Science.gov

Sample records for aerosol particle properties

  1. The influence of meteoric smoke particles on stratospheric aerosol properties

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Brooke, James; Dhomse, Sandip; Plane, John; Feng, Wuhu; Neely, Ryan; Bardeen, Chuck; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin; Abraham, Luke

    2016-04-01

    The ablation of metors in the thermosphere and mesosphere introduces a signficant source of particulate matter into the polar upper stratosphere. These meteoric smoke particles (MSP) initially form at nanometre sizes but in the stratosphere have grown to larger sizes (tens of nanometres) following coagulation. The presence of these smoke particles may represent a significant mechanism for the nucleation of polar stratospheric clouds and are also known to influence the properties of the stratospheric aerosol or Junge layer. In this presentation we present findings from experiments to investigate the influence of the MSP on the Junge layer, carried out with the UM-UKCA composition-climate model. The UM-UKCA model is a high-top (up to 80km) version of the general circulation model with well-resolved stratospheric dynamics, includes the aerosol microphysics module GLOMAP and has interactive sulphur chemistry suitable for the stratosphere and troposphere (Dhomse et al., 2014). We have recently added to UM-UKCA a source of meteoric smoke particles, based on prescribing the variation of the smoke particles from previous simulations with the Whole Atmosphere Community Climate Model (WACCM). In UM-UKCA, the MSP particles are transported within the GLOMAP aerosol framework, alongside interactive stratospheric sulphuric acid aerosol. For the experiments presented here, we have activated the interaction between the MSP and the stratospheric sulphuric acid aerosol. The MSP provide an important sink term for the gas phase sulphuric acid simulated in the model, with subsequent effects on the formation, growth and temporal evolution of stratospheric sulphuric acid aerosol particles. By comparing simulations with and without the MSP-sulphur interactions we quantify the influence of the meteoric smoke on the properties of volcanically-quiescent Junge layer. We also investigate the extent to which the MSP may modulate the effects from SO2 injected into the stratosphere from volcanic

  2. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  3. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  4. Aerosol particle properties in a South American megacity

    NASA Astrophysics Data System (ADS)

    Ulke, Ana; Torres-Brizuela, Marcela; Raga, Graciela; Baumgardner, Darrel; Cancelada, Marcela

    2015-04-01

    The subtropical city of Buenos Aires is located on the western shore of Río de la Plata, on the southeastern coast of Argentina. It is the second largest metropolitan area in South America, with a population density of around 14 thousand people per km2. When all 24 counties of the Great Buenos Aires Metropolitan Area are included it is the third-largest conurbation in Latin America, with a population of around fifteen million inhabitants. The generalized worldwide trend to concentrate human activities in urban regions that continue to expand in area, threatens the local and regional environment. Air pollution in the Buenos Aires airshed is due to local sources (mainly the mobile sources, followed by the electric power plants and some industries) and to distant sources (like biomass burning, dust, marine aerosols and occasionally volcanic ash) whose products arrive in the city area due to the regional transport patterns. Previous research suggests that ambient aerosol particle concentrations should be considered an air quality problem. A field campaign was conducted in Buenos Aires in 2011 in order to characterize some aerosol particles properties measured for the first time in the city. Measurements began in mid- April and continued until December. The field observations were done in a collaborative effort between the Universities of Mexico (UNAM) and Buenos Aires (UBA). A suite of instruments was installed on the roof of an UBA laboratory and classroom buildings (34.54° S, 58.44° W) at an altitude of approximately 30 m above sea level. The measurements included the number concentration of condensation nuclei (CN) larger than approximately 50 nm, the mass concentration of particle-bound polycyclic aromatic hydrocarbons (PPAH), the scattering (Bscat) and absorption (Babs) coefficients at 550 nm and the vertical profiles of backscattered light from aerosols at a wavelength of 910 nm using a ceilometer. In addition, a weather station recorded the meteorological

  5. Atmospheric Condensational Properties of Ultrafine Chain and Fractal Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Marlow, William H.

    1997-01-01

    The purpose for the research sponsored by this grant was to lay the foundations for qualitative understanding and quantitative description of the equilibrium vapor pressure of water vapor over the irregularly shaped, carbonaceous particles that are present in the atmosphere. This work apparently was the first systematic treatment of the subject. Research was conducted in two complementary components: 1. Calculations were performed of the equilibrium vapor pressure of water over particles comprised of aggregates of spheres in the 50-200 nm radius range. The purposes of this work were two-fold. First, since no systematic treatment of this subject had previously been conducted, its availability would be directly useful for quantitative treatment for a limited range of atmospheric aerosols. Second, it would provide qualitative indications of the effects of highly irregular particle shape on equilibrium vapor pressure of aggregates comprised of smaller spheres.

  6. Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    Fatty acid salts and "humic" materials, found in abundance in atmospheric particles, are both anionic surfactants. Such materials are known to form organic aggregates or colloids in solution at very low aqueous concentrations. In a marine aerosol, micelle aggregates can form at a low fatty acid salt molality of ˜10 -3 m. In other types of atmospheric particles, such as biomass burning, biogenic, soil dust, and urban aerosols, "humic-like" materials exist in sufficient quantities to form micelle-like aggregates in solution. I show micelle formation limits the ability of surface-active organics in aerosols to reduce the surface tension of an atmospheric particle beyond about 10 dyne cm -1. A general phase diagram is presented for anionic surfactants to explain how surface-active organics can change the water uptake properties of atmospheric aerosols. Briefly such molecules can enhance and reduce water uptake by atmospheric aerosols at dry and humid conditions, respectively. This finding is consistent with a number of unexplained field and laboratory observations. Dry electron microscope images of atmospheric particles often indicate that organics may coat the surface of particles in the atmosphere. The surfactant phase diagram is used to trace the particle path back to ambient conditions in order to determine whether such coatings can exist on wet ambient aerosols. Finally, I qualitatively highlight how organic aggregate formation in aerosols may change the optical properties and chemical reactivity of atmospheric particles.

  7. [Hygroscopic Properties of Aerosol Particles in North Suburb of Nanjing in Spring].

    PubMed

    Xu, Bin; Zhang, Ze-feng; Li, Yan-weil; Qin, Xin; Miao, Qing; Shen, Yan

    2015-06-01

    The hygroscopic properties of submicron aerosol particles have significant effects on spectral distribution, CCN activation, climate forcing, human health and so on. A Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) was utilized to analyze the hygroscopic properties of aerosol particles in the northern suburb of Nanjing during 16 April to 21 May, 2014. At relative humidity (RH) of 90%, for particles with dry diameters 30-230 nm, the probability distribution of GF (GF-PDF) shows a distinct bimodal pattern, with a dominant more-hygroscopic group and a smaller less-hygroscopic group. A contrast analysis between day and night suggests that, aerosol particles during day time have a stronger hygroscopicity and a higher number fraction of more-hygroscopic group than that at night overall. Aerosol particles during night have a higher degree of externally mixed state. Backward trajectory analysis using HYSPLIT mode reveals that, the sampling site is mainly affected by three air masses. For aitken nuclei, northwest continental air masses experience a longer aging process and have a stronger hygroscopicity. For condensation nuclei, east air masses have a stronger hygroscopicity and have a higher number fraction of more-hygroscopic group. Aerosol particles in local air masses have a high number fraction of more-hygroscopic group in the whole diameter range. PMID:26387289

  8. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  9. Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions

    NASA Astrophysics Data System (ADS)

    Putkiranta, M.; Manninen, A.; Rostedt, A.; Saarela, J.; Sorvajärvi, T.; Marjamäki, M.; Hernberg, R.; Keskinen, J.

    2010-06-01

    Several fluorophores, such as tryptophan, NADH, NADPH, and riboflavin are found in airborne micro-organisms. In this work, the fluorescence properties of these biochemicals were studied both in dry NaCl composite aerosol particles and in saline solutions by means of laser-induced fluorescence. Fluorescence spectra were measured from individual, airborne aerosol particles and from solutions in cuvette. The excitation wavelength was varied in steps from 210 nm to 419 nm and the fluorescence was detected within a wavelength band of 310-670 nm. For each sample, the measured fluorescence emission spectra were combined into fluorescence maps. The fluorescence maximum of riboflavin in a dry NaCl composite particle is 20 nm red-shifted compared with the solution, whereas the maxima are blue-shifted by about 25 nm for tryptophan and 15 nm for NADH and NADPH. The molecular fluorescence cross sections have significant differences between the aerosol particles and the solutions, except for tryptophan. For NADH and NADPH the cross sections are over 20 times larger in the aerosol particles than in the solutions probably as a result of partial quenching of fluorescence in solution caused by the collision or stacking with the adenine moiety. The fluorescence cross section of riboflavin is almost 60 times larger in the solution than in the dry NaCl composite aerosol. This is probably caused by the different microenvironment around the fluorophore molecule and by the concentration quenching in the particles where the fluorescing molecules are relatively close to each other.

  10. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  11. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Olmo, F. J.; Alados-Arboledas, L.

    Surface measurements of optical and physical aerosol properties were made at an urban site, Granada (Spain) (37.18°N, 3.58°W, 680 m a.s.l), during winter 2005-2006. Measurements included the aerosol scattering, σsca, and backscattering coefficients, σbsca, at three wavelengths (450, 550 and 700 nm) measured at low relative humidity (RH<50%) by an integrating nephelometer, the absorption coefficient at 670 nm, σabs, measured with a multi-angle absorption photometer, and aerosol size distribution in the 0.5-20 μm aerodynamic diameter range registered by an aerodynamic aerosol sizer (APS-3321, TSI). The hourly average of σsca (550 nm) ranged from 2 to 424 M m -1 with an average value of 84±62 M m -1 (±S.D.). The Angstrom exponent presented an average value of 1.8±0.3, suggesting a large fraction of fine particles at the site, an observation confirmed by aerosol size distribution measurements. The hourly average of σabs (670 nm) ranged from 1.7 to 120.5 M m -1 with an average value of 28±20 M m -1. The results indicate that the aerosol absorption coefficient in Granada was relatively large. The largest σsca value was associated with air masses that passed over heavily polluted European areas and local stagnation conditions. High absorbing aerosol level was obtained during dust transport from North Africa probably due to the presence of hematite. Based on the measured scattering and absorption coefficients, a very low average value of the single scattering albedo of 0.66±0.11 at 670 nm was calculated, suggesting that urban aerosols in this region contain a large fraction of absorbing material. A clear diurnal pattern was observed in scattering and absorption coefficients and particle concentrations with two local maxima occurring in early morning and late evening. This behavior can be explained in terms of local conditions that control the particle sources associated with traffic and upward mixing of the aerosol during the daytime development of a

  12. Chemical and physical properties of single aerosol particles using a quadrupole trap

    SciTech Connect

    Carleton, K.L.; Sonnenfroh, D.M.; Kang, S.

    1995-12-31

    The importance of aerosols in controlling the chemical balance of the stratosphere has been demonstrated through studies of the polar ozone hole and polar stratospheric clouds. Our laboratory program is designed to explore the physical and chemical properties of aerosol particles under stratospheric conditions for single particles suspended in the electrodynamic field of a quadrupole trap. The goal of this work is to provide data on important stratospheric processes, with particular attention to processes resulting from increased aircraft emissions from the current subsonic fleet or a proposed fleet of supersonic aircraft. Optical methods including Mie scattering and Raman spectroscopy are used to probe the phase and composition of individual particles. Results will be presented on the freezing behavior of sulfuric acid particles.

  13. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa

    2016-08-01

    Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

  14. Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere

    NASA Astrophysics Data System (ADS)

    Wonaschütz, A.; Coggon, M.; Sorooshian, A.; Modini, R.; Frossard, A. A.; Ahlm, L.; Mülmenstädt, J.; Roberts, G. C.; Russell, L. M.; Dey, S.; Brechtel, F. J.; Seinfeld, J. H.

    2013-10-01

    During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs): between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH) of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm-3), which lead to substantially increased cloud condensation nuclei (CCN) concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C) and water-soluble organic mass (WSOM) increased with plume age: from < 0.001 to 0.2, and from 2.42 to 4.96 μg m-3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94). High-resolution aerosol mass spectrometer (AMS) spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.

  15. REDOX AND ELECTROPHILIC PROPERTIES OF VAPOR- AND PARTICLE-PHASE COMPONENTS OF AMBIENT AEROSOLS

    PubMed Central

    Eiguren-Fernandez, Arantzazu; Shinyashiki, Masaru; Schmitz, Debra A.; DiStefano, Emma; Hinds, William; Kumagai, Yoshito; Cho, Arthur K.; Froines, John R.

    2010-01-01

    Particulate matter (PM) has been the primary focus of studies aiming to understand the relationship between the chemical properties of ambient aerosols and adverse health effects. Size and chemical composition of PM have been linked to their oxidative capacity which has been postulated to promote or exacerbate pulmonary and cardiovascular diseases. But in the last few years, new studies have suggested that volatile and semivolatile components may also contribute to many adverse health effects. The objectives of this study were: i) assess for the first time the redox and electrophilic potential of vapor-phase components of ambient aerosols, and ii) evaluate the relative contributions of particle- and vapor-fractions to the hazard of a given aerosol. To achieve these objectives vapor- and particle-phase samples collected in Riverside (CA) were subjected to three chemical assays to determine their redox and electrophilic capacities. The results indicate that redox active components are mainly associated with the particle-phase, while electrophilic compounds are found primarily in the vapor-phase. Vapor-phase organic extracts were also capable of inducing the stress responding protein, heme-oxygenase-1 (HO-1), in RAW264.7 murine macrophages. These results demonstrate the importance of volatile components in the overall oxidative and electrophilic capacity of aerosols, and point out the need for inclusion of vapors in future health and risk assessment studies. PMID:20152964

  16. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate.

    PubMed

    Freedman, Miriam A; Hasenkopf, Christa A; Beaver, Melinda R; Tolbert, Margaret A

    2009-12-01

    We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed. PMID:19877658

  17. Measurements of the chemical, physical, and optical properties of single aerosol particles

    NASA Astrophysics Data System (ADS)

    Moffet, Ryan Christopher

    Knowledge of aerosol physical, chemical, optical properties is essential for judging the effect that particulates have on human health, climate and visibility. The aerosol time-of-flight mass spectrometer (ATOFMS) is capable of measuring, in real-time, the size and chemical composition of atmospheric aerosols. This was exemplified by the recent deployments of the ATOFMS to Mexico City and Riverside. The ATOFMS provided rapid information about the major particle types present in the atmosphere. Industrial sources of particles, such as fine mode particles containing lead, zinc and chloride were detected in Mexico City. The rapid time response of the ATOFMS was also exploited to characterize a coarse particle concentrator used in human health effects studies. The ATOFMS showed the ability to detect changes in particle composition with a time resolution of 15 min during short 2 hour human exposure studies. As a major component of this work, an optical measurement has been added to the ATOFMS. The scattered light intensity was acquired for each sized and chemically analyzed particle. This scattering information together with the particle aerodynamic diameter, enabled the refractive index and density of the aerosol to be retrieved. This method was validated in the laboratory using different test particles such as oils, aqueous salt solutions and black carbon particles. It was found that the nozzle-type inlet does not evaporate aqueous salt particles as has been observed for aerodynamic lens inlets. These new optical and microphysical measurements were integrated into the ATOFMS for field deployment in Riverside and Mexico City. For both cities, the different mixing states were found to have unique refractive indexes and densities. A fraction of the strongly absorbing elemental carbon particles were observed to have a spherical morphology due to heavy mixing with secondary species. In addition to the quantitative refractive index and effective density measurements

  18. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  19. Probing the micro-rheological properties of aerosol particles using optical tweezers

    NASA Astrophysics Data System (ADS)

    Power, Rory M.; Reid, Jonathan P.

    2014-07-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >1012 Pa s, whilst

  20. An investigation into particle shape effects on the light scattering properties of mineral dust aerosol

    NASA Astrophysics Data System (ADS)

    Meland, Brian Steven

    Mineral dust aerosol plays an important role in determining the physical and chemical equilibrium of the atmosphere. The radiative balance of the Earth's atmosphere can be affected by mineral dust through both direct and indirect means. Mineral dust can directly scatter or absorb incoming visible solar radiation and outgoing terrestrial IR radiation. Dust particles can also serve as cloud condensation nuclei, thereby increasing albedo, or provide sites for heterogeneous reactions with trace gas species, which are indirect effects. Unfortunately, many of these processes are poorly understood due to incomplete knowledge of the physical and chemical characteristics of the particles including dust concentration and global distribution, as well as aerosol composition, mixing state, and size and shape distributions. Much of the information about mineral dust aerosol loading and spatial distribution is obtained from remote sensing measurements which often rely on measuring the scattering or absorption of light from these particles and are thus subject to errors arising from an incomplete understanding of the scattering processes. The light scattering properties of several key mineral components of atmospheric dust have been measured at three different wavelengths in the visible. In addition, measurements of the scattering were performed for several authentic mineral dust aerosols, including Saharan sand, diatomaceous earth, Iowa loess soil, and palagonite. These samples include particles that are highly irregular in shape. Using known optical constants along with measured size distributions, simulations of the light scattering process were performed using both Mie and T-Matrix theories. Particle shapes were approximated as a distribution of spheroids for the T-Matrix calculations. It was found that the theoretical model simulations differed markedly from experimental measurements of the light scattering, particularly near the mid-range and near backscattering angles. In

  1. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  2. A study of aerosol optical properties using a lightweight optical particle spectrometer and sun photometer from an unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Telg, H.; Murphy, D. M.; Bates, T. S.; Johnson, J. E.; Gao, R. S.

    2015-12-01

    A miniaturized printed optical particle spectrometer (POPS) and sun photometer (miniSASP) have been developed recently for unmanned aerial systems (UAS) and balloon applications. Here we present the first scientific data recorded by the POPS and miniSASP from a Manta UAS during a field campaign on Svalbard, Norway, in April 2015. As part of a payload composed of five different aerosol instruments (absorption photometer, condensation particle counter, filter sampler, miniSASP and POPS) we collected particle size distributions, the optical depth (OD) and the sky brightness from 0 to 3000 m altitude. The complementary measurement approaches of the miniSASP and POPS allow us to calculate aerosol optical properties such as the aerosol optical depth and the angstrom exponent or the asymmetry parameter independently. We discuss deviation between results with respect to aerosol properties, e.g. hygroscopicity and absorption, as well as instrumental limitations.

  3. Self-assembly of marine exudate particles and their impact on the CCN properties of nascent marine aerosol

    NASA Astrophysics Data System (ADS)

    Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.

    2013-12-01

    Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.

  4. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths

  5. Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Gasteiger, J.; Hess, M.

    2015-05-01

    Mineral particles, in general, are not spheres and so the assumption of spherical particles, instead of more realistic shapes, has significant effects on modeled optical properties and therefore on remote-sensing procedures for desert aerosol and the derived radiative forcing. Thus, in a new version of the database OPAC (Optical Properties of Aerosols and Clouds; Hess et al., 1998), the optical properties of the mineral particles are modeled describing the particles as spheroids with size dependent aspect ratio distributions, but with the size distributions and the spectral refractive indices not changed against the previous version of OPAC. The spheroid assumption is known to substantially improve the scattering functions but pays regard to the limited knowledge on particle shapes in an actual case. The relative deviations of the optical properties of non-spherical mineral particles from those of spherical particles are for the phase function in the solar spectral range up to +60% at scattering angles of about 130° and up to -60% in the backscatter region, but less than 2% for the asymmetry parameter. The deviations are generally small in the thermal infrared and for optical properties that are independent of the scattering angle. The improved version of OPAC (4.0) is freely available at www.rascin.net.

  6. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2012-08-01

    The Southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles such as power plants, urban pollution and smelters on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were more numerous and smaller near shore, and there was less drizzle. Higher droplet number concentration and physically thinner clouds both contributed to the smaller droplets near shore. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually lower closer to shore due to the generally thinner clouds and lower liquid water paths there. Differences in the size

  7. Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Pósfai, Mihály; Kovács, Kristóf; Kuzmann, Ernő; Homonnay, Zoltán; Posta, József

    Aerosol samples in PM 10-2.0 and PM 2.0 size fractions were collected on the platform of a metropolitan underground railway station in central Budapest. Individual aerosol particles were studied using atomic force microscopy, scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectrometry and electron diffraction. The bulk aerosol samples were investigated by 57Fe Mössbauer spectroscopy, and they were subjected to chemical speciation analysis for Cr. The particles were classified into groups of iron oxides and iron, carbonates, silicates, quartz and carbonaceous debris. Electron micrographs showed that the Fe-rich particles in the PM 2.0 size fraction typically consisted of aggregates of nano-sized hematite crystals that were randomly oriented, had round shapes and diameters of 5-15 nm. In addition to hematite, a minor fraction of the iron oxide particles also contained magnetite. In addition, the PM 2.0-fraction particles typically had a rugged surface with layered or granular morphologies. Mössbauer spectroscopy suggested that hematite was a major Fe-bearing species in the PM 10-2.0 size fraction; its mass contribution to the Fe was 36%. Further constituents (ferrite, carbides and FeOOH) were also identified. The water soluble amounts of Cr for the underground railway station and city center were similar. In the PM 10-2.0 size fraction, practically all dissolved Cr had an oxidation state of three, which corresponds to ambient conditions. In the PM 2.0 size fraction, however, approximately 7% of the dissolved Cr was present as Cr(VI), which was different from that for the urban aerosol. It is suggested that the increased adverse health effects of aerosol particles in metros with respect to ambient outdoor particles is linked to the differences in the oxidation states, surface properties or morphologies.

  8. A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Katrib, Y.; Pangui, E.; Zapf, P.; Doussin, J. F.

    2014-01-01

    A new methodology for the determination of the changes due to hygroscopic growth with relative humidity of the number size distribution and optical properties of polydispersed aerosols is described. This method uses the simulation chamber CESAM where the hygroscopic properties of polydispersed aerosol particles can be investigated in situ by exposing them to RH ranging from 0 to 100% for approximately 1 h. In situ humidification is used to provide simultaneous information on the RH-dependence of the particle size and the corresponding scattering coefficient (σscat), and that for the entire size distribution. Optical closure studies, based on integrated nephelometer and aethalometer measurements, Mie scattering calculations and measured particle size distributions, can therefore be performed to yield derived parameters such as the complex refractive index (CRI) at λ = 525 nm. The CRI can also be retrieved in the visible spectrum by combining differential mobility analyzer (DMA) and white light aerosol spectrometer (Palas Welas®) measurements. We have applied this methodology to ammonium sulfate particles, which have well known optical and hygroscopic properties. The CRI obtained from the two methods (1.54-1.57) compared favourably to each other and are also in reasonable agreement with the literature values. The particle's growth was compared to values obtained for one selected size of particles (150 nm) with a H-TDMA and the effect of the residence time for particles humidification was investigated. When the humidification was performed in the chamber for a few minutes, a continuous increase of the ammonium sulfate particle's size and σscat was observed from RH values as low as 30% RH. Comparison of the measured and modelled values based on Köhler and Mie theories shows that layers of water are adsorbed on ammonium sulfate particles below the deliquescence point. In contradiction, the particle's growth reported with H-TDMAs showed a prompt deliquescence of

  9. Global Measurement of Junge Layer Stratospheric Aerosol with OMPS/LP. Scattering Properties and Particle Size

    NASA Astrophysics Data System (ADS)

    Rault, D. F.; Bhartia, P. K.

    2014-12-01

    The OMPS/LP was launched on board the NPP space platform in October 2011. Over the past two years, the OMPS/LP was used to retrieve the global distribution of ozone and aerosol. The paper will describe the aerosol product, which NASA is presently preparing for public release. The current OMPS/LP aerosol product consists of latitude-altitude curtains along the NPP Sun-synchronous orbit, from cloud top to about 40 km. These curtains extend from local sunrise in Southern polar region to local sunset in Northern polar region. Aerosol extinctions are produced at five distinct wavelengths, namely 513, 525, 670, 750 and 870 nm, with a sampling of 1 km in vertical direction and 1 degree latitude in the along-track direction. The OMPS/LP aerosol dataset is fairly large, with 7000 vertical profiles produced each day for each wavelength. The aerosol product will be presented in terms of extinction monthly median values and mean Angstrom coefficient (particle size). Over the past two years, the Junge layer was affected by several events such as volcanic eruptions (Nabro and Kelut) and a meteor (Chelyabinsk), the effects of which are clearly visible in the OMPS/LP dataset. The Asian Tropopause Aerosol Layer (ATAL) can also be observed in the OMPS/LP dataset. Moreover the effect of the Brewer Dobson Circulation (BDC) can be observed at high altitudes: the BDC velocity at 35 km can be estimated from the time variation of iso-density heights and was found to compare well with BDC velocities evaluated with the water vapor tape recorder technique as well as MERRA model values. Finally, aerosol filaments are clearly visible in OMPS/LP aerosol dataset as they appear as distinct "bubbles" on the OMPS/LP curtain files at periodic intervals in both the Southern and Northern hemispheres. These filaments are a main source of transport from tropical to polar region, and OMPS/LP data can therefore be instrumental in quantifying the rate of this transport. The quality of the OMPS/LP aerosol

  10. Relation between aerosol particles and their optical properties: a case study for São Paulo-Brazil

    NASA Astrophysics Data System (ADS)

    Miranda, Regina; Andrade, Maria de Fatima

    2013-04-01

    Brazil has a territory of 8.5 million km2 and a population of more than 160 million inhabitants, distributed throughout 26 states. Brazillian capital-cities with millions inhabitants and vehicles have several problems concerning air pollution. São Paulo, capital of São Paulo State, with more than 19 million inhabitants, 7 million vehicles, as well as the major industrial and technological park of the country, has high concentrations of air pollutants, especially in the winter. Air pollution, high building density, and a lack of green areas, combined with the proliferation of asphalt and concrete surfaces, have resulted in a greater number of urban heat island effects, fewer drizzle events, and rainfall events of greater intensity. São Paulo has an extensive air quality monitoring network, which has shown that ozone levels often exceed the NAAQS limit during spring and summer, and that concentrations of inhalable particles exceed the NAAQS limit mainly during the winter, from June to August. Aerosols are produced by a variety of processes, creating differences in their physicochemical properties and hence in their ability to scatter and absorb solar radiation. For most urban areas in Brazil, vehicles are considered the principal source of particles emitted to the atmosphere. Particles have been monitored in the winter of 2012 in São Paulo using a MOUDI (Micro Orifice Uniform Deposit Impactor), in order to have the mass distribution of the aerosol. The concentrations of coarse particles can still be larger than those of fine particles, although the difference between both has become smaller than in the past. The samples collected were analyzed by gravimetry for mass concentration, optical reflectance for Black Carbon concentration and X-ray Fluorescence for elementar characterization. Optical properties were obtained from Aeronet (Aerosol Robotic Network, http://aeronet.gsfc.nasa.gov/) for São Paulo city. It was found that a high fraction of elements was derived

  11. Microphysical processes affecting stratospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Toon, O. B.; Kiang, C. S.

    1977-01-01

    Physical processes which affect stratospheric aerosol particles include nucleation, condensation, evaporation, coagulation and sedimentation. Quantitative studies of these mechanisms to determine if they can account for some of the observed properties of the aerosol are carried out. It is shown that the altitude range in which nucleation of sulfuric acid-water solution droplets can take place corresponds to that region of the stratosphere where the aerosol is generally found. Since heterogeneous nucleation is the dominant nucleation mechanism, the stratospheric solution droplets are mainly formed on particles which have been mixed up from the troposphere or injected into the stratosphere by volcanoes or meteorites. Particle growth by heteromolecular condensation can account for the observed increase in mixing ratio of large particles in the stratosphere. Coagulation is important in reducing the number of particles smaller than 0.05 micron radius. Growth by condensation, applied to the mixed nature of the particles, shows that available information is consistent with ammonium sulfate being formed by liquid phase chemical reactions in the aerosol particles. The upper altitude limit of the aerosol layer is probably due to the evaporation of sulfuric acid aerosol particles, while the lower limit is due to mixing across the tropopause.

  12. Chemical closure study on hygroscopic properties of urban aerosol particles in Sapporo, Japan.

    PubMed

    Aggarwal, Shankar Gopala; Mochida, Michihiro; Kitamori, Yasuyuki; Kawamura, Kimitaka

    2007-10-15

    To assess the link between hygroscopicity of atmospheric particles and the chemical composition, we performed a chemical closure study on the hygroscopicity of organic-inorganic mixed particles nebulized from water extracts of ambient aerosols collected in Sapporo, Japan during summer 2005. The hygroscopicity of 100 nm particles was measured using a hygroscopicity tandem differential mobility analyzer (HTDMA) at 5-95% relative humidity. The chemical analyses of the extracts showed that inorganic salts accounted for 32-84% of the water-soluble fraction and that the remaining was water-soluble organic matter (WSOM). The liquid water content (LWC) of particles was primarily governed by the relative abundance of inorganic salts in particles. The chemical closure with a thermodynamic model did not indicate a significant perturbation of LWC by WSOM at 85% RH with the consideration of the uncertainties estimated. However, a positive perturbation by WSOM was suggested at 50% RH. Individual oxygenated compounds identified using gas chromatography were not abundant enough to substantially increase the LWC at 85% RH. PMID:17993129

  13. Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment

    NASA Astrophysics Data System (ADS)

    Salma, I.; Borsós, T.; Weidinger, T.; Aalto, P.; Hussein, T.; Dal Maso, M.; Kulmala, M.

    2010-06-01

    Number concentrations of atmospheric aerosol particles were measured by a flow-switching type differential mobility particle sizer in an electrical mobility diameter range of 6-1000 nm in 30 channels near central Budapest with a time resolution of 10 min continuously from 3 November 2008 to 2 November 2009. Daily median number concentrations of particles varied from 3.8×103 to 29×103 cm-3 with a yearly median of 11.8×103 cm-3. Contribution of ultrafine particles to the total particle number ranged from 58 to 92% with a mean ratio and standard deviation of (79±6)%. Daily average number concentrations in various size fractions and contribution of ultrafine particles to the total particle number showed no seasonal dependency. Monthly mean number size distributions were similar to each other. Overall mean for the number median mobility diameter of the Aitken and accumulation modes were 26 and 93 nm, respectively, which are substantially smaller than for rural or background environments. The Aitken and accumulation modes contributed similarly to the total particle number concentrations at the actual measurement location. Median diameters of the Aitken and accumulation modes were shifted to larger values before nucleation started and over the growth process, which can be related to the presence of aged aerosol under the conditions that favour nucleation and growth. Particle concentrations were usually increased substantially after nucleations. Overall mean and standard deviation of the nucleation mode number concentrations were (10.4±2.8)×103 cm-3. Mean ratio and standard deviation of the nucleation mode number concentration to the total particle number concentration that was averaged for two hours just before the formation was detected was 2.3±1.1. Nucleation unambiguously occurred on 83 days, which represent 27% of all relevant days. Its frequency showed a remarkable seasonal variation with a minimum of 7.3% in winter and a maximum of 44% in spring. Formation

  14. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China

    NASA Astrophysics Data System (ADS)

    Eichler, H.; Cheng, Y. F.; Birmili, W.; Nowak, A.; Wiedensohler, A.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Althausen, D.; Ansmann, A.; Engelmann, R.; Tesche, M.; Wendisch, M.; Zhang, Y. H.; Hu, M.; Liu, S.; Zeng, L. M.

    During the "Program of Regional Integrated Experiments of Air Quality over Pearl River Delta 2004 (PRIDE-PRD2004)" hygroscopic properties of particles in the diameter range 22 nm to 10μm were determined. For that purpose, a Humidifying Differential Mobility Particle Sizer (H-DMPS) and a Micro-Orifice Uniform Deposition Impactor (MOUDI) were operated. The derived size-dependent particle hygroscopic growth factors were interpolated to ambient relative humidity (RH) and used to calculate the particle number size distributions (PNSDs) at ambient conditions. A comparison between the modeled particle extinction coefficients (σ) and those observed with a Raman lidar was made. It is shown that the particle extinction coefficient ( σext) at ambient RH can be properly estimated with Mie-model calculations based on the in situ physico-chemical measurements of dry and humidified PNSD and chemical composition.

  15. Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment

    NASA Astrophysics Data System (ADS)

    Salma, I.; Borsós, T.; Weidinger, T.; Aalto, P.; Hussein, T.; Dal Maso, M.; Kulmala, M.

    2011-02-01

    Number concentrations of atmospheric aerosol particles were measured by a flow-switching type differential mobility particle sizer in an electrical mobility diameter range of 6-1000 nm in 30 channels near central Budapest with a time resolution of 10 min continuously from 3 November 2008 to 2 November 2009. Daily median number concentrations of particles varied from 3.8 × 103 to 29 ×103 cm-3 with a yearly median of 11.8 × 103 cm-3. Contribution of ultrafine particles to the total particle number ranged from 58 to 92% with a mean ratio and standard deviation of (79 ± 6)%. Typical diurnal variation of the particle number concentration was related to the major emission patterns in cities, new particle formation, sinks of particles and meteorology. Shapes of the monthly mean number size distributions were similar to each other. Overall mean for the number median mobility diameter of the Aitken and accumulation modes were 26 and 93 nm, respectively, which are substantially smaller than for rural or background environments. The Aitken and accumulation modes contributed similarly to the total particle number concentrations at the actual measurement location. New particle formation and growth unambiguously occurred on 83 days, which represent 27% of all relevant days. Hence, new particle formation and growth are not rare phenomena in Budapest. Their frequency showed an apparent seasonal variation with a minimum of 7.3% in winter and a maximum of 44% in spring. New particle formation events were linked to increased gas-phase H2SO4 concentrations. In the studied area, new particle formation is mainly affected by condensation sink and solar radiation. The formation process seems to be not sensitive to SO2, which was present in a yearly median concentration of 6.7 μg m-3. This suggests that the precursor gas was always available in excess. Formation rate of particles with a diameter of 6 nm varied between 1.65 and 12.5 cm-3 s-1 with a mean and standard deviation of (4.2

  16. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  17. Aerosol particle properties in the tropical free troposphere observed at Pico Espejo (4765 m a.s.l.), Venezuela

    NASA Astrophysics Data System (ADS)

    Schmeißner, T.; Krejci, R.; Ström, J.; Birmili, W.; Wiedensohler, A.; Hochschild, G.; Gross, J.; Hoffmann, P.; Calderon, S.

    2010-11-01

    The first long-term measurements of aerosol number and size distributions in South-American tropical free troposphere were performed from March 2007 until Mai 2009. The measurements took place at the high altitude Atmospheric Research Station Alexander von Humboldt. The station is located on top of the Sierra Nevada mountain ridge at 4765 m a.s.l. nearby the city of Mérida, Venezuela. Aerosol size distribution and number concentration data was obtained with a custom-built Differential Mobility Particle Sizer (DMPS system) and a Condensational Particle Counter (CPC). The analysis of the annual and diurnal variability of the tropical free troposphere (FT) aerosol focused mainly on possible links to the atmospheric general circulation in the tropics. Considerable annual and diurnal cycles of the particle number concentration were observed. Highest total particle number concentrations were measured during the dry season (519±613 cm-3), lowest during the wet season (318±194 cm-3). The more humid FT contained generally higher aerosol particle number concentrations (573±768 cm-3 during dry season, 320±195 cm-3 during wet season) than the dry FT (454±332 cm-3 during dry season, 275±172 cm-3 during wet season), indicating the importance of convection for aerosol distributions in the tropical FT. The diurnal cycle in the variability of the particle number concentration was mainly driven by local orography.

  18. Photochemical Aging of Organic Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Mang, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Secondary Organic Aerosol (SOA) particles are produced in the atmosphere as a result of oxidation of volatile organic compounds (VOC). Primary Organic Aerosol (POA) particles are directly emitted in the atmosphere by their sources. This research focuses on the mechanisms of direct photochemical processes taking place in model SOA and POA particles, the role of such processes in aging of organic aerosol particles, and the effect of photochemistry on particles' physicochemical properties. To address these questions, artificial SOA and POA particles are investigated with several laboratory-based approaches relying on cavity ring-down spectroscopy and mass-spectrometry. SOA particles generated by dark oxidation of d-Limonene, alpha-Pinene, and beta-Pinene by ozone are all found to absorb radiation in the tropospheric actinic window. The UV absorption photolyzes SOA constituents resulting in a release of small VOC molecules back in the gas-phase, and considerable change in SOA chemical composition. For terpenes featuring a terminal double bond, the main SOA photolysis products are invariably found to be formaldehyde and formic acid. Similar observations are obtained for products of ozonolysis of thin films of unsaturated fatty acids and self-assembled monolayers of unsaturated alkenes. For the case of fatty acids, a very detailed mechanism of ozonolysis and subsequent photolysis is proposed. The photolytic activity is primarily attributed to organic peroxides and aldehydes. These results convincingly demonstrate that photochemical processes occurring inside SOA and POA particles age the particles on time scales that are shorter than typical lifetimes of aerosol particles in the atmosphere.

  19. Holographic interferometry for aerosol particle characterization

    NASA Astrophysics Data System (ADS)

    Berg, Matthew J.; Subedi, Nava R.

    2015-01-01

    Using simulations based on Mie theory, this work shows how double-exposure digital holography can be used to measure the change in size of an expanding, or contracting, spherical particle. Here, a single particle is illuminated by a plane wave twice during its expansion: once when the particle is 27 λ in radius, and again when it is 47 λ. A hologram is formed from each illumination stage from the interference of the scattered and unscattered, i.e., incident, light. The two holograms are then superposed to form a double exposure. By applying the Fresnel-Kirchhoff diffraction theory to the double-exposed hologram, a silhouette-like image of the particle is computationally reconstructed that is superposed with interference fringes. These fringes are a direct result of the change in particle size occurring between the two illumination stages. The study finds that expansion on the scale of ~ 6 λ is readily discerned from the reconstructed particle image. This work could be important for improved characterization of single and multiple aerosol particles in situ. For example, by illuminating an aerosol particle with infrared light, it may be possible to measure photothermally induced particle expansion, thus providing insight into a particle's material properties simultaneous with an image of the particle.

  20. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Petäjä, T.; Aufmhoff, H.; Aalto, P.; Hämeri, K.; Arnold, F.; Laaksonen, A.; Kulmala, M.

    2006-10-01

    Freshly formed atmospheric aerosol particles are neither large enough to efficiently scatter incoming solar radiation nor able to act as cloud condensation nuclei. As the particles grow larger, their hygroscopicity determines the limiting size after which they are important in both of the aforementioned processes. The condensing species resulting in growth alter the hygroscopicity of the particles. We have measured hygroscopic growth of aerosol particles present in a boreal forest, along with the very hygroscopic atmospheric trace gas sulfuric acid. The focus was on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with gaseous phase sulfuric acid concentrations. This correlation had a strong size dependency; the smaller the particle, the more condensing sulfuric acid is bound to alter the GF due to initially smaller mass. In addition, water uptake of nucleation mode particles was monitored during new particle formation events and followed during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that initially more hygroscopic particles transformed into less hygroscopic or even hydrophobic particles. A similar behavior was seen also during days with no particle formation, with GF decreasing during the evenings and increasing during early morning. This can be tentatively explained by day- and nighttime differences in the hygroscopicity of condensable vapors.

  1. Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical transport model

    SciTech Connect

    Chang,L.S.; Schwartz, S.E.; McGraw, R.; Lewis, E.R.

    2009-04-02

    Four theoretical formulations of new particle formation (NPF) and one empirical formulation are used to examine the sensitivity of observable aerosol properties to NPF formulation and to properties of emitted particles in a continental-scale model for the United States over a 1-month simulation (July 2004). For each formulation the dominant source of Aitken mode particles is NPF with only a minor contribution from primary emissions, whereas for the accumulation mode both emissions and transfer of particles from the Aitken mode are important. The dominant sink of Aitken mode number is coagulation, whereas the dominant sink of accumulation mode number is wet deposition (including cloud processing), with a minor contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode, is relatively insensitive to NPF formulation despite order-of-magnitude differences in the Aitken mode number concentration among the different parameterizations. The dominant sensitivity of accumulation mode number concentration is to the number of emitted particles (for constant mass emission rate). Comparison of modeled aerosol properties with aircraft measurements shows, as expected, better agreement in aerosol mass concentration than in aerosol number concentration for all NPF formulations considered. These comparisons yield instances of rather accurate simulations in the planetary boundary layer, with poor model performance in the free troposphere attributed mainly to lack of representation of biomass burning and/or to long-range transport of particles from outside the model domain. Agreement between model results and measurements is improved by using smaller grid cells (12 km versus 60 km).

  2. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  3. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape

  4. Standard aerosols for particle velocimeters

    NASA Technical Reports Server (NTRS)

    Deepark, A.; Ozarski, R.; Thomson, J. A. L.

    1976-01-01

    System consists of laser-scattering counter (LSC) and photographic system. Photographic system provides absolute method of measuring aerosol size-distribution independently of their light scattering properties. LSC comprises 1-mW He/Ne laser, input optics, collecting optics, photodetector, and signal-processing electronics.

  5. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape

  6. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  7. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  8. Investigating Primary Marine Aerosol Properties: CCN Activity of Sea Salt and Mixed Inorganic–Organic Particles

    PubMed Central

    2012-01-01

    Sea spray particles ejected as a result of bubbles bursting from artificial seawater containing salt and organic matter in a stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. Bubbles were generated either by aeration through a diffuser or by water jet impingement on the seawater surface. Three objectives were addressed in this study. First, CCN activities of NaCl and two types of artificial sea salt containing only inorganic components were measured to establish a baseline for further measurements of mixed organic–inorganic particles. Second, the effect of varying bubble residence time in the bulk seawater solution on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. Finally, CCN activities of particles produced from jet impingement were compared with those produced from diffuser aeration. Analyses indicate a considerable amount of organic enrichment in the jet-produced particles relative to the bulk seawater composition when sodium laurate, an organic surfactant, is present in the seawater. In this case, the production of a thick foam layer during impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not equal. PMID:22809370

  9. AMS Measurements in National Parks of Aerosol Mass, Size and Composition, Comparison with Filter Samples and Correlation with Particle Hygroscopicity and Optical Extinction Properties

    NASA Astrophysics Data System (ADS)

    Alexander, M.; Taylor, N. F.; Collins, D. R.; Kumar, N.; Allen, J.; Newburn, M.; Lowenthal, D. H.; Zielinska, B.

    2011-12-01

    We report a comparison of results from aerosol studies at Great Smoky Mountain National Park (2006), Mt. Rainier National Park (2009) and Acadia National Park (2011), all class I visibility areas associated with IMPROVE (Interagency Monitoring of Protected Visual Environments) sites. This collaborative study was sponsored by the Electric Power Research Institute (EPRI) and was done with the cooperation of the National Park Service and the EPA. The atmospheric aerosol composition in these sites is influenced by a number of anthropogenic as well as biogenic sources, providing a rich environment for fundamental aerosol studies. The primary purpose of these studies was to add state-of-the-art aerosol instrumentation to the standard light extinction and aerosol measurements at the site, used to determine parameters for the IMPROVE light extinction reconstruction equation, adopted by the EPA to estimate light extinction from atmospheric aerosol concentrations and Rayleigh scattering. The combination of these diverse measurements also provides significant insight into fundamental aerosol properties such as aging and radiative forcing. New instrumentation included a quadrupole aerosol mass spectrometer (Aerodyne Q-AMS-Smoky Mountain Study), a high resolution aerosol time-of-flight mass spectrometer (Aerodyne HR-ToF-AMS - Mt. Rainier and Acadia studies) for real time measurements that directly address the relationship between sulfate, nitrate, and OC size and concentration, which is related to cloud and dry gas-to-particle conversion as air masses age during transport, the relationship between WSOC hygroscopic growth and oxygenated organic (OOA) composition, the OCM/OC ratio, and the chemical composition that determines the ambient hygroscopic state. The OCM/OC ratio and organic water uptake was addressed with high-volume and medium volume PM2.5 aerosol samples. Aerosols were collected daily on Teflon coated glass fiber filters (TGFF) in four high-volume PM2.5 samplers

  10. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed particles

    NASA Astrophysics Data System (ADS)

    King, S. M.; Butcher, A. C.; Rosenoern, T.; Coz, E.; Lieke, K. I.; de Leeuw, G.; Nilsson, E. D.; Bilde, M.

    2012-04-01

    Sea salt particles ejected as a result of bubbles bursting from artificial seawater in a closed stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. The two-component artificial seawater consisted of salt, either NaCl or sea salt, and one organic compound in deionized water. Several organic molecules representative of oceanic organic matter were investigated. Bubbles were generated either by aeration through a porous diffuser or by water jet impingement on the surface of the artificial seawater. The effect of bubble lifetime, which was controlled by varying the depth of the diffuser in the water column, on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. The CCN activities of particles produced from diffuser-generated bubbles were generally governed by the high hygroscopicity of salt, such that activation was indistinguishable from that of salt, except in the case of very low mass ratio of salt to organic matter in the seawater solution. There was, however, a considerable decrease in CCN activity for particles produced from jet impingement on seawater that had a salinity of 10‰ and contained 0.45 mM of sodium laurate, an organic surfactant. The production of a thick foam layer from impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not similar. Accurate conclusions from observed CCN activities of particles from artificial seawater containing organic matter require knowledge of the CCN activity of the inorganic component, especially as a small amount of the inorganic can heavily influence activation. Therefore, the CCN activity of both artificial sea salt and NaCl were measured and compared. Part of the discrepancy observed between the CCN activities of the two salts may be due to morphological differences, which were investigated using

  11. A novel approach for the characterisation of transport and optical properties of aerosol particles near sources - Part II: Microphysics-chemistry-transport model development and application

    NASA Astrophysics Data System (ADS)

    Valdebenito B, Álvaro M.; Pal, Sandip; Behrendt, Andreas; Wulfmeyer, Volker; Lammel, Gerhard

    2011-06-01

    A new high-resolution microphysics-chemistry-transport model (LES-AOP) was developed and applied for the investigation of aerosol transformation and transport in the vicinity of a livestock facility in northern Germany (PLUS1 field campaign). The model is an extension of a Large-Eddy Simulation (LES) model. The PLUS1 field campaign included the first deployment of the new eye-safe scanning aerosol lidar system of the University of Hohenheim. In a combined approach, model and lidar results were used to characterise a faint aerosol source. The farm plume structure was investigated and the absolute value of its particle backscatter coefficient was determined. Aerosol optical properties were predicted on spatial and temporal resolutions below 100 m and 1 min, upon initialisation by measured meteorological and size-resolved particulate matter mass concentration and composition data. Faint aerosol plumes corresponding to a particle backscatter coefficient down to 10 -6 sr -1 m -1 were measured and realistically simulated. Budget-related quantities such as the emission flux and change of the particulate matter mass, were estimated from model results and ground measurements.

  12. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Russian forest and peat fires. Fatty acids were commonly observed on the surface layer of these particles. The chain length composition was characteristic to each emission source. In our previous work (Tervahattu et al., 2002), fatty acids on sea-salt particles were originated from dead sea plankton organisms with major peaks ranging from C14 to C18 and maximum at C16 (palmitic acid). Major peaks on the surface of forest fire particles ranged from C16 to C30 with the maximum at C24. This composition indicates the involvement of the smoke from both conifer trees and peat (Oros and Simoneit, 2000; 2001b). On the other hand, TOF-SIMS analysis of the surface of field fire particles showed major peaks from C14 to C30 with two maximums at C16 (highest intensity) and C22. It was concluded that the results indicate emissions from both grass burning and fossil fuels (Simoneit, 2002; Oros and Simoneit, 2000). The presence of surface film on aerosol particles may have an impact on their chemical, physical and optical properties and change their role in light scattering and as cloud condensation nuclei as well as interactions with human tissue.

  13. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  14. Aerosols-cloud-climate -interactions in the Norwegian Earth System Model (NorESM). Importance of biogenic particles for cloud properties and anthropogenic indirect effect.

    NASA Astrophysics Data System (ADS)

    Seland, Ø.; Iversen, T.; Kirkevâg, A.

    2012-04-01

    According to the 4th assessment report of IPCC, major sources of uncertainty in anthropogenic climate change projections are inaccurate model description and weak knowledge of aerosols and their interactions with radiation and clouds, as well as the cloud feedback to radiative forcing. One important aspect of the associated uncertainty is the natural atmosphere. Anthropogenic climate change is an increment caused by anthropogenic emissions relative to the properties of the climate system untouched by man. This is crucial for the direct and indirect effects of aerosols, since the amount, size and physical properties of natural background particles strongly influence the same properties of the anthropogenic aerosol components. In many climate models where CDNC is calculated explicitly, CDNC is constrained by prescribing a lower bound below which calculated values are not allowed. This is done in order to keep the aerosol in-direct effect within estimated values. The rationale for using such a lower bound is to keep the aerosol radiative forcing constrained by the forcing of green-house gases and 20th century climate.We hypothesize this lower bound can be removed or made less strict by including aerosols of biogenic origin. We will present results and sensitivity studies from simulations with the NorESM where we have added contributions from organic carbon of natural origin both from vegetation and oceanic sources. By including aerosols of biogenic origin we obtain close to the median indirect radiative forcing reported by IPCC AR4, as well as reproducing the temperature increase in the 20th century. NorESM is based on the Earth system model CCSM4.0 from NCAR, but is using CAM4-Oslo instead of CAM4 as atmosphere model and an updated version of MICOM from the Bergen Climate Model (BCM) instead of the ocean model POP2. The aerosol module includes sea-salt, dust, sulphate, black carbon (BC) and particulate organic matter (OM). Primary aerosol size-distributions are

  15. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  16. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  17. Probing the bulk viscosity of particles using aerosol optical tweezers

    NASA Astrophysics Data System (ADS)

    Power, Rory; Bones, David L.; Reid, Jonathan P.

    2012-10-01

    Holographic aerosol optical tweezers can be used to trap arrays of aerosol particles allowing detailed studies of particle properties and processes at the single particle level. Recent observations have suggested that secondary organic aerosol may exist as ultra-viscous liquids or glassy states at low relative humidity, potentially a significant factor in influencing their role in the atmosphere and their activation to form cloud droplets. A decrease in relative humidity surrounding a particle leads to an increased concentration of solute in the droplet as the droplet returns to equilibrium and, thus, an increase in the bulk viscosity. We demonstrate that the timescales for condensation and evaporation processes correlate with particle viscosity, showing significant inhibition in mass transfer kinetics using ternary sucrose/sodium chloride/water droplets as a proxy to atmospheric multi-component aerosol. We go on to study the fundamental process of aerosol coagulation in aerosol particle arrays, observing the relaxation of non-spherical composite particles formed on coalescence. We demonstrate the use of bright-field imaging and elastic light scattering to make measurements of the timescale for the process of binary coalescence contrasting the rheological properties of aqueous sucrose and sodium chloride aerosol over a range of relative humidities.

  18. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions

    NASA Astrophysics Data System (ADS)

    Stock, M.; Cheng, Y. F.; Birmili, W.; Massling, A.; Wehner, B.; Müller, T.; Leinert, S.; Kalivitis, N.; Mihalopoulos, N.; Wiedensohler, A.

    2011-05-01

    This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH). During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS). Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp): 1.42 (± 0.05) at 30 nm compared to 1.63 (± 0.07) at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea) as well as the degree of continental pollution (marine vs. continentally influenced). The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70-80 %, up to 50-70 % of the calculated visibility reduction was

  19. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions

    NASA Astrophysics Data System (ADS)

    Stock, M.; Cheng, Y. F.; Birmili, W.; Massling, A.; Wehner, B.; Müller, T.; Leinert, S.; Kalivitis, N.; Mihalopoulos, N.; Wiedensohler, A.

    2010-11-01

    This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH). During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopicity Differential Mobility Analyzer - Aerodynamic Particle Sizer (H-DMA-APS). Like in several studies before, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The hygroscopic particle growth factors at 90% RH were a significant function of particle mobility diameter (Dp): 1.42 (± 0.05) at 30 nm compared to 1.63 (± 0.07) at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. All data recorded between 12 August and 20 October, 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea) as well as the degree of continental pollution (marine vs. continentally influenced). The hygroscopic properties of particles with diameter Dp ≥ 150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in more continentally influenced air masses. Particle size distributions and hygroscopic growth factors were employed to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its daytime values around 70-80% in summer, up to 50-70% of the calculated visibility

  20. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  1. Spatial Variability of CCN Sized Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  2. Chemical and Physical Properties of Bulk Aerosols Observed During TRACE-P: Evidence of Nitrate Uptake on Dust Particles

    NASA Astrophysics Data System (ADS)

    Jordan, C.; Anderson, B.; Hudgins, C.; Winstead, E.; Thornhill, L.; Talbot, R.; Russo, R.; Scheuer, E.; Seid, G.; Dibb, J.; Fuelberg, H.

    2002-12-01

    Back trajectories and bulk aerosol chemical properties have been used to group aerosol samples measured on the DC-8 during TRACE-P into five source regions. Each of these source region groups was further subdivided into three altitude bins (< 2 km, 2 - 7 km, and > 7 km). The mean chemical signatures, size distributions, and other physical properties (e.g., volatility, single scatter albedo) will be presented for these groups. By combining chemical and physical measurements, the observed aerosol population for each group may be partitioned between black carbon, sea salts, non-sea salt water soluble ions, and dust. Using this approach, we have found that the bulk of the dust emanating from Asia during TRACE-P came from one region. The highest concentrations of pollution species were also found in this region, including particulate nitrate. The presence of gas phase pollutants such as nitric acid co-located with the dust allows for the uptake of gas-phase nitrogen onto the dust surfaces. Results show that in the dust sector at mid-altitudes (2 - 7 km), where the influence of sea salt is reduced compared to lower altitudes, 50% of the total nitrate is in particulate form. This is in contrast to 15% for sectors with little dust.

  3. Southeast Asian Summer Burning: A Micro Pulse Lidar Network Study of Aerosol Particle Physical Properties near Fires in Borneo and Sumatra

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Welton, E. J.; Holben, B. N.; Campbell, J. R.

    2013-12-01

    In August and September 2012, as part of the continuing Seven South East Asian Studies (7-SEAS) project, three autonomous elastic-scattering 355 nm lidars were deployed by the NASA Micro Pulse Lidar Network (MPLNET) to Sumatra and Borneo, measuring the vertical profile of aerosol particle scattering during peak burning season. In coordination with the Aerosol Robotic Network (AERONET), a regional characterization of aerosol particle physical properties and distribution was performed. In addition to a permanent regional network site at Singapore, the three temporary sites established for this research include Jambi (Sumatra, Indonesia), Kuching (northwest Borneo, Malaysia) and Palangkaraya (south-central Borneo, Indonesia). In this paper, we discuss the mission and instruments, and introduce data products available to the community through the MPLNET online website. We further describe initial results of the study, including a contrast of mean vertical scattering profiles versus those observed near active fire sources at Jambi and Palangkaraya, and resolve longer-range particle evolution at receptor sites, like Kuching, that are most commonly 1-2 days downwind of larger fire complexes.

  4. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  5. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2015-03-01

    crystallized NaCl moiety in the center, surrounded either by the eutonic component (for XNaCl > 0.38) or NaNO3 (for XNaCl ≤ 0.38). During the humidifying or dehydration process, the amount of eutonic composed part drives particle/droplet growth or shrinkage at the MDRH or MERH (second ERH), respectively, and the amount of pure salts (NaCl or NaNO3 in NaCl- or NaNO3-rich particles, respectively) drives the second DRHs or first ERHs, respectively. Therefore, their behavior can be a precursor to the optical properties and direct radiative forcing for these atmospherically relevant mixture particles representing the coarse, reacted inorganic SSAs. In addition, the NaCl-NaNO3 mixture aerosol particles can maintain an aqueous phase over a wider RH range than pure NaCl particles as SSA surrogate, making their heterogeneous chemistry more probable.

  6. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume

    SciTech Connect

    Zaveri, Rahul A.; Barnard, James C.; Easter, Richard C.; Riemer, Nicole; West, Matthew

    2010-09-11

    The recently developed particle-resolved aerosol box model PartMC-MOSAIC was used to simulate the evolution of aerosol mixing state and the associated optical and cloud condensation nuclei (CCN) activation properties in an idealized urban plume. The model explicitly resolved the size and composition of individual particles from a number of sources and tracked their evolution due to condensation/evaporation, coagulation, emission, and dilution. The ensemble black carbon (BC) specific absorption cross section increased by 40% over the course of two days as a result of BC aging by condensation and coagulation. Three- and four-fold enhancements in CCN/CN ratios were predicted to occur within 6 hours for 0.2% and 0.5% supersaturations (S), respectively. The particle-resolved results were used to evaluate the errors in the optical and CCN activation properties that would be predicted by a conventional sectional framework that assumes monodisperse, internally-mixed particles within each bin. This assumption artificially increased the ensemble BC specific absorption by 14-30% and decreased the single scattering albedo by 0.03-0.07 while the bin resolution had a negligible effect. In contrast, the errors in CCN/CN ratios were sensitive to the bin resolution, and they depended on the chosen supersaturation. For S = 0.2%, the CCN/CN ratio predicted using 100 internally-mixed bins was up to 25% higher than the particle-resolved results, while it was up to 125% higher using 10 internally-mixed bins. Errors introduced in the predicted optical and CCN properties by neglecting coagulation were also quantified.

  7. Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision

    SciTech Connect

    Fung, K.H.

    1999-12-01

    The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.

  8. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  9. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  10. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and

  11. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    DOE PAGESBeta

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; et al

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water solublemore » fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the

  12. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ∼34% in the accumulation vs. ∼47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ∼70%, while efflorescence occurred at different humidities, i.e., at ∼35% RH for submicron particles vs. ∼50% RH for supermicron particles. This ∼15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ∼0.15 for

  13. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-08-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws

  14. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  15. Satellite Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Robles Gonzalez, C.; Kusmierczyk-Michulec, J.; Decae, R.

    SATELLITE RETRIEVAL of AEROSOL PROPERTIES G. de Leeuw, C. Robles Gonzalez, J. Kusmierczyk-Michulec and R. Decae TNO Physics and Electronics Laboratory, The Hague, The Netherlands; deleeuw@fel.tno.nl Methods to retrieve aerosol properties over land and over sea were explored. The dual view offered by the ATSR-2 aboard ERS-2 was used by Veefkind et al., 1998. The retrieved AOD (aerosol optical depth) values compare favourably with collocated sun photometer measurements, with an accuracy of 0.06 +/- 0.05 in AOD. An algorithm developed for GOME on ERS-2 takes advantage of the low surface reflection in the UV (Veefkind et al., 2000). AOD values retrieved from ATSR-2 and GOME data over western Europe are consistent. The results were used to produce a map of mean AOD values over Europe for one month (Robles-Gonzalez et al., 2000). The ATSR-2 is al- gorithm is now extended with other aerosol types with the aim to apply it over the In- dian Ocean. A new algorithm is being developed for the Ozone Monitoring Instrument (OMI) to be launched in 2003 on the NASA EOS-AURA satellite. It is expected that, based on the different scattering and absorption properties of various aerosol types, five major aerosol classes can be distinguished. The experience with the retrieval of aerosol properties by using several wavelength bands is used to develop an algorithm for Sciamachy to retrieve aerosol properties both over land and over the ocean which takes advantage of the wavelengths from the UV to the IR. The variation of the AOD with wavelength is described by the Angstrom parameter. The AOD and the Angstrom parameter together yield information on the aerosol size distribution, integrated over the column. Analysis of sunphotometer data indicates a relation between the Angstrom parameter and the mass ratio of certain aerosols (black carbon, organic carbon and sea salt) to the total particulate matter. This relation has been further explored and was applied to satellite data over land to

  16. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  17. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    NASA Astrophysics Data System (ADS)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  18. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    Ice particles are ubiquitous in the atmosphere existing as the sole constituents of glaciated cirrus clouds or coexisting with supercooled liquid droplets in mixed-phase clouds. Aerosol particles serving as heterogeneous ice nuclei for ice crystal formation impact the global radiative balance by modification of cloud radiative properties, and thus climate. Atmospheric ice formation is not a well understood process and represents great uncertainty for climate prediction. The oceans which cover the majority of the earth's surface host nearly half the total global primary productivity and contribute to the greatest aerosol production by mass. However, the effect of biological activity on particle aerosolization, particle composition, and ice nucleation is not well established. This dissertation investigates the link between marine biological activity, aerosol particle production, physical/chemical particle characteristics, and ice nucleation under controlled laboratory conditions. Dry and humidified aerosol size distributions of particles from bursting bubbles generated by plunging water jets and aeration through frits in a seawater mesocosm containing bacteria and/or phytoplankton cultures, were measured as a function of biological activity. Total particle production significantly increases primarily due to enhanced aerosolization of particles ≤100 nm in diameter attributable to the presence and growth of phytoplankton. Furthermore, hygroscopicity measurements indicate primary organic material associated with the sea salt particles, providing additional evidence for the importance of marine biological activity for ocean derived aerosol composition. Ice nucleation experiments show that these organic rich particles nucleate ice efficiently in the immersion and deposition modes, which underscores their importance in mixed-phase and cirrus cloud formation processes. In separate ice nucleation experiments employing pure cultures of Thalassiosira pseudonana, Nannochloris

  19. The Life Cycle of Stratospheric Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Jensen, Eric J.; Russell, P. B.; Bauman, Jill J.

    1997-01-01

    This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The particles remain in the Tropics for most of their life, and during this period of time a size distribution is developed by a combination of coagulation, growth by heteromolecular condensation, and mixing with air parcels containing preexisting sulfate particles. The aerosol eventually migrates to higher latitudes and descends across isentropic surfaces to the lower stratosphere. The aerosol is removed from the stratosphere primarily at mid- and high latitudes through various processes, mainly by isentropic transport across the tropopause from the stratosphere into the troposphere.

  20. Submicron Aerosol Particle Losses in Metalized Bags.

    NASA Astrophysics Data System (ADS)

    Lecinski, Alice

    1980-07-01

    Two new types of conducting bags were tested for aerosol particle storage and sampling, a 3M Company Velostat bag and a bag constructed from 3M Type 2100 Static Shielding Film. The half-lives of unipolar, unit-charged 0.025 m, 0.050 m and 0.090 m sized aerosol particles stored in the Velostat bag and the film bag were 130, 190 and 270 min and 40, 70 and 180 min, respectively. These results depend upon the history of bag filling. The values given here apply to bags which had not previously been filled on the day of experimentation. The lifetimes exhibited by the aerosol particles stored in the Velostat bag are the longest found to data.

  1. Exploring Atmospheric Aerosol Chemistry with Advanced High-Resolution Mass Spectrometry and Particle Imaging Methods

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.

    2014-12-01

    Physical and chemical complexity of atmospheric aerosols presents significant challenges both to experimentalists working on aerosol characterization and to modelers trying to parameterize critical aerosol properties. Multi-modal approaches that combine state-of-the-art experimental, theoretical, and modeling methods are becoming increasingly important in aerosol research. This presentation will discuss recent applications of unique high-resolution mass spectrometry and particle imaging tools developed at two Department of Energy's user facilities, the Environmental Molecular Science Laboratory (EMSL) and Advanced Light Source (ALS), to studies of molecular composition, photochemical aging, and properties of laboratory-generated and field aerosols. Specifically, this presentation will attempt to address the following questions: (a) how do NO2, SO2, and NH3 affect molecular level composition of anthropogenic aerosols?; (b) what factors determine viscosity/surface tension of organic aerosol particles?; (c) how does photolysis affect molecular composition and optical properties of organic aerosols?

  2. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  3. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  4. Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J. F.

    2015-03-01

    Secondary organic aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber. The SOA formation and aging were studied by following their optical, hygroscopic and chemical properties. The optical properties were investigated by determining the particle complex refractive index (CRI). The hygroscopicity was quantified by measuring the effect of relative humidity (RH) on the particle size (size growth factor, GF) and on the scattering coefficient (scattering growth factor, f(RH)). The oxygen to carbon atomic ratios (O : C) of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition during their formation and aging in CESAM. The real CRI at 525 nm wavelength decreased from 1.43-1.60 (±0.02) to 1.32-1.38 (±0.02) during the SOA formation. The decrease in the real CRI correlated to the O : C decrease from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF remained roughly constant over the reaction time, with values of 1.02-1.07 (±0.02) at 90% (±4.2%) RH. Simultaneous measurements of O : C of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but contained less oxidised species at the surface which may limit water absorption. In addition, an apparent change in both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 14 h of reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.

  5. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  6. Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a Central European mountain site during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Roth, A.; Schneider, J.; Klimach, T.; Mertes, S.; van Pinxteren, D.; Herrmann, H.; Borrmann, S.

    2015-09-01

    Cloud residues and out-of-cloud aerosol particles with diameters between 150 and 900 nm have been analysed by on-line single particle aerosol mass spectrometry during the six-week study HCCT-2010 in September/October 2010. The measurement location was the mountain Schmücke (937 m a.s.l.) in Central Germany. More than 170 000 bipolar mass spectra from out-of-cloud aerosol particles and more than 14 000 bipolar mass spectra from cloud residual particles were obtained and were classified using a fuzzy c-means clustering algorithm. Analysis of the uncertainty of the sorting algorithm was conducted on a subset of the data by comparing the clustering output with particle-by-particle inspection and classification by the operator. This analysis yielded a false classification probability between 13 and 48 %. Additionally, particle types were identified by specific marker ions. The results from the ambient aerosol analysis show that 63 % of the analysed particles belong to clusters indicating a diurnal variation, suggesting that local or regional sources dominate the aerosol, especially for particles containing soot and biomass burning particles. In the cloud residues the relative percentage of large soot-containing particles and particles containing amines was found to be increased compared to the out-of-cloud aerosol, while in general organic particles were less abundant in the cloud residues. In the case of amines this can be explained by the high solubility of the amines, while the large soot-containing particles were found to be internally mixed with inorganics, which explains their activation as cloud condensation nuclei. Furthermore, the results show that during cloud processing, both sulphate and nitrate are added to the residual particles, thereby changing the mixing state and increasing the fraction of particles with nitrate and/or sulphate. This is expected to lead to higher hygroscopicity after cloud evaporation, and therefore to an increase of the particles

  7. Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Roth, A.; Schneider, J.; Klimach, T.; Mertes, S.; van Pinxteren, D.; Herrmann, H.; Borrmann, S.

    2016-01-01

    Cloud residues and out-of-cloud aerosol particles with diameters between 150 and 900 nm were analysed by online single particle aerosol mass spectrometry during the 6-week study Hill Cap Cloud Thuringia (HCCT)-2010 in September-October 2010. The measurement location was the mountain Schmücke (937 m a.s.l.) in central Germany. More than 160 000 bipolar mass spectra from out-of-cloud aerosol particles and more than 13 000 bipolar mass spectra from cloud residual particles were obtained and were classified using a fuzzy c-means clustering algorithm. Analysis of the uncertainty of the sorting algorithm was conducted on a subset of the data by comparing the clustering output with particle-by-particle inspection and classification by the operator. This analysis yielded a false classification probability between 13 and 48 %. Additionally, particle types were identified by specific marker ions. The results from the ambient aerosol analysis show that 63 % of the analysed particles belong to clusters having a diurnal variation, suggesting that local or regional sources dominate the aerosol, especially for particles containing soot and biomass burning particles. In the cloud residues, the relative percentage of large soot-containing particles and particles containing amines was found to be increased compared to the out-of-cloud aerosol, while, in general, organic particles were less abundant in the cloud residues. In the case of amines, this can be explained by the high solubility of the amines, while the large soot-containing particles were found to be internally mixed with inorganics, which explains their activation as cloud condensation nuclei. Furthermore, the results show that during cloud processing, both sulfate and nitrate are added to the residual particles, thereby changing the mixing state and increasing the fraction of particles with nitrate and/or sulfate. This is expected to lead to higher hygroscopicity after cloud evaporation, and therefore to an increase of

  8. Hygroscopic growth of aerosol particles in the Po Valley

    NASA Astrophysics Data System (ADS)

    Svenningsson, I. B.; Hansson, H.-C.; Wiedensohler, A.; Ogren, J. A.; Noone, K. J.; Hallberg, A.

    1992-11-01

    A Tandem Differential Mobility Analyser (TDMA) was used to study the hygroscopic growth of individual ambient aerosol particles in the Po Valley, Italy. The measurements were made during the GCE fog experiment in November 1989. During fog, the interstitial aerosol (Dp(at ambient relative humidity)<5µm) was sampled. Two modes of particles with different hygroscopic growth were found for 0.030µmparticles in the two modes were almost equal. The mean growth factor at 85% r.h. was 1.44±0.14 for the more-hygroscopic mode and 1.1±0.07 for the less-hygroscopic mode. The growth factors and the proportion of the particles that were less hygroscopic varied considerably from day to day, but no significant size dependence was seen. Comparison of growth factors for pure salt particles and the measured growth factors indicates that both hygroscopic modes contain a major insoluble part. The effect of the external mixing of hygroscopic properties on the activation of particles to fog droplets is discussed and the fraction of particles that were activated as a function of particle size is predicted. Comparison with the measured scavenging fraction as a function of particle size shows that the hygroscopic properties of the individual particle are as important as the particle size in determining if it will be activated in a fog.

  9. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution. PMID:23216158

  10. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; Schladitz, Alexander; Von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  11. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGESBeta

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; et al

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  12. SCAVENGING OF AEROSOL PARTICLES BY PRECIPITATION

    EPA Science Inventory

    Airborne measurements have been made of aerosol particle size distributions (>0.01 micrometer) in aged air masses, in the plumes from several coal power plants and a large Kraft paper mill, and in the emissions from a volcano, before and after rain or snow showers. These measurem...

  13. Aerosol particle analysis by Raman scattering technique

    SciTech Connect

    Fung, K.H.; Tang, I.N.

    1992-10-01

    Laser Raman spectroscopy is a very versatile tool for chemical characterization of micron-sized particles. Such particles are abundant in nature, and in numerous energy-related processes. In order to elucidate the formation mechanisms and understand the subsequent chemical transformation under a variety of reaction conditions, it is imperative to develop analytical measurement techniques for in situ monitoring of these suspended particles. In this report, we outline our recent work on spontaneous Raman, resonance Raman and non-linear Raman scattering as a novel technique for chemical analysis of aerosol particles as well as supersaturated solution droplets.

  14. The hygroscopicity of indoor aerosol particles

    SciTech Connect

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH{sub 4}){sub 2}SO{sub 4}, and (NH{sub 4})HS0{sub 4} particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components.

  15. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  16. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the

  17. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  18. Composition and formation of organic aerosol particles in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Wiedemann, K.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Artaxo, P.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R. C.; Smith, M.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O.

    2012-04-01

    We applied scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-NEXAFS) analysis to investigate the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a natural background aerosol. The samples were found to be dominated by secondary organic aerosol (SOA) particles in the fine and primary biological aerosol particles (PBAP) in the coarse mode. Lab-generated SOA-samples from isoprene and terpene oxidation as well as pure organic compounds from spray-drying of aqueous solution were measured as reference samples. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol in the submicron size range and its internal mixing state. The lab-generated SOA and pure organic compounds occurred as spherical and mostly homogenous droplet-like particles, whereas the Amazonian SOA particles comprised a mixture of homogeneous droplets and droplets having internal structures due to atmospheric aging. In spite of the similar morphological appearance, the Amazon samples showed considerable differences in elemental and functional group composition. According to their NEXAFS spectra, three chemically distinct types of organic material were found and could be assigned to the following three categories: (1) particles with a pronounced carboxylic acid (COOH) peak similar to those of laboratory-generated SOA particles from terpene oxidation; (2) particles with a strong hydroxy (COH) signal similar to pure carbohydrate particles; and (3) particles with spectra resembling a mixture of the first two classes. In addition to the dominant organic component, the NEXAFS spectra revealed clearly resolved potassium (K) signals for all analyzed particles. During the rainy season and in the absence of anthropogenic influence, active biota is

  19. EFFECTS OF SURFACE PROPERTIES OF COLLECTORS ON THE REMOVAL OF CHARGED AND UNCHARGED PARTICLES FROM AEROSOL SUSPENSIONS

    EPA Science Inventory

    The literature on the adhesion of particles impacting on solid and liquid collectors was reviewed. Different forces or mechanisms affecting collision and adhesion of particles with collectors were described. Good qualitative agreement existed between experiment and theory in the ...

  20. Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Hong, J.; Kim, J.; Nieminen, T.; Duplissy, J.; Ehn, M.; Äijälä, M.; Hao, L. Q.; Nie, W.; Sarnela, N.; Prisle, N. L.; Kulmala, M.; Virtanen, A.; Petäjä, T.; Kerminen, V.-M.

    2015-10-01

    Measurements of the hygroscopicity of 15-145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a high-resolution aerosol mass spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGForg), fitted using the inverse Zdanovskii-Stokes-Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics concentration (ELVOC) and the HGF of particles of any size.

  1. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    SciTech Connect

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode.

    The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments.

    The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was

  2. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  3. Trends in the aerosol load properties over south eastern Italy

    NASA Astrophysics Data System (ADS)

    Orza, J. A. G.; Perrone, M. R.

    2015-12-01

    The long-term (2003-2013) variations in columnar aerosol properties at Lecce, a site representative of the central Mediterranean, have been analysed for trend assessment. The study focuses on aerosol optical thickness (AOT) at 340, 440, 500 and 1020 nm and Ångström exponent (AE) for the pair 440-870 nm, retrieved from a sun photometer operating within the Aerosol Robotic Network (AERONET). A non-parametric trend analysis of the monthly mean, median and upper and lower tails (90th and 10th percentiles) suggests that the aerosol load has decreased during the study period, while the mean particle size remained unchanged. The characteristic advections reaching the study site were found by clustering analysis of back trajectories at 500, 1500 and 3000 m. Despite the strong influence they have on aerosol load and particle size, neither of the trends in advection routes could explain the tendencies found in the columnar aerosol properties. However, trends in aerosol data by advection type allow understanding the overall trends. Aerosol properties under flows with high residence time over continental Europe present differences according to the specific residing area. More specifically, no trend is found when flows arrive from Ukraine and the Balkans, while under advections from north-western/central Europe there are downward trends in the background levels and a reduction of the fine fraction. Negative trends are also found under flows with high residence time over the Mediterranean and northern Africa, again with differences according to the residing area.

  4. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  5. Condensation on Aerosol Particles and its Inhibition.

    NASA Astrophysics Data System (ADS)

    Liu, Peter Shen King

    The atmospheric aerosol is of primary importance in the formation of precipitation. Except in the neighbourhood of large sources of pollution most of the atmospheric particles are of natural origin, but human contribution is increasing at such a rate that within a comparatively short time it may equal nature's. Such an increase in the atmospheric particulate load may have significant effects on the distribution and intensity of precipitation. There is a general perception that most of the atmospheric particulate load is soluble in water or has some soluble component and soluble particles condense water more readily than insoluble. In this work a study is made of the solubility of the atmospheric aerosol at various relative humidities. The results confirm that much of the atmospheric aerosol is indeed soluble, but that the soluble proportion is highly variable. This result has significant implications for studies of air pollution in which the respirable fraction of the atmospheric aerosol is deduced from the results of long term dichotomous sampling. Results are also presented of studies in which an attempt was made to inhibit the condensation of water on man-made and adventitious particles with a view to modifying their possible climatic effects. This work has demonstrated that certain agents, notably long chain amines, do indeed have an inhibiting effect on the condensation of water on particles which have been exposed to them, but that the effect of the agents so far tested is not sufficiently great to be of immediate practical importance. It is concluded that further advances must await more precise methods of producing small supersaturations reliably and reproducibly.

  6. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  7. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  8. Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Hong, J.; Kim, J.; Nieminen, T.; Duplissy, J.; Ehn, M.; Äijälä, M.; Hao, L.; Nie, W.; Sarnela, N.; Prisle, N. L.; Kulmala, M.; Virtanen, A.; Petäjä, T.; Kerminen, V.-M.

    2015-06-01

    Measurements of the hygroscopicity of 15-145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-AeroSOIs-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a High-Resolution Aerosol Mass Spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGForg), fitted using the inverse Zdanovskii-Stokes-Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more there was sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics (ELVOCs) concentration and the HGF of particles of any size.

  9. Studies of Ice Nucleating Aerosol Particles in Arctic Cloud Systems

    NASA Technical Reports Server (NTRS)

    Rogers, David C.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2001-01-01

    The focus of this research is to improve the understanding of ice nucleating aerosol particles (IN) and the role they play in ice formation in Arctic clouds. IN are important for global climate issues in a variety of ways. The primary effect is their role in determining the phase (liquid or solid) of cloud particles. The microscale impact is on cloud particle size, growth rate, shape, fall speed, concentration, radiative properties, and scavenging of gases and aerosols. On a larger scale, ice formation affects the development of precipitation (rate, amount, type, and distribution), latent heat release (rate and altitude), ambient humidity, the persistence of clouds, and cloud albedo. The overall goals of our FIRE 3 research are to characterize the concentrations and variability of Arctic IN during the winter-spring transition, to compare IN measurements with ice concentrations in Arctic clouds, and to examine selected IN samples for particle morphology and chemical there are distinguishable chemical signatures. The results can be combined with other measurements of aerosols, gaseous species, and cloud characteristics in order to understand the processes that determine the phase and concentration of cloud particles.

  10. Chemical evolution of multicomponent aerosol particles during evaporation

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete

    2010-05-01

    Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols

  11. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  12. PHOTOACOUSTIC DETERMINATION OF OPTICAL PROPERTIES OF AEROSOL PARTICLES COLLECTED ON FILTERS: DEVELOPMENT OF A METHOD TAKING INTO ACCOUNT SUBSTRATE REFLECTIVITY

    EPA Science Inventory

    The absorptivity and imaginary index of refraction for carbon and methylene blue particles were inferred from the photoacoustic spectra of samples collected on Teflon filter substrates. Three models of varying complexity were developed to describe the photoacoustic signal as a fu...

  13. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate

  14. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  15. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  16. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  17. Improving satellite retrieved aerosol microphysical properties using GOCART data

    NASA Astrophysics Data System (ADS)

    Li, S.; Kahn, R.; Chin, M.; Garay, M. J.; Chen, L.; Liu, Y.

    2014-09-01

    The Multi-Angle Imaging Spectro-Radiometer (MISR) instrument on NASA's Terra satellite can provide more reliable Aerosol Optical Depth (AOD, τ) and more particle information, such as constraints on particle size (Angström exponent or ANG, α), particle shape, and single-scattering albedo (SSA, ω), than many other satellite instruments. However, MISR's ability to retrieve aerosol properties is weakened at low AOD levels. When aerosol-type information content is low, many candidate aerosol mixtures can match the observed radiances. We propose an algorithm to improve MISR aerosol retrievals by constraining MISR mixtures' ANG and absorbing AOD (AAOD) with Goddard Chemistry Aerosol Radiation and Transport (GOCART) model-simulated aerosol properties. To demonstrate this approach, we calculated MISR aerosol optical properties over the contiguous US from 2006 to 2009. Sensitivities associated with the thresholds of MISR-GOCART differences were analyzed according to the agreement between our results (AOD, ANG, and AAOD) and AErosol RObotic NETwork (AERONET) observations. Overall, our AOD has a good agreement with AERONET because the MISR AOD retrieval is not sensitive to different mixtures under many retrieval conditions. The correlation coefficient (r) between our ANG and AERONET improves to 0.45 from 0.29 for the MISR Version 22 standard product and 0.43 for GOCART when all data points are included. However, when only cases having AOD > 0.2, the MISR product itself has r ~ 0.40, and when only AOD > 0.2 and the best-fitting mixture are considered, r ~ 0.49. So as expected, the ANG improvement occurs primarily when the model constraint is applied in cases where the particle type information content of the MISR radiances is low. Regression analysis for AAOD shows that MISR Version 22 and GOCART misestimate AERONET by a ratio (mean retrieved AAOD to mean AERONET AAOD) of 0.5; our method improves this ratio to 0.74. Large discrepancies are found through an inter

  18. Photoacoustic determination of optical properties of aerosol particles collected on filters: development of a method taking into account substrate reflectivity.

    PubMed

    Röhl, R; McClenny, W A; Palmer, R A

    1982-02-01

    The absorptivity of soot and methylene blue particles collected on Teflon filters is derived from photoacoustic measurements by least squares fitting a simple expression based on Beer's law to the experimental data. Refinements of the expression take into account the diffuse reflection of light by the filter substrate, yielding a base 10 absorptivity at 600 nm for soot of 3.00 +/- 0.37 m(2)/g. This value is in close agreement with the result of transmission measurements performed on the same samples (3.08 +/- 0.05 m(2)/g). PMID:20372465

  19. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  20. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  1. Review of particle properties

    SciTech Connect

    Wohl; Cahn, R.N.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Porter, F.; Hernandez, J.J.; Montanet, L.; Hendrick, R.E.; Crawford, R.L.

    1984-04-01

    This review of the properties of leptons, mesons, and baryons is an updating of the Review of Particle Properties, Particle Data Group (Phys. Lett. 111B (1982)). Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available.

  2. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  3. Aerosol optical properties of the free troposphere: Tropospheric backscatter climatology

    NASA Astrophysics Data System (ADS)

    Rosen, James M.

    1994-12-01

    A unique ensemble of aerosol sensors (backscattersondes, nephelometers and particle counters) has been assembled during the course of this research to obtain new measurements relating to the optical properties of aerosols in the atmosphere, especially in the free troposphere. A knowledge of the aerosol extinction-to-backscatter ratio has been greatly enhanced as a result of this project and the inference of representative values along with the range of variation is now possible. Agreement between the optical model results and actual measurements appears to be quite satisfactory. An initial climatology of aerosol backscatter in the free troposphere has been developed and is in general agreement with results and inferences from global remote sensing instruments. However, the data from remote sensors may indicate a larger influence of volcanic aerosols on the upper troposphere than actually exists. Further work with high resolution soundings is needed to fully resolve this issue.

  4. Oxodicarboxylic acids in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Römpp, Andreas; Winterhalter, Richard; Moortgat, Geert K.

    Fine mode aerosol was collected on quartz fiber filters at several sites across Europe. These samples were analyzed for carboxylic acids by liquid chromatography coupled to a hybrid (quadrupole and time-of-flight) mass spectrometer (LC/MS/MS-TOF). A series of oxodicarboxylic acids (C 7-C 11) was detected. Oxodicarboxylic acids are linear dicarboxylic acids with an additional carbonyl group. Previous measurements of these acids are scarce and their sources are largely unknown. Several structural isomers (different positions of the carbonyl group within the molecule) could be identified and differentiated by the combination of laboratory experiments and high mass accuracy measurements. The homologs with 9-11 carbon atoms were identified for the first time in atmospheric aerosol particles. The concentrations of oxodicarboxylic acids in ambient aerosol samples frequently exceeded those of the corresponding unsubstituted dicarboxylic acids. Oxodicarboxylic acids have been shown to be products of the reaction of dicarboxylic acids with OH radicals in chamber experiments and a reaction mechanism is proposed. Good correlation of oxodicarboxylic acid and hydroxyl radical concentrations was found at two measurement sites (Finland and Crete) of different geographic location and meteorological conditions. The ratios of individual isomers from the field samples are comparable to those of the laboratory experiments. The results of this study imply that the reaction of OH radicals and dicarboxylic acids is an important pathway for the production of oxodicarboxylic acids in the atmosphere. Oxodicarboxylic acids seem to be important intermediates in atmospheric oxidation processes of organic compounds.

  5. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol

    PubMed Central

    2015-01-01

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle–particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle–particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  6. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  7. Retrieval of Stratospheric Aerosol Properties from SCIAMACHY limb observations

    NASA Astrophysics Data System (ADS)

    Doerner, S.; Kühl, S.; Pukite, J.; Penning de Vries, M. J.; Hoermann, C.; von Savigny, C.; Deutschmann, T.; Wagner, T.

    2012-12-01

    Since the start of the Stratospheric Aerosol Measurement program in 1975 satellites have been improving our understanding of the global distribution of trace gases, clouds and aerosols. Observations in occultation and limb geometry provide profile information on stratospheric aerosol, which have an important influence on the global radiation budget (e.g., after strong volcanic eruptions) and the stratospheric ozone chemistry (e.g., the chlorine activation inside the polar vortex). The Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) on ENVISAT performed measurements in limb geometry for almost ten years between 2002 and 2012. Its vertical resolution of about 3.3 km at the tangent point and the broad spectral range (UV/VIS/NIR) allow to retrieve profile information of stratospheric trace gases (e.g., O3, NO2, BrO or OClO) and stratospheric aerosol properties. Pioneering studies (e.g., Savigny et al., 2005) showed that in particular from color indices (including the near IR spectral range) signatures of stratospheric aerosols and polar stratospheric clouds (PSCs) can be retrieved. In our study we investigate the sensitivity of SCIAMACHY's broad spectral range to aerosol particle properties by comparing measured spectra with simulated results from the 3D full spherical Monte Carlo Atmospheric Radiative Transfer Model McArtim. In particular, we focus on the absorption properties in the UV spectral range, the extinction coefficient and the Angström exponent. The final aim of our study is to use SCIAMACHY limb measurements for the profile retrieval of optical parameters (e.g., absorption and phase function) from which microphysical properties (e.g., mean aerosol particle diameter) of the stratospheric aerosol particles can be deduced.

  8. Sources and composition of urban aerosol particles

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass <1 μm Dp (PM1) with water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses <0.6 μm Dp. The chemical analysis did not include carbonaceous compounds, but based on the difference between the total mass concentration and the sum of the analyzed non-carbonaceous materials, it can be assumed that the non-volatile particulate material (heated to 300 °C) consists mainly of carbonaceous compounds, including elemental carbon. Furthermore, it was found that the non-volatile particle fraction <0.6 μm Dp correlated (r2 = 0.4) with the BC concentration at roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4±1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and

  9. Sizing of individual aerosol particles using TAOS (Two-dimensional Angular Optical Scattering) pattern total intensity

    NASA Astrophysics Data System (ADS)

    Zallie, J. T.; Aptowicz, K. B.; Martin, S.; Pan, Y.

    2015-12-01

    The morphology of single aerosol particles has been explored previously using the TAOS (Two-dimensional Angular Optical Scattering) technique, which captures angularly resolved scattering patterns. Particle size is known to strongly influence the light scattering properties of aerosols and therefore is a critical parameter to discern from the TAOS patterns. In this work, T-matrix simulation of light scattering from spherical and spheroidal particles is used to explore the possibility of sizing particles from the total light scattering signal detected using the TAOS technique. Scattering patterns were calculated for particles that span various particle sizes, spheroidal shapes, complex refractive indices and particles orientations representative of atmospheric aerosol distributions. A power law relationship between particle size and total scattering intensity was found that could crudely size particles but with significant error.

  10. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  11. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ardon-Dryer, K.; Cziczo, D. J.

    2013-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed 'collection' or 'coagulation'. Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing at temperatures below 0 C. Theoretical studies have shown that for aerosol particles smaller than 0.1 micrometers, Brownian motion is important, and for particles with diameters larger than 1 micrometer, inertial force dominates. There is a collection efficiency minimum for particles between 0.1-2 micrometers, called the 'Greenfield Gap'. Experimental efforts, however, have been limited to very large drizzle and rain drops until recently, and constrained parameters necessary to describe particle collection efficiency by cloud droplets have not been available. One reason is that laboratory setups that allow for coagulation to be observed on a single-particle basis have been lacking. Collection efficiency is also an important parameter for studying and assessing contact ice nucleation. Contact ice nucleation is currently the least understood ice nucleation mechanism and can be potentially important for mixed-phase cloud formation. The significance of experimentally assessing collection efficiency is therefore two-fold: to first understand the frequency of contacts and to then understand the fraction that lead to ice nucleation. We have constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study collection efficiency of submicron aerosol particles by cloud droplets and contact freezing. A stream of 30-micron cloud droplets fall freely into the chamber and collide with aerosol particles. The outflow

  12. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  13. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  14. Optical and radiative-transfer properties of mixed atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Degheidy, A. R.; Sallah, M.; Elgarayhi, A.; Shaaban, S. M.

    2015-04-01

    The optical and radiative-transfer properties of mixed atmospheric aerosols have been investigated. The aerosol medium is considered as a plane-parallel anisotropic scattering medium with diffusive reflecting boundaries and containing an internal radiation source. The basic components are defined by their complex refractive index, a lognormal size distribution and humidity dependence in hygroscopic particles. The aerosol particles are assumed to be spherical, so the scattering parameters in the form of single scattering albedo, asymmetry factor, scattering, absorption, extinction efficiencies and linear anisotropic coefficient are calculated using the Mie theory. The calculations have been performed for individual aerosol particles, internal and external mixing media. Radiation transfer problem through the considered aerosol medium has been solved in terms of the solution of the corresponding source-free problem with simple boundary conditions. For the solution of the source-free problem, the Variational Pomraning-Eddington technique has been employed. The variation of the radiative-transfer properties (partial radiative fluxes at the medium boundaries) have been calculated and represented graphically for the different aerosols with their different mixing states. A comparison of the obtained results versus available published data has been performed and a very good agreement was observed.

  15. Aerosol Properties From Multi-angle Satellite Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.; Martonchik, J. V.; Diner, D. J.; Chen, W. A.; Gaitley, B. J.; Kalashnikova, O. V.; Liu, Y.; Team, T.

    2005-12-01

    Based on pre-launch simulations, we expected that data from the multi-angle, multi-spectral MISR instrument aboard NASA's Terra satellite would contain, in addition to aerosol optical depth (AOT), information about particle size, shape, and single-scattering albedo (SSA). Such information would add a great deal to the global aerosol picture that satellites provide, allowing more meaningful assessments of aerosol direct radiative impact, source attribution, material fluxes, and possibly indirect effects of aerosols on clouds. But particle micro-physical property retrievals are much more difficult to validate than AOT, since there are significant uncertainties in aerosol size, and especially shape and SSA, retrieved from surface-based sun photometers, whereas instrumented aircraft must fly complex patterns to adequately sample all aerosol layers in the entire column seen simultaneously by MISR. Our multi-faceted validation effort, which makes use of ground-based AERONET sun photometers as well as coincident satellite and intensive field observations, has allowed us to quantify MISR data sensitivity to these aerosol micro-physical properties over dark water, and in a few situations, over land. In broad terms, over dark water MISR can distinguish three-to-five aerosol size bins between about 0.1 and 2.5 microns effective diameter, spherical vs. non-spherical particle shapes, plates from grains from spheroids at least in some cases, and two-to-four SSA groupings between 0.75 and 1.0. MISR can also identify several aerosol modes within the column, provided each contributes more than about 20% to the total column mid-visible AOT. These sensitivities diminish for column AOT below about 0.15, and for brighter underlying surfaces. This talk will summarize the current status of the MISR Standard Aerosol Product, the latest MISR Research Aerosol Retrieval validation study results, and our plans for completing aerosol micro-physical property formal validation for the MISR

  16. Optical Properties of Aerosols and Clouds: The Software Package OPAC.

    NASA Astrophysics Data System (ADS)

    Hess, M.; Koepke, P.; Schult, I.

    1998-05-01

    The software package OPAC (Optical Properties of Aerosols and Clouds) is described. It easily provides optical properties in the solar and terrestrial spectral range of atmospheric particulate matter. Microphysical and optical properties of six water clouds, three ice clouds, and 10 aerosol components, which are considered as typical cases, are stored as ASCII files. The optical properties are the extinction, scattering, and absorption coefficients, the single scattering albedo, the asymmetry parameter, and the phase function. They are calculated on the basis of the microphysical data (size distribution and spectral refractive index) under the assumption of spherical particles in case of aerosols and cloud droplets and assuming hexagonal columns in case of cirrus clouds. Data are given for up to 61 wavelengths between 0.25 and 40 m and up to eight values of the relative humidity. The software package also allows calculation of derived optical properties like mass extinction coefficients and Ångström coefficients.Real aerosol in the atmosphere always is a mixture of different components. Thus, in OPAC it is made possible to get optical properties of any mixtures of the basic components and to calculate optical depths on the base of exponential aerosol height profiles. Typical mixtures of aerosol components as well as typical height profiles are proposed as default values, but mixtures and profiles for the description of individual cases may also be achieved simply.

  17. Some Technical Aspects of a CALIOP and MODIS Data Analysis that Examines Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Yang, Weidong; Marshak, Alexander

    2016-01-01

    CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.

  18. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate. PMID:20944744

  19. Impacts of Aminium Sulfates on Atmospheric Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Qiu, C.; Zhang, R.

    2012-12-01

    Atmospheric aerosols influence our environment significantly by interacting with the solar radiation and modifying cloud formation processes. Amines are emitted into the atmosphere from various anthropogenic and biogenic sources. Recent studies have shown that atmospheric amines can enter the particle-phase as salts like aminium sulfates by reacting with aerosol constituents including sulfuric acid and ammonium salts. However, little knowledge is available about the properties of these aminium salts and their impacts on aerosol properties. We have conducted laboratory experiments to measure the hygroscopicity, thermostability, and density of five representative alkylaminium sulfates, using an integrated aerosol analytical system including a tandem differential mobility analyzer and an aerosol particle mass analyzer. When exposed to increasing RH, alkylaminium sulfate aerosols show monotonic growth in size without a well-defined deliquescence point. Aerosols of mixed ammonium-alkylaminium sulfates have deliquescence points lower than that of ammonium sulfate. The measurements of thermostability reveal that dimethylaminium sulfate is the most stable species upon heating. Trimethyl- and triethyl-aminium sulfates volatilize similarly to ammonium sulfate, but exhibit lower volatility than monomethyl- and diethyl-aminium sulfates. The density of alkylaminium sulfates ranges from 1.2 to 1.5 g cm-3, and can be predicted from an empirical model on the basis of the mole ratio of alkyl carbons to total sulfate. Our results suggest that the properties of aerosols may be considerably altered by the incorporation of atmospheric amines through heterogeneous reactions. In particular, these processes may lead to an enhanced water uptake at low RH and considerably change the contribution of aerosols to climate forcing.

  20. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  1. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  2. Physical properties of the stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1973-01-01

    A comparison of the equilibrium vapor pressure over nitric acid solutions with observed water and nitric acid partial pressures in the stratosphere implies that nitric acid cannot be present as an aerosol particle in the lower stratosphere. A similar comparison for sulfuric acid solutions indicates that sulfuric acid aerosol particles are 75% H2SO4 by weight in water, in good agreement with direct observations. The freezing curve of H2SO4 solutions requires that the H2SO4 aerosol particles be solid or supercooled. The equilibrium vapor pressure of H2SO4 in the stratosphere is of the order of 20 picotorr. At stratospheric temperatures, ammonium sulfate is in a ferroelectric phase. As a result, polar molecules may form a surface coating on these aerosols, which may be a fertile ground for further chemical reaction.

  3. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Healy, R. M.; Riemer, N.; West, M.; Wang, J. M.; Jeong, C.-H.; Wenger, J. C.; Evans, G. J.; Abbatt, J. P. D.; Lee, A. K. Y.

    2015-11-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particles was 0.02-0.08 and 0.72-0.93, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  4. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGESBeta

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol -Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  5. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  6. Initial size distributions and hygroscopicity of indoor combustion aerosol particles

    SciTech Connect

    Li, W.; Hopke, P.K.

    1993-10-01

    Cigarette smoke, incense smoke, natural gas flames, propane fuel flames, and candle flames are contributors of indoor aerosol particles. To provide a quantitative basis for the modeling of inhaled aerosol deposition pattern, the hygroscopic growth of particles from these five sources as well as the source size distributions were measured. Because the experiments were performed on the bases of particles of single size, it provided not only the averaged particle`s hygroscopic growth of each source, but also the detailed size change for particles of different sizes within the whole size spectrum. The source particle size distribution measurements found that cigarette smoke and incense smoke contained particles in the size range of 100-700 nm, while the natural gas, propane, and candle flames generated particles between 10 and 100 nm. The hygroscopic growth experiments showed that these combustion aerosol particles could grow 10% to 120%, depending on the particle sizes and origins. 18 refs., 15 figs., 3 tabs.

  7. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  8. Aerosol properties over south india during different seasons

    NASA Astrophysics Data System (ADS)

    Sivaprasad, P.; Babu, C. A.; Jayakrishnan, P. R.

    depth and other parameters for the four seasons are studied. The effect of washout by the monsoon rains and the transportation by the winds is done using NCEP/NCAR wind data and TRMM rainfall data. Minimum aod is found in January, February, November and December months for south India. It is found that aerosol optical depth is relatively high during April to September. The anthropogenic aerosols have a higher concentration in the winter and post monsoon seasons. From February there is a gradual decrease in anthropogenic aerosols and minimum is found in May, June and July. The lesser angstrom exponent value in the monsoon period indicates a high fraction of the larger particles. The angstrom exponent values are higher in February and October months. It is clear that during monsoon and summer seasons coarse mode particles contribute more, whereas in winter anthropogenic aerosols contribute more to total aod. Looking at the mass concentration over the land, the value is found to be around 15 µg/cm2 in the winter. In the post monsoon and summer seasons, it is around 20 µg/cm2, but in the monsoon season, the value is around 50 µg/cm2, with exceptional occasions of values up to 70-80 µg/cm2. Wind also plays an important role in the aerosol properties and concentration in south India. Further results will be presented in the paper.

  9. Satellite remote sensing of aerosol and cloud properties over Eurasia

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    surface properties, the surface reflectance can be independently retrieved using the AOD for atmospheric correction. For the retrieval of cloud properties, the SACURA algorithm has been implemented in the ADV/ASV aerosol retrieval suite. Cloud properties retrieved from AATSR data are cloud fraction, cloud optical thickness, cloud top height, cloud droplet effective radius, liquid water path. Aerosol and cloud properties are applied for different studies over the Eurasia area. Using the simultaneous retrieval of aerosol and cloud properties allows for study of the transition from the aerosol regime to the cloud regime, such as changes in effective radius or AOD (aerosol optical depth) to COT (cloud optical thickness). The column- integrated aerosol extinction, aerosol optical depth or AOD, which is primarily reported from satellite observations, can be used as a proxy for cloud condensation nuclei (CCN) and hence contains information on the ability of aerosol particles to form clouds. Hence, connecting this information with direct observations of cloud properties provides information on aerosol-cloud interactions.

  10. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    PubMed Central

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2014-01-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March–May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls. PMID:24707452

  11. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  12. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  13. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  14. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  15. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  16. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  17. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  18. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  19. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-06-01

    A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size-resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1-CARMA is approximately ˜2.6 times as much computer time as the standard three-mode aerosol model in CESM1 (CESM1-MAM3) and twice as much computer time as the seven-mode aerosol model in CESM1 (CESM1-MAM7) using similar gas phase chemistry codes. Aerosol spatial-temporal distributions are simulated and compared with a large set of observations from satellites, ground-based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ˜32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

  20. Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles

    SciTech Connect

    Zelenyuk, Alla; Imre, D.

    2009-09-10

    The behavior of small aerosol particles depends on a number of their physical and chemical properties, many of which are strongly coupled. The size, internal composition, density, shape, morphology, hygroscopicity, index of refraction, activity as cloud condensation nuclei and ice nuclei, and other attributes of individual particles - all play a role in determining particle properties and their impacts. The traditional particle characterization approaches rely on separate parallel measurements that average over an ensemble of particles of different sizes and/or compositions and later attempt to draw correlations between them. As a result such studies overlook critical differences between particles and bulk and miss the fact that individual particles often exhibit major differences. Here we review the recently developed methods to simultaneously measure in-situ and in real time several of the attributes for individual particles using single particle mass spectrometer, SPLAT or its second generation SPLAT II. We also discuss novel approaches developed for classification, visualization and mining of large datasets produced by the multidimensional single particle characterization.

  1. Heterogeneous Photochemistry and Optical Properties of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Grassian, Vicki

    2012-02-01

    It is now widely recognized that heterogeneous reactions of mineral dust aerosol with trace atmospheric gases impact the chemical balance of the atmosphere and the physicochemical properties of these particles. Field studies using single particle analysis, have now shown that the chemistry is mineralogy specific and follows the trends expected from laboratory studies. These laboratory studies, which were initiated over a decade ago, have focused on the nighttime chemistry of mineral dust aerosol which is really only ``half'' the story. This talk will focus on two aspects of solar light interaction with mineral dust aerosol. First, the heterogeneous photochemistry of adsorbed chromophores (e.g. nitrate ion) and light absorbing components of mineral dust (iron oxides and titanium dioxide) is discussed. These heterogeneous photochemical reactions are poorly understood and laboratory studies to better quantify these reactions in order to determine the impact on the chemical balance of the atmosphere are needed, as will be discussed. Second, the optical properties of mineral dust aerosol measured by extinction infrared spectroscopy and visible light scattering show that shape effects are extremely important for mineral dust aerosol.

  2. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  3. Influence of shape on the optical properties of hematite aerosol

    NASA Astrophysics Data System (ADS)

    Veghte, Daniel P.; Moore, Justin E.; Jensen, Lasse; Freedman, Miriam Arak

    2015-07-01

    Mineral dust particles are the second highest emitted aerosol type by mass. Due to changes in particle size, composition, and shape that are caused by physical processes and reactive chemistry, optical properties vary during transport, contributing uncertainty in the calculation of radiative forcing. Hematite is the major absorbing species of mineral dust. In this study, we analyzed the extinction cross sections of nigrosin and hematite particles using cavity ring-down aerosol extinction spectroscopy (CRD-AES) and have measured particle shape and size distributions using transmission electron microscopy. Nigrosin was also used in this study as a spherical standard for absorbing particles. The size-selected nigrosin particles have a narrow size distribution, with extinction cross sections that are described by Mie theory. In contrast, the size distribution of size-selected hematite particles is more polydisperse. The extinction cross sections were modeled using Mie theory and the discrete dipole approximation (DDA). The DDA was used to model more complex shapes that account for the surface roughness and particle geometry. Of the four models used, Mie theory was the simplest to implement, but had significant error with a 26.1% difference from the CRD-AES results. By increasing the complexity of the models using the DDA, we determined that spheroids had a 14.7% difference, roughened spheres a 12.8% difference, and roughened spheroids a 11.2% difference from the experimental results. Using additional parameters that account for particle shape is necessary to model the optical properties of hematite particles and leads to improved extinction cross sections for modeling aerosol optical properties.

  4. Remote sensing of aerosol properties during CARES

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Flynn, Connor; Ferrare, Richard; Hostetler, Chris; Hair, John; Jobson, Bertram T.

    2011-11-01

    One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small (~0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 μm) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

  5. Remote Sensing of Aerosol Properties during CARES

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Flynn, Connor J.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Jobson, Bertram Thomas

    2011-10-01

    One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small ({approx}0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 um) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

  6. Inkjet aerosol generator as monodisperse particle number standard

    NASA Astrophysics Data System (ADS)

    Iida, Kenjiro; Sakurai, Hiromu; Ehara, Kensei

    2013-05-01

    Inkjet technology can be applied to generate highly monodisperse aerosol particles in micrometer range at a precisely controlled rate. AIST has been developing an inkjet aerosol generator (AIST-IAG), and the device will soon become the secondary measurement standard for aerosol particle number concentration in 0.35 μm to 10 μm range. The AIST-IAG can generate both solid and liquid particles consisting of water-soluble ionic compounds. We first report the characteristics of the particle sizes of the generated particles. The full width half maximum of the particle size distribution is about 2 percent, and the particle diameter of the IAG particles was calibrated as a function of the particle mass within 0.6-10 μm range using polystyrene latex sphere as reference material. Then we report the capability of the AIST-IAG as the particle number standard. The particle generation efficiency ηIAG was defined as the number of aerosol particles exiting from the AIST-IAG divided by the rate of the droplet generation, and the values of ηIAG within 0.35-10 μm is essentially 100%, and the 95% confidence interval of the values is less than 1%. The result strongly supports that the AISTIAG can be used to calibrate the counting efficiency of the optical particle counters in submicrometer to micrometer range.

  7. The variability of urban aerosol size distributions and optical properties in São Paulo - Brazil: new particle formation events occur at the site

    NASA Astrophysics Data System (ADS)

    Backman, J.; Rizzo, L. V.; Hakala, J.; Nieminen, T.; Manninen, H. E.; Morais, F.; Aalto, P. P.; Siivola, E.; Carbone, S.; Hillamo, R.; Artaxo, P.; Petäjä, T.; Kulmala, M.

    2011-11-01

    The quest to reduce the dependence on fossil fuel has increased the use of bio-ethanol as an additive to gasoline. The metropolitan area of São Paulo (population 20 million) is a unique laboratory to study the ambient aerosol population caused by the use of bio-fuels because 55% of the fuel used is ethanol. The use of ethanol as an additive to fossil fuel is known to increase aldehyde emissions and when photo chemically oxidized, result in smog. In order to characterize this smog problem total particle number concentration, particle number size distribution, light scattering and light absorption measurement equipment were deployed at the University of São Paulo campus area. Here we present the results from three months of measurements from 10 October 2010 to 10 January 2011. The median total particle number concentration for the sub-micron aerosol typically varies between 1×104-3×104 cm-3 frequently exceeding 5×104 cm-3 during the day. Median diurnal values for light absorption and light scattering vary between 12-33 Mm-1 and 21-64 Mm-1, respectively. The hourly median single-scattering albedo varied between 0.63 and 0.85 indicating a net warming effect on a regional scale. A total of ten new particle formation (NPF) events were observed. During these events, growth rates ranged between 9-25 nm h-1. On average, a calculated sulphuric acid vapour abundance of 2.6× 108 cm-3 would have explained the growth with a vapour production rate of 2.8×106 cm-3 s-1 to sustain it. The estimated sulphuric acid concentration, calculated from global irradiance and sulphur dioxide measurements, accounted for only a fraction of the vapour concentration needed to explain the observed growth rates. This indicates that also other condensable vapours participate in the growth process. During the events, the condensation sink was calculated to be 12× 10-3 s-1 on average.

  8. Microspectroscopic Analysis of Anthropogenic- and Biogenic-Influenced Aerosol Particles during the SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Bondy, A. L.; Nhliziyo, M. V.; Bertman, S. B.; Pratt, K.; Shepson, P. B.

    2013-12-01

    During the summer, the southeastern United States experiences a cooling haze due to the interaction of anthropogenic and biogenic aerosol sources. An objective of the summer 2013 Southern Oxidant and Aerosol Study (SOAS) was to improve our understanding of how trace gases and aerosols are contributing to this relative cooling through light scattering and absorption. To improve understanding of biogenic-anthropogenic interactions through secondary organic aerosol (SOA) formation on primary aerosol cores requires detailed physicochemical characterization of the particles after uptake and processing. Our measurements focus on single particle analysis of aerosols in the accumulation mode (300-1000 nm) collected using a multi orifice uniform deposition impactor (MOUDI) at the Centreville, Alabama SEARCH site. Particles were characterized using an array of microscopic and spectroscopic techniques, including: scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and Raman microspectroscopy. These analyses provide detailed information on particle size, morphology, elemental composition, and functional groups. This information is combined with mapping capabilities to explore individual particle spatial patterns and how that impacts structural characteristics. The improved understanding will be used to explore how sources and processing (such as SOA coating of soot) change particle structure (i.e. core shell) and how the altered optical properties impact air quality/climate effects on a regional scale.

  9. Aerosols physical properties at Hada Al Sham, western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.-P.; Hussein, T.; Aaltonen, V.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Almazroui, M.; Almehmadi, F. M.; Al Zawad, F. M.; Hakala, J.; Khoder, M.; Neitola, K.; Petäjä, T.; Shabbaj, I. I.; Hämeri, K.

    2016-06-01

    This is the first time to clearly derive the comprehensive physical properties of aerosols at a rural background area in Saudi Arabia. Aerosol measurements station was established at a rural background area in the Western Saudi Arabia to study the aerosol properties. This study gives overview of the aerosol physical properties (PM10, PM2.5, black carbon and total number concentration) over the measurement period from November 2012 to February 2015. The average PM10 and PM2.5 concentrations were 95 ± 78 μg m-3 (mean ± STD, at ambient conditions) and 33 ± 68 μg m-3 (at ambient conditions), respectively. As expected PM10 concentration was dominated by coarse mode particles (PM10-PM2.5), most probably desert dust. Especially from February to June the coarse mode concentrations were high because of dust storm season. Aerosol mass concentrations had clear diurnal cycle. Lower values were observed around noon. This behavior is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). During the day time the boundary layer is evolving, causing enhanced mixing and dilution leading to lower concentration. PM10 and PM2.5 concentrations were comparable to values measured at close by city of Jeddah. Black carbon concentration was about 2% and 6% of PM10 and PM2.5 mass, respectively. Total number concentration was dominated by frequent new particle formation and particle growth events. The typical diurnal cycle in particle total number concentration was clearly different from PM10 and PM2.5.

  10. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  11. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  12. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2007-06-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. The online measurement data and techniques included: size-resolved chemical composition of submicron particles by aerosol mass spectrometry (AMS); total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm (CPC, SMPS, OPC); monoterpenes determined by gas chromatography- ion trap mass spectrometry; OH and H2SO4 determined by atmospheric pressure chemical ionization mass spectrometry (CIMS). Filter sampling and offline analytical techniques were used to determine: fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: 11% ammonium, 19% nitrate, 20% sulfate, and 50% organics (OM1). In spite of strongly changing meteorological conditions and absolute concentration levels of particulate matter (3-13 μg m-3 PM1), OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. In contrast, the ratio of nitrate to sulfate was highly dependent on temperature (14-32°C) and relative humidity (20-100%), which could be explained by thermodynamic model calculations of NH3/HNO3/NH4NO3 gas-particle partitioning. From the combination of optical and other sizing techniques (OPC, AMS, SMPS), an average refractive index of 1.40-1.45 was inferred for the measured rural aerosol

  13. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  14. Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign

    NASA Astrophysics Data System (ADS)

    Ye, Xingnan; Tang, Chen; Yin, Zi; Chen, Jianmin; Ma, Zhen; Kong, Lingdong; Yang, Xin; Gao, Wei; Geng, Fuhai

    2013-01-01

    The hygroscopic properties of submicrometer urban aerosol particles were studied during the 2009 Mirage-Shanghai Campaign. The urban aerosols were composed of more-hygroscopic and nearly-hydrophobic particles, together with a trace of less-hygroscopic particles. The mean hygroscopicity parameter κ of the more-hygroscopic mode varied in the range of 0.27-0.39 depending on particle size. The relative abundance of the more-hygroscopic particles at any size was ca. 70%, slightly increasing with particle size. The number fraction of the nearly-hydrophobic particles fluctuated between 0.1 and 0.4 daily, in accordance with traffic emissions and atmospheric diffusion. The results from relative humidity dependence on hygroscopic growth and chemical analysis of fine particles indicated that particulate nitrate formation through the homogenous gas-phase reaction was suppressed under ammonia-deficient atmosphere in summer whereas the equilibrium was broken by more available NH3 during adverse meteorological conditions.

  15. New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure

    NASA Astrophysics Data System (ADS)

    Hariyama, Tatsuo; Takaya, Yasuhiro; Miyoshi, Takashi

    2005-11-01

    Aerosol particles with sub-micro meter size inhaled into respiratory systems cause serious damage to human body. In order to evaluate the health effects of the particles, classification methods of the particles with size and mass are needed. Several measurement methods of the particle size are established. However, conventional mass measurement methods are not enough to measure the particles with sub- pico gram. We propose a new mass measurement method of the aerosol particles based on laser trapping. In this method, an optically trapped silica particle is used as a measuring probe particle. The probe particle is trapped at a beam waist of the focused laser light and is forced to vibrate by deflecting the beam waist using AOD. The vibrating probe particle has a resonance frequency because it is governed by the spring-mass-damper system. When an aerosol particle is attached to the probe particle, the resonance frequency shifts according to the increase of the total mass. The mass of the aerosol particle can be measured from the shift of the resonance frequency. Experimentally, it is confirmed that the probe particle is governed by the spring-mass-damper system and has a resonance frequency. When a silica fine particle of 3pg in mass used as an aerosol particle is attached to the probe particle, the resonance frequency shift occurs as expected in the dynamic system and the fine particle mass can be measured based on the proposed method.

  16. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; Halthore, Rangasayi

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  17. Aerosol property retrieval from geostationary observations

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves

    The Meteosat satellites play an important role for the generation of consistent long time series of aerosol properties. This importance relies on (i) the long duration of past (Meteosat First Generation, MFG) starting in 1982, present (Meteosat Second Generation, MSG) and future (Meteosat Third Generation, MTG) missions and (ii) their frequent cycle of acquisition that can be used to document the anisotropy of the surface and therefore the lower boundary condition for aerosol retrieval over land surfaces. Hence, a similar approach is used for the processing of each Meteosat generation based on a joint retrieval of surface reflectance and aerosol properties using an Optimal Estimation approach. Daily accumulation of the frequent Meteosat observations is used to discriminate the radiative effects that result from the surface anisotropy, from those caused by the aerosol scattering. The inverted forward model explicitly accounts for the surface anisotropy and the multiple scattering for the coupled surface-atmosphere system. Pinty et al. (2000) pioneered with the development of an original method to characterise simultaneously surface anisotropy and atmospheric scattering properties for the processing of MFG. Although these observations are limited to one single large VIS band poorly characterised, the main advantage of MFG relies in the duration of the archive (1982 - 2006), knowing that prior to 2000 space observations were very scarce. Despite these radiometric limitations, it is possible to detect major aerosol events like dust storms, fire plumes or pollution events, even over land surfaces. SEVIRI, on-board MSG, offers additional capabilities with its three solar channels and 15 min repeat cycle. AOD retrieval is much more accurate than with MFG and it is possible to discriminate among various aerosol classes. The additional FCI solar channels on-board MTG will offer improved capabilities with respect to MSG/SEVIRI for the retrieval of aerosol concentration and

  18. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  19. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, Arlin K.

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  20. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2008-02-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m-3) and EC (<1 μg m-3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost

  1. A study of remotely sensed aerosol properties from ground-based sun and sky scanning radiometers

    NASA Astrophysics Data System (ADS)

    Giles, David M.

    Aerosol particles impact human health by degrading air quality and affect climate by heating or cooling the atmosphere. The Indo-Gangetic Plain (IGP) of Northern India, one of the most populous regions in the world, produces and is impacted by a variety of aerosols including pollution, smoke, dust, and mixtures of them. The NASA Aerosol Robotic Network (AERONET) mesoscale distribution of Sun and sky-pointing instruments in India was established to measure aerosol characteristics at sites across the IGP and around Kanpur, India, a large urban and industrial center in the IGP, during the 2008 pre-monsoon (April-June). This study focused on detecting spatial and temporal variability of aerosols, validating satellite retrievals, and classifying the dominant aerosol mixing states and origins. The Kanpur region typically experiences high aerosol loading due to pollution and smoke during the winter and high aerosol loading due to the addition of dust to the pollution and smoke mixture during the pre-monsoon. Aerosol emissions in Kanpur likely contribute up to 20% of the aerosol loading during the pre-monsoon over the IGP. Aerosol absorption also increases significantly downwind of Kanpur indicating the possibility of the black carbon emissions from aerosol sources such as coal-fired power plants and brick kilns. Aerosol retrievals from satellite show a high bias when compared to the mesoscale distributed instruments around Kanpur during the pre-monsoon with few high quality retrievals due to imperfect aerosol type and land surface characteristic assumptions. Aerosol type classification using the aerosol absorption, size, and shape properties can identify dominant aerosol mixing states of absorbing dust and black carbon particles. Using 19 long-term AERONET sites near various aerosol source regions (Dust, Mixed, Urban/Industrial, and Biomass Burning), aerosol absorption property statistics are expanded upon and show significant differences when compared to previous work

  2. Continuous air monitor for alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Ortiz, C.A. . Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. )

    1990-01-01

    A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

  3. Modeling of microphysics and optics of aerosol particles in the marine environments

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady

    2013-05-01

    We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0 - 25 m, U = 3 - 18 km s-1, X ≤ 120 km and RH = 40 - 98%. The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied for the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ = 0.2-12 μm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory. The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results. Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.

  4. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A. ); Cass, G.R. . Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  5. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals

    NASA Astrophysics Data System (ADS)

    George, I. J.; Abbatt, J. P. D.

    2010-09-01

    Atmospheric aerosol particles play pivotal roles in climate and air quality. Just as chemically reduced gases experience oxidation in the atmosphere, it is now apparent that solid and liquid atmospheric particulates are also subject to similar oxidative processes. The most reactive atmospheric gas-phase radicals, in particular the hydroxyl radical, readily promote such chemistry through surficial interactions. This Review looks at progress made in this field, discussing the radical-initiated heterogeneous oxidation of organic and inorganic constituents of atmospheric aerosols. We focus on the kinetics and reaction mechanisms of such processes as well as how they can affect the physico-chemical properties of particles, such as their composition, size, density and hygroscopicity. Potential impacts on the atmosphere include the release of chemically reactive gases such as halogens, aldehydes and organic acids, reactive loss of particle-borne molecular tracer and toxic species, and enhanced hygroscopic properties of aerosols that may improve their ability to form cloud droplets.

  6. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  7. The Humidity Dependence of N2O5 Uptake to Citric Acid Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Grzinic, G.; Bartels-Rausch, T.; Tuerler, A.; Ammann, M.

    2013-12-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. The heterogeneous loss of N2O5 to aerosol particles has remained uncertain, and reconciling lab and field data has demonstrated some gaps in our understanding of the detailed mechanism. We used the short-lived radioactive tracer 13N to study N2O5 uptake kinetics on aerosol particles in an aerosol flow reactor at ambient pressure, temperature and relative humidity. Citric acid, representing strongly oxidized polyfunctional organic compounds in atmospheric aerosols, has been chosen as a proxy due to its well established physical properties. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 15-75 % RH, within which the uptake coefficient varies between about 0.001 and about 0.02. Taking into account the well established hygroscopic properties of citric acid, we interpret uptake in terms of disproportionation of N2O5 into nitrate ion and nitronium ion and reaction of the latter with liquid water.

  8. In situ measurements of heterogeneous reactions on ambient aerosol particles: Impacts on atmospheric chemistry and climate

    SciTech Connect

    Bertram, Timothy

    2015-02-11

    Aerosol particles play a critical role in the Earth’s energy budget through the absorption and scattering of radiation, and/or through their ability to form clouds and alter cloud lifetime. Heterogeneous and multi-phase reactions alter the climate-relevant properties of aerosol particles and catalyze reaction pathways that are energetically unfavorable in the gas phase. The chemical composition of aerosol particles dictates the kinetics of heterogeneous and multi-phase reactions. At present, the vast majority of the molecular level information on these processes has been determined in laboratory investigations on model aerosol systems. The work described here provides a comprehensive investigation into the reactivity of complex, ambient aerosol particles is proposed to determine: 1) how representative laboratory investigations of heterogeneous and multi-phase processes conducted on model, simple systems are of the real atmosphere, and 2) the impact of heterogeneous and multi-phase processes on ambient particle optical properties and their ability to nucleate clouds. This work has focused on the uptake kinetics for ammonia (NH3) and dinitrogen pentoxide (N2O5). The results of these investigations will be used to directly improve the representation of heterogeneous and multi-phase processes in global climate models, by identifying the key mechanistic drivers that control the variability in the observed kinetics.

  9. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    SciTech Connect

    Cross, E.; Onasch, Timothy B.; Canagaratna, Manjula; Jayne, J. T.; Kimmel, Joel; Yu, Xiao-Ying; Alexander, M. L.; Worsnop, Douglas R.; Davidovits, Paul

    2009-10-01

    To accurately model the radiative forcing of aerosol particles, one must measure in real-time the size, shape, density, chemical composition, and mixing state of ambient particles. This is a formidable challenge because the chemical and physical properties of the aerosol particles are highly complex, dependent on the emission sources, the geography and meteorology of the surroundings, and the gas phase composition of the regional atmosphere.

  10. Chemical and physicochemial properties of submicron aerosol agglomerates

    SciTech Connect

    Scripsick, R.C.; Ehrman, S.; Friedlander, S.K.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory. The formation of nanometer-sized aerosol particles in a premixed methane flame from both solid-phase aerosol precursors and gas-phase precursors was investigated. Techniques were developed to determine the distribution of the individual chemical species as a function of agglomerate size by using inductively coupled plasma atomic emission spectroscopy (ICP-AES). To determine the distribution of chemical species both from particle to particle and within the particles on a nanometer scale, we used the analytical electron microscopy techniques of energy dispersive x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS) coupled with transmission electron microscopy (TEM). The observed distribution of individual chemical species as a function of agglomerate size was linked to the material properties of the solid-phase precursors. For aerosol formed from gas-phase precursors by gas-to-particle conversion, the distribution of species on a manometer scale was found to correspond to the equilibrium phase distribution expected from equilibrium for the system at the flame temperatures.

  11. A portable optical particle counter system for measuring dust aerosols.

    PubMed

    Marple, V A; Rubow, K L

    1978-03-01

    A portable battery-operated optical particle counter/multichannel analyzer system has been developed for the numbers size distribution and number concentration measurement of light-absorbing irregular-shaped dust particles. An inertial impactor technique has been used to obtain calibration curves by relating the magnitude of the optical counter's signal to the particle's aerodynamic or Stokes' diameter. These calibrations have been made for aerosols of coal, potash, silica, rock (copper ore), and Arizona road dust particles. PMID:645547

  12. Heterogeneous nucleation of ice particles on glassy aerosols modifies TTL cirrus

    NASA Astrophysics Data System (ADS)

    Wilson, T. W.; Murray, B. J.; Dobbie, S.; Al-Jumur, S. M.; Cui, Z.; Wagner, R.; Moehler, O.; Schnaiter, M.; Benz, S.; Niemand, M.; Saathoff, H.; Skrotzki, J.; Ebert, V.; Wagner, S.; Karcher, B.

    2010-12-01

    Experiments at the AIDA chamber, Karlsruhe Institute of Technology, have shown that glassy aqueous citric acid aerosol can nucleate ice at temperatures relevant to the tropical tropopause layer (TTL)(1). Modelling suggests this new route to the formation of TTL cirrus can provide an explanation for the very low ice particle number density observed in cirrus clouds in this region and may lead to high in-cloud supersaturations(1). Nucleation of ice on glassy aerosol is consistent with the absence of traditional ice nuclei in sampled TTL cirrus residue(2). In addition, we will present new data from experiments performed in July 2010 at the AIDA chamber using glassy aerosols composed of other atmospherically relevant compounds (levoglucosan, raffinose) and an internal mixture of five dicarboxylic acids and ammonium sulphate (raffinose/M5AS)(3). All four systems tested nucleate ice when in a glassy state. This indicates that heterogeneous ice nucleation is a general property of glassy aerosols and that natural aerosols which are composed of similar molecules will also nucleate ice if glassy. Glassy aqueous levoglucosan and raffinose/M5AS aerosol nucleated ice at temperatures similar to those found for glassy aqueous citric acid aerosol (<202 K). Whereas raffinose, which forms a glass at much higher temperatures, nucleated ice heterogeneously at up to ~220 K. This activity at higher temperatures suggests that ice nucleation by glassy aerosol may also play a role in the formation of warmer ice clouds. (1)B. J. Murray et al., Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions, Nature Geosci, 2010, 3, 233-237. (2)K. D. Froyd et al., Aerosols that form subvisible cirrus at the tropical tropopause, Atmos. Chem. Phys., 2010, 10, 209-218. (3)B. Zobrist et al., Do atmospheric aerosols form glasses?, Atmos. Chem. Phys., 2008, 8, 5221-5244.

  13. Real-time characterization of the size and chemical composition of individual particles in ambient aerosol systems in Riverside, California

    SciTech Connect

    Noble, C.A.; Prather, K.A.

    1995-12-31

    Atmospheric aerosols, although ubiquitous, are highly diverse and continually fluctuating systems. A typical aerosol system may consist of particles with diameters between {approximately}0.002 {mu}m and {approximately}200 {mu}m. Even in rural or pristine areas, atmospheric particle concentration is significant, with concentrations up to 10{sup 8} particles/cm{sup 3} not being uncommon. Chemical composition of atmospheric particles vary from simple water droplets or acidic ices to soot particles and cigarette smoke. Due to changes in atmospheric conditions, processes such as nucleation, coagulation or heterogeneous chemistry may effect both physical and chemical properties of individual particles over relatively short time intervals. Recently, aerosol measurement techniques are focusing on determining the size and/or chemical composition of individual aerosol particles. This research group has recently developed aerosol time-of-flight mass spectrometry (ATOFMS), a technique which allows for real-time determination of the size and chemical composition of individual aerosol particles. Single particle measurements are performed in one instrument using dual laser aerodynamic particle sizing and time-of-flight mass spectrometry. Aerosol-time-of-flight mass spectrometry is briefly described in several other abstracts in this publication.

  14. Measurement of internal and external mixtures of test aerosols with a new Single Particle Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Hitzenberger, Regina

    2015-04-01

    The mixing state of atmospheric aerosol particles is a very important property affecting processes such as CCN activation and scattering and absorption of light by the particles, but is challenging to determine. A new Single Particle Aerosol Mass Spectrometer (LAAPTOF, AeroMegt GmbH) was tested with regards to its capability of measuring internal and external mixture of aerosols using laboratory generated particles. To create the external mixture, solutions of three different salts in deionized water, and a suspension of carbon black (Cabot Corporation) in a mixture of isopropanol and water were nebulized and individually dried, before being passed into a small mixing chamber. To create the internal mixture, equal parts of each solution/suspension were mixed, fed into a single nebulizer, nebulized and dried. The LAAPTOF sampled from the mixing chamber and recorded mass spectra of individual particles. The analysis shows a heterogeneous ensemble of single particle spectra for the external mixture, and a homogeneous ensemble of spectra for the internal mixture. The ability of a fuzzy clustering algorithm to resolve the difference between the two mixing states was also tested.

  15. Retrieval of particle size distribution from aerosol optical thickness using an improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Mao, Jiandong; Li, Jinxuan

    2015-10-01

    Particle size distribution is essential for describing direct and indirect radiation of aerosols. Because the relationship between the aerosol size distribution and optical thickness (AOT) is an ill-posed Fredholm integral equation of the first type, the traditional techniques for determining such size distributions, such as the Phillips-Twomey regularization method, are often ambiguous. Here, we use an approach based on an improved particle swarm optimization algorithm (IPSO) to retrieve aerosol size distribution. Using AOT data measured by a CE318 sun photometer in Yinchuan, we compared the aerosol size distributions retrieved using a simple genetic algorithm, a basic particle swarm optimization algorithm and the IPSO. Aerosol size distributions for different weather conditions were analyzed, including sunny, dusty and hazy conditions. Our results show that the IPSO-based inversion method retrieved aerosol size distributions under all weather conditions, showing great potential for similar size distribution inversions.

  16. Aerosol properties in Titan's upper atmosphere from UVIS airglow observations

    NASA Astrophysics Data System (ADS)

    Lavvas, Panayotis; Koskinen, Tommi; Royer, Emilie; Rannou, Pascal; West, Robert A.

    2015-11-01

    Multiple Cassini observations reveal that the abundant aerosol particles in Titan's atmosphere are formed at high altitudes, particularly in the thermosphere [1]. They subsequently fall towards the lower atmosphere, and in their path, their size, shape, and population change in reflection to the variable atmospheric conditions.Although multiple observations can help us retrieve information for the aerosol properties in the lower atmosphere [2], we have limited knowledge for their properties in the altitude range between their formation region in the thermosphere, and the upper region of the main haze layer. UVIS is one of a few instruments that can probe this part of the atmosphere and allow for the retrieval of the aerosol properties.Here we analyze observations of atmospheric airglow that demonstrate the signature of N2 emissions and light scattering from aerosol particles, at different altitudes above 500 km [3]. We fit these observations with a combined model of N2 airglow [4] and atmospheric scattering by gases and aerosols that allows us to separate the pure scattering component and retrieve the aerosol size (distribution) and density. We particularly focus on observations from the T32 flyby that probed high southern latitudes in 2007 and combine good altitude resolution with high signal to noise ratio. We combine these with observations at different phase angles and observing geometry conditions (nadir vs. limb) in order to set better constraints on the aerosol properties.Our preliminary results demonstrate an increase in the average particle size with decreasing altitude in the atmosphere, from about 10 nm at 800 km to ~50 nm at 500 km, and an extinction profile at 185 nm wavelength, similar to the profile derive from UVIS occultation measurements at lower latitudes [5].[1] Lavvas et al. 2013. PNAS, doi/10.1073/pnas.1217059110, and references therein.[2] Tomasko et al. 2008, PSS, 56, p.669; Bellucci et al. 2009, Icarus 201, p.198[3] Ajello et al. 2008, GRL

  17. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  18. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  19. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  20. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Buseck, P. R.

    2008-05-01

    Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples) with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC) and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  1. Optical properties of aerosols over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bryant, C.; Eleftheriadis, K.; Smolik, J.; Zdimal, V.; Mihalopoulos, N.; Colbeck, I.

    Measurements of aerosol optical properties, size distribution and chemical composition were conducted at Finokalia, a remote coastal site on the Greek island of Crete (35°19'N, 25°40'E) during July 2000 and January 2001. During the summer campaign the total scattering coefficient, σ, (at a wavelength of 550 nm) ranged from 13 to 120 Mm -1 (mean=44.2 Mm -1, standard deviation=17.5) whilst during the winter it ranged from 7.22 to 37.8 Mm -1 (mean=18.42 Mm -1, standard deviation=6.61). A distinct diurnal variation in scattering coefficients was observed, with minima occurring during the early morning and maxima in the late afternoon during the summer and late evening during the winter. The mean value of the Ångström exponent was 1.47 during the summer and 1.28 during the winter, suggesting a larger fraction of smaller particles at the site during the summer. This was confirmed by continuous measurements of the aerosol size distribution. An analysis of the single scattering albedo suggests that there is a more absorbing fraction in the particle composition in the summer than during the winter. An investigation of air mass origins on aerosol optical properties indicated that those from Turkey and Central/Eastern Europe were highly polluted with a corresponding impact on aerosol optical properties. A linear relationship was obtained between the total scattering coefficient and both the non-sea-salt sulphate concentrations and the fine aerosol fraction.

  2. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  3. Discrimination and classification of bio-aerosol particles using optical spectroscopy and scattering

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.

    2011-03-01

    For more than a decade now, there has been significant emphasis for development of sensors of agent aerosols, especially for biological warfare (BW) agents. During this period, the Naval Research Laboratory (NRL) and other labs have explored the application of optical and spectroscopic methods relevant to biological composition discrimination to aerosol particle characterization. I will first briefly attempt to establish the connection between sensor performance metrics which are statistically determined, and aerosol particle measurements through the use of computational models, and also describe the challenge of ambient background characterization that would be needed to establish more reliable and deterministic sensor performance predictions. Greater attention will then be devoted to a discussion of basic particle properties and their measurement. The NRL effort has adopted an approach based on direct measurements on individual particles, principally of elastic scatter and laser-induced fluorescence (LIF), rather than populations of particles. The development of a LIF instrument using two sequential excitation wavelengths to detect fluorescence in discrete spectral bands will be described. Using this instrument, spectral characteristics of particles from a variety of biological materials including BW agent surrogates, as well as other ``calibration'' particles and some known ambient air constituents will be discussed in terms of the dependence of optical signatures on aerosol particle composition, size and incident laser fluence. Comparison of scattering and emission measurements from particles composed of widely different taxa, as well as from similar species under different growth conditions highlight the difficulties of establishing ground truth for complex biological material compositions. One aspect that is anticipated to provide greater insight to this type of particle classification capability is the development of a fundamental computational model of

  4. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  5. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  6. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  7. Ice Nucleation Properties of Amospherically Aged Biomass Burning Aerosol

    NASA Astrophysics Data System (ADS)

    Polen, M.; Lawlis, E.; Sullivan, R. C.

    2015-12-01

    Biomass burning can sometimes emit surprisingly active ice nucleating particles, though these emissions are not at all consistent between biomass fuel sources and burns. Soot from biomass combustion has been attributed to some but not all of the ice nucleating potential of biomass burning aerosol (BBA), while fossil fuel combustion soot emits very weak ice nucleants. The causes of the sometimes significant but variable ice nucleating ability of BBA are still largely unknown. BBA experiences significant atmospheric aging as the plume evolves and mixes with background air, yet almost no reports exploring the effects of atmospheric aging on the freezing properties of BBA have been made. We have performed some of the first experiments to determine the effects of simulated atmospheric aging on these ice nucleation properties, using a chamber reactor. The fresh and aged BBA was collected for subsequent droplet freezing array analysis using an impinger sampler to collect aerosol in water, and by deposition onto substrates in a MOUDI sampler. Droplets containing the chamber particles were then suspended in oil on a cold plate for freezing temperature spectrum measurement. Aging of Sawgrass flaming-phase combustion BBA by exposure to hydroxyl radicals (from H2O2 photolysis) enhanced the ice nucleation ability, observed by a shift to warmer droplet freezing temperatures by ~2-3°C. The changes in the aerosol's chemical composition during aging were observed using a laser ablation single-particle mass spectrometer and a soot-particle aerosol mass spectrometer. We will report our observations of the effects of other types of simulated aging (including photochemistry under high and low NOx conditions, dark ozonolysis, and nitric acid exposure) on Sawgrass and BBA from other grass and palm fuels.

  8. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Ardon-Dryer, K.; Cziczo, D. J.

    2014-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed "collection" or "coagulation". Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing. There is a theoretical collection efficiency minimum of particles with diameter between 0.1-2 µm, called the "Greenfield Gap". Experimental effort, however, was limited to drizzle and rain drops until recently, and has not constrained parameters that describe particle collection efficiency by cloud droplets. Collection efficiency is also an important parameter for assessing contact freezing, the least known ice nucleation mechanism today. Experimentally assessing collection efficiency can prove the existence of the "Greenfield Gap" and lay the foundation for studying contact freezing. We recently constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study coagulation experimentally. A stream of 40 µm cloud droplets fall freely into the chamber and collide with aerosol particles with known size and concentration. The outflow goes through a series of dryers before entering the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument for chemical composition analysis. PALMS is a true single-particle instrument and gives information on the size and the chemical composition of each particle. Coagulated particles from the MIT-CFC have mass spectral signatures of both the aerosol particles and the droplet residuals, while the droplet residual contains no signature of the aerosol particles. To our knowledge, this is the first time coagulation has been seen on a single-particle basis. We will

  9. Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2009-05-05

    The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach accurately tracks the evolution of the mixing state of particles due to emission, dilution, condensation and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved optimal efficiency for applications when the coagulation kernel is highly non-uniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contribute to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in internally-mixed sectional or modal aerosol models.

  10. Aerosol and Cloud-Nucleating Particle Observations during an Atmospheric River Event

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; McCluskey, C. S.; Petters, M.; Suski, K. J.; Levin, E. J.; Hill, T. C. J.; Atwood, S. A.; Schill, G. P.; Rocci, K.; Boose, Y.; Martin, A.; Cornwell, G.; Al-Mashat, H.; Moore, K.; Prather, K. A.; Rothfuss, N.; Taylor, H.; Leung, L. R.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; Creamean, J.; White, A. B.; Kreidenweis, S. M.

    2015-12-01

    The multi-agency CalWater 2015 project occurred over North Central CA and the Eastern Pacific during January to March 2015 (Spackman et al., this session). The goals of the campaign were to document the structure of atmospheric rivers (ARs) that deliver much of the water vapor associated with major winter storms along the U.S. West Coast and to investigate the modulating effect of aerosols on precipitation. Aerosol sources that may influence orographic cloud properties for air lifted over the mountains in California in winter include pollution, biomass burning, soil dusts and marine aerosols, but their roles will also be influenced by transport, vertical stratification, and scavenging processes. We present results from a comprehensive study of aerosol distributions, compositions, and cloud nucleating properties during an intense winter storm during February 2015, including data from an NSF-supported measurement site at Bodega Bay, from the DOE-ARM Cloud Aerosol Precipitation Experiment that included sampling on the NOAA RV Ron Brown offshore and the G-1 aircraft over ocean and land, and with context provided by other NOAA aircraft and remote sensing facilities. With a special focus on the coastal site, we discuss changes in aerosol distributions, aerosol hygroscopicity, and number concentrations of fluorescent particles, cloud condensation nuclei (CCN), and ice nucleating particles (INPs) during the AR event. We compare with periods preceding and following the event. For example, total aerosol number and surface area concentrations at below 0.5 μm diameter decreased from typical values of a few thousand cm-3 and 100 μm2 cm-3, respectively, to a few hundred cm-3 and 10 μm2cm-3 at Bodega Bay during the AR event. CCN concentrations were similarly lower, but hygroscopicity parameter (kappa) increased from typical values of 0.2 to values > 0.5 during the AR.INP and fluorescent particle number concentrations were generally lower during the AR event than at any other

  11. A comprehensive climatology of Arctic aerosol properties on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Creamean, Jessie; de Boer, Gijs; Shupe, Matthew; McComiskey, Allison

    2016-04-01

    Evaluating aerosol properties has implications for the formation of Arctic clouds, resulting in impacts on cloud lifetime, precipitation processes, and radiative forcing. There are many remaining uncertainties and large discrepancies regarding modeled and observed Arctic aerosol properties, illustrating the need for more detailed observations to improve simulations of Arctic aerosol and more generally, projections of the components of the aerosol-driven processes that impact sea ice loss/gain. In particular, the sources and climatic effects of Arctic aerosol particles are severely understudied. Here, we present a comprehensive, long-term record of aerosol observations from the North Slope of Alaska baseline site at Barrow. These measurements include sub- and supermicron (up to 10 μm) total mass and number concentrations, sub- and supermicron soluble inorganic and organic ion concentrations, submicron metal concentrations, submicron particle size distributions, and sub- and supermicron absorption and scattering properties. Aerosol extinction and number concentration measurements extend back to 1976, while the remaining measurements were implemented since. Corroboration between the chemical, physical, and optical property measurements is evident during periods of overlapping observations, demonstrating the reliability of the measurements. During the Arctic Haze in the winter/spring, high concentrations of long-range transported submicron sea salt, mineral dust, industrial metals, pollution (non-sea salt sulfate, nitrate, ammonium), and biomass burning species are observed concurrent with higher concentrations of particles with sizes that span the submicron range, enhanced absorption and scattering coefficients, and largest Ångström exponents. The summer is characterized by high concentrations of small biogenic aerosols (< 100 nm) and low extinction coefficients. Fall is characterized by clean conditions, with supermicron sea salt representing the dominant aerosol

  12. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  13. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  14. Observed changes in aerosol physical and optical properties before and after precipitation events

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Dong, Yan; Dong, Zipeng; Du, Chuanli; Chen, Chuang

    2016-08-01

    Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter <0.8 μm [measured using an aerodynamic particle sizer (APS)], and fine particles with diameter <0.1 μm [measured using a scanning mobility particle sizer (SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution (measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100-120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.

  15. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  16. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  17. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  18. New Particle Formation and Secondary Organic Aerosol in Beijing

    NASA Astrophysics Data System (ADS)

    Hu, M.; Yue, D.; Guo, S.; Hu, W.; Huang, X.; He, L.; Wiedensohler, A.; Zheng, J.; Zhang, R.

    2011-12-01

    Air pollution in Beijing has been a major concern due to being a mega-city and green Olympic Games requirements. Both long term and intensive field measurements have been conducted at an Urban Air Quality Monitoring Station in the campus of Peking University since 2004. Aerosol characteristics vary seasonally depending on meteorological conditions and source emissions. Secondary compositions of SNA (sum of sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) become major fraction of fine particles, which may enhance aerosol impacts on visibility and climate change. The transformation processes of new particle formation (NPF) and secondary organic aerosol have been focused on. It was found that gaseous sulfuric acid, ammonia, and organic compounds are important precursors to NPF events in Beijing and H2SO4-NH3-H2O ternary nucleation is one of the important mechanisms. The contributions of condensation and neutralization of sulfuric acid, coagulation, and organics to the growth of the new particles are estimated as 45%, 34%, and 21%, respectively. Tracer-based method to estimate biogenic and anthropogenic SOA was established by using gas chromatography-mass spectrometry. Secondary organic tracers derived from biogenic (isoprene, α-pinene, β-caryophyllene) and anthropogenic (toluene) contributed 32% at urban site and 35% at rural site, respectively. Other source apportionment techniques were also used to estimate secondary organic aerosols, including EC tracer method, water soluble organic carbon content, chemical mass balance model, and AMS-PMF method.

  19. Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008

    NASA Astrophysics Data System (ADS)

    Hamacher-Barth, Evelyne; Leck, Caroline; Jansson, Kjell

    2016-05-01

    The representation of aerosol properties and processes in climate models is fraught with large uncertainties. Especially at high northern latitudes a strong underprediction of aerosol concentrations and nucleation events is observed and can only be constrained by in situ observations based on the analysis of individual aerosol particles. To further reduce the uncertainties surrounding aerosol properties and their potential role as cloud condensation nuclei this study provides observational data resolved over size on morphological and chemical properties of aerosol particles collected in the summer high Arctic, north of 80° N. Aerosol particles were imaged with scanning and transmission electron microscopy and further evaluated with digital image analysis. In total, 3909 aerosol particles were imaged and categorized according to morphological similarities into three gross morphological groups: single particles, gel particles, and halo particles. Single particles were observed between 15 and 800 nm in diameter and represent the dominating type of particles (82 %). The majority of particles appeared to be marine gels with a broad Aitken mode peaking at 70 nm and accompanied by a minor fraction of ammonium (bi)sulfate with a maximum at 170 nm in number concentration. Gel particles (11 % of all particles) were observed between 45 and 800 nm with a maximum at 154 nm in diameter. Imaging with transmission electron microscopy allowed further morphological discrimination of gel particles in "aggregate" particles, "aggregate with film" particles, and "mucus-like" particles. Halo particles were observed above 75 nm and appeared to be ammonium (bi)sulfate (59 % of halo particles), gel matter (19 %), or decomposed gel matter (22 %), which were internally mixed with sulfuric acid, methane sulfonic acid, or ammonium (bi)sulfate with a maximum at 161 nm in diameter. Elemental dispersive X-ray spectroscopy analysis of individual particles revealed a prevalence of the monovalent

  20. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data. PMID:24131283

  1. Dominant Aerosol Particle Type/Mixture Identification at Worldwide Locations Using the Aerosol Robotic Network (AERONET)

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2011-12-01

    Aerosol absorption results in atmospheric heating for various forms of particulate matter - we address means of partitioning mineral dust, pollution (e.g., black and brown carbon), and mixtures of the two using remote sensing techniques. Remotely sensed spectral aerosol optical depth (AOD) and single scattering albedo (SSA) derived from Aerosol Robotic Network (AERONET) sun photometer measurements can be used to calculate the absorption aerosol optical depth (AAOD) at 440, 675, and 870 nm. The spectral change in AAOD with wavelength on logarithmic scales provides the absorption Angstrom exponent (AAE). Recently, a few studies have shown that the relationship between aerosol absorption (i.e., AAE or SSA) and aerosol size [i.e., Angstrom exponent (AE) or fine mode fraction (FMF) of the AOD] can estimate the dominant aerosol particle types/mixtures (i.e., dust, pollution, and dust and pollution mixtures) [Bergstrom et al., 2007; Russell et al., 2010; Lee et al. 2010; Giles et al., 2011]. To evaluate these methods, approximately 20 AERONET sites were grouped into various aerosol categories (i.e., dust, mixed, urban/industrial, and biomass burning) based on aerosol types/mixtures identified in previous studies. For data collected between 1999 and 2010, the long-term data set was analyzed to determine the magnitude of spectral AAOD, perform a sensitivity study on AAE by varying the spectral AOD and SSA, and identify dominant aerosol particle types/mixtures. An assessment of the spectral AAOD showed, on average, that the mixed (dust and pollution) category had the highest absorption (AAE ~1.5) followed by biomass burning (AAE~1.3), dust (AAE~1.7), and urban/industrial (AAE~1.2) categories with AAOD (440 nm) varying between 0.03 and 0.09 among these categories. Perturbing input parameters based on the expected uncertainties for AOD (±0.01) and SSA [±0.03; for cases where AOD(440 nm)>0.4], the sensitivity study showed the perturbed AAE mean varied from the unperturbed

  2. Impact of aerosols and atmospheric particles on plant leaf proteins

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wen Z.; Zhao, Wen J.; Luo, Na N.

    2014-05-01

    Aerosols and atmospheric particles can diffuse and absorb solar radiation, and directly affect plant photosynthesis and related protein expression. In this study, for the first time, we performed an extensive investigation of the effects of aerosols and atmospheric particles on plant leaf proteins by combining Geographic Information System and proteomic approaches. Data on particles with diameters of 0.1-1.0 μm (PM1) from different locations across the city of Beijing and the aerosol optical depth (AOD) over the past 6 years (2007-2012) were collected. In order to make the study more reliable, we segregated the influence of soil pollution by measuring the heavy metal content. On the basis of AOD and PM1, two regions corresponding to strong and weak diffuse solar radiations were selected for analyzing the changes in the expression of plant proteins. Our results demonstrated that in areas with strong diffuse solar radiations, plant ribulose bisphosphate carboxylase was expressed at higher levels, but oxygen evolved in enhancer protein and light-harvesting complex II protein were expressed at lower levels. The expression of ATP synthase subunit beta and chlorophyll a-b binding protein were similar in both regions. By analyzing the changes in the expression of these leaf proteins and their functions, we conclude that aerosols and atmospheric particles stimulate plant photosynthesis facilitated by diffuse solar radiations.

  3. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts.

    PubMed

    Babu, S Suresh; Kompalli, Sobhan Kumar; Moorthy, K Krishna

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~15-15,000nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter <100nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167nm and 1150 to 1760nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  4. Aerosol and bioaerosol particles in a dental office.

    PubMed

    Polednik, Bernard

    2014-10-01

    This study reports comprehensive aerosol and bioaerosol measurements in a dental office. The highest submicrometer particle concentrations were observed during dental grinding and they were on average 16 times higher than the indoor background. Certain metallic trace elements and total carbon concentrations were significantly elevated (>10 times) in the particles deposited in the operating room. Dental procedures also contributed to increased bacterial contamination that may pose a health risk both for dental personnel and patients. PMID:25218707

  5. Rocket-borne probes for charged mesospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Horanyi, M.; Sternovsky, Z.

    We describe a series of rocket-borne probes for detecting charged solid particles in the ionosphere. The first type of probe is a flat charge-collecting surface on the skin of the rocket. Behind this surface is a permanent magnet that shields the probe from electrons. The current that is recorded is thus from heavier charged aerosol particles. This heavy charge carrier current is converted to a charge number density. A probe launched from White Sands in November 1998 detected a narrow layer at 86 km consistent with sporadic E layer of metallic ions. Two launches were made from the Andoya Rocket Range (Norway) during the MIDAS SOLSTICE campaign in the summer of 2001. Layers of positively and negatively charged aerosol particles were detected on both flights, but inadvertent positive ion collection complicated the analysis. Subsequent payloads included a second probe that supplemented the magnetic field with a positive bias voltage to improve positive ion rejection. Three launches were made from Andoya during the MIDAS MacWAVE campaign in July 2003 with this dual-probe package. Within PMSE, the probes measured an aerosol particle distribution, clearly resolving small positive, small negative, and large negative particles. A new mass-analyzing probe is being developed in which electric fields within the nosecone deflect charged aerosol particles admitted at the nosecone tip. This probe takes advantage of the reduced density behind the shock front to increase the mean free path within the instrument so that cryopumping is not required. The new probe has three pairs of collection surfaces with opposite polarities for collecting (1) electrons and light ions, (2) particles with mass 150-103 amu, and (3) particles with mass 103 -- 2 x 104 amu.

  6. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  7. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. PMID:26257345

  8. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  9. A dual-wavelength single particle aerosol fluorescence monitor

    NASA Astrophysics Data System (ADS)

    Kaye, Paul H.; Stanley, Warren R.; Foot, Virginia; Baxter, Karen; Barrington, Stephen J.

    2005-10-01

    Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

  10. Single particle multichannel bio-aerosol fluorescence sensor.

    PubMed

    Kaye, P; Stanley, W R; Hirst, E; Foot, E V; Baxter, K L; Barrington, S J

    2005-05-16

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1mum in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials. PMID:19495264

  11. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  12. Apparatus for measuring particle properties

    DOEpatents

    Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.

    1998-08-11

    An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.

  13. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  14. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  15. Microscopy and Spectroscopy Techniques to Guide Parameters for Modeling Mineral Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Veghte, D. P.; Moore, J. E.; Jensen, L.; Freedman, M. A.

    2013-12-01

    Mineral dust aerosol particles are the second largest emission by mass into the atmosphere and contribute to the largest uncertainty in radiative forcing. Due to the variation in size, composition, and shape, caused by physical and chemical processing, uncertainty exists as to whether mineral dust causes a net warming or cooling effect. We have used Cavity Ring-Down Aerosol Extinction Spectroscopy (CRD-AES), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to measure extinction cross sections and morphologies of size-selected, non-absorbing and absorbing mineral dust aerosol particles. We have found that microscopy is essential for characterizing the polydispersity of the size selection of non-spherical particles. Through the combined use of CRD-AES, microscopy, and computation (Mie theory and Discreet Dipole Approximation), we have determined the effect of shape on the optical properties of additional species including clay minerals, quartz, and hematite in the sub-micron regime. Our results have shown that calcite can be treated as polydisperse spheres while quartz and hematite need additional modeling parameters to account for their irregularity. Size selection of clay minerals cannot be performed due to their irregular shape, but microscopy techniques can be used to better quantify the particle aspect ratio. Our results demonstrate a new method that can be used to extend cavity ring-down spectroscopy for the measurement of the optical properties of non-spherical particles. This characterization will lead to better aerosol extinction parameters for modeling aerosol optical properties in climate models and satellite retrieval algorithms.

  16. Individual Aerosol Particles from Biomass Burning in Southern Africa Compositions and Aging of Inorganic Particles. 2; Compositions and Aging of Inorganic Particles

    NASA Technical Reports Server (NTRS)

    Li, Jia; Posfai, Mihaly; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen- bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  17. A case study of modeled aerosol optical properties during the SAFARI 2000 campaign

    SciTech Connect

    Kuzmanoski, Maja; Box, M. A.; Schmid, Beat; Russell, P. B.; Redemann, Jens

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the SAFARI 2000 campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14), and the refractive index based on the available information on aerosol chemical composition. The study focuses on differences between the results of two models for the mixture of absorbing and non-absorbing aerosol components: a layered sphere with absorbing core and non-absorbing shell, and an effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. Because of the large difference between the single scattering albedo values (~ 0.1 at mid-visible wavelengths) obtained from different measurement methods for the case with high amount of biomass burning particles, radiative transfer calculations were carried out to estimate the radiative effect of the implied difference in aerosol absorption. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81 – 0.91 at λ = 0.50 μm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA), and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

  18. Design of Aerosol Particle Coating: Thickness, Texture and Efficiency

    PubMed Central

    Buesser, B.; Pratsinis, S.E.

    2013-01-01

    Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles’ surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. PMID:23729833

  19. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    NASA Astrophysics Data System (ADS)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  20. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  1. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  2. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  3. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  4. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  5. Effect of particle settling on lidar profiles of long-range transported Saharan aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Groß, Silke

    2016-04-01

    A large amount of desert aerosol is transported in the Saharan Air Layer (SAL) westwards from Africa over the Atlantic Ocean. Lidar profiles of transported Saharan aerosol may contain some information about the vertically-resolved aerosol microphysics that could be used to characterize processes that affected the measured aerosol during transport. We present modelled lidar profiles of long-range transported Saharan aerosol assuming that initially the SAL is well-mixed and that there is no vertical mixing of air within the SAL as soon as it reaches the Atlantic. We consider Stokes gravitational settling of aerosol particles over the ocean. The lidar profiles are calculated using optical models for irregularly-shaped mineral dust particles assuming settling-induced particle removal as function of distance from the SAL top. Within the SAL we find a decrease of both the backscatter coefficients and the linear depolarization ratios with decreasing distance from the SAL top. For example, the linear depolarization ratio at a wavelength of 532nm decreases from 0.289 at 1000m to 0.256 at 200m and 0.215 at 100m below SAL top. We compare the modelled backscatter coefficients and linear depolarization ratios to ground-based lidar measurements performed during the SALTRACE field campaign in Barbados (Caribbean) and find agreement within the estimated uncertainties. We discuss the uncertainties of our modeling approach in our presentation. Assumed mineral dust particle shapes, assumed particle mixture properties, and assumptions about processes in the SAL over the continent and the ocean are important aspects to be considered. Uncertainties are relevant for the potential of lidar measurements of transported Saharan dust to learn something about processes occuring in the SAL during long-range transport. We also compare our modeling results to modeling results previously published in the literature.

  6. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  7. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  8. Study of aerosol radiative properties under different relative humidity conditions in the thermal infrared region

    NASA Astrophysics Data System (ADS)

    Kuo, C. P.; Yang, P.; Nasiri, S. L.; Liu, X.

    2014-12-01

    In the aerosol transport process, the optical properties of aerosol particles can vary due to humidification or mixing with other kinds of aerosols. Previous studies have shown mixing dust with other types of aerosol tends to make the aerosol more spectrally absorptive, but the degree of impact of relative humidity (RH) along the transport path is not clear. To investigate this effect, we conduct a numerical study to estimate the radiative sensitivity of aerosols under various relative humidity conditions. Specifically, the OPAC (Optical Properties of Aerosols and Clouds) database is used, which provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions. Lookup tables (LUTs) of the bidirectional reflectivity, transmissivity and effective emissivity will be computed for the ten aerosol types for input to the high-spectral-resolution radiative transfer model (HRTM). Using these LUTs, the HTRM can calculate top-of-atmospheric brightness temperatures, which we can use to determine the degree of radiative sensitivity in the infrared spectral region. Furthermore, comparisons between simulations and MODIS observations will be presented.

  9. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  10. Aerosol particles and the formation of advection fog

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1979-01-01

    A study of numerical simulation of the effects of concentration, particle size, mass of nuclei, and chemical composition on the dynamics of warm fog formation, particularly the formation of advection fog, is presented. This formation is associated with the aerosol particle characteristics, and both macrophysical and microphysical processes are considered. In the macrophysical model, the evolution of wind components, water vapor content, liquid water content, and potential temperature under the influences of vertical turbulent diffusion, turbulent momentum, and turbulent energy transfers are taken into account. In the microphysical model, the supersaturation effect is incorporated with the surface tension and hygroscopic material solution. It is shown that the aerosol particles with the higher number density, larger size nuclei, the heavier nuclei mass, and the higher ratio of the Van't Hoff factor to the molecular weight favor the formation of the lower visibility advection fogs with stronger vertical energy transfer during the nucleation and condensation time period.

  11. Towards an integrated optical single aerosol particle lab.

    PubMed

    Horstmann, Marcel; Probst, Karl; Fallnich, Carsten

    2012-01-21

    We present a manipulation and characterization system for single airborne particles which is integrated onto a microscope slide. Trapped particles are manipulated by means of radiation pressure and characterized by cavity enhanced Raman spectroscopy. Optical fibers are used to deliver the trapping laser light as well as to collect the Raman scattered light, allowing for a flexible usage of the device. The system features a sample chamber which is separated from an aerosol-flooded injection chamber by means of a light guiding glass-capillary. The coupling of this device with an aerosol optical tweezers setup to selectively load its trapping sites is demonstrated. Finally, a route towards chip-integrated handling and processing of multiple particles is shown and the first results are presented. PMID:22105700

  12. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  13. Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Rizzo, Luciana V.; Brito, Joel F.; Sena, Elisa T.; Cirino, Glauber G.; Arana, Andrea

    2013-05-01

    The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the

  14. Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Poole, Lamont R.

    1993-01-01

    Physical properties of the stratospheric aerosol population are inferred from cloud-free SAGE II multiwavelength extinction measurements in the Antarctic during late summer (February/March) and spring (September/October, November). Seasonal changes in these properties are used to infer physical processes occurring in the Antarctic stratosphere over the course of the winter. The analysis suggests that the apparent springtime cleansing of the Antarctic stratosphere is the result of aerosol redistribution through subsidence of the polar vortex air mass and sedimentation of large polar stratospheric cloud particles. The analysis also suggests that vortex processes are responsible for a significant downward transport of aerosol through the tropopause.

  15. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  16. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. PMID:27268595

  17. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    SciTech Connect

    SCHWARTZ, S.E.; MCGRAW, R.; BENKOVITZ, C.M.; WRIGHT, D.L.

    2001-04-01

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  18. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  19. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  20. A study of aerosol optical properties at the global GAW station Bukit Kototabang, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurhayati, N.; Nakajima, Teruyuki

    2012-01-01

    There have been very few studies carried out in Indonesia on the atmospheric aerosol optical properties and their impact on the earth climate. This study utilized solar radiation and aerosol measurement results of Indonesian GAW station Bukit Kototabang in Sumatra. The radiation data of nine years were used as input to a radiation simulation code for retrieving optically equivalent parameters of aerosols, i.e., aerosol optical thickness (AOT), coarse particle to fine particle ratio ( γ-ratio), and soot fraction. Retrieval of aerosol properties shows that coarse particles dominated at the station due to high relative humidity (RH) reaching more than 80% throughout the year. AOT time series showed a distinct two peak structure with peaks in MJJ and NDJ periods. The second peak corresponds to the period of high RH suggesting it was formed by active particle growth with large RH near 90%. On the other hand the time series of hot spot number, though it is only for the year of 2004, suggests the first peak was strongly contributed by biomass burning aerosols. The γ-ratio took a value near 10 throughout the year except for November and December when it took a larger value. The soot fraction varies in close relation with the γ-ratio, i.e. low values when γ was large, as consistent with our proposal of active particle growth in the high relative periods.

  1. Influence of water uptake on the aerosol particle light scattering at remote sites (Invited)

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Fierz-Schmidhauser, R.; Baltensperger, U.; Weingartner, E.

    2013-12-01

    Since ambient aerosol particles experience hygroscopic growth at enhanced relative humidity (RH), their microphysical and optical properties - especially the aerosol light scattering - are also strongly dependent on RH. The knowledge of this RH effect is of importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements because in the field aerosol in-situ measurements are often performed under dry conditions. The scattering enhancement factor f(RH,λ) is the key parameter to describe this effect of water uptake on the particle light scattering. It is defined as the particle light scattering coefficient σ(RH) at a certain RH and wavelength λ divided by its dry value. Here, we will present results from two remote sites: the Jungfraujoch located at 3580 m a.s.l. in the Swiss Alps and from Zeppelin station located at 78.5°N in the Arctic (Fierz-Schmidhauser et al., 2010; Zieger et al., 2010). Various aerosol optical and microphysical parameters were recorded at these sites using in-situ and remote sensing techniques. The scattering enhancement varied largely from very low values of f(RH=85%,λ=550 nm) around 1.28 for mineral dust transported to the Jungfraujoch to 3.41 for pristine Arctic aerosol. Compensating effects of size and hygroscopicity were observed in the Arctic, i.e. small but less hygroscopic particles eventually had the same magnitude in f(RH) as large but more hygroscopic particles like sea salt. Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f(RH). The f(RH)-values from the two remote sites will also be related to values measured at other maritime, rural, and continental sites in Europe (Zieger et al., 2013). Active and passive remote sensing techniques were used to study the vertical distribution of aerosol optical properties around Jungfraujoch. Part of these in-situ measured parameters, together with the RH-dependent σ(RH) were used to

  2. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  3. Multiwavelength In-situ Aerosol Absorption, Scattering, and Hygroscopic Properties During the TEXAQS 2006 Field Campaign: Aerosol Classification and Variability

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D. S.; Coffman, D. J.; Quinn, P. K.; Bates, T. S.

    2006-12-01

    In-situ, three wavelength-measurements of aerosol scattering and absorption of the regional aerosol near the coast of Texas, i.e. Houston and the Houston ship channel, as well as the Gulf of Mexico were carried out onboard the NOAA research vessel Ronald H. Brown during the 2006 TEXAQS/GoMACCS field campaign in July through September 2006. Aerosol scattering, hemispheric backscattering and absorption-coefficients were measured for particles with diameters dp<10μm and dp<1μm using multiwavelength integrating nephelometers and filter-based absorption photometers (PSAPs) at 60% RH (nephelometers). Light scattering was measured as a function of RH at two additional humidities, (ca. 25%, and 85% RH). Together with the 60% RH data, this enabled determination of the hygroscopic growth curve of scattering. The extensive and intensive optical properties were used to characterize the aerosol in the Houston, TX area and the Coastal Gulf of Mexico region and to provide information critical to understanding the climatic and air quality impacts of those aerosols. Analysis focuses on how these properties change during the chemical processing of sources within the project area and how they are affected by changes in atmospheric relative humidity that accompany transport, diurnal cycles and vertical mixing. The results are relevant to radiation transfer, visibility, air quality, and interpretation of remote sensing data from lidar and satellite. The results will be presented based on a regional classification of the sampled air masses to identify distinct aerosol populations and sources and to show the temporal and spatial variability of the measured parameters. Special emphasize will be given to the physico-chemical properties of aerosols measured during extensive Saharan dust periods encountered during the cruise and several air pollution episodes and industrial plumes. Scattering hygroscopic growth will be analyzed along with the chemical composition of the aerosol and its

  4. Seasonal variation and difference of aerosol optical properties in columnar and surface atmospheres over Shanghai

    NASA Astrophysics Data System (ADS)

    Cheng, Tiantao; Xu, Chen; Duan, Junyan; Wang, Yifan; Leng, Chunpeng; Tao, Jun; Che, Huizheng; He, Qianshan; Wu, Yunfei; Zhang, Renjian; Li, Xiang; Chen, Jianmin; Kong, Lingdong; Yu, Xingna

    2015-12-01

    Aerosol optical properties in columnar and surface atmospheres were measured at an urban station of Shanghai from December 2010 to October 2012, and their seasonal variations and differences were examined. Aerosol optical thickness (AOT) at 500 nm is on average about 0.72 over the entire campaign, relatively higher in spring and summer and lower in autumn and winter. Ångström wavelength exponent (Alfa) mainly distributes in 1.1-1.6 (72%) with an obvious uni-peak pattern, implying that fine particles are primary in the aerosol group. Aerosol single scattering albedo of columnar atmosphere (SSA) at 440 nm experiences a weak seasonal variation with an average of 0.91, indicating that aerosols are mainly composed of particles with relatively higher scattering efficiency. The aerosol volume size distribution shows one fine mode and another coarse mode, with peak radii of 0.15 μm and 3.0 μm, respectively. The volume of fine mode particles is minimum in spring and maximum in summer, while the volume of coarse mode particles is minimum in autumn and maximum in winter. The scattering coefficient (Sc) of aerosols in surface atmosphere is relatively higher in winter and spring, the absorptive coefficient (Ab) is higher in autumn and summer. The SSA of surface atmosphere (SSA-surf) at 532 nm varies weakly over time with a lower deviation, mostly scattering in the range of 0.8-0.95 (82%). Although the disconnection of aerosol properties between columnar and surface atmospheres exists, AOT and Alfa are correlated to some extent with PM2.5 and visibility. However, the difference of SSA and SSA-surf is remarkable about 0.1. Overall, fine particles are dominant in aerosols and contribute to AOT significantly in this city, and their difference between surface and columnar atmospheres is unignored.

  5. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  6. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Earle, Michael; MacDonald, A. M.; Liu, Peter S.K.; Leaitch, W. R.

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm-3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  7. Upper-atmosphere Aerosols: Properties and Natural Cycles

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1992-01-01

    The middle atmosphere is rich in its variety of particulate matter, which ranges from meteorite debris, to sulfate aerosols, to polar stratospheric ice clouds. Volcanic eruptions strongly perturb the stratospheric sulfate (Junge) layer. High-altitude 'noctilucent' ice clouds condense at the summer mesopause. The properties of these particles, including their composition, sizes, and geographical distribution, are discussed, and their global effects, including chemical, radiative, and climatic roles, are reviewed. Polar stratospheric clouds (PSCs) are composed of water and nitric acid in the form of micron-sized ice crystals. These particles catalyze reactions of chlorine compounds that 'activate' otherwise inert chlorine reservoirs, leading to severe ozone depletions in the southern polar stratosphere during austral spring. PSCs also modify the composition of the polar stratosphere through complex physiocochemical processes, including dehydration and denitrification, and the conversion of reactive nitrogen oxides into nitric acid. If water vapor and nitric acid concentrations are enhanced by high-altitude aircraft activity, the frequency, geographical range, and duration of PSCs might increase accordingly, thus enhancing the destruction of the ozone layer (which would be naturally limited in geographical extent by the same factors that confine the ozone hole to high latitudes in winter). The stratospheric sulfate aerosol layer reflects solar radiation and increases the planetary albedo, thereby cooling the surface and possibly altering the climate. Major volcanic eruptions, which increase the sulfate aerosol burden by a factor of 100 or more, may cause significant global climate anomalies. Sulfate aerosols might also be capable of activating stratospheric chlorine reservoirs on a global scale (unlike PCSs, which represent a localized polar winter phenomenon), although existing evidence suggests relatively minor perturbations in chlorine chemistry. Nevertheless, if

  8. Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.

    2004-01-01

    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.

  9. In situ UV-VIS-NIR absorbing properties of atmospheric aerosol particles: estimates of the imaginary refractive index and comparison with columnar values.

    PubMed

    Mogo, S; Cachorro, V E; de Frutos, A M

    2012-11-30

    In this work, a novel technique is used to estimate the aerosol complex index of refraction of in situ collected samples. Samples of atmospheric particulate matter were collected in El Arenosillo, southern Spain, on polycarbonate filters during summer 2004 as part of an aerosol characterization campaign. These samples were analyzed for the volumetric absorption coefficient in the 320-800 nm spectral region and an estimation of the effective imaginary refractive index was made. The values of the imaginary part of the complex refractive index ranged between 0.0009-0.0215 at 800 nm and 0.0015-0.0114 at 320 nm. Little dependence on the wavelength was observed. Several intense and long lasting desert outbreaks were registered during the campaign and the complex refractive index almost doubles its value during these dust events. Finally, we present a comparison of data obtained in situ with columnar data obtained from the AERONET network. A correlation factor of 0.64 was obtained between both data, which gives an idea of how accurately the in situ ground data represent the total column. PMID:22964016

  10. Apparatus for measuring particle properties

    DOEpatents

    Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.

    1998-01-01

    An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.

  11. Seasonal Variation of Aerosol Particle Size Using MER/Pancam Sky Imaging

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.

    2013-12-01

    Imaging of the sky taken by the Pancam cameras on-board the Mars Exploration Rovers (MER) provide a useful tool for determining the optical depth and physcial properties of aerosols above the rover. Specifically, the brightness of the sky as a function of angle away from the Sun provides a powerful constraint on the size distribution and shape of dust and water ice aerosols. More than 100 Pancam "sky surveys" were taken by each of the two MER rovers covering a time span of several Mars years and a wide range of dust loading conditions including the planet-encirclind dust storm during Mars Year 28 (Earth year 2007). These sky surveys enable the time evolution of aerosol particle size to be determined including its relation to dust loading. Radiative transfer modeling is used to model the observations. Synthetic Pancam sky brightness is computed using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and spherical geometry by integrating the source functions along curved paths in that coordinate system. We find that Mie scattering from spheres is not a good approximation for describing the angular variation of sky brightness far from the Sun (at scattering angles greater than 45 degrees). Significant seasonal variations are seen in the retrieved effective radius of the aerosols with higher optical depth strongly correlated with larger particle size.

  12. Resolving Changing Chemical and Physical Properties of SSA Particle Types during Laboratory Phytoplankton Blooms using Online Single Particle Analysis

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Prather, K. A.; Richardson, R.; Wang, X.

    2015-12-01

    Changes in the chemical composition of sea spray aerosols (SSA) can modify their climate-relevant properties. Recent studies have shown a diverse set of distinct SSA particle types, however there are conflicting reports on how and whether biological activity controls the organic fraction and mixing state of SSA. This study leverages an aerosol time-of-flight mass spectrometer to give an accounting of the temporally resolved mixing state of primary SSA (0.4 - 3 µm vacuum aerodynamic diameter), encompassing 97% of particles detected over the course of laboratory phytoplankton blooms. The influence of biological activity on the climate relevant properties of defined particle types is also investigated. Spatial chemical particle heterogeneity and particularly the surface chemical composition of particles are described along with particle type specific water-particle interactions. These online measurements in tandem with chemical composition could give new insight on the link between seawater chemistry, marine aerosols, and climate properties.

  13. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  14. Code System to Calculate Particle Penetration Through Aerosol Transport Lines.

    1999-07-14

    Version 00 Distribution is restricted to US Government Agencies and Their Contractors Only. DEPOSITION1.03 is an interactive software program which was developed for the design and analysis of aerosol transport lines. Models are presented for calculating aerosol particle penetration through straight tubes of arbitrary orientation, inlets, and elbows. An expression to calculate effective depositional velocities of particles on tube walls is derived. The concept of maximum penetration is introduced, which is the maximum possible penetrationmore » through a sampling line connecting any two points in a three-dimensional space. A procedure to predict optimum tube diameter for an existing transport line is developed. Note that there is a discrepancy in this package which includes the DEPOSITION 1.03 executable and the DEPOSITION 2.0 report. RSICC was unable to obtain other executables or reports.« less

  15. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  16. Cloud droplet nucleation and its connection to aerosol properties

    SciTech Connect

    Schwartz, S.E.

    1996-04-01

    Anthropogenic aerosols influence the earth`s radiation balance and climate directly, by scattering shortwave (solar) radiation in cloud-free conditions and indirectly, by increasing concentrations of cloud droplets thereby enhancing cloud shortwave reflectivity. These effects are thought to be significant in the context of changes in the earth radiation budget over the industrial period, exerting a radiative forcing that is of comparable magnitude to that of increased concentrations of greenhouse gases over this period but opposite in sign. However the magnitudes of both the direct and indirect aerosol effects are quite uncertain. Much of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties arising from anthropogenic aerosols. This paper examines recent studies pertaining to the influence of anthropogenic aerosols on loading and properties of aerosols affecting their cloud nucleating properties and indicative of substantial anthropogenic influence on aerosol and cloud properties over the North Atlantic.

  17. Aerosol Optical Properties in the Lower Troposphere During Summer Over New Delhi

    NASA Astrophysics Data System (ADS)

    Soman Radha, Radhakrishnan; Arya, Bhuwan Chandra; Misra, Sumith Kumar; Sharma, Chhemendra; Kumar, Arun; Shukla, Devesh Kumar; Jaswanth

    2016-06-01

    This work reports the variation in optical properties of aerosol in the boundary layer over the Delhi region during the summer season of the year 2014. The layering of aerosol particles in the shallow residual layer is observed in the night preceded by the hot days. The monitoring of this kind of layers in the lower troposphere is very important to study its long range transport.

  18. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  19. Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Pósfai, Mihály; Axisa, Duncan; Tompa, Éva; Freney, Evelyn; Bruintjes, Roelof; Buseck, Peter R.

    2013-03-01

    Aerosol particles from desert dust interact with clouds and influence climate on regional and global scales. The Riyadh (Saudi Arabia) aerosol campaign was initiated to study the effects of dust particles on cloud droplet nucleation and cloud properties. Here we report the results of individual-particle studies of samples that were collected from an aircraft in April 2007. We used analytical transmission electron microscopy, including energy-dispersive X-ray spectrometry, electron diffraction, and imaging techniques for the morphological, chemical, and structural characterization of the particles. Dust storms and regional background conditions were encountered during four days of sampling. Under dusty conditions, the coarse (supermicrometer) fraction resembles freshly crushed rock. The particles are almost exclusively mineral dust grains and include common rock-forming minerals, among which clay minerals, particularly smectites, are most abundant. Unaltered calcite grains also occur, indicating no significant atmospheric processing. The particles have no visible coatings but some contain traces of sulfur. The fine (submicrometer) fraction is dominated by particles of anthropogenic origin, primarily ammonium sulfate (with variable organic coating and some with soot inclusions) and combustion-derived particles (mostly soot). In addition, submicrometer, iron-bearing clay particles also occur, many of which are internally mixed with ammonium sulfate, soot, or both. We studied the relationships between the properties of the aerosol and the droplet microphysics of cumulus clouds that formed above the aerosol layer. Under dusty conditions, when a large concentration of coarse-fraction mineral particles was in the aerosol, cloud drop concentrations were lower and droplet diameters larger than under regional background conditions, when the aerosol was dominated by submicrometer sulfate particles.

  20. The vertical distribution of Martian aerosol particle size

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Smith, Michael D.; Wolff, Michael J.

    2014-12-01

    Using approximately 410 limb-viewing observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), we retrieve the vertical distribution of Martian dust and water ice aerosol particle sizes. We find that dust particles have an effective radius of 1.0 µm over much of the atmospheric column below 40 km throughout the Martian year. This includes the detached tropical dust layers detected in previous studies. Little to no variation with height is seen in dust particle size. Water ice clouds within the aphelion cloud belt exhibit a strong sorting of particle size with height, however, and the effective radii range from >3 µm below 20 km to near 1.0 µm at 40 km altitude. Conversely, water ice clouds in the seasonal polar hoods show a near-uniform particle size with an effective radius of approximately 1.5 µm throughout the atmospheric column.

  1. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  2. Tracking Water Diffusion Fronts in a Highly Viscous Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Field measurements indicate that atmospheric secondary aerosol particles can be present in a highly viscous, glassy state [1]. In contrast to liquid state particles, the gas phase equilibration is kinetically limited and governed by condensed phase diffusion. In recent water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance (EDB) we observed a characteristic shift behavior of the Mie whispering gallery modes (WGM) indicative of the changing radial structure of the particle, thus providing us with an experimental method to track the diffusion process inside the particle. When a highly viscous, homogeneous particle is exposed to an abrupt increase in relative humidity, the rapid gas phase diffusion and strong concentration dependence of the diffusion coefficient in the condensed phase lead to extremely steep water concentration gradients inside the particle, reminiscent of diffusion fronts. The resulting quasi step-like concentration profile motivates the introduction of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The subsequent particle growth and reduction of the shell refractive index can be observed as red and blueshift behavior of the WGM, respectively. The shift pattern can be attributed to a core-shell radius ratio and particle radius derived from model calculations [2]. If supplemented with growth information obtained from the WGM redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The measured time dependent concentration profile is then compared with simulations solving the non-linear diffusion equation [3] [1] Virtanen, A., et al., Nature, 467, 824-827, 2010 [2] Kaiser, T., Schweiger, G., Computers in Physics, Vol. 7, No. 6, 682-686, Nov/Dec 1993 [3] Zobrist, B., Soonsin, V., Luo, B.P., Peter, T. et al., Phys. Chem. Chem

  3. Aerosol properties and associated radiative effects over Cairo (Egypt)

    NASA Astrophysics Data System (ADS)

    El-Metwally, M.; Alfaro, S. C.; Wahab, M. M. Abdel; Favez, O.; Mohamed, Z.; Chatenet, B.

    2011-02-01

    Cairo is one of the largest megacities in the World and the particle load of its atmosphere is known to be particularly important. In this work we aim at assessing the temporal variability of the aerosol's characteristics and the magnitude of its impacts on the transfer of solar radiation. For this we use the level 2 quality assured products obtained by inversion of the instantaneous AERONET sunphotometer measurements performed in Cairo during the Cairo Aerosol CHaracterization Experiment (CACHE), which lasted from the end of October 2004 to the end of March 2006. The analysis of the temporal variation of the aerosol's optical depth (AOD) and spectral dependence suggests that the aerosol is generally a mixture of at least 3 main components differing in composition and size. This is confirmed by the detailed analysis of the monthly-averaged size distributions and associated optical properties (single scattering albedo and asymmetry parameter). The components of the aerosol are found to be 1) a highly absorbing background aerosol produced by daily activities (traffic, industry), 2) an additional, 'pollution' component produced by the burning of agricultural wastes in the Nile delta, and 3) a coarse desert dust component. In July, an enhancement of the accumulation mode is observed due to the atmospheric stability favoring its building up and possibly to secondary aerosols being produced by active photochemistry. More generally, the time variability of the aerosol's characteristics is due to the combined effects of meteorological factors and seasonal production processes. Because of the large values of the AOD achieved during the desert dust and biomass burning episodes, the instantaneous aerosol radiative forcing (RF) at both the top (TOA) and bottom (BOA) of the atmosphere is maximal during these events. For instance, during the desert dust storm of April 8, 2005 RF BOA, RF TOA, and the corresponding atmospheric heating rate peaked at - 161.7 W/m 2, - 65.8 W/m 2

  4. Aerosol Optical Properties of Smoke from the Las Conchas Wildfire, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Dubey, M. K.; Flowers, B. A.; Aiken, A. C.; Klein, B. Z.; Mazzoleni, C.; Sharma, N.; China`, S.

    2011-12-01

    The Las Conchas wildfire in Northern New Mexico started on June, 26 2011 and spread rapidly, eventually burning an area of 634 km2 (245 mi2). Due to the close proximity to the fire, the Los Alamos National Laboratory (LANL) was shut down and the town evacuated for several days. Immediately after LANL reopened (7/6/2011) the Earth and Environmental Sciences Division (EES-14) attained unique measurements of the smoke by sampling the ambient air. Three Integrated Photoacoustic/Nephelometer Spectrometers (DMT Inc.) were set up to measure aerosol light absorption and scattering coefficients. A University of Northwest Switzerland thermodenuder was used to remove compounds that are volatile at temperatures up to 200C. The aerosol's optical properties were measured before and after denuding the sample at 405nm (blue), 532nm (green), 781nm (red), and for non-denuded particles also at 375nm (ultraviolet). The aerosol size distributions were measured after the denuder with a Laser Aerosol Spectrometer (LAS, TSI Inc.) and black carbon was measured with a Single Particle Soot Photometer (SP2, DMT Inc.). Additionally, ambient measurements of Total Particulate Matter (PM2.5 and PM10) were collected continuously at the LANL air monitoring stations. These measurements are used in conjunction with numerical simulations to determine the bulk optical properties of the aerosol. Aerosols in wildfire smoke are composed of organic and black carbon (soot) particles that are formed during wood combustion and pyrolysis. The optical properties of the smoke particles are complex and lead to large uncertainties in assessing the global climate. During the measurement period, the Las Conchas fire provided very high particle concentrations (up to 200 μg/m3) that were exploited to investigate their optical properties. By heating the particles to temperatures ranging from 75 to 200C in the denuder, volatile organics were removed and the optical properties of the remaining particles were measured

  5. Heterogeneous Ice Nucleation on Kaolinite Particles, Particle Surrogates of HUmic-Like Substances (HULIS), and Organics-Containing Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Wang, B.; Knopf, D. A.

    2009-12-01

    Aerosol particles can affect the global radiation budget through aerosol-cloud interactions by acting as cloud condensation nuclei and ice nuclei (IN) thereby inducing new clouds and/or modifying the radiative properties of existing clouds. This study presents heterogeneous ice nucleation data as a function of particle temperature and relative humidity with respect to ice (RHice) for laboratory generated kaolinite particles, leonardite and fulvic acid particles serving as surrogates for aerosols composed of HULIS, and organics-containing urban aerosols collected during the MILAGRO (Mexico City) campaign. These experiments are conducted using an improved version of a previously developed ice nucleation cell coupled to an optical microscope which allows to control particle temperatures between 200-300 K and corresponding atmospherically relevant RHice. Micrometer-sized particles are deposited onto a hydrophobic substrate and are placed in the nucleation cell. To validate the experimental approach and quality of substrates, ice nucleation experiments were performed 1. on plain sample substrates and 2. using a well studied IN: kaolinite particles. The results corroborate that kaolinite particles are efficient IN inducing ice nucleation at 102-120% RHice via deposition mode at temperatures between 200 and 245 K, in agreement with previous studies. The ice nucleation efficiency of leonardite and fulvic acid particles with median diameters of 2-3 µm is determined. Leonardite particles nucleate ice via deposition mode at 120-140% RHice for temperatures between 200 and 240 K with the minimum RHice threshold observed at 220 K. Fulvic acid particles nucleate ice via deposition mode at 135-150% RHice for temperatures between 200 and 230 K with the minimum RHice threshold determined at 216 K. The fulvic acid particles take up water at RH>95% for temperatures between 235 and 250 K. The contact angle derived from experimentally determined heterogeneous ice nucleation rate

  6. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  7. Particle size influences aerosol deposition in guinea pigs during bronchoconstriction

    SciTech Connect

    Praud, J.P.; Macquin-Mavier, I.; Wirquin, V.; Meignan, M.; Harf, A.

    1986-03-01

    The role of two factors determining the deposition of aerosols in the respiratory tract was investigated: the particle size and the nature of the airflow in the airways. An aerosol of Tc99 m-DTPA was generated, with a mass median aerodynamic diameter of either 3 ..mu..m (Bird nebulizer) or 0.5 ..mu..m (Jouan nebulizer). The vehicle was either saline (S) or histamine (H) at a concentration which was previously shown to induce a 50% decrease of specific airway conductance. Spontaneously breathing guinea pigs were exposed during 2 minutes to the aerosol, then killed and the radioactivity in the pharynx, the trachea, the large bronchi and the remaining parenchyma was measured. Results are evaluated as the percentage of total radioactivity in the respiratory tract (mean +/- SEM). Analysis of variance showed that there was a significant difference in the pattern of deposition for large particles (3 ..mu..m) during bronchoconstriction: the more proximal deposition can be ascribed to inertial impaction. Particle size should be clearly defined during histamine challenge in experimental animals.

  8. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  9. Aerosol optical properties at Lampedusa (Central Mediterranean) 1. Influence of transport and identification of different aerosol types

    NASA Astrophysics Data System (ADS)

    Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P.

    2005-07-01

    Ångström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in theÅngström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols. Lampedusa reveals a stronger influence of desert dust compared to other Mediterranean sites (mostly located on the coasts of Europe).

  10. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types

    NASA Astrophysics Data System (ADS)

    Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P.

    2006-03-01

    the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and Ångström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α, that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in the Ångström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols.

  11. The rate of equilibration of viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    O'Meara, Simon; Topping, David O.; McFiggans, Gordon

    2016-04-01

    The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1-90 % predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60 % final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1 × 10-25 m2 s-1 in pure form). This, as well as other results here, questions whether particle-phase diffusion through water-soluble particles can limit hygroscopic growth in the ambient atmosphere. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.

  12. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  13. Aerosol and cloud properties using (A)ATSR: retrieval algorithm and application for aerosol-cloud interaction

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; De Leeuw, Gerrit; Kolmonen, Pekka; Virtanen, Timo H.; Saponaro, Giulia; Kokhanovsky, Alexander

    Aerosols and clouds play an important role in radiative transfer and are key elements of the water and energy cycles. The interactions between aerosol particles and cloud drops are critical to identifying the earth radiation budget. Accurate evaluation of the effects of aerosols and clouds on climate requires global information on aerosol properties which can only be provided using satellite remote sensing. Among the satellite instruments used for aerosol and cloud retrieval is the (Advanced) Along-Track Scanning Radiometer ((A)ATSR) on board the European Space Agency (ESA) satellite ENVISAT (1997-2012). (A)ATSR measures top-of-the-atmosphere (TOA) radiances at 7 wavelengths in the spectral range from the visible to the thermal infrared. It has two views, one at nadir and the other one at 55o forward view; conical scan covers a swath of 512 km. The (A)ATSR resolution is 1 km at nadir. The aerosol retrieval algorithm (dual-view over land and single-view over ocean) was constructed for ATSR-2 data (e.g. Veefkind et al. 1998). The most recent version of ADV (AATSR Dual View) is described in Kolmonen et al. (2013). The (A)ATSR dual-view allows retrieval without prior information about land surface reflectance. A semi-analytical cloud retrieval algorithm using backscattered radiation in 0.4-2.4 μm spectral region has been implemented to ADV for the determination of the optical thickness, the liquid water path, and the effective size of droplets from spectral measurements of the intensity of light reflected from water clouds with large optical thickness. In AacDV ((A)ATSR aerosol and cloud Dual View) aerosol and cloud retrievals are combined. Cloud retrieval starts when cloud tests for aerosol retrieval show the presence of clouds. The algorithm was early introduced in Kokhanovsky et al. (2003). It works well for thick clouds. In addition to cloud properties, cloud top height is estimated using information from both nadir and forward views. AacDV has been successfully

  14. Aerosol Properties over Southeastern China from Multi-Wavelength Raman and Depolarization Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru

    2016-06-01

    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.

  15. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  16. Evolution of Biomass Burning Aerosol Optical Properties in the Near Field

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Arnott, W. P.; Chand, D.; Fortner, E.; Freedman, A.; Kleinman, L. I.; Onasch, T. B.; Shilling, J. E.; Springston, S. R.

    2014-12-01

    Biomass burning (BB) events are known to produce chemically rich environments that can impact the evolution of primary aerosols and influence secondary aerosols production rates. With their increasing in frequency, BB events are expected to exert an ever-increasing impact on climate due to aerosol radiative forcing processes. One area that is still poorly understood is the evolution of these smoke aerosols in the near field. Recent literature suggests that BB aerosols undergo a rapid evolution near their source that is then followed by a slower aging phase. During the summer of 2013, the Department of Energy-sponsored an aircraft field campaign called the Biomass Burning Observation Project (BBOP) that specifically targeted the evolution of smoke aerosols in the near field (< 2 hours). Results examining the evolution of BB optical and microphysical properties will be presented. To probe these properties, the BBOP field campaign deployed a Single Particle Soot Photometer (SP2) to probe the mixing state of refractory black carbon (rBC) and a Soot Particle Aerosol Mass Spectrometer (SP-AMS) to investigate the composition of both non-refractory and rBC-containing particles. Aerosol optical properties were measured in situ using a 355 nm Photoacoustic spectrometer (PAS), a 532 nm photo thermal interferometer (PTI), a 630 nm cavity Attenuation Phase Shifted (CAPS) spectrometer, a 3-λ nephelometer, and a 3-λ PSAP. The BBOP study represented the maiden aircraft deployment for the SP-AMS, the 355 nm PAS and 532 nm PTI. Discussion will be on the near-field evolution of particle mixing state and morphology, chemical composition, and microphysical processes that determine aerosol size distributions and single scattering albedo (SSA) of light absorbing aerosols. In the cases studied, increases in the coating thickness of refractive black carbon (rBC) particles, organic aerosol/rBC ratio, scattering/CO ratio, and aerosol size distributions have been observed. Results will be

  17. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China.

    PubMed

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui; Liu, Chao

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol-radiation and aerosol-cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core-shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ±6% and ±14% for external mixture and ±9% and ±31% for core-shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. PMID:26851881

  18. Graphical techniques for interpreting the composition of individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Rahn, Kenneth A.; Zhuang, Guoshun

    A graphical technique that uses X- Y and ternary plots is presented for interpreting elemental data for individual aerosol particles. By revealing the multiple functional relationships between the elements, it offers more insight into the groups of particles and the transitions between them than traditional techniques such as factor analysis and cluster analysis alone are able to. For a sample of dust storm aerosol from Beijing in March 2002, X-Y plots revealed areas, lines, and "dots" that represented clays, smooth transitions to asymptotes of pure single-component minerals, and pure minor minerals or special particles, respectively. Ternary plots further revealed ratios of elements and potential minerals. Careful use of cluster analysis revealed subgroups of particles that were not separated by clear borders. The dust storm had three major components, clay/quartz (Al 2O 3, SiO 2, etc.), basic calcium (CaO, CaCO 3), and salts (sulfate, phosphate, chloride). Some sulfates, including CaSO 4 and (NH 4) xH 2-xSO 4, were mixed with the quartz and clay. A five-step sequence that combines graphics, basic statistics, cluster analysis, and SEM photography seems to extract the maximum information from suites of single particles.

  19. Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China.

    PubMed

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Zhang, Miming

    2016-09-01

    Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon. PMID:27295441

  20. SAGE II Measurements of Stratospheric Aerosol Properties at Non-Volcanic Levels

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Burton, Sharon P.; Luo, Bei-Ping; Peter, Thomas

    2008-01-01

    Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, during background periods, the SAD operational product has an uncertainty of at least a factor of 2 during due to the lack of sensitivity to particles with radii less than 100 nm.

  1. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality. PMID:26953969

  2. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  3. Effects of Organic-Inorganic Interactions on the Hygroscopicity of Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Lienhard, D.; Krieger, U. K.

    2013-12-01

    Aerosol hygroscopicity is an important property affecting size as well as phase transitions and viscosity of soluble or partially soluble particles following changes in ambient relative humidity (RH) and temperature. The effects of hygroscopic particle growth on the water contents and physical states of aerosol phases in turn may significantly affect multiphase chemistry, the direct effect of aerosols on climate, and the ability of specific particles to act as cloud condensation or ice nuclei. The hygroscopic growth of organic-inorganic mixtures in stable or metastable equilibrium with the RH of the surrounding air is governed by chemical thermodynamics and can be described, in principle, by adequate thermodynamic models. Organic-inorganic interactions involving dissolved ionic species in liquid (potentially highly viscous) phases tend to deviate substantially from ideal mixing and can lead to hygroscopicity behaviour deviating from simple linear additivity assumptions at given RH. The latter assumptions are employed in the Zdanovskii-Stokes-Robinson (ZSR) mixing rule, which is typically found to describe hygroscopic mass growth well in the RH range of completely liquid aerosol systems. We present a comparison and discussion of thermodynamic calculations based on the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and hygroscopic growth factor data from new measurements with an electrodynamic balance (EDB) as well as data from the literature. We focus on the different hygroscopicity features below the full deliquescence RH of multicomponent organic-inorganic systems. Experiments and model calculations are performed for different multicomponent systems showing varying degrees of organic-inorganic miscibility, including liquid-liquid phase separation, hygroscopicity, and hysteresis effects between metastable and stable gas-aerosol equilibria. It is found that depending on the hygroscopicity of the organic aerosol fraction

  4. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  5. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  6. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  7. Raman Lidar Measurements of Aerosol Optical Properties Performed at CNR- IMAA

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.

    2005-12-01

    The lidar system for tropospheric aerosol study, located at CNR-IMAA in Tito Scalo, Potenza (40 °36'N, 15°44' E, 760 m above sea level), is a Raman/elastic lidar system operational since May 2000 in the framework of EARLINET (European Aerosol Research LIdar NETwork), the first lidar network for tropospheric aerosol study on continental scale. It provides independent measurements of aerosol extinction and backscatter coefficient profiles at 355 nm and aerosol backscatter profiles at 532 nm. Both the IMAA aerosol lidar system and the used algorithms for the retrieval of aerosol optical parameters have been successfully tested with different intercomparison exercises in the frame of the EARLINET quality assurance program. In the frame of EARLINET, regular measurements are performed three times per week, allowing to study the aerosol content typically present in the planetary boundary layer over Potenza. Particular attention is devoted to Saharan dust intrusions in Europe, and Saharan dust forecasts are distributed to all EARLINET stations. The large dataset of Saharan dust optical properties profiles collected at IMAA allowed to study the contribution of dust particles to the aerosol load typically present in our area as well as to investigate transformations of aerosol optical properties during the transport. Several intensive measurement campaigns have been performed at IMAA with this system to study optical properties of different types of aerosol, and how the transport and modification mechanisms and the water content affect these optical properties. In particular, direct transport of volcanic aerosol emitted in 2002 during the Etna eruptions was observed, and in summer 2004, aerosol layers related to forest fires smoke or pollution plume transported from Alaska, Canada and North America were observed at IMAA during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign. Moreover, this system has been used

  8. Comparison of modeled optical properties of Saharan mineral dust aerosols with SAMUM lidar and photometer observations

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Wiegner, Matthias

    2013-05-01

    Mineral dust aerosols are, for example, relevant for the radiative transfer in Earth's atmosphere. An important source of information on this aerosol type is provided by remote sensing using lidar systems and sun/sky photometers. We investigate the sensitivity of lidar and photometer observations to the microphysical aerosol properties in a numerical study. Knowledge of this sensitivity is required for the development of microphysical retrieval algorithms. Until recently, such retrieval algorithms were applied only to lidar or photometer observations. Quite different sensitivities for lidar and photometer are found in our study, suggesting that synergistic effects can be expected from combining the observations from both techniques. Furthermore, we compare the modeled aerosol properties to observations of Saharan mineral dust aerosols performed during the SAMUM field campaign. We determined aerosol ensembles that are consistent with the lidar as well as the photometer observations, confirming the feasibility of combining the observations from both techniques. The consistent aerosol ensembles are based on the desert mixture from the OPAC aerosol dataset, and were improved by considering mixing of absorbing and non-absorbing irregularly shaped particles.

  9. A study of aerosol properties over Lahore (Pakistan) by using AERONET data

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad; Tariq, Salman; Mahmood, Khalid; Daud, Asim; Batool, Adila; Zia-ul-Haq

    2014-02-01

    It is well established that aerosols affect the climate in a variety of ways. In order to understand these effects, we require an insight into the properties of aerosols. In this paper we present a study of aerosol properties such as aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol radiative forcing (ARF) over mega city of Lahore (Pakistan). The data from Aerosol Robotic Network (AERONET) have been used for the period December 2009 to October 2011. The seasonal average values of AOD, asymmetry parameter (ASY) and volume size distribution in coarse mode were observed to be highest in summer. On the other hand, the average values of Angstrom exponent (AE) and imaginary part of refractive index (RI) were found to be maximum in winter. The average value of real part of RI was found to be higher in spring than in all other seasons. The SSA exhibited an increasing trend with wavelength in the range 440 nm-1020 nm in spring, summer and fall indicating the dominance of coarse particles (usually dust). However, a decreasing trend was found in winter in the range 675 nm-1020 nm pointing towards the dominance of biomass and urban/industrial aerosols. As far as aerosol radiative forcing (ARF) is concerned, we have found that during the spring season ARF was lowest at the surface of Earth and highest at top of the atmosphere (TOA). This indicates that the atmosphere was warmer in spring than in all the remaining seasons.

  10. Detection of biological particles in ambient air using bio-aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    McJimpsey, Erica L.; Steele, Paul T.; Coffee, Keith R.; Fergenson, David P.; Riot, Vincent J.; Woods, Bruce W.; Gard, Eric E.; Frank, Matthias; Tobias, Herbert J.; Lebrilla, Carlito

    2006-05-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  11. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  12. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Tsay, Si-Cee; King, Michael D.; Herman, Jay R.

    2006-01-01

    During the ACE-Asia field campaign, unprecedented amounts of aerosol property data in East Asia during springtime were collected from an array of aircraft, shipboard, and surface instruments. However, most of the observations were obtained in areas downwind of the source regions. In this paper, the newly developed satellite aerosol algorithm called "Deep Blue" was employed to characterize the properties of aerosols over source regions using radiance measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based upon the ngstr m exponent derived from the Deep Blue algorithm, it was demonstrated that this new algorithm is able to distinguish dust plumes from fine-mode pollution particles even in complex aerosol environments such as the one over Beijing. Furthermore, these results were validated by comparing them with observations from AERONET sites in China and Mongolia during spring 2001. These comparisons show that the values of satellite-retrieved aerosol optical thickness from Deep Blue are generally within 20%-30% of those measured by sunphotometers. The analyses also indicate that the roles of mineral dust and anthropogenic particles are comparable in contributing to the overall aerosol distributions during spring in northern China, while fine-mode particles are dominant over southern China. The spring season in East Asia consists of one of the most complex environments in terms of frequent cloudiness and wide ranges of aerosol loadings and types. This paper will discuss how the factors contributing to this complexity influence the resulting aerosol monthly averages from various satellite sensors and, thus, the synergy among satellite aerosol products.

  13. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2008-12-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was

  14. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  15. A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Haenel, G.; Pruppacher, H. R.

    1980-01-01

    The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in atmospheric air masses were considered. The present model circumvents any assumption about the size distribution and chemical composition of the aerosol particles by basing the aerosol particle growth on actually observed size distributions and on observed amounts of water taken up under equilibrium by a deposit of the aerosol particles. Characteristic differences in the drop size distribution, liquid water content and supersaturation were found for the clouds which evolved from the four aerosol types considered.

  16. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N. L.; Anderson, B. E.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M.; Middlebrook, A. M.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Welti, A.; Ziemba, L. D.; Murphy, D. M.

    2015-11-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013. Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation of these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ~ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental airmasses in which an accumulation mode between 0.1-0.5 μm diameter dominates aerosol extinction.

  17. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Welti, Andre; Ziemba, Luke D.; Murphy, Daniel M.

    2016-04-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US). Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ˜ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1-0.5 µm diameter dominates aerosol extinction.

  18. Studying Taklamakan aerosol properties with lidar (STAPL)

    NASA Astrophysics Data System (ADS)

    Cottle, Paul; Mueller, Detlef; Shin, Dong-Ho; Zhang, Xiao Xiao; Feng, Guanglong; McKendry, Ian; Strawbridge, Kevin

    2013-10-01

    By now, the global impacts of atmospheric dust have been well-established. Nevertheless, relevant properties such as size distribution, depolarization ratio, and even single-scattering albedo have been shown to vary substantially between dust producing regions and are also strongly dependant on the conditions under which the dust is emitted. Even greater variations have been documented during the process of long-range transport. With continued improvement of detection technologies, research focus is increasingly turning to refinement of our knowledge of these properties of dust in order to better account for the presence of dust in models and data analysis. The purpose of this study is to use a combination of lidar data and models to directly observe the changing properties of dust layers as they are transported from their origin in the Taklamakan Desert of western China. With the co-operation of the Xinjiang Institute of Ecology and Geography, a portable micropulse lidar system was installed at Aksu National Field on the northern edge of the Tarim Basin in late April 2013, during the Spring dust storm season. Over six days, data were collected on the optical properties of dust emissions passing over this location. The measurements of this lidar have shown the dust over Aksu on these days to have a significantly higher depolarization ratio than has been previously reported for the region. Model results show this dust was then transported across the region at least as far as Korea and Japan. Models from the Naval Aerosol Analysis and Prediction System (NAAPS) show that during transport the dust layers became intermixed with sulfate emissions from industrial sources in China as well as smoke from wildfires burning in south-east Asia and Siberia. The multi-wavelength raman-elastic lidar located in Gwangju South Korea was used to observe the vertical structure of the layers as well as optical properties such as colour ratio, depolarization ratio and extinction

  19. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  20. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  1. Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size

    SciTech Connect

    Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

  2. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    selected four Asian sites. A strongly absorbing mineral dust influence is seen at the Xianghe, Taihu, and SACOL sites during the spring months (MAM) as given by coarse mode dominance. There is a shift towards weakly absorbing pollution (sulfate) and biomass (OC) aerosol dominance in the summer (JJA) and autumn (SON) months as given by a strong fine mode influence. A winter season (DJF) shift toward strongly fine mode, absorbing particles (BC and OC) is observed at Xianghe and Taihu. At Mukdahan, a strong fine mode influence is evident year round with weakly and strongly absorbing biomass particles dominant in the autumn and winter months, respectively, while particles exhibit variable absorption during the spring season. To address SQ2, four cases are selected in Asia to investigate how the optical properties of Asian aerosol plumes change during transport across the remote Pacific Ocean. In addition, six strong smoke events are selected to investigate how the physical and chemical properties of biomass smoke aerosols change during transport in North America. From four selected Asian cases, it was shown by DC-8 aircraft in situ measurements that the Asian plumes contained varying amounts of mineral dust and pollution aerosols during transport. In addition, backward trajectory analysis identified two main dust source regions (Gobi and Taklamakan deserts) and urban/industrial pollution regions in central and eastern China. During the anomalously active wildfire season of 2012 in North America, strong smoke events were observed over the Northern Great Plains region by the Grand Forks, North Dakota, AERONET site and selected as cases. The spectral dependences of absorption aerosol optical depth (AAOD) and o oabs illustrated the varying absorption of the smoke plumes due to carbonaceous particle influences. The AAOD parameter was found to be primarily influenced by aerosol particle size while ooabs was more sensitive to the carbonaceous content. The aerosols likely contain

  3. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  4. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  5. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  6. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  7. Evolution of the Physicochemical and Activation Properties of Aerosols within Smoke Plumes during the Biomass Burning Observation Project (BBOP)

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. M.; Mei, F.; Wang, J.; Comstock, J. M.; Hubbe, J. M.; Pekour, M. S.; Shilling, J. E.; Fortner, E.; Chand, D.; Sedlacek, A. J., III; Kleinman, L. I.; Senum, G.; Schmid, B.

    2014-12-01

    Biomass burning from wildfires and controlled agricultural burns are known to be a major source of fine particles and organic aerosols at northern temperate latitudes during the summer months. However, the evolution of the physicochemical properties of the aerosol during transport and the potential impact of this evolution on cloud condensation nuclei (CCN) activity has rarely been studied for these events. During the DOE-sponsored Biomass Burning Observation Project (BBOP) conducted in the summer and fall of 2013, over 30 research flights sampled biomass burning plumes from wildfires in the Northwestern United States and agricultural burns in the Mid-South region of the United States. A large suite of instruments aboard the DOE G-1 (Gulfstream-1) measured the chemical, physical, and optical properties of biomass burning aerosol with an emphasis on black carbon. A Fast Integrated Mobility Spectrometer (FIMS), Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A), and Passive Cavity Aerosol Spectrometer (PCASP) were used to measure the aerosol size distribution from 15 - 3,000 nm at 1-Hz. A dual column CCN counter measured the CCN number concentration at supersaturations of 0.25% and 0.50% at a time resolution of 1-Hz and the aerosol chemical composition was measured using a soot particle aerosol mass spectrometer (SP-AMS, Aerodyne, Inc). The SP-AMS was operated in two modes: (i) as a traditional high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.), which measured chemical composition of non-refractory aerosols and (ii) as the SP-AMS which measured chemical composition of the refractory black carbon-containing (rBC) particle coating and rBC aerosol mass. Utilizing the aforementioned measurements, a CCN closure study is used to investigate the emitted aerosol hygroscopicity, the evolution of the physicochemical properties of the aerosol, and the potential impacts on cloud microphysics from the different fuel sources.

  8. Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2010-01-13

    Understanding the aging process of aerosol particles is important for assessing their chemical reactivity, cloud condensation nuclei activity, radiative properties and health impacts. In this study we investigate the aging of black carbon containing particles in an idealized urban plume using a new approach, the particleresolved aerosol model PartMC-MOSAIC. We present a method to estimate aging time-scales using an aging criterion based on cloud condensation nuclei activation. The results show a separation into a daytime regime where condensation dominates and a nighttime regime where coagulation dominates. For the chosen urban plume scenario, depending on the supersaturation threshold, the values for the aging timescales vary between 0.06 hours and 10 hours during the day, and between 6 hours and 20 hours during the night.

  9. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  10. Chemical Composition and Cloud Condensation Nuclei Properties of Marine Aerosols during the 2005 Marine Stratus Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Hudson, J.; Daum, P.; Springston, S.; Wang, J.; Senum, G.; Alexander, L.; Jayne, J.; Hubbe, J.

    2006-12-01

    Marine aerosol chemical composition and cloud condensation nuclei (CCN) spectrum were determined on board the DOE G1 aircraft during the Marine Stratus Experiment conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosol components, including sea-salt- (sodium, chloride, magnesium, methansulfonate) and terrestrial/pollution-derived (ammonium, sulfate, nitrate, organics, potassium, and calcium) were measured using the particle-into-liquid sampler-ion chromatography technique and an Aerodyne AMS at a time resolution of 4 min and 30 s, respectively, both covering the size range of ~0.08 to 1.5 micrometers. The CCN spectrum was determined at a 1-s time resolution covering a supersaturation range between 0.02% and 1%. The accumulation mode particle size- number distribution was measured using a passive cavity aerosol spectrometer probe; the cloud droplet size- number distribution was determined using a Cloud Aerosol Probe. During the campaign sulfate/organic aerosols were always present, sea-salt aerosols were observed on half of the flights, and no dust or biomass burning contribution was noted as calcium and potassium were always below their limits-of-detection. Based on CCN spectra and cloud droplet number concentrations, the typical supersaturation of the marine stratus clouds was ~0.06%, corresponding to a CCN critical diameter between 0.1 and 0.2 micrometer. This large critical diameter makes the aerosol chemical composition measured appropriate for investigating the CCN properties and marine stratus clouds. We note that while sea-salt aerosols and sulfate aerosols were most likely externally mixed, the ensemble exhibits similar CCN properties irrespective of the relative mass concentrations of these two types of aerosols, owing partly to the similar activation properties of NaCl and (NH4)2SO4 aerosols, and that sea-salt particles were larger but fewer, accounting for a small fraction of cloud

  11. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  12. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies.

    PubMed

    Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E

    2015-04-13

    In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies. PMID:25682537

  13. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for

  14. Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate.

    PubMed

    Badger, Claire L; Griffiths, Paul T; George, Ingrid; Abbatt, Jonathan P D; Cox, R Anthony

    2006-06-01

    The kinetics of reactive uptake of N2O5 on submicron aerosol particles containing humic acid and ammonium sulfate has been investigated as a function of relative humidity (RH) and aerosol composition using a laminar flow reactor coupled with a differential mobility analyzer (DMA) to characterize the aerosol. For single-component humic acid aerosol the uptake coefficient, gamma, was found to increase from 2 to 9 x 10(-4) over the range 25-75% RH. These values are 1-2 orders of magnitude below those typically observed for single-component sulfate aerosols (Phys. Chem. Chem. Phys. 2003, 5, 3453-3463;(1) Atmos. Environ. 2000, 34, 2131-2159(2)). For the mixed aerosols, gamma was found to decrease with increasing humic acid mass fraction and increase with increasing RH. For aerosols containing only 6% humic acid by dry mass, a decrease in reactivity of more than a factor of 2 was observed compared with the case for single-component ammonium sulfate. The concentration of liquid water in the aerosol droplets was calculated using the aerosol inorganic model (for the ammonium sulfate component) and a new combined FTIR-DMA system (for the humic acid component). Analysis of the uptake coefficients using the water concentration data shows that the change in reactivity cannot be explained by the change in water content alone. We suggest that, due to its surfactant properties, the main effect of the humic acid is to reduce the mass accommodation coefficient for N2O5 at the aerosol particle surface. This has implications for the use of particle hygroscopicity data for predictions of the rate of N2O5 hydrolysis. PMID:16722713

  15. Studies of the chemical mixing state of sea spray aerosol and associated climate relevant properties (Invited)

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Bertram, T. H.; Grassian, V. H.; Collins, D. B.; Ault, A. P.; Ruppel, M. J.; Axson, J. L.; Ryder, O. S.; Schill, S.

    2013-12-01

    The ocean plays a large but highly uncertain role in affecting clouds and climate, generating sea spray aerosols that can directly impact climate by scattering solar radiation and indirectly through nucleating clouds. A tremendous amount has been learned about these interactions over decades of marine studies, however the goal of establishing robust relationships between seawater composition and sea spray climate properties has remained elusive. Much of the impediment stems from difficulties associated with unraveling the impacts of nascent sea spray and background marine aerosols which have been shown to dominate field measurements. In an effort to advance our understanding of nascent sea spray properties, we have developed a new approach for studying this issue in a newly developed ocean-atmosphere facility equipped with breaking waves. After establishing extremely low background aerosol concentrations (< 1 per cc), studies have probed the size distribution and chemical mixing state of sea spray aerosols produced by breaking waves in natural seawater. The critical importance of using bubble size distributions representative of real breaking waves to generate sea spray aerosol (SSA) is discussed. Using a combination of techniques probing individual particle composition and morphology including aerosol time-of-flight mass spectrometry (ATOFMS), scanning tunnel x-ray microscopy (STXM), and electron microscopy, four major sea spray particle types are prevalent in all studies, consisting of sea salt, mixed sea salt and biogenic organic species, biogenic organic species, and primary biological aerosol particles (PBAP). Results from studies aimed at probing how changes in seawater composition due to biological activity impact sea spray aerosol composition and climate properties will be discussed.

  16. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  17. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    SciTech Connect

    Cahill, John F.; Suski, Kaitlyn; Seinfeld, John H.; Zaveri, Rahul A.; Prather, Kimberly A.

    2012-11-21

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influence their climate impacts through optical properties, hygroscopicity, and atmospheric lifetime. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that were internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles are internally mixed and are heavily influenced by secondary species that are most predominant in each region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the

  18. The Truth about Stratospheric Aerosols: Key Results from SPARC`s Assessment of Stratospheric Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Thomason, L. W.; Peter, T.

    2005-12-01

    Given the critical role it plays in ozone chemistry, the Assessment of Stratospheric Aerosol Properties (ASAP) has been carried out by the WCRP project on Stratospheric Process and their Role in Climate (SPARC). The objective of this report was to present a systematic analysis of the state of knowledge of stratospheric aerosols including their precursors. It includes an examination of precursor concentrations and trends, measurements of stratospheric aerosol properties, trends in those properties, and modeling their formation, transport, and distribution in both background and volcanic conditions. The assessment found that the dominant nonvolcanic stratospheric aerosol precursor gases are OCS, SO2, and tropospheric aerosol. Therefore, though SO2, human-related activities play a significant role in the observed background stratospheric aerosol. There is general agreement between measured OCS and modeling of its transformation to sulfate aerosol, and observed aerosols. However, there is a significant dearth of SO2 measurements, and the role of tropospheric SO2 in the stratospheric aerosol budget - while significant - remains a matter of some guesswork. The assessment also found that there is basic agreement between the various data sets and models particularly during periods of elevated loading. However, at background levels significant differences were found that indicate that substantial questions remain regarding the nature of stratospheric aerosol during these periods particularly in the lower stratosphere. For instance, during periods of very low aerosol loading significant differences exist between systems for key parameters including aerosol surface area density and extinction. At the same time, comparisons of models and satellite observations of aerosol extinction found good agreement at visible wavelengths above 20-25 km altitude region but are less satisfactory for infrared wavelengths. While there are some model short-comings relative to observations in

  19. Dimethylsulfide/cloud condensation nuclei/climate system - Relevant size-resolved measurements of the chemical and physical properties of atmospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Covert, D. S.; Bates, T. S.; Kapustin, V. N.; Ramsey-Bell, D. C.; Mcinnes, L. M.

    1993-01-01

    The mass and number relationships occurring within the atmospheric dimethylsulfide/cloud condensation nuclei (CCN)/climate system, using simultaneous measurements of particulate phase mass size distributions of nss SO4(2-), methanesulfonic acid (MSA), and NH4(+); number size distributions of particles having diameters between 0.02 and 9.6 microns; CCN concentrations at a supersaturation of 0.3 percent; relative humidity; and temperature, obtained for the northeastern Pacific Ocean in April and May 1991. Based on these measurements, particulate nss SO4(2-), MSA, and NH4(+) mass appeared to be correlated with both particle effective surface area and number in the accumulation mode size range (0.16 to 0.5 micron). No correlations were found in the size range below 0.16 micron. A correlation was also found between nss SO4(2-) mass and the CCN number concentration, such that a doubling of the SO4(2-) mass corresponded to a 40 percent increase in the CCN number concentration. However, no correlation was found between MSA mass and CCN concentration.

  20. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2015-05-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle-phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids to phase-separated particles to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40 to 90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids; (2) forcing a single phase but accounting for non-ideal interactions through activity coefficient calculations; and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation of the inorganic and organic components is assumed at all RH values, with water uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  1. Influence of particle phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2014-12-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids, to phase-separated particles, to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40-90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids, (2) forcing a single phase, but accounting for non-ideal interactions through activity coefficient calculations, and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation between the inorganic and organic components is assumed at all RH values, with water-uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  2. Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.

    2014-12-01

    In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.

  3. Rocket-borne probes for charged ionospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Smiley, B.; Sternovsky, Z.; Robertson, S.; Horanyi, M.

    2003-10-01

    A series of rocket-borne probes is described for detecting charged solid particles in the ionosphere. The probes are flat charge-collecting surfaces on the skin of the rocket that have behind them a permanent magnet that magnetically insulates the probe from electrons. Several probes have also had a small positive bias of several volts to reduce collection of light molecular ions. The current that is recorded is thus from heavier charged particles and this is converted to a charge number density. Several summer launches into the polar mesosphere have found charged aerosol layers at the altitudes of noctilucent clouds and polar summer mesospheric radar echoes. A new probe is being developed in which electric deflection is used to determine the mass of the particles. This probe takes advantage of the reduced density behind the shock front to increase the mean free path within the instrument, so that cryopumping is not required.

  4. Multiwavelength In-situ Aerosol Absorption, Scattering, and Hygroscopic Properties During the TEXAQS 2006 Field Campaign: Aerosol Classification and Variability

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D. S.; Coffman, D. J.; Quinn, P. K.; Bates, T. S.

    2007-12-01

    In-situ, three wavelength-measurements of optical properties of the aerosol near the coast of Texas, i.e. in the region of Houston and the Houston ship channel, as well as in the Gulf of Mexico were carried out onboard the NOAA research vessel Ronald H. Brown during the 2006 TEXAQS/GoMACCS field campaign in July through September 2006. Aerosol scattering, hemispheric backscattering and absorption-coefficients were measured for particles with diameters dp<10μm and dp<1μm using integrating nephelometers and filter-based absorption photometers (PSAPs) at 60% RH (nephelometers). Submicrometric light scattering coefficient was measured at two additional humidities, ca. 25%, and 85% RH. Together with the 60% RH data, this enabled determination of the effect of aerosol hygroscopic growth on light scattering and an empirical light scattering growth factor. The results are relevant to radiation transfer, visibility, air quality, and interpretation of remote sensing data from lidar and satellite. The extensive and intensive optical properties along with meteorological analysis are used to characterize the aerosol in the Houston, TX region and the Coastal Gulf of Mexico and to provide information critical to understanding the climatic and air quality impacts of those aerosols. Further analysis focuses on the changes that these properties undergo during chemical processing of emissions within the project area and how they are affected by changes in atmospheric relative humidity that accompany transport, diurnal cycles and vertical mixing. The results are classified by source region and flow regime of the sampled air masses to identify distinct aerosol populations. Special emphasis is given to the physico-chemical properties of aerosols measured during two periods when Saharan dust was encountered during the cruise as well as to several air pollution episodes and plumes from industrial complexes. The combination of hygroscopic growth, light scattering and absorption

  5. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency

    PubMed Central

    Fu, Huijing; Patel, Anand C.; Holtzman, Michael J.; Chen, Da-Ren

    2012-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  6. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency.

    PubMed

    Fu, Huijing; Patel, Anand C; Holtzman, Michael J; Chen, Da-Ren

    2011-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  7. Optical Properties and Climate Impacts of Tropospheric Aerosols that Undergo Long-Range Transport to the Arctic

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Coffman, D.; Schulz, K.; Shank, L.; Jefferson, A.; Ogren, J.; Burkhart, J.; Shaw, G.

    2009-04-01

    Tropospheric aerosol particles undergo long range transport from the mid-latitudes to the Arctic each winter and spring. Once in the Arctic, aerosols may impact regional climate in several ways. Aerosols can affect climate directly by scattering and absorbing incoming solar radiation and indirectly by acting as cloud condensation nuclei and altering cloud properties. In addition, absorbing aerosol that is deposited onto ice and snow can lower the surface albedo and enhance the ice-albedo feedback mechanism. Measurements of aerosol properties relevant to climate forcing (chemical composition, light scattering, and light absorption) have been made by NOAA at Barrow, AK for over a decade. Measurements of aerosol chemical composition have been made over the same time period at the three more southern Alaskan sites of Poker Flat, Denali National Park, and Homer. In addition, in March and April of 2008, aerosol measurements were made during a NOAA research cruise (ICEALOT) to the Greenland, Norwegian and Barents Seas. Onboard the ship, measurements were made of aerosol optical and cloud nucleating properties. Results from the long-term measurements and ICEALOT will be presented in order to describe trends and climate-relevant properties of aerosol particles transported to the Arctic.

  8. Climatology and Characteristics of In-situ Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Ogren, J. A.; Sharma, S.; Asmi, E.; Bergin, M. H.; Jefferson, A.; Andrews, E.; Tunved, P.; Backman, J.; Starkweather, S.

    2015-12-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, Figure 1 presents the annual cycle of aerosol light scattering at 550 nm at each site for 2012-2014, with most stations (ALT, BRW, TIK, ZEP) experiencing maximum scattering in winter/spring, while SUM and PAL exhibit minimum scattering in the winter. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in

  9. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a nonhuman-primate, head-only aerosol chamber

    PubMed Central

    Bohannon, J. Kyle; Lackemeyer, Matthew G.; Kuhn, Jens H.; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B.; Johnson, Reed F.

    2016-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05–500 μm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modelled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to nonhuman primates within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of nonhuman primate infectious disease models. Here we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  10. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamber.

    PubMed

    Bohannon, J Kyle; Lackemeyer, Matthew G; Kuhn, Jens H; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B; Johnson, Reed F

    2015-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05 to 500 µm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modeled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to non-human primates (NHPs) within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of NHP infectious disease models. Here, we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  11. Two-dimensional angular optical scattering patterns of aerosol particles in the mid-infrared: measurements designed to obtain particle absorption

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.; Pan, Yong-Le; Pinnick, Ronald G.; Hill, Steven C.; Tober, Richard L.; Chang, Richard K.; Bronk, Burt V.

    2004-03-01

    Real-time and in-situ detection and discrimination of aerosol particles, especially bio-aerosols, continues to be an important challenge. The technique labeled TAOS (Two-dimensional Angular Optical Scattering) characterizes particles based upon the angular distribution of elastically scattered light. The detected angular distribution of light, labeled the TAOS pattern, depends upon the particle"s shape, size, surface features, and its complex refractive index. Thus, the absorptive properties of a particle affect the TAOS pattern. Furthermore, we expect to use this change in the TAOS pattern, which occurs when the particle absorption band includes the input wavelength, to characterize the strength of the absorption. Thus, by illuminating a particle in the mid-infrared wavelength range, high frequency vibrational modes that are unique to the aerosol can be reached and quantified. Spherical aerosol particles (in the diameter range of 50-60 micrometers) were generated via a droplet generator and illuminated by an Interband Cascade (IC) laser designed to emit in the 3-5 micrometers wavelength range. The TAOS pattern of the elastically scattered light was detected with an InSb-focal-plane-array infrared camera.

  12. Alteration of Heterogeneous Ice Nucleation Properties Induced by Particle Aging

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Polen, M.; Beydoun, H.; Lawlis, E.; Ahern, A.; Jahn, L.; Hill, T. C. J.

    2015-12-01

    Aerosol particles that can serve as ice nuclei frequently experience rapid and extensive chemical aging during atmospheric transport. This is known to significantly alter some ice nucleation modes of the few types of ice nucleation particle systems where aging effects have been simulated, such as for mineral dust. Yet much of our understanding of atmospheric particle freezing properties is derived from measurements of fresh or unaged particles. We know almost nothing regarding how atmospheric aging might alter the freezing properties of biomass burning aerosol or biological particle nucleants. We have investigated the effects of simulated aging using a chamber reactor on the heterogeneous ice nucleation properties of biomass burning aerosol (BBA) and ice-active bacteria particles. Some types of aging were found to enhance the freezing ability of BBA, exhibited as a shift in a portion of the droplet freezing curve to warmer temperatures by a few °C. Ice-active bacteria were found to consistently loose their most ice-active nucleants after repeated aging cycles. The bacterial systems always retained significantly efficient ice active sites that still allowed them to induce freezing at mild/warm temperatures, despite this decrease in freezing ability. A comprehensive series of online single-particle mass spectrometry and offline spectromicroscopic analysis of individual particles was used to determine how the aging altered the aerosol's composition, and gain mechanistic insights into how this in turn altered the freezing properties. Our new ice nucleation framework that uses a continuous distribution of ice active site ability (contact angle) was used to interpret the droplet freezing spectra and understand how aging alters the internal and external variability, and rigidity, of the ice active sites.

  13. Cloud Nucleating Properties of Aerosols During TexAQS - GoMACCS 2006: Influence of Aerosol Sources, Composition, and Size

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.; Onasch, T. B.; Alllan, J. D.; Worsnop, D.

    2006-12-01

    TexAQS - GoMACCS 2006 was conducted from July to September 2006 in the Gulf of Mexico and Houston Ship Channel to investigate sources and processing of gas and particulate phase species and to determine their impact on regional air quality and climate. As part of the experiment, the NOAA R.V. Ronald H. Brown transited from Charleston, S.C. to the study region. The ship was equipped with a full compliment of gas and aerosol instruments. To determine the cloud nucleating properties of aerosols, measurements were made of the aerosol number size distribution, aerosol chemical composition, and cloud condensation nuclei (CCN) concentration at five supersaturations. During the transit and over the course of the experiment, a wide range of aerosol sources and types was encountered. These included urban and industrial emissions from the S.E. U.S. as the ship left Charleston, a mixture of Saharan dust and marine aerosol during the transit around Florida and across the Gulf of Mexico, urban emissions from Houston, and emissions from the petrochemical industries, oil platforms, and marine vessels in the Gulf coast region. Highest activation ratios (ratio of CCN to total particle number concentration at 0.4 percent supersaturation) were measured in anthropogenic air masses when the aerosol was composed primarily of ammonium sulfate salts and in marine air masses with an aerosol composed of sulfate and sea salt. A strong gradient in activation ratio was measured as the ship moved from the Gulf of Mexico to the end of the Houston Ship Channel (values decreasing from about 0.8 to less than 0.1) and the aerosol changed from marine to industrial. The activation ratio under these different regimes in addition to downwind of marine vessels and oil platforms will be discussed in the context of the aerosol size distribution and chemical composition. The discussion of composition will include the organic mass fraction of the aerosol, the degree of oxidation of the organics, and the water

  14. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.

    PubMed

    Tang, Yong; Huang, Yuanlong; Li, Ling; Chen, Hong; Chen, Jianmin; Yang, Xin; Gao, Song; Gross, Deborah S

    2014-12-01

    Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas. PMID:25499489

  15. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary

  16. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  17. Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores

    NASA Astrophysics Data System (ADS)

    Logan, Timothy; Xi, Baike; Dong, Xiquan

    2014-04-01

    A multiplatform data set from the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (MBL) Graciosa, Azores, 2009-2010 field campaign was used to investigate how continental aerosols can influence MBL cloud condensation nuclei (CCN) number concentration (NCCN). The seasonal variations of aerosol properties have shown that the winter and early spring months had the highest mean surface wind speed (> 5 m s-1) and greatest contribution of sea salt to aerosol optical depth (AOD), while continental fine mode aerosols were the main contributors to AOD during the warm season months (May-September). Five aerosol events consisting of mineral dust, pollution, biomass smoke, and volcanic ash particles were selected as case studies using Atmospheric Radiation Measurement (ARM) mobile facility measurements. The aerosols in Case I were found to primarily consist of coarse mode, Saharan mineral dust. For Case II, the aerosols were also coarse mode but consisted of volcanic ash. Case III had fine mode biomass smoke and pollution aerosol influences while Cases IV and V consisted of mixtures of North American pollution and Saharan dust that was advected by an extratropical cyclone to the Azores. Cases I, IV, and V exhibited weak correlations between aerosol loading and NCCN due to mineral dust influences, while Cases II and III had a strong relationship with NCCN likely due to the sulfate content in the volcanic ash and pollution particles. The permanent Eastern North Atlantic ARM facility over the Azores will aid in a future long-term study of aerosol effects on NCCN.

  18. Imaginary refractive index and other microphysical properties of volcanic ash, Sarahan dust, and other mineral aerosols

    NASA Astrophysics Data System (ADS)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Artaxo, P.; Todd, M.; Ben Ami, Y.; Dolgos, G.; Espinosa, R.

    2013-12-01

    Aerosol properties are essential to support remote sensing measurements, atmospheric circulation and climate models. This research aims to improve the understanding of the optical and microphysical properties of different types of aerosols particles. Samples of volcanic ash, Saharan dust and other mineral aerosols particles were analyzed by different techniques. Ground samples were sieved down to 45um, de-agglomerated and resuspended in the laboratory using a Fluidized Bed Aerosol Generator (FBAG). Particles were collected on Nuclepore filters into PM10, PM2.5, or PM1.0. and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index from the UV to the short wave infrared (SWIR) wavelength was derived empirically from the measurements of the spectral mass absorption coefficient, size distribution and density of the material. Some selected samples were also analyzed with the Polarized Imaging Nephelometer (PI-Neph) instrument for the characterization of the aerosol polarized phase function. This work compares results of the spectral refractive index of different materials obtained by our methodology with those available in the literature. In some cases there are significant differences both in magnitude and spectral dependence of the imaginary refractive index. These differences are evaluated and discussed in this work.

  19. [Effects of Relative Humidity and Aerosol Physicochemical Properties on Atmospheric Visibility in Northern Suburb of Nanjing].

    PubMed

    Yu, Xing-na; Ma, Jia; Zhu, Bin; Wang, Hong-lei; Yan, Shu-qi; Xia, Hang

    2015-06-01

    To understand the effects of relative humidity (RH) and aerosol physicochemical properties on the atmospheric visibility in autumn and winter in northern suburb of Nanjing, the relationships between meteorological elements, particulate matter and visibility were analyzed with the data of meteorological elements, aerosol particle spectra, particulate matter concentration and chemical composition. The average visibility was 4.76 km in autumn and winter in northern suburb of Nanjing. There was a certain negative correlation between the particulate matter concentration and the visibility, especially the influence of fine particles on the visibility was more remarkable. The occurrence frequencies of low visibilities showed an increasing trend with the increasing concentration of fine particles and RH. When the visibility decreased from 5-10 km to <5 km, the mass concentrations of PM10 and PM2.5 increased by 7.56% and 37.64%, respectively. Meanwhile, the mass concentrations of SO4(2-) and NO3-increased significantly. Effects of aerosol particle number concentration on the visibility were related with RH. Aerosol number concentration with diameters ranging from 0.5 microm to 2 microm increased slowly with the increase of RH, while those ranging from 2 microm to 10 microm decreased. The correlation analysis between the aerosol surface area concentration and the visibility showed that RH and fine particles between 0.5 microm and 2 microm were the main factors which caused the decrease of atmospheric visibility in autumn and winter in northern suburb of Nanjing. PMID:26387290

  20. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  1. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-01-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environment against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce fairly well the plume structure and location both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirmed the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicated that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated of about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%) and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  2. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-08-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%), and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  3. Nature and evolution of ultrafine aerosol particles in the atmosphere

    NASA Astrophysics Data System (ADS)

    Smirnov, V. V.

    2006-12-01

    Results of experimental and theoretical studies of a poorly understood phenomenon, an intense emission of ultrafine (nanometer) aerosols (ENA), are reviewed. In the English-language literature, this phenomenon is commonly referred to as a nucleation burst. ENA events have been observed on all the continents and throughout the depth of the troposphere, with the number of corresponding publications growing steadily. Intense and long-lasting ENA events have been studied more or less comprehensively and in full detail for Northern Europe, with 60 to 70% of observations taken in a forest area in the presence of snow cover and 10 to 20% in coastal marine areas. Most often, ENA events occur during spring and fall, with 95% of cases in the daytime and under sunny calm conditions, typical of anticyclones. In ENA events, the concentration of nanoparticles initially grows rapidly to values of 103-105 cm-3. One or two hours later, the so-called nuclei fraction with diameters D = 3-15 nm is produced. The appearance of the Aitken fraction D = 20-80 nm and the enlargement of aerosol particles inside the accumulation fraction D = 80-200 nm may occur during the following 4-6 h. Thus, the cycle of formation and growth of atmospheric aerosol particles in the size range from a few to hundreds of nanometers is reproduced over 6-8 h. A specific synoptic feature of ENA events over land is that they occur when the polar air is transported to measuring sites and the temperature difference between day and light is large. During ENA periods, the formation rate of condensation nuclei with a diameter of 100 nm increases 10-to 100-fold. Important factors of ENA genesis are the “aerosol” and “electric” states of the atmosphere. More intense ENA events occur at low concentrations of background aerosols in the presence of atmospheric ions of medium mobility with D = 2-3 nm. The international experiments ACE 1 and 2, BIOFOR 1, 2, and 3, ESUP 2000, QUEST, etc., have not yet provided any

  4. Aerosol Impacts on Microphysical and Radiative Properties of Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Toohey, D. W.; Andrejczuk, M.; Anderson, J. R.; Adams, A.; Lytle, M.; George, R.; Wood, R.; Zuidema, P.; Leon, D.

    2011-12-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, cloud droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. The effect extends ~800 to 1000 km from shore. The additional particles are mainly sulfates from anthropogenic sources. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Analysis of the droplet residual measurements showed that not only were there more residual nuclei near shore, but that they tended to be larger than those offshore. Single particle analysis over a broad particle size range was used to reveal types and sources of CCN, which were primarily sulfates near shore. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed due to the preferential activation of large aerosol particles. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. However, the scavenging efficiency is not sharp as expected from a simple parcel activation model. A wide range of

  5. Method for determining aerosol particle size device for determining aerosol particle size

    DOEpatents

    Novick, Vincent J.

    1998-01-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  6. Seasonal Aerosol Distributions at Summit, Greenland: EC, OC, 14C and Individual Particle Analysis

    NASA Astrophysics Data System (ADS)

    Klouda, G. A.; Conny, J. M.; McNichol, A. P.; Dibb, J. E.

    2011-12-01

    Aerosol is known to affect the Earth's atmosphere and surface albedo thus having an influence on climate. In the case of carbonaceous aerosol, organic carbon (OC) tends to scatter sunlight while elemental (soot) carbon (EC) aerosol absorbs light. Considering the importance of these aerosols on snow and ice albedo (Hansen and Nazarenko, 2004), PM2.5, PM2.5-10 and snow-melt filters were collected weekly at Summit, Greenland from August 2000 to August 2002 to measure particulate EC, OC, and 14C of total carbon; the latter to quantify natural and anthropogenic source contributions. The pattern of PM2.5 shows a spring-summer maxima in EC (~10 ng m-3) and OC (~ 100 ng m-3); with levels consistent with summer 2006 measurements reported by Hagler et al. (2007). For a subset of filters over the two year period, the average biogenic contribution to PM2.5 OC was estimated to be 20 ng m-3 considering an average percent modern carbon of 46 % (SD=18 %; n=21) and an average total carbon concentration of 50 ng m-3. A summer maximum was observed in PM2.5-10 OC (~ 1000 ng m-3), while for the most part EC concentrations were below detection (< 300 ng m-3; limited primarily by the volume of air sampled). To provide insight into scattering and absorption properties of aerosols at Summit, we used scanning electron microscopy (SEM) to investigate the size, shape, and chemistry of particle populations as well as individual particles from selected filters. Particles were migrated from the filters to polished silicon or germanium wafers using an electrostatically-assisted centrifugation technique. Particle populations were studied by employing secondary electron imaging and energy dispersive x-ray spectroscopy (EDX) with automated SEM and associated particle analysis software. The size, shape, and composition of individual particles were studied with field-emission SEM employing secondary and backscatter electron imaging, bright-field and dark-field scanning transmission electron microscopy

  7. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  8. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; Reid, J. S.; Giles, D. M.; Dubovik O.; O'Neill, N. T.; Smirnov, A.; Wang, P.; Xia, X.

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  9. Physicochemical Characterization of Coarse Lake Spray Aerosol Particle from Lake Michigan

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.; Colon-Bernal, I. D.

    2015-12-01

    Wave breaking across bodies of water releases coarse particles into the air which can impact climate and human health. Freshwater lakes, such as the Great Lakes, can generate lake spray aerosols (LSA), similarly to how sea spray is generated, during periods of high winds and wave action. This LSA has the potential to impact climate through direct and indirect effects (ie. scattering/absorption and cloud nucleation) and are suggested to impact human health via inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Very few studies have been conducted to assess the physicochemical properties of freshwater LSA. Prior work in our lab included the construction and characterization of a laboratory based LSA generator. In this work, we examine laboratory generated aerosol particles from laboratory based freshwater standards, freshwater samples collected from Lake Michigan, and ambient particles collected during a wave event on the shores of Lake Michigan in the summer of 2015. Particle size distributions, number concentrations, and chemical composition are presented and discussed as a function of laboratory generated and ambient collected LSA. Results indicate that there are characteristic particles that represent LSA. This study represents the next step towards evaluating and understanding the potential for coarse LSA to impact climate and health in the Great Lakes region.

  10. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  11. Hygroscopic Properties of Atmospheric Aerosol Measured with an HTDMA in an Urban Background Site in Madrid

    NASA Astrophysics Data System (ADS)

    Alonso-Blanco, E.; Gómez-Moreno, F. J.; Becerril, M.; Coz, E.; Artíñano, B.

    2015-12-01

    The observation of high aerosol hygroscopic growth in Madrid is mainly limited to specific atmospheric conditions, such as local stagnation episodes, which take place in winter time. One of these episodes was identified in December 2014 and the hygroscopic growth factor (GF) measurements obtained in such episode were analysed in order to know the influence of the meteorological conditions on aerosol hygroscopic properties. The prevailing high atmospheric stability triggered an increase of the particle total concentration during the study period, with several peaks that exceeded 4.0 104 particles cm-3, as well as an increase in the inorganic fraction of the aerosol, the NO3- concentration, which in this case corresponded to 25% of the total PM1 non-refractory composition. The aerosol hygroscopic growth distribution was bimodal during the episode, with an average GF around 1.2 for the five dry particle sizes measured and an average GF spread ≥ 0.15. In addition, it is important to note that when a reduction in the concentrations of NO3- is observed, it coincides with a decrease of the GF and its spread. These data suggest, on the one hand, a high degree of external mixing state of the aerosol during the episode and, on the other hand, a notable association between the GF and the inorganic fraction of the aerosol.

  12. [A floating-dust case study based on the vertical distribution of aerosol optical properties].

    PubMed

    Wang, Yuan; Deng, Jun-Ying; Shi, Lan-Hong; Chen, Yong-Hang; Zhang, Qiang; Wang, Sheng; Xu, Ting-Ting

    2014-03-01

    The vertical distribution of aerosol optical properties of a typical floating-dust event on October 19, 2009 in Shanghai was analyzed by using Micro-pulse Lidar (MPL) and the CALIPSO satellite. The results showed that the floating-dust aerosol mainly existed below 2 km of height. The floating-dust aerosol backscatter coefficient ranged from 0 to 0.015 km(-1) x sr(-1), and the MPL extinction coefficient ranged from 0 to 0.32 km(-1). The MPL data showed that the aerosol extinction coefficient first increased and then decreased during the floating-dust event. At the same time, the aerosol layer was constantly lifting. The CALIPSO data showed that a large number of small particles were suspended in air at a height of below 2 km, while the big particles always stayed near the ground (0-0.5 km). At the height of 2-10 km, there was only few aerosols; in the range of 4-6 km, there was a mixture of particles with regular and irregular shapes. The vertical distribution of CALIPSO 532 nm total attenuated backscatter coefficient and MPL normalized relative backscatter signal was basically the same, but the extinction coefficient values gained by them were different. Observations by CALIPSO and MPL together could be more comprehensive and objective for monitoring floating-dust in Shanghai. PMID:24881367

  13. Aerosol Properties Changes of Northeast Asia due to a Severe Dust Storm in April 2014

    NASA Astrophysics Data System (ADS)

    Fang, Li; Wang, Shupeng; Yu, Tao; Gu, Xingfa; Zhang, Xingying; Wang, Weihe; Ren, Suling

    2016-04-01

    This study focuses on analyzing the aerosol properties changes due to the dust storm named as "China's Great Wall of Dust" oriented from Taklimakan desert in April, 2014. Dust identification IDDI (Infrared Difference Dust Index) images from FY-2E and true color composite images from FY-3C MERSI (Medium Resolution Spectral Imager) show the breakout and transport of the dust storm.From 4-day forward air mass trajectories, the dusty air masses were mostly transported within the lower boundary layer(<3km) over the Northwest China on April 23rd and April 24th, however they were progressively increasing in altitude to above 5km above the surface when they reached the central part of north China region (32°N-42°N; 105°E-123°E). 3-hourly data records at surface stations suggest that anticyclonic circulation occupying southern Xinjiang basin and cyclonic circulation maintaining in Mongolia formed the typical Synoptic condition which leaded to the strong dust storm. Aerosol Index (AI) results of TOU (Total Ozone Unit) aboard FY-3B are first developed and used in studying the affected areas due to the dust storm. The retrieved aerosol indexes show sensitivity to the dust particles. The dust affected areas agree with the synoptic meteorological condition analysis, which prove the synoptic meteorological condition is the main reason for the break out and transport of the dust storm. Anomalies of the average MODIS (Moderate Resolution Imaging Spectroradiometer) AOD (Aerosol Optical Depth) distributions over Northeast Asia during the dust storm to the average of that in April between 2010-2014 show high aerosol loading due to the dust storm. Compared with the 5-year average AOD in April, aerosol loading during this dust storm was much higher, with AOD values at 550nm up to 2.9 observed over the northwest China.The dust storm also brought different change in the aerosol microphysical properties between Beijing and Dalanzadgad. Aerosol Robotic Network (AERONET) retrievals

  14. EVALUATION OF ACOUSTIC FORCES ON A PARTICLE IN AEROSOL MEDIUM

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    The acoustic force exerted on a solid particle was evaluated to develop a fundamental understanding of the critical physical parameters or constraints affecting particle motion and capture in a collecting device. The application of an acoustic force to the collection of a range of submicron-to-micron particles in a highly turbulent airflow stream laden with solid particles was evaluated in the presence of other assisting and competing forces. This scoping estimate was based on the primary acoustic force acting directly on particles in a dilute aerosol system, neglecting secondary interparticle effects such as agglomeration of the sub-micron particles. A simplified analysis assuming a stable acoustic equilibrium with an infinite sound speed in the solid shows that for a solid-laden air flow in the presence of a standing wave, particles will move toward the nearest node. The results also show that the turbulent drag force on a 1-{micro}m particle resulting from eddy motion is dominant when compared with the electrostatic force or the ultrasonic acoustic force. At least 180 dB acoustic pressure level at 1 MHz is required for the acoustic force to be comparable to the electrostatic or turbulent drag forces in a high-speed air stream. It is noted that particle size and pressure amplitude are dominant parameters for the acoustic force. When acoustic pressure level becomes very large, the acoustic energy will heat up the surrounding air medium, which may cause air to expand. With an acoustic power of about 600 watts applied to a 2000-lpm air flow, the air temperature can increase by as much as 15 C at the exit of the collector.

  15. Concentrations, size distributions and temporal variations of fluorescent biological aerosol particles in southern tropical India

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy; Krishna R, Ravi; CV, Biju; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2015-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. The Indian tropical region, where large fraction of the world's total population is residing, experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the properties and characteristics of biological aerosols are also expected to be very diverse over the Indian subcontinent depending upon the seasons. Here we characterize the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) at a high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) in South India during the South-West monsoon, which constitute around 80 percent of the annual rainfall in Munnar. Continuous three months measurements (from 01 June 2014 to 21 Aug 2104) FBAPs were carried out at Munnar using Ultra Violet Aerodynamic Particle Sizer (UVAPS) during IMS. The mean number and mass concentration of coarse FBAP averaged over the entire campaign was 1.7 x 10-2 cm-3 and 0.24 µg m-3 respectively, which corresponds to 2 percent and 6 percent of total aerosol particle number and mass concentration. In agreement to other previous measurements the number size distribution of FBAP also peaks at 3.2 micron indicating the strong presence of fungal spores. This was also supported by the Scanning Electron Microscopic analysis of bioaerosols on filter paper. They also displayed a strong diurnal cycle with maximum concentration occurring at early morning hours. During periods of heavy and continuous rain where the wind is consistently blowing from South-West direction it was

  16. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  17. Retrieval of Stratospheric Aerosol Properties from SCIAMACHY limb observations

    NASA Astrophysics Data System (ADS)

    Dörner, S.; Kühl, S.; Pukite, J.; Penning de Vries, M.; Hörmann, C.; von Savigny, C.; Wagner, T.

    2012-04-01

    Balloon-borne and aircraft measurements of stratospheric aerosol properties have been supplemented by satellite measurements since 1975 (Stratospheric Aerosol Measurement program). Ever since, the technological possibilities of satellite measurements increased steadily. Nowadays the large number of satellites provides global data sets of trace gases, clouds and aerosols. Stratospheric aerosol properties are usually determined from observations in occultation or limb geometry. Stratospheric aerosol has an important influence on the global radiation budget (e.g. after strong volcanic eruptions) and stratospheric ozone chemistry (e.g. the chlorine activation inside the polar vortex). Since the launch of SCIAMACHY on ENVISAT in 2002 measurements in limb geometry for the UV/VIS/NIR spectral range with a vertical resolution of 3.3 km at the tangent point are available. By using these measurements, profile information of stratospheric trace gases (e.g. NO2, BrO or OClO) can be retrieved. From the broad band spectral dependence of the SCIAMACHY limb measurements, also information on stratospheric aerosol properties can be derived. Pioneering studies (e.g. von Savigny et al., 2005) showed that signatures of polar stratospheric clouds and also stratospheric aerosols can be retrieved from color indices (including the near IR spectral range). In our study we make use of the color index method and additionally investigate the effects of aerosols on the whole UV/VIS/NIR spectral range. Aerosol properties are estimated by comparisons of the measured values with radiative transfer simulations. We investigate different atmospheric phenomena, e.g. volcanic eruptions (e.g. Kasatochi, 2008) or large biomass burning events (e.g. Australia, 2009). We also have a look at the spatio-temporal variation of Polar Stratospheric Clouds in the polar regions and stratospheric aerosol properties on a global scale.

  18. Characterization of marine boundary layer aerosol from North Atlantic and European sources: Physical and chemical properties and climate forcing parameters

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike

    This thesis focuses on aerosol properties measured in Southwestern Portugal during the second Aerosol Characterization Experiment. Fundamental aerosol physical properties such as particle size distribution and hygroscopic properties are related to possible sources and aerosol transformation processes. From these fundamental properties we derive aerosol properties that are important for aerosol forcing of climate. First, a new method for calculating CCN spectra is proposed in this work and tested using sensitivity studies and comparisons to direct measurements. The measured and calculated CCN spectra differ on average by 30%, which at small supersaturations is similar to the measurement uncertainties. Second, aerosol number to volume ratios (R) are calculated and the fact that values of R are relatively constrained is explained based on observed correlations between size distribution parameters. Third, a simple parameterization of the humidity dependence of the submicron aerosol scattering coefficient has been derived, depending only on a volume weighted average diameter growth factor and the volume mean diameter of the dry size distribution. One set of empirical parameters can be used to parameterize all aerosol types characterized during the ACE-2 measurement period. Aerosol physical properties and climate forcing parameters in the North-East Atlantic Ocean were clearly affected by pollution outbreaks from Europe. The submicron particle volume increased by a factor of 5 in polluted conditions, the light scattering coefficient of dry particles increased on average by a factor of up to 10, CCN concentrations at supersaturations of 0.2% increased by a factor of 3--5. The aerosol fundamental properties vary often strongly with air mass history, but also show short-term variability that often has a characteristic diurnal scale. The number concentration of fine particles below 50nm and the particle hygroscopic growth factors are mostly dominated by diurnal processes

  19. Design of Gas-phase Synthesis of Core-Shell Particles by Computational Fluid - Aerosol Dynamics.

    PubMed

    Buesser, B; Pratsinis, S E

    2011-11-01

    Core-shell particles preserve the bulk properties (e.g. magnetic, optical) of the core while its surface is modified by a shell material. Continuous aerosol coating of core TiO2 nanoparticles with nanothin silicon dioxide shells by jet injection of hexamethyldisiloxane precursor vapor downstream of titania particle formation is elucidated by combining computational fluid and aerosol dynamics. The effect of inlet coating vapor concentration and mixing intensity on product shell thickness distribution is presented. Rapid mixing of the core aerosol with the shell precursor vapor facilitates efficient synthesis of hermetically coated core-shell nanoparticles. The predicted extent of hermetic coating shells is compared to the measured photocatalytic oxidation of isopropanol by such particles as hermetic SiO2 shells prevent the photocatalytic activity of titania. Finally the performance of a simpler, plug-flow coating model is assessed by comparisons to the present detailed CFD model in terms of coating efficiency and silica average shell thickness and texture. PMID:23729817

  20. Effect of fatty acid coatings on ozone uptake to deliquesced KI/NaCl aerosol particles

    NASA Astrophysics Data System (ADS)

    Ammann, M.; Rouvière, A.

    2009-12-01

    Phase transfer kinetics of gas phase oxidants may limit oxidative aging of aerosol particles. The aim of this work is to study the role of amphiphilic organic aerosol constituents on the kinetics of phase transfer of gaseous species to the bulk aqueous phase. The effect of (C9-C20) fatty acid surfactants on the phase transfer of ozone to deliquesced potassium iodide and sodium chloride have been investigated. Some other experiments of ozone uptake have been performed with different mixtures and proportions of fatty acids. The kinetic experiments were performed in an aerosol flow tube at room temperature and atmospheric pressure. To obtain deliquesced inorganic particles, the relative humidity was adjusted in the range of 75% to 80%. It is shown that the fatty acids in monolayer quantities may substantially inhibit the phase transfer of ozone to deliquesced particles. The results showed that especially the C15-C20 limit the mass transfer of ozone to the aqueous phase, whereby the magnitude of this effect was following the monolayer properties of the fatty acids. It was also possible to determine a resistance of such films to the transfer of ozone to the bulk phase.

  1. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Bas Henzing, J. S.; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs

    2016-06-01

    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at ˜ 100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to ˜ 700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34 ± 0.12 and 0.19 ± 0.07 for 500 nm particles, at ˜ 100 and ˜ 700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18 ± 0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from

  2. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  3. Dynamics of Aerosol Particles in Stationary, Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Collins, Lance R.; Meng, Hui

    2004-01-01

    A detailed study of the dynamics of sub-Kolmogorov-size aerosol particles in stationary isotropic turbulence has been performed. The study combined direct numerical simulations (DNS; directed by Prof. Collins) and high-resolution experimental measurements (directed by Prof. Meng) under conditions of nearly perfect geometric and parametric overlap. The goal was to measure the accumulation of particles in low-vorticity regions of the flow that arises from the effect commonly referred to as preferential concentration. The grant technically was initiated on June 13, 2000; however, funding was not available until July 11, 2000. The grant was originally awarded to Penn State University (numerical simulations) and SUNY-Buffalo (experiments); however, Prof. Collins effort was moved to Cornell University on January 2002 when he joined that university. He completed the study there. A list of the specific tasks that were completed under this study is presented.

  4. Method for determining aerosol particle size, device for determining aerosol particle size

    DOEpatents

    Novick, V.J.

    1998-10-06

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data. 2 figs.

  5. Extraction of Optical Constants from Mid-IR Spectra of Small Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Segal-Rosenheimer, M.; Dubowski, Y.; Linker, R.

    2008-12-01

    Aerosol particles directly influence the Earth's radiation budget by absorbing and scattering incident short- wave (solar) radiation and long-wave terrestrial radiation. Broadband infrared measurements can provide valuable information on aerosol's composition and size distribution. However, quantitative analysis of mid- infrared aerosol extinction spectra in terms of their characteristics relies on complex refractive indices for the various aerosol constituents. Derivation of such optical constants is complicated, especially in the mid- infrared region, mainly due to the great variability of the imaginary part (k) of the complex refractive index N, and its influence on the real part (n). Most of previously reported methods for determining these constants (Wagner et al., 2005; Dohm et al., 2004; Earle et al, 2006) use aerosols with size distributions for which scattering occurs in the spectral range of the measurement, and so the explicit Mie theory calculations for the scattering and absorption efficiencies are required. These calculations necessitate some assumptions on the particles size distribution and an initial guess of the k spectrum in order to extract the optical properties from the acquired spectra. Also, the solution uniqueness relies on the fact that the particles are large enough. In the present work, we seek to simplify the above procedure and use small particles' spectra of known size distributions to deduce the optical constants. For particles (such as poly-disperse aerosols) having geometric mean of less than 0.15 μm, absorbance spectra in the mid-infrared range do not show any scattering features. Therefore, Rayleigh theory can be used to extract the imaginary part of the complex function f, where f=[(N2-1)/(N2+2)]. The real part of the f function is then extracted using the Kramers-Kronig transformation and the n and k can be derived using the relation between f, ɛ (complex dielectric function). k and n (Bohren and Huffman, 1983). The method

  6. Real-time chemical analysis of aerosol particles

    SciTech Connect

    Yang, M.; Whitten, W.B.; Ramsey, J.M.

    1995-04-01

    An important aspect of environmental atmospheric monitoring requires the characterization of airborne microparticles and aerosols. Unfortunately, traditional sample collection and handling techniques are prone to contamination and interference effects that can render an analysis invalid. These problems can be avoided by using real-time atmospheric sampling techniques followed by immediate mass spectrometric analysis. The former is achieved in these experiments via a two state differential pumping scheme that is attached directly to a commercially available quadruple ion trap mass spectrometer. Particles produced by an external particle generator enter the apparatus and immediately pass through two cw laser/fiberoptic based detectors positioned two centimeters apart. Timing electronics measure the time between detection events, estimate the particles arrival in the center of the ion trap and control the firing of a YAG laser. Ions produced when the UV laser light ablates the particle`s surface are stored by the ion trap for mass analysis. Ion trap mass spectrometers have several advantages over conventional time-of-flight instruments. First, they are capable of MS/MS analysis by the collisional dissociation of a stored species, This permits complete chemical characterization of airborne samples. Second, ion traps are small and lend themselves to portable, field oriented applications.

  7. Real-Time Detection Method And System For Identifying Individual Aerosol Particles

    DOEpatents

    Gard, Eric Evan; Fergenson, David Philip

    2005-10-25

    A method and system of identifying individual aerosol particles in real time. Sample aerosol particles are compared against and identified with substantially matching known particle types by producing positive and negative test spectra of an individual aerosol particle using a bipolar single particle mass spectrometer. Each test spectrum is compared to spectra of the same respective polarity in a database of predetermined positive and negative spectra for known particle types and a set of substantially matching spectra is obtained. Finally the identity of the individual aerosol particle is determined from the set of substantially matching spectra by determining a best matching one of the known particle types having both a substantially matching positive spectrum and a substantially matching negative spectrum associated with the best matching known particle type.

  8. Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2014-01-01

    This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.

  9. Constraints on Martian Aerosol Particles Using MGS/TES and HST Data: Shapes

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Pitman, K. M.; Bell, J. F.; James, P. B.

    2001-12-01

    In order to constrain the shape of water ice and dust aerosols, we have combined a numerical approach for axisymmetric particle shapes, i.e., cylinders, disks, spheroids (Waterman's T-Matrix approach as improved by Mishchenko and collaborators; cf., Mishchenko et al. 1997, JGR, 102, D14, 16,831), with a multiple-scattering radiative transfer algorithm. We utilize a two-stage iterative process. First, we empirically derive a scattering phase function for each aerosol component from radiative transfer models of Mars Global Surveyor Thermal Emission Spectrometer Emission Phase Function (EPF) sequences. Next, we perform a series of scattering calculations, adjusting our parameters to arrive at a ``best-fit'' theoretical phase function. It is important to note that in addition to randomly-oriented particles, we explicitly consider the possibility of (partially) aligned aerosol particles as well. Thus far, we have been analyzing the three empirically-derived presented by Clancy et al. (this meeting): dust, Type I ice particles (effective radii ~ 1-2 microns), and Type II ice particles (effective radii ~ 3-4 microns). We find that the ``dust'' phase function is best fit by randomly-oriented cylinders with an axial ratio (D/L = diameter-to-length) of either 2.3 or 0.6. Similarly, the shape of the Type II ice curve is reasonably reproduced by randomly-oriented spheroids with an axial ratio of either 0.7 or 1.4. However, neither of the two shapes (nor that of spheres or randomly-oriented hexagonal prisms) can reproduce the phase function derived for the Type I ice. This led to the direct consideration of oriented or aligned particles. which, at least qualitatively, have the ability to account for the phase function shapes for both Type I and II ice particles. The difference between these two phase functions may represent the degree of alignment, with the Type II particles being much less-aligned. The calculations for partially aligned particles is quite numerically intensive

  10. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  11. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  12. Aerosol optical and microphysical properties as derived from collocated measurements using polarization lidar and direct sampling

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Nagai, Tomohiro; Mano, Yuzo; Zaizen, Yuji; Inomata, Yayoi

    2012-12-01

    Collocated and simultaneous measurements of aerosols near the ground were conducted using a lidar and aerosol sampler at Tsukuba, Japan, to clarify the relationship between lidar-derived optical properties and in-situ microphysical properties. The total linear particle depolarization ratio (δp) ranged from 14% to 18% when nonspherical mineral dust particles were predominant in the supermicrometer range on May 7-8, 2008, whereas it ranged from 6% to 7% when spherical sea-salt particles were predominant in that range on September 3-4, 2008. Sulfates and nitrates were predominant in the submicrometer range for these two periods. Water-dialysis analysis on May 6-7 indicated that 29% of the coarse particles were water insoluble, whereas 70% were water soluble or nearly soluble on September 3-4. The ratio of dry mass concentration to the backscattering coefficient (M/βp) was 34-39 g m-2 sr on May 7-8 and 6.2-6.3 g m-2 sr on September 3-4. Our results provide evidence that lidar-derived βp and δp capture the aerosol mass concentration and relative abundance of the spherical and nonspherical particles although the microphysical properties vary significantly for individual particles.

  13. Modelling lidar-relevant optical properties of complex mineral dust aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Wiegner, Matthias; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Tesche, Matthias; Kandler, Konrad

    2011-09-01

    We model lidar-relevant optical properties of mineral dust aerosols and compare the modelling results with optical properties derived from lidar measurements during the SAMUM field campaigns. The Discrete Dipole Approximation is used for optical modelling of single particles. For modelling of ensemble properties, the desert aerosol type of the OPAC aerosol dataset is extended by mixtures of absorbing and non-absorbing irregularly shaped mineral dust particles. Absorbing and non-absorbing particles are mixed to mimic the natural mineralogical inhomogeneity of dust particles. A sensitivity study reveals that the mineralogical inhomogeneity is critical for the lidar ratio at short wavelengths; it has to be considered for agreement with the observed wavelength dependence of the lidar ratio. The amount of particles with low aspect ratios (about 1.4 and lower) affects the lidar ratio at any lidar wavelength; their amount has to be low for agreement with SAMUM observations. Irregularly shaped dust particles with typical refractive indices, in general, have higher linear depolarization ratios than corresponding spheroids, and improve the agreement with the observations.

  14. Atmospheric Aerosol Nucleation: Formation of Sub-3 nm Particles and Their Subsequent Growth

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2012-12-01

    Aerosol nucleation is an important step in the chain reaction that lead to cloud formation but the nucleation mechanisms are poorly understand. Most of the previous aerosol nucleation studies were based on measurements of particles, typically larger than 3 nm, so it was unclear how gas phase molecules nucleate to form clusters and how they further grow to become aerosol particles. In this presentation, we will show recent results of aerosol nucleation based on direct measurements of sub-3 nm particles. We will show laboratory studies of multicomponent nucleation involving sulfuric acid, ammonia, and organic amines and atmospheric observations made in various atmospheric conditions (biogenic, marine, and less polluted continental atmosphere).

  15. Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP

  16. Aerosol Physical, Optical and Chemical Properties during African Dust Events at Cape San Juan (CPR)

    NASA Astrophysics Data System (ADS)

    Reyes de Jongh, C.; Mayol Bracero, O. L.; Rivera Vazquez, H.; Sheridan, P.; Ogren, J. A.

    2008-12-01

    Large amounts of atmospheric dust are lifted from the North African deserts and are transported by the trade winds over the Caribbean region, especially during the summer months. How African dust particles influence the earth's radiative budget is not well understood because these particles are highly variable and their physical, optical, and chemical properties are poorly characterized, especially when they are atmospherically processed as are those that travel from Africa to the Caribbean region. Here we present results of aerosol measurements performed at Cape San Juan (CPR), a ground-based station located at the northeastern tip of the Caribbean island of Puerto Rico. We used a condensation particle counter to determine the particle number concentration, a sunphotometer (part of the AErosol RObotical NETwork, AERONET, aeronet.gsfc.nasa.gov) to determine volume size distributions and aerosol optical thickness, and a 3-wavelength nephelometer and particle/soot absorption photometer to determine the scattering and absorption coefficients. Filter samples for chemical analyses were collected with stacked-filter units. Preliminary results show that African dust air masses have higher average particle number concentrations (N=720 cm -3 ), aerosol optical depth (AOD = 0.27), and scattering and absorption coefficients (σ s = 30 Mm -1 , σ a = 0.46 Mm -1 ) than clean air masses (N = 460 cm -3 , AOD= 0.08, σ s = 11 Mm -1 , σ a = 0.37 Mm -1 . Results presented will also show how changes in aerosol optical properties in the presence and absence of African dust relate to the physical and chemical composition of the particles.

  17. Characterization of Individual Aerosol Particles Associated with Clouds (CRYSTAL-FACE)

    NASA Technical Reports Server (NTRS)

    Buseck, Peter R.

    2004-01-01

    The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from near the bottoms and tops of the deep convective systems that lead to the generation of tropical cirrus clouds and to provide insights into the particles that serve as CCN or IN. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to compare the compositions, concentrations, size distributions, shapes, surface coatings, and degrees of aggregation of individual particles from cloud bases and the anvils near the tropopause. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are abundant in in-cloud samples. Cirrus samples contain many H2SO4 droplets, but acidic sulfate particles are rare at the cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. The relatively high extent of ammoniation in the upper troposphere in-cloud samples appears to have resulted from vertical transport by strong convection. The morphology of H2SO4 droplets indicates that they had been at least yartiy ammoniated at the time of collection. They are internally mixed with organic materials, metal sulfates, and solid particles of various compositions. Ammoniation and internal mixing of result in freezing at higher temperature than in pure H2SO4 aerosols. K- and S-bearing organic particles and Si-Al-rich particles are common throughout. Sea salt and mineral dust were incorporated into the convective systems from the cloud bases and worked as ice nuclei while being vertically transported. The nonsulfate particles originated from the lower troposphere and were transported to the upper troposphere and lower stratosphere.

  18. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions

    SciTech Connect

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, E.; Lohmann, U.; Baltensperger, Urs; Cziczo, Daniel J.

    2009-11-01

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric processing of

  19. Review: engineering particles using the aerosol-through-plasma method

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  20. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Bi, Xinhui; Qiu, Ning; Han, Bingxue; Lin, Qinhao; Peng, Long; Chen, Duohong; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2016-03-01

    Knowledge on the microphysical properties of atmospheric aerosols is essential to better evaluate their radiative forcing. This paper presents an estimate of the real part of the refractive indices (n) and effective densities (ρeff) of chemically segregated atmospheric aerosols in Guangzhou, China. Vacuum aerodynamic diameter, chemical compositions, and light-scattering intensities of individual particles were simultaneously measured by a single-particle aerosol mass spectrometer (SPAMS) during the fall of 2012. On the basis of Mie theory, n at a wavelength of 532 nm and ρeff were estimated for 17 particle types in four categories: organics (OC), elemental carbon (EC), internally mixed EC and OC (ECOC), and Metal-rich. The results indicate the presence of spherical or nearly spherical shapes for the majority of particle types, whose partial scattering cross-section versus sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47-1.53), majority of particle types exhibited a wide range of ρeff (0.87-1.51 g cm-3). The OC group is associated with the lowest ρeff (0.87-1.07 g cm-3), and the Metal-rich group with the highest ones (1.29-1.51 g cm-3). It is noteworthy that a specific EC type exhibits a complex scattering curve versus size due to the presence of both compact and irregularly shaped particles. Overall, the results on the detailed relationship between physical and chemical properties benefits future research on the impact of aerosols on visibility and climate.

  1. New aerosol particles formation in the Sao Paulo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Vela, Angel; Andrade, Maria de Fatima; Ynoue, Rita

    2016-04-01

    The Sao Paulo Metropolitan Area (SPMA), in the southeast region of Brazil, is considered a megalopolis comprised of Sao Paulo city and more 38 municipalities. The air pollutant emissions in the SPMA are related to the burning of the fuels: etanol, gasohol (gasoline with 25% ethanol) and diesel. According to CETESB (2013), the road vehicles contributed up to about 97, 87, and 80% of CO, VOCs and NOx emissions in 2012, respectively, being most of NOx associated to diesel combustion and most of CO and VOCs from gasohol and ethanol combustion. Studies conducted on ambient air pollution in the SPMA have shown that black carbon (BC) explains 21% of mass concentration of PM2.5 compared with 40% of organic carbon (OC), 20% of sulfates, and 12% of soil dust (Andrade et al., 2012). Most of the observed ambient PM2.5 mass concentration usually originates from precursors gases such as sulphur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx) and VOCs as well as through the physico-chemical processes such as the oxidation of low volatile hydrocarbons transferring to the condensed phase (McMurry et al., 2004). The Weather Research and Forecasting with Chemistry model (WRF-Chem; Grell et al. 2005), configured with three nested grid cells: 75, 15, and 3 km, is used as photochemical modeling to describe the physico-chemical processes leading to evolution of particles number and mass size distribution from a vehicular emission model developed by the IAG-USP laboratory of Atmospheric Processes and based on statistical information of vehicular activity. The spatial and temporal distributions of emissions in the finest grid cell are based on road density products compiled by the OpenStreetMap project and measurements performed inside tunnels in the SPMA, respectively. WRF-Chem simulation with coupled primary aerosol (dust and sea-salt) and biogenic emission modules and aerosol radiative effects turned on is conducted as the baseline simulation (Case_0) to evaluate the model

  2. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    NASA Astrophysics Data System (ADS)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; Rudich, Y.; Marcolli, C.; Luo, B. P.; Bones, D. L.; Reid, J. P.; Lambe, A. T.; Canagaratna, M. R.; Davidovits, P.; Onasch, T. B.; Worsnop, D. R.; Steimer, S. S.; Koop, T.; Peter, T.

    2015-09-01

    New measurements of water diffusion in aerosol particles produced from secondary organic aerosol (SOA) material and from a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA droplets suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  3. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, K.; Ghan, S. J.; Easter, R. C.; Liu, X.; Stier, P.; Lee, Y. H; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S. E.; Tsigaridis, K.; van Noije, T. P. C.; Strunk, A.; Vignati, E.; Bellouin, N.

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  4. Secondary Organic Aerosol Formation from Glyoxal: Effects of Seed Aerosol on Particle Composition

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Waxman, Eleanor; Coburn, Sean; Klein, Felix; Koenig, Theodore; Krapf, Manuel; Kumar, Nivedita; Wang, Siyuan; Baltensperger, Urs; Dommen, Josef; Prévôt, Andre; Volkamer, Rainer

    2014-05-01

    Conventional models of secondary organic aerosol (SOA) production neglect aqueous-phase processing mechanisms, thereby excluding potentially important SOA formation pathways. These missing pathways may be an important factor in the inability of current models to fully explain SOA yields and oxidation states. Molecules identified as important precursors to SOA generated through aqueous-phase include glyoxal, which is an oxidation product of numerous organic gases. Glyoxal SOA formation experiments were conducted in the PSI smog chamber as a function of seed composition, relative humidity (RH, 60 to 85%), and the presence/absence of gaseous ammonia, affecting particle acidity. In a typical experiment, the chamber was filled with the selected seed aerosol (NaCl, (NH4)2SO4, NaNO3, or K2SO4), after which glyoxal was generated by the brief (i.e. a few minutes) exposure of acetylene to UV light. The experiment was then allowed to proceed undisturbed for several hours. Each experiment consisted of several UV exposures, followed by a dilution phase at constant RH to investigate the gas/particle partitioning behavior of the generated SOA. Gas-phase glyoxal was monitored by an LED-CE-DOAS system, while the particle composition was measured using online aerosol mass spectrometry (Aerodyne HR-ToF-AMS) and offline analysis of collected filter samples. SOA composition was observed to depend strongly on seed type, with increased imidazole formation evident during experiments with (NH4)2SO¬4 and K2SO4 seeds relative to those with NaCl and NaNO3. Additionally, experiments conducted in the presence of ammonia showed large enhancements in both imidazole content and total SOA yield. Analysis of mass spectral markers indicates reversible uptake of glyoxal but irreversible particle-phase production of the imidazole-containing SOA. Positive matrix factorization (PMF) using the Multilinear Engine (ME-2) was applied to the AMS mass spectral time series to quantify factors related to

  5. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing