping Spectrometer (TOMS) aerosol optical thickness (AOT) and other satellite (International Satellite Cloud Climatology Project, ISCCP-D2), NCEP/NCAR reanalysis and Global Aerosol Data Set (GADS) data for surface and atmospheric parameters. The major findings are mostly related to natural and less to anthropogenic aerosols because of limitations of the TOMS observational technique. The model results indicate that aerosols exert a strong surface cooling over the globe by reducing locally the incoming surface solar radiation by up to 70 W m-2. This direct radiative effect averaged over the globe for the period 1984-2001, is equivalent to 5 W m-2, associated with 6.5 and 3.5 W m-2, for the Northern and Southern Hemispheres, respectively. However, this aerosol DREsurf effect shows an important inter-annual variability as large as 200%. A strong solar brightening, or decreased aerosol DREsurf, by as much as

  16. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  17. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  18. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  19. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  20. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Astrophysics Data System (ADS)

    Mathur, A. K.; Pederson, S.

    1982-08-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  1. Solar energy system performance evaluation: Honeywell OTS 41, Shenandoah (Newman), Georgia

    NASA Astrophysics Data System (ADS)

    Mathur, A. K.; Pederson, S.

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of the data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-are heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics.

  2. SpOT the Correct Tissue Every Time in Multi-Tissue Blocks

    PubMed Central

    Coffey, Anna H.; Berry, Deborah L.; Johnson, Michael D.

    2015-01-01

    Multi-tissue paraffin blocks provide high throughput analysis with increased efficiency, experimental uniformity, and reduced time and cost. Tissue microarrays make up the majority of multi-tissue paraffin blocks, but increasingly, researchers are using non-arrayed blocks containing larger tissues from multiple individuals which can provide many of the advantages of tissue microarrays without substantial investment in planning and equipment. A critical component of any multi-tissue analysis is the orientation method used to identify each individual tissue. Although methods exist to maintain proper orientation and identification of tissues in multi-tissue blocks, most are not well-suited to non-arrayed blocks, may consume valuable space within an array and/or are difficult to produce in the standard histology laboratory. The Specimen Orientation Tag (SpOT) is a simple, low cost orientation tool that is clearly visible in paraffin blocks and all tissue sections for reliable specimen identification in arrayed and non-arrayed layouts. The SpOT provides advantages over existing orientation methods for non-arrayed blocks as it does not require any direct modification to the tissue and allows for flexibility in the arrangement of tissue pieces. PMID:26067587

  3. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  4. Accuracy of Conventional PCR Targeting the 16S rRNA Gene with the Ot-16sRF1 and Ot-16sRR1 Primers for Diagnosis of Scrub Typhus: a Case-Control Study.

    PubMed

    Kim, Choon-Mee; Cho, Min Keun; Kim, Dong-Min; Yun, Na-Ra; Kim, Seok Won; Jang, Sook Jin; Ahn, Young-Joon; Lim, Donghoon

    2016-01-01

    We retrospectively evaluated the accuracy of conventional PCR targeting the 16S rRNA gene (16S C-PCR) using the Ot-16sRF1/Ot-16sRR1 primers for diagnosing scrub typhus. The diagnosis of Orientia tsutsugamushi infection by 16S C-PCR presented an increased sensitivity of 87.0% and specificity of 100% compared with those obtained with other targets and is thus a simple and clinically useful method with good diagnostic accuracy.

  5. Simulation of Aerosols and Chemistry with a Unified Global Model

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    This project is to continue the development of the global simulation capabilities of tropospheric and stratospheric chemistry and aerosols in a unified global model. This is a part of our overall investigation of aerosol-chemistry-climate interaction. In the past year, we have enabled the tropospheric chemistry simulations based on the GEOS-CHEM model, and added stratospheric chemical reactions into the GEOS-CHEM such that a globally unified troposphere-stratosphere chemistry and transport can be simulated consistently without any simplifications. The tropospheric chemical mechanism in the GEOS-CHEM includes 80 species and 150 reactions. 24 tracers are transported, including O3, NOx, total nitrogen (NOy), H2O2, CO, and several types of hydrocarbon. The chemical solver used in the GEOS-CHEM model is a highly accurate sparse-matrix vectorized Gear solver (SMVGEAR). The stratospheric chemical mechanism includes an additional approximately 100 reactions and photolysis processes. Because of the large number of total chemical reactions and photolysis processes and very different photochemical regimes involved in the unified simulation, the model demands significant computer resources that are currently not practical. Therefore, several improvements will be taken, such as massive parallelization, code optimization, or selecting a faster solver. We have also continued aerosol simulation (including sulfate, dust, black carbon, organic carbon, and sea-salt) in the global model to cover most of year 2002. These results have been made available to many groups worldwide and accessible from the website http://code916.gsfc.nasa.gov/People/Chin/aot.html.

  6. Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31

    PubMed Central

    Peña-Montenegro, Tito David; Dussán, Jenny

    2013-01-01

    Lysinibacillus sphaericus strain OT4b.31 is a native Colombian strain having no larvicidal activity against Culex quinquefasciatus and is widely applied in the bioremediation of heavy-metal polluted environments. Strain OT4b.31 was placed between DNA homology groups III and IV. By gap-filling and alignment steps, we propose a 4,096,672 bp chromosomal scaffold. The whole genome (consisting of 4,856,302 bp long, 94 contigs and 4,846 predicted protein-coding sequences) revealed differences in comparison to the L. sphaericus C3-41 genome, such as syntenial relationships, prophages and putative mosquitocidal toxins. Sphaericolysin B354, the coleopteran toxin Sip1A and heavy metal resistance clusters from nik, ars, czc, cop, chr, czr and cad operons were identified. Lysinibacillus sphaericus OT4b.31 has applications not only in bioremediation efforts, but also in the biological control of agricultural pests. PMID:24501644

  7. REVIEWS OF TOPICAL PROBLEMS: Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions

    NASA Astrophysics Data System (ADS)

    Vanag, Vladimir K.

    2004-09-01

    Advances in nonequilibrium pattern formation in reaction-diffusion systems are reviewed. Special emphasis is placed on patterns found in the spatially extended Belousov-Zhabotinsky reaction dispersed in aerosol OT water-in-oil microemulsions (BZ-AOT system): Turing patterns, packet and standing waves, antispirals and segmented spirals, and accelerating waves and oscillons. All experimental results are explained theoretically and reproduced in computer simulations.

  8. Chemical, Physical and Optical Properties of Saharan Dust Aerosols at a Marine Site in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Ortiz Montalvo, D. L.; Mayol Bracero, O. L.; Morales, F.; Sheridan, P.; Ogren, J. A.

    2005-12-01

    Atmospheric dust particles blown from the Sahara across the Atlantic into the Caribbean have an impact on its climate and public health. These particles may play a significant role in radiative forcing, affecting the extinction of solar radiation and thus having an influence on climate. About half of the dust that travels from Africa contains particles that are small enough to inhale. Human breathe them into the respiratory system and they settle in the lungs causing respiratory problems. To have a better understanding of these effects, information is needed on the properties of these aerosols. As part of this study, chemical, physical and optical characterization is being performed on aerosol samples collected at a marine site on the northeastern tip of Puerto Rico (Cabezas de San Juan, Fajardo), during periods with and without Saharan incursions. Stacked-filter units (SFU) are used to collect particles with diameters smaller than 1.7 μm, using Nuclepore, quartz and Teflon filters. These filter samples are analyzed to obtain the chemical composition of the particles. Initially we are focusing on the carbonaceous fraction (elemental and organic carbon, EC, and OC) of the aerosol using thermal/optical analysis. Online measurements of total particle number concentrations and aerosol light scattering coefficients are performed using a condensation particle counter and an integrating nephelometer, respectively. In addition, a sunphotometer, part of AERONET (http://aeronet.gsfc.nasa.gov/), is used to obtain the aerosol optical thickness (AOT). Preliminary results include only samples collected from air masses under the influence of Saharan dust, as signified by AOT satellite images from MODIS and the results from the air masses backward trajectories calculated with the NOAA HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model. In terms of the chemical composition, EC concentrations were at low-to-undetectable levels, indicating that OC concentrations

  9. DAO spectroscopic classification of MASTER OT J140958.91+174549.4 as a core-collapse supernova.

    NASA Astrophysics Data System (ADS)

    Balam, D. D.; Graham, M. L.

    2016-04-01

    A spectrum was obtained on UT April 30.39 of MASTER OT J140958.91+174549.4 (CSS160427:140959+174549) using the 1.82-m Plaskett telescope (National Research Council of Canada) covering the range 365-710 nm (resolution 0.35 nm). Cross-correlation with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows MASTER OT J140958.91+174549.4 to be a core-collapse supernova near maximum light.

  10. Science verification of operational aerosol and cloud products for TROPOMI on Sentinel-5 precursor

    NASA Astrophysics Data System (ADS)

    Lelli, Luca; Gimeno-Garcia, Sebastian; Sanders, Abram; Sneep, Maarten; Rozanov, Vladimir V.; Kokhanvosky, Alexander A.; Loyola, Diego; Burrows, John P.

    2016-04-01

    With the approaching launch of the Sentinel-5 precursor (S-5P) satellite, scheduled by mid 2016, one preparatory task of the L2 working group (composed by the Institute of Environmental Physics IUP Bremen, the Royal Netherlands Meteorological Institute KNMI De Bilt, and the German Aerospace Center DLR Oberpfaffenhofen) has been the assessment of biases among aerosol and cloud products, that are going to be inferred by the respective algorithms from measurements of the platform's payload TROPOspheric Monitoring Instrument (TROPOMI). The instrument will measure terrestrial radiance with varying moderate spectral resolutions from the ultraviolet throughout the shortwave infrared. Specifically, all the operational and verification algorithms involved in this comparison exploit the sensitivity of molecular oxygen absorption (the A-band, 755-775 nm, with a resolution of 0.54 nm) to changes in optical and geometrical parameters of tropospheric scattering layers. Therefore, aerosol layer height (ALH) and thickness (AOT), cloud top height (CTH), thickness (COT) and albedo (CA) are the targeted properties. First, the verification of these properties has been accomplished upon synchronisation of the respective forward radiative transfer models for a variety of atmospheric scenarios. Then, biases against independent techniques have been evaluated with real measurements of selected GOME-2 orbits. Global seasonal bias assessment has been carried out for CTH, CA and COT, whereas the verification of ALH and AOT is based on the analysis of the ash plume emitted by the icelandic volcanic eruption Eyjafjallajökull in May 2010 and selected dust scenes off the Saharan west coast sensed by SCIAMACHY in year 2009.

  11. Tropical Atlantic Dust and Smoke Aerosol Variations Related to the Madden-Julian Oscillation in MODIS and MISR Observations

    NASA Technical Reports Server (NTRS)

    Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.

    2013-01-01

    In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness (T(sub dust) and T(sub smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. T(sub dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70 percent of the total aerosol optical thickness (AOT), whereas T(sub smoke) is significantly smaller than T(sub dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the tdus anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted T(sub dust) anomalies is comparable to or even larger than that of the total T, while the T(sub smoke) anomaly represents about 15 percent compared to the total, which is quite different from their relative magnitudes to the total T on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.

  12. The validation and comparison of the GOCI aerosol optical thickness products: a case study of Tianjin 8.12

    NASA Astrophysics Data System (ADS)

    Yao, Lingling; Zhang, Xiaoyu; Yu, Hui; Jiang, Binbin

    2016-01-01

    COMSGOCI (Geostationary Ocean Color Imager) is the first geostationary ocean color satellite in the world launched by South Korea in June 2010, which includes eight bands from the visible to the infrared band. GOCI aerosol optical thickness (AOT) at 555nm was retrieved by atmospheric radiative transfer model based on two-stream approximation algorithm. Due to GOCI without near infrared band and has a high solar elevation angle, solar zenith angle must be recalibrated to solve the earth system albedo, and the surface reflectance solved by quack atmospheric correction and recalculated backward scatter coefficient. Evaluation of GOCIAOT with AERONET measurements showed that the average error becomes 0.107 from the original 0.393, that means GOCI aerosol optical thickness can be more accurately with the advanced two-stream approximation. Taking the eastern China in 3 and 4 December 2013 for example, comparing the GOCIAOT at 555nm, MODISAOT retrievals at 550nm, NPPAOT at 550nm and AERONET data products indicated that: take the AERONET data as reference, the error of three kinds of satellite data can be ordered as following: MODISAOT< GOCIAOT< NPPAOT and the GOCI-MODIS shows a bias of 0.02917 with the GOCI-NPP. GOCIAOT is 0.05714 generally bigger than that of MODISAOT. NPP-GOCI deviation is 0.10253. The deficiency of MODIS is its low spatial resolution and the high concentration of AOT will be mistaken for a cloud area. However, GOCI can well reflect the concentration and distribution of aerosols. Therefore, GOGI can provide real-time dynamic monitoring on China Eastern atmospheric environment and the accurate time event information of haze for each process can be obtained. Finally, applied GOCI to the "8.12 Tianjin bombings" and to monitor the migration and dispersion of pollutant.

  13. Entraining IDyOT: Timing in the Information Dynamics of Thinking

    PubMed Central

    Forth, Jamie; Agres, Kat; Purver, Matthew; Wiggins, Geraint A.

    2016-01-01

    We present a novel hypothetical account of entrainment in music and language, in context of the Information Dynamics of Thinking model, IDyOT. The extended model affords an alternative view of entrainment, and its companion term, pulse, from earlier accounts. The model is based on hierarchical, statistical prediction, modeling expectations of both what an event will be and when it will happen. As such, it constitutes a kind of predictive coding, with a particular novel hypothetical implementation. Here, we focus on the model's mechanism for predicting when a perceptual event will happen, given an existing sequence of past events, which may be musical or linguistic. We propose a range of tests to validate or falsify the model, at various different levels of abstraction, and argue that computational modeling in general, and this model in particular, can offer a means of providing limited but useful evidence for evolutionary hypotheses. PMID:27803682

  14. Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system

    NASA Astrophysics Data System (ADS)

    Cao, Liji; Peter, Jörg

    2010-05-01

    Following the assembly of a triple-modality SPECT-CT-OT small animal imaging system providing intrinsically co-registered projection data of all three submodalities and under the assumption and investigation of dual-labeled probes consisting of both fluorophores and radionuclides, a novel multi-modal reconstruction strategy is presented in this paper aimed at improving fluorescence-mediated tomography (FMT). The following reconstruction procedure is proposed: firstly, standard x-ray CT image reconstruction is performed employing the FDK algorithm. Secondly, standard SPECT image reconstruction is performed using OSEM. Thirdly, from the reconstructed CT volume data the surface boundary of the imaged object is extracted for finite element definition. Finally, the reconstructed SPECT data are used as a priori information within a Bayesian reconstruction framework for optical (FMT) reconstruction. We provide results of this multi-modal approach using phantom experimental data and illustrate that this strategy does suppress artifacts and facilitates quantitative analysis for optical imaging studies.

  15. Television Microwave Link (TML) Operational Test and Evaluation (OT/E)/integration test report

    NASA Astrophysics Data System (ADS)

    Bell, Wayne E.; Tran, Tuan A.

    1992-03-01

    Given here are the results of the Operational Test and Evaluation (OT&E)/Integration test on the 15 GHz Television Microwave Link (TML) system. The TML is commercial off the shelf equipment. It provides the capability for air traffic control information to be relayed to a remote display from the Federal Aviation Administration (FAA) Digital Bright Radar Indicator Tower (DBRITE) system located at the terminal facility. The TML system was integrated and tested with the DBRITE system. Testing was successfully completed and met all of the T&E/Integration requirements. The acceptability of the remote DBRITE display was evaluated by the air traffic controllers and the data displayed on the remote DBRITE display provided the necessary information for air traffic control services. Therefore, the TML system is recommended for deployment.

  16. The crystal structure of Z-Gly-Aib-Gly-Aib-OtBu.

    PubMed

    Gessmann, Renate; Brückner, Hans; Aivaliotis, Michalis; Petratos, Kyriacos

    2015-06-01

    The synthetic peptide Z-Gly-Aib-Gly-Aib-OtBu was dissolved in methanol and crystallized in a mixture of ethyl acetate and petroleum ether. The crystals belong to the centrosymmetric space group P4/n that is observed less than 0.3% in the Cambridge Structural Database. The first Gly residue assumes a semi-extended conformation (φ ±62°, ψ ∓131°). The right-handed peptide folds in two consecutive β-turns of type II' and type I or an incipient 310 -helix, and the left-handed counterpart folds accordingly in the opposite configuration. In the crystal lattice, one molecule is linked to four neighbors in the ab-plane via hydrogen bonds. These bonds form a continuous network of left- and right-handed molecules. The successive ab-planes stack via apolar contacts in the c-direction. An ethyl acetate molecule is situated on and close to the fourfold axis.

  17. Cloning, purification, crystallization and preliminary crystallographic analysis of acylphosphatase from Pyrococcus horikoshii OT3.

    PubMed

    Miyazono, Ken Ichi; Kudo, Norio; Tanokura, Masaru

    2004-06-01

    Acylphosphatase is one of the smallest enzymes and catalyzes the hydrolysis of the carboxy-phosphate bond. An extremely thermostable acylphosphatase from a hyperthermophilic archaea, Pyrococcus horikoshii OT3, has been cloned, expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method with potassium/sodium tartrate as the precipitant at pH 5.5. X-ray diffraction data have been collected to a highest resolution of 1.72 angstroms on a synchrotron-radiation source. The crystals belong to space group P3(2)21, with approximate unit-cell parameters a = b = 86.6, c = 75.4 angstroms and two monomers in the asymmetric unit.

  18. The importance of temporal collocation for the evaluation of aerosol models with observations

    NASA Astrophysics Data System (ADS)

    Schutgens, N. A. J.; Partridge, D. G.; Stier, P.

    2016-01-01

    It is often implicitly assumed that over suitably long periods the mean of observations and models should be comparable, even if they have different temporal sampling. We assess the errors incurred due to ignoring temporal sampling and show that they are of similar magnitude as (but smaller than) actual model errors (20-60 %).Using temporal sampling from remote-sensing data sets, the satellite imager MODIS (MODerate resolution Imaging Spectroradiometer) and the ground-based sun photometer network AERONET (AErosol Robotic NETwork), and three different global aerosol models, we compare annual and monthly averages of full model data to sampled model data. Our results show that sampling errors as large as 100 % in AOT (aerosol optical thickness), 0.4 in AE (Ångström Exponent) and 0.05 in SSA (single scattering albedo) are possible. Even in daily averages, sampling errors can be significant. Moreover these sampling errors are often correlated over long distances giving rise to artificial contrasts between pristine and polluted events and regions. Additionally, we provide evidence that suggests that models will underestimate these errors. To prevent sampling errors, model data should be temporally collocated to the observations before any analysis is made.We also discuss how this work has consequences for in situ measurements (e.g. aircraft campaigns or surface measurements) in model evaluation.Although this study is framed in the context of model evaluation, it has a clear and direct relevance to climatologies derived from observational data sets.

  19. Solar energy system performance evaluation: final report for Honeywell OTS 41, Shenandoah (Newnan), Georgia

    SciTech Connect

    Mathur, A K; Pederson, S

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-air heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 7 months of the Operational Test Period, the solar system collected 53 MMBtu of thermal energy of the total incident solar energy of 219 MMBtu and provided 11.4 MMBtu for cooling, 8.6 MMBtu for heating, and 8.1 MMBtu for domestic hot water. The projected net annual energy savings due to the solar system were approximately 50 MMBtu of fossil energy (49,300 cubic feet of natural gas) and a loss of 280 kWh(e) of electrical energy.

  20. The Persistent Eruption of UGC 2773-OT: finally, a decade-long extragalactic Eta Carinae analogue

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Andrews, Jennifer E.; Mauerhan, Jon C.; Zheng, WeiKang; Filippenko, Alexei V.; Graham, Melissa L.; Milne, Peter

    2016-02-01

    While supernova (SN) impostors resemble the Great Eruption of η Carinae in the sense that their spectra show narrow H lines and they have typical peak absolute magnitudes of -13 to -14 mag, most extragalactic events observed so far are quite different from η Car in duration. Their bright phases typically last for ˜100 d or less, rather than persisting for several years. The transient object UGC 2773-OT (discovered in 2009) had a similar peak absolute magnitude to other SN impostors, but with a gradual 5-yr pre-discovery rise. In the ˜6 yr since discovery, it has faded very slowly (0.26 mag yr-1). Overall, we suggest that its decade-long eruption is so far the best-known analogue of η Car's 19th century eruption. We discuss extensive spectroscopy of the ongoing eruption. The spectra show interesting changes in velocity and line shape that we discuss in detail, including an asymmetric Hα emission line that we show is consistent with the ejection of a bipolar nebula that could be very much like the Homunculus of η Car. Moreover, changes in the line width, line profile, blue excess emission resembling that of Type IIn SNe, and the intensity of Hα suggest the presence of strong circumstellar interaction in the eruption at late times. This supports the hypothesis that the extended plateau of η Car's eruption may have been powered by shock interaction as well. One interesting difference compared to η Car, however, is that UGC 2773-OT so far does not exhibit the repeated brief spikes in luminosity that have been associated with binary periastron events.

  1. Spectroscopic confirmation of MASTER OT J004514.13+420007.2 as a Classical Nova eruption in M31

    NASA Astrophysics Data System (ADS)

    Darnley, M. J.; Williams, S. C.

    2016-01-01

    We obtained a spectrum of the classical nova candidate MASTER OT J004514.13+420007.2 (ATel #8603, #8606) with the low-resolution (R~350) SPRAT spectrograph on the 2m Liverpool Telescope (Steele et al. 2004) on 2016 January 30.82 UT (2.4 days post-discovery; ATel #8606).

  2. Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer.

    PubMed

    Askarian-Amiri, Marjan E; Seyfoddin, Vahid; Smart, Chanel E; Wang, Jingli; Kim, Ji Eun; Hansji, Herah; Baguley, Bruce C; Finlay, Graeme J; Leung, Euphemia Y

    2014-01-01

    The transcription factor SOX2 is essential for maintaining pluripotency in a variety of stem cells. It has important functions during embryonic development, is involved in cancer stem cell maintenance, and is often deregulated in cancer. The mechanism of SOX2 regulation has yet to be clarified, but the SOX2 gene lies in an intron of a long multi-exon non-coding RNA called SOX2 overlapping transcript (SOX2OT). Here, we show that the expression of SOX2 and SOX2OT is concordant in breast cancer, differentially expressed in estrogen receptor positive and negative breast cancer samples and that both are up-regulated in suspension culture conditions that favor growth of stem cell phenotypes. Importantly, ectopic expression of SOX2OT led to an almost 20-fold increase in SOX2 expression, together with a reduced proliferation and increased breast cancer cell anchorage-independent growth. We propose that SOX2OT plays a key role in the induction and/or maintenance of SOX2 expression in breast cancer.

  3. Emerging Role of Long Non-Coding RNA SOX2OT in SOX2 Regulation in Breast Cancer

    PubMed Central

    Askarian-Amiri, Marjan E.; Seyfoddin, Vahid; Smart, Chanel E.; Wang, Jingli; Kim, Ji Eun; Hansji, Herah; Baguley, Bruce C.; Finlay, Graeme J.; Leung, Euphemia Y.

    2014-01-01

    The transcription factor SOX2 is essential for maintaining pluripotency in a variety of stem cells. It has important functions during embryonic development, is involved in cancer stem cell maintenance, and is often deregulated in cancer. The mechanism of SOX2 regulation has yet to be clarified, but the SOX2 gene lies in an intron of a long multi-exon non-coding RNA called SOX2 overlapping transcript (SOX2OT). Here, we show that the expression of SOX2 and SOX2OT is concordant in breast cancer, differentially expressed in estrogen receptor positive and negative breast cancer samples and that both are up-regulated in suspension culture conditions that favor growth of stem cell phenotypes. Importantly, ectopic expression of SOX2OT led to an almost 20-fold increase in SOX2 expression, together with a reduced proliferation and increased breast cancer cell anchorage-independent growth. We propose that SOX2OT plays a key role in the induction and/or maintenance of SOX2 expression in breast cancer. PMID:25006803

  4. 12 CFR 563b.515 - What information must I provide to OTS before I repurchase my shares?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... repurchase my shares? 563b.515 Section 563b.515 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF... What information must I provide to OTS before I repurchase my shares? (a) To repurchase stock in the first year following conversion, other than repurchases under § 563b.510(a)(3) or (a)(4), you must...

  5. 12 CFR 563b.515 - What information must I provide to OTS before I repurchase my shares?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... repurchase my shares? 563b.515 Section 563b.515 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF... What information must I provide to OTS before I repurchase my shares? (a) To repurchase stock in the first year following conversion, other than repurchases under § 563b.510(a)(3) or (a)(4), you must...

  6. 12 CFR 502.29 - How does OTS determine the condition component for a savings and loan holding company?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... holding company structure) is a composite rating of 4 or 5, OTS will assess a charge under the condition... for a savings and loan holding company? 502.29 Section 502.29 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY ASSESSMENTS AND FEES Assessments Savings and Loan Holding...

  7. 12 CFR 502.26 - How does OTS calculate the semi-annual assessment for savings and loan holding companies?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reflect OTS costs of supervising the holding company structure and: (i) There are multiple top-tier holding companies in the holding company structure; (ii) The top-tier holding company is organized outside...) Other circumstances indicate that the assessment of the top-tier holding company is inappropriate....

  8. 12 CFR 502.29 - How does OTS determine the condition component for a savings and loan holding company?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... holding company? (a) If the most recent examination rating assigned to the responsible savings and loan holding company (or most recent examination rating assigned to any savings and loan holding company in the... system. OTS uses the most recent rating of which the savings and loan holding company has been...

  9. 75 FR 63107 - Alternatives to the Use of External Credit Ratings in the Regulations of the OTS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... capital frameworks. (75 FR 52283) II. OTS Regulations Referencing Credit Ratings The non-capital... different regulations? \\8\\ 75 FR 52283, August 25, 2010. Alternatives for Replacing References to Credit... banking agencies), including alternative measures of credit-worthiness that may be used in lieu of...

  10. Aerosol MTF revisited

    NASA Astrophysics Data System (ADS)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak

    2014-05-01

    Different views of the significance of aerosol MTF have been reported. For example, one recent paper [OE, 52(4)/2013, pp. 046201] claims that the aerosol MTF "contrast reduction is approximately independent of spatial frequency, and image blur is practically negligible". On the other hand, another recent paper [JOSA A, 11/2013, pp. 2244-2252] claims that aerosols "can have a non-negligible effect on the atmospheric point spread function". We present clear experimental evidence of common significant aerosol blur and evidence that aerosol contrast reduction can be extremely significant. In the IR, it is more appropriate to refer to such phenomena as aerosol-absorption MTF. The role of imaging system instrumentation on such MTF is addressed too.

  11. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  12. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  13. Theileria sp. OT3 and other tick-borne pathogens in sheep and ticks in Italy: molecular characterization and phylogeny.

    PubMed

    Giangaspero, A; Marangi, M; Papini, R; Paoletti, B; Wijnveld, M; Jongejan, F

    2015-02-01

    PCR Reverse Line Blot (RLB) hybridization and sequencing were used to determine the dynamics of infection with tick-borne pathogens in one hundred apparently healthy sheep in Italy. Blood samples were tested once prior to the onset of the grazing season (June 2010) and once after the end of the grazing season (August 2010). Ticks collected from sheep and from the vegetation were also tested by PCR/RLB. Before grazing, 56% of the sheep harbored several tick-borne pathogens: Anaplasma ovis was the most prevalent (41%), followed by A. ovis co-infected with Theileria sp. OT3 (14%). After grazing, 87% of sheep were positive for A. ovis alone (41%), co-infected with Theileria sp. OT3 (8%) or co-infected with Babesia motasi (5%). Other sheep were infected with Anaplasma phagocytophilum alone (20%), co-infected with B. motasi (7%) or with Theileria sp. OT3 (5%) (p<0.001). After grazing, sheep were significantly more infected with tick-borne pathogens than before grazing. Ticks collected were all Haemaphysalis punctata (n-89) and 36% were positive for A. ovis, Ehrlichia ovina and A. ovis combined with A. phagocytophilum. Phylogenetic analysis including isolates from countries in the Mediterranean Basin show circulation of the same variants of Theileria sp. OT3, whereas two different geographical origins for the isolates of A. ovis and A. phagocytophilum were identified. This is the first report from Italy of Theileria sp. OT3 in sheep, whereas the detection of Ehrlichia ovina in ticks is worth noting, and the presence of A. phagocytophilum in sheep and in ticks poses a potential public health risk. PMID:25448422

  14. The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns

    NASA Astrophysics Data System (ADS)

    Brinksma, E. J.; Pinardi, G.; Volten, H.; Braak, R.; Richter, A.; SchöNhardt, A.; van Roozendael, M.; Fayt, C.; Hermans, C.; Dirksen, R. J.; Vlemmix, T.; Berkhout, A. J. C.; Swart, D. P. J.; Oetjen, H.; Wittrock, F.; Wagner, T.; Ibrahim, O. W.; de Leeuw, G.; Moerman, M.; Curier, R. L.; Celarier, E. A.; Cede, A.; Knap, W. H.; Veefkind, J. P.; Eskes, H. J.; Allaart, M.; Rothe, R.; Piters, A. J. M.; Levelt, P. F.

    2008-08-01

    Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCIAMACHY (DANDELIONS) is a project that encompasses validation of spaceborne measurements of NO2 by the Ozone Monitoring Instrument (OMI) and Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), and of aerosol by OMI and Advanced Along-Track Scanning Radiometer (AATSR), using an extensive set of ground-based and balloon measurements over the polluted area of the Netherlands. We present an extensive data set of ground-based, balloon, and satellite data on NO2, aerosols, and ozone obtained from two campaigns within the project, held during May-June 2005 and September 2006. We have used these data for first validation of OMI NO2, and the data are available through the Aura Validation Data Center website for use in other validation efforts. In this paper we describe the available data, and the methods and instruments used, including the National Institute of Public Health and the Environment (RIVM) NO2 lidar. We show that NO2 from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) compares well with in situ measurements. We show that different MAX-DOAS instruments, operating simultaneously during the campaign, give very similar results. We also provide unique information on the spatial homogeneity and the vertical and temporal variability of NO2, showing that during a number of days, the NO2 columns derived from measurements in different directions varied significantly, which implies that, under polluted conditions, measurements in one single azimuth direction are not always representative for the averaged field that the satellite observes. In addition, we show that there is good agreement between tropospheric NO2 from OMI and MAX-DOAS, and also between total NO2 from OMI and direct-sun observations. Observations of the aerosol optical thickness (AOT) show that values derived with three ground-based instruments correspond well with each other, and with

  15. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.

    PubMed

    Martinez, Anna Victoria; Małolepsza, Edyta; Domínguez, Laura; Lu, Qing; Straub, John E

    2015-07-23

    The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine-lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water-surfactant interface.

  16. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles

    PubMed Central

    2015-01-01

    The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine–lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water–surfactant interface. PMID:25337983

  17. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.

    PubMed

    Martinez, Anna Victoria; Małolepsza, Edyta; Domínguez, Laura; Lu, Qing; Straub, John E

    2015-07-23

    The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine-lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water-surfactant interface. PMID:25337983

  18. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    NASA Astrophysics Data System (ADS)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  19. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  20. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  1. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  2. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  3. Isolation and Pharmacological Characterization of α-Elapitoxin-Ot1a, a Short-Chain Postsynaptic Neurotoxin from the Venom of the Western Desert Taipan, Oxyuranus temporalis

    PubMed Central

    Barber, Carmel M.; Ahmad Rusmili, Muhamad Rusdi; Hodgson, Wayne C.

    2016-01-01

    Taipans (Oxyuranus spp.) are elapids with highly potent venoms containing presynaptic (β) and postsynaptic (α) neurotoxins. O. temporalis (Western Desert taipan), a newly discovered member of this genus, has been shown to possess venom which displays marked in vitro neurotoxicity. No components have been isolated from this venom. We describe the characterization of α-elapitoxin-Ot1a (α-EPTX-Ot1a; 6712 Da), a short-chain postsynaptic neurotoxin, which accounts for approximately 30% of O. temporalis venom. α-Elapitoxin-Ot1a (0.1–1 µM) produced concentration-dependent inhibition of indirect-twitches, and abolished contractile responses to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The inhibition of indirect twitches by α-elapitoxin-Ot1a (1 µM) was not reversed by washing the tissue. Prior addition of taipan antivenom (10 U/mL) delayed the neurotoxic effects of α-elapitoxin-Ot1a (1 µM) and markedly attenuated the neurotoxic effects of α-elapitoxin-Ot1a (0.1 µM). α-Elapitoxin-Ot1a displayed pseudo-irreversible antagonism of concentration-response curves to carbachol with a pA2 value of 8.02 ± 0.05. De novo sequencing revealed the main sequence of the short-chain postsynaptic neurotoxin (i.e., α-elapitoxin-Ot1a) as well as three other isoforms found in O. temporalis venom. α-Elapitoxin-Ot1a shows high sequence similarity (i.e., >87%) with other taipan short-chain postsynaptic neurotoxins. PMID:26938558

  4. Isolation and Pharmacological Characterization of α-Elapitoxin-Ot1a, a Short-Chain Postsynaptic Neurotoxin from the Venom of the Western Desert Taipan, Oxyuranus temporalis.

    PubMed

    Barber, Carmel M; Rusmili, Muhamad Rusdi Ahmad; Hodgson, Wayne C

    2016-03-01

    Taipans (Oxyuranus spp.) are elapids with highly potent venoms containing presynaptic (β) and postsynaptic (α) neurotoxins. O. temporalis (Western Desert taipan), a newly discovered member of this genus, has been shown to possess venom which displays marked in vitro neurotoxicity. No components have been isolated from this venom. We describe the characterization of α-elapitoxin-Ot1a (α-EPTX-Ot1a; 6712 Da), a short-chain postsynaptic neurotoxin, which accounts for approximately 30% of O. temporalis venom. α-Elapitoxin-Ot1a (0.1-1 µM) produced concentration-dependent inhibition of indirect-twitches, and abolished contractile responses to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The inhibition of indirect twitches by α-elapitoxin-Ot1a (1 µM) was not reversed by washing the tissue. Prior addition of taipan antivenom (10 U/mL) delayed the neurotoxic effects of α-elapitoxin-Ot1a (1 µM) and markedly attenuated the neurotoxic effects of α-elapitoxin-Ot1a (0.1 µM). α-Elapitoxin-Ot1a displayed pseudo-irreversible antagonism of concentration-response curves to carbachol with a pA₂ value of 8.02 ± 0.05. De novo sequencing revealed the main sequence of the short-chain postsynaptic neurotoxin (i.e., α-elapitoxin-Ot1a) as well as three other isoforms found in O. temporalis venom. α-Elapitoxin-Ot1a shows high sequence similarity (i.e., >87%) with other taipan short-chain postsynaptic neurotoxins. PMID:26938558

  5. Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Prather, Kimberly A.; Hatch, Courtney D.; Grassian, Vicki H.

    2008-07-01

    Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.

  6. Effect of Ozone Therapy (OT) on Healing of Colonic Anastomosis in a Rat Model of Peritonitis

    PubMed Central

    Erginel, Başak; Erginel, Turgay; Aksoy, Bilgin; Dokucu, Ali İhsan

    2014-01-01

    Background: Ozone is a three-oxygen molecule (O3). Ozone therapy (OT) is systematically effective when pathological inflammatory and immunologic processes are activated. Among of these conditions are wound healing, macular degeneration related to aging, and conditions that are ischemic or infectious. Aims: The aim of this study was to determine the effects of OT on wound healing of intestinal anastomosis in the presence of peritonitis in a rat model. Study Design: Animal experimentation. Methods: A total of 40 Wistar albino rats were randomized into four groups (n=10) including: sham (S), peritonitis (P), ozone 0 (O0), and ozone 24 (O24). In group S, only cecal dissection was carried out. The S group had only a cecal dissection and intestinal anastomosis performed, but no peritonitis. In all other groups, cecal ligation and puncture (CLP) followed the cecal dissection to induce bacterial peritonitis. 24 h after puncture, a cecal resection and ileocolic anastomosis were performed. In group P, 24 h after CLP, a cecal resection and ileocolic anastomosis were performed and no ozone was administered. In group O0, immediately after the anastomosis, and in group O24, starting 24 hours after the anastomosis, an intraperitoneal 1 mg/kg/day ozone administration was applied for seven days. On the seventh day the animals were sacrificed, the anastomotic bursting pressures (BP) and the hydroxyproline values of the anastomotic tissues were measured, and histopathologic examination of the anastomotic segment was carried out. Results: The highest BP was in group S, with 211±23.13 mmHg. The mean BP of group P was 141±56.25 mmHg, which was significantly lower than in the other two peritonitis groups that received ozone therapy, group O0 and O24, where it was 192±22 and 166±45 mmHg, respectively (p<0.05). The difference in the BP between groups O0 and O24 was not statistically significant (p>0.05). Histopathologic analyses of the anastomotic segments determined there was

  7. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  8. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  9. Development and Assessment of a Neural Network Approach for Retrieving Aerosol Properties from Multispectral, Multiangle Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Tucker-Simmons, Matthew

    Quantifying the microphysical properties of aerosols is crucial for quantifying global climate forcings. Satellite based aerosol retrievals usually rely on intensity measurements of the scattered light, but this approach has been proven inadequate for retrieving the complex refractive index and shape of aerosols, as well as the contamination from the ground surfaces. It is with these limitations in mind that we plan to improve the quality and scope of aerosol retrievals, by making use of the full capabilities of current and future polarimetric sensor systems. In order to utilize the increased information content on aerosol optical thickness (AOT), size distribution, shape and single scattering albedo (SSA), intrinsically available in multispectral-multiangle polarimetric observations, we make use of suitably constructed neural networks (NNs). We focus our analysis initially on simple retrievals over the ocean, in order to best assess the potential of the NNs as a practical approach and to identify any possible limitations. In particular, we find that, by choosing a suitable combination of inputs and outputs, based on principal component analysis (PCA), we can develop a robust NN retrieval trained on synthetic datasets. We further show the value of using cascaded NNs, to improve retrieval accuracy. Consequently, we demonstrate the potential and limitations of this approach on real aircraft instrument data from the Research Scanning Polarimeter (RSP). Discrepancies in the retrievals are found to be due to limitations from the use of spherical particle assumptions and preliminary efforts to overcome this restriction are identified. It is our belief that the value of these methods, in comparison to existing local inversion schemes, will further increase with the expected magnification of data sizes on future missions, such as the Aerosol-Cloud-Ecosystem (ACE) Mission.

  10. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    NASA Astrophysics Data System (ADS)

    Esparza, Angel Eduardo

    2011-12-01

    retrieve the size distribution of them. This method permits the assessment of aerosols in the ambient in-situ, without physically extracting them from their current state, as the filter technique does. The second objective was an analysis and comparison of the aerosol optical thickness (AOT) data between ground-based instruments and satellite data. In this project, the groundbased instruments are the Multi Filter Rotating Shadowband Radiometers (MFRSR) installed at UTEP and the nearest sun photometer facility, a NASA's Aerosol Robotic Network (AERONET), located at White Sands, New Mexico. The satellite data is provided by the NASA's Multi-angle Imaging Spectro-radiometer (MISR) instrument located in the Terra satellite. Finally, the third objective was to estimate ground particulate matter concentration of particles no greater than 2.5 mum in diameter (PM2.5) by using the MISR's satellite data. This objective was achieved by implementing an empirical mathematical model that includes measured data. In addition, this model addressed the geographic characteristics of the region as well as several factors such as season, relative humidity (RH) and the height of the planetary boundary layer (PBL).

  11. Almost gone: SN 2008S and NGC 300 2008OT-1 are fainter than their progenitors

    NASA Astrophysics Data System (ADS)

    Adams, S. M.; Kochanek, C. S.; Prieto, J. L.; Dai, X.; Shappee, B. J.; Stanek, K. Z.

    2016-08-01

    We present late-time Hubble and Spitzer Space Telescope (SST) imaging of SN 2008S and NGC 300 2008OT-1, the prototypes of a common class of stellar transients whose true nature is debated. Both objects are still fading and are now >15 times fainter than their progenitors in the mid-IR and are undetected in the optical and near-IR. Data from the Large Binocular Telescope and Magellan show that neither source has been variable in the optical since fading in 2010. We present models of surviving sources obscured by dusty shells or winds and find that extreme dust models are needed for surviving stars to be successfully hidden by dust, which suggests that these transients may be genuine, but low-energy, supernova explosions. Though SN 2008S is not detected in Chandra X-Ray Observatory data taken in 2012, the flux limits allow the fading IR source to be powered solely by the shock interaction of ejecta with the circumstellar medium if the shock velocity at the time of the observation was ≳20 per cent slower than estimated from emission line widths while the transient was still optically bright. Continued SST monitoring and 10-20 μm observations with James Webb Space Telescope can resolve any remaining ambiguities.

  12. MASTER OT J130845.02-323254.9: Variable Stars as Source of the High Energy Neutrino.

    NASA Astrophysics Data System (ADS)

    Lipunov, V.; Tyurina, N.; Gorbovskoy, E.; Buckley, D.

    2016-09-01

    As reported in ATel #9425 Global MASTER Net auto-detection system ( ( Lipunov et al., MASTER Global Robotic Net, Advances in Astronomy, 2010, 30L) discovered OT source at (RA, Dec) = 13h 08m 45.02s -32d 32m 54.9s on 2016-08-24.73811 UT during inspection of HESE IceCube alert (14 August 2016, 58537957 trigger number http://gcn.gsfc.nasa.gov/notices_amon/58537957_128340.amon , Dornic et al. ATEL #9440 ). MASTER-SAAO auto-detection system detected again OT at RA (2000) = 13 08 45.02 -32 32 54.9 on 2016-09-04.7627UT (ATEL #9425).

  13. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  14. FLOYDS Classification of MASTER OT J164244.87+272054.3 as a Type Ia Supernova Near Peak

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, G.; Arcavi, I.; Howell, D. A.; McCully, C.; Valenti, S.

    2016-05-01

    We obtained a spectrum of MASTER OT J164244.87+272054.3 (ATel #9022) on 2016 May 6.6 UT with the robotic FLOYDS instrument mounted on the LCOGT 2-meter telescope in Siding Spring, Australia. Using SNID (Blondin & Tonry 2007, ApJ, 666, 1024), we find a good fit to the normal Type Ia SN 1990N 2 days after maximum light at redshift z=0.108.

  15. Intercomparison of Aerosol Optical Thickness Derived from MODIS and in Situ Ground Datasets over Jaipur, a Semi-arid Zone in India.

    PubMed

    Payra, Swagata; Soni, Manish; Kumar, Anikender; Prakash, Divya; Verma, Sunita

    2015-08-01

    The first detailed seasonal validation has been carried out for the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua satellites Level 2.0 Collection Version 5.1 AOT (τMODIS) with Aerosol Robotic Network (AERONET) Level 2.0 AOT (τAERONET) for the years 2009-2012 over semi-arid region Jaipur, northwestern India. The correlation between τMODIS versus τAERONET at 550 nm is determined with different spatial and temporal size windows. The τMODIS overestimates τAERONET within a range of +0.06 ± 0.24 during the pre-monsoon (April-June) season, while it underestimates the τAERONET with -0.04 ± 0.12 and -0.05 ± 0.18 during dry (December-March) and post-monsoon (October-November) seasons, respectively. Correlation without (with) error envelope has been found for pre-monsoon at 0.71 (0.89), post-monsoon at 0.76 (0.94), and dry season at 0.78 (0.95). τMODIS is compared to τAERONET at three more ground AERONET stations in India, i.e., Kanpur, Gual Pahari, and Pune. Furthermore, the performance of MODIS Deep Blue and Aqua AOT550 nm (τDB550 nm and τAqua550 nm) with τAERONET is also evaluated for all considered sites over India along with a U.S. desert site at White Sand, Tularosa Basin, NM. The statistical results reveal that τAqua550 nm performs better over Kanpur and Pune, whereas τDB550 nm performs better over Jaipur, Gual Pahari, and White Sand High Energy Laser Systems Test Facility (HELSTF) (U.S. site).

  16. Limited Production (LP) Precision Runway Monitor (PRM) Operational Test and Evaluation integration and OT and E Operational Test Plan

    NASA Astrophysics Data System (ADS)

    Livings, Jeffrey

    1995-05-01

    This document defines the Test Plan and corresponding Test Verification Requirements Traceability Matrix (TVRTM) that will be used to conduct the Limited Production (LP) Precision Runway Monitor (PRM) Operational Test and Evaluation (OT and E) Integration and OT and E Operational tests. These tests will be conducted at the Minneapolis-St. Paul International Airport following the Contractor Site Acceptance Test. The LP PRM OT and E test effort will concentrate on Operational Effectiveness and Suitability. The Operational Effectiveness Test consists of a review of the contractor performed Development Test and Evaluation (DT and E) and Site Acceptance Tests. This review will evaluate whether each of the Measures of Effectiveness had been satisfactorily tested and whether the results meet the Minimum Acceptable Operational REquirements MAORs). This review will be conducted solely by test engineers and does not require the PRM system. The Operational Suitability Tests will expose the test participants (Air Traffic (AT) Controllers and Airway Facilities (AF) Technicians) to the PRM system in an operational environment while they perform specified operational procedures. These tests will be conducted in two separate phases: AT Suitability and AF Suitability. Each of these phases is focused on the specific test participants.

  17. Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development.

    PubMed

    Srivastava, Anjil Kumar; Zhang, Cunjin; Sadanandom, Ari

    2016-05-01

    Salinity is one of the major environmental stresses affecting rice production worldwide. Improving rice salt tolerance is a critical step for sustainable food production. Posttranslational modifications of proteins greatly expand proteome diversity, increase functionality and allow quick responses to environmental stresses, all at low cost to the cell. SUMO mediated modification of substrate proteins is a highly dynamic process governed by the balance of activities of SUMO E3 ligases and deconjugating SUMO proteases. In recent years, SUMO (Small Ubiquitin like Modifier) conjugation of proteins has emerged as an influential regulator of stress signaling in the model plant Arabidopsis. However SUMOylation remain largely under studied in crop plants. We recently identified the SUMO protease gene family in rice and demonstrated a role for OsOTS1 SUMO proteases in salt stress. Interestingly, rice plants silencing OsOTS1 also show significantly reduced germination rate. Knockdown of OsOTS1 gene expression affects root growth by primarily reducing cell size rather than cell division. PMID:27119209

  18. Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development.

    PubMed

    Srivastava, Anjil Kumar; Zhang, Cunjin; Sadanandom, Ari

    2016-05-01

    Salinity is one of the major environmental stresses affecting rice production worldwide. Improving rice salt tolerance is a critical step for sustainable food production. Posttranslational modifications of proteins greatly expand proteome diversity, increase functionality and allow quick responses to environmental stresses, all at low cost to the cell. SUMO mediated modification of substrate proteins is a highly dynamic process governed by the balance of activities of SUMO E3 ligases and deconjugating SUMO proteases. In recent years, SUMO (Small Ubiquitin like Modifier) conjugation of proteins has emerged as an influential regulator of stress signaling in the model plant Arabidopsis. However SUMOylation remain largely under studied in crop plants. We recently identified the SUMO protease gene family in rice and demonstrated a role for OsOTS1 SUMO proteases in salt stress. Interestingly, rice plants silencing OsOTS1 also show significantly reduced germination rate. Knockdown of OsOTS1 gene expression affects root growth by primarily reducing cell size rather than cell division.

  19. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

    PubMed Central

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-il; Moon, Minho

    2016-01-01

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  20. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels.

    PubMed

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-Il; Moon, Minho

    2016-08-31

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  1. In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing

    NASA Astrophysics Data System (ADS)

    Chaudhry, Zahra; Martins, J. Vanderlei; Li, Zhanqing; Tsay, Si-Chee; Chen, Hongbin; Wang, Pucai; Wen, Tianxue; Li, Can; Dickerson, Russell R.

    2007-12-01

    As a part of the EAST-AIRE study, Nuclepore filters were collected in two size ranges (coarse, 2.5 μm < d < 10 μm, and fine, d < 2.5 μm) from January to May 2005 in Xianghe, about 70 km southeast of Beijing, and analyzed for aerosol mass concentration, spectral absorption efficiency and absorption coefficient. Twelve-hour aerosol mass concentration measurements showed an average concentration of 120 μg/m3 in the coarse mode and an average concentration of 25 μg/m3 in the fine mode. To determine how representative ground-based measurements are of the total column, the mass concentration data was compared with AERONET AOT at 500 nm and AERONET size distribution data. The vertical distribution of the aerosols were studied with a micropulse lidar and in the cases where the vertical column was found to be fairly homogenous, the comparisons of the filter results with AERONET agreed favorably, while in the cases of inhomogeneity, the comparisons have larger disagreement. For fine mode aerosols, the average spectral absorption efficiency equates well to a λ-1 model, while the coarse mode shows a much flatter spectral dependence, consistent with large particle models. The coarse mode absorption efficiency was compatible with that of the fine mode in the NIR region, indicating the much stronger absorption of the coarse mode due to its composition and sizable mass. Single scattering albedo results are presented from a combination between absorption coefficients derived from the filter measurements, from a PSAP and from a three-wavelength Nephelometer.

  2. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  3. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  4. Aerosol optical properties in pristine and biomass burning areas in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Rizzo, L.; Lucca, S.; Paixao, M.; Sena, E. T.; Cirino, G.; Arana, A.

    2011-12-01

    sources. Biomass burning emissions in the dry season. PM2.5 aerosol concentrations of about 300 ug/m3 were measured during dry season. AOT values at 550 nm above 3 are frequently observed in Porto Velho. Black carbon were measured at 20 ug/m3 in the dry season. Aerosol light scattering above 300 Mm-1 were measured. Remote sensing observations shows a large spatial distribution of aerosols, with significant aerosol radiative forcing. Forcing efficiency for biomass burning aerosols varied between 38 w/m2/AOD to 45 w/m2/AOD, with significant impacts on carbon cycling due to the increase in diffuse radiation that enhance carbon uptake by the forest. This work was supported by FAPESP Thematic Project AEROCLIMA (08/58100-2).

  5. The importance of temporal collocation for the evaluation of aerosol models with observations

    NASA Astrophysics Data System (ADS)

    Schutgens, N. A. J.; Partridge, D. G.; Stier, P.

    2015-09-01

    It is often implicitly assumed that over suitably long periods the mean of observations and models should be comparable, even if they have different temporal sampling. We assess the errors incurred due to ignoring temporal sampling and show they are of similar magnitude as (but smaller than) actual model errors (20-60 %). Using temporal sampling from remote sensing datasets (the satellite imager MODIS and the ground-based sun photometer network AERONET) and three different global aerosol models, we compare annual and monthly averages of full model data to sampled model data. Our results show that sampling errors as large as 100 % in AOT (Aerosol Optical Thickness), 0.4 in AE (Ångström Exponent) and 0.05 in SSA (Single Scattering Albedo) are possible. Even in daily averages, sampling errors can be significant. More-over these sampling errors are often correlated over long distances giving rise to artificial contrasts between pristine and polluted events and regions. Additionally, we provide evidence that suggests that models will underestimate these errors. To prevent sampling errors, model data should be temporally collocated to the observations before any analysis is made. We also discuss how this work has consequences for in-situ measurements (e.g. aircraft campaigns or surface measurements) in model evaluation.

  6. Aerosol Optical Thickness Patterns and their Trend in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Holben, B. N.; Zhang, J.; Campbell, J. R.; Edgerton, E.; De Gouw, J. A.; Eloranta, E. W.; Hand, J. L.; Holz, R.; Hyer, E. J.; Jacob, D. J.; Kaku, K.; kuang, S.; Lynch, P.; Newchurch, M.; Schichtel, B. A.; Shaw, S. L.; Shi, Y.; Toon, O. B.; Trepte, C. R.

    2013-12-01

    The Southeastern United States (SEUS) has long been known for its large scale regional hazes, fueled by a complex interaction of anthropogenic and biogenic emissions. Chemically, strong zonal gradients in organic to inorganic ratio coupled with high humidity also likely lead to microphysically induced variability in ambient light extinction to dry mass ratios. As part of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Southeast Nexus (SENEX) campaigns, a mesonet of Aerosol Robotic Network (AERONET) sun photometers was deployed across the SEUS in the summer of 2013. The University of Wisconsin HSRL lidar was also placed alongside an Ozone Dial lidar at the University of Alabama Huntsville. We present early results from the 2013 aerosol ground network deployment and relate findings to previous years. AERONET data is combined with MODIS and MISR satellite data along with surface particulate matter measurements to understand the regional extent of the SEUS haze and its relationship to surface particulate matter concentrations. We further examine the apparent downward trend in regional AOT. Special emphasis is placed on applying ground network data to issues of satellite data quality assurance, data assimilation and large scale modeling.

  7. Retrieval of dust storm aerosols using an integrated Neural Network model

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Wong, Man Sing; Lee, Kwon Ho; Campbell, James R.; Shea, Yu-kai

    2015-12-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modeling as it is known to have a significant impact on the radiation budget and atmospheric stability. This study develops an integrated model for dust storm detection and retrieval based on the combination of geostationary satellite images and forward trajectory model. The proposed model consists of three components: (i) a Neural Network (NN) model for near real-time detection of dust storms; (ii) a NN model for dust Aerosol Optical Thickness (AOT) retrieval; and (iii) the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to analyze the transports of dust storms. These three components are combined using an event-driven active geo-processing workflow technique. The NN models were trained for the dust detection and validated using sunphotometer measurements from the AErosol RObotic NETwork (AERONET). The HYSPLIT model was applied in the regions with high probabilities of dust locations, and simulated the transport pathways of dust storms. This newly automated hybrid method can be used to give advance near real-time warning of dust storms, for both environmental authorities and public. The proposed methodology can be applied on early warning of adverse air quality conditions, and prediction of low visibility associated with dust storm events for port and airport authorities.

  8. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  9. Emergency protection from aerosols

    SciTech Connect

    Cristy, G.A.; Chester, C.V.

    1981-07-01

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  10. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  11. MISR Aerosol Typing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  12. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ16-22 and Sup357-13 in AOT reverse micelles

    NASA Astrophysics Data System (ADS)

    Martinez, Anna Victoria; Małolepsza, Edyta; Rivera, Eva; Lu, Qing; Straub, John E.

    2014-12-01

    Knowledge of how intermolecular interactions of amyloid-forming proteins cause protein aggregation and how those interactions are affected by sequence and solution conditions is essential to our understanding of the onset of many degenerative diseases. Of particular interest is the aggregation of the amyloid-β (Aβ) peptide, linked to Alzheimer's disease, and the aggregation of the Sup35 yeast prion peptide, which resembles the mammalian prion protein linked to spongiform encephalopathies. To facilitate the study of these important peptides, experimentalists have identified small peptide congeners of the full-length proteins that exhibit amyloidogenic behavior, including the KLVFFAE sub-sequence, Aβ16-22, and the GNNQQNY subsequence, Sup357-13. In this study, molecular dynamics simulations were used to examine these peptide fragments encapsulated in reverse micelles (RMs) in order to identify the fundamental principles that govern how sequence and solution environment influence peptide aggregation. Aβ16-22 and Sup357-13 are observed to organize into anti-parallel and parallel β-sheet arrangements. Confinement in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles is shown to stabilize extended peptide conformations and enhance peptide aggregation. Substantial fluctuations in the reverse micelle shape are observed, in agreement with earlier studies. Shape fluctuations are found to facilitate peptide solvation through interactions between the peptide and AOT surfactant, including direct interaction between non-polar peptide residues and the aliphatic surfactant tails. Computed amide I IR spectra are compared with experimental spectra and found to reflect changes in the peptide structures induced by confinement in the RM environment. Furthermore, examination of the rotational anisotropy decay of water in the RM demonstrates that the water dynamics are sensitive to the presence of peptide as well as the peptide sequence. Overall, our results

  13. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles.

    PubMed

    Martinez, Anna Victoria; Małolepsza, Edyta; Rivera, Eva; Lu, Qing; Straub, John E

    2014-12-14

    Knowledge of how intermolecular interactions of amyloid-forming proteins cause protein aggregation and how those interactions are affected by sequence and solution conditions is essential to our understanding of the onset of many degenerative diseases. Of particular interest is the aggregation of the amyloid-β (Aβ) peptide, linked to Alzheimer's disease, and the aggregation of the Sup35 yeast prion peptide, which resembles the mammalian prion protein linked to spongiform encephalopathies. To facilitate the study of these important peptides, experimentalists have identified small peptide congeners of the full-length proteins that exhibit amyloidogenic behavior, including the KLVFFAE sub-sequence, Aβ16-22, and the GNNQQNY subsequence, Sup357-13. In this study, molecular dynamics simulations were used to examine these peptide fragments encapsulated in reverse micelles (RMs) in order to identify the fundamental principles that govern how sequence and solution environment influence peptide aggregation. Aβ16-22 and Sup357-13 are observed to organize into anti-parallel and parallel β-sheet arrangements. Confinement in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles is shown to stabilize extended peptide conformations and enhance peptide aggregation. Substantial fluctuations in the reverse micelle shape are observed, in agreement with earlier studies. Shape fluctuations are found to facilitate peptide solvation through interactions between the peptide and AOT surfactant, including direct interaction between non-polar peptide residues and the aliphatic surfactant tails. Computed amide I IR spectra are compared with experimental spectra and found to reflect changes in the peptide structures induced by confinement in the RM environment. Furthermore, examination of the rotational anisotropy decay of water in the RM demonstrates that the water dynamics are sensitive to the presence of peptide as well as the peptide sequence. Overall, our results

  14. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ16−22 and Sup357−13 in AOT reverse micelles

    PubMed Central

    Martinez, Anna Victoria; Małolepsza, Edyta; Rivera, Eva; Lu, Qing; Straub, John E.

    2014-01-01

    Knowledge of how intermolecular interactions of amyloid-forming proteins cause protein aggregation and how those interactions are affected by sequence and solution conditions is essential to our understanding of the onset of many degenerative diseases. Of particular interest is the aggregation of the amyloid-β (Aβ) peptide, linked to Alzheimer's disease, and the aggregation of the Sup35 yeast prion peptide, which resembles the mammalian prion protein linked to spongiform encephalopathies. To facilitate the study of these important peptides, experimentalists have identified small peptide congeners of the full-length proteins that exhibit amyloidogenic behavior, including the KLVFFAE sub-sequence, Aβ16−22, and the GNNQQNY subsequence, Sup357−13. In this study, molecular dynamics simulations were used to examine these peptide fragments encapsulated in reverse micelles (RMs) in order to identify the fundamental principles that govern how sequence and solution environment influence peptide aggregation. Aβ16−22 and Sup357−13 are observed to organize into anti-parallel and parallel β-sheet arrangements. Confinement in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles is shown to stabilize extended peptide conformations and enhance peptide aggregation. Substantial fluctuations in the reverse micelle shape are observed, in agreement with earlier studies. Shape fluctuations are found to facilitate peptide solvation through interactions between the peptide and AOT surfactant, including direct interaction between non-polar peptide residues and the aliphatic surfactant tails. Computed amide I IR spectra are compared with experimental spectra and found to reflect changes in the peptide structures induced by confinement in the RM environment. Furthermore, examination of the rotational anisotropy decay of water in the RM demonstrates that the water dynamics are sensitive to the presence of peptide as well as the peptide sequence. Overall, our results

  15. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  16. Crystal Structural and Functional Analysis of the Putative Dipeptidase from Pyrococcus horikoshii OT3.

    PubMed

    Jeyakanthan, Jeyaraman; Takada, Katsumi; Sawano, Masahide; Ogasahara, Kyoko; Mizutani, Hisashi; Kunishima, Naoki; Yokoyama, Shigeyuki; Yutani, Katsuhide

    2009-01-01

    The crystal structure of a putative dipeptidase (Phdpd) from Pyrococcus horikoshii OT3 was solved using X-ray data at 2.4 A resolution. The protein is folded into two distinct entities. The N-terminal domain consists of the general topology of the alpha/beta fold, and the C-terminal domain consists of five long mixed strands, four helices, and two 3(10) helices. The structure of Phdpd is quite similar to reported structures of prolidases from P. furiosus (Zn-Pfprol) and P. horikoshii (Zn-Phdpd), where Zn ions are observed in the active site resulting in an inactive form. However, Phdpd did not contain metals in the crystal structure and showed prolidase activity in the absence of additional Co ions, whereas the specific activities increased by 5 times in the presence of a sufficient concentration (1.2 mM) of Co ions. The substrate specificities (X-Pro) of Phdpd were broad compared with those of Zn-Phdpd in the presence of Co ions, whose relative activities are 10% or less for substrates other than Met-Pro, which is the most favorable substrate. The binding constants of Zn-Phdpd with three metals (Zn, Co, and Mn) were higher than those of Phdpd and that with Zn was higher by greater than 2 orders, which were determined by DSC experiments. From the structural comparison of both forms and the above experimental results, it could be elucidated why the protein with Zn(2+) ions is inactive.

  17. OT2_dpadgett_2: Warm A Star Debris Disks from WISE

    NASA Astrophysics Data System (ADS)

    Padgett, D.

    2011-09-01

    Debris disks trace the collisional breakdown of asteroid and comet parent bodies orbiting nearby main sequence stars. Debris disks are typically cold analogs of our Kuiper belt with emission peaking near 70 microns wavelength. However, a relatively small number of warm disks are known with emission at 22 - 24 microns. These systems are especially interesting because they trace dust in the region likely to host terrestrial planets, where the dust has a short dynamical lifetimes. They also tend to be young systems aged < 1 Gyr. This knowledge of warm debris disks - extrasolar analogs to our solar system's Zodiacal cloud - is based on the 25 year old IRAS survey and observations of selected targets with ISO and Spitzer. The Wide-Field Infrared Survey Explorer (WISE) has recently completed new, sensitive all-sky mapping in the 3.3, 4.6, 12, and 22 micron bands. Association of the WISE sources to Hipparcos and Tycho stars has led to the identification of 61 nearby main sequence A stars with robustly detected warm 22 micron excesses not previously known. To determine whether these systems represent outbursts of asteroidal dust production (such as in the HD 69830 system), or simply the Wien side of emission from a cold outer dust belt, photometry at longer wavelengths is needed. We propose Herschel/PACS 70 and 160 micron photometry of this unbiased sample of new A star debris disks. These data will allow us to fully characterize the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. Herschel OT1 observations of FGKM stars from this survey show a 90% detection rate for 70 micron excess emission. The results from these combined samples will strongly constrain our picture of the collisional history of inner planetary systems.

  18. Crystal structure of an archaeal Ski2p-like protein from Pyrococcus horikoshii OT3.

    PubMed

    Zhang, Xiaodong; Nakashima, Takashi; Kakuta, Yoshimitsu; Yao, Min; Tanaka, Isao; Kimura, Makoto

    2008-01-01

    The Ski complex composed of Ski2p, Ski3p, and Ski8p plays an essential role in the 3' to 5' cytoplasmic mRNA degradation pathway in yeast. Ski2p is a putative RNA helicase, belonging in the DExD/H-box protein families and conserved in eukarya as well as in archaea. The gene product (Ph1280p) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 shows sequence homology with Ski2p, sharing 22.6% identical amino acids with a central region of Ski2p. In order to gain structural information about the Ski2p-like RNA helicase, we overproduced Ph1280p in Escherichia coli cells, and purified it to apparent homogeneity. Ph1280p exhibits DNA/RNA-dependent ATPase activity with an optimal temperature at approximately 90 degrees C. The crystal structure of Ph1280p has been solved at a resolution of 3.5 A using single-wavelength anomalous dispersion (SAD) and selenomethionyl (Se-Met)-substituted protein. Ph1280p comprises four subdomains; the two N-terminal subdomains (N1 and N2) fold into an RecA-like architecture with the conserved helicase motifs, while the two C-terminal subdomains (C1 and C2) fold into alpha-helical structures containing a winged helix (WH)-fold and helix-hairpin-helix (HhH)-fold, respectively. Although the structure of each of the Ph1280p subdomains can be individually superimposed on the corresponding domains in other helicases, such as the Escherichia coli DNA helicase RecQ, the relative orientation of the helicase and C-terminal subdomains in Ph1280p is significantly different from that of other helicases. This structural feature is implicated in substrate specificity for the Ski2-like helicase and would play a critical role in the 3' to 5' cytoplasmic mRNA degradation in the Ski complex. PMID:18042682

  19. Application of Multiple Linear Regression and Extended Principal-Component Analysis to Determination of the Acid Dissociation Constant of 7-Hydroxycoumarin in Water/AOT/Isooctane Reverse Micelles.

    PubMed

    Caselli; Daniele; Mangone; Paolillo

    2000-01-15

    The apparent pK(a) of dyes in water-in-oil microemulsions depends on the charge of the acid and base forms of the buffers present in the water pool. Extended principal-component analysis allows the precise determination of the apparent pK(a) and of the spectra of the acid and base forms of the dye. Combination with multiple linear regression increases the precision. The pK(a) of 7-hydroxycoumarin (umbelliferone) was spectrophotometrically measured in a water/AOT/isooctane microemulsion in the presence of a series of buffers carrying different charges at various different water/surfactant ratios. The spectra of the acid and base forms of the dye in the microemulsion are very similar to those in bulk water in the presence of Tris and ammonia. The presence of carbonate changes somewhat the spectrum of the acid form. Results are discussed taking into account the profile of the electrostatic potential drop in the water pool and the possible partition of umbelliferone between the aqueous core and the surfactant. The pK(a) values corrected for these effects are independent of w(0) and are close to the value of the pK(a) in bulk water. Copyright 2000 Academic Press.

  20. Determination of the acid dissociation constant of bromocresol green and cresol red in water/AOT/isooctane reverse micelles by multiple linear regression and extended principal component analysis.

    PubMed

    Caselli, Maurizio; Mangone, Annarosa; Paolillo, Paola; Traini, Angela

    2002-01-01

    The pKa of 3',3",5',5"tetrabromo-m-cresolsulfonephtalein (Bromocresol Green) and o-cresolsulphonephtalein (Cresol Red) was spectrophotometrically measured in a water/AOT/isooctane microemulsion in the presence of a series of buffers carrying different charges at different water/surfactant ratios. Extended Principal Component Analysis was used for a precise determination of the apparent pKa and of the spectra of the acid and base forms of the dye. The apparent pKa of dyes in water-in-oil microemulsions depends on the charge of the acid and base forms of the buffers present in the water pool. Combination with multiple linear regression increases the precision. Results are discussed taking into account the profile of the electrostatic potential in the water pool and the possible partition of the indicator between the aqueous core and the surfactant. The pKa corrected for these effects are independent of w0 and are close to the value of the pKa in bulk water. On the basis of a tentative hypothesis it is possible to calculate the true pKa of the buffer in the pool.

  1. The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100.

    PubMed

    Xue, Luyan; Li, Ying; Zou, Feixue; Lu, Lu; Zhao, Yin; Huang, Xirong; Qu, Yinbo

    2012-04-01

    In the water-in-[Bmim][PF(6)] microemulsion stabilized by both AOT and Triton X-100, the lipase-catalyzed hydrolysis of 4-nitrophenyl butyrate (p-NPB) was investigated to evaluate the catalytic efficiency of lipase in this novel microemulsion. The structural parameters of the microemulsion and the conditions of the enzymatic reaction affect the catalytic activity of lipase, especially the concentration of Tris-HCl buffer. Under optimum conditions, the catalytic activity of lipase in the present microemulsion is much higher than that in H(2)O saturated [Bmim][PF(6)]. When the partitioning of the substrate in the microemulsion is taken into account, the catalytic efficiency of lipase in this novel microemulsion is 14.3 times that in H(2)O saturated [Bmim][PF(6)] due to the significant decrease of the Michaelis constant in the microemulsion. Due to the large interface, high water activity, and probably the activating effect of the imidazolium cation in the water pool, the present microemulsion is demonstrated to be a promising medium for the lipase-catalyzed hydrolytic reaction. To demonstrate an important biocatalytic application in the IL-based microemulsion, the lipase-catalyzed synthesis of the flavoring agent benzyl acetate via transesterification of vinyl acetate with benzyl alcohol was also studied in the medium. Due to the high dispersion of lipase, large interface and removal of the byproduct, a maximum yield of 94% was obtained, indicating that the novel microemulsion is really important and useful.

  2. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. PMID:26773599

  3. Relation between aerosol particles and their optical properties: a case study for São Paulo-Brazil

    NASA Astrophysics Data System (ADS)

    Miranda, Regina; Andrade, Maria de Fatima

    2013-04-01

    from mineral dust (Al, Si, Ca, Fe), anthropogenic particles and the burning of diesel (S), as well as from industries and residual oil combustion. Considering the trace element values obtained through EDXRF analysis, Angstron coefficients and Aerosol Optical Thickness (AOT 500 nm) were correlated (Pearson Correlation) to particulate and chemical elements. Soil elements have a positive correlation, fine particles are strong correlated to AOT. Elements like Fe, Si and Ca are usually related to larger particles and lower Angstron coefficients.

  4. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  5. MISR UAE2 Aerosol Versioning

    Atmospheric Science Data Center

    2013-03-21

    ... the MISR aerosol microphysical properties are "Beta." Uncertainty envelopes for the aerosol optical depths are given in  Kahn et ... particle microphysical property validation is in progress, uncertainty envelopes on particle size distribution, shape, and ...

  6. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  7. Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3.

    PubMed

    Terada, Atsushi; Honda, Takashi; Fukuhara, Hideo; Hada, Kazumasa; Kimura, Makoto

    2006-08-01

    Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA). Our earlier study revealed that RNase P RNA (pRNA) and five proteins (PhoPop5, PhoRpp38, PhoRpp21, PhoRpp29, and PhoRpp30) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 reconstituted RNase P activity that exhibits enzymatic properties like those of the authentic enzyme. In present study, we investigated involvement of the individual proteins in RNase P activity. Two particles (R-3Ps), in which pRNA was mixed with three proteins, PhoPop5, PhoRpp30, and PhoRpp38 or PhoPop5, PhoRpp30, and PhoRpp21 showed a detectable RNase P activity, and five reconstituted particles (R-4Ps) composed of pRNA and four proteins exhibited RNase P activity, albeit at reduced level compared to that of the reconstituted particle (R-5P) composed of pRNA and five proteins. Time-course analysis of the RNase P activities of R-4Ps indicated that the R-4Ps lacking PhoPop5, PhoRpp21, or PhoRpp30 had virtually reduced activity, while omission of PhoRpp29 or PhoRpp38 had a slight effect on the activity. The results indicate that the proteins contribute to RNase P activity in order of PhoPop5 > PhoRpp30 > PhoRpp21 > PhoRpp29 > PhoRpp38. It was further found that R-4Ps showed a characteristic Mg2+ ion dependency approximately identical to that of R-5P. However, R-4Ps had optimum temperature of around at 55 degrees C which is lower than 70 degrees C for R-5P. Together, it is suggested that the P. horikoshii RNase P proteins are predominantly involved in optimization of the pRNA conformation, though they are individually dispensable for RNase P activity in vitro.

  8. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  9. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  10. Cantera Aerosol Dynamics Simulator

    SciTech Connect

    Moffat, Harry

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkin formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.

  11. Spectroscopic Confirmation of MASTER OT J010603.18-744715.8 as a Classical Nova in the SMC

    NASA Astrophysics Data System (ADS)

    Williams, S. C.; Darnley, M. J.

    2016-10-01

    We obtained a spectrum of the Small Magellanic Cloud nova candidate MASTER OT J010603.18-744715.8 (ATel #9621, #9622) with the FLOYDS instrument on the 2m Faulkes Telescope South (Siding Spring Observatory, NSW, Australia) on 2016 Oct 14.70 UT. The spectral range covers 3200 Å to 1.1 & mu;m at an approximate resolution of R ~ 500. The spectrum shows strong Balmer emission (H & alpha;, H & beta;, H & gamma;, H & delta;, H & epsilon;, H8 and H9) and we measure the FWHM from H & alpha; and H & beta; to be ~ 3700 km/s.

  12. Fermi and Swift observations of correlated outburst activity from the BL Lac object OT 081 (PKS 1749+096)

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano; Gonzalez, Josefa Becerra; Pivato, Giovanna; Thompson, David J.

    2016-07-01

    We report a strong multi-wavelength outburst in the BL Lac object OT 081 (also known as PKS 1749+096, 4C +09.57) with the radio counterpart position R.A.: 267.88674 deg, Dec.: 9.65020 deg (J2000.0, Lanyi et al. 2010, AJ, 139, 1695) and with redshift z=0.322 (Stickel, Fried, Kuehr 1988, A & A, 191, 16). Gamma ray and X-ray flares reached peaks during the interval 2016 July 16 and 20 simultaneous with an optical outburst (Balonek et al, 2016, ATel #9259).

  13. Fermi-LAT detection of a GeV gamma-ray flare from the BL Lac object OT 081

    NASA Astrophysics Data System (ADS)

    Becerra Gonzalez, J.; Thompson, D.; Fermi-LAT Collaboration

    2016-07-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with the BL Lac object OT 081 (also known as PKS 1749+096, 4C 09.57, 0FGL J1751.5+0935, 1FGL J1751.5+0937, 2FGL J1751.5+0938, 1FHL J1751.5+0938, 3FGL J1751.5+0939), with the radio counterpart position R.A.: 267.88674 deg, Dec.: 9.65020 deg (J2000.0, Lanyi et al. 2010, AJ, 139, 1695).

  14. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  15. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.

  16. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  17. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  18. Highly stable aerosol generator

    SciTech Connect

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  19. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  20. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  1. Three complete turns of a 3(10)-helix at atomic resolution: the crystal structure of Z-(Aib)11-OtBu.

    PubMed

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2003-01-01

    The crystal structure of the synthetic protected oligopeptide Z-(Aib)11-OtBu was determined by x-ray crystallography. The undecapeptide folds in a regular 3(10)-helix with nine consecutive 4 --> 1 hydrogen bonds. At present, this is the largest available structure of a homopeptide (including homopeptides consisting of standard amino acids) and also the longest observed regular 3(10)-helix at atomic resolution. Z-(Aib)11-OtBu crystallizes readily from hot ethanol-water mixture and is one of the crystals in which no solvent molecule is co-crystallized. In the crystal head-to-tail hydrogen bonded columns are formed in the [1 0 1] direction. Each helical column is surrounded by six others, whereby two are packed in parallel and four in antiparallel fashion. Helical columns are packed via apolar crystal contacts. The crystal structure of Z-(Aib)11-OtBu is compared with the crystal structures of Z-(Aib)10-OtBu and Z-(Aib)9-OtBu. The similarities and differences are analysed.

  2. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  3. Purification, crystallization and preliminary crystallographic analysis of the vacuole-type ATPase subunit E from Pyrococcus horikoshii OT3

    SciTech Connect

    Lokanath, Neratur K.; Ukita, Yoko; Sugahara, Mitsuaki; Kunishima, Naoki

    2005-01-01

    The E subunit of vacuole-type ATPase from P. horikoshii OT3 was overexpressed, purified and crystallized. The native crystals diffracted X-rays to 1.85 Å resolution. The vacuole-type ATPases in eukaryotic cells translocate protons across various biological membranes including the vacuolar membrane by consuming ATP molecules. The E subunit of the multisubunit complex V-ATPase from Pyrococcus horikoshii OT3, which has a molecular weight of 22.88 kDa, has been cloned, overexpressed in Escherichia coli, purified and crystallized by the microbatch method using PEG 4000 as a precipitant at 296 K. A data set to 1.85 Å resolution with 98.8% completeness and an R{sub merge} of 6.5% was collected from a single flash-cooled crystal using synchrotron radiation. The crystal belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.196, b = 55.317, c = 77.481 Å, and is most likely to contain one molecule per asymmetric unit.

  4. Mesospheric aerosol sampling spectrometer

    NASA Astrophysics Data System (ADS)

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Horanyi, Mihaly; Kohnert, Rick

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument has been launched on two sounding rockets in August, 2007 from Andoya, Norway to detect charged sub-visible aerosol particles in the polar mesosphere. The MASS instrument is designed to collect charged aerosols, cluster ions, and electrons on four pairs of graphite electrodes, three of which are biased with increasing voltage. The design of the MASS instrument was complicated by the short mean free path in the mesosphere. The opening to MASS was deliberately built to increase the mean free path and to reduce the shock wave within the instrument. The design procedure began with aerodynamics simulations of the flow through the instrument using Direct Simulation Monte Carlo (DSMC) in 3-D. The electric fields within the instrument were calculated using a Laplace solver in 3-D. With the aerodynamic and electric field simulations completed, an algorithm was created to find the trajectories of charged aerosols including collisions within MASS. Using this algorithm the collection efficiencies for each electrode was calculated as a function of the charge to mass ratio of the incoming particle. The simulation results have been confirmed experimentally using an Argon RF ion beam. The data from the August launches have been analyzed and the initial results show the MASS instrument operated as expected. Additional studies are underway to determine if there were effects from payload charging or spurious charge generation within the instrument. This project is supported by NASA.

  5. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model.

    PubMed

    Galvan, Daniel L; O'Neil, Richard T; Foster, Aaron E; Huye, Leslie; Bear, Adham; Rooney, Cliona M; Wilson, Matthew H

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans. PMID:26473608

  6. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model

    PubMed Central

    Foster, Aaron E.; Huye, Leslie; Bear, Adham; Rooney, Cliona M.; Wilson, Matthew H.

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans. PMID:26473608

  7. Anthropogenic Aerosols and Tropical Precipitation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Kim, D.; Ekman, A. M. L.; Barth, M. C.; Rasch, P. J.

    2009-04-01

    Anthropogenic aerosols can affect the radiative balance of the Earth-atmosphere system and precipitation by acting as cloud condensation nuclei (CCN) or ice nuclei (IN) and thus modifying the optical and microphysical properties as well as lifetimes of clouds. Recent studies have also suggested that the direct radiative effect of anthropogenic aerosols, particularly absorbing aerosols, can perturb the large-scale circulation and cause a significant change in both quantity and distribution of critical tropical precipitation systems ranging from Pacific and Indian to Atlantic Oceans. This effect of aerosols on precipitation often appears in places away from aerosol-concentrated regions and current results suggest that the precipitation changes caused by it could be much more substantial than that by the microphysics-based aerosol effect. To understand the detailed mechanisms and strengths of such a "remote impact" and the climate response/feedback to anthropogenic aerosols in general, an interactive aerosol-climate model has been developed based on the Community Climate System Model (CCSM) of NCAR. Its aerosol module describes size, chemical composition, and mixing states of various sulfate and carbonaceous aerosols. Several model processes are derived based on 3D cloud-resolving model simulations. We have conducted a set of long integrations using the model driven by radiative effects of different combinations of various carbonaceous and sulfate aerosols and their mixtures. The responses of tropical precipitation systems to the forcing of these aerosols are analyzed using both model and observational data. Detailed analyses on the aerosol-precipitation causal relations of two systems: i.e., the Indian summer monsoon and Pacific ITCZ will be specifically presented.

  8. Exposures to acidic aerosols.

    PubMed

    Spengler, J D; Keeler, G J; Koutrakis, P; Ryan, P B; Raizenne, M; Franklin, C A

    1989-02-01

    Ambient monitoring of acid aerosols in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. Measurements made in Kingston, TN, and Steubenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 times during summer months. Periods of elevated acidic aerosols occur less frequently in winter months. The H+ determined during episodic conditions in southern Ontario indicates that respiratory tract deposition can exceed the effects level reported in clinical studies. Observed 12-hr H+ concentrations exceeded 550 nmole/m3 (approximately 27 micrograms/m3 H2SO4). The maximum estimated 1-hr concentration exceeded 1500 nmole/m3 for H+ ions. At these concentrations, an active child might receive more than 2000 nmole of H+ ion in 12 hr and in excess of 900 nmole during the hour when H2SO4 exceeded 50 micrograms/m3.

  9. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  10. Biological aerosol trigger

    NASA Astrophysics Data System (ADS)

    DeSha, Michael S.

    1999-01-01

    In recent history, manmade and natural events have shown us the every-present need for systems to monitor the troposphere for contaminates. These contaminants may take either a chemical or biological form, which determines the methods we use to monitor them. Monitoring the troposphere for biological contaminants is of particular interest to my organization. Whether manmade or natural, contaminants of a biological origin share similar constituents; typically the aromatic amino acids tryptophan, phenylalanine, and tyrosine. All of these proteinaceous compounds autofluorescence when exposed to UV radiation and this established the basis of the laser-induced fluorescence technique we use to detect biological contaminants. This technique can be employed in either point or remote detection schemes and is a valuable tool for discriminating proteinaceous form non-proteinaceous aerosols. For this particular presentation I am going to describe a breadboard point sensor we designed and fabricated to detect proteinaceous aerosols. Previous point sensor designs relied on convoluted flow paths to concentrate the aerosols into a solution. Other systems required precise beam alignment to evenly distribute the energy irradiating the detector elements. Our objective was to build a simple system where beam alignment is not critical, and the flow is straight and laminar. The breadboard system was developed over a nine- month period and its performance assessed at a recent test at Dugway Proving Grounds in Utah. In addition, we have performed chamber experiments in an attempt to establish a baseline for the systems. The results of these efforts are presented here.

  11. Cantera Aerosol Dynamics Simulator

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  12. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10

    PubMed Central

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K.

    2015-01-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0–21%) was observed using clinically relevant OTS167 concentrations (0.4–2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. PMID:25870101

  13. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  14. AVESTAR Center for operational excellence of clean energy plants and DYNSIM OTS / EyeSim ITS integration

    SciTech Connect

    Provost, G

    2012-01-01

    This Power-Point presentation with notes starts with a brief overview of US energy challenging, particularly as regards power generation capacity and clean energy plant operations. It then goes on to present Advanced Virtual Energy Simulation Training And Research (AVESTAR{trademark}) beginning with a statement of its missions and goals, then moves to the subject of Integrated Gasification Combined Cycle (IGCC) with CO{sub 2} Capture, first providing a brief overview of the process, then moving on to Dynamic Simulator/Operator Training System (OTS) and 3D Virtual Immersive Training System (ITS). The presentation continues to describe AVESTAR center facilities, locations, and training systems and to look at future directions for virtual energy simulation.

  15. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption.

  16. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption. PMID:17776243

  17. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1978-01-01

    Stratospht1ic sulfuric acid particles scatter and absorb sunlight and they scatter, absorb and emit terrestrial thermal radiation. These interactions play a role in the earth's radiation balance and therefore affect climate. The stratospheric aerosols are perturbed by volcanic injection of SO2 and ash, by aircraft injection of SO2, by rocket exhaust of Al2O3 and by tropospheric mixing of particles and pollutant SO2 and COS. In order to assess the effects of these perturbations on climate, the effects of the aerosols on the radiation balance must be understood and in order to understand the radiation effects the properties of the aerosols must be known. The discussion covers the aerosols' effect on the radiation balance. It is shown that the aerosol size distribution controls whether the aerosols will tend to warm or cool the earth's surface. Calculations of aerosol properties, including size distribution, for various perturbation sources are carried out on the basis of an aerosol model. Calculations are also presented of the climatic impact of perturbed aerosols due to volcanic eruptions and Space Shuttle flights.

  18. DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT

    SciTech Connect

    Kochanek, C. S.

    2011-11-01

    SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-lived luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.

  19. Spectrum of M31 nova candidate M31N 2016-04a (MASTER OT J004528.12+414117.6)

    NASA Astrophysics Data System (ADS)

    Williams, S. C.; Darnley, M. J.

    2016-06-01

    We obtained a spectrum of nova candidate M31N 2016-04a (MASTER OT J004528.12+414117.6; ATel #8950) with the SPRAT spectrograph (Piascik et al. 2014) on the 2m Liverpool Telescope (Steele et al. 2004) on 2016 June 3.19 UT, 54 days after discovery.

  20. /sup 45/Ca efflux for myometrial cells: comparison of the effects of prostaglandin F/sub 2/. cap alpha. (PGF/sub 2/), oxytocin (OT) and arachidonate (A)

    SciTech Connect

    Katona, G.; Molnar, M.; Toth, M.; Hertelendy, F.

    1986-03-01

    The aim of this study was to measure PGF/sub 2..cap alpha../-induced Ca/sup 2 +/ release from uterine cells and to compare this to the actions of OT and A. Smooth muscle cells isolated from the uterus (shell gland) of laying hens were cultured for 7 days in M199 plus 10% fetal calf serum. The cells were treated with digitonin (20..mu..M) and preloaded with /sup 45/Ca for 40 min. Addition of PGF/sub 2..cap alpha../ caused a biphasic /sup 45/Ca-efflux. There was a small but significant /sup 45/Ca-release within 30 sec (rapid phase) followed by a larger one within 7 min (slow phase). In comparison, both OT and A stimulated /sup 45/Ca efflux during a single, slow phase. The maximal effect of A was observed at < 7 min, whereas that of OT was slower, peaking after 7 min. Mepacrin, an inhibitor of A release, attenuated the action of OT without having any effect on A promoted /sup 45/Ca-efflux. Indomethacin, an inhibitor of PG synthase, failed to suppress the Ca-releasing effect of A suggesting the A itself or a lipoxygenase product may have been responsible for the observed effects. Moreover, these results provide suggestive evidence that A release is an important step in the action of various uterotonic agents converging on the mobilization of intracellular Ca.

  1. MAGIC detects very high energy gamma-ray emission from the blazar OT 081 (PKS 1749+096, 4C +09.57)

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2016-07-01

    The MAGIC collaboration reports on the detection of very high energy (VHE; E > 150 GeV) gamma-ray emission from OT 081 (RA=17 51 32.82, dec=+09 39 00.73, J2000.0; also known as PKS 1749+096 and 4C +09.57).

  2. Remote Sensing of Global Fire Patterns, Aerosol Optical Thickness, and Carbon Monoxide During April 1994

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Klich, Donna V.; Welch, Ronald M.; Nolf, Scott; Connors, Vickie S.

    1997-01-01

    Fires play a crucial role in several ecosystems. They are routinely used to burn forests in order to accommodate the needs of the expanding population, clear land for agricultural purposes, eliminate weeds and pests, regenerate nutrients in grazing and crop lands and produce energy for cooking and heating purposes. Most of the fires on earth are related to biomass burning in the tropics, although they are not confined to these latitudes. The boreal and tundra regions also experience fires on a yearly basis. The current study examines global fire patterns, Aerosol Optical Thickness (AOT) and carbon monoxide concentrations during April 9-19, 1994. Recently, global Advanced Very High Resolution Radiometer (AVHRR) data at nadir ground spatial resolution of 1 km are made available through the NASA/NOAA Pathfinder project. These data from April 9-19, 1994 are used to map fires over the earth. In summary, our analysis shows that fires from biomass burning appear to be the dominant factor for increased tropospheric CO concentrations as measured by the MAPS. The vertical transport of CO by convective activities, along with horizontal transport due to the prevailing winds, are responsible for the observed spatial distribution of CO.

  3. THE DIVERSITY OF MASSIVE STAR OUTBURSTS. I. OBSERVATIONS OF SN2009ip, UGC 2773 OT2009-1, AND THEIR PROGENITORS

    SciTech Connect

    Foley, Ryan J.; Berger, Edo; Challis, Peter J.; Soderberg, Alicia M.; Fox, Ori; Levesque, Emily M.; Ivans, Inese I.; Rhoads, James E.

    2011-05-01

    Despite both being outbursts of luminous blue variables (LBVs), SN 2009ip and UGC 2773 OT2009-1 have very different progenitors, spectra, circumstellar environments, and possibly physical mechanisms that generated the outbursts. From pre-eruption Hubble Space Telescope images, we determine that SN 2009ip and UGC 2773 OT2009-1 have initial masses of {approx}> 60 and {approx}> 25 M{sub sun}, respectively. Optical spectroscopy shows that at peak, SN 2009ip had a 10,000 K photosphere and its spectrum was dominated by narrow H Balmer emission, similar to classical LBV giant outbursts, also known as 'supernova impostors'. The spectra of UGC 2773 OT2009-1, which also have narrow H{alpha} emission, are dominated by a forest of absorption lines, similar to an F-type supergiant. Blueshifted absorption lines corresponding to ejecta at a velocity of 2000-7000 km s{sup -1} are present in later spectra of SN 2009ip-an unprecedented observation for LBV outbursts, indicating that the event was the result of a supersonic explosion rather than a subsonic outburst. The velocity of the absorption lines increases between two epochs, suggesting that there were two explosions in rapid succession. A rapid fading and rebrightening event concurrent with the onset of the high-velocity absorption lines is consistent with the double-explosion model. A near-infrared excess is present in the spectra and photometry of UGC 2773 OT2009-1 that is consistent with {approx}2100 K dust emission. We compare the properties of these two events and place them in the context of other known massive star outbursts such as {eta} Car, NGC 300 OT2008-1, and SN 2008S. This qualitative analysis suggests that massive star outbursts have many physical differences that can manifest as the different observables seen in these two interesting objects.

  4. INDOOR AEROSOLS AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    This chapter provides an overview of both indoor aerosol concentration measurements, and the considerations for assessment of exposure to aerosols in non-occupational settings. The fixed-location measurements of concentration at an outdoor location, while commuting inside an a...

  5. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  6. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  7. The use of MODIS data and aerosol products for air quality prediction

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Smith, Solar; Faruqui, Shazia

    2004-09-01

    The Center for Space Research (CSR) is exploring new approaches to integrate data collected by the MODerate resolution Imaging Spectroradiometer (MODIS) sensor, flown on NASA's Earth Observing System (EOS) satellites, into a real-time prediction methodology to support operational air quality forecasts issued by the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ). Air pollution is a widespread problem in the United States, with over 130 million individuals exposed to levels of air pollution that exceed one or more health-based standards. Texas air quality is under assault by a variety of anthropogenic sources associated with a rapidly growing population along with increases in emissions from the diesel engines that drive international trade between the US and Central America. The challenges of meeting air quality standards established by the Environmental Protection Agency are further impacted by the transport of pollution into Texas that originates from outside its borders and are cumulative with those generated by local sources. In an earlier study, CSR demonstrated the value of MODIS imagery and aerosol products for monitoring ozone-laden pollution that originated in the central US before migrating into Texas and causing TCEQ to issue a health alert for 150 counties. Now, data from this same event are re-analyzed in an attempt to predict air quality from MODIS aerosol optical thickness (AOT) observations. The results demonstrate a method to forecast air quality from remotely sensed satellite observations when the transient pollution can be isolated from local sources. These pollution sources can be separated using TCEQ's network of ground-based Continuous Air quality Monitoring (CAM) stations.

  8. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  9. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  10. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, Tadas; North, Peter; Doerr, Stefan H.

    2015-04-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. A new method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences insize distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland/natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. The implications of this work for improved modeling of aerosol radiative effects, which are relevant to both climate modelling and satellite

  11. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-03-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland - natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have a SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095 μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. These estimates have implications for

  12. Remote sensing of desert dust aerosols over the Sahel : potential use for health impact studies

    NASA Astrophysics Data System (ADS)

    Deroubaix, A. D.; Martiny, N. M.; Chiapello, I. C.; Marticorena, B. M.

    2012-04-01

    Since the end of the 70's, remote sensing monitors the desert dust aerosols due to their absorption and scattering properties and allows to make long time series which are necessary for air quality or health impact studies. In the Sahel, a huge health problem is the Meningitis Meningococcal (MM) epidemics that occur during the dry season : the dust has been suspected to be crucial to understand their onsets and dynamics. The Aerosol absorption Index (AI) is a semi-quantitative index derived from TOMS and OMI observations in the UV available at a spatial resolution of 1° (1979-2005) and 0.25° (2005-today) respectively. The comparison of the OMI-AI and AERONET Aerosol Optical thickness (AOT) shows a good agreement at a daily time-step (correlation ~0.7). The comparison of the OMI-AI with the Particle Matter (PM) measurement of the Sahelian Dust Transect is lower (~0.4) at a daily time-step but it increases at a weekly time-step (~0.6). The OMI-AI reproduces the dust seasonal cycle over the Sahel and we conclude that the OMI-AI product at a 0.25° spatial resolution is suitable for health impact studies, especially at a weekly epidemiological time-step. Despite the AI is sensitive to the aerosol altitude, it provides a daily spatial information on dust. A preliminary investigation analysis of the link between weekly OMI AI and weekly WHO epidemiological data sets is presented in Mali and Niger, showing a good agreement between the AI and the onset of the MM epidemics with a constant lag (between 1 and 2 week). The next of this study is to analyse a deeper AI time series constituted by TOMS and OMI data sets. Based on the weekly ratios PM/AI at 2 stations of the Sahelian Dust Transect, a spatialized proxy for PM from the AI has been developed. The AI as a proxy for PM and other climate variables such as Temperature (T°), Relative Humidity (RH%) and the wind (intensity and direction) could then be used to analyze the link between those variables and the MM epidemics

  13. Mexico City aerosol study

    SciTech Connect

    Falcon, Y.I. ); Ramirez, C.R. )

    1988-01-01

    Mexico City is located in a valley at high elevation (2,268 m) and is subject to atmospheric inversion related problems similar to those found in Denver, Colorado. In addition, Mexico City has a tropical climate (latitude 19{degrees} 25 minutes N), and therefore has more sunlight available for production of photochemical smog. There are approximately 9.5 million people spread in a 1,500 km{sup 2} (25 sq. mi) urban area, and more than two million automobiles (D.G.P.T. 1979) which use leaded gasoline. Furthermore, Mexico City is the principal industrial center in the country with more than 131,000 industries. The growth of the city has led to a serious air pollution problem, and there is concern over the possible pollutant effects on human health. The authors discuss work done to characterize the chemical composition of the aerosol. It is shown that many of the organic compounds which have been detected in urban aerosols are carcinogens.

  14. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  15. PMSE dependence on aerosol charge number density and aerosol size

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Lübken, Franz-Josef; Hoffmann, Peter; Latteck, Ralph; Baumgarten, Gerd; Blix, Tom A.

    2003-04-01

    It is commonly accepted that the existence of polar mesosphere summer echoes (PMSEs) depends on the presence of charged aerosols since these are comparatively heavy and reduce the diffusion of free electrons due to ambipolar forces. Simple microphysical modeling suggests that this diffusivity reduction is proportional to rA2 (rA = aerosol radius) but only if a significant amount of charges is bound on the aerosols such that NA∣ZA∣/ne > 1.2 (NA = number of aerosols, ZA = aerosol charge, ne = number of free electrons). The fact that the background electron profile frequently shows large depletions ("biteouts") at PMSE altitudes is taken as a support for this idea since within biteouts a major fraction of free electrons is missing, i.e., bound on aerosols. In this paper, we show from in situ measurements of electron densities and from radar and lidar observations that PMSEs can also exist in regions where only a minor fraction of free electrons is bound on aerosols, i.e., with no biteout and with NA∣ZA∣/ne ≪ 1. We show strong experimental evidence that it is instead the product NA∣ZA∣rA2 that is crucial for the existence of PMSEs. For example, small aerosol charge can be compensated by large aerosol radius. We show that this product replicates the main features of PMSEs, in particular the mean altitude distribution and the altitude of PMSEs in the presence of noctilucent clouds (NLCs). We therefore take this product as a "proxy" for PMSE. The agreement between this proxy and the main characteristics of PMSEs implies that simple microphysical models do not satisfactorily describe PMSE physics and need to be improved. The proxy can easily be used in models of the upper atmosphere to better understand seasonal and geographical variations of PMSEs, for example, the long debated difference between Northern and Southern hemisphere PMSEs.

  16. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  17. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  18. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  19. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  20. Interfacial hydrodynamic instabilities driven by cross-diffusion in reverse microemulsions.

    PubMed

    Budroni, M A; Carballido-Landeira, J; Intiso, A; De Wit, A; Rossi, F

    2015-06-01

    When two microemulsions are put in contact in the gravity field along a horizontal contact line, cross-diffusion can trigger the transport of one species in the presence of a gradient in concentration of another species. We show here theoretically that such cross-diffusion effects can induce buoyancy-driven convective instabilities at the interface between two solutions of different compositions even when initially the less dense solution lies on top of the denser one. Two different sources of convective modes are identified depending whether positive or negative cross-diffusion is involved. We evidence the two predicted cross-diffusion driven instabilities experimentally using a two-layer stratification of Aerosol-OT (AOT) water-in-oil microemulsions solutions with different water or AOT composition.

  1. Interfacial hydrodynamic instabilities driven by cross-diffusion in reverse microemulsions

    NASA Astrophysics Data System (ADS)

    Budroni, M. A.; Carballido-Landeira, J.; Intiso, A.; De Wit, A.; Rossi, F.

    2015-06-01

    When two microemulsions are put in contact in the gravity field along a horizontal contact line, cross-diffusion can trigger the transport of one species in the presence of a gradient in concentration of another species. We show here theoretically that such cross-diffusion effects can induce buoyancy-driven convective instabilities at the interface between two solutions of different compositions even when initially the less dense solution lies on top of the denser one. Two different sources of convective modes are identified depending whether positive or negative cross-diffusion is involved. We evidence the two predicted cross-diffusion driven instabilities experimentally using a two-layer stratification of Aerosol-OT (AOT) water-in-oil microemulsions solutions with different water or AOT composition.

  2. Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole.

    PubMed

    Flamini, D O; Saidman, S B

    2014-11-01

    Nitinol (equiatomic Ni and Ti alloy (NiTi)) substrate was modified using a coating system formed by a self-assembled film of alkylsilane compounds (propyltrichlorosilane (C3H7SiCl3) or octadecyltrichlorosilane (C18H37SiCl3)) and polypyrrole (PPy) doped with sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT). The combination of alkylsilanes and the presence of a voluminous molecule like AOT entrapped into the PPy films improve the pitting corrosion resistance of the substrate in chloride solution. The best performance was achieved with the longest alkylsilane chains, where the PPy film remains adhered to the underlying coating after a pitting corrosion test. PMID:25280711

  3. Physical and Radiative Properties of Aerosol Particles across the Caribbean Basin: A Comparison between Clean and Perturbed African Dust and Volcanic Ash Air Masses

    NASA Astrophysics Data System (ADS)

    Rivera, H.; Ogren, J. A.; Sheridan, P. J.; Mayol-Bracero, O.

    2009-12-01

    Aerosol’s optical and physical properties were measured during year 2007 at Cape San Juan, a ground-based station located at the northeastern tip of Puerto Rico. The three cases investigated were classified according to the origin of the air masses: clean (C), African dust (AD), and volcanic ash (VA). The instrumentation used included a sunphotometer to determine volume size distributions and aerosol optical thickness (AOT), a 3-wavelength nephelometer to determine the scattering coefficient (σsp), and a 3-wavelength particle/soot absorption photometer (PSAP) to measure the absorption coefficient (σap). The average volume size distributions were trimodal for the C (peaks at 0.14, 0.99 and 4.25 µm radius) and AD (peaks at 0.11, 1.30 and 2.00 µm radius) cases and bimodal for the VA (peaks at 0.19 and 2.75 µm radius) case. Fine and coarse modes maxima for AD occurred at radii smaller than for VA, confirming the different origins of those particles. The average values for the total σsp were higher for AD (82.9 Mm-1) and VA (33.7 Mm-1) compared to C (16.6 Mm-1). The same happened for the AOT maximum values at 500 nm with 0.92, 0.30, and 0.06 for AD, VA, and C, respectively. The observed increase in the values of the Angstrom exponent (å) is indicative of a decrease in the size of the particles associated to VA (å= 0.27) and AD (å =0.89) when compared to C (å =0.24). The volume size distributions and thus the mass were dominated by the coarse mode (> 1.0 µm) especially for the AD case. Results have shown that AD as well as VA has a significant impact on the physical and radiative properties across Puerto Rico and the Caribbean. Additional results on the AOT wavelength dependence and on the annual variability of the properties under study will be presented.

  4. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  5. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  6. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  7. Stratospheric aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2015-03-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  8. Aerosols over Eastern Asia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of eastern Asia from October 14, 2001, shows large amounts of aerosol in the air. A few possible point sources of smoke, probably fires, are visible north of the Amur River at the very top of the image. One of the larger of these plumes can be seen down river of the confluence of the Songhua and Amur rivers. At lower left, the Yangtze River plume in the East China Sea is also very prominent. Sediment suspended in the ocean water is quite brown near the shore, but becomes much greener as it diffuses into the water. The increasing greenness of the river plume is probably an indication of enhanced phytoplankton growth driven by the nutrients in the river runoff. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  9. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  10. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  11. Aerosol Transmission of Filoviruses

    PubMed Central

    Mekibib, Berhanu; Ariën, Kevin K.

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  12. Aerosol Transmission of Filoviruses.

    PubMed

    Mekibib, Berhanu; Ariën, Kevin K

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013-2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  13. Characterization of the PH1704 Protease from Pyrococcus horikoshii OT3 and the Critical Functions of Tyr120

    PubMed Central

    Yu, Lei; Han, Weiwei; Feng, Yan

    2014-01-01

    The PH1704 protease from hyperthermophilic archaean Pyrococcus horikoshii OT3 is a member of DJ-1/ThiJ/PfpI superfamily with diverse functional subclasses. The recombinant PH1704 was efficiently purified and was systematically characterized by a combination of substrate specificity analysis, steady-state kinetics study and molecular docking research. The homogeneous protease was obtained as a presumed dodecamer with molecular weight of ∼240 kDa. Iodoacetamide strongly inhibited the peptidase activity, confirming that Cys100 is a nucleophilic residue. The recombinant protein was identified as both an aminopeptidase and an endopeptidase. Experimental data showed that L-R-amc was the best substrate of PH1704. Structural interaction fingerprint analysis (SIFt) indicated the binding pose of PH1704 and showed that Tyr120 is important in substrate binding. Kinetic parameters Kcat and Kcat/Km of the Y120P mutant with L-R-amc was about 7 and 7.8 times higher than that of the wild type (WT). For the endopeptidase Y120P with AAFR-amc, Kcat and Kcat/Km is 10- and 21- fold higher than that of WT. Experimental data indicate the important functions of Tyr120: involvement in enzyme activity to form a hydrogen bond with Cys100 and as an entrance gate of the substrate with Lys43. The results of this study can be used to investigate the DJ-1/ThiJ/PfpI superfamily. PMID:25192005

  14. Genome sequence of Ostreococcus tauri virus OtV-2 throws light on the role of picoeukaryote niche separation in the ocean.

    PubMed

    Weynberg, Karen D; Allen, Michael J; Gilg, Ilana C; Scanlan, David J; Wilson, William H

    2011-05-01

    Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche. Sequence analysis of the 184,409-bp linear OtV-2 genome revealed a range of core functional genes exclusive to this low-light genotype and included a variety of unexpected genes, such as those encoding an RNA polymerase sigma factor, at least four DNA methyltransferases, a cytochrome b(5), and a high-affinity phosphate transporter. It is clear that OtV-2 has acquired a range of potentially functional genes from its host, other eukaryotes, and even bacteria over evolutionary time. Such piecemeal accretion of genes is a trademark of large double-stranded DNA viruses that has allowed them to adapt their propagation strategies to keep up with host niche separation in the sunlit layers of the oceanic environment. PMID:21289127

  15. The Chromate-Inducible chrBACF Operon from the Transposable Element TnOtChr Confers Resistance to Chromium(VI) and Superoxide▿

    PubMed Central

    Branco, Rita; Chung, Ana Paula; Johnston, Tatiana; Gurel, Volkan; Morais, Paula; Zhitkovich, Anatoly

    2008-01-01

    Large-scale industrial use of chromium(VI) has resulted in widespread contamination with carcinogenic chromium(VI). The abilities of microorganisms to survive in these environments and to detoxify chromate require the presence of specific resistance systems. Here we report identification of the transposon-located (TnOtChr) chromate resistance genes from the highly tolerant strain Ochrobactrum tritici 5bvl1 surviving chromate concentrations of >50 mM. The 7,189-bp-long TnOtChr of the mixed Tn21/Tn3 transposon subfamily contains a group of chrB, chrA, chrC, and chrF genes situated between divergently transcribed resolvase and transposase genes. The chrB and chrA genes, but not chrF or chrC, were essential for establishment of high resistance in chromium-sensitive O. tritici. The chr promoter was strongly induced by chromate or dichromate, but it was completely unresponsive to Cr(III), oxidants, sulfate, or other oxyanions. Plasmid reporter experiments identified ChrB as a chromate-sensing regulator of chr expression. Induction of the chr operon suppressed accumulation of cellular Cr through the activity of a chromate efflux pump encoded by chrA. Expression of chrB, chrC, or chrF in an Escherichia coli sodA sodB double mutant restored its aerobic growth in minimal medium and conferred resistance to superoxide-generating agents menadione and paraquat. Nitroblue tetrazolium staining on native gels showed that ChrC protein had superoxide dismutase activity. TnOtChr appears to represent a mobile genetic system for the distribution of the chromate-regulated resistance operon. The presence of three genes protecting against superoxide toxicity should provide an additional survival advantage to TnOtChr-containing cells in the environments with multiple redox-active contaminants. PMID:18776016

  16. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  17. Mycobacterial Aerosols and Respiratory Disease

    PubMed Central

    2003-01-01

    Environmental opportunistic mycobacteria, including Mycobacterium avium, M. terrae, and the new species M. immunogenum, have been implicated in outbreaks of hypersensitivity pneumonitis or respiratory problems in a wide variety of settings. One common feature of the outbreaks has been exposure to aerosols. Aerosols have been generated from metalworking fluid during machining and grinding operations as well as from indoor swimming pools, hot tubs, and water-damaged buildings. Environmental opportunistic mycobacteria are present in drinking water, resistant to disinfection, able to provoke inflammatory reactions, and readily aerosolized. In all outbreaks, the water sources of the aerosols were disinfected. Disinfection may select for the predominance and growth of mycobacteria. Therefore, mycobacteria may be responsible, in part, for many outbreaks of hypersensitivity pneumonitis and other respiratory problems in the workplace and home. PMID:128903