Science.gov

Sample records for aerosol oxidative activity

  1. Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

    2012-01-01

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes. PMID:22651886

  2. Photochemical Activation of Chlorine by Iron and Iron Oxide Aerosol

    NASA Astrophysics Data System (ADS)

    Wittmer, J.; Zetzsch, C.

    2015-12-01

    The photochemical activation of chlorine by dissolved iron in sea-salt aerosol droplets and by highly dispersed Fe2O3 aerosol particles (mainly hematite, specific surface > 100 m2/g), exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic Cl. When the artificial sea salt aerosols contained suspended Fe2O3 alone at pH 6, no significant Cl production could be observed, even if the dissolution of iron was forced by "weathering" (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol/L, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8 × 1021 atoms cm-2 h-1, respectively. Exposing the pure Fe2O3 aerosol in the absence of salt to various gaseous HCl concentrations resulted in rates ranging from 8 × 1020 Cl atoms cm-2 h-1 (at ~4 ppb HCl) to 5 × 1022 Cl atoms cm-2 h-1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2-5 % mol/mol, depending on the relative humidity). The relevance for environmental processes in the atmosphere will be discussed.

  3. A Microfluidic Paper-Based Analytical Device (μPAD) for Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Panymeesamer, Pantila; Supalakorn, Natcha; Koehler, Kirsten; Chailapakul, Orawon; Henry, Charles S.; Volckens, John

    2013-01-01

    Human exposure to particulate matter (PM) air pollution has been linked with respiratory, cardiovascular, and neurodegenerative diseases, in addition to various cancers. Consistent among all of these associations is the hypothesis that PM induces inflammation and oxidative stress in the affected tissue. Consequently, a variety of assays have been developed to quantify the oxidative activity of PM as a means to characterize its ability to induced oxidative stress. The vast majority of these assays rely on high-volume, fixed-location sampling methods due to limitations in assay sensitivity and detection limit. As a result, our understanding of how personal exposure contributes to the intake of oxidative air pollution is limited. To further this understanding, we present a microfluidic paper-based analytical device (μPAD) for measuring PM oxidative activity on filters collected by personal sampling. The μPAD is inexpensive to fabricate and provides fast and sensitive analysis of aerosol oxidative activity. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay), uses colorimetric detection, and can be completed in the field within 30 min following sample collection. The μPAD assay was validated against the traditional DTT assay using 13 extracted aerosol samples including urban aerosols, biomass burning PM, cigarette smoke and incense smoke. The results showed no significant differences in DTT consumption rate measured by the two methods. To demonstrate the utility of the approach, personal samples were collected to estimate human exposures to PM from indoor air, outdoor air on a clean day, and outdoor air on a wildfire-impacted day in Fort Collins, CO. Filter samples collected on the wildfire day gave the highest oxidative activity on a mass normalized basis, whereas typical ambient background air showed the lowest oxidative activity. PMID:23227907

  4. The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol

    NASA Astrophysics Data System (ADS)

    Bleicher, S.; Buxmann, J. C.; Sander, R.; Riedel, T. P.; Thornton, J. A.; Platt, U.; Zetzsch, C.

    2014-04-01

    Experiments on salt aerosol with different salt contents were performed in a Teflon chamber under tropospheric light conditions with various initial contents of nitrogen oxides (NOx = NO + NO2). A strong activation of halogens was found at high NOx mixing ratios, even in samples with lower bromide contents such as road salts. The ozone depletion by reactive halogen species released from the aerosol, was found to be a function of the initial NOx mixing ratio. Besides bromine, large amounts of chlorine have been released in our smog chamber. Time profiles of the halogen species Cl2, Br2, ClNO2, BrNO2 and BrO, ClO, OClO and Cl atoms were simultaneously measured by various techniques (chemical ionization mass spectrometry, differential optical absorption spectrometry coupled with a multi-reflection cell and gas chromatography of hydrocarbon tracers for Cl and OH, employing cryogenic preconcentration and flame ionization detection). Measurements are compared to calculations by the CAABA/MECCA 0-D box model, which was adapted to the chamber conditions and took the aerosol liquid water content and composition into account. The model results agree reasonably with the observations and provide important information about the prerequisites for halogen release, such as the time profiles of the aerosol bromide and chloride contents as well as the aerosol pH.

  5. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  6. A statistical description of the evolution of cloud condensation nuclei activity during the heterogeneous oxidation of squalane and bis(2-ethylhexyl) sebacate aerosol by hydroxyl radicals.

    PubMed

    Harmon, Christopher W; Ruehl, Christopher R; Cappa, Christopher D; Wilson, Kevin R

    2013-06-28

    The heterogeneous reaction of hydroxyl radicals with chemically reduced organic aerosol comprised of either squalane or bis(2-ethylhexyl) sebacate are used as model systems to examine how cloud condensation nuclei (CCN) activity evolves with photochemical oxidation. Over the course of the reaction, the critical super-saturation evolves both by the formation of new oxygen functional groups and by changes in aerosol size through the formation of gas phase reaction products. A statistical model of the heterogeneous reaction reveals that it is the formation, volatilization, solubility, and surface activity of many generations of oxidation products that together control the average changes in aerosol hygroscopicity. The experimental observations and model demonstrate the importance of considering the underlying population or subpopulation of species within a particle and how they each uniquely contribute to the average hygroscopicity of a multi-component aerosol. To accurately predict changes in CCN activity upon oxidation requires a reduction in the surface tension of the activating droplet by a subpopulation of squalane reaction products. These results provide additional evidence that surface tension-concentration parameterizations based on macroscopic data should be modified for microscopic droplets.

  7. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  8. Copper oxide aerosol: generation and characterization.

    PubMed

    Peoples, S M; McCarthy, J F; Chen, L C; Eppelsheimer, D; Amdur, M O

    1988-06-01

    Effluent gases from high temperature systems such as fossil fuel combustion and pyrometallurgical processes contain inorganic material which has the potential to interact with sulfur dioxide (SO2) on the surface of particles to form an irritant aerosol. The submicron fraction of this inorganic material is especially important as the fine particles may penetrate deep into the lung and cause serious health effects. A laboratory furnace was designed to produce a submicrometer copper oxide aerosol to stimulate emissions from copper smelters and other pyrometallurgical operations. The ultimate aim of this research is to investigate the interaction of SO2 and the copper oxide aerosol at different temperatures and humidities in order to determine the reaction products and their potential health effects upon inhalation. The initial work, as presented in this paper, was to reproducibly generate a submicrometer copper oxide aerosol and to characterize it in terms of size, morphology and composition. Two experimental regimes were set up. One admitted filtered air, without water vapor, into the furnace, and the other admitted filtered air and water vapor. The size and morphology of the aerosols were determined using an electrical aerosol analyzer and transmission electron microscopy. The particles appear as chain aggregates with a count median diameter of 0.026 micron when no water vapor was added and 0.031 micron when water vapor was added into the furnace. Composition of the aerosol was determined using x-ray photoelectron spectroscopy. The aerosol, with or without water in the furnace, consists of a mixture of copper(I) oxide and copper(II) hydroxide. PMID:3400592

  9. Heterogeneous OH oxidation of organic aerosols

    NASA Astrophysics Data System (ADS)

    Smith, J.; Kroll, J.; Cappa, C.; Che, D.; Ahmed, M.; Leone, S.; Worsnop, D.; Wilson, K.

    2008-12-01

    The hydroxyl radical (OH) is the most important reactive species in both clean and polluted atmospheres, and therefore gas-phase OH chemistry has been extensively studied for decades. Due to this enormous effort the rates and mechanism of OH reactions with gas phase organics are relatively well understood. However, it unclear whether these well established gas-phase chemical mechanisms apply to the more complex heterogeneous reactions of OH radicals with organic aerosols (OA). Although recent studies have begun to examine OH oxidation of OA, numerous outstanding questions still remain regarding both the rate and chemical mechanism of these reactions. Here we present an in depth investigation of the heterogeneous oxidation of organic squalane particles by OH radicals. By combining a photochemical aerosol flow reactor with a high-resolution aerosol mass spectrometer (AMS), with both electron impact and vacuum ultraviolet photoionization, we investigate OH heterogeneous chemistry in unprecedented detail. Employing elemental composition measurements with detailed kinetics we have arrived at a simple oxidation model which accurately accounts for the evolution of squalane and its" oxidation products. In addition, by exploring a large range of OH concentrations we are able to directly measure the role of secondary particle-phase chain chemistry which can significantly accelerate the oxidation of OA in the atmosphere. Based on these measurements we have arrived at an explicit chemical mechanism for heterogeneous OH oxidation of OA which accurately accounts for our observations over a wide range of reaction conditions.

  10. Surface-active organics in atmospheric aerosols.

    PubMed

    McNeill, V Faye; Sareen, Neha; Schwier, Allison N

    2014-01-01

    Surface-active organic material is a key component of atmospheric aerosols. The presence of surfactants can influence aerosol heterogeneous chemistry, cloud formation, and ice nucleation. We review the current state of the science on the sources, properties, and impacts of surfactants in atmospheric aerosols. PMID:23408277

  11. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  12. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  13. Lightning activity and aerosols over the Mediterranean

    NASA Astrophysics Data System (ADS)

    Proestakis, Emmanouil; Kazadzis, Stelios; Kotroni, Vassiliki; Lagouvardos, Kostas; Kazantzidis, Andreas

    2015-04-01

    Lightning activity has received extended scientific attention over the past decades. Several international studies on lightning activity and initiation mechanisms have related the increased aerosol concentrations to lightning enhancement. In the frame of TALOS project, we investigated the effect of aerosols on lightning activity over the Mediterranean Sea. Cloud to ground lightning activity data from ZEUS lightning detection network operated and maintained by the National Observatory of Athens, were used along with atmospheric optical depth (AOD) data retrieved by MODIS, on board Aqua satellite. The analysis covers a period of nine years, spanning from 2005 up to 2013. The results show the importance of aerosols in lightning initiation and enhancement. It is shown that the mean AOD of the days with lightning activity per season is larger than the mean seasonal AOD in 90% of the under study domain. Furthermore, lightning activity increase with increasing aerosol loading was found to be more pronounced during summertime and for atmospheric optical depth values up to 0.4. Additionally, during summertime, the spatial analysis showed that the percentage of days with lightning activity is increasing with increasing aerosol loading. Finally, time series for the period 2005-2013 of the days with lightning activity and AOD differences showed similar temporal behavior. Overall, both the spatial and temporal analysis showed that lightning activity is correlated to aerosol loading and that this characteristic is consistent for all seasons.

  14. Redox activity of naphthalene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.

    2013-04-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.

  15. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    SciTech Connect

    Joyce E. Penner

    2005-03-14

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near

  16. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  17. Effects of aerosol phase and water uptake for understanding organic aerosol oxidation

    NASA Astrophysics Data System (ADS)

    Fitzgerald, C.; Gallimore, P. J.; Fuller, S.; Lee, J.; Garrascon, V.; Achakulwisut, P.; Björkegren, A.; Spring, D. R.; Pope, F. D.; Kalberer, M.

    2012-04-01

    Oxidation reactions of atmospheric organic aerosols strongly influence many important processes in the atmosphere such as aerosol-cloud interactions or heterogeneous chemistry. We present results of an experimental laboratory study with three organic model aerosol systems (maleic, arachidonic and oleic acid) investigating the effect of particle phase and humidity on the oxidative processing of the particle. Two experimental techniques are combined in this investigation. An electrodynamic balance is used to levitate single particles and assess changes in particle size and mass (due to water uptake and/or loss of volatile oxidation products) and phase (liquid or solid) during and after chemical processing with ozone. An aerosol flow tube was used to investigate the detailed chemical composition of the oxidized aerosol with offline ultra-high resolution mass spectrometry. The role of water (i.e., relative humidity) in the oxidation scheme of the three carboxylic acids is very compound specific and the particle phase has a strong effect on the particle processing. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. Maleic and arachidonic acid change their phase from liquid to solid upon oxidation or upon changes in humidity and efficient oxidative processing of the particle bulk can only occur when the particle is in liquid form. A detailed oxidation mechanism for maleic acid is presented taking the strong effects of water into account. In contrast, oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In

  18. OH-initiated heterogeneous aging of highly oxidized organic aerosol

    SciTech Connect

    Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E.; Worsnop, Douglas R.; Wilson, Kevin R.; Kroll, Jesse H.

    2011-12-05

    The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.

  19. Linkages between ozone-depleting substances, tropospheric oxidation and aerosols

    NASA Astrophysics Data System (ADS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-05-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6 mW m-2 for CFCs and -6.7 mW m-2 for N2O) and sulfate aerosols (-3.0 mW m-2 for CFCs and +6.5 mW m-2 for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  20. Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols

    NASA Technical Reports Server (NTRS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-01-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6mW/sq. m for CFCs and -6.7mW/sq. m for N2O) and sulfate aerosols (-3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  1. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  2. Enhancement of aerosol responses to changes in emissions over East Asia by gas-oxidant-aerosol coupling and detailed aerosol processes

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2016-06-01

    We quantify the responses of aerosols to changes in emissions (sulfur dioxide, black carbon (BC), primary organic aerosol, nitrogen oxides (NOx), and volatile organic compounds) over East Asia by using simulations including gas-oxidant-aerosol coupling, organic aerosol (OA) formation, and BC aging processes. The responses of aerosols to NOx emissions are complex and are dramatically changed by simulating gas-phase chemistry and aerosol processes online. Reduction of NOx emissions by 50% causes a 30-40% reduction of oxidant (hydroxyl radical and ozone) concentrations and slows the formation of sulfate and OA by 20-30%. Because the response of OA to changes in NOx emissions is sensitive to the treatment of emission and oxidation of semivolatile and intermediate volatility organic compounds, reduction of the uncertainty in these processes is necessary to evaluate gas-oxidant-aerosol coupling accurately. Our simulations also show that the sensitivity of aerosols to changes in emissions is enhanced by 50-100% when OA formation and BC aging processes are resolved in the model. Sensitivity simulations show that the increase of NOx emissions from 1850 to 2000 explains 70% (40%) of the enhancement of aerosol mass concentrations (direct radiative effects) over East Asia during that period through enhancement of oxidant concentrations and that this estimation is sensitive to the representation of OA formation and BC aging processes. Our results demonstrate the importance of simultaneous simulation of gas-oxidant-aerosol coupling and detailed aerosol processes. The impact of NOx emissions on aerosol formation will be a key to formulating effective emission reduction strategies such as BC mitigation and aerosol reduction policies in East Asia.

  3. Stochastic methods for aerosol chemistry: a compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals.

    PubMed

    Wiegel, A A; Wilson, K R; Hinsberg, W D; Houle, F A

    2015-02-14

    The heterogeneous oxidation of organic aerosol by hydroxyl radicals (OH) can proceed through two general pathways: functionalization, in which oxygen functional groups are added to the carbon skeleton, and fragmentation, in which carbon-carbon bonds are broken, producing higher volatility, lower molecular weight products. An ongoing challenge is to develop a quantitative molecular description of these pathways that connects the oxidative evolution of the average aerosol properties (e.g. size and hygroscopicity) to the transformation of free radical intermediates. In order to investigate the underlying molecular mechanism of aerosol oxidation, a relatively compact kinetics model is developed for the heterogeneous oxidation of squalane particles by OH using free radical intermediates that convert reactive hydrogen sites into oxygen functional groups. Stochastic simulation techniques are used to compare calculated system properties over ten oxidation lifetimes with the same properties measured in experiment. The time-dependent average squalane aerosol mass, volume, density, carbon number distribution of scission products, and the average elemental composition are predicted using known rate coefficients. For functionalization, the calculations reveal that the distribution of alcohol and carbonyl groups is controlled primarily by the initial OH abstraction rate and to lesser extent by the branching ratio between secondary peroxy radical product channels. For fragmentation, the calculations reveal that the formation of activated alkoxy radicals with neighboring functional groups controls the molecular decomposition, particularly at high O/C ratios. This kinetic scheme provides a framework for understanding the oxidation chemistry of a model organic aerosol and informs parameterizations of more complex systems.

  4. Oxidation enhancement of submicron organic aerosols by fog processing

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ge, X.; Collier, S.; Setyan, A.; Xu, J.; Sun, Y.

    2011-12-01

    During 2010 wintertime, a measurement study was carried out at Fresno, California, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) combined with a Scanning Mobility Particle Sizer (SMPS). Four fog events occurred during the first week of the campaign. While ambient aerosol was sampled into the HR-ToF-AMS, fog water samples were collected, and were later aerosolized and analyzed via HR-TOF-AMS in the laboratory. We performed Positive Matrix Factorization (PMF) on the AMS ambient organic mass spectra, and identified four OA factors: hydrocarbon-like OA (HOA) likely from vehicle emissions, cooking influenced OA (COA), biomass burning OA (BBOA) representing residential wood combustion, and an oxygenated OA (OOA) that has an average O/C ratio of 0.42. The time series of the OOA factor correlates best with that of sulfate (R2 =0.54 ) during fog events, suggesting that aqueous phase processing may have strongly affected OOA production during wintertime in Fresno. We further investigate the OOA compositions and elemental ratios before, during, and after the fog events, as well as those of dissolved organic matter (DOM) in fog waters to study the influence of aqueous phase processing on OA compositions. Results of fog sample analysis shows an enhancement of oxidation of DOM in 11 separate fog samples. Further factor analysis of the fog DOM data will elucidate the possible mechanisms by which fog processing enhances oxidation of aerosol. In addition, in order to investigate the influence of aqueous processing on OA, we used the Extended Aerosol Inorganic Model (E-AIM) (http://www.aim.env.uea.ac.uk/aim/aim.php) to estimate aerosol phase water contents based on the AMS measured aerosol composition. The predicted water content has a good correlation with sulfate and OOA . We will further explore the correlations between particle phase water with organic aerosol characteristics to discuss the influence of aqueous phase processing on

  5. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Johnston, Murray V.

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  6. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes.

    PubMed

    Wu, Yue; Johnston, Murray V

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH. PMID:26729452

  7. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  8. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  9. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  10. Exposure assessment of oxidant gases and acidic aerosols

    SciTech Connect

    Lioy, P.J.

    1989-01-01

    Clearly the presence of high ozone and acidic species in North America is primarily dependent upon photochemical air pollution. Evidence shows, however, that high acid exposures may occur in specific types of areas of high sulfur fuel use during the winter. At the present time, our concerns about exposure to local populations and regional populations should be directed primarily toward the outdoor activity patterns of individuals in the summer, and how those activity patterns relate to the location, duration, and concentrations of ozone and acid aerosol in photochemical air pollution episodes. Lioy Dyba and Mage et al have examined the activity patterns of children in summer camps. Because they spend more time outside than the normal population, these children form an important group of exercising individuals subject to photochemical pollution exposures. The dose of ozone inhaled by the children in the two camps was within 50% and 25% of the dose inhaled by adults in controlled clinical situations that produced clinically significant decrements in pulmonary function and increased the symptoms after 6.6 hr exposure in a given day. The chamber studies have used only ozone, whereas in the environment this effect may be enhanced by the presence of a complex mixture. The work of Lioy et al in Mendham, New Jersey found that hydrogen ion seemed to play a role in the inability of the children to return immediately to their normal peak expiratory flow rate after exposure. The camp health study conducted in Dunsville, Ontario suggested that children participating in a summer camp where moderate levels of ozone (100 ppb) but high levels of acid (46 micrograms/m3) occurred during an episode had a similar response. Thus, for children or exercising adults who are outdoors for at least one hour or more during a given day, the presence and persistence of oxidants in the environment are of particular concern. 63 references.

  11. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  12. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  13. CCN activation of ambient and "synthetic ambient" urban aerosol

    NASA Astrophysics Data System (ADS)

    Burkart, Julia; Reischl, Georg; Steiner, Gerhard; Bauer, Heidi; Leder, Klaus; Kistler, Magda; Puxbaum, Hans; Hitzenberger, R.

    2013-05-01

    In this study, the Cloud Condensation Nuclei (CCN) activation properties of the urban aerosol in Vienna, Austria, were investigated in a long term (11 month) field study. Filter samples of the aerosol below 100 nm were taken in parallel to these measurements, and later used to generate "synthetic ambient" aerosols. Activation parameters of this "synthetic ambient" aerosol were also obtained. Hygroscopicity parameters κ [1] were calculated both for the urban and the "synthetic ambient" aerosol and also from the chemical composition. Average κ for the "synthetic ambient" aerosol ranged from 0.20 to 0.30 with an average value of 0.24, while the κ from the chemical composition of this "synthetic ambient" aerosol was significantly higher (average 0.43). The full results of the study are given elsewhere [2,3].

  14. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  15. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Achakulwisut, P.; Pope, F. D.; Davies, J. F.; Spring, D. R.; Kalberer, M.

    2011-12-01

    Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5-90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160-200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This

  16. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting

  17. Cloud condensation nuclei activity of isoprene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Engelhart, Gabriella J.; Moore, Richard H.; Nenes, Athanasios; Pandis, Spyros N.

    2011-01-01

    This work explores the cloud condensation nuclei (CCN) activity of isoprene secondary organic aerosol (SOA), likely a significant source of global organic particulate matter and CCN, produced from the oxidation with OH from HONO/HOOH photolysis in a temperature-controlled SOA chamber. CCN concentrations, activation diameter, and droplet growth kinetic information were monitored as a function of supersaturation (from 0.3% to 1.5%) for several hours using a cylindrical continuous-flow streamwise thermal gradient CCN counter connected to a scanning mobility particle sizer. The initial SOA concentrations ranged from 2 to 30 μg m-3 and presented CCN activity similar to monoterpene SOA with an activation diameter of 35 nm for 1.5% supersaturation and 72 nm for 0.6% supersaturation. The CCN activity improved slightly in some experiments as the SOA aged chemically and did not depend significantly on the level of NOx during the SOA production. The measured activation diameters correspond to a hygroscopicity parameter κ value of 0.12, similar to κ values of 0.1 ± 0.04 reported for monoterpene SOA. Analysis of the water-soluble carbon extracted from filter samples of the SOA suggest that it has a κ of 0.2-0.3 implying an average molar mass between 90 and 150 g mol-1 (assuming a zero and 5% surface tension reduction with respect to water, respectively). These findings are consistent with known oxidation products of isoprene. Using threshold droplet growth analysis, the CCN activation kinetics of isoprene SOA was determined to be similar to pure ammonium sulfate aerosol.

  18. Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Cheng, C. T.; Wilson, K. R.

    2014-12-01

    Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation. We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through

  19. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  20. Oxidation of biogenic compounds in the atmosphere: novel pathways and their impact on oxidants and aerosol

    NASA Astrophysics Data System (ADS)

    Wennberg, P. O.

    2013-12-01

    Our understanding of the oxidative chemistry of biogenically-produced compounds has been substantially altered in the last five years. New pathways including odd intramolecular rearrangements produce an abundance of oxidized compounds -- many of which were previously unknown to exist in the atmosphere. These include epoxides and numerous other highly-oxidized compounds that increase the amount of aerosol. Many of these new pathways recycle HOx radicals thereby altering the large-scale photochemistry of the atmosphere. I will describe both field and laboratory experiments that have revealed this novel chemistry point to the large number of remaining questions.

  1. A Computational Approach to Understanding Aerosol Formation and Oxidant Chemistry in the Troposphere

    SciTech Connect

    Francisco, Joseph S.; Kathmann, Shawn M.; Schenter, Gregory K.; Dang, Liem X.; Xantheas, Sotiris S.; Garrett, Bruce C.; Du, Shiyu; Dixon, David A.; Bianco, Roberto; Wang, Shuzhi; Hynes, James T.; Morita, Akihiro; Peterson, Kirk A.

    2006-04-18

    four times higher than expected from the commonly assumed primary sources. Such elevated abundances of HOx imply a more photochemically active troposphere than previously thought. This implies that rates of ozone formation in the lower region of the atmosphere and the oxidation of SO? can be enhanced, thus promoting the formation of new aerosol properties. Central to unraveling this chemistry is the ability to assess the photochemical product distributions resulting from the photodissociation of by-products of VOC oxidation. We propose to use state-of-the-art theoretical techniques to develop a detailed understanding of the mechanisms of aerosol formation in multicomponent (mixed chemical) systems and the photochemistry of atmospheric organic species. The aerosol studies involve an approach that determines homogeneous gas-particle nucleation rates from knowledge of the molecular interactions that are used to define properties of molecular clusters. Over the past several years we developed Dynamical Nucleation Theory (DNT), a novel advance in the theoretical description of homogeneous gas-liquid nucleation, and applied it to gas-liquid nucleation of a single component system (e.g., water). The goal of the present research is to build upon these advances by extending the theory to multicomponent systems important in the atmosphere (such as clusters containing sulfuric acid, water, ions, ammonia, and organics). In addition, high-level ab initio electronic structure calculations will be used to unravel the chemical reactivity of the OH radical and water clusters.

  2. Relationship between volatility, hygroscopicity, and CCN activity of winter aerosols: Kanpur, Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, Sachchida

    2016-04-01

    Aerosol volatility is one of the key property in deciding their lifetime and fate. The volatile species have the potential to affect SOA estimation, so their characterization and establishment of relationship with mass loading, chemical composition, hygroscopicity and CCN activity is required. A 42 days long winter campaign was conducted in an anthropogenically polluted location (Kanpur, India) where CCN activity of both ambient and thermally treated aerosols was characterized. Enhanced partitioning of semi-volatile molecules into particle phase at higher loading conditions was observed. Unexpectedly, the most oxidized organic factor was observed both least volatile and hygroscopic in nature. Lower

  3. Parameterization of the Cloud Nucleating Activity of Fresh, Aged, and Internally-Mixed Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Kreidenweis, S.; Petters, M.; Demott, P.; Prenni, A.; Ziemann, P.

    2006-12-01

    Carbonaceous particle types affect global climate, visibility, and human health, but their primary and secondary sources, sinks, and tropospheric lifetimes are highly uncertain. The size and hygroscopicity of particles, and in particular their activity as cloud condensation nuclei (CCN), plays a large role in determining their atmospheric impacts and lifetimes. However, hygroscopicity is difficult to parameterize for many organic species for which no thermodynamic data exist, and for complex, multicomponent aerosols of undefined composition. We propose a simple method to describe the relationship between dry particle diameter and CCN activity using a single hygroscopicity parameter, κ. We derive values of κ from fitting of experimental CCN-activity data from the literature and from recent experiments, including oxidation-aged organic particles and secondary organic aerosols. Values of κ are between 0.5 and 2 for highly-CCN- active salts such as sodium chloride, between 0.01 and 0.5 for slightly to very hygroscopic organic aerosols such as those produced in biomass burning and as secondary organic aerosols, and 0 for nonhygroscopic components. The hygroscopicity of internal mixtures can be calculated as a volume fraction weighted average of the hygroscopicity parameters of the individual species comprising the mixture. Aging of aerosol, understood as changes in hygroscopicity due to condensation of hydrophilic species, coagulation of aerosol populations, or heterogeneous chemical reactions, are described conveniently by changes in κ. Our studies show that oxidative aging that proceeds by addition of functional groups to the CHx carbon backbone leads to only small changes in κ, and thus the process alone is inefficient at rendering small, initially- hydrophobic primary organic particles capable of being scavenged by cloud-drop nucleation. Other processes, such as coagulation and condensation, control the rate of hydrophobic-to-hydrophilic conversion of primary

  4. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Knopf, Daniel A.

    2014-07-01

    Organic aerosol can exhibit different phase states in response to changes in relative humidity (RH), thereby influencing heterogeneous reaction rates with trace gas species. OH radical uptake by laboratory-generated levoglucosan and methyl-nitrocatechol particles, serving as surrogates for biomass burning aerosol, is determined as a function of RH. Increasing RH lowers the viscosity of amorphous levoglucosan aerosol particles enabling enhanced OH uptake. Conversely, OH uptake by methyl-nitrocatechol aerosol particles is suppressed at higher RH as a result of competitive coadsorption of H2O that occupies reactive sites. This is shown to have substantial impacts on organic aerosol lifetimes with respect to OH oxidation. The results emphasize the importance of organic aerosol phase state to accurately describe the multiphase chemical kinetics and thus chemical aging process in atmospheric models to better represent the evolution of organic aerosol and its role in air quality and climate.

  5. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; et al

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  6. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  7. Heterogeneous oxidation of pesticides on aerosol condensed phase

    NASA Astrophysics Data System (ADS)

    Socorro, Joanna; Durand, Amandine; Temime-Roussel, Brice; Ravier, Sylvain; Gligorovski, Sasho; Wortham, Henri; Quivet, Etienne

    2015-04-01

    Pesticides are widely used all over the world. It is known that they exhibit adverse health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. They are distributed in the atmosphere, an important vector of dissemination, over long distances away from the target area. The partitioning of pesticides between the gas and particulate phases influences their atmospheric fate. Most of the pesticides are semi-volatile compounds, emphasizing the importance of assessing their heterogeneous reactivity towards atmospheric oxidants. These reactions are important because they are involved in, among others, direct and indirect climate changes, adverse health effects from inhaled particles, effects on cloud chemistry and ozone production. In this work, the importance of atmospheric degradation of pesticides is evaluated on the surface of aerosol deliquescent particles. The photolysis processing and heterogeneous reactivity towards O3 and OH, was evaluated of eight commonly used pesticides (cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole) adsorbed on silica particles. Silicate particles are present in air-borne mineral dust in atmospheric aerosols, and heterogeneous reactions can be different in the presence of these mineral particles. Depending on their origin and conditioning, aerosol particles containing pesticides can have complex and highly porous microstructures, which are influenced by electric charge effects and interaction with water vapour. Therefore, the kinetic experiments and consecutive product studies were performed at atmospherically relevant relative humidity (RH) of 55 %. The identification of surface bound products was performed using GC-(QqQ)-MS/MS and LC-(Q-ToF)-MS/MS and the gas-phase products were on-line monitored by PTR-ToF-MS. Based on the detected and identified reaction products, it was observed that water plays a crucial

  8. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber.

    PubMed

    Weitkamp, Emily A; Sage, Amy M; Pierce, Jeffrey R; Donahue, Neil M; Robinson, Allen L

    2007-10-15

    Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary emissions after several hours of processing at atmospherically relevant hydroxyl radical concentrations. Less than 10% of the SOA mass can be explained using a SOA model and the measured oxidation of known precursors such as light aromatics. However, the ultimate yield of SOA is uncertain because it is sensitive to treatment of particle and vapor losses to the chamber walls. Mass spectra from an aerosol mass spectrometer (AMS) reveal that the organic aerosol becomes progressively more oxidized throughout the experiments, consistent with sustained, multi-generational production. The data provide strong evidence that the oxidation of a wide array of precursors that are currently not accounted for in existing models contributes to ambient SOA formation.

  9. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE PAGES

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  10. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE PAGES

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore » US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  11. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  12. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  13. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    PubMed

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  14. Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides.

    PubMed

    Riva, Matthieu; Budisulistiorini, Sri H; Chen, Yuzhi; Zhang, Zhenfa; D'Ambro, Emma L; Zhang, Xuan; Gold, Avram; Turpin, Barbara J; Thornton, Joel A; Canagaratna, Manjula R; Surratt, Jason D

    2016-09-20

    Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States. PMID:27466979

  15. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  16. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2014-07-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5) which include factors such as insoluble aerosol adsorption and giant cloud condensation nuclei (CCN) activation kinetics to understand their individual impacts on global-scale cloud droplet number concentration (CDNC). Compared to the existing activation scheme in CESM/CAM5, this series of activation schemes increase the computation time by ~10% but leads to predicted CDNC in better agreement with satellite-derived/in situ values in many regions with high CDNC but in worse agreement for some regions with low CDNC. Large percentage changes in predicted CDNC occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reduced activation of sea spray aerosol after accounting for giant CCN activation kinetics. Comparison of CESM/CAM5 predictions against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes generally improve the low biases. Globally, the incorporation of all updated schemes leads to an average increase in column CDNC of 150% and an increase (more negative) in shortwave cloud forcing of 12%. With the improvement of model-predicted CDNCs and better agreement with most satellite-derived cloud properties in many regions, the inclusion of these aerosol activation

  17. Reconciling Organic Aerosol Volatility, Hygroscopicity, and Oxidation State During the Colorado DISCOVER-AQ Deployment

    NASA Astrophysics Data System (ADS)

    Hite, J. R.; Moore, R.; Martin, R.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.; Nenes, A.

    2014-12-01

    The organic fraction of submicron aerosol can profoundly impact radiative forcing on climate directly, through enhancement of extinction, or indirectly through modulation of cloud formation. Semi-volatile constituents of organic ambient aerosol are of particular interest as their partitioning between the vapor and aerosol phases is not well constrained by current atmospheric models and appears to play an important role in the formation of cloud condensation nuclei (CCN) as suggested by recent research. An experimental setup consisting of a DMT CCN counter and SMPS downstream of a custom-built thermodenuder assembly was deployed during the summer 2014 DISCOVER-AQ field campaign to retrieve simultaneous, size-resolved volatility and hygroscopicity - through the use of scanning mobility CCN analysis (SMCA). Housed in the NASA Langley mobile laboratory, a suite of complimentary measurements were made available onboard including submicron aerosol composition and oxidation state provided by an HR-ToF-AMS, and aerosol optical properties provided by a range of other instruments including an SP2. Air masses sampled from locations across the Central Colorado region include influences from regional aerosol nucleation/growth events, long-range transport of Canadian biomass burning aerosols, cattle feedlot emissions and influences of the Denver urban plume - amidst a backdrop of widespread oil and gas exploration. The analysis focuses on the reconciliation of the retrieved aerosol volatility distributions and corresponding hygroscopicity and oxidation state observations, including the use of AMS factor analysis.

  18. On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol

    NASA Astrophysics Data System (ADS)

    Pusede, S. E.; Duffey, K. C.; Shusterman, A. A.; Saleh, A.; Laughner, J. L.; Wooldridge, P. J.; Zhang, Q.; Parworth, C. L.; Kim, H.; Capps, S. L.; Valin, L. C.; Cappa, C. D.; Fried, A.; Walega, J.; Nowak, J. B.; Weinheimer, A. J.; Hoff, R. M.; Berkoff, T. A.; Beyersdorf, A. J.; Olson, J.; Crawford, J. H.; Cohen, R. C.

    2016-03-01

    Nitrogen oxides (NOx) have fallen steadily across the US over the last 15 years. At the same time, NOx concentrations decrease on weekends relative to weekdays, largely without co-occurring changes in other gas-phase emissions, due to patterns of diesel truck activities. These trends taken together provide two independent constraints on the role of NOx in the nonlinear chemistry of atmospheric oxidation. In this context, we interpret interannual trends in wintertime ammonium nitrate (NH4NO3) in the San Joaquin Valley of California, a location with the worst aerosol pollution in the US and where a large portion of aerosol mass is NH4NO3. Here, we show that NOx reductions have simultaneously decreased nighttime and increased daytime NH4NO3 production over the last decade. We find a substantial decrease in NH4NO3 since 2000 and conclude that this decrease is due to reduced nitrate radical-initiated production at night in residual layers that are decoupled from fresh emissions at the surface. Further reductions in NOx are imminent in California, and nationwide, and we make a quantitative prediction of the response of NH4NO3. We show that the combination of rapid chemical production and efficient NH4NO3 loss via deposition of gas-phase nitric acid implies that high aerosol days in cities in the San Joaquin Valley air basin are responsive to local changes in NOx within those individual cities. Our calculations indicate that large decreases in NOx in the future will not only lower wintertime NH4NO3 concentrations but also cause a transition in the dominant NH4NO3 source from nighttime to daytime chemistry.

  19. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  20. Toward new techniques to measure heterogeneous oxidation of aerosol: Electrodynamic Balance-Mass Spectrometry (EDB-MS) and Aerosol X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, M. I.; Heine, N.; Xu, B.; Davies, J. F.; Kirk, B. B.; Kostko, O.; Alayoglu, S.; Wilson, K. R.; Ahmed, M.

    2015-12-01

    The chemical composition and physical properties of aerosol can be changed via heterogeneous oxidation with the OH radical. However, the physical state of the aerosol influences the kinetics of this reaction; liquid particles with a high diffusion coefficient are expected to be well mixed and homogenously oxidized, while oxidation of solid, diffusion-limited aerosol is expected to occur primarily on the surface, creating steep chemical gradients within the particle. We are working to develop several new techniques to study the heterogeneous oxidation of different types of aerosol. We are developing a "modular" electrodynamic balance (EDB) that will enable us to study heterogeneous oxidation at aqueous interfaces using a mass-spectrometer (and potentially other detection techniques). Using a direct analysis in real time (DART) interface, preliminary droplet train measurements have demonstrated single-droplet mass spectrometry to be possible. With long reaction times in our EDB, we will be able to study heterogeneous oxidation of a wide variety of organic species in aqueous droplets. Additionally, we are working to use aerosol photoemission and velocity map imaging (VMI) to study the surface of aerosol particles as they undergo heterogeneous oxidation. With VMI, we're able to collect electrons with a 4π collection efficiency over conventional electron energy analyzers. Preliminary results looking at the ozonolysis of squalene using ultraviolet photoelectron spectroscopy (UPS) show that heterogeneous oxidation kinetic data can be extracted from photoelectron spectra. By moving to X-ray photoemission spectroscopy (XPS), we will determine elemental and chemical composition of the aerosol surface. Thus, aerosol XPS will provide information on the steep chemical gradients that form as diffusion-limited aerosol undergo heterogeneous oxidation.

  1. Annular diffusion denuder for simultaneous removal of gaseous organic compounds and air oxidants during sampling of carbonaceous aerosols.

    PubMed

    Mikuška, Pavel; Večeřa, Zbyněk; Bartošíková, Anna; Maenhaut, Willy

    2012-02-10

    A specially designed annular diffusion denuder for simultaneous removal of organic gaseous compounds and atmospheric oxidants in carbonaceous aerosol sampling is presented. Various kinds of denuder coatings were compared with respect to the collection efficiency of both organic gaseous compounds and NO(2) and ozone. The optimum sorbent is a mixture of activated charcoal and sulfite on molecular sieve. To ensure high collection efficiency over long-term field operation, two annular diffusion denuders are combined in series. The first half of the first denuder is filled with Na(2)SO(3) on molecular sieve (23 cm long layer) while the second half of the first denuder and the whole second denuder are filled with activated charcoal (the total length of the charcoal section is 67 cm). At a flow rate of 16.6 L min(-1), the collection efficiency of organic gaseous compounds and atmospheric oxidants in the annular diffusion denuder is better than 95%. Only small losses of aerosol particles (<3.6% in number concentration) were observed in the size range 0.12-2.26 μm. The annular diffusion denuder is compatible with the collection of aerosols on 47-mm diameter quartz fiber filters at a flow rate of 16.6 L min(-1). The use of this denuder enables one to sample carbonaceous aerosols on filters without positive sampling artefacts from volatile organic compounds and interferences from atmospheric oxidants. The annular diffusion denuder has been applied successfully for the sampling of carbonaceous aerosols during field campaigns of typically 1 month each at urban and forested sites in Europe.

  2. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  3. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.

    PubMed

    Kroll, Jesse H; Donahue, Neil M; Jimenez, Jose L; Kessler, Sean H; Canagaratna, Manjula R; Wilson, Kevin R; Altieri, Katye E; Mazzoleni, Lynn R; Wozniak, Andrew S; Bluhm, Hendrik; Mysak, Erin R; Smith, Jared D; Kolb, Charles E; Worsnop, Douglas R

    2011-02-01

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here, we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state, a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of the average carbon oxidation state, using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number.

  4. Observed secondary organic aerosol (SOA) and organic nitrate yields from NO3 oxidation of isoprene

    NASA Astrophysics Data System (ADS)

    Rollins, A. W.; Fry, J. L.; Kiendler-Scharr, A.; Wooldridge, P. J.; Brown, S. S.; Fuchs, H.; Dube, W.; Mensah, A.; Tillmann, R.; Dorn, H.; Brauers, T.; Cohen, R. C.

    2008-12-01

    Formation of organic nitrates and secondary organic aerosol (SOA) from the NO3 oxidation of isoprene has been studied at atmospheric concentrations of VOC (10 ppb) and oxidant (<100 ppt NO3) in the presence of ammonium sulfate seed aerosol in the atmosphere simulation chamber SAPHIR at Forschungszentrum Jülich. Cavity Ringdown (CaRDS) and thermal dissociation - CaRDS measurements of NO3 and N2O5 as well as Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) detection of alkyl nitrates (RONO2) and Aerodyne Aerosol Mass Spectrometer (AMS) measurements of aerosol composition were all used in comparison to a Master Chemical Mechanism (MCM) based chemical kinetics box model to quantify the product yields from two stages in isoprene oxidation. We find significant yields of organic nitrate formation from both the initial isoprene + NO3 reaction (71%) as well as from the reaction of NO3 with the initial oxidation products (30% - 60%). Under these low concentration conditions (~1 μg / m3), measured SOA production was greater than instrument noise only for the second oxidation step. Based on the modeled chemistry, we estimate an SOA mass yield of 10% (relative to isoprene mass reacted) for the reaction of the initial oxidation products with NO3. This yield is found to be consistent with the estimated saturation concentration (C*) of the presumed gas products of the doubly oxidized isoprene, where both oxidations lead to the addition of nitrate, carbonyl, and hydroxyl groups.

  5. Aerosol speciation and mass prediction from toluene oxidation under high NO x conditions

    NASA Astrophysics Data System (ADS)

    Kelly, Janya L.; Michelangeli, Diane V.; Makar, Paul A.; Hastie, Donald R.; Mozurkewich, Michael; Auld, Janeen

    2010-01-01

    A kinetically based gas-particle partitioning box model is used to highlight the importance of parameter representation in the prediction of secondary organic aerosol (SOA) formation following the photo-oxidation of toluene. The model is initialized using experimental data from York University's indoor smog chamber and provides a prediction of the total aerosol yield and speciation. A series of model sensitivity experiments were performed to study the aerosol speciation and mass prediction under high NO x conditions (VOC/NO x = 0.2). Sensitivity experiments indicate vapour pressure estimation to be a large area of weakness in predicting aerosol mass, creating an average total error range of 70 μg m -3 (range of 5-145 μg m -3), using two different estimation methods. Aerosol speciation proved relatively insensitive to changes in vapour pressure. One species, 3-methyl-6-nitro-catechol, dominated the aerosol phase regardless of the vapour pressure parameterization used and comprised 73-88% of the aerosol by mass. The dominance is associated with the large concentration of 3-methyl-6-nitro-catechol in the gas-phase. The high NO x initial conditions of this study suggests that the predominance of 3-methyl-6-nitro-catechol likely results from the cresol-forming branch in the Master Chemical Mechanism taking a significant role in secondary organic aerosol formation under high NO x conditions. Further research into the yields and speciation leading to this reaction product is recommended.

  6. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  7. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  8. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Raatikainen, T.; Lance, S.; Tkacik, D.; Tiitta, P.; Petäjä, T.; Ehn, M.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A.; Smith, J. N.; Nenes, A.

    2011-12-01

    Measurements of size-resolved cloud condensation nuclei (CCN) concentrations, subsaturated hygroscopic growth, size distribution, and chemical composition were collected from March through May, 2007, in the remote Boreal forests of Hyytiälä, Finland, as part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaign. Hygroscopicity parameter, κ, distributions were derived independently from Continuous Flow-Streamwise Thermal Gradient CCN Chamber (CFSTGC) and Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) measurements. CFSTGC-derived κ values for 40, 60, and 80 nm particles range mostly between 0.10 and 0.40 with an average characteristic of highly oxidized organics of 0.20 ± 0.10, indicating that organics play a dominant role for this environment. HTDMA-derived κ were generally 30% lower. Diurnal trends of κ show a minimum at sunrise and a maximum in the late afternoon; this trend covaries with inorganic mass fraction and the m/z 44 organic mass fraction given by a quadrupole aerosol mass spectrometer, further illustrating the importance of organics in aerosol hygroscopicity. The chemical dispersion inferred from the observed κ distributions indicates that while 60 and 80 nm dispersion increases around midday, 40 nm dispersion remains constant. Additionally, 80 nm particles show a markedly higher level of chemical dispersion than both 40 and 60 nm particles. An analysis of droplet activation kinetics for the sizes considered indicates that most of the CCN activate as rapidly as (NH4)2SO4 calibration aerosol.

  9. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Raatikainen, T.; Lance, S.; Tkacik, D.; Tiitta, P.; Petäjä, T.; Ehn, M.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A.; Smith, J. N.; Nenes, A.

    2011-05-01

    Measurements of size-resolved cloud condensation nuclei (CCN), subsaturated hygroscopic growth, size distribution, and chemical composition were collected from March through May, 2007, in the remote Boreal forests of Hyytiälä, Finland, as part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaign. Hygroscopicity parameter, κ, distributions were derived independently from Continuous Flow-Streamwise Thermal Gradient CCN Chamber (CFSTGC) and Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) measurements. CFSTGC-derived κ values for 40, 60, and 80 nm particles range mostly between 0.10 and 0.40 with an average of 0.20 ± 0.10; this is characteristic of highly oxidized organics and reflect their dominant influence in this environment. HTDMA-derived κ were generally 30 % lower. Diurnal trends of κ show a minimum at sunrise and a maximum in the late afternoon; this trend covaries with inorganic mass fraction and the m/z 44 organic mass fraction given by a quadrupole aerosol mass spectrometer, further illustrating the importance of ageing on aerosol hygroscopicity. The chemical dispersion inferred from the observed κ distributions indicates that while 60 and 80 nm dispersion increases around midday, 40 nm dispersion remains constant. Additionally, 80 nm particles show a markedly higher level of chemical dispersion than both 40 and 60 nm particles. An analysis of droplet activation kinetics for the sizes considered indicates that the CCN activate as rapidly as (NH4)2SO4 calibration aerosol.

  10. Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi; Griffin, Robert J.

    2006-07-01

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal and industrialized areas. The purpose of this paper is to test this hypothesis and to quantify the SOA formation potentials of the common monoterpenes α-pinene, β-pinene, and d-limonene when oxidized by Cl in laboratory chamber experiments. Results indicate that the oxidation of these monoterpenes generates significant amounts of aerosol. The SOA yields of α-pinene, β-pinene, and d-limonene in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 μg m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. For d-limonene, data indicate two yield curves that depend on the initial concentration ratio of Cl precursor to d-limonene. It is argued theoretically that multiple SOA yield curves may be common for VOCs, depending on the initial concentration ratio of oxidant to VOC. SOA formation from the three typical monoterpenes when oxidized by Cl in the marine boundary layer, coastal areas, and inland industrialized areas could be a source of organic aerosol in the early morning.

  11. Kinetics and Products of Heterogeneous Oxidation of Erythritol and Levoglucosan in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Kessler, S. H.; Kroll, J. H.; Wilson, K. R.; Smith, J. D.

    2009-12-01

    Although organic aerosols in the atmosphere have been implicated in concerns related to both human health and global radiative forcing, they remain collectively a significant source of uncertainty in long-term predictions, in part because of the inherent chemical complexity of possible oxidation products formed from a given compound during its atmospheric lifetime. Here we study the heterogeneous oxidation of model compounds used as surrogates for biomass burning aerosol and secondary organic aerosol (SOA): levoglucosan, a frequently used tracer for biomass burning, and erythritol ((2R,3S)-butane-1,2,3,4-tetraol) an analog of the methyltetrols found in isoprene oxidation SOA. The present experiments are aimed at examining the kinetics and products of further oxidation of both compounds, in order both to explore how each compound contributes to atmospheric aerosol formation and to examine model single-component systems to determine how structural and compositional differences between compounds affect the relative paths of oxidative degradation. Particles are sent through a flow tube reactor where they are exposed to high concentrations (~1013 molecule1 s1 cm-3) of hydroxyl radicals (OH), after which the aerosols are sized and their composition analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) with both electron impact (EI) and vacuum-ultraviolet (VUV) ionization techniques. Although erythritol and levoglucosan have similar second-order degradation rate constants (2.03 ± 0.20 × 10-13 and 4.7 ± 0.5 × 10-13 cm3 molecule-1 s-1, respectively), the differences between the loss of particle mass upon an equivalent amount of oxidation (80% vs 30% respectively) are much more pronounced.

  12. CCN Activity, Hygroscopicity, and Droplet Activation Kinetics of Secondary Organic Aerosol Resulting from the 2010 Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lathem, T. L.; Cerully, K.; Bahreini, R.; Brock, C. A.; Langridge, J. M.; Middlebrook, A. M.; Nenes, A.; Calnex Science Team

    2010-12-01

    We present an analysis of the hygroscopicity and droplet activation kinetics of cloud condensation nuclei (CCN) sampled onboard the National Oceanic and Atmospheric Administration WP-3D aircraft downwind of the Deepwater Horizon oil spill site on June 8th and 10th, 2010. This set of measurements provides a unique case study for assessing in-situ the impact of fresh, hydrocarbonlike aerosols, which are expected to be formed via gas-to-particle conversion of the semi-volatile vapors released from oil evaporation. Similar hydrocarbon-rich aerosols constitute an important local emissions source in urban areas, but often coexist as an external/partially-internal mixture with more-oxidized, aged organic and sulfate aerosol. The DWH site provides the means to study the hygroscopic properties of these less-oxidized organic aerosols above a cleaner environmental background typical of marine environments in order to better discern their contribution to CCN activity and droplet growth. Measurements were performed with a Droplet Measurement Technologies Streamwise, Thermal-Gradient CCN counter, operating both as a counter (s=0.3%) and as a spectrometer (s=0.2-0.6%) using the newly-developed Scanning Flow CCN Analysis (SFCA) technique [1]. The instrument measures both the number concentration of particles able to nucleate droplets and also their resulting droplet sizes. The measured size information combined with a comprehensive computational fluid dynamics instrument model enables us to determine the rate of water uptake onto the particles and parameterize it in terms of an effective mass transfer coefficient [2], a key parameter needed to predict the number of activated droplets in ambient clouds. Non-refractory aerosol chemical composition was measured with an Aerodyne compact time-of-flight aerosol mass spectrometer. It was observed that the aerosols sampled downwind of the site on both days were composed predominantly of organics with a low degree of oxidation and low

  13. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  14. Secondary Organic Aerosol (SOA) Formation from Hydroxyl Radical Oxidation and Ozonolysis of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Kaminski, Martin; Schlag, Patrick; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Haeseler, Rolf; Kiendler-Scharr, Astrid; Rohrer, Franz; Tillmann, Ralf; Wang, Mingjin; Wegner, Robert; Wahner, Andreas; Mentel, Thomas

    2014-05-01

    Hydroxyl radical (OH) oxidation and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. The pure OH oxidation of monoterpenes, an important biogenic VOC class, has seldom been investigated. In order to elucidate the importance of the reaction pathyways of the OH oxidation and ozonolysis and their roles in particle formation and growth, we investigated the particle formation of several common monoterpenes (alpha-pinene, beta-pinene, and limonene) in the large atmosphere simulation chamber SAPHIR in Juelich, Germany. The experiments were conducted for both OH dominant and pure ozonolysis case (in the presence of CO as OH scavenger) at ambient relevant conditions (low OA, low VOC and low NOx concentration). OH and ozone (O3) concentrations were measured so that the oxidation rates of OH and O3 with precursors were quantified. The particle formation and growth, aerosol yield, multi-generation reaction process and aerosol composition were analyzed. Pure ozonolysis generated a large amount of particles indicating ozonolysis plays an important role in particle formation as well as OH oxidation. In individual experiments, particle growth rates did not necessarily correlate with OH or O3 oxidation rates. However, comparing the growth rates at similar OH or O3 oxidation rates shows that generally, OH oxidation and ozonolysis have similar efficiency in particle growth. Multi-generation products are shown to be important in the OH oxidation experiment based on aerosol yield "growth curve" (Ng et al., 2006). The reaction process of OH oxidation experiments was analyzed as a function of OH dose to elucidate the role of functionalization and fragmentation. A novel analysis was developed to link the particle formation with the reaction with OH, which was also used to examine the role of functionalization and fragmentation in the particle formation by OH oxidation. These analyses show

  15. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol.

    PubMed

    Tu, Peijun; Hall, Wiley A; Johnston, Murray V

    2016-04-19

    In this work, highly oxidized multifunctional molecules (HOMs) in fresh and aged secondary organic aerosol (SOA) derived from biogenic precursors are characterized with high-resolution mass spectrometry. Fresh SOA was generated by mixing ozone with a biogenic precursor (β-pinene, limonene, α-pinene) in a flow tube reactor. Aging was performed by passing the fresh SOA through a photochemical reactor where it reacted with hydroxyl radicals. Although these aerosols were as a whole not highly oxidized, molecular analysis identified a significant number of HOMs embedded within it. HOMs in fresh SOA consisted mostly of monomers and dimers, which is consistent with condensation of extremely low-volatility organic compounds (ELVOCs) that have been detected in the gas phase in previous studies and linked to SOA particle formation. Aging caused an increase in the average number of carbon atoms per molecule of the HOMs, which is consistent with particle phase oxidation of (less oxidized) oligomers already existing in fresh SOA. HOMs having different combinations of oxygen-to-carbon ratio, hydrogen-to-carbon ratio and average carbon oxidation state are discussed and compared to low volatility oxygenated organic aerosol (LVOOA), which has been identified in ambient aerosol based on average elemental composition but not fully understood at a molecular level. For the biogenic precursors and experimental conditions studied, HOMs in fresh biogenic SOA have molecular formulas more closely resembling LVOOA than HOMs in aged SOA, suggesting that aging of biogenic SOA is not a good surrogate for ambient LVOOA. PMID:27000653

  16. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Logue, J. M.; Donahue, N. M.; Robinson, A. L.

    2009-02-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) emissions from flaming and smoldering hard- and soft-wood fires under plume-like conditions. This was done by exposing the dilute emissions from a small wood stove to UV light in a smog chamber and measuring the gas- and particle-phase pollutant concentrations with a suite of instruments including a Proton Transfer Reaction Mass Spectrometer (PTR-MS), an Aerosol Mass Spectrometer (AMS) and a thermodenuder. The measurements highlight how atmospheric processing can lead to considerable evolution of the mass and volatility of biomass-burning OA. Photochemical oxidation produced substantial new OA, increasing concentrations by a factor of 1.5 to 2.8 after several hours of exposure to typical summertime hydroxyl radical (OH) concentrations. Less than 20% of this new OA could be explained using a state-of-the-art secondary organic aerosol model and the measured decay of traditional SOA precursors. The thermodenuder data indicate that the primary OA is semivolatile; at 50°C between 50 and 80% of the fresh primary OA evaporated. Aging reduced the volatility of the OA; at 50°C only 20 to 40% of aged OA evaporated. The predictions of a volatility basis-set model that explicitly tracks the partitioning and aging of low-volatility organics was compared to the chamber data. The OA production can be explained by the oxidation of low-volatility organic vapors; the model can also reproduce observed changes in OA volatility and composition. The model was used to investigate the competition between photochemical processing and dilution on OA concentrations in plumes.

  17. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  18. CCN, hygroscopicity, and activation kinetics of Los Angeles aerosol

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Lathem, T. L.; Nenes, A.; Suski, K.; Cahill, J. F.; Prather, K. A.; Craven, J. S.; Metcalf, A. R.; Jonsson, H. H.; Flagan, R. C.; Seinfeld, J. H.

    2010-12-01

    The CalNex field campaign was designed as a comprehensive regional air quality and climate assessment study with an emphasis on the interaction between air quality and climate change. The southern California region is an excellent location for the study of air quality and climate change due to the existence and interaction of biogenic, dust, and urban plumes. Research flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter platform focused on the origin and evolution of the Los Angeles plume as it is advected across the basin and outflows into the Coachella valley and Mojave Desert. This study focuses on cloud condensation nuclei (CCN) measurements taken aboard the Twin Otter. A continuous flow streamwise thermal gradient chamber operating in scanning flow CCN analysis (SFCA) mode provided high resolution, in situ CCN spectra (0.4-0.8% supersaturation) once every 40 seconds. In conjuncture with other aerosol instrumentation aboard the Twin Otter, the data provide a comprehensive picture of the interaction of ambient aerosol with water vapor. The analysis presented then quantifies the relationship between aerosol size, chemical composition, mixing state, hygroscopicity, and activation kinetics of aerosol from the variety of sources sampled.

  19. Multiphase processing of organic hydroxynitrates in secondary organic aerosol from the radical-initiated oxidation of multi-olefinic monoterpenes

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Lee, L. S.; Shepson, P. B.; De Perre, C.

    2015-12-01

    One of the greatest challenges facing atmospheric and climate science is understanding the impacts human activities have on the natural environment and atmospheric chemistry. The production of condensable organic compounds due to interactions between atmospheric oxidants, nitrogenous pollutants, and biogenic volatile organic compounds (BVOCs) emitted from the terrestrial biosphere can contribute significantly to the formation and growth of secondary organic aerosol (SOA). Aerosol particles influence atmospheric radiative transfer, cloud formation, and thus atmospheric temperatures. Due to their solubility in water and adsorptive nature, hydroxylated organic nitrates (HORONO2) may contribute significantly to the formation and chemical aging of SOA, and serve as an important sink for NOx (NO+NO2). We recently observed that a monoterpene β-hydroxy-organic nitrate (C10H17NO4), produced from the OH oxidation of α-pinene in the presence of NOx, undergoes rapid processing in the aerosol phase via an acid-catalyzed and pH-dependent hydrolysis mechanism, potentially impacting SOA growth and molecular composition. Further processing in the aerosol phase via polymerization and formation of organosulfates is expected, yet studies related to product identification and their formation mechanisms are limited. In this presentation, I will discuss recent laboratory-based reaction chamber studies of gas-phase organic nitrate production, SOA formation, and acidity-dependent aerosol-phase processing of organic nitrates produced from the NO3 oxidation of γ-terpinene. This BVOC is a diolefin, which as modeling studies suggest, may be an important nighttime organic nitrate precursor. Gas-phase organic nitrate compounds resulting from NO3 oxidation were qualitatively identified applying I- chemical ionization mass spectrometry (CIMS) and quantified via calibration using synthetic standards generated in our laboratory. Aerosol-phase analysis was carried out employing Fourier transform

  20. [Investigation of Aerosol Mixed State and CCN Activity in Nanjing].

    PubMed

    Zhu, Lin; Ma, Yan; Zheng, Jun; Li, Shi-zheng; Wang, Li-peng

    2016-04-15

    During 11-18 September 2014, the size-resolved aerosol Cloud Condensation Nuclei (CCN) activity and mixing state were measured using Cloud Condensation Nuclei Counter (CCNC), Aerosol Particle Mass (APM) and Scanning Mobility Particle Sizer (SMPS). The results showed that aerosols mainly existed as an internal mixture. For 76, 111, 138 and 181 nm particles, black carbon (BC) accounted for 5.4%, 10%, l0.7% and 6.7% of the particle mass, but as high as 51%, 57%, 70% and 59% of the particle number concentrations, respectively, suggesting that BC was a type of important condensation nuclei in the atmosphere and made significant contributions to particle numbers. The occasionally observed external mixtures were mainly present in 111 and 138 nm particles. The critical supersaturation was 0.25%, 0.13%, 0.06% and 0.015% for 76, 111, 138 and 181 nm particles, respectively. Precipitation and haze had significant effects on the particle CCN activity. The hygroscopicity parameter K was 0.37, 0.29 and 0.39 in rainy, clear and hazy days, respectively. Particle density and CCN activity were impacted by chemical compositions. Compared with clear days, higher contents of inorganic salts and lower contents of organics were found on hazy days, accompanied by lower particle density and higher CCN activity. PMID:27548938

  1. Oxidation of depleted uranium penetrators and aerosol dispersal at high temperatures

    SciTech Connect

    Elder, J.C.; Tinkle, M.C.

    1980-12-01

    Aerosols dispersed from depleted uranium penetrators exposed to air and air-CO/sub 2/ mixtures at temperatures ranging from 500 to 1000/sup 0/C for 2- or 4-h periods were characterized. These experiments indicated dispersal of low concentrations of aerosols in the respirable size range (typically <10/sup -3/% of penetrator mass at 223 cm/s (5 mph) windspeed). Oxidation was maximum at 700/sup 0/C in air and 800/sup 0/C in 50% air-50% CO/sub 2/, indicating some self-protection developed at higher temperatures. No evidence of self-sustained burning was observed, although complete oxidation can be expected in fires significantly exceeding 4 h, the longest exposure of this series. An outdoor burning experiment using 10 batches of pine wood and paper packing material as fuel caused the highest oxidation rate, probably accelerated by disruption of the oxide layer accompanying broad temperature fluctuation as each fuel batch was added.

  2. Massive Volcanic SO2 Oxidation and Sulphate Aerosol Deposition in Cenozoic North America

    EPA Science Inventory

    Volcanic eruptions release a large amount of sulphur dioxide (SO2) into the atmosphere. SO2 is oxidized to sulphate and can subsequently form sulphate aerosol, which can affect the Earth's radiation balance, biologic productivity and high-altitude ozone co...

  3. Large enhancement in the heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric oxide

    SciTech Connect

    Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.

    2015-10-27

    In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.

  4. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  5. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2013-12-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical link between aerosols and clouds; parameterizations of this process realistically link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5), which include factors such as insoluble aerosol adsorption, giant cloud condensation nuclei (CCN) activation kinetics, and entrainment to understand their individual impacts on global scale cloud droplet number concentrations (CDNCs). Compared to the existing simple activation scheme in CESM/CAM5, this series of schemes predict CDNCs that are typically in better agreement with satellite-derived and observed values. The largest changes in predicted CDNCs occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reductions in cloud supersaturation from the intense absorption of water vapor in regions of strong giant CCN emissions (e.g., sea-salt). Comparison of CESM/CAM5 against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes improve the low biases in their predictions. Globally, the incorporation of all updated schemes leads to an average increase in column CDNCs of 155%, an increase in shortwave cloud forcing of 13%, and a decrease in surface shortwave radiation of 4%. In terms of meteorological impacts, these updated aerosol activation schemes result in a slight decrease in near-surface temperature of 0.9 °C and precipitation of 0.04 mm day-1

  6. OH-initiated heterogeneous oxidation of internally-mixed squalane and secondary organic aerosol.

    PubMed

    Kolesar, Katheryn R; Buffaloe, Gina; Wilson, Kevin R; Cappa, Christopher D

    2014-03-18

    Recent work has established that secondary organic aerosol (SOA) can exist as an amorphous solid, leading to various suggestions that the addition of SOA coatings to existing particles will decrease the reactivity of those particles toward common atmospheric oxidants. Experimental evidence suggests that O3 is unable to physically diffuse through an exterior semisolid or solid layer thus inhibiting reaction with the core. The extent to which this suppression in reactivity occurs for OH has not been established, nor has this been demonstrated specifically for SOA. Here, measurements of the influence of adding a coating of α-pinene+O3 SOA onto squalane particles on the OH-initiated heterogeneous oxidation rate are reported. The chemical composition of the oxidized internally mixed particles was monitored online using a vacuum ultraviolet-aerosol mass spectrometer. Variations in the squalane oxidation rate with particle composition were quantified by measurement of the effective uptake coefficient, γeff, which is the loss rate of a species relative to the oxidant-particle collision rate. Instead of decreasing, the measured γeff increased continuously as the SOA coating thickness increased, by a factor of ∼2 for a SOA coating thickness of 42 nm (corresponding to ca. two-thirds of the particle mass). These results indicate that heterogeneous oxidation of ambient aerosol by OH radicals is not inhibited by SOA coatings, and further that condensed phase chemical pathways and rates in organic particles depend importantly on composition.

  7. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic

    PubMed Central

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei

    2013-01-01

    Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m3 in the boundary layer over remote oceans. PMID:23880782

  8. Observational Evidence of Aerosol Enhancement of Lightning Activity and Convective Invigoration

    NASA Technical Reports Server (NTRS)

    Yuan, Tianle; Remer, Lorraine A.; Pickering, Kenneth E.; Yu, Hongbin

    2011-01-01

    Lightning activity over the West Pacific Ocean east of the Philippines is usually much less frequent than over the nearby maritime continents. However, in 2005 the Lightning Imaging Sensor (LIS) aboard the TRMM satellite observed anomalously high lightning activity in that area. In the same year the Moderate resolution Imaging Spectroradiometer (MODIS) measured anomalously high aerosol loading. The high aerosol loading was traced to volcanic activity, and not to any factor linked to meteorology, disentangling the usual convolution between aerosols and meteorology. We show that in general lightning activity is tightly correlated with aerosol loadings at both inter-annual and biweekly time scales. We estimate that a approximately 60% increase in aerosol loading leads to more than 150% increase in lightning flashes. Aerosols increase lightning activity through modification of cloud microphysics. Cloud ice particle sizes are reduced and cloud glaciation is delayed to colder temperature when aerosol loading is increased. TRMM precipitation radar measurements indicate that anomalously high aerosol loading is associated with enhanced cloud mixed phase activity and invigorated convection over the maritime ocean. These observed associations between aerosols, cloud microphysics, morphology and lightning activity are not related to meteorological variables or ENSO events. The results have important implications for understanding the variability of lightning and resulting aerosol-chemistry interactions.

  9. Laboratory studies of oxidation of primary emissions: Oxidation of organic molecular markers and secondary organic aerosol production

    NASA Astrophysics Data System (ADS)

    Weitkamp, Emily A.

    Particulate matter (PM) is solid particles and liquid droplets of complex composition suspended in the atmosphere. In 1997, the National Ambient Air Quality Standards (NAAQS) for PM was modified to include new standards for fine particulate (particles smaller than 2.5mum, PM2.5) because of their association with adverse health effects, mortality and visibility reduction. Fine PM may also have large impacts on the global climate. Chemically, fine particulate is a complex mixture of organic and inorganic material, from both natural and anthropogenic sources. A large fraction of PM2.5 is organic. The first objective was to investigate heterogeneous oxidation of condensed-phase molecular markers for two major organic source categories, meat-cooking emissions and motor vehicle exhaust. Effective reaction rate constants of key molecular markers were measured over a range of atmospherically relevant experimental conditions, including a range of concentrations and relative humidities, and with SOA condensed on the particles. Aerosolized meat grease was reacted with ozone to investigate the oxidation of molecular markers for meat-cooking emissions. Aerosolized motor oil, which is chemically similar to vehicle exhaust aerosol and contains the molecular markers used in source apportionment, was reacted with the hydroxyl radical (OH) to investigate oxidation of motor vehicle molecular markers. All molecular markers of interest - oleic acid, palmitoleic acid, and cholesterol for meat-cooking emissions, and hopanes and steranes for vehicle exhaust - reacted at rates that are significant for time scales on the order of days assuming typical summertime oxidant concentrations. Experimental conditions influenced the reaction rate constants. For both systems, experiments conducted at high relative humidity (RH) had smaller reaction rate constants than those at low RH. SOA coating slowed the reaction rate constants for meat-cooking markers, but had no effect on the oxidation of

  10. Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semi-volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Baek, Jaemeen; Hu, Yongtao; Odman, M. Talat; Russell, Armistead G.

    2011-11-01

    Chemical transport models have had a historically low bias in simulated organic aerosol concentrations in summer as compared to observed levels, likely due to an underestimate in the formation of secondary organic aerosol (SOA). CMAQ with the AE4 SOA module, the fourth generation aerosol module, was extended using SOA formation produced by the multigenerational photochemical oxidation of semi-volatile organic compound (SVOC) from anthropogenic and biogenic precursors. The updated CMAQ was applied to both a summer and winter episode (2001 July and 2002 January) over the U.S. for evaluation and has been operational in the high resolution air quality forecasting (Hi-Res) system for the Southeast since May 2009. Overall, the updated SOA module significantly improved CMAQ performance on a daily basis, mainly due to the newly added aerosol that contributed more than half of the SOA formed (1.5 μg m-3 in summer on average). SOA contributed 46% (1.24 μg m-3 in the Pacific) to 79% (3.21 μg m-3 in the South) of the total organic aerosol in summer depending upon region. Adding aged aerosol also improved diurnal variation of simulated organic carbon in the Southeast, decreasing a mean fractional error from 74% to 49% and increasing the correlation coefficient from 0.52 to 0.59. Furthermore, the revised CMAQ was shown to improve PM2.5 simulations in the Hi-Res forecasting system that previously had typically underestimated PM2.5 levels during summer simulations. Impacts of using monoterpenes emissions estimated in BEIS version 3.12 on aerosol yields were tested as well.

  11. Oxidation of a model alkane aerosol by OH radical: the emergent nature of reactive uptake.

    PubMed

    Houle, F A; Hinsberg, W D; Wilson, K R

    2015-02-14

    An accurate description of the evolution of organic aerosol in the Earth's atmosphere is essential for climate models. However, the complexity of multiphase chemical and physical transformations has been challenging to describe at the level required to predict aerosol lifetimes and changes in chemical composition. In this work a model is presented that reproduces experimental data for the early stages of oxidative aging of squalane aerosol by hydroxyl radical (OH), a process governed by reactive uptake of gas phase species onto the particle surface. Simulations coupling free radical reactions and Fickian diffusion are used to elucidate how the measured uptake coefficient reflects the elementary steps of sticking of OH to the aerosol as a result of a gas-surface collision, followed by very rapid abstraction of hydrogen and subsequent free radical reactions. It is found that the uptake coefficient is not equivalent to a sticking coefficient or an accommodation coefficient: it is an intrinsically emergent process that depends upon particle size, viscosity, and OH concentration. An expression is derived to examine how these factors control reactive uptake over a broad range of atmospheric and laboratory conditions, and is shown to be consistent with simulation results. Well-mixed, liquid behavior is found to depend on the reaction conditions in addition to the nature of the organic species in the aerosol particle.

  12. Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes

    PubMed Central

    Zhao, Tongke; Shu, Shi; Chang, Chong Hyun; Messadi, Diana; Xia, Tian; Zhu, Yifang; Hu, Shen

    2016-01-01

    In this study, we have generated and characterized Electronic Cigarette (EC) aerosols using a combination of advanced technologies. In the gas phase, the particle number concentration (PNC) of EC aerosols was found to be positively correlated with puff duration whereas the PNC and size distribution may vary with different flavors and nicotine strength. In the liquid phase (water or cell culture media), the size of EC nanoparticles appeared to be significantly larger than those in the gas phase, which might be due to aggregation of nanoparticles in the liquid phase. By using in vitro high-throughput cytotoxicity assays, we have demonstrated that EC aerosols significantly decrease intracellular levels of glutathione in NHOKs in a dose-dependent fashion resulting in cytotoxicity. These findings suggest that EC aerosols cause cytotoxicity to oral epithelial cells in vitro, and the underlying molecular mechanisms may be or at least partially due to oxidative stress induced by toxic substances (e.g., nanoparticles and chemicals) present in EC aerosols. PMID:27223106

  13. Measurement of fragmentation and functionalization pathways in the multistep heterogeneous oxidation of organic aerosol

    SciTech Connect

    Kroll, Jesse H.; Smith, Jared D.; Che, Dung L.; Kessler, Sean H.; Worsnop, Douglas R.; Wilson, Kevin R.

    2009-03-10

    The competition between the addition of polar, oxygen-containing functional groups (functionalization) and the cleavage of C-C bonds (fragmentation) has a governing influence on the change in volatility of organic species upon atmospheric oxidation, and hence on the loading of tropospheric organic aerosol. However the branching between these two channels is generally poorly constrained for oxidized organics. Here we determine functionalization/fragmentation branching ratios for organics spanning a range of oxidation levels, using the heterogeneous oxidation of squalane (C30H62) as a model system. Squalane particles are exposed to high concentrations of OH in a flow reactor, and measurements of particle mass and elemental ratios enable the determination of absolute elemental composition (number of oxygen, carbon, and hydrogen atoms) of the oxidized particles. At low OH exposures, the oxygen content of the organics increases, indicating that functionalization dominates, whereas at higher exposures the amount of carbon in the particles decreases, indicating the increasing importance of fragmentation processes. Once the organics are moderately oxidized (O/C~;;0.4), fragmentation completely dominates, and the increase in O/C ratio upon further oxidation is due to the loss of carbon rather than the addition of oxygen. These results suggest that fragmentation reactions may be key steps in the atmospheric formation and evolution of oxygenated organic aerosol (OOA).

  14. Monoterpene oxidation products and organosulfates in aerosols during BEARPEX 2007 and 2009

    NASA Astrophysics Data System (ADS)

    Glasius, Marianne; Kristensen, Kasper; Worton, David R.; Goldstein, Allen H.

    2010-05-01

    Organosulfate esters of oxidation products of monoterpenes and isoprene have been identified in aerosols from both laboratory and field studies. While the exact route of formation of organosulfates is still ambiguous, these compounds pose an interesting coupling between anthropogenic emissions and biogenic oxidation products in secondary organic aerosols (SOA). We present measurements of monoterpene oxidation products, organosulfates and nitroxy organosulfates in aerosols collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in California during late summer 2007 and summer 2009. The study site was located in a Ponderosa pine plantation affected by regional transport of air pollutants. Particles (PM2.5) were collected as one night-time and two daytime samples per day using a high volume sampler. After extraction of filters, polar organic compounds were analysed by HPLC coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (qTOF-MS). Standards of adipic, cis-pinic and pinonic acids were used for quantification, while camphor sulphonic acid was used as a surrogate standard for organosulfate compounds. Organosulfate esters can be identified from their MS-fragments (HSO4- and SO3-) and the isotopic pattern of sulphur. Concentrations of adipic acid and the terpene oxidation products cis-pinic acid and pinonic acid (from α- and β-pinene) were quantified. The relative concentrations between samples of terpenylic acid, diterpenylic acid and 2-hydroxyterpenylic acid were also investigated. Organosulfate esters and nitroxy organosulfate esters of α-pinene, β-pinene, limonene and isoprene, as well as their oxidation products, were identified based on their molecular mass and fragmentation patterns. Concentrations of some nitroxy organosulfate esters generally increased during night compared to day-time. Their formation thus seems to be related to reactions involving nitrate radicals at night-time.

  15. Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA

    SciTech Connect

    Mei, Fan; Hayes, Patrick L.; Ortega, Amber; Taylor, Jonathan W.; Allan, James D.; Gilman, Jessica; Kuster, William; de Gouw, Joost; Jimenez, Jose L.; Wang, Jian

    2013-04-11

    Size-resolved cloud condensation nuclei (CCN) spectra and aerosol chemical composition were characterized at an urban supersite in Pasadena, California, from 15 May to 4 June 2010, during the CalNex campaign. The derived hygroscopicity (κCCN) of CCN-active particles with diameter between 97 and 165 nm ranged from 0.05 to 0.4. Diurnal variation showed a slight decrease of κCCN from 8:00 to 16:00 (from 0.24 to 0.20), which is attributed to increasing organics volume fraction resulted from secondary organic aerosol (SOA) formation. The derived hygroscopicity distribution and maximum activated fraction of the size selected particles were examined as functions of photochemical age. The result indicates that condensation of secondary species (e.g., SOA and sulfate) quickly converted hydrophobic particles to hydrophilic ones, and during daytime, nearly every particle became a CCN at ~0.4% in just a few hours. Based on κCCN and aerosol chemical composition, the organic hygroscopicity (κorg) was derived, and ranged from 0.05 to 0.23 with an average value of 0.13, consistent with the results from earlier studies. The derived κorg generally increased with the organic oxidation level, and most of the variation in κorg could be explained by the variation of the organic O : C atomic ratio alone. The least squares fit of the data yielded κorg = (0.83 ± 0.06) × (O:C) + (-0.19 ± 0.02). Compared to previous results based on CCN measurements of laboratory generated aerosols, κorg derived from measurements during the CalNex campaign exhibited stronger increase with O : C atomic ratio and therefore substantially higher values for organics with average O : C greater than 0.5.

  16. Determination of minimum mass and spatial location of initiator for detonation of propylene oxide aerosols

    NASA Astrophysics Data System (ADS)

    Apparao, A.; Saji, J.; Balaji, M.; Devangan, A. K.; Rao, C. R.

    2016-06-01

    The mishandling of liquid fuels during production, processing or transportation can lead to the formation of combustible two-phase mixtures. These mixtures, with the availability of a suitable energy source, may be ignited generating a deflagration, or even a detonation wave. For military applications, unconfined fuel aerosols are created and detonated with the help of a strong shock generated by a powerful energy source. The minimum energy requirement is expressed in terms of the shock strength, or mass of the high-explosive-based initiator. In this study, the detonability of unconfined aerosols of 4.3 kg propylene oxide was studied by positioning different quantities of cylindrical-shaped initiators of RDX/wax (95/5) at a fixed spatial location in the aerosol cloud, and the minimum mass of the initiator required for detonation initiation was determined. The effect of spatial location and the requirement of initiator mass, especially at farther locations where the fuel concentration is likely to be lower and closer to the lower explosive limit, was also investigated. The experimental findings help identify the detonable zone in unconfined propylene oxide aerosol clouds for different combinations of spatial location and mass of initiator.

  17. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  18. Formation of Oxidized Organic Aerosol (OOA) through Fog Processing in the Po Valley

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Paglione, M.; Rinaldi, M.; Giulianelli, L.; Massoli, P.; Hillamo, R. E.; Carbone, S.; Lanconelli, C.; Laaksonen, A. J.; Russell, L. M.; Poluzzi, V.; Fuzzi, S.; Facchini, C.

    2014-12-01

    Aqueous phase chemistry might be responsible for the formation of a significant fraction of the organic aerosol (OA) observed in the atmosphere, and could explain some of the discrepancies between OA concentration and properties predicted by models and observed in the environment. Aerosol - fog interaction and its effect on submicron aerosol properties were investigated in the Po Valley (northern Italy) during fall 2011, in the framework of the Supersite project (ARPA Emilia Romagna). Composition and physical properties of submicron aerosol were measured online by a High Resolution- Time of Flight - Aerosol Mass Spectrometer (HR-TOF-AMS), a Soot Photometer - Aerosol Mass Spectrometer (SP-AMS), and a Tandem Differential Mobility Particle Sizer (TDMPS). Organic functional group analysis was performed off-line by Hydrogen - Nuclear Magnetic Resonance (H-NMR) spectrometry and by Fourier Transform Infrared (FTIR) spectrometry. Aerosol absorption, scattering, and total extinction were measured simultaneously with a Particle Soot Absorption Photometer (PSAP), a Nephelometer, and a Cavity Attenuated Phase Shift Spectrometer particle extinction monitor (CAPS PMex), respectively. Water-soluble organic carbon in fog-water was characterized off-line by HR-TOF-AMS. Fourteen distinct fog events were observed. Fog dissipation left behind an aerosol enriched in particles larger than 400 nm, typical of fog and cloud processing, and dominated by secondary species, including ammonium nitrate, ammonium sulfate and oxidized OA (OOA). Source apportionment of OA allowed us to identify OOA as the difference between total OA and primary OA (hydrocarbon like OA and biomass burning OA). The formation of OOA through fog processing is proved by the correlation of OOA concentration with hydroxyl methyl sulfonate signal and by the similarity of OOA spectra with organic mass spectra obtained by re-aerosolization of fog water samples. The oxygen to carbon ratio and the hydrogen to carbon ratio of

  19. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan

    2016-04-01

    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  20. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd; Soliman, Haytham; Zea, Hugo

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current work is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.

  1. Cardiac and pulmonary oxidative stress in rats exposed to realistic emissions of source aerosols

    PubMed Central

    Lemos, Miriam; Diaz, Edgar A.; Gupta, Tarun; Kang, Choong-Min; Ruiz, Pablo; Coull, Brent A.; Godleski, John J.; Gonzalez-Flecha, Beatriz

    2013-01-01

    In vivo chemiluminescence (CL) is a measure of reactive oxygen species in tissues. CL was used to assess pulmonary and cardiac responses to inhaled aerosols derived from aged emissions of three coal-fired power plants in the USA. Sprague–Dawley rats were exposed to either filtered air or: (1) primary emissions (P); (2) ozone oxidized emissions (PO); (3) oxidized emissions + secondary organic aerosol (SOA) (POS); (4) neutralized oxidized emissions + SOA (PONS); and (5) control scenarios: oxidized emissions + SOA in the absence of primary particles (OS), oxidized emissions alone (O), and SOA alone (S). Immediately after 6 hours of exposure, CL in the lung and heart was measured. Tissues were also assayed for thiobarbituric acid reactive substances (TBARS). Exposure to P or PO aerosols led to no changes compared to filtered air in lung or heart CL at any individual plant or when all data were combined. POS caused significant increases in lung CL and TBARS at only one plant, and not in combined data from all plants; PONS resulted in increased lung CL only when data from all plants were combined. Heart CL was also significantly increased with exposure to POS only when data from all plants were combined. PONS increased heart CL significantly in one plant with TBARS accumulation, but not in combined data. Exposure to O, OS, and S had no CL effects. Univariate analyses of individual measured components of the exposure atmospheres did not identify any component associated with increased CL. These data suggest that coal-fired power plant emissions combined with other atmospheric constituents produce limited pulmonary and cardiac oxidative stress. PMID:21913821

  2. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    EPA Science Inventory

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  3. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  4. A highly sensitive technique for detecting catalytically active nanoparticles against a background of general workplace aerosols

    NASA Astrophysics Data System (ADS)

    Neubauer, N.; Weis, F.; Binder, A.; Seipenbusch, M.; Kasper, G.

    2011-07-01

    A new measurement technique was studied using catalysis to specifically detect airborne nanoparticles in presence of background particles in the workplace air. Catalytically active nanoparticles produced by spark discharge were used as aerosol catalysts. According to these particles suitable catalytic test reactions were chosen and investigated by two different approaches: catalysis on airborne nanoparticles and catalysis on deposited nanoparticles. The results indicate that catalysis is applicable for the specific measurement of nanoparticles in the workplace air. Catalysis on airborne particles is suitable for the specific detection of very active nanoparticles, e.g. platinum or nickel, at high concentrations of about 107 #/cm3. The approach of catalysis on deposited particles is better suited for nanoparticle aerosols at low concentrations, for slow catalytic reactions or less active nanoparticles like iron oxide (Fe2O3). On the basis of the experimental results detection limits in the range of μg or even ng were calculated which assure the good potential of catalysis for the specific detection of nanoparticles in the workplace air based on their catalytic activity.

  5. Relationship between oxidation level and optical properties of secondary organic aerosol.

    PubMed

    Lambe, Andrew T; Cappa, Christopher D; Massoli, Paola; Onasch, Timothy B; Forestieri, Sara D; Martin, Alexander T; Cummings, Molly J; Croasdale, David R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul

    2013-06-18

    Brown carbon (BrC), which may include secondary organic aerosol (SOA), can be a significant climate-forcing agent via its optical absorption properties. However, the overall contribution of SOA to BrC remains poorly understood. Here, correlations between oxidation level and optical properties of SOA are examined. SOA was generated in a flow reactor in the absence of NOx by OH oxidation of gas-phase precursors used as surrogates for anthropogenic (naphthalene, tricyclo[5.2.1.0(2,6)]decane), biomass burning (guaiacol), and biogenic (α-pinene) emissions. SOA chemical composition was characterized with a time-of-flight aerosol mass spectrometer. SOA mass-specific absorption cross sections (MAC) and refractive indices were calculated from real-time cavity ring-down photoacoustic spectrometry measurements at 405 and 532 nm and from UV-vis spectrometry measurements of methanol extracts of filter-collected particles (300 to 600 nm). At 405 nm, SOA MAC values and imaginary refractive indices increased with increasing oxidation level and decreased with increasing wavelength, leading to negligible absorption at 532 nm. Real refractive indices of SOA decreased with increasing oxidation level. Comparison with literature studies suggests that under typical polluted conditions the effect of NOx on SOA absorption is small. SOA may contribute significantly to atmospheric BrC, with the magnitude dependent on both precursor type and oxidation level. PMID:23701291

  6. Relationship between Oxidation Level and Optical Properties of Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Cappa, C. D.; Massoli, P.; Onasch, T. B.; Forestieri, S.; Martin, A. T.; Cummings, M. J.; Croasdale, D. R.; Brune, W. H.; Worsnop, D. R.; Davidovits, P.

    2013-12-01

    Brown carbon (BrC), which may include secondary organic aerosol (SOA), can be a significant climate-forcing agent via its optical absorption properties. However, the overall contribution of SOA to BrC remains poorly understood. Here, correlations between oxidation level and optical properties of SOA are examined. SOA was generated in a flow reactor in the absence of NOx by OH oxidation of gas-phase precursors used as surrogates for anthropogenic (naphthalene, tricyclo-[5.2.1.02,6]decane), biomass burning (guaiacol), and biogenic (α-pinene) emissions. SOA chemical composition was characterized with a time-of-flight aerosol mass spectrometer. SOA mass-specific absorption cross sections (MAC) and refractive indices were calculated from real-time cavity ring-down photoacoustic spectrometry measurements at 405 and 532 nm and from UV-vis spectrometry measurements of methanol extracts of filter-collected particles (300 to 600 nm). At 405 nm, SOA MAC values and imaginary refractive indices increased with increasing oxidation level and decreased with increasing wavelength, leading to negligible absorption at 532 nm. Real refractive indices of SOA decreased with increasing oxidation level. Comparison with literature studies suggests that under typical polluted conditions the effect of NOx on SOA absorption is small. SOA may contribute significantly to atmospheric BrC, with the magnitude dependent on both precursor type and oxidation level. Mass-specific absorption cross sections (MAC) of SOA at λ = 405 nm as a function of the O/C ratio

  7. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  8. Photo-oxidation of pinonaldehyde at low NOx: from chemistry to organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chacon-Madrid, H. J.; Henry, K. M.; Donahue, N. M.

    2013-03-01

    Pinonaldehyde oxidation by OH radicals under low-NOx conditions produces significant secondary organic aerosol (SOA) mass yields. Under concurrent UV illumination, mass yields are lower than high-NOx yields published earlier by our group. However, when OH radicals are produced via dark ozonolysis the SOA mass yields are comparable at high and low NOx. Because pinonaldehyde is a major first-generation gas-phase product of α-pinene oxidation by either ozone or OH radicals, its potential to form SOA serves as a molecular counterpoint to bulk SOA aging experiments involving SOA formed from α-pinene. Both the general tendency for aging reactions to produce more SOA and the sensitivity of the low-NOx products to UV photolysis observed in the bulk clearly occur for this single species as well. Photochemical oxidation of pinonaldehye and analogous first-generation terpene oxidation products are potentially a significant source of additional SOA in biogenically influenced air masses.

  9. Influence of Heterogeneous OH Oxidation on the Evaporation Behavior and Composition of a Model Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.

    2011-12-01

    Heterogeneously oxidized squalane particles are used here as a model system to investigate the interplay between chemical composition and particle volatility. Reaction of squalane particles by OH radicals leads to the production of oxygenated products. Here we use the vacuum ultra-violet Aerosol Mass Spectrometer (VUV-AMS) at beamline 9.0.2 at the Advanced Light Source to monitor the evolution of specific oxidation products that result from increasing OH exposures, and how the composition changes as the oxidized particles evaporate. The soft ionization in the VUV-AMS allows us to uniquely track the parent squalane molecule and the various oxidation products over multiple generations of oxidation. Compositional changes of the oxidized particles resulting from evaporation have been measured in three sets of laboratory experiments. In the first set, a thermodenuder at varying temperatures was used to induce evaporation of particles at a fixed OH exposure. Second, the OH exposure was varied along with temperature to create a cross-sectional observation of particle composition at 50% mass fraction remaining for ten different oxidation levels. The combination of these two experiments provides information as to the compositional changes that occur during evaporation due to heating. In the third set of experiments, VUV-AMS spectra of oxidized squalane particles following dilution-induced evaporation were measured for comparison with the thermodenuder experiments. These experiments provide insights into the relationships between particle oxidation, composition and evaporation kinetics.

  10. Aqueous secondary organic aerosol (SOA) production from the oxidation of phenols by triplet excited state organics

    NASA Astrophysics Data System (ADS)

    Smith, J.; Yu, L.; Zhang, Q.; Anastasio, C.

    2011-12-01

    Recent literature has shown that atmospheric condensed-phase chemistry can play a significant role in the evolution of organic aerosols, including the formation of secondary organic aerosol (SOA). SOA formation from the oxidation of volatile organic compounds (VOCs) in the aqueous phase has largely focused on oxidations involving the hydroxyl radical and other oxidants, such as photochemically created triplet excited states, have not been fully investigated. Phenolic compounds are one of the primary carbon emission classes from biomass and wood combustion and have significant water solubility. Once in the aqueous phase, phenolic compounds can react with the triplet excited states of non-phenolic aromatic carbonyls (NPCs), particle-bound organics that are also emitted in large quantities from wood combustion. The oxidation of phenolic species in the condensed phase by triplet excited states can result in the production of SOA. A main goal of this study was to investigate bulk solution reaction kinetics under atmospherically relevant conditions in order to ascertain how these reactions can impact aqueous-phase SOA production. In our experiments, we studied the reactions of five phenols (phenol, guaiacol, syringol, catechol, and resorcinol) with the triplet state of 3,4-dimethoxybenzaldehyde (34-DMB) during simulated solar radiation. We have characterized the impacts of pH, ionic strength and reactant concentrations on the reaction behavior of this system. In addition, we analyzed the SOA formed using high-resolution aerosol mass spectrometry, ion chromatography, and liquid chromatography-mass spectrometry to infer the reaction mechanisms. Our evidence suggests that under atmospherically relevant conditions, triplet excited states can be the dominant oxidant of phenolics and contribute significantly to the total SOA budget.

  11. Cloud condensation nuclei activation of limited solubility organic aerosol

    NASA Astrophysics Data System (ADS)

    Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.

    The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.

  12. Chemical Aging and Cloud Condensation Nuclei Activity of Biomass Burning Aerosol Proxies in the Presence of OH Radicals

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H., Jr.

    Biomass burning aerosol (BBA) can adversely impact regional and global air quality and represents a significant source of organic aerosol (OA) to the atmosphere that can affect climate. Aerosol particles can alter the transfer of radiation in earth's atmosphere directly by scattering and absorbing radiation or indirectly via cloud formation. Gas-to-particle, also termed heterogeneous, oxidation reactions can significantly alter the particle's physical and chemical properties. In turn, this can lead to the degradation of biomolecular markers for air quality-related aerosol source apportionment studies, the particles' lifetime, and modify the particles' abilities to serve as cloud condensation nuclei (CCN). However, the rates, mechanisms, and conditions by which these multiphase oxidation reactions occur and influence the CCN activity of OA is not well understood. The work presented here aims to determine the reactivity and products from the interaction of BBA surrogate-particles and trace gas-phase oxidants and to link the effects of OA chemical aging on the particles' ability to nucleate clouds. The reactive uptake of OH by BBA surrogate-substrates and particles, including levoglucosan, nitroguaiacol, abietic acid, and methyl-nitrocatechol, was determined as a function of both OH concentration and relative humidity (RH) using chemical ionization mass spectrometry coupled to various flow reactors. OH reactive uptake decreased with increasing OH concentration, indicative of OH adsorption followed by reaction. OH oxidation led to significant volatilization, i.e. mass loss of the organic material, as determined by application of high resolution proton transfer reaction time-of-flight mass spectrometry. Volatilized reaction products were identified, providing mechanistic insight of the chemical pathways in the heterogeneous OH oxidation of BBA. The reactive uptake of OH by levoglucosan particles increased with RH due to enhanced OH and organic bulk diffusivity. In

  13. Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan.

    PubMed

    Kessler, Sean H; Smith, Jared D; Che, Dung L; Worsnop, Douglas R; Wilson, Kevin R; Kroll, Jesse H

    2010-09-15

    The heterogeneous oxidation of pure erythritol (C(4)H(10)O(4)) and levoglucosan (C(6)H(10)O(5)) particles was studied in order to evaluate the effects of atmospheric aging on the mass and chemical composition of atmospheric organic aerosol. In contrast to what is generally observed for the heterogeneous oxidation of reduced organics, substantial volatilization is observed in both systems. However, the ratio of the decrease in particle mass to the decrease in the concentration of the parent species is about three times higher for erythritol than for levoglucosan, indicating that details of chemical structure (such as carbon number, cyclic moieties, and oxygen-containing functional groups) play a governing role in the importance of volatilization reactions. The kinetics of the reaction indicate that while both compounds react at approximately the same rate, reactions of their oxidation products appear to be slowed substantially. Estimates of volatilities of organic species based on elemental composition measurements suggest that the heterogeneous oxidation of oxygenated organics may be an important loss mechanism of organic aerosol.

  14. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  15. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  16. Kinetics of oxygenated product formation during the heterogeneous oxidation of organic aerosol

    NASA Astrophysics Data System (ADS)

    Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.

    2014-12-01

    Oxidation of organic aerosols can lead to changes in their atmospheric lifetime, optical properties and health effects. Whereas much is known about the rates of reaction and subsequent branching ratios of gas-phase organic species, much less is known about their condensed phase counterparts. The determination of the kinetics and abundances of the oxidation products associated with condensed phase reactions is needed to understand the oxidation reaction pathways and their branching ratios. The Vacuum Ultraviolet Aerosol Mass Spectrometer (VUV-AMS) at the Chemical Dynamics Beamline at Lawrence Berkeley National Laboratory has been useful in determining the reaction rate constants for a number of condensed phase organic compounds with oxidants such as OH and O3. The relatively soft ionization in the VUV-AMS leads to substantially less fragmentation than other AMS instruments that use electron impact ionization, and therefore preserves a greater amount of molecular information about parent molecules. Previously, ketones formed from the heterogenous oxidation of model organic compounds have been identified and their formation kinetics quantified. However, other possible products, such as alcohols and organic peroxides, have not previously been identified in the VUV-AMS mass spectra or characterized as these are subject to greater fragmentation. Here, we present a method in which the fragmentation pattern is specified for each alcohol isomer formed from the oxidation of two model organic compounds, bis-2-ethylhexl sebacate and squalane. From this we are able to define unique m/z fragments for each isomer from which we derive information about alcohol and abundances. This study demonstrates additional methods for the analysis of mass spectra obtained with the VUV-AMS as well as provides insights into condensed phase oxidation kinetics.

  17. Massive volcanic SO(2) oxidation and sulphate aerosol deposition in Cenozoic North America.

    PubMed

    Bao, Huiming; Yu, Shaocai; Tong, Daniel Q

    2010-06-17

    Volcanic eruptions release a large amount of sulphur dioxide (SO(2)) into the atmosphere. SO(2) is oxidized to sulphate and can subsequently form sulphate aerosol, which can affect the Earth's radiation balance, biologic productivity and high-altitude ozone concentrations, as is evident from recent volcanic eruptions. SO(2) oxidation can occur via several different pathways that depend on its flux and the atmospheric conditions. An investigation into how SO(2) is oxidized to sulphate-the oxidation product preserved in the rock record-can therefore shed light on past volcanic eruptions and atmospheric conditions. Here we use sulphur and triple oxygen isotope measurements of atmospheric sulphate extracted from tuffaceous deposits to investigate the specific oxidation pathways from which the sulphate was formed. We find that seven eruption-related sulphate aerosol deposition events have occurred during the mid-Cenozoic era (34 to 7 million years ago) in the northern High Plains, North America. Two extensively sampled ash beds display a similar sulphate mixing pattern that has two distinct atmospheric secondary sulphates. A three-dimensional atmospheric sulphur chemistry and transport model study reveals that the observed, isotopically discrete sulphates in sediments can be produced only in initially alkaline cloudwater that favours an ozone-dominated SO(2) oxidation pathway in the troposphere. Our finding suggests that, in contrast to the weakly acidic conditions today, cloudwater in the northern High Plains may frequently have been alkaline during the mid-Cenozoic era. We propose that atmospheric secondary sulphate preserved in continental deposits represents an unexploited geological archive for atmospheric SO(2) oxidation chemistry linked to volcanism and atmospheric conditions in the past.

  18. Secondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, T. F.

    2014-05-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01-1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of

  19. Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, Th. F.

    2015-01-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compound (BVOC) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene and limonene) by OH-dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction) chamber in Jülich, Germany, at low NOx (0.01 ~ 1 ppbV) and low ozone (O3) concentration (< 20 ppbV). OH concentration and total OH reactivity (kOH) were measured directly, and through this the overall reaction rate of total organics with OH in each reaction system was quantified. Multi-generation reaction process, particle growth, new particle formation (NPF), particle yield and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH-dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction rate of OH with total organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to play an important role after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates

  20. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore » OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions

  1. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  2. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging

  3. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  4. DEVELOPMENT OF AN RH -DENUDED MIE ACTIVE SAMPLING SYSTEM AND TARGETED AEROSOL CALIBRATION

    EPA Science Inventory

    The MIE pDR 1200 nephelometer provides time resolved aerosol concentrations during personal and fixed-site sampling. Active (pumped) operation allows defining an upper PM2.5 particle size, however, this dramatically increases the aerosol mass passing through the phot...

  5. Development and Validation of a Model to Predict Aerosol Breathing Zone Concentrations During Common Outdoor Activities

    EPA Science Inventory

    Research has been conducted on aerosol emission rates during various activities as well as aerosol transport into the breathing zone under idealized conditions. However, there has been little effort to link the two into a model for predicting a person’s breathing zone concentrat...

  6. Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study

    NASA Astrophysics Data System (ADS)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-12-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidation properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosol (SIA: sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosol (OA) indicated that highly oxidized secondary organic aerosol (SOA) showed decreases similar to those of SIA during APEC. However, primary organic aerosol (POA) from cooking, traffic, and biomass-burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation

  7. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  8. Aerosol assisted chemical vapour deposition control parameters for selective deposition of tungsten oxide nanostructures.

    PubMed

    Vallejos, S; Umek, P; Blackman, C

    2011-09-01

    Tungsten oxide films were deposited via Aerosol Assisted Chemical Vapour Deposition (AACVD) from the single-source precursor W(OPh)6. Film morphology and optimum deposition temperatures for formation of quasi-one-dimensional structures is influenced by the solvent 'carrier' used for deposition of the films with bulk porous films and nanostructured needles, hollow tubes and fibres obtained dependent on the solvent used and the deposition temperature. This influence of solvent could be exploited for the synthesis of other nanomaterials, and so provide a new and versatile route to develop and integrate nanostructured materials for device applications. PMID:22097557

  9. Transboundary secondary organic aerosol in western Japan: An observed limitation of the f44 oxidation indicator

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Miyoshi, Takao; Arakaki, Takemitsu; Sato, Kei; Kaneyasu, Naoki; Bandow, Hiroshi; Hatakeyama, Shiro

    2015-11-01

    To obtain evidence for secondary organic aerosol formation during the long-range transport of air masses over the East China Sea, we conducted field measurements in March 2012 at the Fukue atmospheric monitoring station, Nagasaki, in western Japan. The relative abundance of m/z 44 in fine organic aerosol (f44) was measured by an Aerodyne aerosol chemical speciation monitor. The stable carbon isotope ratio (δ13C) of low-volatile water-soluble organic carbon (LV-WSOC) in the daily filter samples of total suspended particulate matter was also analyzed using an elemental-analyzer coupled with an isotope ratio mass spectrometer. Additionally, in situ measurements of NOx and NOy were performed using NOx and NOy analyzers. The measurements showed that, unlike the systematic trends observed in a previous field study, a scatter plot for δ13C of LV-WSOC versus f44 indicated a random variation. Comparison of f44 with the estimated photochemical age by the NOx/NOy ratio revealed that the random distribution of f44 values near 0.2 is likely an indication of saturation already. Such f44 values were significantly lower than the observed f44 (∼0.3) at Hedo in the previous study. These findings imply that the saturation point of f44, and the use of f44 as an oxidation indicator, is case dependent.

  10. Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons.

    PubMed

    Fry, Juliane L; Draper, Danielle C; Barsanti, Kelley C; Smith, James N; Ortega, John; Winkler, Paul M; Lawler, Michael J; Brown, Steven S; Edwards, Peter M; Cohen, Ronald C; Lee, Lance

    2014-10-21

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m(3) indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38-65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m(-3), suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location's mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.

  11. Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons

    PubMed Central

    2014-01-01

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed. PMID:25229208

  12. oVOC production from tropospheric alkyne oxidation and contribution to aerosol formation and growth

    NASA Astrophysics Data System (ADS)

    Goodall, Iain

    2013-04-01

    Ethyne (C2H2) is one of the simplest volatile organic compounds (VOC) and is predominantly emitted via anthropogenic processes and reacts with nitrogen oxides (NOx) in the presence of sunlight to form tropospheric ozone (O3). The dominant oxidation product of ethyne is the dicarbonyl species glyoxal (CHOCHO), which is thought to be a significant contributor to secondary organic aerosol (SOA) formation via irreversible oligomerisation reactions upon the surface of hydrated aerosol particulates and within cloud droplets. A series of chamber experiments were performed at the EUPHORE facility (Valencia, Spain) to study the atmospheric oxidation of ethyne, to determine oxidation product yields and to monitor SOA formation and growth by dicarbonyl oligomerisation. A Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS) was deployed by the University of Leicester to monitor precursor decay and the subsequent evolution of any gas-phase oxidised volatile organic compounds (oVOC). This was further complemented by a Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) for specific dicarbonyl and NO2 measurements. Aqueous extracts of chamber SOA were taken from filters collected during the experiments and subsequently analysed offline. The work explores the yields of low molecular weight products of ethyne oxidation for light and dark reactions, with varying levels of NOx and OH. Novel experiments were performed under atmospherically relevant conditions utilising natural lighting rather than artificial lighting. Reaction yields have been assessed with the aim of contributing to the ethyne and glyoxal mechanisms in the Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM), and have been compared with previously reported values determined from experiments performed under artificial lighting conditions.

  13. N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol.

    PubMed

    Roberts, James M; Osthoff, Hans D; Brown, Steven S; Ravishankara, A R

    2008-08-22

    Molecular chlorine (Cl2) is an important yet poorly understood trace constituent of the lower atmosphere. Although a number of mechanisms have been proposed for the conversion of particle-bound chloride (Cl-) to gas-phase Cl2, the detailed processes involved remain uncertain. Here, we show that reaction of dinitrogen pentoxide (N2O5) with aerosol-phase chloride yields Cl2 at low pH (<2) and should constitute an important halogen activation pathway in the atmosphere.

  14. Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

    NASA Astrophysics Data System (ADS)

    Pal, Jayanti; Chaudhuri, Sutapa; Chowdhury, Arumita Roy; Bandyopadhyay, Tanuka

    2016-06-01

    The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

  15. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  16. Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation

    NASA Astrophysics Data System (ADS)

    Tasoglou, A.; Pandis, S. N.

    2015-06-01

    The secondary organic aerosol (SOA) production during the oxidation of β-caryophyllene by ozone (O3) and hydroxyl radicals (OH) and the subsequent chemical aging of the products during reactions with OH were investigated. Experiments were conducted with ozone and with hydroxyl radicals at low NOx (zero added NOx) and at high NOx (hundreds of parts per billion). The SOA mass yield at 10 μg m-3 of organic aerosol was 27% for the ozonolysis, 20% for the reaction with OH at low NOx, and 38% at high NOx under dry conditions, 20 °C, and ozone excess. Parameterizations of the fresh SOA yields have been developed. The average fresh SOA atomic O : C ratio varied from 0.24 to 0.34 depending on the oxidant and the NOx level, while the H : C ratio was close to 1.5 for all systems examined. An average density of 1.06 ± 0.1 μg m-3 of the β-caryophyllene SOA was estimated. The exposure to UV light had no effect on the β-caryophyllene SOA concentration and aerosol mass spectrometer (AMS) measurements. The chemical aging of the β-caryophyllene SOA produced was studied by exposing the fresh SOA to high concentrations (107 molecules cm-3) of OH for several hours. These additional reactions increased the SOA concentration by 15-40% and O : C by approximately 25%. A limited number of experiments suggested that there was a significant impact of the relative humidity on the chemical aging of the SOA. The evaporation rates of β-caryophyllene SOA were quantified by using a thermodenuder allowing us to estimate the corresponding volatility distributions and effective vaporization enthalpies.

  17. Volatility and oxidative aging of aqueous maleic acid aerosol droplets and the dependence on relative humidity.

    PubMed

    Dennis-Smither, Benjamin J; Marshall, Frances H; Miles, Rachael E H; Preston, Thomas C; Reid, Jonathan P

    2014-07-31

    The microphysical structure and heterogeneous oxidation by ozone of single aerosol particles containing maleic acid (MA) has been studied using aerosol optical tweezers and cavity enhanced Raman spectroscopy. The evaporation rate of MA from aqueous droplets has been measured over a range of relative humidities and the pure component vapor pressure determined to be (1.7 ± 0.2) × 10(-3) Pa. Variation in the refractive index (RI) of an aqueous MA droplet with relative humidity (RH) allowed the subcooled liquid RI of MA to be estimated as 1.481 ± 0.001. Measurements of the hygroscopic growth are shown to be consistent with equilibrium model predictions from previous studies. Simultaneous measurements of the droplet composition, size, and refractive index have been made during ozonolysis at RHs in the range 50-80%, providing insight into the volatility of organic products, changes in the droplet hygroscopicity, and optical properties. Exposure of the aqueous droplets to ozone leads to the formation of products with a wide range of volatilities spanning from involatile to volatile. Reactive uptake coefficients show a weak dependence on ozone concentration, but no dependence on RH or salt concentration. The time evolving RI depends significantly on the RH at which the oxidation proceeds and can even show opposing trends; while the RI increases with ozone exposure at low relative humidity, the RI decreases when the oxidation proceeds at high relative humidity. The variations in RI are broadly consistent with a framework for predicting RIs for organic components published by Cappa et al. ( J. Geophys. Res. 2011 , 116 , D15204 ). Once oxidized, particles are shown to form amorphous phases on drying rather than crystallization, with slow evaporation kinetics of residual water. PMID:25003240

  18. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  19. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  20. Aerosol composition, oxidative properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation Summit study

    NASA Astrophysics Data System (ADS)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-08-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidative properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosols (SIA = sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosols (OA) indicated that highly oxidized secondary OA (SOA) showed decreases similar to those of SIA during APEC. However, primary OA (POA) from cooking, traffic, and biomass burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation degrees during the aging

  1. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B.; Fry, J. L.

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.

  2. Examining the Effects of Anthropogenic Emissions on Isoprene-Derived Secondary Organic Aerosol Formation During the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, Ground Site

    EPA Science Inventory

    A suite of offline and real-time gas- and particle-phase measurements was deployed atLook Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formatio...

  3. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    SciTech Connect

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  4. Dependence of Heterogeneous OH Kinetics with Biomass Burning Aerosol Proxies on Oxidant Concentration and Relative Humidity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Knopf, D. A.

    2013-12-01

    Chemical transformations of aerosol particles by heterogeneous reactions with trace gases such as OH radicals can influence particle physicochemical properties and lifetime, affect cloud formation, light scattering, and human health. Furthermore, OH oxidation can result in degradation of particle mass by volatilization reactions, altering the budget of volatile organic compounds (VOCs). However, the reactive uptake coefficient (γ) and particle oxidation degree can vary depending on several factors including oxidant concentration and relative humidity (RH). While RH can influence the extent of dissociation/ionization, it can also affect particle phase and thus oxidant diffusivity. Only one study so far has investigated the effect of RH on the rate of OH uptake to organic surfaces; however, the underlying processes affecting OH reactivity with organic aerosol under humidified conditions still remains elusive. Here, we determine the effect of RH on OH reactivity with laboratory-generated biomass burning aerosol (BBA) surrogate particles: levoglucosan and 4-methyl-5-nitrocatechol. The effect of OH concentration on γ for three common BBA molecular markers (levoglucosan, abietic acid, and nitroguaiacol) under dry conditions was investigated from [OH]≈107-1011 molecule cm-3, covering both [OH] in biomass burning plumes and [OH] commonly used in particle aging studies. Furthermore, key VOC reaction products and their production pathways resulting from BBA volatilization by OH were identified. OH radicals are produced using a microwave induced plasma (MIP) of H2 in He or Ar followed by reaction with O2, or by photolysis of O3 in the presence of H2O. A cylindrical rotating wall flow-tube reactor and fast-flow aerosol flow reactor are used for conducting kinetic studies. OH is detected using a Chemical Ionization Mass Spectrometer (CIMS) and a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) is employed for VOC analysis. γ decreases from 0.2-0.5 at

  5. Aerosol identification using a hybrid active/passive system

    NASA Astrophysics Data System (ADS)

    D'Amico, Francis M.; Moon, Raphael P.; Davidson, Charles E.

    2005-08-01

    Recent experimental work has shown that passive systems such as hyperspectral FTIR and frequency-tunable IR cameras have application in detection of biological aerosols. This provided the motivation for a new detection technique, which we call Aerosol Ranging Spectroscopy (ARS), whereby a scattering LIDAR is used to augment passive spectrometer data to determine the location and optical depth of the aerosol plume. When the two systems are co-aligned or boresighted, the hybrid data product provides valuable enhancements for signal exploitation of the passive spectral data. This paper presents the motivation and theoretical basis for the ARS technique. A prototype implementation of an ARS system will also be described, along with preliminary results from recent outdoor field experiments.

  6. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGES

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  7. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  8. Evaluation of the chronic inhalation toxicity of a manganese oxide aerosol--I. Introduction, experimental design, and aerosol generation methods.

    PubMed

    Ulrich, C E; Rinehart, W; Busey, W

    1979-03-01

    A brief literature review on manganese toxicity is presented; as related to designing a chronic inhalation study for evaluating methylcyclopentadienyl manganese tricarbonyl when utilized as a motor fuel additive. The experimental design of this study is described. The generation system utilized to simulate the manganese aerosol produced by an internal combustion engine is described in detail. This generation system operated twenty-four hours per day, seven days per week producing aerosols at 11.6, 112.5, and 1152 micrograms Mn/m3 with an aerodynamic diameter of approximately 0.11 micron.

  9. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  10. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    SciTech Connect

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.

  11. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the

  12. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone

    SciTech Connect

    Glasius, M.; Lahaniati, M.; Calogirou, A.; Di Bella, D.; Jensen, N.R.; Hjorth, J.; Kotzias, D.; Larsen, B.R.

    2000-03-15

    A series of smog chamber experiments have been conducted in which five cyclic monoterpenes were oxidized by ozone. The evolved secondary aerosol was analyzed by GC-MS and HPLC-MS for nonvolatile polar oxidation products with emphasis on the identification of carboxylic acids. Three classes of compounds were determined at concentration levels corresponding to low percentage molar yields: i.e., dicarboxylic acids, oxocarboxylic acids, and hydroxyketocarboxylic acids. Carboxylic acids are highly polar and have lower vapor pressures than their corresponding aldehydes and may thus play an important role in secondary organic aerosol formation processes. The most abundant carboxylic acids were the following: cis-pinic acid AB1(cis-3-carboxy-2,2-dimethylcyclobutylethanoic acid) from {alpha} and {beta}-pinene; cis-pinonic acid A3 (cis-3-acetyl-2,2-dimethylcyclobutylethanoic acid) and cis-10-hydroxypinonic acid Ab6 (cis-2,2-dimethyl-3-hydroxyacetylcyclobutyl-ethanoic acid) from {alpha}-pinene and {beta}-pinene; cis-3-caric acid C1 (cis-2,2-dimethyl-1,3-cyclopropyldiethanoic acid), cis-3-caronic acid C3 (2,2-dimethyl-3-(2-oxopropyl)cyclopropanylethanoic acid), and cis-10-hydroxy-3-caronic acid C6 (cis-2,2-dimethyl-3(hydroxy-2-oxopropyl)cyclopropanylethanoic acid) from 3-carene; cis-sabinic acid S1 (cis-2-carboxy-1-isopropylcyclopropylethanoic acid) from sabinene; limonic acid L1 (3-isopropenylhexanedioic acid), limononic acid L3 (3-isopropenyl-6-oxo-heptanoic acid), 7-hydroxy-limononic acid L6 (3-isopropenyl-7-hydroxy-6-oxoheptanoic acid), and 7-hydroxylimononic acid Lg{prime} (7-hydroxy-3-isopropenyl-6-oxoheptanoic acid) from limonene.

  13. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation

    NASA Astrophysics Data System (ADS)

    Cappa, Christopher D.; Che, Daphne L.; Kessler, Sean H.; Kroll, Jesse H.; Wilson, Kevin R.

    2011-08-01

    Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in σext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, α, of the molecules comprising the particles. The absolute α values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike σext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring γext, which is a single-parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high-relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, γext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, γext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, γext appears to vary sigmoidally with O:C, reaching a plateau at high O:C.

  14. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-06-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1-300 ppm) and D-limonene (0.02-3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  15. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-02-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1-300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  16. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    PubMed Central

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  17. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  18. Activation of "synthetic ambient" aerosols - Relation to chemical composition of particles <100 nm

    NASA Astrophysics Data System (ADS)

    Burkart, J.; Hitzenberger, R.; Reischl, G.; Bauer, H.; Leder, K.; Puxbaum, H.

    2012-07-01

    Cloud condensation nuclei (CCN) are an important fraction of atmospheric aerosols because of their role in cloud formation. Experimental studies focus either on direct field measurements of complex ambient aerosols or laboratory investigations on well defined aerosols produced from single substances or substance mixtures. In this study, we focussed on the ultrafine aerosol because in terms of number concentration, the majority of the CCN are expected to have sizes in this range. A field study was performed from July 2007 to October 2008 to investigate the activation behaviour of the atmospheric aerosol in Vienna (Burkart et al., 2011). Filter samples of the aerosol <0.1 μm aerodynamic equivalent diameter were collected, elutriated and used to generate "synthetic ambient" aerosol in a nebulizer. Chemical analyses of the ultrafine water soluble material were also performed. The CCN properties of the "synthetic ambient" aerosol were obtained using the University of Vienna CCN counter (Giebl et al., 2002; Dusek et al., 2006b) at a nominal supersaturation (SS) of 0.5%. Activation diameters dact ranged from 54.5 nm to 66 nm, were larger than dact of typical single inorganic salts and showed no seasonal pattern in contrast to the fraction of water soluble organic carbon (WSOC), which ranged from 44% in spring to 15% in winter. The average hygroscopicity parameter κ (Petters and Kreidenweis, 2007) obtained from the activation curves ranged from 0.20 to 0.30 (average 0.24), which was significantly lower than κchem calculated from the chemical composition (0.43 ± 0.07).

  19. Fabrication of porous materials (metal, metal oxide and semiconductor) through an aerosol-assisted route

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang

    Porous materials have gained attraction owing to their vast applications in catalysts, sensors, energy storage devices, bio-devices and other areas. To date, various porous materials were synthesized through soft and hard templating approaches. However, a general synthesis method for porous non-oxide materials, metal alloys and semiconductors with tunable structure, composition and morphology has not been developed yet. To address this challenge, this thesis presents an aerosol method towards the synthesis of such materials and their applications for catalysis, hydrogen storage, Li-batteries and photo-catalysis. The first part of this thesis presents the synthesis of porous metals, metal oxides, and semiconductors with controlled pore structure, crystalline structure and morphology. In these synthesis processes, metal salts and organic ligands were employed as precursors to create porous metal-carbon frameworks. During the aerosol process, primary metal clusters and nanoparticles were formed, which were coagulated/ aggregated forming the porous particles. Various porous particles, such as those of metals (e.g., Ni, Pt, Co, Fe, and Ni xPt(1-x)), metal oxides (e.g., Fe3O4 and SnO2) and semiconductors (e.g., CdS, CuInS2, CuInS 2x-ZnS(1-x), and CuInS2x-TiO2(1-x)) were synthesized. The morphology, porous structure and crystalline structure of the particles were regulated through both templating and non-templating methods. The second part of this thesis explores the applications of these materials, including propylene hydrogenation and H2 uptake capacity of porous Ni, NiPt alloys and Ni-Pt composites, Li-storage of Fe3O4 and SnO2, photodegradation of CuInS2-based semiconductors. The effects of morphology, compositions, and porous structure on the device performance were systematically investigated. Overall, this dissertation work unveiled a simple synthesis approach for porous particles of metals, metal alloys, metal oxides, and semiconductors with controlled

  20. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; Kroll, J. H.; Peng, Z.; Brune, W. H.; Jimenez, J. L.

    2015-11-01

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected) compared to daytime (average 1 μg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than

  1. The Effect of Methyl, Hydroxyl, and Ketone Functional Groups on the Heterogeneous Oxidation of Succinic Acid Aerosol by OH Radicals

    NASA Astrophysics Data System (ADS)

    Chan, M.; Zhang, H.; Wilson, K. R.

    2013-12-01

    The heterogeneous oxidation of atmospheric organic aerosols can influence their effects on climate, human health, and visibility. During oxidation, functionalization occurs when an oxygenated functional group is added to a molecule, leaving the carbon skeleton intact. Fragmentation involves carbon-carbon bond cleavage and produces two products with smaller carbon numbers than the parent compound. To gain better insights into how the molecular structure of more oxygenated organic compounds affects heterogeneous reactivity, succinic acid aerosols are photo-oxidized in an aerosol flow tube reactor, and the reaction products are analyzed using Direct Analysis in Real Time Mass Spectrometry for online chemical analysis. The effect of various functional groups (CH3, OH, C=O) along the carbon backbone on the heterogeneous reaction mechanisms are also investigated using model compounds. For this series of compounds, the formation of more oxygenated products through functionalization can be explained by well-known condensation-phase reactions such as Russell and Bennett and Summers. The number of fragmentation products is found to increase with the presence of OH and CH3 groups. This can be attributed to the increased number of tertiary carbons, enhancing the fragmentation after multiple oxidation steps. Smaller dicaids (oxalic acid and malonic acid) can be formed through the fragmentation processes in the heterogeneous oxidation of succinic acid. The effect of molecular structure on reaction kinetics, volatilization, and the relative importance of functionalization and fragmentation pathways will be discussed.

  2. Calibration correction of an active scattering spectrometer probe to account for refractive index of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Overbeck, V. R.; Snetsinger, K. G.; Russell, P. B.; Ferry, G. V.

    1990-01-01

    The use of the active scattering spectrometer probe (ASAS-X) to measure sulfuric acid aerosols on U-2 and ER-2 research aircraft has yielded results that are at times ambiguous due to the dependence of particles' optical signatures on refractive index as well as physical dimensions. The calibration correction of the ASAS-X optical spectrometer probe for stratospheric aerosol studies is validated through an independent and simultaneous sampling of the particles with impactors; sizing and counting of particles on SEM images yields total particle areas and volumes. Upon correction of calibration in light of these data, spectrometer results averaged over four size distributions are found to agree with similarly averaged impactor results to within a few percent: indicating that the optical properties or chemical composition of the sample aerosol must be known in order to achieve accurate optical aerosol spectrometer size analysis.

  3. Cloud Condensation Nuclei Activity, Droplet Growth Kinetics and Hygroscopicity of Biogenic and Anthropogenic Secondary Organic Aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Buchholz, Angela; Kortner, Birthe; Schlag, Patrick; Rubach, Florian; Hendrik, Fucks; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wahner, Andreas; Hallquist, Mattias; Flores, Michel; Rudich, Yinon; Glasius, Marianne; Kourtchev, Ivan; Kalberer, Markus; Mentel, Thomas

    2015-04-01

    Recent field data and model analysis show that secondary organic aerosol (SOA) formation is enhanced under anthropogenic influences (de Gouw et al. 2005, Spracklen et al. 2011). The interaction of biogenic VOCs (BVOCs) with anthropogenic emissions such as anthropogenic VOCs (AVOCs) could change the particle formation yields and the aerosol properties, as was recently demonstrated (Emanuelsson et al., 2013; Flores et al., 2014). However, the effect of the interaction of BVOCs with AVOCs on cloud condensation nuclei (CCN) activity and hygroscopicity of SOA remains elusive. Characterizing such changes is necessary in order to assess the indirect radiative forcing of biogenic aerosols that form under anthropogenic influence. In this study, we investigated the influence of AVOCs on CCN activation and hygroscopic growth of BSOA. SOA was formed from photooxidation of monoterpenes and aromatics as representatives of BVOCs and AVOCs, respectively. The hygroscopicity and CCN activation of BSOA were studied and compared with that of anthropogenic SOA (ASOA) and the mixture of ASOA and BSOA (ABSOA). We found that ASOA had a significantly higher hygroscopicity than BSOA at similar OH dose, which is attributed to a higher oxidation level of ASOA. While the ASOA fraction had an enhancing effect on the hygroscopicity of ABSOA compared to BSOA, the hygroscopicity of ABSOA cannot be explained by a linear combination of the pure ASOA and BSOA systems, indicating potentially additional non-linear effects such as oligomerization. However, in contrast to hygroscopicity, ASOA showed similar CCN activity as BSOA, in spite of its higher oxidation level. The ASOA fraction did not enhance the CCN activity of ABSOA. The discrepancy between hygroscopicity and CCN activity is discussed. In addition, BSOA, ABSOA and ASOA formed similar droplet size with ammonium sulfate in CCN at a given supersaturation, indicating none of these aerosols had a delay in the water uptake in the supersaturated

  4. Evaluating the Role of Aerosol Mixing State in Cloud Droplet Nucleation using a New Activation Parameterization

    NASA Astrophysics Data System (ADS)

    Rothenberg, D. A.; Wang, C.

    2013-12-01

    An important source contributing to uncertainty in simulations with global climate models arises from the influence of aerosols on cloud properties. These so-called aerosol indirect effects arise from a single coupling in the model, representing how aerosols activate and serve as cloud condensation nuclei and ultimately cloud droplets. While it is possible to build explicit numerical models which describe this process in detail, these class of tools are untenable for use in global climate models due to their complexity. Instead, physically- or empirically-based parameterizations of activation are used in their place to efficiently approximate cloud droplet nucleation as a function of a few meteorological and aerosol physical/chemical properties. As global climate models are outfitted with more complex, size- and mixing state-resolving aerosol models, activation parameterizations are increasingly called upon to handle aerosol populations against which their performance has not been explicitly benchmarked. Here, a simple scheme is proposed to evaluate the performance of activation parameterizations against a spectrum of mixing states, and two schemes commonly used in global models are studied using this framework. It is shown that each scheme exhibits systematic biases when a complex mixing state is present. To help resolve these issues, a new scheme is derived using Polynomial Chaos Expansion to build meta-models representing a full complexity parcel model. The meta-models are shown to accurately handle activation in both single-mode and mixture cases. In addition, a global sensitivity analysis is applied to benchmark the performance of the meta-models and the activation parameterizations against a detailed parcel model, and it is shown that the meta-models tend to more accurately attribute variability in activation dynamics to each input parameter and their interactions with others when compared to the physically-based parameterizations. A variety of experiments

  5. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-11-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A "potential aerosol mass" (PAM) flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer-reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days of aging in the atmosphere, and allowing for us to extend the investigation of smoke aging beyond the oxidation levels achieved in traditional smog chambers. Volatile organic compound (VOC) observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net-SOA-to-POA ratio of biomass-burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp~3.9 × 1011 molecules cm-3 s), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors

  6. Sulfate Aerosol Formation and Oxidation Pathways on Haze Event over East Asia Region Focusing on Korea.

    NASA Astrophysics Data System (ADS)

    Choi, D.; Koo, Y. S.

    2014-12-01

    The aerosol transports from China largely contribute to high PM (Particulate Matter) concentration in Korea. Especially, secondary inorganic aerosol (SIA) such as nitrate, sulfate and ammonium are largely transported from China to Korea during haze event. The measured PM2.5 (Particle Matter with aerodynamic diameters less than 2.5㎛) concentrations at the supersite monitoring stations in Korea are normally over 100 ug/m3 and SIAs are major chemical species with more than 70% of PM2.5 during the event. According to our air quality forecast model, sulfate concentrations are largely under-predicted in winter and slightly over-predicted in summer. Those discrepancies between model predicted and observed sulfate concentrations are mainly due to uncertainties of precursor emissions of NOx, SO2, and VOCs (Volatile Organic Compounds) and chemical mechanism of the sulfate formation in the chemical forecast model of CMAQ (Community Multiscale Air Quality Model). Formation of sulfate is chemically linked to primary emissions of sulfur dioxide and to be abundancy of atmospheric oxidants such as hydroxyl radical, hydrogen peroxide, ozone, methyl hydroperoxide, and peroxyacetic acid. All of these oxidant species are formed via photochemical reactions with NOx and VOCs. The aim of this work is to investigate the dependency of sulfate formation on oxidant levels in winter and summer during episode event using CMAQ and its sulfate tracking probing tool. The sensitivity of the precursor emissions of SO2, NOx, VOCs and NH3 was also tested to understand the pathways of the sulfate formation. The results show that long range transport from China is a major factor to determine sulfate level in Korea during haze events and dominant mechanisms in the sulfate formation are the gas-phase OH and aqueous phase H2O2 reactions. NOx-SO2-VOCs chemical regimes for the sulfate formation is the VOCs limited regimes in Korea. The further details of the sensitivity run of the precursor emissions and

  7. Global modelling of secondary organic aerosol from α-pinene oxidation using a parameterization based on a detailed chemical mechanism

    NASA Astrophysics Data System (ADS)

    Ceulemans, Karl; Müller, Jean-Francois; Compernolle, Steven; Stavrakou, Jenny

    2010-05-01

    Monoterpenes are oxidized in the atmosphere by ozone and the hydroxyl and nitrate radicals. The condensable products resulting from these reactions contribute to Secondary Organic Aerosol (SOA). We have developed a detailed α-pinene chemical mechanism BOREAM (Capouet et al. 2008), in which the primary gas phase chemistry is based on quantum-chemical results, structure activity relationships and experimental data. The secondary chemistry of the most important products is treated explicitly, while further chemistry is reduced by the aid of generic species classes. The partitioning between gas phase and SOA is modeled using Pankow's partitioning approach (Pankow 1994), with vapor pressures (Capouet and Müller 2006) and activity coefficients (Compernolle et al. 2009) obtained from group contribution methods. We will discuss the performance of BOREAM through comparison of model predictions for SOA formation with experimental SOA yields for a large number (>150) of photo-oxidation and dark ozonolysis experiments (Ceulemans et al. 2009). Although the BOREAM SOA yields are significantly higher than in several previous box modeling studies, a reasonable agreement is found in comparison with most laboratory measurements. For use in a global model, the detailed BOREAM chemistry is replaced by a parameterized scheme based on the two-product approach (Odum et al. 1996) with parameters obtained through regressions of full model simulations. The reduced scheme accounts for the dependence of SOA yield on the oxidant (ozone, OH or NO3) and the NOx regime. For example, the reaction of alpha-pinene with OH generates a peroxy radical which, upon reaction with either NO or HO2 leads to the formation of two condensable products. The branching ratios and partitioning coefficients are temperature dependent. We inserted the obtained parameterized scheme in the global model IMAGES, where it is used to represent the SOA formation due to the monoterpenes. For aromatics, isoprene and

  8. Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation.

    PubMed

    Krechmer, Jordan E; Coggon, Matthew M; Massoli, Paola; Nguyen, Tran B; Crounse, John D; Hu, Weiwei; Day, Douglas A; Tyndall, Geoffrey S; Henze, Daven K; Rivera-Rios, Jean C; Nowak, John B; Kimmel, Joel R; Mauldin, Roy L; Stark, Harald; Jayne, John T; Sipilä, Mikko; Junninen, Heikki; Clair, Jason M St; Zhang, Xuan; Feiner, Philip A; Zhang, Li; Miller, David O; Brune, William H; Keutsch, Frank N; Wennberg, Paul O; Seinfeld, John H; Worsnop, Douglas R; Jimenez, Jose L; Canagaratna, Manjula R

    2015-09-01

    Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 μg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA. PMID:26207427

  9. Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation.

    PubMed

    Krechmer, Jordan E; Coggon, Matthew M; Massoli, Paola; Nguyen, Tran B; Crounse, John D; Hu, Weiwei; Day, Douglas A; Tyndall, Geoffrey S; Henze, Daven K; Rivera-Rios, Jean C; Nowak, John B; Kimmel, Joel R; Mauldin, Roy L; Stark, Harald; Jayne, John T; Sipilä, Mikko; Junninen, Heikki; Clair, Jason M St; Zhang, Xuan; Feiner, Philip A; Zhang, Li; Miller, David O; Brune, William H; Keutsch, Frank N; Wennberg, Paul O; Seinfeld, John H; Worsnop, Douglas R; Jimenez, Jose L; Canagaratna, Manjula R

    2015-09-01

    Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 μg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA.

  10. Activity size distribution and residence time of 7Be aerosols in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Ioannidou, Alexandra; Paatero, Jussi

    2014-05-01

    The activity size distributions of the natural radionuclide tracer 7Be in different size range fractions (<0.39 μm, 0.39-0.69 μm, 0.69-1.3 μm, 1.3-2.1 μm, 2.1-4.2 μm, 4.2-10.2 μm and >10.2 μm) were determined in the boreal atmosphere in the Arctic Research Centre of the Finnish Meteorological Institute (FMI) at Sodankylä, Finland (67°22‧ N, 26°38‧ E, 180 m asl). The activity median aerodynamic diameter (AMAD) ranged from 0.54 μm to 1.05 μm (average 0.83 μm). A residence time of about 8 days applies to aerosols of 0.83 μm diameter, representing the residence of aerosol particles in arctic environment. The observed positive correlation between AMAD values and RH% can be explained by the fact that condensation during high relative humidity conditions becomes more intense, resulting in increased particle sizes of atmospheric aerosols. However, greater aerosol particle sizes means higher wet scavenging rate of aerosols and as a result lower activity concentration of 7Be in the atmosphere, explaining the anti-correlation between the AMAD values and activity concentrations of 7Be. But this associated with possibly higher scavenging rates of aerosols does not necessarily alone explain the anti-correlation between the AMAD and the 7Be activities. The air mass origin associated with synoptic scale weather phenomena may contribute to that too. The Flextra model was used to assess the transport pattern and to explain the deviation in radionuclide activity concentrations and AMAD values observed in the site of investigation.

  11. Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    NASA Astrophysics Data System (ADS)

    Lance, S.; Raatikainen, T.; Onasch, T. B.; Worsnop, D. R.; Yu, X.-Y.; Alexander, M. L.; Stolzenburg, M. R.; McMurry, P. H.; Smith, J. N.; Nenes, A.

    2013-05-01

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. κ-Köhler theory is used to evaluate the characteristic hygroscopicity parameter, κ*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions (forg) are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which predictions of the hygroscopicity parameter are compared against κ*. Strong diurnal changes in aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased κ* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN at 0.51% ± 0.06% supersaturation can surpass by more than a factor of two the corresponding concentrations of 100 nm particles. We also find that at 06:00-08:00 LT throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally mixed fraction for 40 nm particles and 30% externally mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as "internally mixed". Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning "rush hour" and the entire campaign. We show that κ* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for κ* versus particle size, which can be attributed to unresolved mixing state and the presence of refractory material not measured

  12. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  13. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  14. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  15. Aqueous Oxidation of Green Leaf Volatiles as a Source of Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, N. K.; Hansel, A.; Pham, A. T.; Vempati, H. S.; Valsaraj, K. T.; Anastasio, C.

    2013-12-01

    Vegetation emits volatile oxygenated hydrocarbons - the green leaf volatiles (GLVs) - which are formed from the biochemical conversion of linoleic and linolenic acids within plant cells. Stress or damage to vegetation can significantly elevate emission fluxes of these compounds, some of which are fairly water soluble. Aqueous-phase reactions of the GLVs with photochemically generated oxidants - such as hydroxyl radical (OH), singlet oxygen (1O2) and excited triplet states of organic compounds (3C*) _ might then form low-volatility products that can act as secondary organic aerosol (SOA). In order to determine if GLVs can be a significant source of secondary organic carbon in fogwater, studies of GLVs in laboratory solutions are needed to elucidate the oxidation kinetics and the corresponding SOA mass yields. In this study we are determining the second-order rate constants, and SOA mass yields, for five GLVs (cis-3-hexen-1-ol, cis-3-hexenylacetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol) reacting with OH,1O2 and 3C*. Experiments are performed at relevant fog water pHs, temperatures, and oxidant concentrations. Rate constants are determined using a relative rate approach in which the decay of GLVs and reference compounds are monitored as function of time by HPLC. The capacity of GLVs to form aqueous SOA was determined by following the formation of their decomposition products with HPLC-UV/DAD and HPLC-ESI/MS. SOA mass yields are measured gravimetrically from laboratory solutions containing atmospherically relevant concentrations of photooxidants and GLVs, and irradiated with simulated sunlight. We will use our results to assess the potential contribution of aqueous GLV reactions as a source of SOA in cloudy or foggy atmospheres.

  16. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  17. Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.

    2014-12-01

    In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.

  18. Black carbon surface oxidation and organic composition of beech-wood soot aerosols

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.

    2015-10-01

    Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The dual-vaporizer SP-AMS provided information on the OM and BC components of the soot as well as on refractory components internally mixed with BC. By switching the SP-AMS laser vaporizer off and using only the AMS thermal vaporizer (at 600 °C), information on the OM component only was obtained. In both modes, OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis and was only present in large amounts when new wood was added to the stove. In SP-AMS mode, BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C1-5+), oxygenated carbonaceous ions (CO1-2+), potassium (K+), and water (H2O+ and related fragments). The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization) of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface

  19. Black-carbon-surface oxidation and organic composition of beech-wood soot aerosols

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.

    2015-03-01

    Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The SP-AMS provided information on the OM, BC, and surface composition of the soot. The OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis, and was only present in large amounts when new wood was added to the stove. BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C+1-5), oxygenated surface groups (CO+1-2), potassium (K+) and water (H+2O and related fragments). The C+4 : C+3 ratio, but not the C+1 : C+3 ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO+1-2 signals likely originated from BC surface groups: upon aging, both CO+ and CO+2 increased relative to C+1-3 while CO+2 simultaneously increased relative to CO+. Factor analysis (PMF) of SP-AMS and AMS data, using a new error model to account for peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in-situ BC-surface aging and suggest that the surface of beech-wood BC may be modelled as a

  20. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Watson, Richard M; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-03-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. PMID:25577651

  1. Environmental Health Hazards of e-Cigarettes and their Components: Oxidants and Copper in e-cigarette aerosols

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Watson, Richard M.; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J.; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2014-01-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. PMID:25577651

  2. Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures

    PubMed Central

    2012-01-01

    Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern

  3. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.

    PubMed

    Librando, Vito; Tringali, Giuseppe

    2005-05-01

    This paper studies the reaction products of alpha-pinene, beta-pinene, sabinene, 3-carene and limonene with OH radicals and of alpha-pinene with ozone using FT-IR spectroscopy for measuring gas phase products and HPLC-MS-MS to measure products in the aerosol phase. These techniques were used to investigate the secondary organic aerosol (SOA) formation from the terpenes. The gas phase reaction products were all quantified using reference compounds. At low terpene concentrations (0.9-2.1 ppm), the molar yields of gas phase reaction products were: HCHO 16-92%, HCOOH 10-54% (OH source: H2O2, 6-25 ppm); HCHO 127-148%, HCOOH 4-6% (OH source: CH3ONO, 5-8 ppm). At high terpene concentrations (4.1-13.2 ppm) the results were: HCHO 9-27%, HCOOH 15-23%, CH3(CO)CH3 0-14%, CH3COOH 0-5%, nopinone 24% (only from beta-pinene oxidation), limona ketone 61% (only from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source H2O2, 23-30 ppm); HCHO 76-183%, HCOOH 12-15%, CH3(CO)CH3 0-12%, nopinone 17% (from beta-pinene oxidation), limona ketone 48% (from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source CH3ONO, 14-16 ppm). Pinic acid, pinonic acid, limonic acid, limoninic acid, 3-caric acid, 3-caronic acid and sabinic acid were identified in the aerosol phase. On the basis of these results, we propose a formation mechanism for pinonic and pinic acid in the aerosol phase explaining how degradation products could influence SOA formation and growth in the troposphere.

  4. Cloud activation properties of organic aerosols observed at an urban site during CalNex-LA

    NASA Astrophysics Data System (ADS)

    Mei, F.; Hayes, P. L.; Ortega, A. M.; Jimenez, J.; Wang, J.

    2010-12-01

    Atmospheric aerosols strongly influence the global energy budget by scattering and absorbing sunlight (direct effects) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effects). Currently, the indirect effects of aerosols remain the most uncertain components in forcing of climate change over the industrial period. This large uncertainty is in part due to our incomplete understanding of the ability of aerosol particles to form cloud droplets under climatically relevant supersaturations. During CalNex study, size-resolved cloud condensation nuclei (CCN) spectrum and aerosol chemical composition were measured at an urban supersite in Pasadena, California from May 15 to June 6, 2010. Monodispersed aerosol particles are first classified using a differential mobility analyzer at sizes ranging from 25 to 320 nm. The activation efficiency of the classified aerosol, defined as the ratio of its CCN concentration (characterized by a DMT CCN counter) to total CN concentration (measured by a condensation particle counter, TSI 3771), is derived as a function of both particle size and supersaturation, which ranges from 0.08% to 0.39%. Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). In most of days, increases in aerosol mode diameter, organics mass loading, and aerosol organics volume fraction were observed from 10:00 AM to 15:00 PM. These increases are attributed to formation of secondary organic aerosols through photochemical reactions. On average, the aerosol was dominated by organics (~65% by volume), with the contribution from ammonium sulfate (~20%) and ammonium nitrate (~15%), and the balance being made up of elemental carbon. Positive matrix factorization (PMF) analysis shows the oxygenated organic aerosol (OOA) (~75%) was the dominant organics component. Additionally, the organics O:C ratio was within a narrow range of 0.50±0.12. Particle overall

  5. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    NASA Astrophysics Data System (ADS)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  6. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  7. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  8. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  9. Mesoscale modeling of combined aerosol and photo-oxidant processes in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lazaridis, M.; Spyridaki, A.; Solberg, S.; Smolík, J.; Ždímal, V.; Eleftheriadis, K.; Aleksandropoulou, V.; Hov, O.; Georgopoulos, P. G.

    2004-09-01

    Particulate matter and photo-oxidant processes in the Eastern Mediterranean have been studied using the UAM-AERO mesoscale air quality model in conjunction with the NILU-CTM regional model. Meteorological data were obtained from the RAMS prognostic meteorological model. The modeling domain includes the eastern Mediterranean area between the Greek mainland and the island of Crete. The modeling system is applied to study the atmospheric processes in three periods, i.e. 13-16 July 2000, 26-30 July 2000 and 7-14 January 2001. The spatial and temporal distributions of both gaseous and particulate matter pollutants have been extensively studied together with the identification of major emission sources in the area. The modeling results were compared with field data obtained in the same period. Comparison of the modeling results with measured data was performed for a number of gaseous and aerosol species. The UAM-AERO model underestimates the PM10 measured concentrations during summer but better comparison has been obtained for the winter data.

  10. Mesoscale modeling of combined aerosol and photo-oxidant processes in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lazaridis, M.; Spyridaki, A.; Solberg, S.; Smolík, J.; Zdímal, V.; Eleftheriadis, K.; Aleksanropoulou, V.; Hov, O.; Georgopoulos, P. G.

    2005-03-01

    Particulate matter and photo-oxidant processes in the Eastern Mediterranean have been studied using the UAM-AERO mesoscale air quality model in conjunction with the NILU-CTM regional model. Meteorological data were obtained from the RAMS prognostic meteorological model. The modeling domain includes the eastern Mediterranean area between the Greek mainland and the island of Crete. The modeling system is applied to study the atmospheric processes in three periods, i.e. 13-16 July 2000, 26-30 July 2000 and 7-14 January 2001. The spatial and temporal distributions of both gaseous and particulate matter pollutants have been extensively studied together with the identification of major emission sources in the area. The modeling results were compared with field data obtained in the same period. The objective of the current modeling work was mainly to apply the UAM-AERO mesoscale model in the eastern Mediterranean in order to assess the performed field campaigns and determine that the applied mesoscale model is fit for this purpose. Comparison of the modeling results with measured data was performed for a number of gaseous and aerosol species. The UAM-AERO model underestimates the PM10 measured concentrations during summer and winter campaigns. Discrepancies between modeled and measured data are attributed to unresolved particulate matter emissions. Particulate matter in the area is mainly composed by sulphate, sea salt and crustal materials, and with significant amounts of nitrate, ammonium and organics. During winter the particulate matter and oxidant concentrations were lower than the summer values.

  11. Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  12. Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas M.; Seaman, Vincent Y.; Charles, M. Judith; Holzinger, Rupert; Goldstein, Allen H.

    2006-08-01

    Biogenic volatile organic compound (BVOC) emissions, such as isoprene and terpenes, can be oxidized to form less volatile carbonyls, acids, and multifunctional oxygenated products that may condense to form secondary organic aerosols (SOA). This research was designed to assess the contribution of oxidized BVOC emissions to SOA in coniferous forests by collecting high-volume particulate samples for 6 days and 5 nights in the summer of 2003. The samples were analyzed for acids, carbonyls, polyols and alkanes to quantify oxidized BVOCs. Terpene and isoprene oxidation products were among the most abundant chemical species detected with the exception of hexadecanoic acid, octadecanoic acid and two butyl esters of unknown origin. The terpene oxidation products of pinonic acid, pinic acid, nopinone and pinonaldehyde showed clear diurnal cycles with concentrations two- to eight-fold higher at night. These cycles resulted from the diurnal cycles in gaseous terpene concentrations and lower temperatures that enhanced condensation of semivolatile chemicals onto aerosols. The terpene-derived compounds averaged 157 ± 118 ng/m3 of particulate organic matter while the isoprene oxidation compounds, namely the 2-methyltetrols and 2-methylglyceric acid, accounted for 53 ± 19 ng/m3. Together, the terpene and isoprene oxidation products represented 36.9% of the identified organic mass of 490 ± 95 ng/m3. PM10 organic matter loadings in the region were approximately 2.1 ± 1.2 μg/m3, so about 23% of the organic matter was identified and at least 8.6% was oxidized BVOCs. The BVOC oxidation products we measured were significant, but not dominant, contributors to the regional SOA only 75 km downwind of the Sacramento urban area.

  13. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  14. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA.

  15. Evolution of the Physicochemical and Activation Properties of Aerosols within Smoke Plumes during the Biomass Burning Observation Project (BBOP)

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. M.; Mei, F.; Wang, J.; Comstock, J. M.; Hubbe, J. M.; Pekour, M. S.; Shilling, J. E.; Fortner, E.; Chand, D.; Sedlacek, A. J., III; Kleinman, L. I.; Senum, G.; Schmid, B.

    2014-12-01

    Biomass burning from wildfires and controlled agricultural burns are known to be a major source of fine particles and organic aerosols at northern temperate latitudes during the summer months. However, the evolution of the physicochemical properties of the aerosol during transport and the potential impact of this evolution on cloud condensation nuclei (CCN) activity has rarely been studied for these events. During the DOE-sponsored Biomass Burning Observation Project (BBOP) conducted in the summer and fall of 2013, over 30 research flights sampled biomass burning plumes from wildfires in the Northwestern United States and agricultural burns in the Mid-South region of the United States. A large suite of instruments aboard the DOE G-1 (Gulfstream-1) measured the chemical, physical, and optical properties of biomass burning aerosol with an emphasis on black carbon. A Fast Integrated Mobility Spectrometer (FIMS), Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A), and Passive Cavity Aerosol Spectrometer (PCASP) were used to measure the aerosol size distribution from 15 - 3,000 nm at 1-Hz. A dual column CCN counter measured the CCN number concentration at supersaturations of 0.25% and 0.50% at a time resolution of 1-Hz and the aerosol chemical composition was measured using a soot particle aerosol mass spectrometer (SP-AMS, Aerodyne, Inc). The SP-AMS was operated in two modes: (i) as a traditional high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.), which measured chemical composition of non-refractory aerosols and (ii) as the SP-AMS which measured chemical composition of the refractory black carbon-containing (rBC) particle coating and rBC aerosol mass. Utilizing the aforementioned measurements, a CCN closure study is used to investigate the emitted aerosol hygroscopicity, the evolution of the physicochemical properties of the aerosol, and the potential impacts on cloud microphysics from the different fuel sources.

  16. Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions.

    PubMed

    Jathar, Shantanu H; Miracolo, Marissa A; Tkacik, Daniel S; Donahue, Neil M; Adams, Peter J; Robinson, Allen L

    2013-11-19

    We conducted photo-oxidation experiments in a smog chamber to investigate secondary organic aerosol (SOA) formation from eleven different unburned fuels: commercial gasoline, three types of jet fuel, and seven different diesel fuels. The goals were to investigate the influence of fuel composition on SOA formation and to compare SOA production from unburned fuel to that from diluted exhaust. The trends in SOA production were largely consistent with differences in carbon number and molecular structure of the fuel, i.e., fuels with higher carbon numbers and/or more aromatics formed more SOA than fuels with lower carbon numbers and/or substituted alkanes. However, SOA production from different diesel fuels did not depend strongly on aromatic content, highlighting the important contribution of large alkanes to SOA formation from mixtures of high carbon number (lower volatility) precursors. In comparison to diesels, SOA production from higher volatility fuels such as gasoline appeared to be more sensitive to aromatic content. On the basis of a comparison of SOA mass yields (SOA mass formed per mass of fuel reacted) and SOA composition (as measured by an aerosol mass spectrometer) from unburned fuels and diluted exhaust, unburned fuels may be reasonable surrogates for emissions from uncontrolled engines but not for emissions from engines with after treatment devices such as catalytic converters. PMID:24144104

  17. Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions.

    PubMed

    Jathar, Shantanu H; Miracolo, Marissa A; Tkacik, Daniel S; Donahue, Neil M; Adams, Peter J; Robinson, Allen L

    2013-11-19

    We conducted photo-oxidation experiments in a smog chamber to investigate secondary organic aerosol (SOA) formation from eleven different unburned fuels: commercial gasoline, three types of jet fuel, and seven different diesel fuels. The goals were to investigate the influence of fuel composition on SOA formation and to compare SOA production from unburned fuel to that from diluted exhaust. The trends in SOA production were largely consistent with differences in carbon number and molecular structure of the fuel, i.e., fuels with higher carbon numbers and/or more aromatics formed more SOA than fuels with lower carbon numbers and/or substituted alkanes. However, SOA production from different diesel fuels did not depend strongly on aromatic content, highlighting the important contribution of large alkanes to SOA formation from mixtures of high carbon number (lower volatility) precursors. In comparison to diesels, SOA production from higher volatility fuels such as gasoline appeared to be more sensitive to aromatic content. On the basis of a comparison of SOA mass yields (SOA mass formed per mass of fuel reacted) and SOA composition (as measured by an aerosol mass spectrometer) from unburned fuels and diluted exhaust, unburned fuels may be reasonable surrogates for emissions from uncontrolled engines but not for emissions from engines with after treatment devices such as catalytic converters.

  18. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  19. The effect of phase partitioning of semivolatile compounds on the measured CCN activity of aerosol particles

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2013-09-01

    The effect of inorganic semivolatile aerosol compounds on the CCN activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big fraction of semivolatiles is evaporated from particles before activation in the CCN counter? (2) How much the CCN activity can be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? The results show that, to increase the CCN activity of aerosol particles, a very high gas phase concentration (as compared to typical ambient conditions) is needed. We used nitric acid as a test compound. A concentration of several ppb or higher is needed for measurable effect. In the case of particle evaporation, we used ammonium nitrate as a test compound and found that it partially evaporates before maximum supersaturation is reached in the CCN counter, thus causing an underestimation of CCN activity. The effect of evaporation is clearly visible in all supersaturations, leading to an underestimation of the critical dry diameter by 10 to 15 nanometres in the case of ammonium nitrate particles in different supersaturations. This result was also confirmed by measurements in supersaturations between 0.1 and 0.7%.

  20. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  1. Anticandidal activity of pomegranate peel extract aerosol as an applicable sanitizing method.

    PubMed

    Tayel, Ahmed A; El-Tras, Wael F

    2010-03-01

    Pomegranate is a wonderful fruit from the paradise which contains a wide variety of precious phytochemical compounds applicable in the fields of therapeutics and health care. Candida albicans is the most common etiological agent for many clinical mycoses which could lead to human and animal death. Determination of the anticandidal activity of pomegranate peel extracts (PPE), and application of PPE aerosol as sanitizer agent against C. albicans contamination were investigated. Agar diffusion assay and broth microdilution susceptibility test were applied for qualitative and quantitative determining the PPE anticandidal activity, respectively, versus commonly used fungicides. Aerosolization of PPE using an experimentally designed sanitizer room was applied for examining C. albicans sanitation potentiality of extract. PPE exhibited potent anticandidal activity against C. albicans strains comparing with standard fungicides in both used susceptibility techniques. Methanol, ethanol and water extracts were the most effective for inhibiting C. albicans growth. PPE aerosol was an efficient method for complete sanitizing of semi-closed places against C. albicans growth. Application of PPE aerosol is a proper sanitizing method for preventing C. albicans contamination and growth in suspected places. PMID:19207830

  2. Deriving aerosol hygroscopic mixing state from size-resolved CCN activity and HR-ToF-AMS measurements

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, S. N.; Chakraborty, Abhishek

    2016-10-01

    The ability of a particle to uptake water and form a cloud droplet depends on its hygroscopicity. To understand its impact on cloud properties and ultimately radiative forcing, knowledge of chemically-resolved mixing state information or the one based on hygroscopic growth is crucial. Typically, global models assume either pure internal or external mixing state which might not be true for all conditions and sampling locations. To investigate into this, the current study employed an indirect approach to infer the probable mixing state. The hygroscopic parameters derived from κ-Kohler theory using size-resolved CCN measurements (κCCN) and bulk/size-resolved aerosol mass spectrometer (AMS) measurements (κAMS) were compared. The accumulation mode particles were found to be more hygroscopic (κCCN = 0.24) than Aitken mode (κCCN = 0.13), perhaps due to increased ratio of inorganic to organic mass fraction. The activation diameter calculated from size-resolved CCN activity measurements at 5 different supersaturation (SS) levels varied in the range of 115 nm-42 nm with κCCN = 0.13-0.23 (avg = 0.18 ± 0.10 (±1σ)). Further, κAMS>κCCN was observed possibly due to the fact that organic and inorganic mass present in the Aitken mode was not correctly represented by bulk chemical composition and size-resolved fractional contribution of oxidized OA was not accurately accounted. Better correlation of organic fraction (forg) and κCCN at lower SS explained this behaviour. The decrease in κCCN with the time of the day was more pronounced at lower SS because of the relative mass reduction of soluble inorganic species by ∼17%. Despite the large differences between κ measured from two approaches, less over-prediction (up to 18%) between measured and predicted CCN concentration suggested lower impact of chemical composition and mixing state at higher SS. However, at lower SS, presences of externally mixed CCN-inactive aerosols lead to CCN over-prediction reflecting the

  3. Inverse relationship between the degree of oxidation of OOA (oxygenated organic aerosol) and the oxidant OX (O3 +NO2) due to biogenic emissions

    NASA Astrophysics Data System (ADS)

    Canonaco, F.; Slowik, J. G.; Baltensperger, U.; Prévôt, A. S. H.

    2014-11-01

    Aerosol chemical speciation monitor (ACSM) measurements were performed in Zurich, Switzerland for 13 months (February 2011 through February 2012). Many previous studies using this or related instruments have utilized the fraction of organic mass measured at m/z 44 (f44), which is typically dominated by the CO2+ ion and related to oxygenation, as an indicator of atmospheric aging. The current study demonstrates that during summer afternoons, when photochemical processes are most vigorous as indicated by high oxidant OX (O3+NO2), f44 for ambient SOA is not higher but is rather similar or lower than on days with low OX. This is likely due to the formation of semi-volatile oxygenated aerosol produced from biogenic precursor gases, whose emissions increase with ambient temperature. An additional observation is that in winter often higher f44 values in SOA are reached compared to summer. A possible cause could be aqueous processes associated with enhanced relative humidities and cloud cover in winter. The main changes in f44 for the summer case are discussed in the f44f43 space frequently used to interpret ACSM and aerosol mass spectrometer (AMS) data. In addition, source apportionment analyses conducted on winter and summer data using positive matrix factorization (PMF) yield semi-volatile oxygenated organic aerosol (SV-OOA) factors that retain source-related chemical information. Winter SV-OOA is highly influenced by biomass burning, whereas summer SV-OOA is to a high degree produced from biogenic precursor gases.

  4. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in themore » chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of

  5. Control of dengue fever with active surveillance and the use of insecticidal aerosol cans.

    PubMed

    Osaka, K; Ha, D Q; Sakakihara, Y; Khiem, H B; Umenai, T

    1999-09-01

    An interventional study was conducted in southern Vietnam to evaluate the feasibility and effectiveness of a new approach to control dengue fever. The approach consisted of active surveillance of dengue patients and the use of insecticidal aerosol cans. Febrile patients were tested serologically at local health centers and insecticidal aerosol cans were given to the family and employed in the neighborhood of dengue patients instead of ultra low volume (ULV) fogging with insecticide. The number of dengue IgM antibody positive cases among febrile patients, the number of reported dengue hemorrhagic fever patients and the total cost were compared in the 2 approaches (prompt focal ULV fogging and the use of insecticidal aerosol cans) in 1997. The aerosol cans were employed 5 times (in June, July, August, September and October) in the study area. ULV fogging in the control area was performed 5 times (in March, May, July, August and September). Twenty-two serologically positive cases were found in the study area which was about half that found in the control area (43 cases). A total of 16 dengue hemorrhagic fever patients was reported in the study area and 43 in the control area. Compared with the reported numbers of the previous year, the reduction rate in the number of dengue hemorrhagic fever cases was 71.4% in the study area and 51.7% in the control area. There were statistically significant differences in the morbidity of dengue fever and the reduction rate of dengue hemorrhagic fever. The cost of the insecticidal aerosol cans was US$393 which was lower than the cost of US$553 for ULV fogging. The findings suggest that insecticidal aerosol cans were effective and feasible for dengue fever control.

  6. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    PubMed

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-01

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  7. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays.

  8. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. PMID:26071933

  9. Gas-particle partitioning of organic acids during the Southern Oxidant and Aerosol Study (SOAS): measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, R.; Stark, H.; Kimmel, J.; Krechmer, J.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. A. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2014-12-01

    Gas-Particle partitioning measurements of organic acids were carried out during the Southern Oxidant and Aerosol Study (SOAS, June-July 2013) at the Centerville, AL Supersite in the Southeast US, a region with significant isoprene and terpene emissions. Organic acid measurements were made with a Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS) with a Filter Inlet for Gases and AEROsols (FIGAERO) and acetate (CH3COO-) as the reagent ion. We investigate both individual species and bulk organic acids and partitioning to organic and water phases in the aerosol. Measured partitioning is compared to data from three other instruments that can also quantify gas-particle partitioning with high time resolution: another HRToF-CIMS using iodide (I-) as the reagent ion to ionize acids and other highly oxidized compounds, a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG), and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS The partitioning measurements for three of the instruments are generally consistent, with results in the same range for most species and following similar temporal trends and diurnal cycles. The TD-PTRMS measures on average ½ the partitioning to the particle phase of the acetate CIMS. Both the measurements and the model of partitioning to the organic phase respond quickly to temperature, and the model agrees with the measured partitioning within the error of the measurement for multiple compounds, although many compounds do not match the modeled partitioning, especially at lower m/z. This discrepancy may be due to thermal decomposition of larger molecules into smaller ones when heated.

  10. Aerosol and product yields from NO{sub 3} radical-initiated oxidation o/f selected monoterpenes

    SciTech Connect

    Hallquist, M.; Ljungstroem, E.; Waengberg, I.; Barnes, I.; Becker, K.H.

    1999-02-15

    Atmospheric transformation of monoterpenes gives products that may cause environmental consequences. In this work the NO{sub 3} radical-initiated oxidation of the monoterpenes {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene has been investigated. All experiments were conducted in EUPHORE, the EUropean PHOto REactor facility in Valencia, Spain. The aerosol and product yields were measured in experiments with a conversion of the terpenes in the interval from 7 to 400 ppb. The lower end of the concentrations used are close to those measured in ambient pine forest air. Products were measured using long path in situ FTIR. Aerosol yields were obtained using a DMA-CPC system. The aerosol mass yields measured at low concentrations were <1, 10, 15, and 17% for {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene, respectively. The total molar alkylnitrate yields were calculated to be 19, 61, 66, and 48%, and molar carbonyl compound yields were estimated to be 71, 14, 29, and 69% for {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene, respectively. The aerosol yields were strongly dependent on the amounts of terpene reacted, whereas the nitrate and carbonyl yields do not depend on the amount of terpene converted. The principal carbonyl compound from {alpha}pinene oxidation was pinonaldehyde. In the case of limonene, endolim was tentatively identified and appears to be a major product. The reactions with {beta}-pinene and {Delta}{sup 3}-carene yielded 1--2% of nopinone and 2--3% caronaldehyde, respectively. The results show that it is not possible to use generalized descriptions of terpene chemistry, e.g., in mathematical models.

  11. A modeling perspective of the ChArMEx intensive campaign: origin of photo-oxidant and organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Cholakian, Arineh; Beekmann, Matthias; Siour, Guillaume; Coll, Isabelle; Colette, Augustin; Gros, Valerie; Marchand, Nicolas; Sciare, Jean; Colomb, Aurélie; Gheusi, François; Sauvage, Stéphane

    2016-04-01

    During the summers of 2013 and 2014, two three-week intensive campaigns took place over the western Mediterranean in order to investigate the origins of photo-oxidants as well as the sources and processes of formation of organic aerosols in this region. Within the frame of the MISTRAL/ChArMEx program, an extensive number of chemical compounds were investigated by means of ground-based and also airborne measurements. In this paper, a modeling perspective of the 2013 campaign is given, using the CHIMERE chemistry-transport model, dealing with two aspects: 1) representativeness of the simulations with respect to the complex orography of Cape Corsica, 2) evaluation of secondary organic aerosol simulations in the western Mediterranean region with different model configurations using a variety of experimental data. The model has been configured in a way to fit the specificities of this unique region. The base simulations are performed in a domain covering the entire Europe as well as the northern Africa with a low resolution (30 km). In order to take into account the orographic complexity of the area where the ground-based measurements were performed (Ersa, Cape Corsica), nested simulations with a high resolution (1km horizontal resolution) focused on this site were performed with the goal of increasing the representativeness of the simulations. Still, this resolution does not allow to correctly represent the altitude of the Cape Corsica measurement site (533 m asl). To solve this problem, a large number of grid cells in the vicinity of the measurements site, all having different altitudes, were used to find the extrapolated concentration of an indicative list of species towards the exact altitude of the aforementioned site and to estimate an orographic representativeness error, which was shown to be less important for organic aerosols among said species. Alongside the base simulations, other series of simulations using multiple configurations of the Volatility Basis Set

  12. 3rd hand smoking; heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment

    NASA Astrophysics Data System (ADS)

    Petrick, Lauren; Dubowski, Yael

    2010-05-01

    Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.

  13. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    NASA Astrophysics Data System (ADS)

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-03-01

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.

  14. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    DOE PAGES

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-10-14

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometermore » (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.« less

  15. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    SciTech Connect

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-10-14

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.

  16. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    SciTech Connect

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios

    2015-07-22

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107–113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  17. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, L. Ruby; Fan, Jiwen; Nenes, Athanasios

    2015-07-01

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107-113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  18. Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases.

    PubMed

    Sfondrini, Lucia; Sommariva, Michele; Tortoreto, Monica; Meini, Alessandra; Piconese, Silvia; Calvaruso, Marco; Van Rooijen, Nick; Bonecchi, Raffaella; Zaffaroni, Nadia; Colombo, Mario P; Tagliabue, Elda; Balsari, Andrea

    2013-07-15

    Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy. PMID:23319306

  19. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  20. The Active Oxidation of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2009-01-01

    The high temperature oxidation of silicon carbide occurs in two very different modes. Passive oxidation forms a protective oxide film which limits further attack of the SiC: SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g) Active oxidation forms a volatile oxide and may lead to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g) Generally passive oxidation occurs at higher oxidant pressures and active oxidation occurs at lower oxidant pressures and elevated temperatures. Active oxidation is a concern for reentry, where the flight trajectory involves the latter conditions. Thus the transition points and rates of active oxidation are a major concern. Passive/active transitions have been studied by a number of investigators. An examination of the literature indicates many questions remain regarding the effect of impurity, the hysteresis of the transition (i.e. the difference between active-to-passive and passive-toactive), and the effect of total pressure. In this study we systematically investigate each of these effects. Experiments were done in both an alumina furnace tube and a quartz furnace tube. It is known that alumina tubes release impurities such as sodium and increase the kinetics in the passive region [1]. We have observed that the active-to-passive transition occurs at a lower oxygen pressure when the experiment is conducted in alumina tubes and the resultant passive silica scale contains sodium. Thus the tests in this study are conducted in quartz tubes. The hysteresis of the transition has been discussed in the detail in the original theoretical treatise of this problem for pure silicon by Wagner [2], yet there is little mention of it in subsequent literature. Essentially Wagner points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. A series of experiments were conducted for active-to-passive and passive-to-active

  1. Active and passive smoking - New insights on the molecular composition of different cigarette smoke aerosols by LDI-FTICRMS

    NASA Astrophysics Data System (ADS)

    Schramm, Sébastien; Carré, Vincent; Scheffler, Jean-Luc; Aubriet, Frédéric

    2014-08-01

    The aerosol generated when a cigarette is smoked is a significant indoor contaminant. Both smokers and non-smokers can be exposed to this class of pollutants. Nevertheless, they are not exposed to the same kind of smoke. The active smoker breathes in the mainstream smoke (MSS) during a puff, whereas the passive smoker inhales not only the smoke generated by the lit cigarette between two puffs (SSS) but also the smoke exhaled by active smokers (EXS). The aerosol fraction of EXS has until now been poorly documented; its composition is expected to be different from MSS. This study aims to investigate the complex composition of aerosol from EXS to better understand the difference in exposure between active and passive smokers. To address this, the in-situ laser desorption ionisation Fourier transform ion cyclotron mass spectrometry (LDI-FTICRMS) was used to characterise the aerosol composition of EXS from two different smokers. Results clearly indicated many similarities between EXS samples but also significant differences with MSS and SSS aerosol. The comparison of MSS and EXS aerosol allowed the chemicals retained by the active smoker's lungs to be identified, whereas the convolution of the EXS and SSS aerosol compositions were considered relevant to the exposition of a passive smoker. As a consequence, active smokers are thought to be mainly exposed to polar and poorly unsaturated oxygenated and nitrogenated organics, compared with poorly oxygenated but highly unsaturated compounds in passive smokers.

  2. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  3. Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves

    NASA Astrophysics Data System (ADS)

    Nalin, Federica; Golly, Benjamin; Besombes, Jean-Luc; Pelletier, Charles; Aujay-Plouzeau, Robin; Verlhac, Stéphane; Dermigny, Adrien; Fievet, Amandine; Karoski, Nicolas; Dubois, Pascal; Collet, Serge; Favez, Olivier; Albinet, Alexandre

    2016-10-01

    Little is known about the impact of post-combustion processes, condensation and dilution, on the aerosol concentration and chemical composition from residential wood combustion. The evolution of aerosol emitted by two different residential log wood stoves (old and modern technologies) from emission until it is introduced into ambient air was studied under controlled "real" conditions. The first objective of this research was to evaluate the emission factors (EF) of polycyclic aromatic hydrocarbons (PAH) and their nitrated and oxygenated derivatives from wood combustion. These toxic substances are poorly documented in the literature. A second objective was to evaluate the oxidation state of the wood combustion effluent by studying these primary/secondary compounds. EFs of Σ37PAHs and Σ27Oxy-PAHs were in the same range and similar to those reported in literature (4-240 mg kg-1). Σ31Nitro-PAH EFs were 2-4 orders of magnitude lower (3.10-2-8.10-2 mg kg-1) due to the low temperature and low emission of NO2 from wood combustion processes. An increase of equivalent EF of PAH derivatives was observed suggesting that the oxidation state of the wood combustion effluent from the emission point until its introduction in ambient air changed in a few seconds. These results were confirmed by the study of both, typical compounds of SOA formation from PAH oxidation and, PAH ratio-ratio plots commonly used for source evaluation.

  4. Aerosol mixingstate, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    SciTech Connect

    Lance, Sara; Raatikainen, T.; Onasch, Timothy B.; Worsnop, Douglas R.; Yu, Xiao-Ying; Alexander, M. L.; Stolzenberg, Mark; McMurry, Peter; Smith, James N.; Nenes, Athanasios

    2013-05-15

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. K¨ohler theory is used to evaluate the characteristic water uptake coefficient, k*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions, (forg), are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which kAMS is inferred and compared against k*. Strong diurnal profiles of aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased k* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN can surpass by more than a factor of two the concentrations of 100 nm particles acting as CCN, at supersaturations of 0.51% +/- 0.06%. We also find that at 0600-0800 in the morning throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally-mixed fraction for 40 nm particles and 30% externally-mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as “internally-mixed”. Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning “rush hour”, and the entire campaign. We show that k* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for k* versus particle size, which can be attributed to unresolved mixing-state and the presence of refractory material not measured by the

  5. Aerosol mixing-state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    NASA Astrophysics Data System (ADS)

    Lance, S.; Raatikainen, T.; Onasch, T.; Worsnop, D. R.; Yu, X.-Y.; Alexander, M. L.; Stolzenburg, M. R.; McMurry, P. H.; Smith, J. N.; Nenes, A.

    2012-06-01

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. κ-Köhler theory is used to evaluate the characteristic water uptake coefficient, κ*, for the CCN active aerosol population using both size-resolved HTDMA and size-resolved CCNc measurements. Organic mass fractions, forg, are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which κAMS is inferred and compared against κ*. Strong diurnal profiles of aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased κ* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN can surpass by more than a factor of two the concentrations of 100 nm particles acting as CCN, at supersaturations of 0.51% ± 0.06%. We also find that at 06:00-08:00 in the morning throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally-mixed fraction for 40 nm particles and 30% externally-mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as internally-mixed. Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning "rush hour", and the entire campaign. We show that κ* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for κ* versus particle size, which can be attributed to unresolved mixing-state and the presence of refractory material not measured by the AMS

  6. Incorporation of Advanced Activation Treatments into CESM/CAM5: Model Evaluation and Impacts on Aerosol Indirect Forcing

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2013-12-01

    One of the greatest sources of uncertainty in climate science is the influence of aerosols on clouds through indirect effects, especially processes affecting the activation of aerosols into cloud droplets. Aerosol activation parameterizations incorporate much of the complexity of these processes, but the small differences between parameterizations can have a large impact on the spatiotemporal distribution of activated aerosols and the resulting cloud properties. Currently, most models simulate aerosol activation using the Abdul-Razzak and Ghan [2000] (AR-G00) scheme which derives an empiric calculation of the maximum parcel supersaturation based on the regression of numerical parcel calculations. The Community Atmosphere Model version 5.1.1 within the Community Earth Systems Model version 1.0.5 (CESM/CAM5) is an online-coupled Earth Systems model that simulates the interactions among aerosols, clouds, and radiation. CESM/CAM5 uses the AR-G00 scheme to simulate aerosol activation. In this work, we update CESM/CAM5 by incorporating a series of explicit aerosol activation schemes (Fountoukis and Nenes [2005]; Barahona and Nenes [2007]; Kumar et al. [2009]; and Barahona et al. [2010]) which account for the impacts of insoluble aerosol adsorption, giant cloud condensation nuclei activation kinetics, and entrainment on cloud droplet number concentrations (CDNC). CESM/CAM5 results with the empiric and explicit aerosol activation schemes are evaluated against several global datasets including observed low-level CDNC and satellite-derived cloud optical thickness (COT), liquid water path (LWP), and shortwave cloud forcing (SWCF). Globally, the incorporation of all explicit schemes leads to an average increase in column CDNC of 155%, increase (more negative) in SWCF of 13%, and decrease in surface shortwave radiation of -4%. In terms of climate impacts, these schemes result in an annual mean decrease in surface temperature and precipitation of -0.9 K (~0.2%) and -0.04 mm day

  7. Determining the mutagenic activity of a tar, its vapors and aerosols.

    PubMed

    Penalva, J M; Chalabreysse, J; Archimbaud, M; Bourgineau, G

    1983-04-01

    The Ames test was performed on Salmonella typhimurium, strain TA98, TA100, TA1535, TA1537, TA1538, to evaluate the mutagenic potential of a tar as well as its vapors and aerosols emitted at 250, 350 and 550 degrees C. Two chemical procedures were used: extractions of aromatics for DMSO; elimination of acids, alcohols and phenols. Weak mutagenic activity was demonstrated at each temperature. Then, using only Salmonella typhimurium strains TA98 and TA100, a study was made on the effects of the mutagenic compounds, benzo[a]pyrene, 2-aminoanthracene, nitrofluorene, methyl methanesulfonate and on the vapors and aerosols emitted at 350 degrees C by road-coating tar. For promutagenic compounds, an enhancing effect was observed before an inhibition effect. For direct mutagenic compounds, only the inhibition effect appeared. The mutagenic and/or carcinogenic activity was usually tested on a pure isolated chemical compound. PMID:6339912

  8. Modeling secondary organic aerosol formation from oxidation of α-pinene, β-pinene, and d-limonene

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Griffin, Robert J.

    The biogenic species α-pinene, β-pinene, and d-limonene are among the most abundant monoterpenes emitted globally. They are also important precursors to secondary organic aerosol (SOA) formation in the atmosphere. This study involves the development of proposed oxidation mechanisms for these three species. Semi- and non-volatile oxidation products with the potential to lead to SOA formation are predicted explicitly. Simulation code that describes the gas-phase oxidation mechanisms including reactions that lead to ozone (O 3) formation is coupled to an equilibrium absorptive partitioning code. The coupled model is used to simulate both gas-phase chemistry and SOA formation associated with oxidation of these three species in chamber experiments involving single as well as multiple oxidants. For the partitioning model, required molecular properties of the oxidation products are taken from the literature or estimated based on structural characteristics. The predicted O 3 and SOA concentrations are typically within ±50% of measured values for most of the experiments except for the experiments with low initial hydrocarbon concentrations and the nitrate radical experiments with α-pinene. The developed model will be used to update a gas-phase chemical mechanism and a SOA formation module used in a three-dimensional air quality model.

  9. Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Yantosca, Robert M.; Chin, Mian; Ginoux, Paul

    2003-01-01

    We evaluate the sensitivity of tropospheric OH, O3, and O3 precursors to photochemical effects of aerosols not usually included in global models: (1) aerosol scattering and absorption of ultraviolet radiation and (2) reactive uptake of HO', NO2, and NO3. Our approach is to couple a global 3-D model of tropospheric chemistry (GEOS- CHEM) with aerosol fields from a global 3-D aerosol model (GOCART). Reactive uptake by aerosols is computed using reaction probabilities from a recent review (gamma(sub HO2) = 0.2, gamma(sub NO2) = 10(exp -4), gamma(sub NO3) = l0(exp -3). Aerosols decrease the O3 - O((sup 1)D) photolysis frequency by 5-20% at the surface throughout the Northern Hemisphere (largely due to mineral dust) and by a factor of 2 in biomass burning regions (largely due to black carbon). Aerosol uptake of HO2 accounts for 10-40% of total HOx radical ((triple bonds)OH + peroxy) loss in the boundary layer over polluted continental regions (largely due to sulfate and organic carbon) and for more than 70% over tropical biomass burning regions (largely due to organic carbon). Uptake of NO2 and NO3 accounts for 10-20% of total HNO3 production over biomass burning regions and less elsewhere. Annual mean OH concentrations decrease by 9% globally and by 5-35% in the boundary layer over the Northern Hemisphere. Simulated CO increases by 5- 15 ppbv in the remote Northern Hemisphere, improving agreement with observations. Simulated boundary layer O3 decreases by 15- 45 ppbv over India during the biomass burning season in March and by 5-9 ppbv over northern Europe in August, again improving comparison with observations. We find that particulate matter controls would increase surface O3 over Europe and other industrial regions.

  10. A New Method for Multicomponent Activity Coefficients of Electrolytes in Aqueous Atmospheric Aerosols

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-21

    Three-dimensional models of atmospheric inorganic aerosols need an accurate yet computationally efficient parameterization of activity coefficients of various electrolytes in multicomponent aqueous solutions. This paper describes the development and application of a new mixing rule for calculating activity coefficients of electrolytes typically found in atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+ SO42-, HSO4-, NO3-, and Cl- ions. The new mixing rule, called MTEM (Multicomponent Taylor Expansion Model), estimates the mean activity coefficient of an electrolyte in a multicomponent solution based on its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson method. For self-consistency, most of the MTEM and Zdanovskii-Stokes-Robinson parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols, and is contrasted against the mixing rule of Kusik and Meissner and the newer approach of Metzger et al. [2002]. Predictions of MTEM are found to be generally within a factor of 0.8 to 1.25 of the comprehensive Pitzer-Simonson-Clegg model, and are shown to be significantly more accurate than predictions of the other two methods. MTEM also yields a non-iterative solution of the bisulfate ion dissociation in sulfate-rich systems – a major computational advantage over other iterative methods. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.

  11. Assessing known pathways for HO2 loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants

    NASA Astrophysics Data System (ADS)

    Thornton, Joel A.; Jaeglé, Lyatt; McNeill, V. Faye

    2008-03-01

    We present a study of the potential importance of known reaction pathways for HO2 loss in atmospheric aerosols. As a baseline case, we calculate the reaction probability for HO2 loss by its self-reaction in aqueous particles. Detailed calculations assessed the effects of aerosol pH, temperature, particle size, and aqueous phase diffusion limitations on the rate of HO2 loss by this process. An algebraic parameterization of the reaction probability, γHO2, due to self-reaction is valid for aerosol pH < 6 and the existence of a homogeneous gas-phase HOx source greater than 1 × 105 molec cm-3 s-1. In this formulation γHO2 depends strongly on particle phase, size, pH and temperature; the latter causing γHO2 > 0.1 in the upper troposphere and γHO2 < 0.01 in the extra-polar lower troposphere. We contrast the self-reaction pathway with catalytic oxidation by dissolved Cu ions. Using IMPROVE network data we assess the atmospheric importance and uncertainties associated with the Cu pathway. Simulations of tropospheric chemistry were performed using the GEOS-Chem global chemical transport model with different parameterizations of γHO2. Relative to simulations where γHO2 = 0 for all aerosol types, assuming that only the aqueous-phase self-reaction proceeds on pollution and sea salt particles causes global annual mean differences in surface OH, HO2, and H2O2 of -1, -2, and +2%, respectively. These minor effects of heterogeneous loss are significantly different from a simulation assuming γHO2 = 0.2 on all particles, as is currently recommended, with implications for predictions of regional HOx levels, ozone production rates and their sensitivity to NOx.

  12. Evidence for an unrecognized secondary anthropogenic source of organosulfates and sulfonates: gas-phase oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate aerosol.

    PubMed

    Riva, Matthieu; Tomaz, Sophie; Cui, Tianqu; Lin, Ying-Hsuan; Perraudin, Emilie; Gold, Avram; Stone, Elizabeth A; Villenave, Eric; Surratt, Jason D

    2015-06-01

    In the present study, formation of aromatic organosulfates (OSs) from the photo-oxidation of polycyclic aromatic hydrocarbons (PAHs) was investigated. Naphthalene (NAP) and 2-methylnaphthalene (2-MeNAP), two of the most abundant gas-phase PAHs and thought to represent "missing" sources of urban SOA, were photochemically oxidized in an outdoor smog chamber facility in the presence of nonacidified and acidified sulfate seed aerosol. Effects of seed aerosol composition, acidity and relative humidity on OS formation were examined. Chemical characterization of SOA extracts by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry revealed the formation of OSs and sulfonates from photo-oxidation in the presence of sulfate seed aerosol. Many of the organosulfur compounds identified in the smog chamber extracts were also measured in urban fine aerosol collected at Lahore, Pakistan, and Pasadena, USA, demonstrating that PAH photo-oxidation in the presence of sulfate aerosol is a hitherto unrecognized source of anthropogenic secondary organosulfur compounds, and providing new PAH SOA tracers. PMID:25879928

  13. Temporal variations of 7Be and 210Pb activity in aerosols at Xiamen, China

    NASA Astrophysics Data System (ADS)

    Huang, Dekun

    2016-04-01

    The radionuclides serve as powerful tracers to identify and quantify several atmospheric processes, such as source, transport and mixing of air masses, air masses exchanging between various atmospheric layers, residence times of atmospheric gasses and pollutants. 7Be and 210Pb activities in aerosols were measurement from October, 2013 to September, 2015 at Xiamen (24°26'7.44″N, 118°5'31.30″N) in South China. The activity of 7Be and 210Pb in aerosols from 2013 to 2015 in Xiamen ranged from 0.26 to 9.05 (mean:4.15) mBq m-3 and from 0.14 to 2.64 (mean:1.05) mBq m-3, respectively. The mean activity of 7Be was comparable with the activities of other places in the same latitude, while the mean activity of 210Pb was lower than the activity of the locations at high altitudes. The possible reason is that Xiamen is a coastal city located on southwest Pacific. The activities of 7Be and 210Pb had a commonly low value in summer (July-September) and a high value in autumn (October-December), it may be controlled by the rainfall. There is significant relationship between the monthly 210Pb activities and the concentration of PM 2.5 and PM 10. In contrast, monthly 7Be activities only show significant correlation with the concentration of PM 10, which implies that 7Be and 210Pb can be used to trace the different sources of the aerosols. And the dry 7Be depositional fluxes increased with latitude along the coast of China (R2=0.92, n=8).

  14. Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Nah, Theodora; McVay, Renee C.; Zhang, Xuan; Boyd, Christopher M.; Seinfeld, John H.; Ng, Nga L.

    2016-07-01

    Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of vapor wall deposition on SOA mass yields in chamber experiments can be constrained experimentally by increasing the seed aerosol surface area to promote the preferential condensation of SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis. The observations are analyzed using a coupled vapor-particle dynamics model to interpret the roles of gas-particle partitioning (quasi-equilibrium vs. kinetically limited SOA growth) and α-pinene oxidation rate in influencing vapor wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface area within the range of seed surface area concentrations used in this study. This behavior arises when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations for the same initial α-pinene concentration. When the α-pinene oxidation rate increases relative to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent to which vapor wall deposition affects SOA mass yields depends on the particular volatility organic compound system and can be mitigated through the use of excess oxidant concentrations.

  15. Synthesis and Analysis of Putative Terpene Oxidation Products and the Secondary Organic Aerosol Particles that Form from Them

    NASA Astrophysics Data System (ADS)

    Ebben, C. J.; Strick, B. F.; Upshur, M.; Shrestha, M.; Velarde, L.; Lu, Z.; Wang, H.; Xiao, D.; Batista, V. S.; Martin, S. T.; Thomson, R. J.; Geiger, F. M.

    2013-12-01

    The terpenes isoprene and α-pinene are abundant volatile organic compounds (VOCs) that are emitted by trees and oxidized in the atmosphere. However, the chemical processes involved in the formation of secondary organic aerosol (SOA) particles from VOCs are not well understood. In this work, we use a combined synthetic, analytical, and theoretical approach to gain a molecular level understanding of the chemistry involved in the formation of SOA particles from VOC precursors. To this end, we have synthesized putative products of isoprene and α-pinene oxidation and the oligomers that form from them. Specifically, we have focused on the epoxide and 2-methyltetraols that form from isoprene oxidation by hydroxyl radicals, as well as products of α-pinene ozonolysis. In our analysis, we utilize a spectroscopic technique called sum frequency generation (SFG). SFG is a coherent, surface-specific, vibrational spectroscopy that uses infrared and visible laser light fields, overlapped spatially and temporally at a surface, to probe vibrational transitions within molecules. Our use of this technique allows us to assess the chemical identity of aerosol-forming components at their surfaces, where interactions with the gas phase occur. The spectral responses from these compounds are compared to those of synthetic isoprene- and α-pinene-derived aerosol particles, as well as natural aerosol particles collected in tropical and boreal forests to begin to predict the constituents that may be present at the surfaces of these particles. In addition, isotope editing is utilized to gain a better understanding of α-pinene. The rigidity of this molecule makes it difficult to understand spectroscopically. The combination of synthesis with deuterium labeling, theory, and broadband and high-resolution SFG spectroscopy in the C-H and C-D stretching regions allow us to determine the orientation of this important molecule on a surface, which could have implications for its reactivity in the

  16. Synthesizing organic compounds by photocatalytic oxidation on TiO{sub 2} films deposited in flame aerosol reactors

    SciTech Connect

    Wang, Z.M.; Biswas, P.; Sahle-Demessie, E.; Gonzalez, M.

    1999-07-01

    The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on uv irradiated titanium dioxide films was studied at ambient temperatures and pressures. The oxidation efficiencies of different film reactors fabricated by three different coating methodologies (dip coating using titanium isopropoxide and commercially available titanium dioxide particles, sol-gel process and flame aerosol process) are compared. Conversions rates, yield of ketone and alcohol, and selectivity for ketone formation are reported for all the film reactors. The film reactor fabricated by the flame coating method showed the highest yield per mass of catalyst used, and showed no coking and deactivation for a total run time of approximately 10 hours (two cycles). The flame aerosol coating resulted in the formation of high surface area aggregates consisting of nanometer sized primary particles with higher particle density, whereas dip coating resulted in formation of bulk crystallites that were more susceptible to coking and deactivation. All the films were characterized by XRD, SEM and TEM to establish the phase compositions and their morphologies. The methodology incorporates the concepts of Green Chemistry and Engineering for the production of oxygenates in an energy efficient, selective manner, and by producing less by products and pollutants in comparison to conventional techniques.

  17. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  18. OH-initiated heterogeneous oxidation of cholestane: a model system for understanding the photochemical aging of cyclic alkane aerosols.

    PubMed

    Zhang, Haofei; Ruehl, Christopher R; Chan, Arthur W H; Nah, Theodora; Worton, David R; Isaacman, Gabriel; Goldstein, Allen H; Wilson, Kevin R

    2013-11-27

    Aerosols containing aliphatic hydrocarbons play a substantial role in the urban atmosphere. Cyclic alkanes constitute a large fraction of aliphatic hydrocarbon emissions originating from incomplete combustion of diesel fuel and motor oil. In the present study, cholestane (C27H48) is used as a model system to examine the OH-initiated heterogeneous oxidation pathways of cyclic alkanes in a photochemical flow tube reactor. Oxidation products are collected on filters and analyzed by a novel soft ionization two-dimensional gas chromatography/mass spectrometry technique. The analysis reveals that the first-generation functionalization products (cholestanones, cholestanals, and cholestanols) are the dominant reaction products that account for up to 70% by mass of the total speciated compounds. The ratio of first-generation carbonyls to alcohols is near unity at every oxidation level. Among the cholestanones/cholestanals, 55% are found to have the carbonyl group on the rings of the androstane skeleton, while 74% of cholestanols have the hydroxyl group on the rings. Particle-phase oxidation products with carbon numbers less than 27 (i.e., "fragmentation products") and higher-generation functionalization products are much less abundant. Carbon bond cleavage was found to occur only on the side chain. Tertiary-carbon alkoxy radicals are suggested to play an important role in governing both the distribution of functionalization products (via alkoxy radical isomerization and reaction with oxygen) and the fragmentation products (via alkoxy radical decomposition). These results provide new insights into the oxidation mechanism of cyclic alkanes.

  19. OH-initiated heterogeneous oxidation of cholestane: a model system for understanding the photochemical aging of cyclic alkane aerosols.

    PubMed

    Zhang, Haofei; Ruehl, Christopher R; Chan, Arthur W H; Nah, Theodora; Worton, David R; Isaacman, Gabriel; Goldstein, Allen H; Wilson, Kevin R

    2013-11-27

    Aerosols containing aliphatic hydrocarbons play a substantial role in the urban atmosphere. Cyclic alkanes constitute a large fraction of aliphatic hydrocarbon emissions originating from incomplete combustion of diesel fuel and motor oil. In the present study, cholestane (C27H48) is used as a model system to examine the OH-initiated heterogeneous oxidation pathways of cyclic alkanes in a photochemical flow tube reactor. Oxidation products are collected on filters and analyzed by a novel soft ionization two-dimensional gas chromatography/mass spectrometry technique. The analysis reveals that the first-generation functionalization products (cholestanones, cholestanals, and cholestanols) are the dominant reaction products that account for up to 70% by mass of the total speciated compounds. The ratio of first-generation carbonyls to alcohols is near unity at every oxidation level. Among the cholestanones/cholestanals, 55% are found to have the carbonyl group on the rings of the androstane skeleton, while 74% of cholestanols have the hydroxyl group on the rings. Particle-phase oxidation products with carbon numbers less than 27 (i.e., "fragmentation products") and higher-generation functionalization products are much less abundant. Carbon bond cleavage was found to occur only on the side chain. Tertiary-carbon alkoxy radicals are suggested to play an important role in governing both the distribution of functionalization products (via alkoxy radical isomerization and reaction with oxygen) and the fragmentation products (via alkoxy radical decomposition). These results provide new insights into the oxidation mechanism of cyclic alkanes. PMID:24152093

  20. Sun-Sky Radiometer Synthesis of Interplay Between Aerosols and Monsoon Activity Over Pune, India

    NASA Astrophysics Data System (ADS)

    Devara, P. C. S.; Kumar, Sumit; Vijayakumar, K.; Pandithurai, G.

    2014-09-01

    Besides several thematic campaigns, utilizing a variety of platforms including satellites, ground-based networks have been established to improve our understanding of the role of aerosols in the changing monsoon climate. Two such widely known networks over the globe are `SKYNET' and `AERONET' with sun-sky radiometers as the principal equipment that characterizes aerosols and gases over different geographical locations under varied air mass conditions. Pune (18°43'N, 73°51'E, 559 m above mean sea level), a fast growing low-latitude, urban city in India, is one of the sites where Prede (POM-01L, SKYNET) and Cimel (CE-318, AERONET) Sun-sky radiometers have been in operation since 2004. These radiometers have been extensively used in several studies related to stand-alone and coupled aerosol-cloud-climate processes. The Prede instrument at this site is being augmented for the network of the Global Atmospheric Watch program of the World Meteorological Organization to facilitate data coordination through the World Data Center for Aerosols. The present study envisages understanding the response of atmospheric constituents, through simultaneous operation of the radiometers amongst others, for the rainfall activity over Pune during two contrasting monsoon years of 2008 (active, 98 % of long period average (LPA) rainfall over the whole country) and 2009 (weak, 78 % of LPA). The synthesis of data indicates that, apart from excellent agreement between the direct Sun observations, both radiometers capture well the monsoon features within the instrument density and efficacy of data retrieval algorithms involved. The meteorological fields from the ECMWF re-analysis and NOAA-HYSPLIT air-mass back-trajectory analysis during the study period have been utilized to explain the variations observed in the radiometer products.

  1. A full mass spectrum evaluation of semivolatile organic compounds measured during the Southern Oxidant and Aerosol Study in Alabama, USA, 2013

    NASA Astrophysics Data System (ADS)

    Holzinger, Rupert; Khan, Anwar; Misztal, Pawel; Goldstein, Allen

    2016-04-01

    A serial 3-stage denuder system has been developed and for the first time deployed during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, Alabama, USA, for one month during the summer of 2013. Volatile organic compounds (VOCs) were collected on an activated carbon denuder and thermally desorbed to be measured with PTR-MS (PTR-TOF800, Ionicon Analytik GmbH). Comparison with a second PTR-MS instrument operated under standard conditions at the same site revealed poor recovery for the majority of the VOCs while individual species measured by the different PTR-MS systems still exhibited excellent correlation. Semivolatile organic compounds (SVOCs) in the gas phase were collected and thermally desorbed on a denuder coated with Methylsiloxane (Agilent DB-1). More than 100 SVOCs have been detected at levels in the range 0.05-3 pmmol/mol and only a few species exhibited maximum mixing ratios above 5 pmol/mol. Many of the detected species exhibited a clear diurnal profile while the concentration of some was clearly dominated by pollution events. Carboxylic acids, (oxidized) polycyclic aromatic compounds, and monoterpene oxidation products were compound groups that provided most of the mass and a typical total concentration of the measured burden of SVOCs was 5 microgram per cubic meter.

  2. Study of Heterogeneouse Processes Related to the Chemistry of Tropospheric Oxidants and Aerosols

    SciTech Connect

    Davidovits, Paul; Worsnop, D R; Jayne, J T; Colb, C E

    2013-02-13

    The objective of the studies was to elucidate the heterogeneous chemistry of tropospheric aerosols. Experiments were designed to measure both specifically needed parameters, and to obtain systematic data required to build a fundamental understanding of the nature of gas-surface physical and chemical interactions

  3. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Glasius, Marianne

    2011-09-01

    Organosulfates of monoterpenes and isoprene, as well as their oxidation products have been identified in biogenic secondary organic aerosols (BSOA) from both laboratory and field studies. Organosulfates provide an interesting coupling between air pollution and formation of low-volatility BSOA. HPLC quadrupole time-of-flight mass spectrometry was used to study polar acidic monoterpene and isoprene oxidation products including pinic acid, pinonic and terpenylic acid along with organosulfates and nitrooxy organosulfates in aerosols from ambient air. The method was first validated by analysis of spiked quartz filters, which showed acceptable recoveries >74% for pinic acid, pinonic acid, camphor sulphonic acid and adipic acid. Acetonitrile was identified as a better solvent than methanol for extraction and analysis of pinonic acid and adipic acid, due to improved analytical sensitivity and prevention of methyl ester formation during sample extraction. PM 1 (i.e, aerosols with an aerodynamic diameter ≤1 μm) were collected during spring 2008 in a forest in Denmark with mixed deciduous and coniferous trees. Average concentrations of the most abundant compounds were: pinic acid: 1.5 ng m -3, pinonic acid: 3.0 ng m -3, terpenylic acid: 0.8 ng m -3 and 3-methyl-1,2,3-butanetricarboxylic acid: 3.0 ng m -3. Organosulfates and nitrooxy organosulfates were identified in a majority of the daily samples and the highest levels were observed during a warm period in late spring. As a first approach, due to the lack of authentic standards, organosulfates and nitrooxy organosulfates were tentatively quantified based on the analytical response of camphor sulphonic acid. Generally the concentrations of organosulfates and nitrooxy organosulfates were lower than first generation oxidation products. The maximum concentration of a total of 10 organosulfates and nitrooxy organosulfates were found to be about three times lower than pinonic acid with a maximum concentration of 8 ng m -3. A

  4. Transport of breeder reactor-fire-generated sodium oxide aerosols for building-wake-dominated meteorology

    SciTech Connect

    Fields, D.E.; Cooper, A.C.; Miller, C.W.

    1987-02-01

    This report describes the methodology used and results obtained in efforts to estimate the sodium aerosol concentrations at air intake ports of a liquid-metal cooled, fast-breeder nuclear reactor. An earlier version of this methodology has been previously discussed (Fields and Miller, 1985). A range of wind speeds from 2 to 10 m/s is assumed, and an effort is made to include building wake effects which, in many cases, dominate the dispersal of aerosols near buildings. For relatively small release rates, on the order of 1 to 10 kg/s, the plume rise is small and estimates of aerosol concentrations are derived using the methodology of Wilson and Britter (1982), which describes releases from surface vents. For release rates on the order of 100 kg/s much higher release velocities are expected, and plume rise is considered. An effective increase in release height is computed using the Split-H methodology with a parameterization suggested by Ramsdell (1983), and the release source strength is transformed to rooftop level. Evaluation of the acute release aerosol concentration is then based on the methodology for releases from a surface release of this transformed source strength. For a horizontal release, a methodology is developed to chart the plume path as a function of release and site meteorology parameters. Results described herein must be regarded as maximum aerosol concentrations, based on models derived from generic wind tunnel studies. More accurate and site-specific results may be obtained through wind tunnel simulations and through simulating emissions from release points other than those assumed here.

  5. On the Water Uptake and CCN Activation of Tropospheric Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rastak, Narges; Pajunoja, Aki; Acosta Navarro, Juan-Camilo; Leong, Yu Jun; Cerully, Kate M.; Nenes, Athanasios; Kirkevåg, Alf; Topping, David; Virtanen, Annele; Riipinen, Ilona

    2016-04-01

    Aerosol particles introduce high uncertainties to radiative climate forcing. If exposed to a given relative humidity (RH), aerosol particles containing soluble material can absorb water and grow in size (hygroscopic growth). If RH is increased further beyond supersaturation (RH >100%) the particles can act as cloud condensation nuclei (CCN). Aerosol particles interactions with water vapour determine to a large extent their influence on climate. Organic aerosols (OA) contribute a large fraction (20-90%) of atmospheric submicron particulate mass, on the other hand they often consist of thousands of compounds with different properties. One of these properties is solubility, which affects the hygroscopic growth and cloud condensation nucleus (CCN) activation of the organic particles. We investigate the hygroscopic behaviour of complex organic aerosols accounting for the distribution of solubilities present in these mixtures. We use the SPARC method to estimate the solubility distributions of isoprene (IP) and monoterpene (MT) SOA based on their chemical composition, as predicted by the Master Chemical Mechanism (MCM). Combining these solubility distributions with the adsorption theory along with the non-ideal behaviour of organic mixtures, we predict the expected hygroscopic growth factors (HGFs), CCN activation behaviour and the related hygroscopicity parameters kappa for these mixtures. The predictions are compared to laboratory measurements as well as field data from MT- and IP-dominated measurement sites. The predicted solubility distributions do a good job in explaining the water uptake of these two mixture types at high relative humidities (RH around 90%), as well as their CCN activation - including the potential differences between the kappa values derived from HGF vs. CCN data. At lower relative humidities, however, the observed water uptake is higher than predicted on solubility alone, particularly for the MT-derived SOA. The data from the low RHs are further

  6. Aerosol-assisted chemical vapor deposition of tungsten oxide films and nanorods from oxo tungsten(VI) fluoroalkoxide precursors.

    PubMed

    Kim, Hankook; Bonsu, Richard O; O'Donohue, Christopher; Korotkov, Roman Y; McElwee-White, Lisa; Anderson, Timothy J

    2015-02-01

    Aerosol-assisted chemical vapor deposition (AACVD) of WOx was demonstrated using the oxo tungsten(VI) fluoroalkoxide single-source precursors, WO[OCCH3(CF3)2]4 and WO[OC(CH3)2CF3]4. Substoichiometric amorphous tungsten oxide thin films were grown on indium tin oxide (ITO) substrates in nitrogen at low deposition temperature (100-250 °C). At growth temperatures above 300 °C, the W18O49 monoclinic crystalline phase was observed. The surface morphology and roughness, visible light transmittance, electrical conductivity, and work function of the tungsten oxide materials are reported. The solvent and carrier gas minimally affected surface morphology and composition at low deposition temperature; however, material crystallinity varied with solvent choice at higher temperatures. The work function of the tungsten oxide thin films grown between 150 and 250 °C was determined to be in the range 5.0 to 5.7 eV, according to ultraviolet photoelectron spectroscopy (UPS). PMID:25569472

  7. Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Ringuet, Johany; Albinet, Alexandre; Leoz-Garziandia, Eva; Budzinski, Hélène; Villenave, Eric

    2012-12-01

    Reactivity of polycyclic aromatic compounds (PACs) adsorbed on natural aerosol particles exposed to different atmospheric oxidants (O3, OH and NO2/O3 mixture) was studied. Decay of polycyclic aromatic hydrocarbons (PAHs) and formation/decay of oxygenated PAHs (OPAHs) and nitrated PAHs (NPAHs) were monitored. Overall, benzo[a]pyrene appeared to be the most reactive PAH (degradation of 50%). Only its nitrated derivative, 6-nitrobenzo[a]pyrene, was significantly formed explaining just 0.4% of reacted benzo[a]pyrene. No other nitrated or oxygenated benzo[a]pyrene derivatives were detected. Interestingly, B[e]P and In[1,2,3,c,d]P, which are usually considered as quite stable PAHs, also underwent decay in all experiments. In presence of O3, ketones were significantly formed but their amount was not totally explained by decay of parent PAH. These results suggest that PAH derivatives could be formed from the reaction of other compounds than their direct parent PAHs and raise the question to know if the oxidation of methyl-PAHs, identified in vehicle-exhausts, could constitute this missing source of OPAHs. NPAHs were significantly formed in presence of O3/NO2 and OH. Surprisingly, NPAH formation was clearly observed during O3 experiments. Nitrated species, already associated with aerosol particles (NO3-, NO2-) or formed by ozonation of particulate nitrogen organic matter, could react with PAHs to form NPAHs. Heterogeneous formation of 2-nitropyrene from pyrene oxidation was for the first time observed, questioning its use as an indicator of NPAH formation in gaseous phase. Equally, formation of 2-nitrofluoranthene by heterogeneous reaction of fluoranthene with O3/NO2 was clearly shown, while only its formation by homogeneous processes (gaseous phase) is reported in the literature. Finally, results obtained highlighted the dependence of heterogeneous PAH reactivity with the substrate nature and the importance to focus reactivity studies on natural particles, whatever the

  8. Evaluating nitrogen oxide sources and oxidation pathways impacting aerosol production on the Southern Ute Indian Reservation and Navajo Nation using geochemical isotopic analysis

    NASA Astrophysics Data System (ADS)

    King, Michael Z.

    Increased emissions of nitrogen oxides (NOx = NO + NO 2) as a result of the development of oil, gas and coal resources in the Four Corners region of the United States have caused concern for area American Indian tribes that levels of ozone, acid rain, and aerosols or particulate matter (PM) may increase on reservation lands. NOx in the atmosphere plays an important role in the formation of these pollutants and high levels are indicators of poor air quality and exposure to them has been linked to a host of human health effects and environmental problems facing today's society. Nitrogen oxides are eventually oxidized in the atmosphere to form nitrate and nitric acid which falls to earth's surface by way of dry or wet deposition. In the end, it is the removal of NOx from the atmosphere by chemical conversion to nitrate that halts this production of oxidants, acids, and aerosols. Despite the importance of understanding atmospheric nitrate (NO3- = HNO3-(g), NO3-(aq), NO3-(s)) production there remains major deficiencies in estimating the significant key reactions that transform NOx into atmospheric nitrate. Stable isotope techniques have shown that variations in oxygen (16O, 17O, 18O) and nitrogen (14N, 15N) isotope abundances in atmospheric nitrate provide significant insight to the sources and oxidation pathways that transform NOx. Therefore, this project applied this resolution using high pressure liquid chromatography and isotope ratio mass spectrometry to determine the chemical and isotopic composition of particulate nitrate (PM2.5 and PM10), collected on the Southern Ute Indian Reservation and Navajo Nation. It was determined that the observed particulate nitrate concentrations on tribal lands were likely linked to seasonal changes in boundary layer height (BLH), local sources, meteorology, photochemistry and increases in windblown crustal material. The Southern Ute Indian Reservation indicated higher delta15N values in comparison to the Navajo Nation study site

  9. Aerosol from Organic Nitrogen in the Southeast United States

    EPA Science Inventory

    Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...

  10. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Cubison, M. J.; Hecobian, A.; Jimenez, J. L.; Weber, R. J.; Anderson, B. E.; Nenes, A.

    2013-03-01

    The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50-85° N and 40-130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66-94% by volume), with a water-soluble mass fraction of more than 50%. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.08-0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (ɛWSOM), with a κ = 0.12, such that κorg = 0.12ɛWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not determine

  11. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Cubison, M. J.; Hecobian, A.; Jimenez, J. L.; Weber, R. J.; Anderson, B. E.; Nenes, A.

    2012-09-01

    The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50-85° N and 40-130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66-94% by volume), more than half of which was water-soluble. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.1-0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (ϵWSOM), with a κ = 0.12, such that κorg = 0.12ϵWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not

  12. Modeling aerosol activation in a tropical, orographic, island setting: Sensitivity tests and comparison with observations

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Storelvmo, T.; Smith, R. B.

    2013-12-01

    The aerosol, updraft and cloud droplet observations from the 2011 Dominica Experiment (DOMEX) field campaign provide an interesting opportunity to investigate the process of cloud droplet activation in a tropical, orographic, convective setting. This study involves adiabatic parcel model simulations with a state-of-the-art parameterization of droplet activation, which we run with aerosol size distributions and updraft velocities based on DOMEX data. We compare the cloud droplet concentrations predicted by the parameterization with the observations from DOMEX, and run various sensitivity tests to changes in model inputs on the order of their uncertainty, in order to gain insights into what factors are most important in determining the aerosol activation fraction in this setting. Our control simulations overestimated the observed droplet concentrations, especially for the days with strong trade winds, but in most cases these discrepancies could be eliminated by realistic changes in our assumptions. The remaining error could be the result of entrainment of sub-saturated air, precipitation, or advection of pre-existing clouds from upwind. We found strong sensitivities to the mean updraft velocity and to the size distribution and composition of particles in the Aitken mode, the smallest mode including particles below 100 nm. The Aitken mode accounted for 42% to 68% of the simulated droplet concentration in our control simulations, and simulations excluding the Aitken mode underestimated the observed droplet concentrations under realistic assumptions. Droplets from the Aitken mode dominated the changes in the simulated droplet concentrations in our sensitivity tests. The precision of our simulations, and our ability to constrain the role of the Aitken mode, were limited by our lack of knowledge of the composition and size distribution of Aitken mode particles, highlighting the importance of measuring these variables in field campaigns in similar settings.

  13. Circular Polarimetry: Diagnostic of Magnetic Fields, Atmospheric Aerosols and Biologic Activity

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2013-12-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Our solar system is a dynamic laboratory with unique linear and circular polarimetric signatures of planets, satellites, comets, asteroids, dust, etc.. The study of both linear and circular polarization of a given system, therefore, provides insight into its origin and physical properties. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes; and surficial properties of atmosphereless bodies. Measurements of linear limb polarization characterizes the variation of aerosol properties across the planetary disk. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, eg., the presence of olivines and silicates in cometary dust and circumstellar disks; Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near-infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice; clathrates, non-ices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Circular polarization is diagnostic of magnetic fields, atmospheric aerosols and biologic activity. Aurorae occur in response to changing local magnetic fields (Earth, Jupiter, Ganymede, etc.). Biologic

  14. Photosensitized Heterogeneous Oxidation Reactions of Biomass Burning Aerosol Surrogates with OH Radicals under UV and Visible Irradiation

    NASA Astrophysics Data System (ADS)

    Forrester, S. M.; Knopf, D. A.

    2013-12-01

    Organic aerosol particles are ubiquitous in the atmosphere and can influence the climate both directly through scattering and absorption of radiation and indirectly through modification of cloud properties. Biomass burning is a major source of organic aerosol particles to the atmosphere. Source apportionment of biomass burning plumes relies on biomolecular markers that are inert with respect to transport in the atmosphere. However, these compounds can react heterogeneously with atmospheric gas-phase oxidants, which may cause source strength underestimation. The presence of light absorbing material, also known as photosensitizers, which can transfer excitation energy to a neighboring non-light absorbing molecule, has been shown to enhance the heterogeneous kinetics of several organic compounds with O3 and NO2 in the presence of ultraviolet or visible (UV/VIS) irradiation. The effect of UV/VIS irradiation on the heterogeneous kinetics between biomass burning aerosol and OH radicals in the presence of a photosensitizer has not yet been investigated. OH concentrations have been shown to be about an order of magnitude larger in biomass burning plumes compared to the background atmosphere. In this study, the heterogeneous kinetics between OH radicals and compounds typical of organic biomass burning aerosol (BBA) particles such as levoglucosan, 5-nitroguaiacol, nitrocatechol, 4-methoxyphenol, and benzo[a]pyrene are determined in the absence and presence of a photosensitizing compound. Pahokee peat serves as a surrogate for humic-like substances (HULIS), which have been shown to possess photosensitive properties. The effect of UV/VIS irradiation on the reactive uptake of OH is investigated, and the presence of volatilized products formed due to reaction with OH is measured. The reactive uptake experiments are conducted with an irradiated rectangular channel flow reactor that allows controlled UV/VIS irradiation of the organic substrates. Reactive uptake coefficients are

  15. Particulate oxidative burden associated with firework activity.

    PubMed

    Godri, Krystal J; Green, David C; Fuller, Gary W; Dall'Osto, Manuel; Beddows, David C; Kelly, Frank J; Harrison, Roy M; Mudway, Ian S

    2010-11-01

    Firework events are capable of inducing particulate matter (PM) episodes that lead to exceedances of regulatory limit values. As short-term peaks in ambient PM concentration have been associated with negative impacts on respiratory and cardiovascular health, we performed a detailed study of the consequences of firework events in London on ambient air quality and PM composition. These changes were further related to the oxidative activity of daily PM samples by assessing their capacity to drive the oxidation of physiologically important lung antioxidants including ascorbate, glutathione and urate (oxidative potential, OP). Twenty-four hour ambient PM samples were collected at the Marylebone Road sampling site in Central London over a three week period, including two major festivals celebrated with pyrotechnic events: Guy Fawkes Night and Diwali. Pyrotechnic combustion events were characterized by increased gas phase pollutants levels (NO(x) and SO(2)), elevated PM mass concentrations, and trace metal concentrations (specifically Sr, Mg, K, Ba, and Pb). Relationships between NO(x), benzene, and PM(10) were used to apportion firework and traffic source fractions. A positive significant relationship was found between PM oxidative burden and individual trace metals associated with each of these apportioned source fractions. The level of exposure to each source fraction was significantly associated with the total OP. The firework contribution to PM total OP, on a unit mass basis, was greater than that associated with traffic sources: a 1 μg elevation in firework and traffic PM fraction concentration was associated with a 6.5 ± 1.5 OP(T) μg(-1) and 5.2 ± 1.4 OP(T) μg(-1) increase, respectively. In the case of glutathione depletion, firework particulate OP (3.5 ± 0.8 OP(GSH) μg(-1)) considerably exceeded that due to traffic particles (2.2 ± 0.8 OP(GSH) μg(-1)). Therefore, in light of the elevated PM concentrations caused by firework activity and the increased

  16. A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight

    NASA Astrophysics Data System (ADS)

    Leungsakul, Sirakarn; Jeffries, Harvey E.; Kamens, Richard M.

    Among the monoterpenes, d-limonene is one of the most reactive, and has one of the highest particle formation potentials. Chamber experiments with d-limonene, nitric oxide, nitrogen dioxide, and diurnal natural sunlight are compared with simulation results from a first generation semi-explicit d-limonene daytime mechanism. The d-limonene model adequately predicts the timing of NO-NO 2 crossover, d-limonene decay, and the general trend of ozone formation, and particle mass accumulation. When experimental secondary organic aerosol (SOA) masses were greater than 1 mg m -3 the simulations tended to agree closely with the measured aerosol maxima. At lower SOA concentrations, the simulations tended to overpredict measured aerosol maxima by 25-50%. FTIR analysis and GC-ECD measurements indicate particle phase nitrates and peroxyacetyl nitrate (PAN) formation in the system. In the afternoon when temperatures are highest in the outdoor chambers, the slow rise of continuous ozone measurements suggests that PAN type compounds were decomposing to "bleed" NO 2 into the gas phase. Partitioning calculations also suggest that these types of compounds are off-gassing from the particle phase later in the afternoon as well, and provide an additional source of NO 2. Predicted aerosol yields with a commonly used two-parameter aerosol yield model are compared with experimental aerosol yields. The parameritized aerosol yield model had difficulty predicting most of the UNC chamber data. The explicit d-limonene mechanism developed in this study could reasonably simulate the aerosol formation trend in the Caltech chambers, but tended to overpredict SOA maxima.

  17. Conversion of Atmospheric Aerosol by Bacteria and Their Influence on Ice-Nucleation Activity

    NASA Astrophysics Data System (ADS)

    Kos, G.; Shawi, M.; Ariya, P. A.

    2004-05-01

    The presence of microorganisms such as bacteria and fungi in the boundary layer of the atmosphere has been established for some time. These species can also convert organic aerosol species (e.g. dicarboxylic acids), a transformation that was so far assumed to occur only via physico-chemical pathways. As a result, the ice nucleation activity of certain aerosol species can be altered by biochemical transformations including metabolite production and bacterial growth and these new species as well as the microorganisms themselves can act as ice nuclei. In this study we have used dicarboxylic acids (DCA) as model nutrients, which are commonly observed in the aerosol population of the boundary layer. Pseudomonas syringae and Erwinia herbicolae are two types of bacteria that have been found to possess ice nucleation ability, caused by lipoglycoprotein, which consists of a sequence of amino acids that favor the formation of ice. The main objective was to look into the conversion of DCA by bacterial species, their ice nucleating ability and the identification of metabolites from bacterial activity. Furthermore, the influence of different parameters on the ice nucleation of bacteria was investigated. A Freezing Nuclei apparatus was used in order to assess the freezing temperature of a population of small drops to study both homogenous and heterogeneous nucleation of different concentrations of malonic acid containing bacterial species. An acid concentration in the lower Fg/l-range was chosen, matching earlier observations in an urban environment. Other varied parameters include the pH and bacterial membrane shearing. All labware was sterilized prior to use and airtight containers minimized external contamination. Malonic acid concentration was determined by gas chromatography with mass spectrometric detection (GC-MS) after esterification with a mixture of borontrifluoride and 1-propanol, modified from Kawamura, 1991. Malonic acid and its metabolites were identified by

  18. Importance of aerosol composition and mixing state for cloud droplet activation in the high Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Svensson, E.

    2014-08-01

    Concentrations of cloud condensation nuclei (CCN) were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87° N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season median daily CCN concentrations at 0.2% water vapor supersaturation were typically in the range of 15 to 30 cm-3, but concentrations varied by two to three orders of magnitude over the expedition and were occasionally below 1 cm-3. The CCN concentrations were highest near the ice edge and fell by a factor of three in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. By assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles we inferred the properties of the unexplained non-water soluble aerosol fraction that is necessary for reproducing the observed concentrations of CCN. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol sizes ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues for that the behavior of the high Arctic aerosol in CCN-counters operating at water vapor supersaturations > 0.4% (high relative humidities) may not be

  19. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2015-08-01

    A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2 > 0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black

  20. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  1. Activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micelles.

    PubMed

    Sarcar, S; Jain, T K; Maitra, A

    1992-02-20

    The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307 degrees C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.

  2. Discernible signals of aerosol effects on the diurnal, weekly and decadal variations in thunderstorm activities

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2015-12-01

    Aerosol can affect atmospheric convection, cloud and precipitation in a variety of means by altering energy balance at the surface and in the atmospheric column, and by altering cloud micro- and macro-physical properties. The effects are often contingent upon meteorological variables and aerosol properties. By reducing surface energy budget, aerosol tends to suppress convection, but aerosol-induced heating in the lower atmosphere can destabilize the upper atmosphere and strengthen convection. Aerosol-induced altering cloud microphysics may also suppress or invigorate cloud development pending on various factors. In this talk, I will illustrate how aerosols likely contribute to the thunderstorm variability on three distinct time scales from diurnal, weekly to decadal and how different types of aerosols and varying meteorological conditions may affect with the observed trends. I will first demonstrate the opposite effects of conservative scattering and hygroscopic aerosols versus absorbing and hydrophobic aerosol on the long-term trends of thunderstorms. I will then illustrate that aerosol can have a discernible effect on the weekly cycle of thunderstorms and there is the dependence of the phase of the weekly cycle on aerosol types. Last, I will show how aerosol delays the occurrence of thunderstorms. Of course, the plausible connections are subject to various uncertainties that should be tackled with more rigorous modeling and extensive observation studies.

  3. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  4. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  5. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna

    NASA Astrophysics Data System (ADS)

    Burkart, J.; Steiner, G.; Reischl, G.; Hitzenberger, R.

    2011-10-01

    During a total of 11 months, cloud condensation nuclei (CCN at super-saturation S 0.5%) and condensation nuclei (CN) concentrations were measured in the urban background aerosol of Vienna, Austria. For several months, number size distributions between 13.22 nm and 929 nm were also measured with a scanning mobility particle spectrometer (SMPS). Activation ratios (i.e. CCN/CN ratios) were calculated and apparent activation diameters obtained by integrating the SMPS size distributions. Variations in all CCN parameters (concentration, activation ratio, apparent activation diameter) are quite large on timescales of days to weeks. Passages of fronts influenced CCN parameters. Concentrations decreased with the passage of a front. No significant differences were found for fronts from different sectors (for Vienna mainly north to west and south to east). CCN concentrations at 0.5% S ranged from 160 cm-3 to 3600 cm-3 with a campaign average of 820 cm-3. Activation ratios were quite low (0.02-0.47, average: 0.13) and comparable to activation ratios found in other polluted regions (e.g. Cubison et al., 2008). Apparent activation diameters were found to be much larger (campaign average: 169 nm, range: (69-370) nm) than activation diameters for single-salt particles (around 50 nm depending on the salt). Contrary to CN concentrations, which are influenced by source patterns, CCN concentrations did not exhibit distinct diurnal patterns. Activation ratios showed diurnal variations counter-current to the variations of CN concentrations.

  6. OH- Initiated Heterogeneous Oxidation of Saturated Organic Aerosols in the Presence of SO2: Uptake Kinetics and Product Identification.

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, N. K.; Ward, M.; Goldstein, A. H.; Wilson, K. R.

    2014-12-01

    Gas-phase oxidation mechanisms for organic gases are often used as a starting point to understand heterogeneous oxidation. The reaction of a simple alkane hydrocarbon by OH proceeds through hydrogen abstraction and under ambient conditions leads to peroxy radical (RO2) formation. RO2 can further react to form: (1) smaller molecular weight products (i.e. fragmentation) via alkoxy radical formation and dissociation and/or (2) higher molecular weight products with oxygenated functional groups (i.e. functionalization). The ability to perturb these two pathways (functionalization vs. fragmentation) is critical for understanding the detailed reaction mechanism that control atmospheric aging chemistry of particles. At high temperatures the presence of sulfur dioxide (SO2) during organic-OH gas-phase oxidation enhances the fragmentation pathway leading to increased alkoxy formation. It is unknown if a comparative affect occurs at room temperature during a heterogeneous reaction. We used the heterogeneous reaction of OH radicals with sub-micron squalane particles in the presence and absence of SO2 as a model system to explore changes in individual mechanistic pathways. Detailed kinetic measurements were made in a flow tube reactor using a vacuum ultraviolet (VUV) photoionization aerosol mass spectrometer and oxidation products are identified from samples collected on quartz filters using thermal desorption two-dimensional chromatographic separation and ionization by either VUV (10.5 eV) or electron impact (70 eV), with detection by high resolution time of flight mass spectrometry (GCxGC-VUV/EI-HRTOFMS). In the presence of SO2 the yields of alcohols were enhanced compared to without SO2, suggesting that the alkoxy formation pathway was dominant. The results from this work will provide an experimentally-confirmed kinetic framework that could be used to model atmospheric aging mechanisms.

  7. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, ground site

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2015-03-01

    A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~9% (up to 26%) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~97% of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2>0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~25% (up to 47%) of the IEPOX-OA factor mass, which accounted for 32% of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO~0.03ppb), carbon monoxide (CO~116 ppb), and black carbon (BC~0

  8. CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions during CARES

    SciTech Connect

    Mei, Fan; Setyan, Ari; Zhang, Qi; Wang, J. X.

    2013-12-17

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (KCCN) with diameter from 100 to 170 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low KCCN value was due to the high organic volume fraction, averaged over 80% at the T1 site. The derived KCCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (Korg) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of Korg from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from KCCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f44) and O:C were compared to results from previous studies. Overall, the relationships between Korg and f44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between Korg and f44, the relationship between Korg and O:C exhibits more significant differences among different studies, suggesting korg may be better parameterized using f44. A

  9. Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition.

    PubMed

    Sialvi, Muhammad Z; Mortimer, Roger J; Wilcox, Geoffrey D; Teridi, Asri Mat; Varley, Thomas S; Wijayantha, K G Upul; Kirk, Caroline A

    2013-06-26

    Aerosol-assisted chemical vapor deposition (AACVD) was used for the first time in the preparation of thin-film electrochromic nickel(II) oxide (NiO). The as-deposited films were cubic NiO, with an octahedral-like grain structure, and an optical band gap that decreased from 3.61 to 3.48 eV on increase in film thickness (in the range 500-1000 nm). On oxidative voltammetric cycling in aqueous KOH (0.1 mol dm(-3)) electrolyte, the morphology gradually changed to an open porous NiO structure. The electrochromic properties of the films were investigated as a function of film thickness, following 50, 100, and 500 conditioning oxidative voltammetric cycles in aqueous KOH (0.1 mol dm(-3)). Light modulation of the films increased with the number of conditioning cycles. The maximum coloration efficiency (CE) for the NiO (transmissive light green, the "bleached" state) to NiOOH (deep brown, the colored state) electrochromic process was found to be 56.3 cm(2) C(-1) (at 450 nm) for films prepared by AACVD for 15 min followed by 100 "bleached"-to-colored conditioning oxidative voltammetric cycles. Electrochromic response times were <10 s and generally longer for the coloration than the bleaching process. The films showed good stability when tested for up to 10 000 color/bleach cycles. Using the CIE (Commission Internationale de l'Eclairage) system of colorimetry the color stimuli of the electrochromic NiO films and the changes that take place on reversibly oxidatively switching to the NiOOH form were calculated from in situ visible spectra recorded under electrochemical control. Reversible changes in the hue and saturation occur on oxidation of the NiO (transmissive light green) form to the NiOOH (deep brown) form, as shown by the track of the CIE 1931 xy chromaticity coordinates. As the NiO film is oxidized, a sharp decrease in luminance was observed. CIELAB L*a*b* coordinates were also used to quantify the electrochromic color states. A combination of a low L* and positive a

  10. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  11. Effect of Slow Aging Reactions on Optical Properties of Secondary Organic Aerosol Prepared by Oxidation of Selected Monoterpenes

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bones, D. L.; Henricksen, D. K.; Mang, S. A.; Bateman, A. P.; Pan, X.; Nguyen, T. B.; Gonsior, M.; Cooper, W.; Laskin, J.; Laskin, A.

    2009-05-01

    Organic particulate matter (PM) has a major impact on atmospheric chemistry, climate, and human health. Secondary organic aerosol (SOA) accounts for a rather significant fraction of organic PM; this includes SOA produced by oxidation of biogenically emitted monoterpenes. Once such SOA is formed, it is believed to undergo slow aging processes, which may have large effects on the physical and chemical properties of the particles. This presentation focuses on the effect of slow chemical aging on optical properties of SOA formed from the ozone-induced oxidation of limonene, myrcene, and other selected monoterpenes. Several complementary techniques including high resolution electrospray ionization mass spectrometry, FTIR spectroscopy, UV/vis spectroscopy, NMR spectroscopy, 3D-fluorescence spectroscopy, and photodissociation spectroscopy are used to probe the aging-induced changes in physical properties and chemical composition of laboratory generated SOA. Limonene SOA appears to undergo a dramatic change in its absorption spectrum on a time scale of hours; it develops strong visible bands in the 400-500 nm region, and becomes fluorescent. This transformation is catalyzed by ammonium sulfate and certain amino acids. This rather unusual aging process can potentially contribute to the formation of brown carbon in biogenic SOA.

  12. Observational Constraints on Glyoxal Production from Isoprene Oxidation and Its Contribution to Organic Aerosol Over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Li, J.; Mao, J.; Min, K. E.; Washenfelder, R. A.; Brown, S. S.; Kaiser, J.; Keutsch, F. N.; Wolfe, G. M.; Hanisco, T. F.; Pollack, I. B.; Ryerson, T. B.; Graus, M.; Gilman, J.; Lerner, B. M.; Warneke, C.; De Gouw, J. A.; Middlebrook, A. M.; Henderson, B. H.; Paulot, F.; Horowitz, L. W.; Liao, J.; Welti, A.

    2015-12-01

    We use observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, evaluated with a nudged global chemistry-climate model, to better understand the sources and sinks of glyoxal over the Southeast United States. We find that the model with an isoprene oxidation mechanism that does not account for δ-hydroxyl peroxy radicals (δ-ISOPO2), can better reproduce the observed vertical profiles of glyoxal and HCHO, as well as their correlation (RGF) in the continental boundary layer. The suppression of δ-ISOPO2 is consistent with recent theoretical and laboratory studies, reflecting different fates of δ-ISOPO2 under chamber conditions (NO > 100 ppbv) vs. ambient conditions (NO ~ 0.1 ppbv). By including a reactive uptake of glyoxal in the model (γglyx=2.9×10-3), we find that this improves modeled glyoxal in the surface layer but leads to an underestimate of glyoxal above the surface. We estimate an upper limit (1.0 μg/m3) for SOA contributed by glyoxal uptake by aerosols and clouds in the boundary layer of this region. Our work highlights several uncertainties in current chemical mechanisms on glyoxal production from isoprene oxidation under high and low NOx conditions, which may lead to large biases in the estimates of its contribution to SOA formation. Further investigation on these pathways is warranted to quantify the sources and sinks of glyoxal in regional and global scales.

  13. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation.

    PubMed

    Nah, Theodora; Sanchez, Javier; Boyd, Christopher M; Ng, Nga Lee

    2016-01-01

    The nitrate radical (NO3) is the dominant nighttime oxidant in most urban and rural environments and reacts rapidly with biogenic volatile organic compounds to form secondary organic aerosol (SOA) and organic nitrates (ON). Here, we study the formation of SOA and ON from the NO3 oxidation of two monoterpenes (α-pinene and β-pinene) and investigate how they evolve during photochemical aging. High SOA mass loadings are produced in the NO3+β-pinene reaction, during which we detected 41 highly oxygenated gas- and particle-phase ON possessing 4 to 9 oxygen atoms. The fraction of particle-phase ON in the β-pinene SOA remains fairly constant during photochemical aging. In contrast to the NO3+β-pinene reaction, low SOA mass loadings are produced during the NO3+α-pinene reaction, during which only 5 highly oxygenated gas- and particle-phase ON are detected. The majority of the particle-phase ON evaporates from the α-pinene SOA during photochemical aging, thus exhibiting a drastically different behavior from that of β-pinene SOA. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either permanent or temporary NOx sinks depending on the monoterpene precursor.

  14. Detection and quantification of water-based aerosols using active open-path FTIR.

    PubMed

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-28

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25-3.6%wt) and (3) aqueous ethylene glycol (0.47-2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R(2) = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880-1150 cm(-1) and the ammonium sulfate load in the LOS (R(2) = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  15. Detection and quantification of water-based aerosols using active open-path FTIR

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm‑1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  16. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-02-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layer) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  17. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-05-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layers) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  18. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations.

    PubMed

    Hervé, Virginie; Rabbe, Nathalie; Guilleminault, Laurent; Paul, Flora; Schlick, Laurène; Azzopardi, Nicolas; Duruisseaux, Michael; Fouquenet, Delphine; Montharu, Jérôme; Redini, Françoise; Paintaud, Gilles; Lemarié, Etienne; Cadranel, Jacques; Wislez, Marie; Heuzé-Vourc'h, Nathalie

    2014-01-01

    K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations. PMID:25484066

  19. Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Ruuskanen, T.; Maenhaut, W.; Kulmala, M.; Claeys, M.

    2005-05-01

    Oxidation products of isoprene including 2-methyltetrols (2-methylthreitol and 2-methylerythritol), 2-methylglyceric acid and triol derivatives of isoprene (2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene) have been detected in boreal forest PM1 aerosols collected at Hyytiälä, southern Finland, during a 2004 summer period, at significant atmospheric concentrations (in total 51 ng m-3 in summer versus 0.46 ng m-3 in fall). On the basis of these results, it can be concluded that photo-oxidation of isoprene is an important atmospheric chemistry process that contributes to secondary organic aerosol formation during summer in this conifer forest ecosystem. In addition to isoprene oxidation products, malic acid, which can be regarded as an end-oxidation product of unsaturated fatty acids, was also detected at high concentrations during the summer period (46 ng m-3 in summer versus 5.2 ng m-3 in fall), while levoglucosan, originating from biomass burning, became relatively more important during the fall period (29 ng m-3 in fall versus 10 ng m-3 in summer). Pinic acid, a major photo-oxidation product of α-pinene in laboratory experiments, could only be detected at trace levels in the summer PM1 aerosol samples from Hyytiälä, suggesting that further oxidation of pinic acid occurs and/or that different oxidation pathways are followed. We hypothesize that photo-oxidation of isoprene may participate in the early stages of new particle formation, a phenomenon which has been well documented in the boreal forest environment.

  20. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2015-01-01

    This study characterized potential inhalation exposures of workers to nanometal oxides associated with industrial wastewater treatment processes in a semiconductor research and development facility. Exposure assessment methodology was designed to capture aerosolized engineered nanomaterials associated with the chemical mechanical planarization wafer polishing process that were accessible for worker contact via inhalation in the on-site wastewater treatment facility. The research team conducted air sampling using a combination of filter-based capture methods for particle identification and characterization and real-time direct-reading instruments for semi-quantitation of particle number concentration. Filter-based samples were analyzed using electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling conducted over 14 months included 5 discrete sampling series events for 7 job tasks in coordination with on-site employees. The number of filter-based samples captured for analysis by electron microscopy was: 5 from personal breathing zone, 4 from task areas, and 3 from the background. Direct-reading instruments collected data for 5 sample collection periods in the task area and the background, and 2 extended background collection periods. Engineered nanomaterials of interest (Si, Al, Ce) were identified by electron microscopy in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100 nm-500 nm). Particle counts showed an increase in number concentration during and after selected tasks above background. While additional data is needed to support further statistical analysis and determine trends, this initial investigation suggests that nanoparticles used or generated by chemical mechanical planarization become aerosolized and may be accessible for inhalation exposures by workers in wastewater treatment facilities. Additional research is

  1. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2015-01-01

    This study characterized potential inhalation exposures of workers to nanometal oxides associated with industrial wastewater treatment processes in a semiconductor research and development facility. Exposure assessment methodology was designed to capture aerosolized engineered nanomaterials associated with the chemical mechanical planarization wafer polishing process that were accessible for worker contact via inhalation in the on-site wastewater treatment facility. The research team conducted air sampling using a combination of filter-based capture methods for particle identification and characterization and real-time direct-reading instruments for semi-quantitation of particle number concentration. Filter-based samples were analyzed using electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling conducted over 14 months included 5 discrete sampling series events for 7 job tasks in coordination with on-site employees. The number of filter-based samples captured for analysis by electron microscopy was: 5 from personal breathing zone, 4 from task areas, and 3 from the background. Direct-reading instruments collected data for 5 sample collection periods in the task area and the background, and 2 extended background collection periods. Engineered nanomaterials of interest (Si, Al, Ce) were identified by electron microscopy in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100 nm-500 nm). Particle counts showed an increase in number concentration during and after selected tasks above background. While additional data is needed to support further statistical analysis and determine trends, this initial investigation suggests that nanoparticles used or generated by chemical mechanical planarization become aerosolized and may be accessible for inhalation exposures by workers in wastewater treatment facilities. Additional research is

  2. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation.

    PubMed

    Docherty, Kenneth S; Ziemann, Paul J

    2006-03-16

    The heterogeneous reaction of liquid oleic acid aerosol particles with NO3 radicals in the presence of NO2, N2O5, and O2 was investigated in an environmental chamber using a combination of on-line and off-line mass spectrometric techniques. The results indicate that the major reaction products, which are all carboxylic acids, consist of hydroxy nitrates, carbonyl nitrates, dinitrates, hydroxydinitrates, and possibly more highly nitrated products. The key intermediate in the reaction is the nitrooxyalkylperoxy radical, which is formed by the addition of NO3 to the carbon-carbon double bond and subsequent addition of O2. The nitrooxyalkylperoxy radicals undergo self-reactions to form hydroxy nitrates and carbonyl nitrates, and may also react with NO2 to form nitrooxy peroxynitrates. The latter compounds are unstable and decompose to carbonyl nitrates and dinitrates. It is noteworthy that in this reaction nitrooxyalkoxy radicals appear not to be formed, as indicated by the absence of the expected products of decomposition or isomerization of these species. This is different from gas-phase alkene-NO3 reactions, in which a large fraction of the products are formed through these pathways. The results may indicate that, for liquid organic aerosol particles in low NOx environments, the major products of the radical-initiated oxidation (including by OH radicals) of unsaturated and saturated organic compounds will be substituted forms of the parent compound rather than smaller decomposition products. These compounds will remain in the particle and can potentially enhance particle hygroscopicity and the ability of particles to act as cloud condensation nuclei. PMID:16526637

  3. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  4. ``Dirty nanostructures'': aerosol-assisted synthesis of temperature stable mesoporous metal oxide semiconductor spheres comprising hierarchically assembled zinc oxide nanocrystals controlled via impurities

    NASA Astrophysics Data System (ADS)

    Lehr, Daniela; Großmann, Dennis; Grünert, Wolfgang; Polarz, Sebastian

    2014-01-01

    Structural disintegration or the loss of accessible surfaces of functional nanostructures due to processes involving mass transport (e.g. sintering) is a serious problem for any application of these materials at elevated temperatures, like in heterogeneous catalysis or chemical sensing. Phases with low sintering temperatures, e.g. some metals or metal oxides like zinc oxide (ZnO), are very sensitive in this respect. Therefore, it is not only relevant to prepare important materials with refined morphologies, but the desired features need to be stable under real conditions. In this study, we describe the preparation of mesoporous ZnO nano-/microspheres by means of a template-assisted aerosol technique. Furthermore, by intentional introduction of impurity elements as dopants, specific surface areas and porosities of the prepared materials can be increased significantly. The impurities also strongly improve the thermal stability of the described ZnO nanostructures against thermal sintering. Although the pure ZnO material suffers from a complete loss of porosity, the structures of the impure (''dirty'') materials change only negligibly. Even at 500 °C morphology and porosity are preserved. The latter advantageous property was used for testing the novel nanocatalysts in heterogeneous catalysis.Structural disintegration or the loss of accessible surfaces of functional nanostructures due to processes involving mass transport (e.g. sintering) is a serious problem for any application of these materials at elevated temperatures, like in heterogeneous catalysis or chemical sensing. Phases with low sintering temperatures, e.g. some metals or metal oxides like zinc oxide (ZnO), are very sensitive in this respect. Therefore, it is not only relevant to prepare important materials with refined morphologies, but the desired features need to be stable under real conditions. In this study, we describe the preparation of mesoporous ZnO nano-/microspheres by means of a template

  5. Use of active and passive ground based remote sensors to explore cloud droplet modifications in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw Thet

    We explore the potential aerosol impact on cloud optical properties which is a strong modifier of climate forcing. Previous studies have shown that increased aerosol loading can affect the cloud optical properties such as cloud optical depth and cloud droplet effective radius in rural areas, particularly at the Atmospheric Radiation Measurement, Southern Great Plain site. In this study, we attempt to observe and quantify aerosol-cloud interaction over New York City, using a combination of passive and active radiometric sensors. In particular, we look for signatures of the Twomey indirect effect which states that the droplet size of water phase clouds will decrease with increasing aerosols. We find that under certain conditions, a strong signature is found between the cloud drop effective radius and extinction and this effect is in part due to vertical wind uptake. In demonstrating the Aerosol Cloud Interaction, we use multiple approaches. For example, we derive the integrated liquid water path using both a multiband neural network and dual channel approach and show general agreement between two methods while the DC approach seems more robust. We also find that these measurements are difficult and sensitive to the position of the aerosols relative to the cloud base. As a corollary, we explore whether near surface aerosol loading can effecting the cloud by using particulate matter (PM2.5) and find that the effects are too variable to be given any statistical weight. Finally, we explore the potential of modifying our approach to remove the noisy and difficult measurement of Raman LIDAR derived extinction with calibrated LIDAR backscatter. The results seem to show a general improvement in correlation and offer the possibility of increasing the number of cases observed.

  6. Selectivity Across the Interface: A Test of Surface Activity in the Composition of Organic-Enriched Aerosols from Bubble Bursting.

    PubMed

    Cochran, Richard E; Jayarathne, Thilina; Stone, Elizabeth A; Grassian, Vicki H

    2016-05-01

    Although theories have been developed that describe surface activity of organic molecules at the air-water interface, few studies have tested how surface activity impacts the selective transfer of molecules from solution phase into the aerosol phase during bubble bursting. The selective transfer of a series of organic compounds that differ in their solubility and surface activity from solution into the aerosol phase is quantified experimentally for the first time. Aerosol was produced from solutions containing salts and a series of linear carboxlyates (LCs) and dicarboxylates (LDCs) using a bubble bursting process. Surface activity of these molecules dominated the transport across the interface, with enrichment factors of the more surface-active C4-C8 LCs (55 ± 8) being greater than those of C4-C8 LDCs (5 ± 1). Trends in the estimated surface concentrations of LCs at the liquid-air interface agreed well with their relative concentrations in the aerosol phase. In addition, enrichment of LCs was followed by enrichment of calcium with respect to other inorganic cations and depletion of chloride and sulfate. PMID:27093579

  7. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung

    NASA Astrophysics Data System (ADS)

    Das, Gautom K.; Anderson, Donald S.; Wallis, Chris D.; Carratt, Sarah A.; Kennedy, Ian M.; van Winkle, Laura S.

    2016-06-01

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in

  8. CCN activation and efficiency of nucleation and impaction removal process of biomass burning aerosols in Brazil: preliminary results.

    NASA Astrophysics Data System (ADS)

    Sánchez Gácita, Madeleine; Longo, Karla M.; Freitas, Saulo R.; Martin, Scot T.

    2015-04-01

    The biomass burning activity constitutes an important source of aerosols and trace gases to the atmosphere globally. In South America, during the dry season, aerosols prevenient from biomass burning are typically transported to long distances from its sources before being removed though contributing significantly to the aerosol budget on a continental scale. The uncertainties in the magnitude of the impacts on the hydrological cycle, the radiation budget and the biogeochemical cycles on a continental scale are still noteworthy. The still unknowns on the efficiency of biomass burning aerosol to act as cloud condensation nuclei (CCN) and the effectiveness of the nucleation and impaction scavenging mechanisms in removing them from the atmosphere contribute to such uncertainties. In the present work, the explicit modelling of the early stages of cloud development using a parcel model for the typical conditions of the dry season and dry-to-wet transition periods in Amazonia allowed an estimation of the efficiency of nucleation scavenging process and the ability of South American biomass burning aerosol to act as CCN. Additionally, the impaction scavenging was simulated for the same aerosol population following a method based on the widely used concept of the efficiency of collision between a raindrop and an aerosol particle. DMPS and H-TDMA data available in the literature for biomass burning aerosol population in the region indicated the presence of a nearly hydrophobic fraction (on average, with specific hygroscopic parameter κ=0.04, and relative abundance of 73 %) and nearly hygroscopic fraction (κ=0.13, 27 %), externally mixed. The hygroscopic parameters and relative abundances of each hygroscopic group, as well as the weighted average specific hygroscopic parameter for the entire population κ=0.06, were used in calculations of aerosol activation and population mass and number concentration scavenged by nucleation. Results from both groups of simulations are

  9. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.

    PubMed

    Klingan, Katharina; Ringleb, Franziska; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Gonzalez-Flores, Diego; Risch, Marcel; Fischer, Anna; Dau, Holger

    2014-05-01

    Water oxidation in the neutral pH regime catalyzed by amorphous transition-metal oxides is of high interest in energy science. Crucial determinants of electrocatalytic activity were investigated for a cobalt-based oxide film electrodeposited at various thicknesses on inert electrodes. For water oxidation at low current densities, the turnover frequency (TOF) per cobalt ion of the bulk material stayed fully constant for variation of the thickness of the oxide film by a factor of 100 (from about 15 nm to 1.5 μm). Thickness variation changed neither the nanostructure of the outer film surface nor the atomic structure of the oxide catalyst significantly. These findings imply catalytic activity of the bulk hydrated oxide material. Nonclassical dependence on pH was observed. For buffered electrolytes with pKa values of the buffer base ranging from 4.7 (acetate) to 10.3 (hydrogen carbonate), the catalytic activity reflected the protonation state of the buffer base in the electrolyte solution directly and not the intrinsic catalytic properties of the oxide itself. It is proposed that catalysis of water oxidation occurs within the bulk hydrated oxide film at the margins of cobalt oxide fragments of molecular dimensions. At high current densities, the availability of a proton-accepting base at the catalyst-electrolyte interface controls the rate of water oxidation. The reported findings may be of general relevance for water oxidation catalyzed at moderate pH by amorphous transition-metal oxides.

  10. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung.

    PubMed

    Das, Gautom K; Anderson, Donald S; Wallis, Chris D; Carratt, Sarah A; Kennedy, Ian M; Van Winkle, Laura S

    2016-06-01

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution. PMID:27198643

  11. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna.

    PubMed

    Burkart, J; Steiner, G; Reischl, G; Hitzenberger, R

    2011-10-01

    During a total of 11 months, cloud condensation nuclei (CCN at super-saturation S 0.5%) and condensation nuclei (CN) concentrations were measured in the urban background aerosol of Vienna, Austria. For several months, number size distributions between 13.22 nm and 929 nm were also measured with a scanning mobility particle spectrometer (SMPS). Activation ratios (i.e. CCN/CN ratios) were calculated and apparent activation diameters obtained by integrating the SMPS size distributions. Variations in all CCN parameters (concentration, activation ratio, apparent activation diameter) are quite large on timescales of days to weeks. Passages of fronts influenced CCN parameters. Concentrations decreased with the passage of a front. No significant differences were found for fronts from different sectors (for Vienna mainly north to west and south to east). CCN concentrations at 0.5% S ranged from 160 cm(-3) to 3600 cm(-3) with a campaign average of 820 cm(-3). Activation ratios were quite low (0.02-0.47, average: 0.13) and comparable to activation ratios found in other polluted regions (e.g. Cubison et al., 2008). Apparent activation diameters were found to be much larger (campaign average: 169 nm, range: (69-370) nm) than activation diameters for single-salt particles (around 50 nm depending on the salt). Contrary to CN concentrations, which are influenced by source patterns, CCN concentrations did not exhibit distinct diurnal patterns. Activation ratios showed diurnal variations counter-current to the variations of CN concentrations.

  12. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature. PMID:25272147

  13. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature.

  14. A Physically-Based Estimate of Radiative Forcing by Anthropogenic Sulfate Aerosol

    SciTech Connect

    Ghan, Steven J. ); Easter, Richard C. ); Chapman, Elaine G. ); Abdul-Razzak, Hayder; Zhang, Yang ); Leung, Ruby ); Laulainen, Nels S. ); Saylor, Rick D. ); Zaveri, Rahul A. )

    2001-04-01

    Estimates of direct and indirect radiative forcing by anthropogenic sulfate aerosols from an integrated global aerosol and climate modeling system are presented. A detailed global tropospheric chemistry and aerosol model that predicts concentrations of oxidants as well as aerosols and aerosol precursors, is coupled to a general circulation model that predicts both cloud water mass and cloud droplet number. Both number and mass of several externally-mixed aerosol size modes are predicted, with internal mixing assumed for the different aerosol components within each mode. Predicted aerosol species include sulfate, organic and black carbon, soil dust, and sea salt. The models use physically-based treatments of aerosol radiative properties (including dependence on relative humidity) and aerosol activation as cloud condensation nuclei. Parallel simulations with and without anthropogenic sulfate aerosol are performed for a global domain. The global and annual mean direct and indirect radiative forcing due to anthropogenic sulfate are estimated to be -0.3 to -0.5 and -1.5 to -3.0 W m-2, respectively. The radiative forcing is sensitive to the model's horizontal resolution, the use of predicted vs. analyzed relative humidity, the prediction vs. diagnosis of aerosol number and droplet number, and the parameterization of droplet collision/coalescence. About half of the indirect radiative forcing is due to changes in droplet radius and half to increased cloud liquid water.

  15. Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Rattanavaraha, Weruka; Chu, Kevin; Hapsari Budisulistiorini, Sri; Riva, Matthieu; Lin, Ying-Hsuan; Edgerton, Eric S.; Baumann, Karsten; Shaw, Stephanie L.; Guo, Hongyu; King, Laura; Weber, Rodney J.; Neff, Miranda E.; Stone, Elizabeth A.; Offenberg, John H.; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    In the southeastern US, substantial emissions of isoprene from deciduous trees undergo atmospheric oxidation to form secondary organic aerosol (SOA) that contributes to fine particulate matter (PM2.5). Laboratory studies have revealed that anthropogenic pollutants, such as sulfur dioxide (SO2), oxides of nitrogen (NOx), and aerosol acidity, can enhance SOA formation from the hydroxyl radical (OH)-initiated oxidation of isoprene; however, the mechanisms by which specific pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected at the Birmingham, Alabama (BHM), ground site during the 2013 Southern Oxidant and Aerosol Study (SOAS). Sample extracts were analyzed by gas chromatography-electron ionization-mass spectrometry (GC/EI-MS) with prior trimethylsilylation and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) to identify known isoprene SOA tracers. Tracers quantified using both surrogate and authentic standards were compared with collocated gas- and particle-phase data as well as meteorological data provided by the Southeastern Aerosol Research and Characterization (SEARCH) network to assess the impact of anthropogenic pollution on isoprene-derived SOA formation. Results of this study reveal that isoprene-derived SOA tracers contribute a substantial mass fraction of organic matter (OM) ( ˜ 7 to ˜ 20 %). Isoprene-derived SOA tracers correlated with sulfate (SO42-) (r2 = 0.34, n = 117) but not with NOx. Moderate correlations between methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone (together abbreviated MAE/HMML)-derived SOA tracers with nitrate radical production (P[NO3]) (r2 = 0.57, n = 40) were observed during nighttime, suggesting a potential role of the NO3 radical in

  16. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  17. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides.

    PubMed

    Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O T; Zhang, Zhenfa; Marth, Wendy J; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G; Vizuete, William; Xie, Ying; Luecken, Deborah J; Piletic, Ivan R; Edney, Edward O; Bartolotti, Libero J; Gold, Avram; Surratt, Jason D

    2013-04-23

    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NO(x) = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NO(x). PMID:23553832

  18. Detection and quantification of water-based aerosols using active open-path FTIR

    PubMed Central

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-01-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm−1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations. PMID:27121498

  19. Instantaneous nitric oxide effect on secondary organic aerosol formation from m-xylene photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Cocker, David R.

    2015-10-01

    Secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation is highly sensitive to NO concentration. The instantaneous effect of NO on SOA formation from m-xylene photooxidation is investigated in this work by data mining 10 years of aromatic hydrocarbon chamber experiments conducted in the UC Riverside/CE-CERT chamber. First, the effect of sub-ppb NO concentrations on SOA formation is explored. The relationship of SOA growth rate to 1) NO2/NO ratio; 2) instantaneous HC/NO; 3) absolute NO concentration; 4) peroxy radical reaction branching ratio and 5) hydroxyl radical concentration are illustrated. Second, continuous and stepwise NO, NO2 and HONO injection are applied to m-xylene photooxidation experiments to simulate continuous NO sources in an urban area. The influence of these reaction scenarios on radical concentrations and SOA formation is explored. [HO2rad ]/[RO2rad ] shows a strong correlation with SOA yields in addition to [rad OH]/[HO2rad ], [rad OH], [HO2rad ] and [RO2rad ]. Enhanced SOA formation is observed when low NO levels (<1 ppb) are artificially maintained by continuous or step-wise injection; consistent with earlier research, SOA formation is observed to be suppressed by large initial NO injections. It is proposed that NO at sub-ppb level enhances rad OH formation increasing HO2rad and RO2rad and therefore promoting SOA formation. Further, two NO pathways (one promoting and one suppressing SOA formation) and one extremely low NO phase (NO "free") are used to demonstrate the evolution of NO impact on SOA formation during photooxidation. This study implies that SOA yields from aromatic hydrocarbon and low NOx photooxidation is previously underestimated due to differences between traditional environmental chamber experiments and atmospheric reactivity.

  20. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Mao, Jingqiu; Min, Kyung-Eun; Washenfelder, Rebecca A.; Brown, Steven S.; Kaiser, Jennifer; Keutsch, Frank N.; Volkamer, Rainer; Wolfe, Glenn M.; Hanisco, Thomas F.; Pollack, Ilana B.; Ryerson, Thomas B.; Graus, Martin; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; Gouw, Joost A.; Middlebrook, Ann M.; Liao, Jin; Welti, André; Henderson, Barron H.; McNeill, V. Faye; Hall, Samuel R.; Ullmann, Kirk; Donner, Leo J.; Paulot, Fabien; Horowitz, Larry W.

    2016-08-01

    We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and Master Chemical Mechanism (MCM) v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3 and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals. We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of isoprene epoxydiol (IEPOX) peroxy radicals with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

  1. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  2. Spectroscopic investigations of organic aerosol and its reaction with halogens, released by sea-salt activation

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Zetzsch, C.

    2009-04-01

    The release of reactive halogen species from sea-salt aerosol offers a class of reactants for heterogeneous reactions of utmost importance. These heterogeneous reactions have been overlooked so far, although they may occur with internal and external mixtures of sea-salt aerosol and organic aerosol or organic matter. Such reactions might constitute sources of gaseous organohalogen compounds or halogenated organic aerosol in the atmospheric boundary layer. Infrared and UV/VIS spectroscopy provide an insight into chemical processes at reactive sites of the organic phase on a molecular level. Model studies of heterogeneous reactions of halogens with different kinds of (secondary) organic aerosols and organic matter were performed using a 700L smog chamber with a solar simulator. The model compounds alpha-pinene, catechol and humic acid have been chosen as precursors/material for the condensed, organic phase of the aerosol. After formation of the secondary organic aerosol or preparation of the organic material and the sea-salt solution the reaction was carried out using molecular chlorine and bromine in the presence of simulated sunlight. Chemical transformation of the organic material was studied using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on a ZnSe crystal and diffuse reflectance UV/VIS spectroscopy. An electrostatic precipitator was developed to deposit the aerosol particles on the ATR crystal as a thin film. On the other hand, longpath-FTIR spectroscopy with a 40m White-cell allows us to monitor both the condensed and gas phase of the aerosol in situ in the smog chamber directly. These spectroscopic techniques enable us to characterize different organic aerosol particles and their functional groups at reactive sites on these particles as well as to study aerosol formation and transformation directly. The heterogeneous reaction of reactive halogen species with organic material at atmospheric conditions leads to small reactive

  3. Elastolytic activity in the lungs of rats exposed to cadmium aerosolization

    SciTech Connect

    Padmanabhan, R.V.; Gudapaty, S.R.; Liener, I.E.; Hoidal, J.R.

    1982-10-01

    Rats were exposed for 1 hr per day for up to 35 days to an aerosol of 0.1% cadmium chloride. At periodic intervals, animals were sacrificed and their lungs lavaged. The lung lavage fluid was examined for polymorphonuclear leukocytes (PMN) and alveolar macrophages (AM). A portion of the cells of the lavage fluid was lysed, and the remainder of the cells were cultured. The lavage fluids, cell lysates, and conditioned media were assayed for elastolytic activity in the presence and absence of a peptide chloromethyl ketone and EDTA. Exposure to cadmium evoked a biphasic cellular response characterized by an initial influx (1-3 days) of PMN followed by a gradual increase in AM. This biphasic cellular response was accompanied by a shift in the type of elastolytic activity which was present in the lung lavage and its cellular components. The initial PMN phase was accompanied by the enhanced production of an elastase inhibited only by the peptide chloromethyl ketone, while the subsequent AM phase was associated with an elastase activity which was inhibited only by EDTA. The possible implication of these results with respect to the pathogenesis of emphysema is considered.

  4. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  5. Molecular Characterization of Brown Carbon (BrC) Chromophores in Secondary Organic Aerosol Generated From Photo-Oxidation of Toluene

    SciTech Connect

    Lin, Peng; Liu, Jiumeng; Shilling, John E.; Kathmann, Shawn M.; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric Brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365nm = 0.78 m2 g-1) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the atmosphere.

  6. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.

    PubMed

    Lin, Peng; Liu, Jiumeng; Shilling, John E; Kathmann, Shawn M; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365 nm = 0.78 m(2) g(-1)) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/Vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the

  7. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; L'Ecuyer, T. S.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; LeBlanc, S. E.; Vaughan, M. A.; Schmidt, S.; Flynn, C. J.; Song, S.; Schmid, B.; Luna, B.; Abel, S.

    2015-12-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  8. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Piketh, S.; Formenti, P.; L'Ecuyer, T.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.; LeBlanc, S.; Vaughan, M.; Schmidt, S.; Flynn, C.; Schmid, B.; Luna, B.; Abel, S.

    2016-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  9. Theoretical investigation on iodine oxides formation and their role in the production of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Galvez, Óscar; Gomez, Pedro C.; Gomez-Martin, Juan C.; Saiz-Lopez, Alfonso; Pacios, Luis F.

    2013-04-01

    Atmospheric iodine has received considerable attention in the past two decades due to both its potential role in the catalytic destruction of ozone (1) and its contribution to the formation of ultrafine particles (2). Seaweeds, marine phytoplankton, and abiotic processes release iodocarbons and I2 to the atmosphere, which are photo-oxidized giving iodine oxides that polymerize to finally form iodine oxide particles (IOPs). In the last years, some laboratory studies have been carried out to investigate this process (see e.g. (3)), however the complete mechanism of formation of such particles and the role of water, and other condensable vapors, in this process have not yet been elucidated. In this context, quantum calculations could help to unravel essential steps of these processes and to evaluate relevant physicochemical properties that can be incorporated into atmospheric models. In this contribution, we show results of a theoretical study on different reactions that iodine oxides, in the presence of water, can undergo to form IOPs. Thermodynamic and kinetic properties of these reactions have been obtained at high level ab initio correlated calculations that included relativistic corrections. In these calculations, we have used a relativistic effective potential (REP) and REP-optimized basis sets for iodine atom developed in our group, which have previously been employed in a theoretical study about several iodinated species (4). (1) Saiz-Lopez, A.; Mahajan, A.S.; Salmon, R.A.; Bauguitte, J.B.; Jones, A.E.; Roscoe, H.K.; Plane, J.M.C. Science 2007, 317, 348-351 (2) O'Dowd, C.D.; Jimenez, J.L.; Bahreini, R.; Flagan, R.C.; Seinfeld, J.H.; Hämeri, K.; Pirjola, L.; Kulmala, M.; Jennings, S.G.; Hoffmann, T. Nature, 2002, 417, 632-636. (3) Saunders, R.W.; Kumar, R.; Gómez Martin, J.C.; Mahajan, A.S.; Murray, B.J.; Plane, J.M.C. Z. Phys. Chem. 2010, 224, 1095-1117. (4) Pacios, L.F.; Gálvez, O. J. Chem. Theory Comput., 2010, 6, 1738-1752.

  10. The anti-oxidant activity of turmeric (Curcuma longa).

    PubMed

    Selvam, R; Subramanian, L; Gayathri, R; Angayarkanni, N

    1995-07-01

    The turmeric anti-oxidant protein (TAP) had been isolated from the aqueous extract of turmeric. The anti-oxidant principle was found to be a heat stable protein. Trypsin treatment abolished the anti-oxidant activity. The anti-oxidant principle had an absorbance maximum at 280 nm. After gel filtration, the protein showed a 2-fold increase in anti-oxidant activity and showed 2 bands in the SDS-PAGE with approximate molecular weight range of 24,000 Da. The protein showed a concentration-dependent inhibitory effect on the promoter induced lipid peroxidation. A 50% inhibitory activity of lipid peroxidation was observed at a protein concentration of 50 micrograms/ml. Ca(2+)-ATPase of rat brain homogenate was protected to nearly 50% of the initial activity from the lipid peroxidant induced inactivation by this protein. This protection of Ca(2+)-ATPase activity was found to be associated with the prevention of loss of -SH groups.

  11. Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Ruuskanen, T.; Maenhaut, W.; Kulmala, M.; Claeys, M.

    2005-10-01

    Oxidation products of isoprene including 2-methyltetrols (2-methylthreitol and 2-methylerythritol), 2-methylglyceric acid and triol derivatives of isoprene (2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene) have been detected in boreal forest PM1 aerosols collected at Hyytiälä, southern Finland, during a 2004 summer period, at significant atmospheric concentrations (in total 51 ng m-3 in summer versus 0.46 ng m-3 in fall). On the basis of these results, it can be concluded that photo-oxidation of isoprene is an important atmospheric chemistry process that contributes to secondary organic aerosol formation during summer in this conifer forest ecosystem. In addition to isoprene oxidation products, malic acid, which can be regarded as an intermediate in the oxidation of unsaturated fatty acids, was also detected at high concentrations during the summer period (46 ng m-3 in summer versus 5.2 ng m-3 in fall), while levoglucosan, originating from biomass burning, became relatively more important during the fall period (29 ng m-3 in fall versus 10 ng m-3 in summer). Pinic acid, a major photo-oxidation product of α-pinene in laboratory experiments, could only be detected at trace levels in the summer samples, suggesting that further oxidation of pinic acid occurs and/or that different oxidation pathways are followed. We hypothesize that photo-oxidation of isoprene may participate in the early stages of new particle formation, a phenomenon which has been well documented in the boreal forest environment.

  12. Antimicrobial Activity of Amine Oxides: Mode of Action and Structure-Activity Correlation

    PubMed Central

    Šubík, Július; Takácsová, Gizela; Pšenák, Mikuláš; Devínsky, Ferdinand

    1977-01-01

    The effect of N-alkyl derivatives of saturated heterocyclic amine oxides on the growth and metabolism of microorganisms has been studied. 4-Dodecylmorpholine-N-oxide inhibited the differentiation and growth of Bacillus cereus, of different species of filamentous fungi, and of the yeast Saccharomyces cerevisiae. For vegetative cells, the effect of 4-dodecylmorpholine-N-oxide was lethal. Cells of S. cerevisiae, after interaction with 4-dodecylmorpholine-N-oxide, released intracellular K+ and were unable to oxidize or ferment glucose. The functions of isolated yeast mitochondria were also impaired. 4-Dodecylmorpholine-N-oxide at growth-inhibiting concentrations induced rapid lysis of osmotically stabilized yeast protoplasts, with the rate of lysis a function of temperature and of amine oxide concentration. A study of the relationships between structure, antimicrobial activity, and cytolytic activity was made with a group of structurally different amine oxides involving a series of homologous 4-alkylmorpholine-N-oxides, 1-alkylpiperidine-N-oxides, 1-dodecylpyrrolidine-N-oxide, 1-dodecylperhydroasepine-N-oxide, and N,N-dimethyldodecylamine oxide. Disorganization of the membrane structure after interaction of cells with the tested amine oxides was primarily responsible for the antimicrobial activity of the amine oxides. This activity was found to be dependent on the chain length of the hydrophobic alkyl group and was only moderately influenced by other substituents of the polarized N-oxide group. PMID:409340

  13. Catalytic activity of metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide

    SciTech Connect

    Marshneva, V.I.; Mokrinskii, V.V.

    1989-02-01

    Separate investigations have been made of the catalytic activities of a wide range of oxides by groups I-VIII metals in the Claus reaction and oxidation of H/sub 2/S by oxygen. Only 9 of 21 oxides used in the Claus reaction exhibit stable activity. The remaining oxides are deactivated, mainly by absorbing H/sub 2/S and being converted into sulfides. There are similar tendencies in the changes of sulfur formation specific velocities in both processes in the series of stable oxides V/sub 2/O/sub 5/, TiO/sub 2/, Mn/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, MgO, Cr/sub 2/O/sub 3/. Vanadium pentoxide is the most active catalyst in the total and partial oxidations of H/sub 2/S and the Claus reaction.

  14. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  15. Evaluation of the effects of ozone oxidation on redox-cycling activity of two-stroke engine exhaust particles.

    PubMed

    McWhinney, Robert D; Gao, Shawna S; Zhou, Shouming; Abbatt, Jonathan P D

    2011-03-15

    The effect of oxidation on the redox-cycling activity of engine exhaust particles is examined. Particles obtained from a two-stroke gasoline engine were oxidized in a flow tube with ozone on a one-minute time scale both in the presence and absence of substantial gas-phase exhaust components. Whereas ozone concentrations were high, the ozone exposures were approximately equivalent to 60 ppb ozone for 2-8 h. Oxidation led to substantial increases in redox-cycling of aqueous extracts of filtered particles, as measured using the dithiothreitol (DTT) assay. Increases in redox activity when the entire exhaust was oxidized were primarily driven by deposition of redox-active secondary organic aerosol (SOA), resulting in an upper-limit DTT activity of 8.6 ± 2.0 pmol DTT consumed per min per microgram of particles, compared to 0.73 ± 0.60 pmol min(-1) μg(-1) for fresh, unoxidized exhaust particles. Redox-cycling activity reached higher levels when VOC denuded exhaust was oxidized, with the highest DTT activity observed being 16.7 ± 1.6 pmol min(-1) μg(-1) with no upper limit reached for the range of ozone exposures used in this study. Our results provide laboratory support for the hypothesis that the toxicity of engine combustion particles due to redox-cycling may increase as they age in the atmosphere.

  16. Aerosol Gemcitabine: Preclinical Safety and In Vivo Antitumor Activity in Osteosarcoma-Bearing Dogs

    PubMed Central

    Crabbs, Torrie A.; Wilson, Dennis W.; Cannan, Virginia A.; Skorupski, Katherine A.; Gordon, Nancy; Koshkina, Nadya; Kleinerman, Eugenie; Anderson, Peter M.

    2010-01-01

    Abstract Background Osteosarcoma is the most common skeletal malignancy in the dog and in young humans. Although chemotherapy improves survival time, death continues to be attributed to metastases. Aerosol delivery can provide a strategy with which to improve the lung drug delivery while reducing systemic toxicity. The purpose of this study is to assess the safety of a regional aerosol approach to chemotherapy delivery in osteosarcoma-bearing dogs, and second, to evaluate the effect of gemcitabine on Fas expression in the pulmonary metastasis. Methods We examined the systemic and local effects of aerosol gemcitabine on lung and pulmonary metastasis in this relevant large-animal tumor model using serial laboratory and arterial blood gas analysis and histopathology and immunohistochemistry, respectively. Results and Conclusions Six hundred seventy-two 1-h doses of aerosol gemcitabine were delivered. The treatment was well tolerated by these subjects with osteosarcoma (n = 20). Aerosol-treated subjects had metastatic foci that demonstrated extensive, predominately central, intratumoral necrosis. Fas expression was decreased in pulmonary metastases compared to the primary tumor (p = 0.008). After aerosol gemcitabine Fas expression in the metastatic foci was increased compared to lung metastases before treatment (p = 0.0075), and even was higher than the primary tumor (p = 0.025). Increased apoptosis (TUNEL) staining was also detected in aerosol gemcitabine treated metastasis compared to untreated controls (p = 0.028). The results from this pivotal translational study support the concept that aerosol gemcitabine may be useful against pulmonary metastases of osteosarcoma. Additional studies that evaluate the aerosol route of administration of gemcitabine in humans should be safe and are warranted. PMID:19803732

  17. DIESEL OXIDATION CATALYST CONTROL OF HYDROCARBON AEROSOLS FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Barone, Teresa L; Curran, Scott; Cho, Kukwon; Lewis Sr, Samuel Arthur; Storey, John Morse; Wagner, Robert M

    2011-01-01

    Reactivity Controlled Compression Ignition (RCCI) is a novel combustion process that utilizes two fuels with different reactivity to stage and control combustion and enable homogeneous combustion. The technique has been proven experimentally in previous work with diesel and gasoline fuels; low NOx emissions and high efficiencies were observed from RCCI in comparison to conventional combustion. In previous studies on a multi-cylinder engine, particulate matter (PM) emission measurements from RCCI suggested that hydrocarbons were a major component of the PM mass. Further studies were conducted on this multi-cylinder engine platform to characterize the PM emissions in more detail and understand the effect of a diesel oxidation catalyst (DOC) on the hydrocarbon-dominated PM emissions. Results from the study show that the DOC can effectively reduce the hydrocarbon emissions as well as the overall PM from RCCI combustion. The bimodal size distribution of PM from RCCI is altered by the DOC which reduces the smaller mode 10 nm size particles.

  18. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of

  19. The Formation and Aerosol Uptake of Isoprene Nitrooxyhydroxyepoxide (INHE), a Newly Identified Product from the RO2 + HO2 Pathway of Isoprene NO3 Oxidation

    NASA Astrophysics Data System (ADS)

    Schwantes, R.; Teng, A.; Nguyen, T.; Coggon, M. M.; Zhang, X.; Schilling-Fahnestock, K.; Crounse, J.; St Clair, J. M.; Seinfeld, J.; Wennberg, P. O.

    2014-12-01

    Isoprene (C5H8) reacts with the nitrate radical (NO3) during the night to produce a peroxy nitrate radical (RO2). This RO2 can react with nitrogen oxides (i.e., NO, NO2, or NO3) and other RO2 radicals to form isoprene nitrates or with the hydroperoxyl radical (HO2) to form nitrooxyhydroperoxide (INP). Both model and field studies have found that in the ambient atmosphere much of the RO2 radical reacts with HO2. More specifically, during the 2013 SOAS field campaign, INP was one of the main species that increased at sunset suggesting the RO2 + HO2 pathway from NO3 oxidation is important in the southeastern US and similar areas. However, chamber studies so far have been run under conditions that optimize RO2 + NO3 reactions and/or RO2 + RO2 reactions. In this work, we present a new way to run NO3 oxidation chamber experiments that optimize for the RO2 + HO2 pathway creating a more atmospherically relevant product distribution. The gas phase formation of INP and subsequent oxidation products were monitored using a chemical ionization mass spectrometer (CIMS). Because isoprene nitrates formed from NO3 oxidation react slowly with ozone (O3) and NO3, many of these nitrates will remain in the atmosphere until the sun rises and hydroxyl radical (OH) begins to form. Results from these chamber experiments suggest that OH will react with INP to form nitrooxyhydroxyepoxide (INHE), a newly identified product from INP. We suspect INHE could be important for Secondary Organic Aerosol (SOA) production due to its similarity to isoprene epoxydiol (IEPOX), a product from isoprene OH oxidation that has been shown to be a significant SOA precursor. We studied the uptake of INHE onto various seed types, and found that as expected INHE rapidly partitions to highly acidic seed aerosol due to an acid catalyzed ring opening. A time-of-flight aerosol mass spectrometer (ToF-AMS) was used to understand the chemical composition of the aerosol produced from the various seed types.

  20. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.

    PubMed Central

    Rachmilewitz, D; Stamler, J S; Bachwich, D; Karmeli, F; Ackerman, Z; Podolsky, D K

    1995-01-01

    Recent studies have suggested that nitric oxide (NO.), the product of nitric oxide synthase in inflammatory cells, may play a part in tissue injury and inflammation through its oxidative metabolism. In this study the colonic generation of oxides of nitrogen (NOx) and nitric oxide synthase activity was determined in ulcerative colitis and Crohn's disease. Colonic biopsy specimens were obtained from inflammatory bowel disease patients and from normal controls. Mucosal explants were cultured in vitro for 24 hours and NOx generation was determined. Nitric oxide synthase activity was monitored by the conversion of [3H]-L-arginine to citrulline. Median NOx generation by inflamed colonic mucosa of patients with active ulcerative colitis and Crohn's colitis was 4.2- and 8.1-fold respectively higher than that by normal human colonic mucosa. In ulcerative colitis and Crohn's colitis nitric oxide synthase activity was 10.0- and 3.8-fold respectively higher than in normal subjects. Colonic NOx generation is significantly decreased by methylprednisolone and ketotifen. The decrease in NOx generation by cultured colonic mucosa induced by methylprednisolone suggests that NO synthase activity is induced during the culture and the steroid effect may contribute to its therapeutic effect. Enhanced colonic NOx generation by stimulated nitric oxide synthase activity in ulcerative colitis and Crohn's disease may contribute to tissue injury. PMID:7541008

  1. Aerosol delivery of muramyl dipeptide to rodent lungs.

    PubMed

    Pettis, R J; Hall, I; Costa, D; Hickey, A J

    2000-01-01

    Tuberculosis is the single most serious infectious disease worldwide. The respiratory tract is the primary site of infection by Mycobacterium tuberculosis(MTB). A number of immunogenic components of the cell wall of MTB, if delivered to the lungs as aerosols, can be used to study the local immune response. The site of deposition of these aerosols can be employed to control their residence time in the lungs. Muramyl dipeptide (MDP) aerosols were delivered to alveolar macrophages in the lungs of rodents. Guinea pig macrophages harvested by bronchoalveolar lavage were examined by differential interference contrast microscopy for morphological changes indicative of activation. Bronchoalveolar lavage fluid was analyzed for the presence of alkaline phosphatase, lactate dehydrogenase, N-acetyl-glucosaminidase (NAG), and total protein content. Rat alveolar macrophages were studied for the production of nitric oxide, by induction of nitric oxide synthase. Twenty-four hours following exposure to an aerosol of MDP, alveolar macrophages exhibited morphological characteristics (spreading and pseudopodia), enzyme activity (NAG 50% above control), and production of the reactive intermediate nitric oxide. Rat macrophages subjected to aerosol exposure to MDP when challenged with a second dose of MDP or lipopolysaccharide exhibited a linear dose response as measured by nitric oxide production. These studies indicate that the topical delivery of an MTB bacterial cell wall component, muramyl dipeptide, results in activation of alveolar macrophages. This approach may be useful in elucidating elements of the immune response to MTB.

  2. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  3. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  4. Constraining Predicted Secondary Organic Aerosol Formation and Processing Using Real-Time Observations of Aging Urban Emissions in an Oxidation Flow Reactor

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Graus, M.; Warneke, C.; Gilman, J.; De Gouw, J. A.; Jimenez, J. L.

    2014-12-01

    To investigate atmospheric processing of urban emissions, we deployed an oxidation flow reactor with measurements of size-resolved chemical composition of submicron aerosol during CalNex-LA, a field study investigating air quality and climate change at a receptor site in the Los Angeles Basin. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging of hours to ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min to survey the effects of a range of oxidation exposures on gases and aerosols. This approach is a valuable tool for in-situ evaluation of changes in organic aerosol (OA) concentration and composition due to photochemical processing over a range of ambient atmospheric conditions and composition. Combined with collocated gas-phase measurements of volatile organic compounds, this novel approach enables the comparison of measured SOA to predicted SOA formation from a prescribed set of precursors. Results from CalNex-LA show enhancements of OA and inorganic aerosol from gas-phase precursors. The OA mass enhancement from aging was highest at night and correlated with trimethylbenzene, indicating the importance of relatively short-lived VOC (OH lifetime of ~12 hrs or less) as SOA precursors in the LA Basin. Maximum net SOA production is observed between 3-6 days of aging and decreases at higher exposures. Aging in the reactor shows similar behavior to atmospheric processing; the elemental composition of ambient and reactor measurements follow similar slopes when plotted in a Van Krevelen diagram. Additionally, for air processed in the reactor, oxygen-to-carbon ratios (O/C) of aerosol extended over a larger range compared to ambient aerosol observed in the LA Basin. While reactor aging always increases O/C, often beyond maximum observed ambient levels, a transition from net OA production to destruction occurs at intermediate OHexp, suggesting a transition

  5. Active Oxidation of a UHTC-Based CMC

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Splinter, Scott C.

    2012-01-01

    The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.

  6. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    PubMed Central

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  7. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    NASA Astrophysics Data System (ADS)

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  8. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  9. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-03

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  10. Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; Baltensperger, Urs

    2016-03-01

    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.

  11. Heterogeneous Oxidation of Biomass Burning Aerosol Surrogates by O3, NO2, NO3, and N2O5

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Slade, J. H.; Forrester, S.; Linville, D.

    2010-12-01

    Biomass burning is a major source of gases and particles to the atmosphere with a source strength of similar magnitude to fossil fuel burning. The particulate matter (PM) fraction of remote biomass burning events has been shown to significantly impact local air quality. Furthermore, biomass burning plumes can reach the upper troposphere and lower stratosphere (UT/LS). Consequently, biomass burning aerosol (BBA) can perturb atmospheric radiation directly through its effect on light extinction and indirectly by altering cloud properties. During transport, BBAs can react by gas-to-particle, termed heterogeneous, reactions with trace gases such as O3, NO2, NO3, and N2O5. It has been previously shown that high nighttime NO3, concentrations can render the NO3 radical a similar if not even more important oxidizer compared to OH. These oxidation reactions can result in the chemical transformation of the particles and thus significantly alter their physical and chemical properties. This in turn can have important implications for the particles’ role in cloud formation processes but will also impact the ability to apportion the source strength of BBAs if the molecular marker for biomass burning is altered during transport. Here we present a study employing a newly custom-built chemical ionization mass spectrometer coupled to a temperature-controlled rotating wall flow reactor to determine the heterogeneous kinetics between major organic compounds found in BBAs and O3, NO2, NO3. O3 is produced by passing O2 over an Hg lamp at 254 nm. N2O5 is produced by reacting an excess amount of O3 with NO2 and then stored at 193 K. NO3 is produced by thermal dissociation of N2O5. Detection of the reactant gases is achieved by using SF6- and I- as reagent ions. Our experimentally determined reactive uptake coefficients of O3, NO3, and N2O5 by oleic acid, and NO3 by unconjugated linoleic acid and n-hexadecane show agreement with previous studies. The major organic species determined in

  12. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  13. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Ray, E.R.; Veyo, S.E.

    1995-12-31

    This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  14. Gas- and aerosol-phase chemistry of nitrogen oxides (NOy) in a pine forest (BEACHON-RoMBAS 2011)

    NASA Astrophysics Data System (ADS)

    Fry, J.; Draper, D.; Zarzana, K. J.; Brown, S. S.; Dube, B.; Wagner, N.; Cohen, R. C.; Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Brune, W. H.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.

    2011-12-01

    Ambient measurements of NOy (NO2, peroxy- and alkyl-nitrates, and the gas/aerosol partitioning of the latter) and Potential Aerosol Mass measurements of NO3-initiated secondary organic aerosol formation in a 16 L flow-through reactor were made during the BEACHON-RoMBAS field campaign in U.S. Forest Service Manitou Forest Observatory, Colorado (July/August 2011). A cavity ringdown spectrometer (CRDS) is used to monitor NO3 and N2O5 , Thermal Desorption - Laser Induced Fluorescence (TD-LIF) is used to detect the NOy species as NO2; an Aerodyne Aerosol Mass Spectrometer (AMS) monitors chemical composition of aerosol; Proton Transfer Reaction Mass Spectrometry (PTR-TOF-MS) monitors the gas-phase organic compounds; and a thermal converter/chemiluminescent NO/NOx/NH3 analyzer monitors gas-phase inorganic nitrogen compounds. In the PAM measurements, a calibrated flow of NO3 is supplied to the reactor from a temperature-controlled N2O5 trap. With this suite of measurements we seek to elucidate the role of nitrate in biogenic SOA formation, as well as the fate of pollution emissions in a forest environment. We observe significant concentrations of ambient alkyl- and peroxynitrates, despite the remote forest location, and find evidence in PAM measurements that formation of these compounds is linked to organic aerosol production.

  15. Variability of CCN Activation Behaviour of Aerosol Particles in the Marine Boundary Layer of the Northern and Southern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Henning, Silvia; Dieckmann, Katrin; Hartmann, Susan; Schäfer, Michael; Wu, Zhijun; Merkel, Maik; Wiedensohler, Alfred; Stratmann, Frank

    2013-04-01

    The variability of cloud condensation nucleus (CCN) activation behaviour and total CCN number concentrations was investigated during three ship cruises. Measurements were performed in a mobile laboratory on the German research vessel FS Polarstern cruising between Cape Town and Bremerhaven (April / May and October / November 2011) as well as between Punta Arenas and Bremerhaven (April / May 2012). CCN size distributions were measured for supersaturations between 0.1% and 0.4% using a Cloud Condensation Nucleus Counter (DMT, USA). Aerosol particle and CCN total number concentrations as well as the hygroscopicity parameter κ (Petters and Kreidenweis, 2007) were determined. Furthermore, size distribution data were collected. The hygroscopicity parameter κ featured a high variability during the cruises, with a median κ-value of 0.52 ± 0.26. The κ-values are depended on air mass origin; and are as expected mainly dominated by marine influences, but also long range transport of aerosol particles was detected. In the Celtic Sea, κ was found to be lower than that of clean marine aerosol particles (0.72 ± 0.24; Pringle et al., 2010) with κ-values ~0.2, possibly influenced by anthropogenic emissions from Europe. Close to the West African coast particle hygroscopicity was found to be influenced by the Saharan dust plume, resulting in low κ-values ~0.25. Petters, M.D. and S.M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. and Phys., 7, 1961-1971. Pringle, K.J., H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld (2010), Global distribution of the effective aerosol hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241-5255.

  16. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2014-12-02

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, butmore » the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91–0.92, r2=0.93–0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are

  17. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    NASA Astrophysics Data System (ADS)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH < 1%) and under high-NOx conditions using CH3ONO as OH source. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer); the SOA yields were in the range from 0.003 to 0.87 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. Transmission (TEM) and Scanning (SEM) Electron Microscopy observations were performed to characterize the physical state of SOA produced from the OH reaction with guaiacol; they display both liquid and solid particles (in an amorphous state). GC-FID (Gas Chromatography - Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  18. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    PubMed

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  19. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  20. Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jun Woo; Jang, Dong Young; Kim, Manjin; Choi, Hyung Jong; Shim, Joon Hyung

    2016-01-01

    We have fabricated nano-scale gadolinia-doped ceria (GDC) at the electrode-electrolyte boundary by aerosol-assisted chemical vapor deposition (AACVD) for high-performance solid oxide fuel cells (SOFCs) working at low temperatures below 500 °C. In AACVD, temperature is the key factor affecting the grain size. We have confirmed that by nano-granulizing the electrolyte surface using optimized AACVD, the power output of the SOFC is 50% higher than that of the bare GDC SOFC. From the impedance analysis, significant enhancement of the cathodic oxygen reduction reaction is identified from the AACVD-GDC nano-grain surface treatment.

  1. Contribution of methane to aerosol carbon mass

    NASA Astrophysics Data System (ADS)

    Bianchi, F.; Barmet, P.; Stirnweis, L.; El Haddad, I.; Platt, S. M.; Saurer, M.; Lötscher, C.; Siegwolf, R.; Bigi, A.; Hoyle, C. R.; DeCarlo, P. F.; Slowik, J. G.; Prévôt, A. S. H.; Baltensperger, U.; Dommen, J.

    2016-09-01

    Small volatile organic compounds (VOC) such as methane (CH4) have long been considered non-relevant to aerosol formation due to the high volatility of their oxidation products. However, even low aerosol yields from CH4, the most abundant VOC in the atmosphere, would contribute significantly to the total particulate carbon budget. In this study, organic aerosol (OA) mass yields from CH4 oxidation were evaluated at the Paul Scherrer Institute (PSI) smog chamber in the presence of inorganic and organic seed aerosols. Using labeled 13C methane, we could detect its oxidation products in the aerosol phase, with yields up to 0.09

  2. Can we better use existing and emerging computing hardware to embed activity coefficient predictions in complex atmospheric aerosol models?

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Ruske, Simon; Hindriksen, Vincent; Noisternig, Michael

    2016-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we show that comprehensive microphysical models from single particle to larger scales can be developed to encompass a complete state-of-the-art knowledge of aerosol chemical and process diversity. We focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method, profiling traditional coding strategies and those that exploit emerging hardware.

  3. Assessment of aerosol-cloud interactions during southern African biomass burning activity, employing cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Wiston, Modise; McFiggans, Gordon; Schultz, David

    2015-04-01

    In this study, we perform a simulation of the spatial distributions of particle and gas concentrations from a significantly large source of pollution event during a dry season in southern Africa and their interactions with cloud processes. Specific focus is on the extent to which cloud-aerosol interactions are affected by various inputs (i.e. emissions) and parameterizations and feedback mechanisms in a coupled mesoscale chemistry-meteorology model -herein Weather Research and Forecasting model with chemistry (WRF-Chem). The southern African dry season (May-Sep) is characterised by biomass burning (BB) type of pollution. During this period, BB particles are frequently observed over the subcontinent, at the same time a persistent deck of stratocumulus covers the south West African coast, favouring long-range transport over the Atlantic Ocean of aerosols above clouds. While anthropogenic pollutants tend to spread more over the entire domain, biomass pollutants are concentrated around the burning areas, especially the savannah and tropical rainforest of the Congo Basin. BB is linked to agricultural practice at latitudes south of 10° N. During an intense burning event, there is a clear signal of strong interactions of aerosols and cloud microphysics. These species interfere with the radiative budget, and directly affect the amount of solar radiation reflected and scattered back to space and partly absorbed by the atmosphere. Aerosols also affect cloud microphysics by acting as cloud condensation nuclei (CCN), modifying precipitation pattern and the cloud albedo. Key area is to understand the role of pollution on convective cloud processes and its impacts on cloud dynamics. The hypothesis is that an environment of potentially high pollution enables the probability of interactions between co-located aerosols and cloud layers. To investigate this hypothesis, we outline an approach to integrate three elements: i) focusing on regime(s) where there are strong indications of

  4. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  5. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress.

  6. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress. PMID:27699246

  7. Aerosols: unexpected disequilibrium phenomena between airborne radio activities of lead-210 and its progenies bismuth-210 and polonium-210.

    PubMed

    Wallner, Gabriele; Berner, Axel; Irlweck, Karl

    2002-12-01

    For the first time, concentrations of the long lived radon progenies (210)Pb, (210)Bi and (210)Po were measured in the mine atmosphere of the so called "healing gallery" in Badgastein, Austria, a region famous for its radioactive springs. These investigations were performed in order to study the radioactive equilibrium between the (210)Pb-(210)Bi and the (210)Pb-(210)Po pairs so as to gain more information about the aerosol-forming processes in the mine. The particle size distribution of the aerosols was determined under different ventilation conditions. Six-stage and eight-stage cascade impactors with working ranges from 0.15 to 5 micro m and from 0.063 to 8 micro m, respectively, were used to collect the mine aerosols. These samples were analysed in the laboratory and measured by liquid scintillation spectrometry. The most surprising results were found under full ventilation, when the total activity concentrations of (210)Pb, (210)Bi and (210)Po were 4.6, 2.0 and 16.5 mBq/m(3), respectively. In this case (210)Po/(210)Pb activity ratios ranged between 1.8+/-0.3 and 4.3+/-0.3. These unexpected results were confirmed by the eight-stage impactor samples. For the smallest particles, between 0.062 and 0.125 micro m, an even higher value of 7.5 was observed. As outside sources could be excluded, such (210)Po enrichments must occur during the aerosol-forming process itself inside the mine.

  8. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  9. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  10. Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Christensen, M. K.; Cozzi, F.; Zare, A.; Hansen, A. M. K.; Kristensen, K.; Tulinius, T. E.; Madsen, H. H.; Christensen, J. H.; Brandt, J.; Massling, A.; Nøjgaard, J. K.; Glasius, M.

    2014-09-01

    Anthropogenic emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA) through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May to 22 June, 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale, with the compounds being long-range transported to the sites on the days with the highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in addition to modeled emissions of related precursors, including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) and SO2 emissions using the European Monitoring and Evaluation Program (EMEP) database. The local impacts were also studied by examining the correlation between selected species, which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases, including SO2, ozone (O3), NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, SO2, relative humidity (RH), temperature and global radiation seemed to affect the concentration level of those species, suggesting

  11. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-06-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first CEAS detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. A further innovation consists in the measurement of extinction losses from the cavity, e.g. due to aerosols, at two wavelengths by observing O4 (477 nm) and H2O (443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7×10-7 cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement in open cavity mode (mirrors facing the open atmosphere), and eliminates the need for sampling lines to supply air to the cavity, and/or keep the cavity enclosed and aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction at 477 nm and 443 nm. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation

  12. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. PMID:25044528

  13. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers.

  14. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  15. Chamber Study Exploring Aerosol Formation from NO3 Oxidation of α-pinene and Δ-carene under Varying HO2/RO2/NO3 Regimes

    NASA Astrophysics Data System (ADS)

    Kang, H.; Ayres, B. R.; Fry, J.; Brown, S. S.; Day, D. A.; Thompson, S.; Hu, W.; Campuzano Jost, P.; Stark, H.; Jimenez, J. L.; Ranney, A.; Ziemann, P. J.

    2014-12-01

    Although monoterpenes are pervasive in wooded environments, their reactions with nitrate radicals (NO3, a potent nighttime oxidant downwind of combustion sources) and the resulting secondary aerosol formation are not well characterized. To better understand these reactions, environmental chamber experiments have often been conducted at elevated terpene concentrations and HO2/RO2/NO3 ratios that are not representative of the real atmosphere, resulting in a range of yields. To elucidate the reasons for these varying yields, a new series of experiments were conducted with varying concentration ratios of α-pinene or Δ-carene with N2O5 (source of NO3 radical) and with/without formaldehyde in a 8000 L Teflon chamber. Formaldehyde served as a precursor for HO2 to bias the system towards HO2-RO2 reactions, elevated N2O5 caused NO3-RO2 reactions to dominate, and elevated monoterpene concentrations (but not amount reacted) favored RO2-RO2 reactions. The chamber products in the gaseous and aerosol phase were characterized using an NO3/N2O5 Cavity Ringdown Spectrometer (CRDS), an Aerodyne High-Resolution Aerosol Mass Spectrometer (AMS), a Scanning Mobility Particle Sizer (SMPS), an Ultrafine Condensation Particle Counter (UCPC), an Aerodyne High-Resolution Chemical Ionization Mass Spectrometer using Iodide ion chemistry (I- CIMS), and a chemiluminescence NOx detector. The mechanistic reasons for the starkly different SOA yield from the NO3 + α-pinene vs. NO3 + Δ-carene systems were explored in addition to differences in gas and aerosol-phase composition and yields under the varying conditions of the primary terpene RO2 radical fate.

  16. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Eastlake, Adrienne C; Beaucham, Catherine C; Geraci, Charles L

    2016-11-01

    The ubiquitous use of engineered nanomaterials-particulate materials measuring approximately 1-100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties-in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18-21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with th e chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60 nm to >1,000 nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area; however

  17. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Eastlake, Adrienne C; Beaucham, Catherine C; Geraci, Charles L

    2016-11-01

    The ubiquitous use of engineered nanomaterials-particulate materials measuring approximately 1-100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties-in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18-21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with th e chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60 nm to >1,000 nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area; however

  18. NIOSH Field Studies Team Assessment: Worker Exposure to Aerosolized Metal Oxide Nanoparticles in a Semiconductor Fabrication Facility

    PubMed Central

    Brenner, Sara A.; Neu-Baker, Nicole M.; Eastlake, Adrienne C.; Beaucham, Catherine C.; Geraci, Charles L.

    2016-01-01

    The ubiquitous use of engineered nanomaterials – particulate materials measuring approximately 1–100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties – in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18–21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with the chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60nm to >1,000nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area

  19. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH < 90%, under supersaturated conditions (with respect to RH), an increase in CCN activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric

  20. A review of research on human activity induced climate change I. Greenhouse gases and aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Mingxing; Liu, Qiang; Yang, Xin

    2004-06-01

    Extensive research on the sources and sinks of greenhouse gases, carbon cycle modeling, and the characterization of atmospheric aerosols has been carried out in China during the last 10 years or so. This paper presents the major achievements in the fields of emissions of greenhouse gases from agricultural lands, carbon cycle modeling, the characterization of Asian mineral dust, source identification of the precursors of the tropospheric ozone, and observations of the concentrations of atmospheric organic compounds. Special, more detailed information on the emissions of methane from rice fields and the physical and chemical characteristics of mineral aerosols are presented.

  1. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br-→ O2 + OBr- (R1) OBr- + H+ ↔ HOBr (R2) HOBr + H+ + Br-→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum, K.W., et

  2. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br‑→ O2 + OBr‑ (R1) OBr‑ + H+ ↔ HOBr (R2) HOBr + H+ + Br‑→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum

  3. Effects of airflow rates and operator activity on containment of bacterial aerosols in a class II safety cabinet.

    PubMed Central

    Macher, J M; First, M W

    1984-01-01

    Biological safety cabinets are frequently relied upon to provide sterile work environments in which hazardous microorganisms can be safely handled. Verification of correct airstream velocities does not, by itself, ensure that adequate protection will be achieved under all users. Instead, the concentration of microorganisms in a cabinet operator's breathing zone must be measured during typical cabinet use conditions to determine whether the exposure is below acceptable limits. In this study, cabinet operator exposures were measured with a personal air sampler. Bacterial spores were released inside a cabinet as a uniform challenge aerosol, and the number of escaping spores was measured for several cabinet arrangements during a number of typical operations. The following were studied to determine their effects on aerosol containment: inflow air velocity, size of access opening, type of operator movements, location of operator's hands, and pace of activity. Other experiments examined differences in aerosol containment for eight typical microbiology operations when performed by six operators who covered a range of body heights and volumes. PMID:6437327

  4. Aerosol disturbances of the stratosphere over Tomsk according to data of lidar observations in volcanic activity period 2006-2011

    NASA Astrophysics Data System (ADS)

    Makeev, Andrey P.; Burlakov, Vladimir D.; Dolgii, Sergey I.; Nevzorov, Aleksey V.; Trifonov, Dimitar A.

    2012-11-01

    We summarize and analyze the lidar measurements (Tomsk: 56.5°N; 85.0°E) of the optical characteristics of the stratospheric aerosol layer (SAL) in the volcanic activity period 2006-2011. The background SAL state with minimal aerosol content, which was observed since 1997 under the conditions of long-term volcanically quiescent period, was interrupted in October 2006 by a series of explosive eruptions of volcanoes of the Pacific Ring of Fire: Rabaul (October 2006, New Guinea); Okmok and Kasatochi (July-August 2008, Aleutian Islands); Redoubt (March-April 2009, Alaska); Sarychev Peak (June 2009, Kuril Islands), and Grimsvötn (May 2011, Iceland). A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions.

  5. Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol.

    PubMed

    Yasmeen, Farhat; Szmigielski, Rafal; Vermeylen, Reinhilde; Gómez-González, Yadian; Surratt, Jason D; Chan, Arthur W H; Seinfeld, John H; Maenhaut, Willy; Claeys, Magda

    2011-04-01

    In this study, we present liquid chromatographic and mass spectral data for predominant terpenoic acids formed through oxidation of α-pinene, β-pinene, d-limonene, and Δ(3)-carene that occur in fine forest aerosol from K-puszta, Hungary, a rural site with coniferous vegetation. Characterization of these secondary organic aerosol tracers in fine ambient aerosol is important because it allows one to gain information on monoterpene precursors and source processes such as oxidation and aging processes. The mass spectral data were obtained using electrospray ionization in the negative ion mode, accurate mass measurements, and linear ion trap tandem mass spectrometric experiments. Emphasis is given to the mass spectrometric differentiation of isobaric terpenoic acids, such as, e.g. the molecular weight (MW) 186 terpenoic acids, cis-pinic, cis-caric, homoterpenylic, ketolimononic, and limonic acids. Other targeted isobaric terpenoic acids are the MW 184 terpenoic acids, cis-pinonic and cis-caronic acids, and the MW 204 tricarboxylic acids, 3-methyl-1,2,3-butanetricarboxylic and 3-carboxyheptanedioic acids. Fragmentation pathways are proposed to provide a rational explanation for the observed isomeric differences and/or to support the suggested tentative structures. For the completeness of the data set, data obtained for recently reported lactone-containing terpenoic acids (i.e. terpenylic and terebic acids), related or isobaric compounds (i.e. norpinic acid, diaterpenylic acid acetate, and unknown MW 188 compounds) are also included, the rationale being that other groups working on this topic could use this data compilation as a reference.

  6. Predicted modification of the O/C ratio of SOA due to cloud and aerosol processing

    NASA Astrophysics Data System (ADS)

    Carlton, A. G.; Ervens, B.

    2011-12-01

    The formation of secondary organic aerosol formation in cloud and aerosol water (aqSOA) has attracted great attention over the past years and many laboratory data are available to describe such processes in detail. While it has been recognized that aqSOA formation might significantly contribute to the total SOA budget in humid and cloudy regions, the modification of individual aerosol properties, such as oxygenation state (O/C ratio), size (distribution), and light-absorbing properties has not been explored by means of model studies. Precursors of aqSOA are more highly oxidized and water-soluble than those for traditional (gas)SOA and thus aqSOA products have also distinctly higher O/C ratio. Since aqSOA occurs in clouds and in aerosol water at elevated RH, aerosols modified by such processes exhibit a unique vertical profile as compared to gasSOA and add to the organic carbon budget aloft. In this process model study, we will show the extent to which the O/C ratio of aerosols is modified due to aqSOA formation in cloud and aerosol water. The O/C ratio can be considered as a proxy for other aerosol properties such as hygroscopicity (particle growth and CCN activity) and interactions with light (scattering/absorption) which affect the direct and indirect aerosol effects on radiation. Implications of aqSOA formation on these aerosol properties as a function of vertical profile will be discussed.

  7. Nonpolar organic compounds in fine particles: quantification by thermal desorption-GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong.

    PubMed

    Yu, Jian Zhen; Huang, X H Hilda; Ho, Steven S H; Bian, Qijing

    2011-12-01

    Nonpolar organic compounds (NPOCs) in ambient particulate matter (PM) commonly include n-alkanes, branched alkanes, hopanes and steranes, and polycyclic aromatic hydrocarbons (PAHs). The recent development of thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) has greatly reduced time and labor in their quantification by eliminating the laborious solvent extraction and sample concentration steps in the traditional approach that relies on solvent extraction. The simplicity of the TD-GCMS methods has afforded us concentration data of NPOCs in more than 90 aerosol samples in two aerosol field studies and 20 vehicular emissions-dominated source samples in Hong Kong over the past few years. In this work, we examine the interspecies relationships between select NPOCs and their concentration ratios to elemental carbon (EC) among the ambient samples and among the source samples. Our analysis indicates that hopanes were mainly from vehicular emissions and they were significantly oxidized in ambient PM. The hopane/EC ratio in ambient samples was on average less than half of the ratio in vehicular emissions-dominated source samples. This highlights the necessity in considering oxidation loss in applying organic tracer data in source apportionment studies. Select PAH/EC ratio-ratio plots reveal that PAHs had diverse sources and vehicular emissions were unlikely a dominant source for PAHs in Hong Kong. Biomass burning and other regional sources likely dominated ambient PAHs in Hong Kong. PMID:21983947

  8. Biological activity of oxidized and reduced iodinated bombesins

    SciTech Connect

    Vigna, S.R.; Giraud, A.S.; Reeve, J.R. Jr.; Walsh, J.H.

    1988-07-01

    A method is reported for preparing oxidized and reduced iodinated Tyr4-bombesin. Iodogen was used to iodinate Tyr4-bombesin and the reaction products were separated by reverse-phase HPLC. The peak of oxidized label was then reduced by incubation with 725 mM dithiothreitol at 80 degrees C (pH 8.0) for one hour and the reaction products separated by HPLC as before. The reduced but not oxidized peaks of /sup 125/I-Tyr4-bombesin stimulated amylase release from rat pancreatic acini in vitro. We conclude that oxidation of bombesin producing C-terminal methionine sulfoxide destroys the biological activity of the peptide and that this form of oxidation can be reversed.

  9. Lignite slime as activator in production of oxidized asphalts

    SciTech Connect

    Gureev, A.A.; Gorlov, E.G.; Leont'eva, O.B.; Zotova, O.V.

    1988-03-01

    The possibility of activation of the oxidation of straight-run resids to asphalts by the addition of lignite slimes obtained in the liquefaction of coals of the Kansk-Achinsk basin was studied on the basis of a hypothesis formulated with due regard for the principles of physicochemical mechanics of petroleum disperse systems. A reduction of the air bubble size in the oxidizing vessel should lead to an increase in the total surface of oxidation and hence to a shortening of the time required for oxidation of the feed. A straight-run vacuum resid from mixed West Siberian and Ukhta crudes was used. The resid was oxidized with and without the addition of slime.

  10. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments

    NASA Astrophysics Data System (ADS)

    Carrico, Christian M.; Petters, Markus D.; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Engling, Guenter; Malm, William C.

    2008-04-01

    In this laboratory closure study, we compare sub- and supersaturated water uptake properties for aerosol particles possessing a range of hygroscopicity. Measurements for water sub-saturated conditions used a hygroscopic tandem differential mobility analyzer (HTDMA). Simultaneously, measurements of particle critical supersaturation were conducted on the same sample stream with a continuous flow cloud condensation nuclei (CCN) counter. For these experiments, we used filter-collected samples of biomass smoke generated in the combustion of two common wildland fire fuels, western sagebrush and Alaskan duff core. Extractions of separate sections of the filter were performed using two solvents, ultrapure water and methanol. The extracts were subsequently atomized, producing aerosols having a range of hygroscopic responses. HTDMA and CCN measurements were fit to a single-parameter model of water uptake, in which the fit parameter is denoted κ, the hygroscopicity parameter. Here, for the four extracts we observed mean values of the hygroscopicity parameter of 0.06 < κ < 0.30, similar to the range found previously for numerous pure organic compounds. Particles generated from the aqueous extracts of the filters had consistently larger κ than methanol extracts, while western sagebrush extract aerosols κ exceeded those from Alaskan duff core. HTDMA- and CCN-derived values of κ for each experiment agreed within approximately 20%. Applicability of the κ-parameterization to other multicomponent aerosols relevant to the atmosphere remains to be tested.

  11. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  12. What's Up in the Atmosphere? Exploring How Aerosols Impact Sky Color Through Hands-on Activities with Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Damadeo, K.; Taylor, J.

    2015-12-01

    What color is the sky today? The GLOBE Kids - Anita, Simon, and Dennis want to know why the sky isn't always the same shade of blue and sometimes isn't even blue. Through the new Elementary GLOBE Aerosols Storybook and Learning Activities, the GLOBE Kids learn that there's a lot more than air in the atmosphere, which can affect the colors we see in the sky. There are four hands-on activities in this unit: 1) Sky Observers - Students make observations of the sky, record their findings and share their observation reports with their peers. The activity promotes active observation and recording skills to help students observe sky color, and recognize that sky color changes; 2) Why (Not) So Blue? - Students make predictions about how drops of milk will affect color and visibility in cups of water representing the atmosphere to help them understand that aerosols in the atmosphere have an effect on sky conditions, including sky color and visibility. The activity also introduces the classification categories for daytime sky color and visibility; 3) See the Light - Students use prisms and glue sticks to explore the properties of light. The activity demonstrates that white light is made up of seven colors that represent different wavelengths, and illustrates why the sky is blue during the day and red at sunset; 4) Up in the Air - Students work in groups to make an aerosol sampler, a simple adhesive tool that allows students to collect data and estimate the extent of aerosols present at their school, understanding that, in fact, there are particles in the air we breathe. NGSS Alignment includes: Disciplinary Core Ideas- ESS2.D: Weather and Climate, ESS3.C: Human Impacts on Earth Systems, PS4.B: Electromagnetic Radiation, ESS3.A: Natural Resources; Science and Engineering Practices- Asking Questions and Defining Problems, Planning and Carrying Out an Investigation, Analyzing and Interpreting Data, Engaging in Argument from Evidence, Obtaining, Evaluating, and Communicating

  13. Paraoxonase Activity and Oxidative Status in Patients with Tinnitus

    PubMed Central

    Akyüz, Servet; Somuk, Battal Tahsin; Soyalic, Harun; Yılmaz, Beyhan; Taskin, Abdullah; Bilinc, Hasan; Aksoy, Nurten

    2016-01-01

    Background and Objectives The aim of this study was to investigate serum paraoxanase-1 (PON) activity, total oxidant status (TOS), total antioxidant status (TAS), and the oxidative stress index (OSI) in tinnitus; and to compare the results with data from healthy subjects. Subjects and Methods A total of 114 subjects-54 patients with tinnitus and 60 healthy controls were enrolled in this study. Serum PON activity, TOS, TAS, and OSI levels were measured. Results In the tinnitus group, TAS, and PON were significantly lower than in the control group (p<0.001). However, the TOS, and OSI levels were significantly higher in the tinnitus group than in the control group (p<0.001). Conclusions According to the data obtained from the present study, patients with tinnitus were exposed to potent oxidative stress. Oxidative stress may be the key contributing factor to the pathogenesis of tinnitus. PMID:27144229

  14. Gold-catalyzed oxidative cycloadditions to activate a quinoline framework.

    PubMed

    Huple, Deepak B; Ghorpade, Satish; Liu, Rai-Shung

    2013-09-23

    Going for gold! Gold-catalyzed reactions of 3,5- and 3,6-dienynes with 8-alkylquinoline oxides results in an oxidative cycloaddition with high stereospecificity (see scheme; EWG = electron-withdrawing group); this process involves a catalytic activation of a quinoline framework. The reaction mechanism involves the intermediacy of α-carbonyl pyridinium ylides (I) in a concerted [3+2]-cycloaddition with a tethered alkene.

  15. Particulate Matter Oxidative Potential from Waste Transfer Station Activity

    PubMed Central

    Godri, Krystal J.; Duggan, Sean T.; Fuller, Gary W.; Baker, Tim; Green, David; Kelly, Frank J.; Mudway, Ian S.

    2010-01-01

    Background Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste. Objective Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential. Methods PM with a diameter < 10 μm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential. Results Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday–Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content. Conclusions PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community. PMID:20368130

  16. Epoxide as a Precursor to Secondary Organic Aerosol Formation from Isoprene Photooxidation in the Presence of Nitrogen Oxides

    EPA Science Inventory

    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear...

  17. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  18. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-12-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7 × 10-7cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation chambers and in the open atmosphere.

  19. Glass shards, pumice fragments and volcanic aerosol particles - diagenesis a recorder of volcanic activity?

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.

    2003-04-01

    Detailed SEM/EDS studies of Triassic (Southern Alps, A, I, Sl) and Miocene (Mixteca Alta, Mexico) tuffs revealed that volcanic glass shards can be replaced by zeolites (analcite), chlorites and smectites preserving the shape of primary shards (1). The Triassic pyroclastic deposits have been incorporated in the pre-Alpine burial diagenesis, the Miocene pyroclastic deposits are bentonites. The volcanologist is impressed by the circumstances that million years old pyroclast relict textures can be sized. Shape parameters obtained by image analysis can be compared with much younger pyroclastic deposits (2). Both deposits have not been effected by shearing. The alteration of pumice fragments of Triassic age is not a simple replacement process. Intergrowth of different illites and chlorites and probably vesicle filling by SiO2 and subsequent overgrowth make a reconstruction sometimes difficult. These processes are accompanied by the formation of REE-, Y- and Zr-bearing minerals as well as with the alteration of zircons. Studies of recently erupted ash from Popocatepetl volcano reveal the presence of a variety of µm-sized contact-metamorphosed clasts being a part of the volcanic ash (3). Such clasts should be present in many older pyroclastic deposits, especially where volcanoes had been situated on massive sedimentary units providing contact metamorphism in the realm of a magma chamber or during magma ascent. Volcanic aerosol particles collected in 1997 from the passively degassing plume of Popocatepetl volcano revealed in FESEM/EDS analysis (H. Schroettner and P. Poelt) a wide spectrum of fluffy, spherical and coagulated spherical particles (µm-sized). Under pre-vacuum conditions they remained stable for ca. 3 years (3). In nature the fate of these particles in the atmosphere is unknown. Are there relicts in marine, lacustrine sediments and ice cores, which could be used as proxies of volcanic activity? (1) Obenholzner &Heiken,1999. Ann.Naturhist.Mus.Wien, 100 A, 13

  20. Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress.

    PubMed

    Koliwad, S K; Elliott, S J; Kunze, D L

    1996-08-15

    1. The oxidant, tert-butylhydroperoxide (tBuOOH) depolarizes calf pulmonary artery endothelial cells by activating a non-selective cation channel. To identify the molecular mediator of channel activation during oxidant stress, the patch-clamp technique was used to compare tBuOOH-induced changes in membrane potential and channel activity with those induced by oxidized glutathione (GSSG), a cytosolic product of oxidant metabolism. 2. When recording pipettes contained GSSG (2 mM), whole-cell zero-current potential measured immediately following pipette break-in was not different from control values (-57 mV). However, within 20 min of break-in, zero-current potential was depolarized to -7 mV. The time course of depolarization was dependent on the concentration of GSSG and was accelerated by inhibition of GSSG metabolism. 3. In excised membrane patches, channels were activated by internal GSSG, but not by internal tBuOOH, reduced glutathione (GSH), or external GSSG. Channels were equal in size (28 pS) and in ionic selectivity to those activated by incubation of intact cells with tBuOOH. As little as 20 microM GSSG was sufficient to maximally activate channels. However, the time course of channel activation was concentration dependent between 20 microM and 2 mM GSSG. 4. Channel activation by GSSG was reversed by GSH and by increasing the [GSH]:[GSSG] ratio. Likewise, channel activation by pre-incubation of intact cells with tBuOOH was reversed by GSH applied after patch excision. 5. These results strongly suggest that GSSG is an endogenous intracellular mediator of channel activation and depolarization during oxidant stress. PMID:8866350

  1. Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3.

    PubMed

    Knopf, Daniel A; Forrester, Seanna M; Slade, Jonathan H

    2011-12-21

    The reactive uptake coefficients (γ) of O(3), NO(2), N(2)O(5), and NO(3) by levoglucosan, abietic acid, nitroguaiacol, and an atmospherically relevant mixture of those species serving as surrogates for biomass burning aerosol have been determined employing a chemical ionization mass spectrometer coupled to a rotating-wall flow-tube reactor. γ of O(3), NO(2), N(2)O(5), and NO(3) in the presence of O(2) are in the range of 1-8 × 10(-5), <10(-6)-5 × 10(-5), 4-6 × 10(-5), and 1-26 × 10(-3), respectively, for the investigated organic substrates. Within experimental uncertainties the uptake of NO(3) was not sensitive to the presence of water vapour ( <0.5% relative humidity). [corrected]. NO(3) uptake experiments involving substrates of levoglucosan, abietic acid, and the mixture exhibit an initial strong uptake of NO(3) followed by NO(3) gas-phase recovery as a function of NO(3) exposure. In contrast, the uptake of NO(3) by nitroguaiacol continuously proceeds at the same efficiency for investigated NO(3) exposures. The derived oxidative power, i.e. the product of γ and atmospheric oxidant concentration, for applied oxidants is similar or significantly larger in magnitude than for OH, emphasizing the potential importance of these oxidants for particle oxidation. Estimated atmospheric lifetimes for the topmost organic layer with respect to O(3), NO(2), N(2)O(5), and NO(3) oxidation for typical polluted conditions range between 1-112 min, indicating the potential for significant chemical transformation during atmospheric transport. The contact angles determined prior to, and after heterogeneous oxidation by NO(3), representative of 50 ppt for 1 day, do not decrease and thus do not indicate a significant increase in hygroscopicity with potential impacts on water uptake and cloud formation processes.

  2. Thermodynamics of water condensation on a primary marine aerosol coated by surfactant organic molecules.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2014-10-23

    A large subset of primary marine aerosols can be initially (immediately upon formation) treated using an "inverted micelle" model. We study the thermodynamics of heterogeneous water condensation on such a marine aerosol. Its hydrophobic organic coating can be processed by chemical reactions with atmospheric species; this enables the marine aerosol to serve as a nucleating center for water condensation. The most probable pathway of such "aging" involves atmospheric hydroxyl radicals that abstract hydrogen atoms from organic molecules coating the aerosol (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on a marine aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous droplets on marine aerosols is most likely to occur via Köhler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for the Köhler activation of such aerosols. Numerical results also corroborate previous suggestions that one can omit some chemical species of aerosols (and other details of their chemical composition) in investigating aerosol effects on climate.

  3. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM2.5

    NASA Astrophysics Data System (ADS)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-12-01

    examined. The contribution of SOA products from 13BD oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several locations around the United States. In addition to the occurrence of several organic compounds in field and laboratory samples, glyceric acid, d-threitol, erythritol, erythrose, and threonic acid were found to originate only from the oxidation of 13BD based on our previous experiments involving chamber oxidation of a series of hydrocarbons. Initial attempts have been made to quantify the concentrations of these compounds. The average concentrations of these compounds in ambient PM2.5 samples from the California Research at the Nexus of Air Quality and Climate Change (CalNex) study ranged from 0 to approximately 14.1 ng m-3. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from 13BD oxidation could contribute to the ambient aerosol mainly in areas with high 13BD emission rates.

  4. Measurements of physical and chemical properties of urban aerosols and their CCN activities in Seoul during the KORUS-AQ pre-campaign

    NASA Astrophysics Data System (ADS)

    Kim, N.; Yum, S. S.; Park, M.; Shin, H. J.; Bae, G. N.; Kwak, K. H.; Park, J. S.; Park, S. M.; Ahn, J.

    2015-12-01

    Interest in cloud condensation nuclei (CCN) has been increasing for the last few decades due to their first order effects on radiative and microphysical properties of clouds. Particularly, scientific understanding of CCN from anthropogenic sources becomes important because it is now considered that large uncertainties in climate change predictions stem from insufficient understanding of CCN. CCN activity is influenced by size and chemical component of aerosols. The KORUS-AQ campaign, jointly organized by National Institute of Environmental Research (NIER) of Korea and National Aeronautics and Space Administration (NASA) aims at understanding various aspects of air quality problem in Korea and will be held in spring, 2016. In preparation for this campaign, pre-campaign was held during May 18-June 13, 2015, in Seoul where numerous local anthropogenic sources exist and influence of Chinese continental outflow directly affects. Here we present some of the important results from the pre-campaign. Chemical properties of aerosols were measured with AMS. Aerosol and CCN number concentrations, aerosol size distribution and aerosol hygroscopic growth factor were measured by CPC, CCN counter, SMPS and H-TDMA, respectively. Average diurnal variation of aerosol number concentration showed three dominant peaks at around 0600_UTC and morning and evening rush hours. Each peak seemed to have different characteristics and therefore detailed analyses of physical and chemical properties of aerosols during the peaks as well as during some special events will be made. The hygroscopicity parameter, kappa, will be estimated by examining CCN activity, H-TDMA measured hygroscopic growth factor and mixing rule of aerosol chemical components, and the result will be compared as well.

  5. Measurements of BC-Containing Aerosol and Ice Nucleation Active Residuals in Colorado.

    NASA Astrophysics Data System (ADS)

    Katich, J. M.

    2015-12-01

    A recent ice nucleation (IN) chamber inter-comparison study (FIN-3) provided an opportunity to deploy two single particle soot photometers (SP2s) to the Stormpeak Laboratory in the mountains of Colorado in September of 2015. Aerosol was sampled from ambient air, as well as from behind both a coarse-mode aerosol concentrator and an ice nucleation chamber providing ice residuals. The SP2s characterized the size and mixing state of refractory black carbon-containing particles. Initial analyses of laboratory and ambient data collected over 3 weeks will be presented, with an emphasis on both coarse mode BC observations and BC contributions to ice residuals. The results will help constrain the role of BC from local and regional sources on heterogeneous ice nucleation.

  6. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. PMID:27450342

  7. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability.

  8. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer

    NASA Astrophysics Data System (ADS)

    Leck, C.; Svensson, E.

    2015-03-01

    Concentrations of cloud condensation nuclei (CCN) were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87° N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season, median daily CCN concentrations at 0.2% water vapour supersaturation (SS) were typically in the range of 15 to 30 cm-3, but concentrations varied by 2 to 3 orders of magnitude over the expedition and were occasionally below 1 cm-3. The CCN concentrations were highest near the ice edge and fell by a factor of 3 in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again, indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. We inferred the properties of the unexplained non-water soluble aerosol fraction that was necessary for reproducing the observed concentrations of CCN. This was made possible by assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol size ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues that the behaviour of the high Arctic aerosol in CCN-counters operating at water vapour SSs > 0.4% (high relative humidities) may not

  9. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  10. MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Ghedini, C.; Peeters, S.; Rottiers, A.; Traversi, R.; Udisti, R.; Chiari, M.; Jalba, A.; Despiau, S.; Dayan, U.; Temara, A.

    2011-12-01

    Methylene Blue Active Substances (MBAS) and Linear Alkylbenzene Sulphonates (LAS) concentrations, together with organic carbon and ions were measured in atmospheric coastal aerosols in the NW Mediterranean Basin. Previous studies have suggested that the presence of surfactants in coastal aerosols may result in vegetation damage without specifically detecting or quantifying these surfactants. Coastal aerosols were collected at a remote site (Porquerolles Island-Var, France) and at a more anthropised site (San Rossore National Park-Tuscany, Italy). The chemical data were interpreted according to a comprehensive local meteorological analysis aiming to decipher the airborne source and transport processes of these classes of compounds. The LAS concentration (anthropogenic surfactants) was measured in the samples using LC-MS/MS, a specific analytical method. The values were compared with the MBAS concentration, determined by a non-specific analytical method. At Porquerolles, the MBAS concentration (103 ± 93 ng m -3) in the summer samples was significantly higher than in the winter samples. In contrast, LAS concentrations were rarely greater than in the blank filters. At San Rossore, the mean annual MBAS concentration (887 ± 473 ng m -3 in PM10) contributed about 10% to the total atmospheric particulate organic matter. LAS mean concentration in these same aerosol samples was 11.5 ± 10.5 ng m -3. A similar MBAS (529 ± 454 ng m -3) - LAS (7.1 ± 4.1 ng m -3 LAS) ratio of ˜75 was measured in the fine (PM2.5) aerosol fraction. No linear correlation was found between MBAS and LAS concentrations. At San Rossore site the variation of LAS concentrations was studied on a daily basis over a year. The LAS concentrations in the coarse fraction (PM10-2.5) were higher during strong sea storm conditions, characterized by strong air flow coming from the sea sector. These events, occurring with more intensity in winter, promoted the formation of primary marine aerosols containing LAS

  11. Aerosol Activity and Hygroscopicity Combined with Lidar Data in the Urban Atmosphere of Athens, Greece in the Frame of the HYGRA_CD Campaign

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Papayannis, Alexandros; Vratolis, Stergios; Argyrouli, Athina; Mihalopoulos, Nikolaos; Tsagkaraki, Maria; Nenes, Athanasios; Eleftheriadis, Konstantinos

    2016-06-01

    Measurements of cloud condensation nuclei (CCN) concentrations between 0.2-1.0% supersaturation and aerosol size distribution were performed at an urban background site of Athens during HygrA-CD. The site is affected by local and long-range transported emissions as portrayed by the external mixing of the particles, as the larger ones appear to be more hygroscopic and more CCN-active than smaller ones. Activation fractions at all supersaturations exhibit a diurnal variability with minimum values around noon, which are considerably lower than unity. This reinforces the conclusion that the aerosol is mostly externally mixed between "fresher", less hygroscopic components with more aged, CCN active constituents.

  12. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    PubMed Central

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-01-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm−2 under near neutral conditions. PMID:25998696

  13. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-09-01

    Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10-6 - ~ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M), the major oxidation products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium) could enhance yields.

  14. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  15. Persulfate activation during exertion of total oxidant demand.

    PubMed

    Teel, Amy L; Elloy, Farah C; Watts, Richard J

    2016-09-01

    Total oxidant demand (TOD) is a parameter that is often measured during in situ chemical oxidation (ISCO) treatability studies. The importance of TOD is based on the concept that the oxidant demand created by soil organic matter and other reduced species must be overcome before contaminant oxidation can proceed. TOD testing was originally designed for permanganate ISCO, but has also recently been applied to activated persulfate ISCO. Recent studies have documented that phenoxides activate persulfate; because soil organic matter is rich in phenolic moieties, it may activate persulfate rather than simply exerting TOD. Therefore, the generation of reactive oxygen species was investigated in three soil horizons of varied soil organic carbon content over 5-day TOD testing. Hydroxyl radical may have been generated during TOD exertion, but was likely scavenged by soil organic matter. A high flux of reductants + nucleophiles (e.g. alkyl radicals + superoxide) was generated as TOD was exerted, resulting in the rapid destruction of the probe compound hexachloroethane and the common groundwater contaminant trichloroethylene (TCE). The results of this research document that, unlike permanganate TOD, contaminant destruction does occur as TOD is exerted in persulfate ISCO systems and is promoted by the activation of persulfate by soil organic matter. Future treatability studies for persulfate ISCO should consider contaminant destruction as TOD is exerted, and the potential for persulfate activation by soil organic matter. PMID:27269993

  16. Complex vertical layering and mixing of aerosols over the eastern Mediterranean: active and passive remote sensing at the Cyprus University of Technology

    NASA Astrophysics Data System (ADS)

    Mamouri, R.-E.; Nisantzi, A.; Hadjimitsis, D. G.; Ansmann, A.; Schwarz, A.; Basart, S.; Baldasano, J. M.

    2013-08-01

    Aerosols can have a complicated influence on climate conditions, directly as well as indirectly via cloud formation. The southeastern Mediterranean region can be characterized as a cross road of aerosols originating from European, Asian and African continents. Complex vertical aerosol distributions are frequently detected over Cyprus by means of active remote sensing. Observations of such complex aerosol layering and comparison of the measurements with aerosol products of regional and global atmospheric transport models are required to improve our understanding of life cycles of aerosol mixtures and their impact on climate as well as on satellite remote sensing products. In this study, a case of an intense desert dust outbreak from Syria and Saudi Arabia towards the eastern Mediterranean in September 2011 is presented. The observations used in this study were performed with a 532-nm polarization Lidar and a sun/sky AERONET photometer operated at 8 channels from 340 to 1640 nm wavelength. Both instruments belong to remote sensing station of the Cyprus Technical University at Limassol, Cyprus (34°N, 33°E). The lofted dust plume was doped with air masses that crossed sources of biomass burning smoke and anthropogenic pollution. In addition, the shallow marine boundary layer over the Mediterranean Sea and over Limassol became mixed with the anthropogenic haze by sea breeze circulations. The case study demonstrates the potential of combined lidar/photometer observations to deliver detailed vertically resolved information of the aerosol characteristics in terms of particle optical and microphysical properties, separately for the spherical particle fraction as well as for the non-spherical aerosol mode.

  17. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; Hoppe, P.; Foley, S.; Borrmann, S.

    2012-05-01

    The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g). However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate - which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g) → multiple steps → SOOCl2-. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32- by O3 (αseasalt = 1.0124±0.0017 at 19 °C). Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV) oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways - oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2) - which favour the heavy isotope, and the alkalinity non

  18. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.; Worsnop, D. R.; Wilson, K. R.

    2009-02-01

    The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules·cm-3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle phase organic matter in the troposphere.

  19. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.; Worsnop, D. R.; Wilson, K. R.

    2009-05-01

    The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules cm-3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle-phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle-phase organic matter in the troposphere.

  20. Hysteresis in the Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.

    2011-01-01

    Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.

  1. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  2. Photochemistry of Model Organic Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Mang, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Nizkorodov, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Up to 90 percent of urban aerosol particles have been shown to contain organic molecules. Reactions of these particles with atmospheric oxidants and/or sunlight result in large changes in their composition, toxicity, and ability to act as cloud condensation nuclei. For this reason, chemistry of model organic aerosol particles initiated by oxidation and direct photolysis is of great interest to atmospheric, climate, and health scientists. Most studies in this area have focused on identifying the products of oxidation of the organic aerosols, while the products of direct photolysis of the resulting molecules remaining in the aerosol particle have been left mostly unexplored. We have explored direct photolytic processes occurring in selected organic aerosol systems using infrared cavity ringdown spectroscopy to identify small gas phase products of photolysis, and mass-spectrometric and photometric techniques to study the condensed phase products. The first model system was secondary organic aerosol formed from the oxidation of several monoterpenes by ozone in the presence and absence of NOx, under different humidities. The second system modeled after oxidatively aged primary organic aerosol particles was a thin film of either alkanes or saturated fatty acids oxidized in several different ways, with the oxidation initiated by ozone, chlorine atom, or OH. In every case, the general conclusion was that the photochemical processing of model organic aerosols is significant. Such direct photolysis processes are believed to age organic aerosol particles on time scales that are short compared to the particles' atmospheric lifetimes.

  3. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  4. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  5. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  6. Nitric oxide mediates caerulein-induced suppression of locomotor activity.

    PubMed

    Volke, V; Soosaar, A; Kõks, S; Bourin, M; Männistö, P T; Vasar, E

    1996-08-01

    Caerulein, a non-selective agonist of cholecystokinin (CCK) receptors, is shown to suppress locomotor activity in rodents via stimulation of CCK(A) receptors. In the present study we examined the possible involvement of nitric oxide (NO) in caerulein-induced hypolocomotion in rats. Caerulein (10 microg/kg) markedly decreased the horizontal and vertical components of locomotor activity in rats measured in dark motility boxes. Pretreatment with a nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), at 5 mg/kg i.p., abolished the inhibiting action of caerulein on the horizontal activity, but did not affect the reduced frequency of rearing. The other doses of L-NAME (1, 10 and 20 mg/kg) were ineffective against caerulein. As L-NAME at this dose range does not stimulate locomotor activity, it is likely that NO is involved in the motor suppressant effect of systemically administered caerulein.

  7. Theoretical model on the formation possibility of secondary organic aerosol from radOH initialed oxidation reaction of styrene in the presence of O2/NO

    NASA Astrophysics Data System (ADS)

    Wang, Honghong; Ji, Yuemeng; Gao, Yanpeng; Li, Guiying; An, Taicheng

    2015-01-01

    Understanding radOH oxidation reaction is vital in understanding atmospheric pollution dynamics, and developing possible strategies for countering pollutant problems. This study used a theory-based approach to model the formation mechanisms of secondary organic aerosol (SOA) from styrene-radOH oxidation reactions in the presence of O2/NO. As a comparative measure, the mechanisms in the absence of NO (representing a pollution-free environment) were also investigated. The results showed that styrene can be initially attacked by radOH in two ways: OH-addition and H-abstraction. The OH-aliphatic-addition pathway occurs easily; the H-abstraction pathway may be ignored given atmospheric conditions. It was found that IMaddβ (C6H5CHCH2OH) was the main intermediate, and could be transformed to a peroxyl radical in the presence of O2. In the NO-free atmosphere, the peroxyl radical was decomposed to recycling-radOH and aldehydes. In the NO-polluted atmosphere, it could be degraded to organic nitrate (RO-NO2) which plays an important role in the production of SOA. Besides, the percent of organic nitrate in the particulate phase was calculated within the range of 2.4%-6.3% in Guangzhou city, and organic nitrates may constitute an important fraction of the total organic aerosol. The kinetic data calculated using canonical variational transition state theory with the small-curvature tunneling correction showed that, in the NO-polluted/unpolluted atmospheres, the styrene-radOH oxidation reaction easily occurred across an altitude range of 0-12 km. Especially, peroxyl radical lifetime was 10-3 s in the high NO-polluted atmosphere, indicating that the styrene-radOH oxidation reaction could significantly contribute to SOA formation in the NO-polluted atmosphere. The current results informed possible approaches for forming SOA from volatile organic compound (VOC) oxidation reactions, and could help evaluate regional air quality, especially in high NO-polluted atmospheres.

  8. Hygroscopicity of Amine Secondary Aerosol - Mixtures of Organic and Inorganic Components

    NASA Astrophysics Data System (ADS)

    Tang, X.; Cocker, D. R.; Purvis-Roberts, K.; Asa-Awuku, A. A.

    2012-12-01

    Aliphatic amines are emitted from both biogenic and anthropogenic sources and contribute to the formation of secondary aerosol in reactions with atmospheric radicals. However, the cloud condensation nuclei (CCN) ability of amine aerosol has not been explored yet. Here, we study the hygroscopicity of aerosol formed from three aliphatic amines (trimethylamine, diethylamine and butylamine) in the UCR environmental chamber. Amines can react with NO3, a dominant night time oxidant in acid-base and/or oxidation reactions. The mass fraction of organic and inorganic components of formed aerosol was measured by Particle-into-Liquid Sampler coupled to dual ion chromatographs (PILS-ICs) and Scanning Mobility Particle Sizer (SMPS). CCN counter was used to measure the water-uptake ability of these particles. Significantly high hygroscopicity (κ>0.3) was observed for aerosols formed from diethylamine and butylamine with NO3 radicals, which comprised >40% inorganic salt. Compared with amines oxidized by hydroxyl radicals, the presence of aminium salts formed in acid-base reactions greatly improved CCN activity of NO3-initiated aerosol. The effect of water vapor on the formation of aminium salts and aerosol hygroscopicity was also studied. Our results will significantly impact the estimation and role of amines in atmospheric chemistry and global climate models.

  9. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition.

    PubMed

    Ponja, Sapna D; Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan P; Carmalt, Claire J

    2015-12-30

    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system. PMID:26632854

  10. Wet oxidative regeneration of activated carbon loaded with reactive dye.

    PubMed

    Shende, R V; Mahajani, V V

    2002-01-01

    Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution.

  11. Wet oxidative regeneration of activated carbon loaded with reactive dye.

    PubMed

    Shende, R V; Mahajani, V V

    2002-01-01

    Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution. PMID:11942707

  12. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implication for PM2.5

    NASA Astrophysics Data System (ADS)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-06-01

    -phase photooxidation products have also been examined. The contribution of SOA products from 13BD oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several locations around the United States. In addition to the occurrence of several organic compounds in field and laboratory samples, glyceric acid, d-threitol, erythritol, erythrose, and threonic acid were found to originate only from the oxidation of 13BD based on our previous experiments involving chamber oxidation of a series of hydrocarbons. Initial attempts have been made to quantify the concentrations of these compounds. The average concentrations of these compounds in ambient PM2.5 samples from the California Research at the Nexus of Air Quality and Climate Change (CalNex) study ranged from 0 to approximately 14.1 ng m-3. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from 13BD oxidation could contribute to the ambient aerosol mainly in areas with high 13BD emission rates.

  13. Aerosol-Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for High-Rate Electrochemical Energy Storage.

    PubMed

    Jia, Xilai; Zhu, Xiao; Cheng, Yanhua; Chen, Zheng; Ning, Guoqing; Lu, Yunfeng; Wei, Fei

    2015-07-01

    Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as-synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li(+) intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low-dimensional building blocks for many important applications.

  14. Processes influencing secondary aerosol formation in the San Joaquin Valley during winter

    SciTech Connect

    Frederick W. Lurmann; Steven G. Brown; Michael C. McCarthy; Paul T. Roberts

    2006-12-15

    Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California ({le} 188 {mu}g/m{sup 3} 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filte