Science.gov

Sample records for aerosol particles based

  1. Aerosol particles from tropical convective systems: 2. Cloud bases

    NASA Astrophysics Data System (ADS)

    Kojima, Tomoko; Buseck, Peter R.; Reeves, J. Michael

    2005-05-01

    Aerosol particles were collected at the altitudes of cloud bases during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) and analyzed using transmission electron microscopy. The particles consist of ammonium sulfate (45-90% by number), sea salt (5-45%), mineral dust (1-20%), and anthropogenic materials such as soot and fly ash (<3%). Ammonium sulfate particles have rather uniform, submicron sizes (mostly 0.5 μm across). Sea-salt particles are larger, apparently having been deliquesced. However, submicron particles are also common. Many contain Na and mixed cation sulfates in addition to NaCl. Mineral dust consists largely of tabular clay particles. Samples from the 28 July flight contain much mineral dust, probably because of transport from the Saharan Desert. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are common. Such mixed aggregates are especially abundant in in-cloud samples. Cirrus samples from CRYSTAL-FACE contain many H2SO4 droplets (Kojima et al., 2004), but acidic sulfate particles are rare at the altitudes of cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. Sea salt and mineral dust have been reported to be abundant in cloud particles collected using a counterflow virtual impactor (Cziczo et al., 2004), suggesting that these particles were incorporated into the convective systems from the cloud bases and akted as ice nuclei while being vertically transported.

  2. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  3. Effect of particle-fiber friction coefficient on ultrafine aerosol particles clogging in nanofiber based filter

    NASA Astrophysics Data System (ADS)

    Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan

    2013-04-01

    Realistic SEM image based 3D filter model considering transition/free molecular flow regime, Brownian diffusion, aerodynamic slip, particle-fiber and particle-particle interactions together with a novel Euclidian distance map based methodology for the pressure drop calculation has been utilized for a polyurethane nanofiber based filter prepared via electrospinning process in order to more deeply understand the effect of particle-fiber friction coefficient on filter clogging and basic filter characteristics. Based on the performed theoretical analysis, it has been revealed that the increase in the fiber-particle friction coefficient causes, firstly, more weaker particle penetration in the filter, creation of dense top layers and generation of higher pressure drop (surface filtration) in comparison with lower particle-fiber friction coefficient filter for which deeper particle penetration takes place (depth filtration), secondly, higher filtration efficiency, thirdly, higher quality factor and finally, higher quality factor sensitivity to the increased collected particle mass. Moreover, it has been revealed that even if the particle-fiber friction coefficient is different, the cake morphology is very similar.

  4. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  5. Detection of cw-related species in complex aerosol particles deposited on surfaces with an ion trap-based aerosol mass spectrometer

    SciTech Connect

    Harris, William A; Reilly, Pete; Whitten, William B

    2007-01-01

    A new type of aerosol mass spectrometer was developed by minimal modification of an existing commercial ion trap to analyze the semivolatile components of aerosols in real time. An aerodynamic lens-based inlet system created a well-collimated particle beam that impacted into the heated ionization volume of the commercial ion trap mass spectrometer. The semivolatile components of the aerosols were thermally vaporized and ionized by electron impact or chemical ionization in the source. The nascent ions were extracted and injected into the ion trap for mass analysis. The utility of this instrument was demonstrated by identifying semivolatile analytes in complex aerosols. This study is part of an ongoing effort to develop methods for identifying chemical species related to CW agent exposure. Our efforts focused on detection of CW-related species doped on omnipresent aerosols such as house dust particles vacuumed from various surfaces found in any office building. The doped aerosols were sampled directly into the inlet of our mass spectrometer from the vacuumed particle stream. The semivolatile analytes were deposited on house dust and identified by positive ion chemical ionization mass spectrometry up to 2.5 h after deposition. Our results suggest that the observed semivolatile species may have been chemisorbed on some of the particle surfaces in submonolayer concentrations and may remain hours after deposition. This research suggests that identification of trace CW agent-related species should be feasible by this technique.

  6. Characterization of the Aerosol-based Synthesis of Uranium Particles as a Potential Reference Material for Micro Analytical Methods.

    PubMed

    Middendorp, Ronald; Dürr, Martin; Knott, Alexander; Pointurier, Fabien; Ferreira Sanchez, Dario; Samson, Valerie Ann; Grolimund, Daniel

    2017-03-27

    A process for production of micrometer-sized particles composed of uranium oxide using aerosol spray pyrolysis is characterized with respect to the various production parameters. The aerosol is generated using a vibrating orifice aerosol generator providing monodisperse droplets, which are oxidized in a subsequent heat treatment. The final particles are characterized with micro analytical methods to determine size, shape, internal morphology, chemical and structural properties in order to assess the suitability of the produced particles as a reference material for micro analytical methods, in particular for mass-spectrometry. It is demonstrated that physico-chemical processes during particle formation and the heat treatment to chemically transform particles into an oxide strongly influence the particle shape and the internal morphology. Synchrotron μ-X-ray based techniques combined with μ-Raman spectroscopy have been applied to demonstrate that the obtained micro particles consist of a triuranium octoxide phase. Our studies demonstrate that the process is capable of delivering spherical particles with determined uniform size and ele-mental as well as chemical composition. The particles therefore represent a suitable base material to fulfill the homogeneity and stability requirements of a reference material for micro analytical methods applied in, for example, international safeguards or nuclear forensics.

  7. Nozzles for Focusing Aerosol Particles

    DTIC Science & Technology

    2009-10-01

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE ( DD -MM-YYYY) October 2009 2. REPORT TYPE Final 3. DATES...Figures Figure 1. The design of the first-generation aerodynamic focusing nozzle for aerosol particles used for SPFS and TAOS instrument prototypes...Some nozzles were fabricated in aluminum and some in steel. It has been used for SPFS and TAOS measurement technologies both in the laboratory and

  8. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution.

  9. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  10. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  11. Initial size distributions and hygroscopicity of indoor combustion aerosol particles

    SciTech Connect

    Li, W.; Hopke, P.K.

    1993-10-01

    Cigarette smoke, incense smoke, natural gas flames, propane fuel flames, and candle flames are contributors of indoor aerosol particles. To provide a quantitative basis for the modeling of inhaled aerosol deposition pattern, the hygroscopic growth of particles from these five sources as well as the source size distributions were measured. Because the experiments were performed on the bases of particles of single size, it provided not only the averaged particle`s hygroscopic growth of each source, but also the detailed size change for particles of different sizes within the whole size spectrum. The source particle size distribution measurements found that cigarette smoke and incense smoke contained particles in the size range of 100-700 nm, while the natural gas, propane, and candle flames generated particles between 10 and 100 nm. The hygroscopic growth experiments showed that these combustion aerosol particles could grow 10% to 120%, depending on the particle sizes and origins. 18 refs., 15 figs., 3 tabs.

  12. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  13. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  14. Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; O'Connor, E. J.; Komppula, M.; Korhonen, K.; Pfüller, A.; Giannakaki, E.; Wood, C. R.; Bauer-Pfundstein, M.; Poikonen, A.; Karppinen, T.; Lonka, H.; Kurri, M.; Heinonen, J.; Moisseev, D.; Asmi, E.; Aaltonen, V.; Nordbo, A.; Rodriguez, E.; Lihavainen, H.; Laaksonen, A.; Lehtinen, K. E. J.; Laurila, T.; Petäjä, T.; Kulmala, M.; Viisanen, Y.

    2014-05-01

    The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish

  15. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  16. New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure

    NASA Astrophysics Data System (ADS)

    Hariyama, Tatsuo; Takaya, Yasuhiro; Miyoshi, Takashi

    2005-11-01

    Aerosol particles with sub-micro meter size inhaled into respiratory systems cause serious damage to human body. In order to evaluate the health effects of the particles, classification methods of the particles with size and mass are needed. Several measurement methods of the particle size are established. However, conventional mass measurement methods are not enough to measure the particles with sub- pico gram. We propose a new mass measurement method of the aerosol particles based on laser trapping. In this method, an optically trapped silica particle is used as a measuring probe particle. The probe particle is trapped at a beam waist of the focused laser light and is forced to vibrate by deflecting the beam waist using AOD. The vibrating probe particle has a resonance frequency because it is governed by the spring-mass-damper system. When an aerosol particle is attached to the probe particle, the resonance frequency shifts according to the increase of the total mass. The mass of the aerosol particle can be measured from the shift of the resonance frequency. Experimentally, it is confirmed that the probe particle is governed by the spring-mass-damper system and has a resonance frequency. When a silica fine particle of 3pg in mass used as an aerosol particle is attached to the probe particle, the resonance frequency shift occurs as expected in the dynamic system and the fine particle mass can be measured based on the proposed method.

  17. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2009-02-01

    ABSTRACT Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05-0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  18. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; Schladitz, Alexander; Von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  19. A conceptual framework for mixing structures in individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Sun, Jiaxing; Xu, Liang; Shi, Zongbo; Riemer, Nicole; Sun, Yele; Fu, Pingqing; Zhang, Jianchao; Lin, Yangting; Wang, Xinfeng; Shao, Longyi; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2016-11-01

    This study investigated the particle size- and age-dependent mixing structures of individual particles in clean and polluted air. Aerosols were classified into eight components: sea salt, mineral dust, fly ash, metal, soot, sulfates, nitrates, and organic matter (OM). Based on our aerosol classification, a particle that consists of two or more aerosol components can be defined as an internally mixed particle. Otherwise, it is considered to be an externally mixed particle. Within the internally mixed particle class, we identified four heterogeneous mixing structures: core-shell, dumbbell, OM coating, and dispersed OM, as well as one homogeneous-like mixing structure. Homogeneous-like mixing mainly occurred in fine particles (<1 µm), while the frequency of heterogeneously mixed particles increased with particle size. Our study demonstrated that particle mixing structures depend on particle size and location and evolve with time. OM-coating and core-shell structures are important indicators for particle aging in air as long as they are distant from specific emission sources. Long-range transported particles tended to have core-shell and OM-coating structures. We found that secondary aerosol components (e.g., sulfates, nitrates, and organics) determined particle mixing structures, because their phases change following particle hydration and dehydration under different relative humidities. Once externally mixed particles are transformed into internally mixed particles, they cannot revert to their former state, except when semivolatile aerosol components are involved. Categorizing mixing structures of individual particles is essential for studying their optical and hygroscopic properties and for tracing the development of their physical or chemical properties over time.

  20. New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique

    NASA Astrophysics Data System (ADS)

    Spencer, Matthew Todd

    Aerosols affect the lives of people every day. They can decrease visibility, alter cloud formation and cloud lifetimes, change the energy balance of the earth and are implicated in causing numerous health problems. Measuring the physical and chemical properties of aerosols is essential to understand and mitigate any negative impacts that aerosols might have on climate and human health. Aerosol time-of-flight mass spectrometry (ATOFMS) is a technique that measures the size and chemical composition of individual particles in real time. The goal of this dissertation is to develop new and useful approaches for measuring the physical and/or chemical properties of particles using ATOFMS. This has been accomplished using laboratory experiments, ambient field measurements and sometimes comparisons between them. A comparison of mass spectra generated from petrochemical particles was made to light duty vehicle (LDV) and heavy duty diesel vehicle (HDDV) particle mass spectra. This comparison has given us new insight into how to differentiate between particles from these two sources. A method for coating elemental carbon (EC) particles with organic carbon (OC) was used to generate a calibration curve for quantifying the fraction of organic carbon and elemental carbon on particles using ATOFMS. This work demonstrates that it is possible to obtain quantitative chemical information with regards to EC and OC using ATOFMS. The relationship between electrical mobility diameter and aerodynamic diameter is used to develop a tandem differential mobility analyzer-ATOFMS technique to measure the effective density, size and chemical composition of particles. The method is applied in the field and gives new insight into the physical/chemical properties of particles. The size resolved chemical composition of aerosols was measured in the Indian Ocean during the monsoonal transition period. This field work shows that a significant fraction of aerosol transported from India was from biomass

  1. Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign

    NASA Astrophysics Data System (ADS)

    Lv, Min; Liu, Dong; Li, Zhanqing; Mao, Jietai; Sun, Yele; Wang, Zhenzhu; Wang, Yingjian; Xie, Chenbo

    2017-02-01

    Lidar, radiosonde, and ground-based in situ nephelometer measurements made during an intensive field campaign carried out from July to September 2014 at the Xinzhou meteorological station were used to determine the aerosol hygroscopic growth effect in a cloud-capped, well-mixed boundary layer. Aerosol hygroscopic properties at 355 and 532 nm were examined for two cases with distinct aerosol layers. Lidar-derived maximum enhancement factors in terms of aerosol backscatter coefficient derived using a relative humidity (RH) reference value of 85% were 1.19 at 532 nm and 1.10 at 355 nm for Case I and 2.32 at 532 nm and 1.94 at 355 nm for Case II. To derive the aerosol particle hygroscopic growth factor at specific RH values, the Kasten and Hänel models were used. A comparison of the goodness of fit for the two models showed that the Kasten model performed better. The hygroscopic growth curve for RH>90% was much steeper than that for RH in the range of 85-90%. The slopes of the lidar-derived enhancement factor curve (measured from 85% to 95% RH) and the nephelometer-derived enhancement factor curve (measured from 40% to 62% RH) in Case I show similar trends, which lends confidence to using lidar measurements for studying aerosol particle hygroscopic growth. Data from a ground aerosol chemical speciation monitor showed that the larger values of aerosol hygroscopic enhancement factor in Case II corresponded to greater mass concentrations of sulfate and nitrate in the atmosphere.

  2. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  3. Isotope-Based Source Apportionment of EC Aerosol Particles during Winter High-Pollution Events at the Zeppelin Observatory, Svalbard.

    PubMed

    Winiger, Patrik; Andersson, August; Yttri, Karl E; Tunved, Peter; Gustafsson, Örjan

    2015-10-06

    Black carbon (BC) aerosol particles contribute to climate warming of the Arctic, yet both the sources and the source-related effects are currently poorly constrained. Bottom-up emission inventory (EI) approaches are challenged for BC in general and the Arctic in particular. For example, estimates from three different EI models on the fractional contribution to BC from biomass burning (north of 60° N) vary between 11% and 68%, each acknowledging large uncertainties. Here we present the first dual-carbon isotope-based (Δ(14)C and δ(13)C) source apportionment of elemental carbon (EC), the mass-based correspondent to optically defined BC, in the Arctic atmosphere. It targeted 14 high-loading and high-pollution events during January through March of 2009 at the Zeppelin Observatory (79° N; Svalbard, Norway), with these representing one-third of the total sampling period that was yet responsible for three-quarters of the total EC loading. The top-down source-diagnostic (14)C fingerprint constrained that 52 ± 15% (n = 12) of the EC stemmed from biomass burning. Including also two samples with 95% and 98% biomass contribution yield 57 ± 21% of EC from biomass burning. Significant variability in the stable carbon isotope signature indicated temporally shifting emissions between different fossil sources, likely including liquid fossil and gas flaring. Improved source constraints of Arctic BC both aids better understanding of effects and guides policy actions to mitigate emissions.

  4. The Life Cycle of Stratospheric Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Jensen, Eric J.; Russell, P. B.; Bauman, Jill J.

    1997-01-01

    This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The particles remain in the Tropics for most of their life, and during this period of time a size distribution is developed by a combination of coagulation, growth by heteromolecular condensation, and mixing with air parcels containing preexisting sulfate particles. The aerosol eventually migrates to higher latitudes and descends across isentropic surfaces to the lower stratosphere. The aerosol is removed from the stratosphere primarily at mid- and high latitudes through various processes, mainly by isentropic transport across the tropopause from the stratosphere into the troposphere.

  5. Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2013-10-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment (λ = 550 nm) for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulfate, nitrate, and elemental carbon. Achieving full optical closure is hampered by limitations in accounting for the role of water vapor in the system, uncertainties in the instruments and the need for further knowledge in the source apportionment of the model's major chemical components. Nonetheless, our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulfate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Consistency between the measured and modeled optical parameters serves as an

  6. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  7. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  8. The hygroscopicity of indoor aerosol particles

    SciTech Connect

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH{sub 4}){sub 2}SO{sub 4}, and (NH{sub 4})HS0{sub 4} particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components.

  9. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  10. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  11. Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry.

    PubMed

    Zhang, Qi; Stanier, Charles O; Canagaratna, Manjula R; Jayne, John T; Worsnop, Douglas R; Pandis, Spyros N; Jimenez, Jose L

    2004-09-15

    New particle formation and growth events have been observed in several urban areas and are of concern due to their potential negative effects on human health. The main purpose of this study was to investigate the chemistry of ultrafine particles during the growth phase of the frequently observed nucleation events in Pittsburgh (approximately 100 events per year) and therefore infer the mechanisms of new particle growth in the urban troposphere. An Aerodyne aerosol mass spectrometer (AMS) and two SMPS systems were deployed at the U.S. EPA Pittsburgh Supersite during September 2002. Significant nucleation events were observed in 3 out of the 16 days of this deployment, including one of the 10 strongest nucleation events observed in Pittsburgh over a period of 15 months. These events appear to be representative of the climatology of new particle formation and growth in the Pittsburgh region. Distinctive growth of sulfate, ammonium, organics, and nitrate in the ultrafine mode (33-60 nm in a vacuum aerodynamic diameter or approximately 18-33 nm in physical diameter) was observed during each of these three events, with sulfate always being the first (and the fastest) species to increase. Ultrafine ammonium usually increased 10-40 min later than sulfate, causing the ultrafine mode particles to be more acidic during the initial stages of the nucleation events. Significant increase of ultrafine organics often happened after 11:00 a.m., when photochemistry is more intense. This observation coupled with a parallel increase of ultrafine m/z 44, a mass fragment generally representative of oxygenated organic compounds, indicates that secondary organic species contribute significantly to the growth of particles at a relatively later time of the event. Among all these four species, nitrate was always a minor component of the ultrafine particles and contributed the least to the new particle growth.

  12. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  13. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  14. Differentiation of hydrophobic from hydrophilic submicrometer aerosol particles

    SciTech Connect

    Juozaitis, A.; Ulevicius, V.; Girgzdys, A. ); Willeke, K. )

    1993-02-01

    A method has been developed that differentiates hydrophobic from hydrophilic submicrometer aerosol particles in air environments containing polydisperse aerosols composed of different chemical species. First, a narrow particle size range is extracted from the polydisperse aerosol by an electrostatic aerosol classifier. Then the monodisperse aerosols of different origins are exposed to preselected supersaturation levels and are size-classified again by a second electrostatic classifier. Hydrophobic aerosol particles pass through the second classifier when its size window matches that of the first classifier. Hydrophilic aerosol particles grow to a larger size and are removed by the second classifier. The method has been applied in the field by measuring the fraction of hydrophobic atmospheric particles in a suburb of Vilnius, Lithuania, during a period of high emission of hydrophobic soot particles from residential coal and industrial oil burning in winter. 33 refs., 4 figs.

  15. Spatial Variability of CCN Sized Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  16. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  17. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  18. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  19. Phase transition behaviour of sodium oleate aerosol particles

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.

    Field measurements have shown that organic surfactants are significant components of atmospheric aerosols. While fatty acids, among other surfactants, are prevalent in the atmosphere, the influence of these species on the chemical and physical properties of atmospheric aerosols remains not fully characterized. In order to assess the phase in which particles may exist, a detailed study of the deliquescence of a model surfactant aerosol has been carried out. Sodium oleate was chosen as a surfactant proxy relevant in atmospheric aerosol. Sodium oleate micelle aerosol particles were generated nebulizing a sodium oleate aqueous solution. In this study, the water uptake and phase transition of sodium oleate aerosol particles have been studied in a room temperature aerosol flow tube system (AFT) using Fourier transform infrared (FTIR) spectroscopy. Aerosol morphology and elemental composition were also analysed using scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) techniques. The particles are homogeneously distributed as ellipsoidal-shape aggregates of micelles particles with an average size of ˜1.1 μm. The deliquescence by the sodium oleate aerosol particles was monitored by infrared extinction spectroscopy, where the dried aerosol particles were exposed to increasing relative humidity as they passed through the AFT. Observations of the infrared absorption features of condensed phase liquid water enable to determine the sodium oleate deliquescence phase transition at 88±2%.

  20. Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: model development and validation.

    PubMed

    Hu, Shuai; Gao, Taichang; Li, Hao; Yang, Bo; Zhang, Feng; Chen, Ming; Liu, Lei

    2017-01-23

    Due to the inadequate understanding of the scattering properties of nonspherical aerosols, considerable uncertainties still exist in the radiative transfer numerical simulation. To this end, a new scattering model for nonspherical aerosols is established based on Multi-Resolution Time-Domain (MRTD) scheme. The model is comprised of three modules: near field calculation module, near-to-far transformation module and scattering parameters computation module, in which, the near electromagnetic field is calculated by MRTD technique, the near-to-far transformation scheme is performed by volume integral method, and the calculation models for extinction and absorption cross section are directly derived from Maxwell's curl equations in the frequency domain. To achieve higher computational efficiency, the model is further parallelized by MPI non-blocking repeated communication technique. The accuracy of the scattering model is validated against Lorenz-Mie, Aden-Kerker and T-matrix theories for spherical particles, particles with inclusions and nonspherical particles. At last, the parallel computational efficiency of the MRTD scattering model is quantitatively discussed as well. The results obtained by parallel MRTD scattering model show an excellent agreement with those of the well-tested scattering theories, where the relative simulation errors of the phase function are less than 5% for most scattering angles. In backward directions, the simulation errors are much larger than that in forward scattering directions due to the stair approximation in particle construction. The computational accuracy of the integral scattering parameters like extinction and absorption efficiencies is higher than phase matrix, where the simulation errors of extinction and absorption efficiencies for the particle with a size parameter of 10 achieve -0.4891% and -1.6933%, respectively.

  1. Glyoxal and Methylglyoxal in Atlantic Seawater and marine Aerosol Particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Manuela; Herrmann, Hartmut

    2014-05-01

    The two α-dicarbonyls glyoxal (CHOCHO; GLY) and methylglyoxal (CH3COCHO; MGLY) have attracted increasing attention over the past years because of their potential role in secondary organic aerosol formation. Recently Sinreich et al. (2010) suggested the open ocean as an important (so far unknown) source for GLY in the atmosphere. To date, there are few available field data of these compounds in the marine area. In this study we present measurements of GLY and MGLY in seawater and marine aerosol particles sampled during a transatlantic Polarstern cruise in spring 2011. In seawater we especially investigated the sea surface microlayer (sampled with the glass plate technique) as it is the direct interface between ocean and atmosphere. Analytical measurements were based on derivatisation with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine reagent, solvent extraction and GC-MS (SIM) analysis. The results show that GLY and MGLY are present in the sea surface microlayer of the ocean and corresponding bulkwater with average concentrations of 228 ng L-1 (GLY) and 196 ng L-1 (MGLY). Significant enrichment (factor of 4) of GLY and MGLY in the sea surface microlayer was found implying photochemical production of the two carbonyls though a clear connection to global radiation was not observed. On aerosol particles, both carbonyls were detected (average concentration 0.2 ng m-3) and are strongly connected to each other, suggesting similar formation mechanisms. Both carbonyls show a very good correlation with particulate oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. A slight correlation of the two carbonyls in the sea surface microlayer and in the aerosol particles was found at co-located sampling areas. In summary, the results of GLY and MGLY in marine aerosol particles and in the oceanic water give first insights towards interaction processes of these alpha dicarbonyls between ocean and atmosphere (van Pinxteren and Herrmann (2013

  2. Activation of the Solid Silica Layer of Aerosol-Based C/SiO₂ Particles for Preparation of Various Functional Multishelled Hollow Microspheres.

    PubMed

    Li, Xiangcun; Luo, Fan; He, Gaohong

    2015-05-12

    Double-shelled C/SiO2 hollow microspheres with an outer nanosheet-like silica shell and an inner carbon shell were reported. C/SiO2 aerosol particles were synthesized first by a one-step rapid aerosol process. Then the solid silica layer of the aerosol particles was dissolved and regrown on the carbon surface to obtain novel C/SiO2 double-shelled hollow microspheres. The new microspheres prepared by the facile approach possess high surface area and pore volume (226.3 m(2) g(-1), 0.51 cm(3) g(-1)) compared with the original aerosol particles (64.3 m(2) g(-1), 0.176 cm(3) g(-1)), providing its enhanced enzyme loading capacity. The nanosheet-like silica shell of the hollow microspheres favors the fixation of Au NPs (C/SiO2/Au) and prevents them from growing and migrating at 500 °C. Novel C/C and C/Au/C (C/Pt/C) hollow microspheres were also prepared based on the hollow nanostructure. C/C microspheres (482.0 m(2) g(-1), 0.92 cm(3) g(-1)) were ideal electrode materials. In particular, the Au NPs embedded into the two carbon layers (C/Au/C, 431.2 m(2) g(-1), 0.774 cm(3) g(-1)) show a high catalytic activity and extremely chemical stability even at 850 °C. Moreover, C/SiO2/Au, C/Au/C microspheres can be easily recycled and reused by an external magnetic field because of the presence of Fe3O4 species in the inner carbon shell. The synthetic route reported here is expected to simplify the fabrication process of double-shelled or yolk-shell microspheres, which usually entails multiple steps and a previously synthesized hard template. Such a capability can facilitate the preparation of various functional hollow microspheres by interfacial design.

  3. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Astrophysics Data System (ADS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E.; Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-05-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120°, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20%±15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law size distribution, based on the spectral dependence of the optical thickness, a, cannot estimate accurately the phase function (up to 50% error for λ = 0.87 μm). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with α. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distributions before the injection of stratospheric aerosol consistently show two modes, sulfate particles with rm

  4. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate

  5. Real-time detection method and system for identifying individual aerosol particles

    DOEpatents

    Gard, Eric E.; Coffee, Keith R.; Frank, Matthias; Tobias, Herbert J.; Fergenson, David P.; Madden, Norm; Riot, Vincent J.; Steele, Paul T.; Woods, Bruce W.

    2007-08-21

    An improved method and system of identifying individual aerosol particles in real time. Sample aerosol particles are collimated, tracked, and screened to determine which ones qualify for mass spectrometric analysis based on predetermined qualification or selection criteria. Screening techniques include one or more of determining particle size, shape, symmetry, and fluorescence. Only qualifying particles passing all screening criteria are subject to desorption/ionization and single particle mass spectrometry to produce corresponding test spectra, which is used to determine the identities of each of the qualifying aerosol particles by comparing the test spectra against predetermined spectra for known particle types. In this manner, activation cycling of a particle ablation laser of a single particle mass spectrometer is reduced.

  6. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  7. Aerosol Particle Property Comparisons Between MISR and AERONET Retrieved Values

    NASA Astrophysics Data System (ADS)

    Gaitley, B. J.; Kahn, R. A.

    2005-12-01

    Aerosol optical depth (AOT) data from the Multi-angle ImagingSpectroRadiometer (MISR) instrument aboard the NASA Earth Observing System's Terra satellite have already been systematically compared with ground-based data from the AERONET network. As a result of that study, MISR data are now being reprocessed with improved aerosol algorithms and aerosol models. The follow-on study reported here systematically compares MISR and AERONET particle micro-physical properties. This project is currently underway. Our goal is to use the statistical power of numerous AERONET measurements to map the behavior of the MISR property retrievals, identify strength and surprises in the MISR data, and use this information both to refine further the MISR retrieval algorithms and to assess the likely error envelopes in the MISR products. Multi-year data from 36 carefully chosen sites having good long-term measurement records are stratified by broad classes of aerosol air mass types: maritime, biomass burning, desert dust, pollution, and continental aerosols. Available AERONET spectral AOT measurements for two-hour windows around MISR overpass times are interpolated to MISR wavelengths and averaged, and AOT variability over the two-hour window is noted. Sky-scan AERONET data, taken only once an hour, are also were interpolated to MISR wavelengths, and are averaged over a four-hour window provided the variability is smaller than MISR sensitivity to particle properties based on previous work. MISR retrievals over the 17.6 km standard retrieval regions that include the AERONET sites are preferentially used for the comparison. The MISR measurements are averages of over all "successful" aerosol type models in the MISR algorithm climatology, where success is measured by the degree to which multi-angle, multi-spectral top-of-atmosphere radiances match modeled radiances, using several chi-squared tests. Angstrom exponent, single scattering albedo, and size distribution mean values and variance

  8. Laser velocimeter seed particle sizing by the whisker particle collector and laser aerosol spectrometer methods

    NASA Astrophysics Data System (ADS)

    Crosswy, F. L.; Kingery, M. K.; Schaefer, H. J.; Pfeifer, H. J.

    1989-07-01

    Two different aerosol particle sizing systems, the Whisker Particle Collector (WPC) and the Laser Aerosol Spectrometer (LAS), were evaluated for sizing aerosol particles in the size range of 0.1 to 3.0 micrometers. The evaluation tests were conducted using an aerosol of alumina (Al2O3) particles, an aerosol commonly used to provide light scattering particles for laser velocimeter measurements in high temperature flows. The LAS and WPC measurements were then compared for samples taken from the alumina particle aerosols. Some difficulty was encountered in directly comparing these measurements. Other operational aspects of the two systems were also compared including on-line/off-line data presentation capabilities, field portability and measurement limitations at the small particle end of the size range of interest.

  9. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-01-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice

  10. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  11. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  12. Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.

    PubMed

    Zhu, Yangzhi; Li, Xiangcun; He, Gaohong; Qi, Xinhong

    2015-02-18

    Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.

  13. Resuspension of Aerosol Particles from Evaporated Rain Drops to the Coarse Mode

    NASA Astrophysics Data System (ADS)

    Wang, H.; Easter, R. C.; Ganguly, D.; Singh, B.; Rasch, P. J.

    2015-12-01

    Precipitation scavenging (i.e., wet removal) has long been recognized as one of the major removal processes for tropospheric aerosol particles, and the dominant one for accumulation-mode size particles. When rain drops evaporate, the aerosol material contained in drops is resuspended, and this process has received much less attention. Unlike the resuspension from evaporated cloud droplets, the aerosol particles resuspended from evaporated rain drops have much larger sizes than most of the aerosol particles that acted as cloud condensation nuclei (CCN), became cloud borne, and then were collected by rain drops, because each rain drop generally collects thousands of cloud droplets. Here we present some aspects of this resuspension process obtained from modeling studies. First, we investigate some details of the process using a simple drop-size resolved model of raindrop evaporation in sub-saturated air below cloud base. Using these results, we then investigate different treatments of this process in a global aerosol and climate model that employs a modal aerosol representation. Compared to the model's original treatment of this process in which rain-borne aerosol is resuspended to the mode that it came from with its original size, the new treatment that resuspends to the coarse mode produces notable reductions in global CCN concentrations, as well as sulfate, black carbon, and organic aerosol mass, because the resuspended aerosol particles have much shorter lifetimes due to their larger sizes. Somewhat surprisingly, there are also notable reductions in coarse-mode sea salt and mineral dust burdens. These species are resuspended to the coarse mode in both the original and new treatments, but these resuspended particles are fewer in number and larger in size in the new treatment. This finding highlights some issues of the modal aerosol treatment for coarse mode particles.

  14. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A.; Ahern, A.; Williams, L. R.; Ehn, M.; Mikkila, J.; Canagaratna, M.; Brune, W. H.; Onasch, T. B.; Jayne, J.; Petdjd, T. T.; Kulmala, M. T.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between degree of oxidation and hygroscopic properties of secondary organic aerosol (SOA) particles. The hygroscopic growth factor (HGF), the CCN activity (κCCN) and the degree of aerosol oxidation (represented by the atomic O:C ratio) were measured for α-pinene, 1,3,5-trimethylbenzene (TMB), m-xylene and α pinene/m-xylene mixture SOA generated via OH radical oxidation in an aerosol flow reactor. Our results show that both HGF and κCCN increase with O:C. The TMB and m-xylene SOA were, respectively, the least and most hygroscopic of the system studied. An average HGF of 1.25 and a κCCN of 0.2 were measured at O:C of 0.65, in agreement with results reported for ambient data. The HGF based κ(κHGF) under predicted the κCCN values of 20 to 50% for all but the TMB SOA. Within the limitations of instrumental capabilities, we define the extent to which the hygroscopic properties of SOA particles can be predicted from their oxidation level and provide parameterizations suitable for interpreting ambient data.

  15. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  16. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  17. The optical manipulation and characterisation of aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.

    2008-08-01

    Aerosols play a crucial role in many areas of science, ranging from atmospheric chemistry and physics, to pharmaceutical aerosols and drug delivery to the lungs, to combustion science and spray drying. The development of new methods for characterising the properties and dynamics of aerosol particles is of crucial importance if the complex role that particles play is to be more fully understood. Optical tweezers provide a valuable new tool to address fundamental questions in aerosol science. Single or multiple particles 1-15 μm in diameter can be manipulated for indefinite timescales. Linear and non-linear Raman and fluorescence spectroscopies can be used to probe particle composition, phase, component mixing state, and size. In particular, size can be determined with nanometre accuracy, allowing accurate measurements of the thermodynamic properties of aerosols, the kinetics of particle transformation and of light absorption. Further, the simultaneous manipulation of multiple particles in parallel optical traps provides a method for performing comparative measurements on particles of different composition. We will present some latest work in which optical tweezers are used to characterise aerosol dynamics, demonstrating that optical tweezers can find application in studies of hygroscopicity, the mixing state of different chemical components, including the phase separation of immiscible phases, and the kinetics of chemical transformation.

  18. Equilibrium absorptive partitioning theory between multiple aerosol particle modes

    NASA Astrophysics Data System (ADS)

    Crooks, Matthew; Connolly, Paul; Topping, David; McFiggans, Gordon

    2016-10-01

    An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

  19. Influence of particle size and chemistry on the cloud nucleating properties of aerosols

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.

    2008-02-01

    The ability of an aerosol particle to act as a cloud condensation nuclei (CCN) is a function of the size of the particle, its composition and mixing state, and the supersaturation of the cloud. In-situ data from field studies provide a means to assess the relative importance of these parameters. During the 2006 Texas Air Quality - Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS), the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources and chemistry in the potential activation of particles to form cloud droplets. Measurements were made of CCN concentrations, aerosol chemical composition in the size range relevant for particle activation in warm clouds, and aerosol size distributions. Variability in aerosol composition was parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range was lowest for marine aerosol and highest for aerosol sampled close to anthropogenic sources. Combining all data from the experiment reveals that composition (defined by HOA mass fraction) explains 40% of the variance in the critical diameter for particle activation at the instrumental supersaturation (S) of 0.44%. Correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during TexAQS-GoMACCS, variability in particle composition played a significant role in determining the fraction of particles that could activate to form cloud droplets. Using a simple model based on Köhler theory and the assumption that HOA is insoluble, we estimate the degree to which calculated CCN

  20. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2009-12-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  1. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2010-05-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  2. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, Arlin K.

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  3. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  4. Measurement of mass distribution of chemical species in aerosol particles

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1984-01-01

    Aerosols may be generated through the nebulizing of solutions and the evaporation of their solvent, leaving the dry solute particles. Attention is presently given to a method for the direct determination of the masses of chemical species in individual aerosol particles on a continuous, real-time basis, using mass spectrometry. After the aerosol particles are introduced into the ion source of a quadrupole mass spectrometer, the particles impinge on a hot rhenium filament in the mass spectrometer's ion source. The resulting vapor plume is ionized by electron bombardment, and a pulse of ions is generated by each particle. The intensities of different masses in the ion pulses can then be measured by the mass spectrometer.

  5. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  6. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A. ); Cass, G.R. . Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  7. EVALUATION OF ACOUSTIC FORCES ON A PARTICLE IN AEROSOL MEDIUM

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    The acoustic force exerted on a solid particle was evaluated to develop a fundamental understanding of the critical physical parameters or constraints affecting particle motion and capture in a collecting device. The application of an acoustic force to the collection of a range of submicron-to-micron particles in a highly turbulent airflow stream laden with solid particles was evaluated in the presence of other assisting and competing forces. This scoping estimate was based on the primary acoustic force acting directly on particles in a dilute aerosol system, neglecting secondary interparticle effects such as agglomeration of the sub-micron particles. A simplified analysis assuming a stable acoustic equilibrium with an infinite sound speed in the solid shows that for a solid-laden air flow in the presence of a standing wave, particles will move toward the nearest node. The results also show that the turbulent drag force on a 1-{micro}m particle resulting from eddy motion is dominant when compared with the electrostatic force or the ultrasonic acoustic force. At least 180 dB acoustic pressure level at 1 MHz is required for the acoustic force to be comparable to the electrostatic or turbulent drag forces in a high-speed air stream. It is noted that particle size and pressure amplitude are dominant parameters for the acoustic force. When acoustic pressure level becomes very large, the acoustic energy will heat up the surrounding air medium, which may cause air to expand. With an acoustic power of about 600 watts applied to a 2000-lpm air flow, the air temperature can increase by as much as 15 C at the exit of the collector.

  8. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  9. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    Ice particles are ubiquitous in the atmosphere existing as the sole constituents of glaciated cirrus clouds or coexisting with supercooled liquid droplets in mixed-phase clouds. Aerosol particles serving as heterogeneous ice nuclei for ice crystal formation impact the global radiative balance by modification of cloud radiative properties, and thus climate. Atmospheric ice formation is not a well understood process and represents great uncertainty for climate prediction. The oceans which cover the majority of the earth's surface host nearly half the total global primary productivity and contribute to the greatest aerosol production by mass. However, the effect of biological activity on particle aerosolization, particle composition, and ice nucleation is not well established. This dissertation investigates the link between marine biological activity, aerosol particle production, physical/chemical particle characteristics, and ice nucleation under controlled laboratory conditions. Dry and humidified aerosol size distributions of particles from bursting bubbles generated by plunging water jets and aeration through frits in a seawater mesocosm containing bacteria and/or phytoplankton cultures, were measured as a function of biological activity. Total particle production significantly increases primarily due to enhanced aerosolization of particles ≤100 nm in diameter attributable to the presence and growth of phytoplankton. Furthermore, hygroscopicity measurements indicate primary organic material associated with the sea salt particles, providing additional evidence for the importance of marine biological activity for ocean derived aerosol composition. Ice nucleation experiments show that these organic rich particles nucleate ice efficiently in the immersion and deposition modes, which underscores their importance in mixed-phase and cirrus cloud formation processes. In separate ice nucleation experiments employing pure cultures of Thalassiosira pseudonana, Nannochloris

  10. Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhanshu

    2012-07-01

    {Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi } Tracing of aerosol sources is an important task helpful for making control strategy, and for climate change study. However, it is a difficult job as aerosols have several sources, involve in complex atmospheric processing, degradation and removal processes. Several approaches have been used for this task, e.g., models, which are based on the input of chemical species; stable- and radio-isotope compositions of certain species; chemical markers in which trace metals are the better options because they persist in atmosphere until the life of a particle. For example, K and Hg are used for biomass and coal burning tracings, respectively. Open waste burning has recently been believed to be a considerable source of aerosols in several mega cities in India and China. To better understand this source contribution in New Delhi aerosols, we have conducted aerosol sampling at a landfill site (Okhla), and in proximity (within 1 km distance) of this site. Aerosol filter samples were acid digested in microwave digestion system and analyzed using inductively coupled plasma -- high resolution mass spectrometry (ICP-HRMS) for getting metal signatures in particles. The metals, e.g., Sn, Sb and As those are found almost negligible in remote aerosols, are maximized in these waste burning aerosols. Sample collected in other location of New Delhi also shows the considerable presence of these metals in particles. Preliminary studies of isotopic ratios of these metals suggested that these metals, especially Sn can be used as marker for tracing the open waste burning sources of aerosols in New Delhi.

  11. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  12. Middle East measurements of concentration and size distribution of aerosol particles for coastal zones

    NASA Astrophysics Data System (ADS)

    Bendersky, Sergey; Kopeika, Norman S.; Blaunstein, Natan S.

    2005-10-01

    Recently, an extension of the Navy Aerosol Model (NAM) was proposed based on analysis of an extensive series of measurements at the Irish Atlantic Coast and at the French Mediterranean Coast. We confirm the relevance of that work for the distant eastern Meditteranean and extend several coefficients of that coastal model, proposed by Piazzola et al. for the Meditteranean Coast (a form of the Navy Aerosol Model), to midland Middle East coastal environments. This analysis is based on data collected at three different Middle East coastal areas: the Negev Desert (Eilat) Red Sea Coast, the Sea of Galilee (Tiberias) Coast, and the Mediterranean (Haifa) Coast. Aerosol size distributions are compared with those obtained through measurements carried out over the Atlantic, Pacific, and Indian Ocean Coasts, and Mediterranean, and Baltic Seas Coasts. An analysis of these different results allows better understanding of the similarities and differences between different coastal lake, sea, and open ocean zones. It is shown that in the coastal regions in Israel, compared to open ocean and other sea zones, larger differences in aerosol particle concentration are observed. The aerosol particle concentrations and their dependences on wind speed for these coastal zones are analyzed and discussed. We propose to classify the aerosol distribution models to either: 1. a coastal model with marine aerosol domination; 2. a coastal model with continental aerosol domination (referred to as midland coast in this work); or 3. a coastal model with balanced marine and continental conditions.

  13. Modeling of microphysics and optics of aerosol particles in the marine environments

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady

    2013-05-01

    We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0 - 25 m, U = 3 - 18 km s-1, X ≤ 120 km and RH = 40 - 98%. The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied for the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ = 0.2-12 μm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory. The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results. Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.

  14. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  15. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  16. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    SciTech Connect

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.; Parkhurst, MaryAnn

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  17. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  18. A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Huang, X. H. Hilda; Griffith, Stephen M.; Li, Mei; Li, Lei; Zhou, Zhen; Wu, Cheng; Meng, Junwang; Chan, Chak K.; Louie, Peter K. K.; Yu, Jian Zhen

    2016-10-01

    Single Particle Aerosol Mass Spectrometers (SPAMS) have been increasingly deployed for aerosol studies in Asia. To date, SPAMS is most often used to provide unscaled information for both the size and chemical composition of individual particles. The instrument's lack of accuracy is primarily due to only a fraction of particles being detected after collection, and the instrumental sensitivity is un-calibrated for various chemical species in mixed ambient aerosols. During a campaign from January to April 2013 at a coastal site in Hong Kong, the particle number information and ion intensity of major PM2.5 components collected by SPAMS were scaled by comparing with collocated bulk PM2.5 measurements of hourly or higher resolution. The bulk measurements include PM2.5 mass by a SHARP 5030 Monitor, major ions by a Monitor for Aerosols & Gases in ambient Air (MARGA), and organic carbon (OC) and elemental carbon (EC) by a Sunset OCEC analyzer. During the data processing, both transmission efficiency (scaled with the Scanning Mobility Particle Sizer) and hit efficiency conversion were considered, and component ion intensities quantified as peak area (PA) and relative peak area (RPA) were analyzed to track the performance. The comparison between the scaled particle mass assuming a particle density of 1.9 g cm-3 from SPAMS and PM2.5 concentration showed good correlation (R2 = 0.81) with a slope of 0.814 ± 0.004. Regression analysis results suggest an improved scaling performance using RPA compared with PA for most of the major PM2.5 components, including sulfate, nitrate, potassium, ammonium, OC and EC. Thus, we recommend preferentially scaling these species using the RPA. For periods of high K+ concentrations (>1.5 μg m-3), under-estimation of K+ by SPAMS was observed due to exceeding the dynamic range of the acquisition board. When only applying the hit efficiency correction, data for sulfate, nitrate, ammonium, potassium and OC were in reasonably good correlation (R2 = 0

  19. Aerosol particle microphotography and glare-spot absorption spectroscopy.

    PubMed

    Arnold, S; Holler, S; Li, J H; Serpengüzel, A; Auffermann, W F; Hill, S C

    1995-04-01

    The relative intensities of glare spots in the image of an electrodynamically trapped aerosol droplet are measured experimentally with an aerosol particle microscope and calculated theoretically. The theoretical calculations are in good agreement with these experiments and indicate that the intensities of these spots are extremely sensitive to the imaginary part of the refractive index. Experimentally, we obtain the molecular absorption spectrum of an impurity within a droplet by recording the spectrum of an individual glare spot produced by broadband illumination.

  20. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  1. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  2. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  3. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  4. Effects of Hydrodynamic Interaction in Aerosol Particle Settling: Mesoscopic Particle-level Full Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Li, Shuiqing; Yang, Mengmeng; Marshall, Jeffrey

    2014-11-01

    A new mesoscopic particle-level approach is developed for the full dynamics simulation (FDS) of the settling of systems of aerosol micro-particles. The approach efficiently combines an adhesive discrete-element method for particle motions and an Oseen dynamics method for hydrodynamic interactions. Compared to conventional Stokeslet and Oseenlet simulations, the FDS not only accounts for the cloud-scale fluid inertia effect and the particle inertia effect, but also overcomes the singularity problem using a soft-sphere model of adhesive contact. The effect of hydrodynamic interactions is investigated based on FDS results. The particle inertia is found to reduce the mobility of particle clouds and to elongate the cloud on vertical direction. Meanwhile, the fluid inertia decreases the settling velocity by weakening the hydrodynamic interaction and tends to flatten the cloud, leading to breakup. Expressions for the settling velocity of particle cloud are proposed with consideration of fluid inertia effect and the cloud shape. Finally, the transformation in settling behavior from a finite particle cloud to an unbounded uniform suspension is explained. This work has been funded by the National Natural Science Funds of China (No. 50976058), and by the National Key Basic Research and Development Program (2013CB228506).

  5. New aerosol particles formation in the Sao Paulo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Vela, Angel; Andrade, Maria de Fatima; Ynoue, Rita

    2016-04-01

    The Sao Paulo Metropolitan Area (SPMA), in the southeast region of Brazil, is considered a megalopolis comprised of Sao Paulo city and more 38 municipalities. The air pollutant emissions in the SPMA are related to the burning of the fuels: etanol, gasohol (gasoline with 25% ethanol) and diesel. According to CETESB (2013), the road vehicles contributed up to about 97, 87, and 80% of CO, VOCs and NOx emissions in 2012, respectively, being most of NOx associated to diesel combustion and most of CO and VOCs from gasohol and ethanol combustion. Studies conducted on ambient air pollution in the SPMA have shown that black carbon (BC) explains 21% of mass concentration of PM2.5 compared with 40% of organic carbon (OC), 20% of sulfates, and 12% of soil dust (Andrade et al., 2012). Most of the observed ambient PM2.5 mass concentration usually originates from precursors gases such as sulphur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx) and VOCs as well as through the physico-chemical processes such as the oxidation of low volatile hydrocarbons transferring to the condensed phase (McMurry et al., 2004). The Weather Research and Forecasting with Chemistry model (WRF-Chem; Grell et al. 2005), configured with three nested grid cells: 75, 15, and 3 km, is used as photochemical modeling to describe the physico-chemical processes leading to evolution of particles number and mass size distribution from a vehicular emission model developed by the IAG-USP laboratory of Atmospheric Processes and based on statistical information of vehicular activity. The spatial and temporal distributions of emissions in the finest grid cell are based on road density products compiled by the OpenStreetMap project and measurements performed inside tunnels in the SPMA, respectively. WRF-Chem simulation with coupled primary aerosol (dust and sea-salt) and biogenic emission modules and aerosol radiative effects turned on is conducted as the baseline simulation (Case_0) to evaluate the model

  6. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  7. Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Prodi, F.; Santachiara, G.; Travaini, S.; Belosi, F.; Vedernikov, A.; Dubois, F.; Queeckers, P.; Legros, J. C.

    2006-11-01

    Brownian diffusion of aerosol particles was studied in microgravity conditions using a digital holographic velocimeter. Based on digital image processing, the observed volume, recorded on a charge-coupled device (CCD) camera, is reconstructed slice by slice in order to achieve a full focused volume. Three dimensional coordinates of the particles are retrieved by such procedures and particle trajectories are reconstructed by analysing the sequence of the particle position. We deduced that the displacement of particles in microgravity, due to Brownian motion, follows a Gaussian distribution, like at 1 g. Particle sizes obtained from SEM measurements were in good agreement with those calculated from the three dimensional trajectories provided by the holographic microscope.

  8. Heterogeneous particle deaggregation and its implication for therapeutic aerosol performance.

    PubMed

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    Aerosolization performance of dry powder blends of drugs for the treatment of asthma or chronic obstructive pulmonary diseases have been reported in three previous articles. In vitro aerosolization was performed at defined shear stresses (0.624-13.143 N/m(2)). Formulations were characterized aerodynamically and powder aerosol deaggregation equations (PADE) and corresponding linear regression analyses for pharmaceutical aerosolization were applied. Particle deaggregation is the result of overcoming fundamental forces acting at the particle interface. A new method, PADE, describing dry powder formulation performance in a shear stress range has been developed which may allow a fundamental understanding of interparticulate and surface forces. The application of PADE predicts performance efficiency and reproducibility and supports rational design of dry powder formulations. The analogy of aerosol performance with surface molecular adsorption has important implications. Expressions describing surface adsorption were intended to allow elucidation of mechanisms involving surface heterogeneity, lateral interaction, and multilayer adsorption of a variety of materials. By using a similar expression for drug aerosolization performance, it is conceivable that an analogous mechanistic approach to the evaluation of particulate systems would be possible.

  9. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    SciTech Connect

    Curtis, J.H.; Michelotti, M.D.; Riemer, N.; Heath, M.T.; West, M.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removal rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.

  10. Composition and formation of organic aerosol particles in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Wiedemann, K.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Artaxo, P.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R. C.; Smith, M.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O.

    2012-04-01

    We applied scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-NEXAFS) analysis to investigate the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a natural background aerosol. The samples were found to be dominated by secondary organic aerosol (SOA) particles in the fine and primary biological aerosol particles (PBAP) in the coarse mode. Lab-generated SOA-samples from isoprene and terpene oxidation as well as pure organic compounds from spray-drying of aqueous solution were measured as reference samples. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol in the submicron size range and its internal mixing state. The lab-generated SOA and pure organic compounds occurred as spherical and mostly homogenous droplet-like particles, whereas the Amazonian SOA particles comprised a mixture of homogeneous droplets and droplets having internal structures due to atmospheric aging. In spite of the similar morphological appearance, the Amazon samples showed considerable differences in elemental and functional group composition. According to their NEXAFS spectra, three chemically distinct types of organic material were found and could be assigned to the following three categories: (1) particles with a pronounced carboxylic acid (COOH) peak similar to those of laboratory-generated SOA particles from terpene oxidation; (2) particles with a strong hydroxy (COH) signal similar to pure carbohydrate particles; and (3) particles with spectra resembling a mixture of the first two classes. In addition to the dominant organic component, the NEXAFS spectra revealed clearly resolved potassium (K) signals for all analyzed particles. During the rainy season and in the absence of anthropogenic influence, active biota is

  11. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    SciTech Connect

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; Yoder, Richard; Wheeler, Elizabeth K.; Farquar, George R.

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The use of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.

  12. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; ...

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  13. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  14. Individual-Particle Analysis of Aerosols From Southern Africa

    NASA Astrophysics Data System (ADS)

    Li, J.; Posfai, M.; Hobbs, P. V.; Buseck, P. R.

    2001-12-01

    Aerosol samples were collected on the University of Washington Convair-580 research aircraft over southern Africa during the Safari 2000 Experiment. Individual aerosol particles were analyzed using transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) with energy-dispersive x-ray spectrometry (EDS). The objective of the study is to characterize the major aerosol emissions from biomass burning over southern Africa, with emphasis on the sizes, shapes, compositions, mixing states, and surface coatings of the aerosols. Aging and reaction of smoke aerosols with plume transport were investigated. Particulate emissions from combustion of different vegetation types and at different burning phases were compared. Preliminary results show that aerosols from biomass burning mainly consist of amorphous carbonaceous spherules ("tar balls"); soot; K salts including KCl, K2SO4, and probably KNO3 mixed with organic particles; and Ca-bearing particles including Ca carbonate, phosphate, and sulfate. Minor amounts of sea salt and minerals such as quartz, mica, smectite, and gypsum are also present. The relative concentrations of tar balls increase with distance from the fires. More KCl particles occur in fresh smoke plumes close to fire sources, whereas more K2SO4 and KNO3 particles are present in aged smoke. This change indicates that KCl forming from the fire was converted to K2SO4 and KNO3 through reactions with S- and N-bearing species emitted from biomass burning. The conversion of KCl resembles that of NaCl in sea salt particles, suggesting similar reaction mechanisms with the aging of smoke. More soot is present in smoke from flaming grass fires than bush and wood fires, which is probably related to the high fraction of flaming combustion of grass fires. The high abundance of organic particles and soluble salt may affect the hygroscopic properties of biomass burning aerosols and influence their role as cloud condensation nuclei

  15. Discrimination and classification of bio-aerosol particles using optical spectroscopy and scattering

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.

    2011-03-01

    For more than a decade now, there has been significant emphasis for development of sensors of agent aerosols, especially for biological warfare (BW) agents. During this period, the Naval Research Laboratory (NRL) and other labs have explored the application of optical and spectroscopic methods relevant to biological composition discrimination to aerosol particle characterization. I will first briefly attempt to establish the connection between sensor performance metrics which are statistically determined, and aerosol particle measurements through the use of computational models, and also describe the challenge of ambient background characterization that would be needed to establish more reliable and deterministic sensor performance predictions. Greater attention will then be devoted to a discussion of basic particle properties and their measurement. The NRL effort has adopted an approach based on direct measurements on individual particles, principally of elastic scatter and laser-induced fluorescence (LIF), rather than populations of particles. The development of a LIF instrument using two sequential excitation wavelengths to detect fluorescence in discrete spectral bands will be described. Using this instrument, spectral characteristics of particles from a variety of biological materials including BW agent surrogates, as well as other ``calibration'' particles and some known ambient air constituents will be discussed in terms of the dependence of optical signatures on aerosol particle composition, size and incident laser fluence. Comparison of scattering and emission measurements from particles composed of widely different taxa, as well as from similar species under different growth conditions highlight the difficulties of establishing ground truth for complex biological material compositions. One aspect that is anticipated to provide greater insight to this type of particle classification capability is the development of a fundamental computational model of

  16. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  17. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-09-01

    In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  18. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  19. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  20. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the

  1. Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2009-05-05

    The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach accurately tracks the evolution of the mixing state of particles due to emission, dilution, condensation and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved optimal efficiency for applications when the coagulation kernel is highly non-uniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contribute to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in internally-mixed sectional or modal aerosol models.

  2. Magnetic targeting of aerosol particles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Ally, Javed; Martin, Benjamin; Behrad Khamesee, Mir; Roa, Wilson; Amirfazli, Alidad

    2005-05-01

    An in vitro model was developed to study and demonstrate the potential and feasibility of magnetically targeted deposition of aerosols for potential applications in lung cancer treatment. Also, a numerical particle tracing model was developed to predict the targeting behavior of the in vitro system; the results from the numerical and experimental studies were in agreement.

  3. Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

    PubMed

    Geng, Hong; Ryu, Jiyeon; Jung, Hae-Jin; Chung, Hyeok; Ahn, Kang-Ho; Ro, Chul-Un

    2010-04-01

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.

  4. Radiocarbon based source apportionment of black carbon in the form of PM10 elemental carbon aerosol particles at the Zeppelin Observatory, Svalbard

    NASA Astrophysics Data System (ADS)

    Winiger, Patrik; Andersson, August; Espen Yttri, Karl; Tunved, Peter; Gustafsson, Örjan

    2015-04-01

    Black carbon (BC) aerosol particles are formed from incomplete combustion of fossil fuel and biomass. Transported into the Arctic, they potentially contributes to climate warming. However, there are still large uncertainties related to the climate effects of BC, including aspects of radiative properties, mixing state of the particles, transport, atmospheric lifetime and sources. The current study aims to reduce source uncertainties by applying a top-down (observational) source-diagnostic isotope approach and comparing these to bottom-up (modeling) emission inventories to better constrain the source types and source regions. The use of natural abundance radiocarbon (Δ14C) is a powerful tool to distinguish between fossil (void of 14C) and biomass (contemporary 14C) combustion sources. Due to the well-defined end-members, 14C-measurements (alone) provide high precision (

  5. A dual-wavelength single particle aerosol fluorescence monitor

    NASA Astrophysics Data System (ADS)

    Kaye, Paul H.; Stanley, Warren R.; Foot, Virginia; Baxter, Karen; Barrington, Stephen J.

    2005-10-01

    Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

  6. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  7. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  8. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  9. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  10. Aerosol growth in Titan's ionosphere through particle charging

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Yelle, R. V.; Koskinen, T.; Bazin, A.; Vuitton, V.; Vigren, E.; Galand, M. F.; Wellbrock, A.; Coates, A. J.; Wahlund, J.; Crary, F.; Snowden, D. S.

    2012-12-01

    Observations of Titan's lower thermosphere and ionosphere by Cassini instruments demonstrate the presence of large mass negative ions of a few thousand amu, and the presence of positive ions up to a few hundred amu [1,2]. The mechanisms though responsible for the production of these large ions have so far remained elusive. A recent Titan flyby that probed deeper layers of Titan's thermosphere than usual, revealed a discrepancy in the observed positive ion and electron density, with the electron density lower than the abundance required to satisfy charge balance [3]. The remaining electron density was found in the form of the large mass negative ions. Aerosols can be charged on interaction with electrons and ions, while this charge can affect the particle coagulation, thus, their subsequent growth. Given the above observations we investigate here the potential role of aerosols in Titan's ionosphere and how this interaction affects the aerosol evolution. This investigation is performed with the use of a model that couples between the ionospheric photochemical evolution and the microphysical growth of aerosols in a self-consistent approach. Our results show that particle charging has an important role in the ionosphere. Most of the produced particles in the ionosphere attain a negative charge. Thus, they act as a sink for the free electrons with the remaining free electron densities consistent with the recent Cassini observations. Being negatively charged, the particles repel each other reducing in this way the coagulation rates and the growth of the aerosols. On the other hand, the negatively charged particles attract the abundant positive ions, which results to enhanced collisions between them. The mass added to the particles by the ions leads to an increase in their size and an increase in the resulting mass flux of the aerosols. Our simulated mass per charge spectra provide excellent fits to the observed positive and negative ion spectra from the Cassini Plasma

  11. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  12. Mass Spectrometry of Liquid Aniline Aerosol Particles by IR/UV Laser Irradiation.

    PubMed

    Zelenyuk, A; Cabalo, J; Baer, T; Miller, R E

    1999-05-01

    The first results are reported from a new single-particle two-color laser time-of-flight mass spectrometer, incorporating a combination of infrared (CO(2)) and UV (excimer) laser irradiation. This combination of lasers has the capability to effectively separate the desorption or evaporation step from the ionization step, thereby greatly improving the analytical capabilities of such an instrument. The results on liquid aerosols, such as aniline, show that prior evaporation of the aerosol particle with the IR laser increases the ion signal produced by the excimer laser by more than 2 orders of magnitude. In the case of nitrobenzene aerosols, the excimer laser alone produces no ions, while a very large signal is observed when the aerosol is first irradiated with the CO(2) laser. A simple model, based on the Coulomb explosion of the ionized aerosol, is used to estimate the number of ions generated by the excimer laser (∼10(5) ions). Experimental evidence based on the observed time delay of protonated aniline parent ions indicates that the laser irradiation of the liquid aerosol results in a stable neutral plasma which separates into positive and negative charges only after a 100-500-ns delay.

  13. Aerosol particles and the formation of advection fog

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1979-01-01

    A study of numerical simulation of the effects of concentration, particle size, mass of nuclei, and chemical composition on the dynamics of warm fog formation, particularly the formation of advection fog, is presented. This formation is associated with the aerosol particle characteristics, and both macrophysical and microphysical processes are considered. In the macrophysical model, the evolution of wind components, water vapor content, liquid water content, and potential temperature under the influences of vertical turbulent diffusion, turbulent momentum, and turbulent energy transfers are taken into account. In the microphysical model, the supersaturation effect is incorporated with the surface tension and hygroscopic material solution. It is shown that the aerosol particles with the higher number density, larger size nuclei, the heavier nuclei mass, and the higher ratio of the Van't Hoff factor to the molecular weight favor the formation of the lower visibility advection fogs with stronger vertical energy transfer during the nucleation and condensation time period.

  14. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  15. Chemical evolution of multicomponent aerosol particles during evaporation

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete

    2010-05-01

    Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols

  16. Thermophoretic motion of large heated aerosol spherical particles

    NASA Astrophysics Data System (ADS)

    Malai, N. V.; Limanskaya, A. V.; Shchukin, E. R.

    2016-03-01

    The stationary motion of a large spherical aerosol particle in the external field of a temperature gradient in zero gravity is theoretically described using the Stokes approximation and the assumption that the average temperature of the particle surface differs considerably from the temperature of the surrounding gaseous medium. The gas dynamics equations are solved taking into account the power-law temperature dependence of the molecular transport coefficients (viscosity, thermal conductivity) and the density of the gaseous medium. Numerical estimates show that the dependence of the thermophoretic force and velocity on the average temperature of the particle surface is nonlinear.

  17. Impeded ice nucleation in glassy and highly viscous aerosol particles: the role of water diffusion

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Peter, T.; Zobrist, B.; Krieger, U. K.; Luo, B. P.; Soonsin, V.; Pedernera, D. A.; Koop, T.

    2010-05-01

    are therefore likely to form glasses in the upper troposphere. If aerosol particles are highly viscous or glassy, the equality between relative humidity of an air mass and water activity of the contained particles is no longer fulfilled because water diffusion within the particles is too slow to follow RH changes in the atmosphere. There is a lack of literature data for water diffusion within organic glasses at low temperatures. We therefore measured hygroscopicity cycles of aerosol particles with an electrodynamic balance (EDB) at temperatures between 220 - 291 K and developed a microphysical model to calculate diffusion coefficients of water within the particles based on the EDB results together with available literature data. As model substance we chose sucrose, a substance that has been identified in biomass burning aerosols and may represent the high molecular weight constituents of the organic aerosol fraction. We indeed observed a hysteresis between water uptake and release for levitated sucrose particles that is due to slow water diffusion within the glassy particle and can be used to derive water diffusion coefficients at low temperatures with our microphysical model.

  18. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  19. Continuous measurements of aerosol particles in Arctic Russia and Finland

    NASA Astrophysics Data System (ADS)

    Asmi, Eija; Kondratyev, Vladimir; Brus, David; Lihavainen, Heikki; Laurila, Tuomas; Aurela, Mika; Hatakka, Juha; Viisanen, Yrjö; Reshetnikov, Alexander; Ivakhov, Victor; Uttal, Taneil; Makshtas, Alexander

    2013-04-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71o 36' N; 128o 53' E) on the shore of the Laptev Sea has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol physical properties, which have been successfully continued since summer 2010. These, together with the FMI measurements in Pallas station in northern Finland since 1999, provide important information on the

  20. Mass absorption indices of various types of natural aerosol particles in the infrared.

    PubMed

    Fischer, K

    1975-12-01

    The mass absorption index of aerosol particles has been measured in the 2-17-microm wavelength region. The measurements were performed on films of aerosol particles that were collected by an automatic jet impactor at polluted and various uncontaminated remote sites. All but marine aerosols possess strong absorption bands in the transparent part of the atmospheric long-wave spectrum, indicating marked influence of aerosol particles on the radiation budget of the atmosphere.

  1. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.

    2016-11-01

    Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements.

  2. Comparison of POLDER Derived Aerosol Optical Thickness to Surface Monitor Fine Particle Concentration

    NASA Astrophysics Data System (ADS)

    Leon, J.; Kacenelenbogen, M.; Chiapello, I.

    2005-12-01

    The Particulate Matter (PM) mass measured at the ground level is a common way to quantify the amount of aerosol particles in the atmosphere and is used as a standard to evaluate air quality. Satellite remote sensing is well suited for a daily monitoring of the aerosol load. However, there are no straightforward relationship between aerosol optical properties derived from the satellite sensor and the PM mass at the ground. This paper is focused on the use of Polarization and Directionality of Earth's Reflectance (POLDER-2) derived aerosol optical thickness (AOT) for the monitoring of PM2.5. We present a correlation study between PM2.5 data collected in the frame of the French Environmental protection agency, aerosol optical properties derived from Sun photometer measurements, and POLDER derived-AOT over the land. POLDER AOT retrieval algorithm over the land is based on the use of the measurement of the linear polarized light in the 670 nm and 865 nm channels. We show that only the fine fraction (below 0.3 μm) of the aerosol size distribution contributes to the signal in polarization and then to the POLDER derived-AOT and then is well suited for monitoring of fine particle. The correlation between POLDER AOT and PM2.5 is significant (R between 0.6 and 0.7) over several sites. We present a tentative evaluation of Air Quality Categories from satellite data.

  3. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    NASA Astrophysics Data System (ADS)

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.

  4. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  5. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  6. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles

    NASA Astrophysics Data System (ADS)

    Pósfai, MiháLy; Simonics, RenáTa; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-07-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, "tar ball" particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (˜1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  7. Characterization of lead-containing aerosol particles in Xiamen during and after Spring Festival by single-particle aerosol mass spectrometry.

    PubMed

    Zhao, Shuhui; Chen, Liqi; Yan, Jinpei; Chen, Hangyu

    2017-02-15

    To comparatively analyze lead (Pb)-containing particles during and after the Chinese Spring Festival (SF), real-time single-particle aerosol mass spectrometry (SPAMS) was conducted in Xiamen during February 9-19 and March 4-14, 2013. Pb-containing particles were found in 2.4% and 5.3% of the total particle numbers during and after SF, respectively. Based on the SPAMS mass spectral results, the Pb-containing particles were classified into three major types and 11 subtypes: Pb-rich particles comprising Pb-nitrate, Pb-sulfate and Pb-chloride; K-rich particles comprising K-nitrate, K-sulfate, K-metal, K-carbonaceous, K-phosphate, and K-chloride; and metal particles including Fe-rich and Mn-nitrate particles. During SF, lower contributions of Pb-containing particles were due to the effect of the SF holiday. Firework emissions contributed little to the Pb-containing particles. K-rich particles were a major contribution to Pb-containing particles during SF, accounting for approximately 70% of the total number of Pb-containing particles. After SF, significantly increased Pb-containing particles were observed, coincided with NO2 and SO2, due to increased industrial activities and other anthropogenic activities, and Pb-rich particles increased to approximately 50.3% of the total number of Pb-containing particles. Local industrial emissions and the stagnant meteorological conditions resulted in the higher concentrations of Pb-containing particles in the early morning after SF, especially Pb-nitrate particles. This study provides data on the in-situ monitoring of Pb emissions during and after SF and could be helpful for the mitigation of Pb pollution.

  8. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa

    2016-08-01

    Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

  9. Neural networks for aerosol particles characterization

    NASA Astrophysics Data System (ADS)

    Berdnik, V. V.; Loiko, V. A.

    2016-11-01

    Multilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.

  10. Effect of particle settling on lidar profiles of long-range transported Saharan aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Groß, Silke

    2016-04-01

    A large amount of desert aerosol is transported in the Saharan Air Layer (SAL) westwards from Africa over the Atlantic Ocean. Lidar profiles of transported Saharan aerosol may contain some information about the vertically-resolved aerosol microphysics that could be used to characterize processes that affected the measured aerosol during transport. We present modelled lidar profiles of long-range transported Saharan aerosol assuming that initially the SAL is well-mixed and that there is no vertical mixing of air within the SAL as soon as it reaches the Atlantic. We consider Stokes gravitational settling of aerosol particles over the ocean. The lidar profiles are calculated using optical models for irregularly-shaped mineral dust particles assuming settling-induced particle removal as function of distance from the SAL top. Within the SAL we find a decrease of both the backscatter coefficients and the linear depolarization ratios with decreasing distance from the SAL top. For example, the linear depolarization ratio at a wavelength of 532nm decreases from 0.289 at 1000m to 0.256 at 200m and 0.215 at 100m below SAL top. We compare the modelled backscatter coefficients and linear depolarization ratios to ground-based lidar measurements performed during the SALTRACE field campaign in Barbados (Caribbean) and find agreement within the estimated uncertainties. We discuss the uncertainties of our modeling approach in our presentation. Assumed mineral dust particle shapes, assumed particle mixture properties, and assumptions about processes in the SAL over the continent and the ocean are important aspects to be considered. Uncertainties are relevant for the potential of lidar measurements of transported Saharan dust to learn something about processes occuring in the SAL during long-range transport. We also compare our modeling results to modeling results previously published in the literature.

  11. Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shipley Robinson, Ellis; Onasch, Timothy B.; Worsnop, Douglas; Donahue, Neil M.

    2017-03-01

    We investigated the collection efficiency and effective ionization efficiency for secondary organic aerosol (SOA) particles made from α-pinene + O3 using the single-particle capabilities of the aerosol mass spectrometer (AMS). The mean count-based collection efficiency (CEp) for SOA across these experiments is 0.30 (±0.04 SD), ranging from 0.25 to 0.40. The mean mass-based collection efficiency (CEm) is 0.49 (±0.07 SD). This sub-unit collection efficiency and delayed vaporization is attributable to particle bounce in the vaporization region. Using the coupled optical and chemical detection of the light-scattering single-particle (LSSP) module of the AMS, we provide clear evidence that delayed vaporization is somewhat of a misnomer for these particles: SOA particles measured as a part of the AMS mass distribution do not vaporize at a slow rate; rather, they flash-vaporize, albeit often not on the initial impact with the vaporizer but instead upon a subsequent impact with a hot surface in the vaporization region. We also find that the effective ionization efficiency (defined as ions per particle, IPP) decreases with delayed arrival time. CEp is not a function of particle size (for the mobility diameter range investigated, 170-460 nm), but we did see a decrease in CEp with thermodenuder temperature, implying that oxidation state and/or volatility can affect CEp for SOA. By measuring the mean ions per particle produced for monodisperse particles as a function of signal delay time, we can separately determine CEp and CEm and thus more accurately measure the relative ionization efficiency (compared to ammonium nitrate) of different particle types.

  12. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  13. Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J.

    2011-12-01

    Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal

  14. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  15. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  16. Accommodation coefficient of HOBr on deliquescent sodium bromide aerosol particles

    NASA Astrophysics Data System (ADS)

    Wachsmuth, M.; Gäggeler, H. W.; von Glasow, R.; Ammann, M.

    2002-06-01

    Uptake of HOBr on sea salt aerosol, sea salt brine or ice is believed to be a key process providing a source of photolabile bromine (Br2) and sustaining ozone depletion cycles in the Arctic troposphere. In the present study, uptake of HOBr on sodium bromide (NaBr) aerosol particles was investigated at an extremely low HOBr concentration of 300 cm-3 using the short-lived radioactive isotopes 83-86Br. Under these conditions, at maximum one HOBr molecule was taken up per particle. The rate of uptake was clearly limited by the mass accommodation coefficient, which was calculated to be 0.6 ± 0.2. This value is a factor of 10 larger than estimates used in earlier models. The atmospheric implications are discussed using the box model "MOCCA'', showing that the increase of the accommodation coefficient of HOBr by a factor of 10 only slightly affects net ozone loss, but significantly increases chlorine release.

  17. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  18. Tracking Water Diffusion Fronts in a Highly Viscous Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Field measurements indicate that atmospheric secondary aerosol particles can be present in a highly viscous, glassy state [1]. In contrast to liquid state particles, the gas phase equilibration is kinetically limited and governed by condensed phase diffusion. In recent water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance (EDB) we observed a characteristic shift behavior of the Mie whispering gallery modes (WGM) indicative of the changing radial structure of the particle, thus providing us with an experimental method to track the diffusion process inside the particle. When a highly viscous, homogeneous particle is exposed to an abrupt increase in relative humidity, the rapid gas phase diffusion and strong concentration dependence of the diffusion coefficient in the condensed phase lead to extremely steep water concentration gradients inside the particle, reminiscent of diffusion fronts. The resulting quasi step-like concentration profile motivates the introduction of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The subsequent particle growth and reduction of the shell refractive index can be observed as red and blueshift behavior of the WGM, respectively. The shift pattern can be attributed to a core-shell radius ratio and particle radius derived from model calculations [2]. If supplemented with growth information obtained from the WGM redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The measured time dependent concentration profile is then compared with simulations solving the non-linear diffusion equation [3] [1] Virtanen, A., et al., Nature, 467, 824-827, 2010 [2] Kaiser, T., Schweiger, G., Computers in Physics, Vol. 7, No. 6, 682-686, Nov/Dec 1993 [3] Zobrist, B., Soonsin, V., Luo, B.P., Peter, T. et al., Phys. Chem. Chem

  19. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.

  20. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Shur, Jagdeep; Price, Robert

    2014-08-01

    The effect of milled and micronized lactose fines on the fluidization and in vitro aerosolization properties of dry powder inhaler (DPI) formulations was investigated, and the suitability of static and dynamic methods for characterizing general powder flow properties of these blends was assessed. Lactose carrier pre-blends were prepared by adding different lactose fines (Lactohale® (LH) 300, 230 and 210) with coarse carrier lactose (Lactohale100) at 2.5, 5, 10 and 20 wt% concentrations. Powder flow properties of lactose pre-blends were characterized using the Freeman Technology FT4 and Schulze RST-XS ring shear tester. A strong correlation was found between the basic flow energy (BFENorm) measured using the Freeman FT4 Rheometer and the flowability number (ffc) measured on Schulze RST-XS. These data indicate that both static and dynamic methods are suitable for characterizing general powder flow properties of lactose carriers. Increasing concentration of fines corresponded with an increase in the normalized fluidization energy (FENorm). The inclusion of fine particles of lactose resulted in a significant (p < 0.05) increase in fine particle delivery of budesonide and correlated with FENorm. This trend was strongest for lactose containing up to 10 wt% LH300. A similar trend was found for the milled lactose grades LH230 and LH210. However, the increase in FENorm upon addition of milled fines only corresponded to a very slight improvement in the performance. These data suggest that whilst the fluidization energy correlated with fine particle delivery, this relationship is specific to lactose grades of similar particle size.

  1. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  2. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  3. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles

    NASA Astrophysics Data System (ADS)

    Li, Jia; Pósfai, MiháLy; Hobbs, Peter V.; Buseck, Peter R.

    2003-07-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen-bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  4. Impacts of oxidation aging on secondary organic aerosol formation, particle growth rate, cloud condensation nuclei abundance, and aerosol climate forcing

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.

    2014-12-01

    Particle composition measurements indicate that organic aerosol (OA) makes up ~20-90% of submicron particulate mass and secondary OA (SOA) accounts for a large fraction (~ 72 ±21%) of these OA masses at many locations around the globe. The volatility changes of secondary organic gases (SOG) associated with oxidation aging as well as the contribution of highly oxidized low volatile SOG (LV-SOG) to the condensational growth of secondary particles have been found to be important in laboratory and field measurements but are poorly represented in global models. A novel scheme to extend the widely used two-product SOA formation model, by adding a third product arising from the oxidation aging (i.e., LV-SOG) and considering the dynamic transfer of mass from higher to lower volatile products, has been developed and implemented into a global chemical transport model (GEOS-Chem) and a community atmosphere model (CESM-CAM5). The scheme requires only minor changes to the existing two-product SOA formation model and is computationally efficient. With the oxidation rate constrained by laboratory measurements, we show that the new scheme predicts a much higher SOA mass concentrations, improving the agreement with aerosol mass spectrometer SOA measurements. The kinetic condensation of LV-SOG on ultrafine particles, simulated by a size-resolved (sectional) advanced particle microphysics (APM) model incorporated into in GEOS-Chem and CAM5, increases the particle growth rate substantially and improves the agreement of simulated cloud condensation nuclei (CCN) concentrations with observations. Based on GEOS-Chem-APM simulations, the new SOA formation scheme increases global mean low troposphere SOA mass concentration by ~130% and CCN abundance by ~ 15%, and optical depth of secondary particles and coated black carbon and primary organic carbon particles by ~10%. As a result, aerosol radiative cooling effect (direct + first indirect) is enhanced by -0.9 W/m2, with large spatial

  5. The relation between aerosol particles and lightning in Mexico

    NASA Astrophysics Data System (ADS)

    Kucienska, B.; Cervantes Villa, J. S.; Raga, G. B.

    2013-05-01

    The analysis of lightning activity registered by the World Wide Lightning Location Network and aerosol optical depth (AOD) derived from the Moderate Resolution Imaging Spectroradiometer indicate that spatial and temporal variations in cloud-to-ground lightning density over Mexico are linked to variations in aerosol amounts. Average lightning activity registered on days with moderate AOD is higher than that registered on days with low AOD for most of the continental areas and coastal maritime regions. This finding could be explained either by the aerosol effect on thunderstorms electrical activity or by a similar influence of meteorological conditions on both lightning and AOD. Analysis of temporal variations of electrical activity show that over large continental areas a significant lightning density is observed during spring, at the very beginning of rainy seasons. In May, when rainfall is relatively low, an exceptionally high lightning activity is also registered over the Pacific, in the region located south to Isthmus of Tehuantepec. This signal of high lightning density propagates hundreds of kilometers away from the coast. We hypothesize that high lightning activity during spring observed over both continental and oceanic regions is linked to the presence of aerosol particle generated by biomass burning which peaks in April and May.

  6. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2008-12-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was

  7. Scanning Transmission X-ray microscopy Imaging of Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Gilles, M. K.; Kilcoyne, A.; Tyliszczak, T.; Shuh, D. K.; Fakra, S.; Robinson, M.; Chase, K.

    2003-12-01

    Scanning transmission x-ray microscopes (STXM) are used to image a diversity of carbon and metal containing items such as biofilms in soils, magnetic materials, polymers and meteorites. Studies on particles collected on SiO2 filters from biomass burns in Flagstaff, Arizona and individual aerosols collected in South Africa on TEM grids are underway at beamlines 5.3.2 and 11.0.2 at the Advanced Light Source of Lawrence Berkeley National Laboratory. Sub micron particles are imaged in the transmission mode over the energy range of 280 - 1900 eV. Spectromicroscopic studies on individual particles using near edge x-ray absorption fine structure (NEXAFS) probe multiple species within or on the same particle. In (STXM) an X-ray beam is focused with a zone plate onto a sample and the transmitted radiation is detected. Since the signal is obtained in the transmission mode, optically thin samples are required. Hence, atmospheric aerosols with submicron thickness and diameter are well suited for this method. Near edge spectra of various elements were scanned in step sizes from 0.1-0.5 eV around characteristic absorption edges, creating 2 dimensional images at each energy. While STXM images are taken with a lower spatial resolution (currently 40 nm) than microscopies such as scanning electron microscopy, transmission electron microscopy, and atomic force microscopy, detailed chemical information with spatial distributions, and oxidation states is obtained. A particular focus of this work is to obtain more detailed information on the type of carbons, multiply, or singly bonded and whether or not carbon is bonded to oxygen. The ultimate goal is discrimination between organic and black carbon within individual aerosol particles and determining if organic carbon, black carbon, and metal species are distributed homogeneously throughout aerosol particles. Initial scans of the samples from Flagstaff show spectral evidence of aromatic carbon, without distinct C=O signatures. NEXAFS

  8. Individual Aerosol Particle Types Produced by Savanna Burning

    NASA Astrophysics Data System (ADS)

    Posfai, M.; Simonics, R.; Li, J.; Hobbs, P. V.; Buseck, P. R.; Buseck, P. R.

    2001-12-01

    We used analytical transmission electron microscopy (TEM) to study individual aerosol particles that were collected on the University of Washington Convair-580 research aircraft over southern Africa during the Safari2000 Dry Season Experiment. Our goals were to study the compositions, morphologies, and mixing states of carbonaceous particles, in order to better understand the physical and chemical properties of biomass smoke on the individual-particle level. The compositions of single particles were determined using energy-dispersive x-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS). Energy-loss maps obtained with the TEM are useful for studying the spatial distribution of light elements such as carbon within the particles; thus, they provide a detailed picture of complex particles. Carbonaceous particles were assigned into three main groups on the basis of morphology and composition: "organic particles with inorganic inclusions," "tar balls," and "soot." Soot is recognized by its characteristic morphology and microstructure. The distinction between "organic particles with inorganic inclusions" and "tar balls" is somewhat arbitrary, since the two criteria that are used for their distinction (composition and aspect ratio) change continually. The relative concentrations of the three major particle types vary with the type of fire and distance from fire. In the plume of a smoldering fire west of Beria (August 31) the relative concentration of tar balls increased with aging of the plume. Tar balls have a fairly narrow size distribution with a maximum between 100 and 200 nm (diameter). The inorganic K-salt inclusions (KCl, K2SO4, KNO3) within "organic particles" should make these particles hygroscopic, regardless of the properties of the organic compounds. Aging causes the conversion of KCl into K2SO4, KNO3. Aerosol production from flaming and smoldering fires was compared over Kruger National Park on August 17; more soot and more Cl-rich inclusions

  9. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  10. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  11. Particle Loss Calculator - a new software tool for the assessment of the performance of aerosol inlet systems

    NASA Astrophysics Data System (ADS)

    von der Weiden, S.-L.; Drewnick, F.; Borrmann, S.

    2009-09-01

    Most aerosol measurements require an inlet system to transport aerosols from a select sampling location to a suitable measurement device through some length of tubing. Such inlet systems must be optimized to minimize aerosol sampling artifacts and maximize sampling efficiency. In this study we introduce a new multifunctional software tool (Particle Loss Calculator, PLC) that can be used to quickly determine aerosol sampling efficiency and particle transport losses due to passage through arbitrary tubing systems. The software employs relevant empirical and theoretical relationships found in established literature and accounts for the most important sampling and transport effects that might be encountered during deployment of typical, ground-based ambient aerosol measurements through a constant-diameter sampling probe. The software treats non-isoaxial and non-isokinetic aerosol sampling, aerosol diffusion and sedimentation as well as turbulent inertial deposition and inertial deposition in bends and contractions of tubing. This software was validated through comparison with experimentally determined particle losses for several tubing systems bent to create various diffusion, sedimentation and inertial deposition properties. As long as the tube geometries are not "too extreme", agreement is satisfactory. We discuss the conclusions of these experiments, the limitations of the software and present three examples of the use of the Particle Loss Calculator in the field.

  12. Particle Loss Calculator - a new software tool for the assessment of the performance of aerosol inlet systems

    NASA Astrophysics Data System (ADS)

    von der Weiden, S.-L.; Drewnick, F.; Borrmann, S.

    2009-04-01

    Most aerosol measurements require an inlet system to transport aerosols from a select sampling location to a suitable measurement device through some length of tubing. Such inlet systems must be optimized to minimize aerosol sampling artifacts and maximize sampling efficiency. In this study we introduce a new multifunctional software tool (Particle Loss Calculator, PLC) that can be used to quickly determine aerosol sampling efficiency and particle transport losses due to passage through arbitrary tubing systems. The software employs relevant empirical and theoretical relationships found in established literature and accounts for the most important sampling and transport effects that might be encountered during deployment of typical, ground-based ambient aerosol measurements. The software treats non-isoaxial and non-isokinetic aerosol sampling, aerosol diffusion and sedimentation as well as turbulent inertial deposition and inertial deposition in bends and contractions of tubing. This software was validated through comparison with experimentally determined particle losses for several tubing systems bent to create various diffusion, sedimentation and inertial deposition properties. As long as the tube geometries are not "too extreme", agreement is satisfactory. We discuss the conclusions of these experiments, the limitations of the software and present three examples of the use of the Particle Loss Calculator in the field.

  13. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  14. Comparison of cloud residual and background aerosol particle composition during the hill cap cloud experiment HCCT 2010 in Central Germany

    NASA Astrophysics Data System (ADS)

    Roth, A.; Mertes, S.; van Pinxteren, D.; Klimach, T.; Herrmann, H.; Schneider, J.; Borrmann, S.

    2013-12-01

    Physical and chemical characterization of cloud residual and background aerosol particles as well as aerosol-cloud interactions were investigated during the Hill Cap Cloud Thuringia (HCCT) experiment in September and October 2010 on the mountain site Schmücke (938m a.s.l.) in Germany. Background aerosol particles were sampled by an interstitial inlet whereas cloud droplets from orographic clouds were collected by a counter flow virtual impactor (CVI). Chemical composition analysis and sizing of the particles was done by single particle mass spectrometry using the bipolar Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA, particle diameter range 150 nm - 900 nm; Brands et al., 2011) and by two Aerodyne Aerosol Mass Spectrometers (C-ToF, HR-ToF). Supplementary, the particle size distribution was measured with an optical particle counter (OPC, size range 0.25 μm - 32 μm). During the field campaign about 21000 positive and negative single particle mass spectra could be obtained from cloud residual particles and about 239000 from background aerosol particles. The data were clustered by means of the fuzzy c-means algorithm. The resulting clusters consisting of mass spectra with similar fragmentation patterns were, dependent on presence and combination of peaks, assigned to certain particle types. For both sampled particle types a large portion is internally mixed with nitrate and/or sulfate. This might be an explanation, why a comparison of the composition shows a higher fraction of soot particles and amine-containing particles among cloud residuals. Furthermore cloud residuals show a decreased fraction of particles being internally mixed only with nitrate (10%) compared to background aerosol particles (19%) of the same air masses, whereas the fraction of particles containing both nitrate and sulfate increases from 39% to 63% indicating cloud processing by uptake and oxidation of SO2 (Harris et al, 2013). Brands, M., Kamphus, M., Böttger, T., Schneider

  15. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  16. Atmospheric Condensational Properties of Ultrafine Chain and Fractal Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Marlow, William H.

    1997-01-01

    The purpose for the research sponsored by this grant was to lay the foundations for qualitative understanding and quantitative description of the equilibrium vapor pressure of water vapor over the irregularly shaped, carbonaceous particles that are present in the atmosphere. This work apparently was the first systematic treatment of the subject. Research was conducted in two complementary components: 1. Calculations were performed of the equilibrium vapor pressure of water over particles comprised of aggregates of spheres in the 50-200 nm radius range. The purposes of this work were two-fold. First, since no systematic treatment of this subject had previously been conducted, its availability would be directly useful for quantitative treatment for a limited range of atmospheric aerosols. Second, it would provide qualitative indications of the effects of highly irregular particle shape on equilibrium vapor pressure of aggregates comprised of smaller spheres.

  17. Advances in Quantifying the Radiative Effects of Aerosol Particles on Climate from Airborne Field Studies

    NASA Astrophysics Data System (ADS)

    Pilewskie, P.; Schmidt, K. S.; Coddington, O.; Bergstrom, R.; Redemann, J.

    2007-12-01

    In the fourth assessment report of the Intergovernmental Panel on Climate Change, large uncertainties persist in estimates of climate forcing by aerosol particles. One contributor to this uncertainty is the poorly quantified vertical distribution of solar radiation absorbed by aerosol particles, from the regional to global scale. Another is the spectral and spatial variability of surface albedo, an effect that can dominate the top-of-atmosphere perturbations due to aerosol scattering and absorption, particularly over land. Over the past three years a number of intensive airborne field experiments (ICARTT, MILAGRO, GoMACCS) have contributed significantly to our understanding of the impact of pollution outflow from urban-industrial centers on radiative forcing, using spectrally resolved radiometric measurements and novel observationally-based methods to derive forcing efficiency and flux divergence. We present an overview of some of the most significant advances in direct radiative forcing realized by these studies, and recommendations on where the greatest challenges remain. In addition we present findings from these experiments on the influence of aerosol particles on cloud radiative properties, a potentially greater effect but even more uncertain than direct radiative forcing.

  18. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency

    PubMed Central

    Fu, Huijing; Patel, Anand C.; Holtzman, Michael J.; Chen, Da-Ren

    2012-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  19. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  20. Detection of Free Tropospheric Air Masses With High So2 and Aerosol Concentrations: Evidence For New Aerosol Particle Formation By H2so4/h2o Nucleation

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Kiendler, A.; Arnold, F.; Minikin, A.; Schlager, H.; van Velthoven, P.

    Sulfur dioxide and aerosol measurements were performed in the free troposphere (FT) and the Planetary Boundary Layer (PBL) above continental Europe. The measure- ments took place on board of the German research aircraft "Falcon" in 18 April 2001 as a part of the SCAVEX campaign. A novel aircraft based CIMS (Chemical Ion- ization Mass Spectrometry) instrument equipped with an ion trap mass spectrometer (ITMS) with a low detection limit (50pptv) and a high time resolution (1.3s) operated by MPI-K was used to perform the SO2 measurements. For the aerosol measurements DLR-IPA operated a Condensation Particle Size Analyzer, detecting particles with diameters d > 4, 7, 9 and 20nm and a PCASP-100X aerosol spectrometer probe (d > 100nm). In the measurements made mostly around 5000m altitude SO2 rich air masses were occasionally observed with SO2 VMR of up to 2900pptv. The strong SO2 pollu- tion was due to fast vertical transport of polluted continental PBL air and small-scale deep convection, as indicated by the 5-day backward 3D trajectories. These observa- tions of strong SO2 pollution have interesting implications for aerosol processes, in- cluding efficient formation of gaseous sulfuric acid (GSA) and new aerosol particles. They also imply fast growth of freshly nucleated aerosol particles, which increases the chance for new particles to grow to the size of a CCN. Our analysis indicates the occurrence of new particle formation by H2SO4/H2O nucleation and fast new particle growth by H2SO4/H2O condensation and self-coagulation in the different air masses encountered during the flight.

  1. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols.

    PubMed

    Mills, Jessica B; Park, Jae Hong; Peters, Thomas M

    2013-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride [NaCl] and spark-generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <10(3); Medium, 10(3)-10(4); and High, >10(4) particles/cm(3)). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared with those measured with reference instruments, a scanning mobility particle sizer (SMPS), and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm, but caution should be exercised when particles larger than 300 nm are present. [Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Occupational and Environmental Hygiene for the following free supplemental resources: manufacturer-reported capabilities of instruments used, and information from the SMPS measurements for polydispersed test particles.].

  2. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  3. Gas uptake and chemical aging of semisolid organic aerosol particles.

    PubMed

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-07-05

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate.

  4. Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles

    NASA Astrophysics Data System (ADS)

    Benduhn, François; Schallock, Jennifer; Lawrence, Mark G.

    2016-09-01

    Aerosol growth dynamics may have implications for the steerability of stratospheric solar radiation management via sulfur particles. This paper derives a set of critical initial growth conditions that are analyzed as a function of two key parameters: the initial concentration of the injected sulfuric acid and its dilution rate with the surrounding air. Based upon this analysis, early aerosol growth dynamical regimes may be defined and classified in terms of their likelihood to serve as candidates for the controlled generation of a radiatively effective aerosol. Our results indicate that the regime that fulfills all critical conditions would require that airplane turbines be used to provide sufficient turbulence. The regime's parameter space is narrow and related to steep gradients, thus pointing to potential fine tuning requirements. More research, development, and testing would be required to refine our findings and determine their global-scale implications.

  5. Method for determining aerosol particle size, device for determining aerosol particle size

    SciTech Connect

    Novick, Vincent J.

    1997-12-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  6. SAGE II aerosol validation: selected altitude measurements, including particle micromeasurements.

    PubMed

    Oberbeck, V R; Livingston, J M; Russell, P B; Pueschel, R F; Rosen, J N; Osborn, M T; Kritz, M A; Snetsinger, K G; Ferry, G V

    1989-06-20

    Correlative aerosol measurements taken at a limited number of altitudes during coordinated field experiments are used to test the validity of particulate extinction coefficients derived from limb path solar radiance measurements taken by the Stratospheric Aerosol and Gas Experiment (SAGE) II Sun photometer. In particular, results are presented from correlative measurement missions that were conducted during January 1985, August 1985, and July 1986. Correlative sensors included impactors, laser spectrometers, and filter samplers aboard an U-2-airplane, an upward pointing lidar aboard a P-3 airplane, and balloon-borne optical particle counters (dustsondes). The main body of this paper focuses on the July 29, 1986, validation experiment, which minimized the many difficulties (e.g., spatial and temporal inhomogeneities, imperfect coincidences) that can complicate the validation process. On this day, correlative aerosol measurements taken at an altitude of 20.5 km agreed with each other within their respective uncertainties, and particulate extinction values calculated at SAGE II wavelengths from these measurements validated corresponding SAGE II values. Additional validation efforts on days when measurement and logistical conditions were much less favorable for validation are discussed in an appendix.

  7. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  8. Remote express analysis of ground-layer aerosol based on laser-induced spark spectra

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Kopytin, Y. D.; Korolkov, V. A.; Levitskii, M. E.; Nebolsin, M. F.; Sidorov, B. G.; Soldatkin, N. P.

    1986-01-01

    The creation of high-power pulsed CO2 and Nd-glass lasers enables the realization of the method for remote spectro-chemical analysis of atmospheric aerosols based on excitation of the emission spectrum of the aerosol particle atoms. A description of construction and characteristics of a spectrochemical lidar based on both Nd-glass and CO2 lasers is presented.

  9. Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny Ålesund, Svalbard): An electron microscopy study

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Wiesemann, David; Ebert, Martin; Schütze, Katharina; Kallenborn, Roland; Ström, Johan

    2012-03-01

    Aerosol particles were collected at the Zeppelin Mountain Atmospheric Research Station (474 m asl) near Ny Ålesund (Svalbard, Norway) on 27 different days between July 2007 and December 2008. The size, morphology and chemical composition of 57,617 individual particles were studied by high-resolution scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on chemical composition, morphology, mixing state and stability under electron bombardment, the particles were assigned to one of the following groups: sea salt, aged sea salt, Ca sulphates, Na sulphates, carbonates, soot, silicates, fly ashes, secondary aerosol, secondary aerosol plus sodium, secondary aerosol plus soot, mixed particles and others. Sea salt, aged sea salt, silicates and mixed particles (mixtures of sea salt, silicates and Ca sulphates) are the most abundant groups for particles with aerodynamic diameters > 0.5 μm, secondary aerosol, mixed particles and secondary aerosol with soot inclusions below 0.5 μm. Silicate fly ashes (major source coal burning) and metal fly ashes (from metallurgical high temperature processes) occur only at very low number concentrations. In contrast to previous work, the fly ash abundance is not correlated with air masses that crossed industrialized regions in Central and Eastern Europe, Scandinavia or Russia. These observations indicate a significant reduction of long-range transport of heavy metals to Svalbard. Soot (external and internally mixed with secondary aerosol) shows a pronounced seasonal pattern with a much lower abundance during summer compared to spring, autumn and winter. The soot abundance is not correlated with the air mass back-trajectories. During summer (July and August), soot was only observed when cruise ships were present in the area around Ny Ålesund (Kongsfjorden). Pronounced seasonal patterns were observed for the abundance of the mineral dust component which is generally lower in summer compared to the other seasons. The

  10. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.

    PubMed

    Nájera, Juan J; Fochesatto, Javier G; Last, Deborah J; Percival, Carl J; Horn, Andrew B

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0+/-0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 mum for size diameter and (0.8-4.9)x10(6) particles/cm(3) for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as d(p)=0.9 mum and N=5x10(3) particles/cm(3) with sigma=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the

  11. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.; Fochesatto, Javier G.; Last, Deborah J.; Percival, Carl J.; Horn, Andrew B.

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 μm for size diameter and (0.8-4.9)×106 particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9 μm and N =5×103 particles/cm3 with σ =1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube

  12. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A. T.; Ahern, A. T.; Williams, L. R.; Ehn, M.; Mikkilä, J.; Canagaratna, M. R.; Brune, W. H.; Onasch, T. B.; Jayne, J. T.; Petäjä, T.; Kulmala, M.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between oxidation level and hygroscopic properties of secondary organic aerosol (SOA) particles generated via OH radical oxidation in an aerosol flow reactor. The hygroscopic growth factor at 90% RH (HGF90%), the CCN activity ($\\kappa$ORG,CCN) and the level of oxidation (atomic O:C ratio) of the SOA particles were measured. Both HGF90% and $\\kappa$ORG,CCN increased with O:C; the HGF90% varied linearly with O:C, while $\\kappa$ORG,CCN mostly followed a nonlinear trend. An average HGF90% of 1.25 and $\\kappa$ORG,CCN of 0.19 were measured for O:C of 0.65, in agreement with results reported for ambient data. The $\\kappa$ORG values estimated from the HGF90% ($\\kappa$ORG,HGF) were 20 to 50% lower than paired $\\kappa$ORG,CCN values for all SOA particles except 1,3,5-trimethylbenzene (TMB), the least hygroscopic of the SOA systems. Within the limitations of instrumental capabilities, we show that differences in hygroscopic behavior among the investigated SOA systems may correspond to differences in elemental composition.

  13. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy.

    PubMed

    Mellon, Daniel; King, Simon J; Kim, Jin; Reid, Jonathan P; Orr-Ewing, Andrew J

    2011-02-10

    Cavity ring-down spectroscopy using a fiber-coupled continuous wave distributed feedback laser at a wavelength of 1520 nm has been used to measure extinction of light by samples of nearly monodisperse aerosol particles <1 μm in diameter. A model is tested for the analysis of the sample extinction that is based on the Poisson statistics of the number of particles within the intracavity laser beam: variances of measured extinction are used to derive values of the scattering cross section for size-selected aerosol particles, without need for knowledge of the particle number density or sample length. Experimental parameters that influence the performance of the CRD system and the application and limitations of the statistical model are examined in detail. Determinations are reported of the scattering cross sections for polystyrene spheres (PSSs), sodium chloride, and ammonium sulfate, and, for particles greater than 500 nm in diameter, are shown to be in agreement with the corresponding values calculated using Mie theory or Discrete Dipole Approximation methods. For smaller particles, the experimentally derived values of the scattering cross section are larger than the theoretical predictions, and transmission of a small fraction of larger particles into the cavity is argued to be responsible for this discrepancy. The effects of cubic structure on the determination of optical extinction efficiencies of sodium chloride aerosol particles are examined. Values are reported for the real components of the refractive indices at 1520 nm of PSS, sodium chloride, and ammonium sulfate aerosol particles.

  14. Computational fluid dynamics (CFD) simulations of dilute fluid-particle flows in aerosol concentrators

    NASA Astrophysics Data System (ADS)

    Hari, Sridhar

    2003-07-01

    In this study, commercially available Computational Fluid Dynamics (CFD) software, CFX-4.4 has been used for the simulations of aerosol transport through various aerosol-sampling devices. Aerosol transport was modeled as a classical dilute and dispersed two-phase flow problem. Eulerian-Lagrangian framework was adopted wherein the fluid was treated as the continuous phase and aerosol as the dispersed phase, with a one-way coupling between the phases. Initially, performance of the particle transport algorithm implemented in the code was validated against available experimental and numerical data in the literature. Code predictions were found to be in good agreement against experimental data and previous numerical predictions. As a next step, the code was used as a tool to optimize the performance of a virtual impactor prototype. Suggestions on critical geometrical details available in the literature, for a virtual impactor, were numerically investigated on the prototype and the optimum set of parameters was determined. Performance curves were generated for the optimized design at various operating conditions. A computational model of the Linear Slot Virtual Impactor (LSVI) fabricated based on the optimization study, was constructed using the worst-case values of the measured geometrical parameters, with offsets in the horizontal and vertical planes. Simulations were performed on this model for the LSVI operating conditions. Behavior of various sized particles inside the impactor was illustrated with the corresponding particle tracks. Fair agreement was obtained between code predictions and experimental results. Important information on the virtual impactor performance, not known earlier, or, not reported in the literature in the past, obtained from this study, is presented. In the final part of this study, simulations on aerosol deposition in turbulent pipe flow were performed. Code predictions were found to be completely uncorrelated to experimental data. The

  15. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Knopf, Daniel A.

    2014-07-01

    Organic aerosol can exhibit different phase states in response to changes in relative humidity (RH), thereby influencing heterogeneous reaction rates with trace gas species. OH radical uptake by laboratory-generated levoglucosan and methyl-nitrocatechol particles, serving as surrogates for biomass burning aerosol, is determined as a function of RH. Increasing RH lowers the viscosity of amorphous levoglucosan aerosol particles enabling enhanced OH uptake. Conversely, OH uptake by methyl-nitrocatechol aerosol particles is suppressed at higher RH as a result of competitive coadsorption of H2O that occupies reactive sites. This is shown to have substantial impacts on organic aerosol lifetimes with respect to OH oxidation. The results emphasize the importance of organic aerosol phase state to accurately describe the multiphase chemical kinetics and thus chemical aging process in atmospheric models to better represent the evolution of organic aerosol and its role in air quality and climate.

  16. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  17. Dynamics of Aerosol Particles in Stationary, Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Collins, Lance R.; Meng, Hui

    2004-01-01

    A detailed study of the dynamics of sub-Kolmogorov-size aerosol particles in stationary isotropic turbulence has been performed. The study combined direct numerical simulations (DNS; directed by Prof. Collins) and high-resolution experimental measurements (directed by Prof. Meng) under conditions of nearly perfect geometric and parametric overlap. The goal was to measure the accumulation of particles in low-vorticity regions of the flow that arises from the effect commonly referred to as preferential concentration. The grant technically was initiated on June 13, 2000; however, funding was not available until July 11, 2000. The grant was originally awarded to Penn State University (numerical simulations) and SUNY-Buffalo (experiments); however, Prof. Collins effort was moved to Cornell University on January 2002 when he joined that university. He completed the study there. A list of the specific tasks that were completed under this study is presented.

  18. Real-Time Detection Method And System For Identifying Individual Aerosol Particles

    DOEpatents

    Gard, Eric Evan; Fergenson, David Philip

    2005-10-25

    A method and system of identifying individual aerosol particles in real time. Sample aerosol particles are compared against and identified with substantially matching known particle types by producing positive and negative test spectra of an individual aerosol particle using a bipolar single particle mass spectrometer. Each test spectrum is compared to spectra of the same respective polarity in a database of predetermined positive and negative spectra for known particle types and a set of substantially matching spectra is obtained. Finally the identity of the individual aerosol particle is determined from the set of substantially matching spectra by determining a best matching one of the known particle types having both a substantially matching positive spectrum and a substantially matching negative spectrum associated with the best matching known particle type.

  19. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ≫1 and |m-1|≪1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  20. A role of aerosol particles in forming urban skyglow and skyglow from distant cities

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Kómar, Ladislav

    2016-05-01

    Aerosol particles may represent the largest uncertainty about skyglow change in many locations under clear-sky conditions. This is because aerosols are ubiquitous in the atmosphere and influence the ground-reaching radiation in different ways depending on their concentrations, origins, shapes, sizes, and compositions. Large particles tend to scatter in Fraunhofer diffraction regime, while small particles can be treated in terms of Rayleigh formalism. However, the role of particle microphysics in forming the skyglow still remains poorly quantified. We have shown in this paper that the chemistry is somehow important for backscattering from large particles that otherwise work as efficient attenuators of light pollution if composed of absorbing materials. The contribution of large particles to the urban skyglow diminishes as they become more spherical in shape. The intensity of backscattering from non-absorbing particles is more-or-less linearly decreasing function of particle radius even if number size distribution is inversely proportional to the fourth power of particle radius. This is due to single particle backscattering that generally increases steeply as the particle radius approaches large values. Forward scattering depends on the particle shape but is independent of the material composition, thus allowing for a simplistic analytical model of skyglow from distant cities. The model we have developed is based on mean value theorem for integrals and incorporates the parametrizable Garstang's emission pattern, intensity decay along optical beam path, and near-forward scattering in an atmospheric environment. Such model can be used by modellers and experimentalists for rapid estimation of skyglow from distant light sources.

  1. Microphysical aerosol parameters of spheroidal particles via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine

    2015-04-01

    One of the main topics in understanding the aerosol impact on climate requires the investigation of the spatial and temporal variability of microphysical properties of particles, e.g., the complex refractive index, the effective radius, the volume and surface-area concentration, and the single-scattering albedo. Remote sensing is a technique used to monitor aerosols in global coverage and fill in the observational gap. This research topic involves using multi-wavelength Raman lidar systems to extract the microphysical properties of aerosol particles, along with depolarization signals to account for the non-sphericity of the latter. Given, the optical parameters (measured by a lidar), the kernel functions, which summarize the size, shape and composition of particles, we solve for the size distribution of the particles modeled by a Fredholm integral system and further calculate the refractive index. This model works well for spherical particles (e.g. smoke); the kernel functions are derived from relatively simplified formulas (Mie scattering theory) and research has led to successful retrievals for particles which at least resemble a spherical geometry (small depolarization ratio). Obviously, more complicated atmospheric structures (e.g dust) require employment of non-spherical kernels and/or more complicated models which are investigated in this paper. The new model is now a two-dimensional one including the aspect ratio of spheroidal particles. The spheroidal kernel functions are able to be calculated via T-Matrix; a technique used for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped particles. In order to speed up the process and massively perform simulation tests, we created a software interface using different regularization methods and parameter choice rules. The following methods have been used: Truncated singular value decomposition and Pade iteration with the discrepancy principle, and Tikhonov regularization with the L

  2. Measurement of the nucleation of atmospheric aerosol particles.

    PubMed

    Kulmala, Markku; Petäjä, Tuukka; Nieminen, Tuomo; Sipilä, Mikko; Manninen, Hanna E; Lehtipalo, Katrianne; Dal Maso, Miikka; Aalto, Pasi P; Junninen, Heikki; Paasonen, Pauli; Riipinen, Ilona; Lehtinen, Kari E J; Laaksonen, Ari; Kerminen, Veli-Matti

    2012-09-01

    The formation of new atmospheric aerosol particles and their subsequent growth have been observed frequently at various locations all over the world. The atmospheric nucleation rate (or formation rate) and growth rate (GR) are key parameters to characterize the phenomenon. Recent progress in measurement techniques enables us to measure atmospheric nucleation at the size (mobility diameter) of 1.5 (±0.4) nm. The detection limit has decreased from 3 to 1 nm within the past 10 years. In this protocol, we describe the procedures for identifying new-particle-formation (NPF) events, and for determining the nucleation, formation and growth rates during such events under atmospheric conditions. We describe the present instrumentation, best practices and other tools used to investigate atmospheric nucleation and NPF at a certain mobility diameter (1.5, 2.0 or 3.0 nm). The key instruments comprise devices capable of measuring the number concentration of the formed nanoparticles and their size, such as a suite of modern condensation particle counters (CPCs) and air ion spectrometers, and devices for characterizing the pre-existing particle number concentration distribution, such as a differential mobility particle sizer (DMPS). We also discuss the reliability of the methods used and requirements for proper measurements and data analysis. The time scale for realizing this procedure is 1 year.

  3. Chemical boundary conditions for the classification of aerosol particles using computer controlled electron probe microanalysis.

    PubMed

    Anaf, Willemien; Horemans, Benjamin; Van Grieken, René; De Wael, Karolien

    2012-11-15

    A method for the classification of individual aerosol particles using computer controlled electron probe microanalysis is presented. It is based on chemical boundary conditions (CBC) and enables quick and easy processing of a large set of elemental concentration data (mass%), derived from the X-ray spectra of individual particles. The particles are first classified into five major classes (sea salt related, secondary inorganic, minerals, iron-rich and carbonaceous), after which advanced data mining can be performed by examining the elemental composition of particles within each class into more detail (e.g., by ternary diagrams). The CBC method is validated and evaluated by comparing its results with the output obtained with hierarchical cluster analysis (HCA) for well-known standard particles as well as real aerosol particles collected with a cascade impactor. The CBC method gives reliable results and has a major advantage compared to HCA. CBC is based on boundary conditions that are derived from chemical logical thinking and does not require a translation of a mathematical algorithm output as does HCA. Therefore, the CBC method is more objective and enables comparison between samples without intermediate steps.

  4. Physicochemical Characterization of Coarse Lake Spray Aerosol Particle from Lake Michigan

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.; Colon-Bernal, I. D.

    2015-12-01

    Wave breaking across bodies of water releases coarse particles into the air which can impact climate and human health. Freshwater lakes, such as the Great Lakes, can generate lake spray aerosols (LSA), similarly to how sea spray is generated, during periods of high winds and wave action. This LSA has the potential to impact climate through direct and indirect effects (ie. scattering/absorption and cloud nucleation) and are suggested to impact human health via inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Very few studies have been conducted to assess the physicochemical properties of freshwater LSA. Prior work in our lab included the construction and characterization of a laboratory based LSA generator. In this work, we examine laboratory generated aerosol particles from laboratory based freshwater standards, freshwater samples collected from Lake Michigan, and ambient particles collected during a wave event on the shores of Lake Michigan in the summer of 2015. Particle size distributions, number concentrations, and chemical composition are presented and discussed as a function of laboratory generated and ambient collected LSA. Results indicate that there are characteristic particles that represent LSA. This study represents the next step towards evaluating and understanding the potential for coarse LSA to impact climate and health in the Great Lakes region.

  5. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  6. Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2010-01-13

    Understanding the aging process of aerosol particles is important for assessing their chemical reactivity, cloud condensation nuclei activity, radiative properties and health impacts. In this study we investigate the aging of black carbon containing particles in an idealized urban plume using a new approach, the particleresolved aerosol model PartMC-MOSAIC. We present a method to estimate aging time-scales using an aging criterion based on cloud condensation nuclei activation. The results show a separation into a daytime regime where condensation dominates and a nighttime regime where coagulation dominates. For the chosen urban plume scenario, depending on the supersaturation threshold, the values for the aging timescales vary between 0.06 hours and 10 hours during the day, and between 6 hours and 20 hours during the night.

  7. Characterisation of solid particles emitted from diesel and petrol engines as a contribution to the determination of the origin of carbonaceous particles in urban aerosol

    NASA Astrophysics Data System (ADS)

    Michalik, M.; Brzeżański, M.; Wilczyńska-Michalik, W.; Fisior, K.; Klimas, B.; Samek, L.; Pietras, B.

    2016-09-01

    Solid particles emitted from diesel and petrol engines were studied using a scanning electron microscope fitted with an energy dispersive spectrometer. The soot emitted from different engines under different operating conditions differed in particle size, and the form and size of aggregates. Identification of the soot particles emitted from diesel or petrol engines in urban aerosol based on their size and morphology was found to be impossible.

  8. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, L.; Zhao, Y.; Gong, S.; Henze, D. K.

    2014-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.

  9. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, D.; Zhao, Q.

    2015-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.

  10. Phosphorus-bearing Aerosol Particles From Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.; Caltabiano, T.

    2003-12-01

    Particles rich in P or bulk geochemical data of volcanic aerosol particles showing high P contents are known from many volcanic plumes (Stanton, 1994; Obenholzner et al., 2003). FESEM/EDS analysis of individual particles obtained from the passively degassing plume of Popocatepetl volcano, Mx. (1997) and from the plume of Stromboli (May 2003) show P frequently. Even at the high resolution of the FESEM, euhedral apatite crystals could not be observed. At Popocatepetl (1997) spherical Ca-P-O particles are common. Fluffy, fractal or botryoidal particles also can contain EDS-detectable amounts of P. The EDS spectrum of such particles can comprise various elements. However most particles show P, S and Cl. P-S and P-S-metal species are known in chemistry but do they occur in volcanic plumes? Stoichiometric considerations had been made in the past suggesting the existence of P-S species in plumes (Stanton 1994), gas sampling and remote gas monitoring systems have not detected yet such molecules in plumes. The particle spectrum of the reawakened Popocateptel volcano might be related to accumulation of volatiles at the top of a magma chamber during the phase of dormancy. P-Fe rich, Ca-free aggregates are also known from the eruption of El Chichon 1982 (SEM/EDS by M. Sheridan, per. comm. 08-24-2003). Persistently active volcanoes (i.e. Stromboli) represent a different category according to continuous degassing and aerosol particle formation. A particle collector ( ca. 90 ml/min) accompanied a COSPEC helicopter flight at Stromboli (May 15, 2003) after one of the rare types of sub-plinian events on April 5 2003. P-bearing particles are very common. For instance, an Fe oxide grain (diam. = 2 æm) is partially covered by fluffy and euhedral P-bearing matter. The elements detected are P, Cl, Na, Mg, Al, Si, K, Ca, Ti and (Fe). The fluffy and the euhedral (rhombohedral?) matter show in SE-BSE-mix image almost identical grey colors. At Stromboli and Popocatepetl particles on which

  11. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    NASA Astrophysics Data System (ADS)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  12. Composition of Stratospheric Aerosol Particles collected during the SOLVE campaign 2000

    NASA Astrophysics Data System (ADS)

    Schütze, Katharina; Nathalie, Benker; Martin, Ebert; Ralf, Weigel; Wilson James, C.; Stephan, Borrmann; Stephan, Weinbruch

    2016-04-01

    Stratospheric Aerosol particles were collected during the SAGE III Ozone loss and validation Experiment (SOLVE) in January-March 2000 in Kiruna/ Sweden onboard the scientific ER-2 aircraft with the Multi-Sample Aerosol Collection System. The particles are deposited on Cu transmission electron microscopy (TEM) grids. Particles of six samples from different flights (including one PSC sample) were analyzed by TEM and Energy Dispersive X-ray detection (EDX) regarding their size, chemical composition and morphology. Most particles are sulfates (formed from droplets of sulfuric acid) which are not resistant to the electron beam. In addition, refractory particles in the size range of 100-500 nm are found. They are either embedded in the sulfates or occur as single particles. The refractory particles are mainly carbonaceous showing only C and O as major peaks in their X-ray spectra. Some particles contain minor amounts of Si and Fe. Both, the O/C (median from 0.10-0.40), as well as Si/C (median from 0.05-0.32) ratios are increasing with time, from the middle of January to the end of February. The largest Fe/C ratio (median: 0.37) is found in a sample of the end of January. Based on the nanostructure and the absence of potassium as a tracer, biomass burning can be excluded as a source. Soot from diesel engines as well as from aircrafts show a nanostructure which is not found in the refractory particles. Due to the fact that large volcanic eruptions, which introduced material directly into the stratosphere, were missing since the eruption of Mt. Pinatubo in 1991, they are a very unlikely source of the refractory particles. The most likely source of the refractory particles is thus extraterrestrial material.

  13. Investigate the relationship between multiwavelength lidar ratios and aerosol size distributions using aerodynamic particle sizer spectrometer

    NASA Astrophysics Data System (ADS)

    Zhao, Hu; Hua, Dengxin; Mao, Jiandong; Zhou, Chunyan

    2017-02-01

    The real aerosol size distributions were obtained by aerodynamic particle sizer spectrometer (APS) in China YinChuan. The lidar ratios at wavelengths of 355 nm, 532 nm and 1064 nm were calculated using Mie theory. The effective radius of aerosol particles reff and volume C/F ratio (coarse/fine) Vc/f were retrieved from the real aerosol size distributions. The relationship between multiwavelength lidar ratios and particle reff and Vc/f were investigated. The results indicate that the lidar ratio is positive correlated to the particle reff and Vc/f. The lidar ratio is more sensitive to the coarse particles. The short wavelength lidar ratio is more sensitive to the particle Vc/f and the long wavelength lidar ratio is more sensitive to the particle reff. The wavelength dependency indicated that the lidar ratios decrease with increasing the wavelength. The lidar ratios are almost irrelevant to the shape and total particles of aerosol size distributions.

  14. Aerosol particle properties in a South American megacity

    NASA Astrophysics Data System (ADS)

    Ulke, Ana; Torres-Brizuela, Marcela; Raga, Graciela; Baumgardner, Darrel; Cancelada, Marcela

    2015-04-01

    The subtropical city of Buenos Aires is located on the western shore of Río de la Plata, on the southeastern coast of Argentina. It is the second largest metropolitan area in South America, with a population density of around 14 thousand people per km2. When all 24 counties of the Great Buenos Aires Metropolitan Area are included it is the third-largest conurbation in Latin America, with a population of around fifteen million inhabitants. The generalized worldwide trend to concentrate human activities in urban regions that continue to expand in area, threatens the local and regional environment. Air pollution in the Buenos Aires airshed is due to local sources (mainly the mobile sources, followed by the electric power plants and some industries) and to distant sources (like biomass burning, dust, marine aerosols and occasionally volcanic ash) whose products arrive in the city area due to the regional transport patterns. Previous research suggests that ambient aerosol particle concentrations should be considered an air quality problem. A field campaign was conducted in Buenos Aires in 2011 in order to characterize some aerosol particles properties measured for the first time in the city. Measurements began in mid- April and continued until December. The field observations were done in a collaborative effort between the Universities of Mexico (UNAM) and Buenos Aires (UBA). A suite of instruments was installed on the roof of an UBA laboratory and classroom buildings (34.54° S, 58.44° W) at an altitude of approximately 30 m above sea level. The measurements included the number concentration of condensation nuclei (CN) larger than approximately 50 nm, the mass concentration of particle-bound polycyclic aromatic hydrocarbons (PPAH), the scattering (Bscat) and absorption (Babs) coefficients at 550 nm and the vertical profiles of backscattered light from aerosols at a wavelength of 910 nm using a ceilometer. In addition, a weather station recorded the meteorological

  15. Review: engineering particles using the aerosol-through-plasma method

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  16. Characterization of Individual Aerosol Particles Associated with Clouds (CRYSTAL-FACE)

    NASA Technical Reports Server (NTRS)

    Buseck, Peter R.

    2004-01-01

    The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from near the bottoms and tops of the deep convective systems that lead to the generation of tropical cirrus clouds and to provide insights into the particles that serve as CCN or IN. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to compare the compositions, concentrations, size distributions, shapes, surface coatings, and degrees of aggregation of individual particles from cloud bases and the anvils near the tropopause. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are abundant in in-cloud samples. Cirrus samples contain many H2SO4 droplets, but acidic sulfate particles are rare at the cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. The relatively high extent of ammoniation in the upper troposphere in-cloud samples appears to have resulted from vertical transport by strong convection. The morphology of H2SO4 droplets indicates that they had been at least yartiy ammoniated at the time of collection. They are internally mixed with organic materials, metal sulfates, and solid particles of various compositions. Ammoniation and internal mixing of result in freezing at higher temperature than in pure H2SO4 aerosols. K- and S-bearing organic particles and Si-Al-rich particles are common throughout. Sea salt and mineral dust were incorporated into the convective systems from the cloud bases and worked as ice nuclei while being vertically transported. The nonsulfate particles originated from the lower troposphere and were transported to the upper troposphere and lower stratosphere.

  17. Investigations of Physicochemical Properties of Size-Resolved, Subsaturated, Atmospheric Aerosol Particles: Instrument Development, Field Measurements, and Data Analysis

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor

    Aerosol particle properties and their impact on air quality, clouds, and the hydrologic cycle remain a critically important factor for the understanding of our atmosphere. Particle hygroscopic growth leads to impacts on direct and indirect radiative forcing properties, the likelihood for particles to act as cloud condensation nuclei, and aerosol-cloud interactions. Current instruments measuring hygroscopic growth have a number of limitations, lacking either the ability to measure size-resolved particles or process samples at a fast enough resolution to be suitable for airborne deployment. Advanced in-situ airborne particle retrieval and measurements of aerosol hygroscopic growth and scattering properties are analyzed and discussed. To improve the analysis of cloud nuclei particles, an updated counterflow virtual impact inlet was characterized and deployed during the 2011 E-PEACE field campaign. Theoretical and laboratory based cut size diameters were determined and validated against data collected from an airborne platform. In pursuit of higher quality aerosol particle hygroscopicity measurements, a newer instrument, the differential aerosol sizing and hygroscopicity probe (DASH-SP) has been developed in the recent past and only flown on a handful of campaigns. It has been proven to provide quality, rapid, size-resolved hygroscopic growth factor data, but was further improved into a smaller form factor making it easier for deployment on airborne platforms. It was flown during the 2013 SEAC4RS field campaign and the data was analyzed to composite air mass based hygroscopicity and refractive index (real portion only) statistics. Additionally, a comparison of bulk and size-resolved hygroscopic growth measurements was conducted. Significant findings include a potential particle size bias on bulk scattering measurements as well as a narrow range of ambient real portion of refractive index values. An investigation into the first reported ambient hygroscopicity

  18. Deposition of Particles in the Alveolar Airways: Inhalation and Breath-Hold with Pharmaceutical Aerosols

    PubMed Central

    Khajeh-Hosseini-Dalasm, Navvab; Longest, P. Worth

    2014-01-01

    Previous studies have demonstrated that factors such as airway wall motion, inhalation waveform, and geometric complexity influence the deposition of aerosols in the alveolar airways. However, deposition fraction correlations are not available that account for these factors in determining alveolar deposition. The objective of this study was to generate a new space-filling model of the pulmonary acinus region and implement this model to develop correlations of aerosol deposition that can be used to predict the alveolar dose of inhaled pharmaceutical products. A series of acinar models was constructed containing different numbers of alveolar duct generations based on space-filling 14-hedron elements. Selected ventilation waveforms were quick-and-deep and slow-and-deep inhalation consistent with the use of most pharmaceutical aerosol inhalers. Computational fluid dynamics simulations were used to predict aerosol transport and deposition in the series of acinar models across various orientations with gravity where ventilation was driven by wall motion. Primary findings indicated that increasing the number of alveolar duct generations beyond 3 had a negligible impact on total acinar deposition, and total acinar deposition was not affected by gravity orientation angle. A characteristic model containing three alveolar duct generations (D3) was then used to develop correlations of aerosol deposition in the alveolar airways as a function of particle size and particle residence time in the geometry. An alveolar deposition parameter was determined in which deposition correlated with d2t over the first half of inhalation followed by correlation with dt2, where d is the aerodynamic diameter of the particles and t is the potential particle residence time in the alveolar model. Optimal breath-hold times to allow 95% deposition of inhaled 1, 2, and 3 μm particles once inside the alveolar region were approximately >10, 2.7, and 1.2 s, respectively. Coupling of the deposition

  19. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  20. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    SciTech Connect

    Cahill, John F.; Suski, Kaitlyn; Seinfeld, John H.; Zaveri, Rahul A.; Prather, Kimberly A.

    2012-11-21

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influence their climate impacts through optical properties, hygroscopicity, and atmospheric lifetime. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that were internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles are internally mixed and are heavily influenced by secondary species that are most predominant in each region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the

  1. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    NASA Astrophysics Data System (ADS)

    Cahill, J. F.; Suski, K.; Seinfeld, J. H.; Zaveri, R. A.; Prather, K. A.

    2012-11-01

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more

  2. The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010

    NASA Astrophysics Data System (ADS)

    Cahill, J. F.; Suski, K.; Seinfeld, J. H.; Zaveri, R. A.; Prather, K. A.

    2012-07-01

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in Southern and Northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in Southern California, and sulfate and organic carbon in Northern California. Furthermore, mixing state varied temporally in Northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more

  3. Relationship between lead levels on painted surfaces and percent lead in the particles aerosolized during lead abatement.

    PubMed

    Choe, Kyoo T; Trunov, Mikhaylo; Menrath, William; Succop, Paul; Grinshpun, Sergey A

    2002-08-01

    Quantifying airborne lead on lead abatement work sites is critical in assessing worker lead exposures. Airborne lead levels depend on both the concentration of aerosolized particles and the percent lead in those particles. The lead level on the painted surface being abated may affect the percent lead in aerosolized particles. Experiments were performed in the University of Cincinnati Environmental Test Chamber (volume approximately 24.3 m3) using wood doors painted with lead-based paint. Three methods were used for paint removal: dry scraping, wet scraping, and dry machine sanding. Particles aerosolized during lead abatement activities were collected on filters using the Button Personal Inhalable Aerosol Samplers (SKC Inc., Eighty Four, PA) mounted in the workers' breathing zone. The filters were subsequently analyzed for percent lead in the particles. A portable X-ray fluorescence (XRF) instrument (NITON-700, NITON Inc., Bedford, MA) was used to measure surface lead levels of the doors. The accuracy of the XRF instrument was verified by testing standard reference materials prepared by the National Institute of Standards and Technology (NIST) and by Princeton Gamma Tech Inc. It was also verified by relating XRF results from painted door surfaces to laboratory lead analysis data obtained from paint chip samples taken from the same painted surfaces (r2 = 0.81, p < 0.001). A highly significant relationship (r2 = 0.83, p < 0.001) was found between the XRF readings and the percent lead in the particles aerosolized during dry scraping. No significant relationship was found for wet scraping (r2 = 0.09, p = 0.56) or dry machine sanding (r2 = 0.002, p = 0.92). The relationship between surface lead levels and percent lead in particles was found to be dependent on the paint removal method. This variation was attributed to the difference in water absorption property of the paint layers and the different particle aerosolization mechanisms inherent in each paint removal method.

  4. Laboratory and Ambient Studies Using an Automated Semi-Continuous Single-Particle Aerosol Raman Spectrometer

    NASA Astrophysics Data System (ADS)

    Doughty, D., III; Hill, S. C.

    2015-12-01

    Single-particle Raman spectra can yield extensive information about in-situ ambient particulate composition. However, Raman spectral measurements of individual aerosol particles typically require collection of samples in the field followed by offline Raman spectral measurements in a laboratory. The process requires considerable operator time. We report results obtained with an automated, single-particle Aerosol Raman Spectrometer built by Battelle, which is the core of Battelle's Resource Effective Bioidentification System (REBS). This instrument collects aerosol particles onto a metallized polymer tape and simultaneously measures Raman spectra of particles obtained during the previous collection period. At the end of each collection period (typically 15 minutes), the tape is advanced and the next collection and measurement period is begun. In this way, particles are semi-continuously sampled and their Raman spectra are measured. We show laboratory data from different sizes of polystyrene latex spheres. We also show results from calcium sulfate particles, vehicular emission soot, and other particles. We discuss the influence of imaging time on the quality of the Raman spectra measured and on the ability of the instrument to resolve aerosol particles. Finally, we present results from an outdoor sampling period during the summer of 2015 where the instrument ran unattended for more than one week collecting particles and measuring their Raman spectra. We suggest that the routine use of such an automated particle-sampling instrument should increase our understanding of inorganic and organic aerosols including biological aerosols and sources and fates of these particles.

  5. Aerosol dynamics using the quadrature method of moments: comparing several quadrature schemes with particle-resolved simulation

    NASA Astrophysics Data System (ADS)

    McGraw, R.; Leng, L.; Zhu, W.; Riemer, N.; West, M.

    2008-07-01

    The method of moments (MOM) is a statistically based alternative to sectional and modal methods for aerosol simulation. The MOM is highly efficient as the aerosol distribution is represented by its lower-order moments and only these, not the full distribution itself, are tracked during simulation. Quadrature is introduced to close the moment equations under very general growth laws and to compute aerosol physical and optical properties directly from moments. In this paper the quadrature method of moments (QMOM) is used in a bivariate test tracking of aerosol mixing state. Two aerosol populations, one enriched in soot and the other in sulfate, are allowed to interact through coagulation to form a generally-mixed third particle population. Quadratures of varying complexity (including two candidate schemes for use in climate models) are described and compared with benchmark results obtained by using particle-resolved simulation. Low-order quadratures are found to be highly accurate, and Gauss and Gauss-Radau quadratures appear to give nested lower and upper bounds, respectively, to aerosol mixing rate. These results suggest that the QMOM makes it feasible to represent the generallymixed states of aerosols and track their evolution in climate models.

  6. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  7. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-03-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  8. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  9. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  10. Particle size distribution of ambient aerosols in an industrial area.

    PubMed

    Rao, B Padma; Srivastava, A; Yasmin, F; Ray, S; Gupta, N; Chauhan, C; Rao, C V C; Wate, S R

    2012-05-01

    Aerosol samples of PM(10) and PM(2.5) were collected from 38 sampling locations in and around the industrial area. The 24 h average mass concentration of PM(10) and PM(2.5) was 137.5 and 61.5 μg/m(3) respectively during summer, 122 and 97.5 μg/m(3) respectively in winter and 70 and 54 μg/m(3) respectively during post monsoon season. The relative contribution of coarse, fine and ultrafine particle to ambient air was analyzed for its temporal and seasonal variability in an industrialized area. This paper aims to establish baseline between PM(10) and PM(2.5) mass concentration levels.

  11. Aging of Soot Particles: Remote Marine Free-tropospheric Aerosol at the Pico Mountain Observatory, Azores

    NASA Astrophysics Data System (ADS)

    China, S.; Mazzoleni, C.; Mazzoleni, L. R.; kumar, S.; Dziobak, M.; Fialho, P. J.; Dzepina, K.; Hueber, J.; Helmig, D.; Kramer, L. J.; Sharma, N.; Olsen, S. C.; Owen, R. C.

    2013-12-01

    Soot particles, often referred to as black carbon, are aggregates of carbonaceous monomers that strongly absorb light, significantly impacting the environment, Earth's radiation balance, atmospheric chemistry and properties of clouds. Soot can be transported over long distances, thus affecting global climate. During transport, soot aggregates undergo chemical and morphological changes such as oxidation, mixing, coating and restructuring. These changes have a significant impact on soot's light absorption and scattering efficiencies, and therefore on soot's effects on climate. Free tropospheric aerosols are being studied at the Pico Mountain Observatory, located near the top of the Pico Volcano in the Azores, Portugal (38.47°N, 28.40°W, 2225m asl). Typically above the marine boundary layer, this is an ideal site to study aerosol transported over long distances across the ocean, often from North America and sometimes from Africa and Europe. We studied the morphology and mixing state of individual soot particles using electron microscopy and energy dispersive X-ray spectroscopy. We also measured the optical properties of aerosols using light scattering data from a 3-wavelength nephelometer, and black carbon mass equivalent concentrations using a 7-wavelength aethalometer. In this presentation, we focus on samples collected during two events in July 2012. Back trajectory analysis shows that in both periods the air masses reaching Pico were traveling from west to east, apparently originating in North America. Soot particles were classified into four categories based on their coating and mixing state. We investigated the morphology of soot particles in the four categories, using various descriptors (e.g. aspect ratio, roundness and convexity), monomer size and fractal dimension. Most of the soot particles were coated. Bare or very thinly coated soot, exhibited very compacted structures and high convexity. The results of this study have implications on how soot particles

  12. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  13. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    NASA Astrophysics Data System (ADS)

    Bastian, S.; Löschau, G.; Wiedensohler, A.

    2014-04-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher

  14. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Jianglong; Reid, Jeffrey S.; Christensen, Matthew; Benedetti, Angela

    2016-05-01

    A major continental-scale biomass burning smoke event from 28-30 June 2015, spanning central Canada through the eastern seaboard of the United States, resulted in unforecasted drops in daytime high surface temperatures on the order of 2-5 °C in the upper Midwest. This event, with strong smoke gradients and largely cloud-free conditions, provides a natural laboratory to study how aerosol radiative effects may influence numerical weather prediction (NWP) forecast outcomes. Here, we describe the nature of this smoke event and evaluate the differences in observed near-surface air temperatures between Bismarck (clear) and Grand Forks (overcast smoke), to evaluate to what degree solar radiation forcing from a smoke plume introduces daytime surface cooling, and how this affects model bias in forecasts and analyses. For this event, mid-visible (550 nm) smoke aerosol optical thickness (AOT, τ) reached values above 5. A direct surface cooling efficiency of -1.5 °C per unit AOT (at 550 nm, τ550) was found. A further analysis of European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), United Kingdom Meteorological Office (UKMO) near-surface air temperature forecasts for up to 54 h as a function of Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOT data across more than 400 surface stations, also indicated the presence of the daytime aerosol direct cooling effect, but suggested a smaller aerosol direct surface cooling efficiency with magnitude on the order of -0.25 to -1.0 °C per unit τ550. In addition, using observations from the surface stations, uncertainties in near-surface air temperatures from ECMWF, NCEP, and UKMO model runs are estimated. This study further suggests that significant daily changes in τ550 above 1, at which the smoke-aerosol-induced direct surface cooling effect could be comparable in magnitude with model uncertainties, are rare events on a global scale. Thus, incorporating

  15. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty

    NASA Astrophysics Data System (ADS)

    Sarangi, Bighnaraj; Aggarwal, Shankar G.; Sinha, Deepak; Gupta, Prabhat K.

    2016-03-01

    In this work, we have used a scanning mobility particle sizer (SMPS) and a quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyser (DMA), where size segregation is done based on particle electrical mobility. Downstream of the DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas the other one is sent to the QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of the SMPS and mass concentration data obtained from the QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10-478 nm), i.e. AS, SC and AN, is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm-3, values which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm-3, respectively. Using this technique, the percentage contribution of error in the measurement of effective density is calculated to be in the range of 9-17 %. Among the individual uncertainty components, repeatability of particle mass obtained by the QCM, the QCM crystal frequency, CPC counting efficiency, and the equivalence of CPC- and QCM-derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of the winter period in New Delhi was measured to be 1.28 ± 0.12 g cm-3

  16. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty

    NASA Astrophysics Data System (ADS)

    Sarangi, B.; Aggarwal, S. G.; Sinha, D.; Gupta, P. K.

    2015-12-01

    In this work, we have used scanning mobility particle sizer (SMPS) and quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyzer (DMA), where size segregation was done based on particle electrical mobility. At the downstream of DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas other one is sent to QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of SMPS and mass concentration data obtained from QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10 to 478 nm), i.e. AS, SC and AN is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm-3, which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm-3, respectively. Among individual uncertainty components, repeatability of particle mass obtained by QCM, QCM crystal frequency, CPC counting efficiency, and equivalence of CPC and QCM derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of winter period in New Delhi is measured to be 1.28 ± 0.12 g cm-3. It was found that in general, mid-day effective density of ambient aerosols increases with increase in CMD of particle size measurement but particle photochemistry is an important

  17. Individual Particle TOF-SIMS Imaging Analysis of Aerosol Collected During the April 2001 Asian Dust Event.

    NASA Astrophysics Data System (ADS)

    Peterson, R. E.

    2002-12-01

    Time of Flight Secondary Ion Mass Spectroscopy can provide information regarding the surface chemistry, including both organic and inorganic compounds, of individual atmospheric aerosol in themicrometer size range. X-ray analysis has commonly been used to analyze the composition of single particles but has several important limitations. Principally, X-ray analysis cannot be used to study organic compounds in the aerosol, it offers low sensitivity for light elements common in crustal material and it cannot distinguish isotopes. TOF-SIMS has the potential to provide superior performance in these areas. We have developed statistical image processing methods to allow extraction of individual particle mass spectra from TOF-SIMS images. In mid April 2001 a strong Asian dust event was tracked by the NASA TOMS satellite across the Pacific Ocean and into the continental United States. While Asian dust deposition is common in Hawaii, strong events characterized by significant visibility degradation have been much less frequently reported in the Rocky Mountain west. Samples were taken during and after the event at the University of Utah in Salt Lake City, Utah (SLC). Size segregated samples were collected on Al substrates using an 8 stage cascade impactor and total aerosol samples were collected with 47 mm Fluoropore filters. Surface and depth profile analysis of the particles was performed using a Phi Trift I TOF-SIMS instrument. Statistical methods, including PCA, mixture models and neural networks, were used to extract spectra of individual particles from the TOF-SIMS images and to classify particles based on their surface chemistry and depth profiles. Differences in both the chemistry and size distribution of the particles could be seen between the aerosol collected during the Asian dust event and aerosol collected post-event at the University of Utah site. Positive TOF-SIMS spectra of SLC urban aerosol were dominated by sub-micrometer organics, and negative spectra

  18. Source apportionment of aerosol particles near a steel plant by electron microscopy.

    PubMed

    Ebert, Martin; Müller-Ebert, Dörthe; Benker, Nathalie; Weinbruch, Stephan

    2012-12-01

    The size, morphology and chemical composition of 37,715 individual particles collected over 22 sampling days in the vicinity of a large integrated steel production were studied by scanning and transmission electron microscopy. Based on the morphology, chemistry and beam stability the particles were classified into the following fourteen groups: silicates, sea salt, calcium sulfates, calcium carbonates, carbonate-silicate mixtures, sulfate-silicate mixtures, iron oxides, iron mixtures, metal oxide-metals, complex secondary particles, soot, Cl-rich particles, P-rich particles, and other particles. The majority of iron oxide (≈85%) and metal oxide-metal (≈70%) particles as well as ≈20% of the silicate particles are fly ashes from high temperature processes. The emissions from the steel work are dominated by iron oxide particles. For source apportionment, seven source categories and two sectors of local wind direction (industrial and urban background) were distinguished. In both sectors PM₁₀ consists of four major source categories: 35% secondary, 20% industrial, 17% soil and 16% soot in the urban background sector compared to 45% industrial, 20% secondary, 13% soil, and 9% soot in the industrial sector. As the secondary and the soot components are higher in the urban background sector than in the industrial sector, it is concluded that both components predominantly originate from urban background sources (traffic, coal burning, and domestic heating). Abatement measures should not only focus on the steel work but should also include the urban background aerosol.

  19. A Novel Aerosol Method for the Production of Hydrogel Particles

    PubMed Central

    Guzman-Villanueva, Diana; Smyth, Hugh D. C.; Herrera-Ruiz, Dea; El-Sherbiny, Ibrahim M.

    2012-01-01

    A novel method of generating hydrogel particles for various applications including drug delivery purposes was developed. This method is based on the production of hydrogel particles from sprayed polymeric nano/microdroplets obtained by a nebulization process that is immediately followed by gelation in a crosslinking fluid. In this study, particle synthesis parameters such as type of nebulizer, type of crosslinker, air pressure, and polymer concentration were investigated for their impact on the mean particle size, swelling behavior, and morphology of the developed particles. Spherical alginate-based hydrogel particles with a mean particle size in the range from 842 to 886 nm were obtained. Using statistical analysis of the factorial design of experiment it was found that the main factors influencing the size and swelling values of the particles are the alginate concentration and the air pressure. Thus, it was demonstrated that the method described in the current study is promising for the generation of hydrogel particles and it constitutes a relatively simple and low-cost system. PMID:23687513

  20. ¹¹¹Indium-labeled ultrafine carbon particles; a novel aerosol for pulmonary deposition and retention studies.

    PubMed

    Sanchez-Crespo, Alejandro; Klepczynska-Nyström, Anna; Lundin, Anders; Larsson, Britt Marie; Svartengren, Magnus

    2011-02-01

    Continuous environmental or occupational exposure to airborne particulate pollution is believed to be a major hazard for human health. A technique to characterize their deposition and clearance from the lungs is fundamental to understand the underlying mechanisms behind their negative health effects. In this work, we describe a method for production and follow up of ultrafine carbon particles labeled with radioactive ¹¹¹Indium (¹¹¹In). The physicochemical and biological properties of the aerosol are described in terms of particle size and concentration, agglomeration rate, chemical bonding stability, and human lung deposition and retention. Preliminary in vivo data from a healthy human pilot exposure and 1-week follow up of the aerosol is presented. More than 98% of the generated aerosol was labeled with Indium and with particle sizes log normally distributed around 79  nm count median diameter. The aerosol showed good generation reproducibility and chemical stability, about 5% leaching 7 days after generation. During human inhalation, the particles were deposited in the alveolar space, with no central airways involvement. Seven days after exposure, the cumulative activity retention was 95.3%. Activity leaching tests from blood and urine samples confirmed that the observed clearance was explained by unbound activity, suggesting that there was no significant elimination of ultrafine particles. Compared to previously presented methods based on Technegas, ¹¹¹In-labelled ultrafine carbon particles allow for extended follow-up assessments of particulate pollution retention in healthy and diseased lungs.

  1. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  2. METHODS OF CALCULATINAG LUNG DELIVERY AND DEPOSITION OF AEROSOL PARTICLES

    EPA Science Inventory


    Lung deposition of aerosol is measured by a variety of methods. Total lung deposition can be measured by monitoring inhaled and exhaled aerosols in situ by laser photometry or by collecting the aerosols on filters. The measurements can be performed accurately for stable monod...

  3. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at

  4. Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties

    NASA Astrophysics Data System (ADS)

    Mishchenko, M.; Geogdzhaev, I.; Liu, L.; Orgen, A.; Lacis, A.; Rossow, W.; Hovenier, J.; Volten, H.; Muñoz, O.

    2003-09-01

    The paper describes and discusses long-term global retrievals of aerosol properties from channel-1 and -2 Advanced Very High Resolution Radiometer (AVHRR) radiances. We reconfirm the previously reached conclusion that the nonsphericity of dust-like and dry sea salt aerosols can lead to very large errors in the retrieved optical thickness if one mistakenly applies the scattering model for spherical particles. Comparisons of single-scattering albedo and Ångström exponent values retrieved from the AVHRR data and those measured in situ at Sable Island indicate that the currently adopted value 0.003 can be a reasonable choice for the imaginary part of the aerosol refractive index in the global satellite retrievals. Several unexpected features in the long-term satellite record indicate a serious problem with post-launch calibration of channel-2 radiances from the NOAA-11 spacecraft. We solve this problem by using a simple re-calibration procedure removing the observed artifacts and derive a global climatology of aerosol optical thickness and size over the oceans for the period extending from July 1983 to December 1999. The global monthly mean optical thickness and Ångström exponent of tropospheric aerosols show no significant trends over the entire period and oscillate around the average values 0.145 and 0.75, respectively. The Northern hemisphere means optical thickness systematically exceeds that averaged over the Southern hemisphere. The AVHRR retrieval results during the period affected by the Mt. Pinatubo eruption are consistent with the retrievals of the stratospheric aerosol optical thickness based on Stratospheric Aerosol and Gas Experiment (SAGE) data. Time series of the aerosol optical thickness and Ângström exponent derived for four separate geographic regions exhibit varying degrees of seasonal variability controlled by local meteorological events and/or anthropogenic activities.

  5. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  6. [Use of laser flow-type fluorescence aerosol particle counter to evaluate the concentration of microbes in the surface air under high dust content].

    PubMed

    Kalinin, Iu T; Vorob'ev, S A; Khramov, E N; Vorob'eva, E A; Kuznetsov, A P; Kiselev, O S

    2000-01-01

    The paper deals with the use of a laser flow-type fluorescence aerosol particle counter to evaluate the concentrations of microbes in the surface air under high dust content. Various circuits of flow-type optic aerosol recorders are analyzed. Flow spectral luminescence analysis of some particles flow while exciting the fourth harmonics of a pulse laser on yttrium-aluminium garnet with neodymium by ultraviolet radiation is shown to be the most optimum method for indication of individual aerosol particles. Experiments were conducted on the authors' model of a pilot plant based on this method. The model of a laser flow-type optic analyzer was developed for experimental studies that give a clear display of biological aerosols in complex aerosols. The laser flow-type analyzer-based unit developed may provide a fluorescence signal of aerosol particles in the flow of a sample and that light diffusion signal from them at an exciting light wavelength of 266 nm. Experiments with BVC aerosols and soil dust particles were conducted in different regions of Russia. They showed it possible to detect and to rapidly calculate soil microorganisms by laser flow-type fluorescence assay of individual particles when excited by ultraviolet radiation.

  7. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  8. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Li, Z.; Xu, H.; Chen, X.; Li, K.; Lv, Y.; Li, D.; Zhang, Y.

    2015-12-01

    The chemical composition and mixing status of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurement. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of aerosol or have some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it investigate aerosol information by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduce a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to real measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing states of aerosol particles on aerosol composition retrieval.

  9. Aerosol processing of fine Ag:(Bi,Pb)2223 composite particles

    NASA Astrophysics Data System (ADS)

    Mancic, Lidija; Marinkovic, Bojan; Vulic, Predrag; Milosevic, Olivera

    2004-08-01

    This paper represents an attempt in the obtaining of metal-ceramic composite precursor powders in the Ag:Bi-based superconductor system with uniform distribution of comprised phases through spray pyrolysis method. The process involves aerosol formation ultrasonically (800 kHz) from the urea-modified nitrates precursor solution (for the fixed cation ratio Bi:Pb:Sr:Ca:Cu=1.8:0.2:2:2:3 and for the Ag fraction of 20 wt.%) and control over the aerosol decomposition united with self-combustion of droplets in a high-temperature tubular flow reactor in the temperature range up to 820 °C. Following the initial attempts in providing of the 2223 phase high contents, particles were additionally calcined for 2 h in air and oxygen, at 825 and 810 °C respectively. Structure, morphology and compositional stoichiometry of synthesized powders were followed in accordance to various analysis methods (XRD, DTA, SEM and EDS).

  10. Characterization of Atmospheric Aerosol Particles from a Mining City in Southwest China Using Electron Probe microanalysis

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Huang, Y.; Lu, H., III; Liu, Z., IV; Wang, N. V.

    2015-12-01

    Xin Cheng1, Yi Huang1*, Huilin Lu2, Zaidong Liu2, Ningming Wang21 Key Laboratory of Geological Nuclear Technology of Sichuan Province, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; E-mail:chengxin_cdut@163.com 2 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; *Corresponding author: E-mail: huangyi@cdut.cn Panzhihua is a mining city located at Pan-Xi Rift valley, southwest China. It has a long industrial history of vanadium-titanium magnetite mining, iron and steel smelting, and coal-fired power plants. Atomospheric environment has been seriously contaminated with airborne paticles, which is threatening human health.The harmful effects of aerosols are dependent on certain characteristics such as microphysical properties. However, few studsies have been carried out on morphological information contained on single atmospheric particles in this area. In this study, we provide a detailed morphologically and chemically characterization of airborne particles collected at Panzhihua city in October, 2014, using a quantitative single particle analysis based on EPXMA. The results indicate that based on their chemical composition, five major types of particles were identified. Among these, aluminosilicate particles have typical spherical shapes and are produced during the high-temperature combustion; Fe-containing particles contains high level of Mn, and more likely originated from mineralogical and steel industry; Si-containing particles can originate from mineralogical source; V-Ti-Mn-containing particles are also produced by steel industry; Ca-containing particles,these particles are CaCO3, mainly from the mining of limestone mine. The results help us on tracing and partitioning different sources of atomospheric particles in the industrial area. Fig.1 Fe-rich shperical particles

  11. GNI - A System for the Impaction and Automated Optical Sizing of Giant Aerosol Particles with Emphasis on Sea Salt

    NASA Astrophysics Data System (ADS)

    Jensen, Jorgen

    2013-04-01

    Size distributions of giant aerosol particles (e.g. sea-salt particles, dry radius larger than 0.5 μm) are not well characterized in the atmosphere, yet they contribute greatly to both direct and indirect aerosol effects. Measurements are problematic for these particles because they (i) occur in low concentrations, (ii) have difficulty in passing through air inlets, (iii) there are problems in discriminating between dry and deliquesced particles, (iv) and impaction sampling requires labor intensive methods. In this study, a simple, high-volume impaction system called the Giant Nuclei Impactor (GNI), based on free-stream exposure of polycarbonate slides from aircraft is described, along with an automated optical microscope-based system for analysis of the impacted particles. The impaction slides are analyzed in a humidity-controlled box (typically 90% relative humidity) that allows for deliquescence of sea salt particles. A computer controlled optical microscope with two digital cameras is used to acquire and analyze images of the aerosol particles. Salt particles will form near-spherical cap solution drops at high relative humidity. The salt mass in each giant aerosol particle is then calculated using simple geometry and K ̈ohler theory by assuming a NaCl composition. The system has a sample volume of about 10 L/s at aircraft speeds of 105 m/s. For salt particles, the measurement range is from about 0.7 μm dry radius to tens of micrometers, with a size-bin resolution of 0.2 μm dry radius. The sizing accuracy was tested using glass beads of known size. Characterizing the uncertainties of observational data is critical for applications to atmospheric science studies. A comprehensive uncertainty analysis is performed for the airborne GNI manual impaction and automatic optical microscope system for sizing giant aerosol particles, with particular emphasis on sea-salt particles. The factors included are (i) sizing accuracy, (ii) concentration accuracy, (iii

  12. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles

    SciTech Connect

    Lin, Peng; Aiona, Paige K.; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly-emitted biomass burning organic aerosol (BBOA) samples collected during test burns of selected biomass fuels: sawgrass, peat, ponderosa pine, and black spruce. We characterize individual BrC chromophores present in these samples using high performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. We demonstrate that both the overall BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels and burning conditions. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as potential markers of BrC originating from different biomass burning sources. On average, ~50% of the light absorption above 300 nm can be attributed to a limited number of strong BrC chromophores, which may serve as representative light-absorbing species for studying atmospheric processing of BrC aerosol. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of 16 hours. A “molecular corridors” analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low volatility (<1 g m-1) and will be retained in the particle phase under atmospherically relevant conditions.

  13. Origin of nitrocatechols and alkylated-nitrocatechols in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Marchand, Nicolas; Sylvestre, Alexandre; Ravier, Sylvain; Detournay, Anais; Bruns, Emily; Temime-Roussel, Brice; Slowik, Jay; El Haddad, Imad; Prevot, Andre

    2013-04-01

    Biomass burning constitutes one of the major sources of aerosol particles in most of the environments during winter. If a lot of information is available in the literature on the primary fraction of biomass burning aerosol particles, almost nothing is known regarding the formation of Secondary Organic Aerosol (SOA) from the chemical mixture emitted by this source. Recently methylated nitrocatechol have been identified in atmospheric particles collected in winter. These compounds are strongly associated with biomass burning tracers such as levoglucosan and are suspected to be of secondary origin since they can be formed through the oxidation of cresol significantly emitted by biomass burning. However, nitrocatechols are particularly difficult to analyze using classical techniques like HPLC-MS or GC-MS. In the present study, we adopt a new analytical approach. Direct analysis in real time (DART), introduced by Cody et al. (2005), allows direct analysis of gases, liquids, solids and materials on surfaces. Thus, for particles collected onto filters, the sample preparation step is simplified as much as possible, avoiding losses and reducing to the minimum the analytical procedure time. Two analytic modes can be used. In positive mode, [MH]+ ions are formed by proton transfer reaction ; whereas in negative ionization mode, [MH]-, M- and [MO2]- ions are formed. DART source enables soft ionization and produces simple mass spectra suitable for analysis of complex matrices, like organic aerosol, in only a few seconds. For this study, the DART source was coupled to a Q-ToF mass spectrometer (Synapt G2 HDMS, Waters), with a mass resolution up to 40 000. The analysis of atmospheric aerosol samples, collected in Marseille during winter 2011 (APICE project), with the DART/Q-ToF approach highlighted the abundance of nitrocatechols and alkylated nitrocatechols. Their temporal trends were also very similar to those of levoglucosan or dihydroabietic acid well known tracers of biomass

  14. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  15. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  16. Ground-Based Aerosol Measurements

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to ...

  17. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-09-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  18. Identification of characteristic mass spectrometric markers for primary biological aerosol particles and comparison with field data from submicron pristine aerosol particles

    NASA Astrophysics Data System (ADS)

    Freutel, F.; Schneider, J.; Zorn, S. R.; Drewnick, F.; Borrmann, S.; Hoffmann, T.; Martin, S. T.

    2009-04-01

    The contribution of primary biological aerosol (PBA) to the total aerosol particle concentration is estimated to range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that PBA is a major source of particles in the supermicron range, and is also an important fraction of the submicron aerosol. PBA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. For this reason we have performed mass spectrometric laboratory measurements (Aerodyne C-ToF and W-ToF AMS, single particle laser ablation instrument SPLAT) on pure submicron aerosol particles containing typical PBA compounds in order to identify typical mass spectral patterns of these compounds and to explain the observed fragmentation patterns on the basis of molecular structures. These laboratory data were compared to submicron particle mass spectra obtained during AMAZE-08 (Amazonian Aerosol CharacteriZation Experiment, Brazil, February/March 2008). The results indicate that characteristic m/z ratios for carbohydrates (e.g., glucose, saccharose, levoglucosan, mannitol) can be identified, for example m/z = 60(C2H4O2+) or m/z = 61(C2H5O2+). Certain characteristic peaks for amino acids were also identified in the laboratory experiments. In the field data from AMAZE-08, these characteristic peaks for carbohydrates and amino acids were found, and their contribution to the total organic mass was estimated to about 5%. Fragment ions from peptides and small proteins were also identified in laboratory experiments. Larger proteins, however, seem to become oxidized to CO2+ to a large extend in the vaporizing process of the AMS. Thus, detection of proteins in atmospheric aerosol particles with the AMS appears to be difficult.

  19. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  20. Hygroscopic Measurements of Aerosol Particles in the San Joaquin Valley California during the DRAGON and Discover AQ Campaign 2013

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2013-12-01

    In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f

  1. MATRIX-ASSISTED LASER DESORPTION IONIZATION OF SIZE AND COMPOSITION SELECTED AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization (MALDI) was performed on individual,
    size-selected aerosol particles in the 2-8 mu m diameter range, Monodisperse aerosol droplets
    containing matrix, analyte, and solvent were generated and entrained in a dry stream of air, The dr...

  2. MATHEMATICAL MODEL FOR GAS/PARTICLE PARTITIONING OF SECONDARY ORGANIC AEROSOLS. (R824970)

    EPA Science Inventory

    A dynamic model is developed for gas-particle absorptive partitioning of semi-volatile organic aerosols. The model is applied to simulate a pair of m-xylene/NOx outdoor smog chamber experiments. In the presence of an inorganic seed aerosol a threshold ...

  3. [Factors influencing particle measurement of aerosols and their retention in the lung].

    PubMed

    Le Bouffant, L

    1977-01-01

    The dimensional characteristics of the particles of an aerosol depend on the means used for producing them. Mechanical spray and ultrasonic dispersion give polydispersed particles. On the other hand, centrifugal atomization produces a monodispersed aerosol. Particle retention in the lung system depends on the particle diameter. In addition, retention varies according to the respiratory characteristics: it is minimal for about 15 inspirations per minute. Using iron-59 labeled particles, it was shown that the degree of retention varies considerably from one individual to the other and accessibility to the depths of the lungs is decreased under the effect of certain lesions. Bronchial retention appears to be increased in smokers.

  4. An AERONET-based aerosol classification using the Mahalanobis distance

    NASA Astrophysics Data System (ADS)

    Hamill, Patrick; Giordano, Marco; Ward, Carolyne; Giles, David; Holben, Brent

    2016-09-01

    We present an aerosol classification based on AERONET aerosol data from 1993 to 2012. We used the AERONET Level 2.0 almucantar aerosol retrieval products to define several reference aerosol clusters which are characteristic of the following general aerosol types: Urban-Industrial, Biomass Burning, Mixed Aerosol, Dust, and Maritime. The classification of a particular aerosol observation as one of these aerosol types is determined by its five-dimensional Mahalanobis distance to each reference cluster. We have calculated the fractional aerosol type distribution at 190 AERONET sites, as well as the monthly variation in aerosol type at those locations. The results are presented on a global map and individually in the supplementary material. Our aerosol typing is based on recognizing that different geographic regions exhibit characteristic aerosol types. To generate reference clusters we only keep data points that lie within a Mahalanobis distance of 2 from the centroid. Our aerosol characterization is based on the AERONET retrieved quantities, therefore it does not include low optical depth values. The analysis is based on "point sources" (the AERONET sites) rather than globally distributed values. The classifications obtained will be useful in interpreting aerosol retrievals from satellite borne instruments.

  5. Aerosol hygroscopic growth parameterization based on a solute specific coefficient

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Xu, L.; Penner, J. E.; Lelieveld, J.

    2011-09-01

    Water is a main component of atmospheric aerosols and its amount depends on the particle chemical composition. We introduce a new parameterization for the aerosol hygroscopic growth factor (HGF), based on an empirical relation between water activity (aw) and solute molality (μs) through a single solute specific coefficient νi. Three main advantages are: (1) wide applicability, (2) simplicity and (3) analytical nature. (1) Our approach considers the Kelvin effect and covers ideal solutions at large relative humidity (RH), including CCN activation, as well as concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). (2) A single νi coefficient suffices to parameterize the HGF for a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. (3) In contrast to previous methods, our analytical aw parameterization depends not only on a linear correction factor for the solute molality, instead νi also appears in the exponent in form x · ax. According to our findings, νi can be assumed constant for the entire aw range (0-1). Thus, the νi based method is computationally efficient. In this work we focus on single solute solutions, where νi is pre-determined with the bisection method from our analytical equations using RHD measurements and the saturation molality μssat. The computed aerosol HGF and supersaturation (Köhler-theory) compare well with the results of the thermodynamic reference model E-AIM for the key compounds NaCl and (NH4)2SO4 relevant for CCN modeling and calibration studies. The equations introduced here provide the basis of our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in a companion paper.

  6. Emissions and Characteristics of Ice Nucleating Particles Associated with Laboratory Generated Nascent Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    McCluskey, C. S.; Hill, T. C. J.; Beall, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Lee, C.; Al-Mashat, H.; Laskina, O.; Trueblood, J.; Grassian, V. H.; Prather, K. A.; Kreidenweis, S. M.; DeMott, P. J.

    2015-12-01

    Accurate emission rates and activity spectra of atmospheric ice nucleating particles (INPs) are required for proper representation of aerosol-cloud interactions in atmospheric modeling studies. However, few investigations have quantified or characterized oceanic INP emissions. In conjunction with the Center for Aerosol Impacts on the Climate and the Environment, we have directly measured changes in INP emissions and properties of INPs from nascent sea spray aerosol (SSA) through the evolution of phytoplankton blooms. Multiple offline and online instruments were used to monitor aerosol chemistry and size, and bulk water characteristics during two phytoplankton bloom experiments. Two methods were utilized to monitor the number concentrations of INPs from 0 to -34 °C: The online CSU continuous flow diffusion chamber (CFDC) and collections processed offline using the CSU ice spectrometer. Single particle analyses were performed on ice crystal residuals downstream of the CFDC, presumed to be INPs, via scanning transmission electron microscopy (STEM) and Raman microspectroscopy. Preliminary results indicate that laboratory-generated nascent SSA corresponds to number concentrations of INPs that are generally consistent with open ocean regions, based on current knowledge. STEM analyses revealed that the sizes of ice crystal residuals that were associated with nascent SSA ranged from 0.3 to 2.5 μm. Raman microspectroscopy analysis of 1 μm sized residuals found a variety of INP identities, including long chain organics, diatom fragments and polysaccharides. Our data suggest that biological processes play a significant role in ocean INP emissions by generating the species and compounds that were identified during these studies.

  7. Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Yu, Xiawei; Wang, Zhibin; Zhang, Minghui; Kuhn, Uwe; Xie, Zhouqing; Cheng, Yafang; Pöschl, Ulrich; Su, Hang

    2016-09-01

    Fluorescence characteristics of aerosol particles in a polluted atmosphere were studied using a wideband integrated bioaerosol spectrometer (WIBS-4A) in Nanjing, Yangtze River Delta area of China. We observed strong diurnal and day-to-day variations of fluorescent aerosol particles (FAPs). The average number concentrations of FAPs (1-15 µm) detected in the three WIBS measurement channels (FL1: 0.6 cm-3, FL2: 3.4 cm-3, FL3: 2.1 cm-3) were much higher than those observed in forests and rural areas, suggesting that FAPs other than bioaerosols were detected. We found that the number fractions of FAPs were positively correlated with the black carbon mass fraction, especially for the FL1 channel, indicating a large contribution of combustion-related aerosols. To distinguish bioaerosols from combustion-related FAPs, we investigated two classification schemes for use with WIBS data. Our analysis suggests a strong size dependence for the fractional contributions of different types of FAPs. In the FL3 channel, combustion-related particles seem to dominate the 1-2 µm size range while bioaerosols dominate the 2-5 µm range. The number fractions of combustion-related particles and non-combustion-related particles to total aerosol particles were ˜ 11 and ˜ 5 %, respectively.

  8. Calf Lung Surfactant Recovers Surface Functionality After Exposure to Aerosols Containing Polymeric Particles

    PubMed Central

    Farnoud, Amir M.

    2016-01-01

    Abstract Background: Recent studies have shown that colloidal particles can disrupt the interfacial properties of lung surfactant and thus key functional abilities of lung surfactant. However, the mechanisms underlying the interactions between aerosols and surfactant films remain poorly understood, as our ability to expose films to particles via the aerosol route has been limited. The aim of this study was to develop a method to reproducibly apply aerosols with a quantifiable particle dose on lung surfactant films and investigate particle-induced changes to the interfacial properties of the surfactant under conditions that more closely mimic those in vivo. Methods: Films of DPPC and Infasurf® were exposed to aerosols containing polystyrene particles generated using a Dry Powder Insufflator™. The dose of particles deposited on surfactant films was determined via light absorbance. The interfacial properties of the surfactant were studied using a Langmuir-Wilhelmy balance during surfactant compression to film collapse and cycles of surface compression and expansion at a fast cycling rate within a small surface area range. Results: Exposure of surfactant films to aerosols led to reproducible dosing of particles on the films. In film collapse experiments, particle deposition led to slight changes in collapse surface pressure and surface area of both surfactants. However, longer interaction times between particles and Infasurf® films resulted in time-dependent inhibition of surfactant function. When limited to lung relevant surface pressures, particles reduced the maximum surface pressure that could be achieved. This inhibitory effect persisted for all compression-expansion cycles in DPPC, but normal surfactant behavior was restored in Infasurf® films after five cycles. Conclusions: The observation that Infasurf® was able to quickly restore its function after exposure to aerosols under conditions that better mimicked those in vivo suggests that particle

  9. Massive-scale aircraft observations of giant sea-salt aerosol particle size distributions in atmospheric marine boundary layers

    NASA Astrophysics Data System (ADS)

    Jensen, J. B.

    2015-12-01

    iant sea-salt aerosol particles (dry radius, rd > 0.5 μm) occur nearly everywhere in the marine boundary layer and frequently above. This study presents observations of atmospheric sea-salt size distributions in the range 0.7 < rd < 14 μm based on external impaction of sea-spray aerosol particles onto microscope polycarbonate microscope slides. The slides have very large sample volumes, typically about 250 L over a 10-second sampling period. This provides unprecedented sampling of giant sea-salt particles for flights in marine boundary layer air. The slides were subsequently analyzed in a humidified chamber using dual optical digital microscopy. At a relative humidity of 90% the sea-salt aerosol particles form spherical cap drops. Based on measurement the volume of the spherical cap drop and assuming NaCl composition, the Kohler equation is used to derive the dry salt mass of tens of thousands of individual aerosol particles on each slide. Size distributions are given with a 0.2 μm resolution. The slides were exposed from the NSF/NCAR C-130 research aircraft during the 2008 VOCALS project off the coast of northern Chile and the 2011 ICE-T in the Caribbean. In each deployment, size distributions using hundreds of slides are used to relate fitted log-normal size distributions parameters to wind speed, altitude and other atmospheric conditions. The size distributions provide a unique observational set for initializing cloud models with coarse-mode aerosol particle observations for marine atmospheres.

  10. Impact of interannual variations in aerosol particle sources on orographic precipitation over California's Central Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Creamean, J. M.; Ault, A. P.; White, A. B.; Neiman, P. J.; Ralph, F. M.; Minnis, P.; Prather, K. A.

    2015-01-01

    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater field campaign (2009-2011), the variability and associated impacts of different aerosol sources on precipitation were investigated in the California Sierra Nevada using an aerosol time-of-flight mass spectrometer for precipitation chemistry, S-band profiling radar for precipitation classification, remote sensing measurements of cloud properties, and surface meteorological measurements. The composition of insoluble residues in precipitation samples collected at a surface site contained mostly local biomass burning and long-range transported dust and biological particles (2009), local sources of biomass burning and pollution (2010), and long-range transport from distant sources (2011). Although differences in the sources were observed from year-to-year, the most consistent source of dust and biological residues were associated with storms consisting of deep convective cloud systems with significant quantities of precipitation initiated in the ice phase. Further, biological residues were dominant (up to 40%) during storms with relatively warm cloud temperatures (up to -15 °C), supporting the important role bioparticles can play as ice nucleating particles. On the other hand, lower percentages of residues from local biomass burning and pollution were observed over the three winter seasons (on average 31 and 9%, respectively). When precipitation quantities were relatively low, these residues most likely served as CCN, forming smaller more numerous cloud droplets at the base of shallow cloud systems, and resulting in less efficient riming processes. The correlation between the source of aerosols within clouds and precipitation type and quantity will be further probed in models to understand the

  11. Retrieval of optical depth and particle size distribution of tropospheric and stratospheric aerosols by means of sun photometry

    SciTech Connect

    Schmid, B.; Maetzler, C.; Kaempfer, N.; Heimo, A.

    1997-01-01

    Aerosol optical depth measurements by means of ground-based Sun photometry were made in Bern, Switzerland during two and a half years primarily to provide quantitative corrections for atmospheric effects in remotely sensed data in the visible and near-infrared spectral region. An investigation of the spatial variability of tropospheric aerosol was accomplished in the summer of 1994 in the Swiss Central Plain, a region often covered by a thick aerosol layer. Intercomparisons are made with two Sun photometers operated by the Swiss Meteorological Institute in Payerne and Davos. By means of an inversion technique, columnar particle size distributions were derived from the aerosol optical depth spectra. Effective radius, columnar surface area, and columnar mass were computed from the inversion results. Most of the spectra measured in Bern exhibit an Angstroem-law dependence. Consequently, the inverted size distributions are very close to power-law distributions. Data collected during a four month calibration campaign in fall 1993 at a high-mountain station in the Swiss Alps allowed the authors to study optical properties of stratospheric aerosol. The extinction spectra measured have shown to be still strongly influenced by remaining aerosol of the June 1991 volcanic eruptions of Mount Pinatubo. Inverted particle size distributions can be characterized by a broad monodisperse peak with a mode radius around 0.25 {micro}m. Both aerosol optical depths and effective radii had not yet returned to pre-eruption values. Comparison of retrieved aerosol optical depth, columnar surface area and mass, with the values derived from lidar observations performed in Garmisch-Partenkirchen, Southern-Germany, yielded good agreement.

  12. Single particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    NASA Astrophysics Data System (ADS)

    Lee, A. K. Y.; Willis, M. D.; Healy, R. M.; Wang, J. M.; Jeong, C.-H.; Wenger, J. C.; Evans, G. J.; Abbatt, J. P. D.

    2015-11-01

    Biomass burning is a major source of black carbon (BC) and primary organic aerosol globally. In particular, biomass burning organic aerosol (BBOA) is strongly associated with atmospheric brown carbon (BrC) that absorbs near ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single particle measurements from a soot-particle aerosol mass spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC) and potassium (K+, a tracer for biomass burning aerosol) in an air mass influenced by aged biomass burning. Cluster analysis of single particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 w.t. % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles.

  13. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.

    PubMed

    Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m(-3)) and will be retained in the particle phase under atmospherically relevant conditions.

  14. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  15. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  16. Exposure of rhesus monkeys to cowpox virus Brighton Red by large-particle aerosol droplets results in an upper respiratory tract disease.

    PubMed

    Johnson, Reed F; Hammoud, Dima A; Perry, Donna L; Solomon, Jeffrey; Moore, Ian N; Lackemeyer, Matthew G; Bohannon, Jordan K; Sayre, Philip J; Minai, Mahnaz; Papaneri, Amy B; Hagen, Katie R; Janosko, Krisztina B; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E; Jahrling, Peter B

    2016-08-01

    We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.

  17. Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures

    PubMed Central

    2012-01-01

    Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern

  18. Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles

    DOEpatents

    Leseman, Zayd; Luhrs, Claudia; Phillips, Jonathan; Soliman, Haytham

    2016-04-12

    Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).

  19. Aerosol-CFD modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    NASA Astrophysics Data System (ADS)

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R. M.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-05-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore, allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and pollution gradients near a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of atmospheric boundary layer (i.e. its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated mixing. Therefore, introducing ABL conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.

  20. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  1. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  2. Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Malinina, Elizaveta; Rozanov, Vladimir; Hommel, Rene; Burrows, John

    2016-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite, from August 2002 to April 2012. A retrieval approach to obtain parameters of the stratospheric aerosol particle size distribution will be reported along with the sensitivity studies and first results.

  3. Mass Spectrometric Analysis of Pristine Aerosol Particles During the wet Season of Amazonia - Detection of Primary Biological Particles?

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Zorn, S. R.; Freutel, F.; Borrmann, S.; Chen, Q.; Farmer, D. K.; Jimenez, J. L.; Flores, M.; Roldin, P.; Artaxo, P.; Martin, S. T.

    2008-12-01

    The contribution of primary biological aerosol (POA) particles to the natural organic aerosol is a subject of current research. Estimations of the POA contribution to the total aerosol particle concentration range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that POA is a major source of supermicron, possibly also of submicron particles. During AMAZE (Amazonian Aerosol CharacteriZation Experiment), a field project near Manaus, Brazil, in February/March 2008, an Aerodyne ToF-AMS was equipped with a high pressure aerodynamic lens. This high pressure lens (operating pressure 14.6 torr) is designed with the objective to extend the detectable size range of the AMS into the supermicron size range where primary biological particles are expected. Size distribution measured by the AMS were compared with size distribution from an optical particle counter and indicate that the high pressure lens has a 50% cut-off at a vacuum aerodynamic diameter of about 1 μm, but still has significant transmission up to a vacuum aerodynamic diameter of about 2 μm, thus extending the detectable size range of the AMS into the coarse mode. The measuring instruments were situated in a container at ground level. The aerosol was sampled through a 40 m vertical, laminar inlet, which was heated and dried to maintain a relative humidity between 30 and 40%. The inlet was equipped with a 7 μm cut-off cyclone. Size distributions recorded with an optical particle counter parallel to the AMS show that the inlet transmitted aerosol particles up to an optically detected diameter of 10 μm. POA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. Laboratory experiments have been performed in order to identify typical mass spectral patterns of these compounds. These laboratory data were compared to size resolved particle

  4. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  5. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.

  6. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations

    NASA Astrophysics Data System (ADS)

    Vergara-Temprado, Jesús; Murray, Benjamin J.; Wilson, Theodore W.; O'Sullivan, Daniel; Browse, Jo; Pringle, Kirsty J.; Ardon-Dryer, Karin; Bertram, Allan K.; Burrows, Susannah M.; Ceburnis, Darius; DeMott, Paul J.; Mason, Ryan H.; O'Dowd, Colin D.; Rinaldi, Matteo; Carslaw, Ken S.

    2017-03-01

    Ice-nucleating particles (INPs) are known to affect the amount of ice in mixed-phase clouds, thereby influencing many of their properties. The atmospheric INP concentration changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concentrations. Many modelling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol composition. Errors in the assumed INP concentration will influence the simulated amount of ice in mixed-phase clouds, leading to errors in top-of-atmosphere radiative flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concentrations relevant for mixed-phase clouds based on laboratory and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine organic aerosols (from sea spray). The simulated global distribution of INP concentrations based on these two species agrees much better with currently available ambient measurements than when INP concentrations are assumed to depend only on temperature or particle size. Underestimation of INP concentrations in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly average basis, desert dusts dominate the contribution to the INP population over much of the world, but marine organics become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine organic aerosols dominate the INP population on many days per month over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order to

  7. Vertical Transport of Aerosol Particles across Mountain Topography near the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Schill, S.; Freeman, S.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Transport of aerosol particles is known to affect air quality and is largely dependent on the characteristic topography of the surrounding region. To characterize this transport, aerosol number distributions were collected with an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS, DMT) during the 2015 NASA Student Airborne Research Program (SARP) in and around the Los Angeles Basin in Southern California. Increases in particle number concentration and size were observed over mountainous terrain north of Los Angeles County. Chemical analysis and meteorological lagrangian trajectories suggest orographic lifting processes, known as the "chimney effect". Implications for spatial transport and distribution will be discussed.

  8. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    NASA Astrophysics Data System (ADS)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2011-05-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of cloud condensation nuclei, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can be formed and grow large enough to influence cloud condensation nuclei (CCN), are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the southern and northern polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high during this extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles up to the size of CCN. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to provide evidence for the probable production of stratospheric CCN from cosmic ray induced ionization.

  9. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Toprak, E.; Vogel, H.

    2014-04-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART regional atmospheric model, using and comparing three different emission parameterizations. Two literature-based emission rates derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization was adapted to field measurements of fluorescent biological aerosol particles (FBAP) from four locations across Northern Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies have suggested the majority of FBAP in several locations are dominated by fungal spores. Thus, we suggest that simulated fungal spore concentrations obtained from the emission parameterizations can be compared to the sum of total FBAP concentrations. A comparison reveals that parameterized estimates of fungal spore concentrations based on literature numbers underestimate measured FBAP concentrations. In agreement with measurement data, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Measured FBAP and simulated fungal spore concentrations also correlate similarly with simulated temperature and humidity. These meteorological variables, together with leaf area index, were chosen to drive the new emission parameterization discussed here. Using the new emission parameterization on a model domain covering Western Europe, fungal spores in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L-1. The results confirm that fungal spores and biological particles may account for a

  10. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Arangio, Andrea M.; Tong, Haijie; Socorro, Joanna; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-10-01

    Fine particulate matter plays a central role in the adverse health effects of air pollution. Inhalation and deposition of aerosol particles in the respiratory tract can lead to the release of reactive oxygen species (ROS), which may cause oxidative stress. In this study, we have detected and quantified a wide range of particle-associated radicals using electron paramagnetic resonance (EPR) spectroscopy. Ambient particle samples were collected using a cascade impactor at a semi-urban site in central Europe, Mainz, Germany, in May-June 2015. Concentrations of environmentally persistent free radicals (EPFR), most likely semiquinone radicals, were found to be in the range of (1-7) × 1011 spins µg-1 for particles in the accumulation mode, whereas coarse particles with a diameter larger than 1 µm did not contain substantial amounts of EPFR. Using a spin trapping technique followed by deconvolution of EPR spectra, we have also characterized and quantified ROS, including OH, superoxide (O2-) and carbon- and oxygen-centered organic radicals, which were formed upon extraction of the particle samples in water. Total ROS amounts of (0.1-3) × 1011 spins µg-1 were released by submicron particle samples and the relative contributions of OH, O2-, C-centered and O-centered organic radicals were ˜ 11-31, ˜ 2-8, ˜ 41-72 and ˜ 0-25 %, respectively, depending on particle sizes. OH was the dominant species for coarse particles. Based on comparisons of the EPR spectra of ambient particulate matter with those of mixtures of organic hydroperoxides, quinones and iron ions followed by chemical analysis using liquid chromatography mass spectrometry (LC-MS), we suggest that the particle-associated ROS were formed by decomposition of organic hydroperoxides interacting with transition metal ions and quinones contained in atmospheric humic-like substances (HULIS).

  11. Contrasting the Evaporation and Condensation of Water from Glassy and Amorphous Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Reid, J. P.; Bones, D. L.; Power, R.; Lienhard, D.; Krieger, U. K.

    2012-04-01

    The partitioning of water between the condensed and gas phases in atmospheric aerosol is usually assumed to occur instantaneously and to be regulated by solution thermodynamics. However, the persistence of high viscosity, glassy and amorphous aerosol to low relative humidity without crystallisation occurring is now widely recognised, suggesting that the timescale for water transport to or from the particle during condensation or evaporation may be significant. A kinetic limitation on water transport could have important implications for understanding hygroscopic growth measurements made on ambient particles, the ability of particles to act as ice nuclei or cloud condensation nuclei, the kinetics of chemical aging/heterogeneous chemistry, and the rate or condensation/evaporation of semi-volatile organic components. In this study we will report on measurements of the timescale of water transport to and from glassy aerosol and ultra-high viscosity solution droplets using aerosol optical tweezers to investigate the time-response of single particles to changes in relative humidity. As a benchmark system, mixed component aerosol particles containing sucrose and sodium chloride have been used; varying the mole fractions of the two solutes allows a wide range of solution viscosities to be studied. We will show that coarse particles can take many thousands of seconds to equilibrate in size and that the timescale correlates with the estimated bulk viscosity of the particle. We will also confirm that significant inhomogeneities in particle composition can be established during evaporation or condensation. Using the experimental data to benchmark a model for equilibration time, predictions can be made of the timescale for the equilibration of accumulation mode particles during water condensation or evaporation and these predictions will be described and their significance explored. Finally, the coalescence dynamics of highly viscous aerosol particles will be reported

  12. Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2013-01-01

    Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.

  13. Aerosol airmass type mapping over the Urban Mexico City region from space-based multi-angle imaging

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2013-09-01

    Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of ≈0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.

  14. Micro-physical properties of carbonaceous aerosol particles generated by laser ablation of a graphite target

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Utry, N.; Pintér, M.; Tápai, Cs.; Kecskeméti, G.; Smausz, T.; Hopp, B.; Bozóki, Z.; Szabó, G.

    2014-09-01

    In this work the authors propose laser ablation as a highly versatile tool for carbonaceous aerosol generation. The generated carbonaceous particles can be used as a model aerosol for atmospheric black carbon. Various microphysical properties including mass concentration, size distribution and morphology of aerosol particles generated by laser ablation of a high purity graphite sample were investigated in detail. These measurements proved that the proposed method can be used to generate both primary particles and fractal aggregates with a high yield. As a further advantage of the method the size distribution of the generated aerosol can cover a wide range, and can be tuned accurately with laser fluence, the ambient composition or with the volumetric flow rate of the carrier gas.

  15. Particle Characterization and Ice Nucleation Efficiency of Field-Collected Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Wang, B.; Gilles, M. K.; Laskin, A.; Moffet, R.; Nizkorodov, S.; Roedel, T.; Sterckx, L.; Tivanski, A.; Knopf, D. A.

    2011-12-01

    Atmospheric ice formation by heterogeneous nucleation is one of the least understood processes resulting in cirrus and mixed-phase clouds which affect the global radiation budget, the hydrological cycle, and water vapor distribution. In particular, how organic aerosol affect ice nucleation is not well understood. Here we report on heterogeneous ice nucleation from particles collected during the CalNex campaign at the Caltech campus site, Pasadena, on May 19, 2010 at 6am-12pm (A2) and 12pm-6pm (A3) and May 23 at 6am-12pm (B2) and 6pm-12am (B4). The ice nucleation onsets and water uptake were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). The ice nucleation efficiency was related to the particle chemical composition. Single particle characterization was provided by using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The STXM/NEXAFS analysis indicates that the morning sample (A2) constitutes organic particles and organic particles with soot and inorganic inclusions. The afternoon sample (A3) is dominated by organic particles with a potentially higher degree of oxidation associated with soot. The B2 sample shows a higher number fraction of magnesium-containing particle indicative of a marine source and ~93% of the particles contained sulfur besides oxygen and carbon as derived from CCSEM/EDX analysis. The B4 sample lacks the strong marine influence and shows higher organic content. Above 230 K, we observed water uptake followed by condensation freezing at mean RH of 93-100% and 89-95% for A2 and A3, respectively. This indicates that the aged A3 particles are efficient ice nuclei (IN) for condensation freezing. Below 230 K A2 and A3 induced deposition ice nucleation between 125-155% RHice (at mean values of 134-150% RHice). The B2 and B4

  16. Applicability of the Effective-Medium Approximation to Heterogeneous Aerosol Particles.

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-01-01

    The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.

  17. Applicability of the effective-medium approximation to heterogeneous aerosol particles

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-07-01

    The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and/or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.

  18. Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; Su, Hang; Pöschl, Ulrich; Wang, Jian; Knopf, Daniel A.

    2017-02-01

    Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation of liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.

  19. Protection of firefighters against combustion aerosol particles: simulated workplace protection factor of a half-mask respirator (pilot study).

    PubMed

    Dietrich, James; Yermakov, Michael; Reponen, Tiina; Kulkarni, Pramod; Qi, Chaolong; Grinshpun, Sergey A

    2015-01-01

    The present pilot study investigated the penetration of ultrafine particles originated by combustion of different materials into elastomeric half-mask respirators equipped with two P100 filters. We determined the Simulated Workplace Protection Factor (SWPF) for 11 firefighters wearing elastomeric half-mask respirators and performing activities simulating those conducted during fire overhaul operations. The tests were performed in a controlled laboratory setting. A newly-developed battery-operated Portable Aerosol Mobility Spectrometer (PAMS) was used to measure size-resolved aerosol particle concentrations outside (C(out)) and inside (Cin) of an air-purifying respirator donned on a firefighter, and the SWPF was calculated as C(out)/C(in). Based on the total aerosol concentration, the "total" SWPF ranged from 4,222 (minimum) to 35,534 (maximum) with values falling primarily in a range from 11,171 (25 percentile) to 26,604 (75 percentile) and a median value being ≈15,000. This is consistent with the recently reported fit factor (FF) data base.((1)) The size-resolved SWPF data revealed a dependency on the particle size. It was concluded that a portable device such as PAMS can be used on firefighters during overhaul operations (as well as on other workers wearing elastomeric half-mask respirators) to monitor the aerosol concentrations in real time and ultimately help prevent overexposure.

  20. Uptake of HNO3 to Deliquescent Sea-Salt and Mineral Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Guimbaud, C.; Vlassenko, A.; Gaggeler, H.; Ammann, M.

    2002-12-01

    Uptake of HNO3 to aerosol particles is an important removal pathway of nitrogen oxides in the troposphere. Uptake of HNO3 to deliquescent sea-salt aerosol particles was studied in an aerosol flow reactor. Submicron sea-salt particles were used to avoid diffusion limitation in the gas-phase at atmospheric pressure. To overcome the sensitivity problems associated with low amount of reactants processed in such low aerosol masses, we used the short-lived radioactive tracer 13N to label the trace gas molecules at very low concentration. Uptake of HNO3 to deliquescent sea-salt particles was studied under a wide range of HNO3 concentration. Between 1 and 60 ppbv, the uptake coefficient was constant at 0.5+/-0.2 within the first few seconds, whereas at higher concentrations of about 600ppbv, the uptake coefficient rapidly dropped to 0.1 after about 1 second. This drop was due to complete release of chloride as HCl. The equilibrium conditions for these experiments were explored using the North American Aerosol Inorganics (AIM) model, which accounts for the activities of the concentrated solution of the deliquescent aerosol. It is concluded that the rates of uptake at low concentration were limited by the mass accommodation coefficient as both the diffusion in the liquid phase or the rate of release of HCl were not rate limiting. Using an identical approach, we started to investigate the uptake of HNO3 to mineral dust aerosol particles in a similar flow reactor, and first results will be presented. References Ammann, M, Using 13N as tracer in heterogeneous atmospheric chemistry experiments, Radiochim. Acta., 89, 831-838, 2001 Guimbaud, C., F., Arens, L., Gutzwiller, H.W, Gäggeler, and M. Ammann, Uptake of HNO3 to Deliquescent Sea-Salt Aerosol Particles, Atmos. Chem. Phys. Discuss., 2, 739-763, 2002

  1. On-the-Fly Cross Flow Laser Guided Separation of Aerosol Particles Based on Size, Refractive Index and Density-Theoretical Analysis

    DTIC Science & Technology

    2010-12-20

    17,18], tweezing and manipulation [19–23]. A common thrust for optical trapping studies in liquids is that many analytical methods for detecting...several orders of magnitude greater than typical particle speeds used in previous studies in liquid medium. The calculations are presented for...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING

  2. Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign

    NASA Astrophysics Data System (ADS)

    Ye, Xingnan; Tang, Chen; Yin, Zi; Chen, Jianmin; Ma, Zhen; Kong, Lingdong; Yang, Xin; Gao, Wei; Geng, Fuhai

    2013-01-01

    The hygroscopic properties of submicrometer urban aerosol particles were studied during the 2009 Mirage-Shanghai Campaign. The urban aerosols were composed of more-hygroscopic and nearly-hydrophobic particles, together with a trace of less-hygroscopic particles. The mean hygroscopicity parameter κ of the more-hygroscopic mode varied in the range of 0.27-0.39 depending on particle size. The relative abundance of the more-hygroscopic particles at any size was ca. 70%, slightly increasing with particle size. The number fraction of the nearly-hydrophobic particles fluctuated between 0.1 and 0.4 daily, in accordance with traffic emissions and atmospheric diffusion. The results from relative humidity dependence on hygroscopic growth and chemical analysis of fine particles indicated that particulate nitrate formation through the homogenous gas-phase reaction was suppressed under ammonia-deficient atmosphere in summer whereas the equilibrium was broken by more available NH3 during adverse meteorological conditions.

  3. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Ge, Xinlei; Chen, Yanfang; Shen, Yafei; Zhang, Qi; Sun, Yele; Xu, Jianzhong; Ge, Shun; Yu, Huan; Chen, Mindong

    2016-07-01

    In this work, the Aerodyne soot particle - aerosol mass spectrometer (SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD) of China, for online characterization of the submicron aerosols (PM1). The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC) simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics). The average PM1 concentration was found to be 28.2 µg m-3, with organics (45 %) as the most abundant component, following by sulfate (19.3 %), nitrate (13.6 %), ammonium (11.1 %), rBC (9.7 %), and chloride (1.3 %). These PM1 species together can reconstruct ˜ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (< 100 nm vacuum aerodynamic diameter) were dominated by organics and rBC, while large particles had significant contributions from secondary inorganic species. Source apportionment of organic aerosols (OA) yielded four OA subcomponents, including hydrocarbon-like OA (HOA), cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5 %), but primary organic aerosol (POA, equal to the sum of HOA and COA) can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand, in contrast to other species

  4. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  5. Measurements of aerosol particles in the Škocjan Caves, Slovenia.

    PubMed

    Grgić, Irena; Iskra, Ivan; Podkrajšek, Boštjan; Gerjevič, Vanja Debevec

    2014-02-01

    For the first time, continuous aerosol measurements were performed in the Škocjan Caves, one of the most important cave systems in the world, and listed by UNESCO as a natural and cultural world heritage site since 1986. Measurements of PM10 were performed during three different periods: (1) in December 2011, the average background concentration was found to be about 4 μg m(-3); (2) in June 2012, a higher concentration was measured (8 μg m(-3)); and (3) from 8 to 20 August 2012, the highest concentration of 15.3 μg m(-3) was measured. Based on the PM10 measurement results, and as compared to similar measurements outside the cave, it can be hypothesized that the increase in the cave's aerosol concentration during the summer was connected to both the higher number of visitors and the polluted atmospheric air entering the cave upon entering of the cave system. Additional measurement of nanoparticles with scanning mobility particle sizer spectrometer (size between 14.1 and 710.5 nm) confirmed these findings; during the summer period, a severe raise in the total aerosol concentration of 30-50 times was found when groups of visitors entered the cave. Our results on nanoparticles demonstrated that we were able to detect very small changes and variations in aerosol concentration inside the cave. To our knowledge, these are the first results on nanoaerosol measurements in a cave, and we believe that such measurements may lead to the implementation of better protection of delicate cave systems.

  6. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  7. Evaluating the applicability of a semi-continuous aerosol sampler to measure Asian dust particles.

    PubMed

    Son, Se-Chang; Park, Seung Shik

    2015-03-01

    A Korean prototype semi-continuous aerosol sampler was used to measure Asian dust particles. During two dust-storm periods, concentrations of crustal and trace elements were significantly enriched. Dust storms are one of the most significant natural sources of air pollution in East Asia. The present study aimed to evaluate use of a Korean semi-continuous aerosol sampler (K-SAS) in observation of mineral dust particles during dust storm events. Aerosol slurry samples were collected at 60 min intervals using the K-SAS, which was operated at a sampling flow rate of 16.7 L min(-1) through a PM10 cyclone inlet. The measurements were made during dust storm events at an urban site, Gwangju in Korea, between April 30 and May 5, 2011. The K-SAS uses particle growth technology as a means of collecting atmospheric aerosol particles. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, and Se) were determined off-line in the collected slurry samples by inductively coupled plasma-mass spectrometry (ICP-MS). The sampling periods were classified into two types, based on the source regions of the dust storms and the transport pathways of the air masses reaching the sampling site. The first period "A" was associated with dust particles with high Ca content, originating from the Gobi desert regions of northern China and southern Mongolia. The second period "B" was associated with dust particles with low Ca content, originating from northeastern Chinese sandy deserts. The results from the K-SAS indicated noticeable differences in concentrations of crustal and trace elements in the two sampling periods, as a result of differences in the source regions of the dust storms, the air mass transport pathways, and the impact of smoke from forest fires. The concentrations of the crustal (Al, Ca, Ti, Mn, and Fe) and anthropogenic trace elements (Vi, Ni, Cu, Zn, As, Se, and Pb) were enriched significantly during the two dust storm periods. However, the

  8. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  9. Observations of Smoke Aerosol from Biomass Burning in Mexico: Effect of Particle Aging on Radiative Forcing and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Bruintjes, Roelof; Holben, Brent N.; Christopher, Sundar

    1999-01-01

    We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.

  10. Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci

    NASA Astrophysics Data System (ADS)

    Kosmale, Miriam; Popp, Thomas

    2016-04-01

    Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.

  11. Comparison of Aerosol Optical Depth from GOES Aerosol and Smoke Product (GASP) and MODIS to AERONET AOD and IMPROVE PM2.5 Mass at Bondville, Illinois Stratified by Chemical Composition, RH, Particle Size, and Season

    NASA Astrophysics Data System (ADS)

    Green, M. C.; Kondragunta, S.; Ciren, P.

    2008-05-01

    The USEPA is interested in using satellite remote sensing data to estimate levels of PM2.5. Here we report on comparisons of aerosol optical depth (AOD) from GOES Aerosol and Smoke Product (GASP) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to IMPROVE network PM2.5 mass and AErosol RObotic NETwork (AERONET) ground-based AOD. Before we compare GASP and MODIS AOD to PM2.5, we first evaluate satellite AOD using the ground-based AERONET measurements and how it varies by aerosol chemical composition and size distribution. We focus attention on the Bondville, Illinois site because there is collocated IMPROVE sampling and an AERONET site. GASP provides aerosol optical depth at 0.55 um using top of atmosphere visible channel radiance measured from GOES east and GOES west. Time resolution is typically every 30 minutes during daylight hours. MODIS provides typically once per day AOD for any given location. The IMPROVE sampler provides a 24-hour integrated sample of PM10 mass, and PM2.5 mass and elemental composition on a one day in three schedule. AERONET provides aerosol optical depth at multiple wavelengths and aerosol size distribution as well as other derived parameters such as Angstrom exponent from ground based daytime measurements. We stratified cases by RH group, major chemical component, size distribution, and season. GOES AOD correlated best with PM2.5 mass during periods with mainly small particles, moderate RH, and sulfate dominated aerosol. It correlated poorly when RH is very high or low, aerosol is primarily organic, and when coarse to fine mass ratio is high. GASP AOD also correlated best with AERONET AOD when particles are mainly fine, suggesting the aerosol model assumptions (e.g. size distribution) may need to be varied geographically for GASP to achieve better AOD results.

  12. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments.

    PubMed

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Hsi-Hsien; Wu, Jheng-Syun

    2008-05-01

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400 degrees C are considered. Experimental observations indicate that when the reaction temperature is 1000 degrees C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400 degrees C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000 degrees C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400 degrees C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000 degrees C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400 degrees C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.

  13. [Hygroscopic Properties of Aerosol Particles in North Suburb of Nanjing in Spring].

    PubMed

    Xu, Bin; Zhang, Ze-feng; Li, Yan-weil; Qin, Xin; Miao, Qing; Shen, Yan

    2015-06-01

    The hygroscopic properties of submicron aerosol particles have significant effects on spectral distribution, CCN activation, climate forcing, human health and so on. A Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) was utilized to analyze the hygroscopic properties of aerosol particles in the northern suburb of Nanjing during 16 April to 21 May, 2014. At relative humidity (RH) of 90%, for particles with dry diameters 30-230 nm, the probability distribution of GF (GF-PDF) shows a distinct bimodal pattern, with a dominant more-hygroscopic group and a smaller less-hygroscopic group. A contrast analysis between day and night suggests that, aerosol particles during day time have a stronger hygroscopicity and a higher number fraction of more-hygroscopic group than that at night overall. Aerosol particles during night have a higher degree of externally mixed state. Backward trajectory analysis using HYSPLIT mode reveals that, the sampling site is mainly affected by three air masses. For aitken nuclei, northwest continental air masses experience a longer aging process and have a stronger hygroscopicity. For condensation nuclei, east air masses have a stronger hygroscopicity and have a higher number fraction of more-hygroscopic group. Aerosol particles in local air masses have a high number fraction of more-hygroscopic group in the whole diameter range.

  14. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  15. Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume

    NASA Astrophysics Data System (ADS)

    Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.

    2011-12-01

    The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce

  16. Variation in penetration of submicrometric particles through electrostatic filtering facepieces during exposure to paraffin oil aerosol.

    PubMed

    Plebani, Carmela; Listrani, Stefano; Tranfo, Giovanna; Tombolini, Francesca

    2012-01-01

    Several studies show the increase of penetration through electrostatic filters during exposure to an aerosol flow, because of particle deposition on filter fibers. We studied the effect of increasing loads of paraffin oil aerosol on the penetration of selected particle sizes through an electrostatic filtering facepiece. FFP2 facepieces were exposed for 8 hr to a flow rate of 95.0 ± 0.5 L/min of polydisperse paraffin aerosol at 20.0 ± 0.5 mg/m(3). The penetration of bis(2-ethylhexyl)sebacate (DEHS) monodisperse neutralized aerosols, with selected particle size in the 0.03-0.40 μm range, was measured immediately prior to the start of the paraffin aerosol loading and at 1, 4, and 8 hr after the start of paraffin aerosol loading. Penetration through isopropanol-treated facepieces not oil paraffin loaded was also measured to evaluate facepiece behavior when electrostatic capture mechanisms are practically absent. During exposure to paraffin aerosol, DEHS penetration gradually increased for all aerosol sizes, and the most penetrating particle size (0.05 μm at the beginning of exposure) shifted slightly to larger diameters. After the isopropanol treatment, the higher penetration value was 0.30 μm. In addition to an increased penetration during paraffin loading at a given particle size, the relative degree of increase was greater as the particle size increased. Penetration value measured after 8 hr for 0.03-μm particles was on average 1.6 times the initial value, whereas it was about 8 times for 0.40-μm particles. This behavior, as well evidenced in the measurements of isopropanol-treated facepieces, can be attributed to the increasing action in particle capture of the electrostatic forces (Coulomb and polarization), which depend strictly on the diameter and electrical charge of neutralized aerosol particles. With reference to electrostatic filtering facepieces as personal protective equipment, results suggest the importance of complying with the manufacturer

  17. A Method for Measuring the Density of Irregularly Shaped Aerosol Particles Such as Pollen

    NASA Astrophysics Data System (ADS)

    van Hout, R.; Katz, J.

    2003-12-01

    Prediction of the long distance dispersal of (biological) aerosol particles, such as pollen, in the atmosphere is of great importance in pollution control and allergy studies. The particle parameters affecting dispersal include size, shape and density. In this work a simple method has been tested and implemented for measuring the density of aerosols without prior knowledge of their size and shape. The method is based on measurement of the settling velocity of particles in two fluids with different density and viscosity at low Reynolds numbers (Stokes flow). Consequently, the settling velocity is proportional to the particle size and density. For two statistically similar samples of particles, based on pdf of equivalent projected area diameter, the pdf of the particle settling velocity was measured in two fluids with different density and viscosity (Dow Corning 200 fluid). For known fluid properties, the resulting particle density is then proportional to the ratio of the settling velocities in the two fluids. The method was used to determine the density of corn (Zea Mays) pollen. The pollen settling velocity was measured in a square settling chamber (5x5x45cm) using in-line digital holography that allows in-focus tracking of the pollen in a 3-D sample volume. Additional advantages of in-line digital holography are its simple setup and the possibility of recording holographic movies. The measured mean corn pollen density was 1119.3 kg/m3 with an absolute error of 45.2 kg/m3. Pdf's of size distributions (based on projected areas) of corn pollen were determined using optical microscopy and Scanning Electron Microscopy (SEM). These observations were performed with pollen immersed in both Dow Corning 200 fluids as well as in a dry state. No change in size and shape were observed. However when immersed in water, the corn pollen grew and became nearly spherical. Thus, for a known pollen density and size distribution, Stokes' Law for a sphere could be used to predict the

  18. Inferring aerosol types over the Indo-Gangetic Basin from ground based sunphotometer measurements

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Tripathi, S. N.; Dey, Sagnik; Kanawade, V. P.; Tiwari, S.

    2012-06-01

    A discrimination of aerosol types over the Indo-Gangetic Basin (IGB) region during pre-monsoon period was made using multi-year ground based sun/sky radiometer measured aerosol products associated with the size of aerosols and radiation absorptivity. High dust enriched aerosols (i.e. polluted dust, PD) were found to contribute more over the central IGB station at Kanpur (KNP, 62%) as compared to the eastern IGB station at Gandhi College (GC, 31%) whereas vice-versa was observed for polluted continental (PC) aerosols, which contain high anthropogenic and less dust aerosols. Contributions of carbonaceous particles having high absorbing (mostly black carbon, MBC) and low absorbing (mostly organic carbon, MOC) aerosols were found to be 11% and 10%, respectively at GC, which was ~ 46% and 62% higher than the observed contributions at KNP; however, very less contribution of non-absorbing (NA) aerosols was observed only at GC (2%). Variability in aerosol types together with single scattering albedo (SSA) at both the stations were also studied during the forenoon (FN) and afternoon (AN) hour, which suggests their strong association with emission sources. Results were well substantiated with the air mass back-trajectories and the fire products. Spectral information of SSA for each aerosol type discriminates the dominance of natural dust (SSA increases with increasing wavelength) with anthropogenic aerosols (SSA decreases with increasing wavelength) at both the locations. The estimated absorption Ångström exponent (AAE) values suggest relative dominance of absorbing type aerosols over the central part of IGB (due to dominant dust absorption) as compared to the eastern part during pre-monsoon period.

  19. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate

    NASA Astrophysics Data System (ADS)

    Huffman, Donald R.; Swanson, Benjamin E.; Huffman, J. Alex

    2016-08-01

    We describe a novel, low-cost instrument to acquire both elastic and inelastic (fluorescent) scattering spectra from individual supermicron-size particles in a multi-particle collection on a microscope slide. The principle of the device is based on a slitless spectroscope that is often employed in astronomy to determine the spectra of individual stars in a star cluster but had not been applied to atmospheric particles. Under excitation, most commonly by either a 405 nm diode laser or a UV light-emitting diode (LED), fluorescence emission spectra of many individual particles can be determined simultaneously. The instrument can also acquire elastic scattering spectra from particles illuminated by a white-light source. The technique also provides the ability to detect and rapidly estimate the number fraction of fluorescent particles that could contaminate a collection of non-fluorescent material, even without analyzing full spectra. Advantages and disadvantages of using black-and-white cameras compared to color cameras are given. The primary motivation for this work has been to develop an inexpensive technique to characterize fluorescent biological aerosol particles, especially particles such as pollen and mold spores that can cause allergies. An example of an iPhone-enabled device is also shown as a means for collecting data on biological aerosols at lower cost or by utilizing citizen scientists for expanded data collection.

  20. Filterable redox cycling activity: a comparison between diesel exhaust particles and secondary organic aerosol constituents.

    PubMed

    McWhinney, Robert D; Badali, Kaitlin; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D

    2013-04-02

    The redox activity of diesel exhaust particles (DEP) collected from a light-duty diesel passenger car engine was examined using the dithiothreitol (DTT) assay. DEP was highly redox-active, causing DTT to decay at a rate of 23-61 pmol min(-1) μg(-1) of particle used in the assay, which was an order of magnitude higher than ambient coarse and fine particulate matter (PM) collected from downtown Toronto. Only 2-11% of the redox activity was in the water-soluble portion, while the remainder occurred at the black carbon surface. This is in contrast to redox-active secondary organic aerosol constituents, in which upward of 90% of the activity occurs in the water-soluble fraction. The redox activity of DEP is not extractable by moderately polar (methanol) and nonpolar (dichloromethane) organic solvents, and is hypothesized to arise from redox-active moieties contiguous with the black carbon portion of the particles. These measurements illustrate that "Filterable Redox Cycling Activity" may therefore be useful to distinguish black carbon-based oxidative capacity from water-soluble organic-based activity. The difference in chemical environment leading to redox activity highlights the need to further examine the relationship between activity in the DTT assay and toxicology measurements across particles of different origins and composition.

  1. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  2. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  3. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model

  4. Isotope Analysis of Individual Aerosol Particles - a New Tool for Studying Heterogeneous Processes

    NASA Astrophysics Data System (ADS)

    Winterholler, B.; Hoppe, P.; Huth, J.; Andreae, M. O.; Foley, S.

    2006-12-01

    Sources of atmospheric sulfur and its oxidation pathways are studied by isotope analysis of sulfate particles. conventional gas mass spectrometry averages the isotopic compositions of millions of aerosol grains and, therefore, several different types of sulphur aerosol. The new Cameca NanoSIMS 50 ion microprobe technique permits isotope analyses of individual aerosol particles down to 0.5 μm diameter. Combining the chemical composition and isotopic signature of individual particles enables source apportionment of non-sea-salt (nss) sulfate and elucidating mixing processes between nss sulfate and sea-salt sulfate for each sample. Results from aerosol samples collected in Mace Head (Western Ireland) are presented. These samples represent different airmass types, such as clean marine boundary layer air, moderately polluted air and strongly polluted air transported from the continent. Fresh aerosol preserves the original isotopic signature of sea-salt and nss sulfate in separate particles, the latter being present predominantly in the form of ammonium sulfate. This enables us to identify oxidation of nss sulfate in deliquescent sea salt particles by means of their sulfur isotope ratio. Cloud processing however, leads to a complete homogenization as far as the sulfur isotopic signature is concerned.

  5. Limits of DPUI application associated with the number of particles within actinide aerosols.

    PubMed

    Fritsch, P; Raynaud, P; Blanchin, N; Mièle, A

    2007-01-01

    Dose per unit intake (DPUI) of radionuclides is obtained using International Commission on Radiological Protection (ICRP) models. After inhalation exposure, the first model calculates the fraction of activity deposited within the different regions of the respiratory tract, assuming that the aerosol contains an infinite number of particles. Using default parameters for workers, an exposure to one annual limit of intake (ALI) corresponds to an aerosol of 239PuO2 containing approximately 1 x 10(6) particles. To reach such an exposure, very low particle number might be involved especially for compounds having a high specific activity. This study provides examples of exposures to actinide aerosols for which the number of particles is too low for a standard application of the ICRP model. These examples, which involve physical studies of aerosols collected at the workplace and interpretation of bioassay data, show that the number of particles of the aerosol can be the main limit for the application of DPUI after inhalation exposure.

  6. A rocket-borne mass analyzer for charged aerosol particles in the mesosphere

    SciTech Connect

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Friedrich, Martin

    2008-10-15

    An electrostatic mass spectrometer for nanometer-sized charged aerosol particles in the mesosphere has been developed and tested. The analyzer is mounted on the forward end of a rocket and has a slit opening for admitting a continuous sample of air that is exhausted through ports at the sides. Within the instrument housing are two sets of four collection plates that are biased with positive and negative voltages for the collection of negative and positive aerosol particles, respectively. Each collection plate spans about an order of magnitude in mass which corresponds to a factor of 2 in radius. The number density of the charge is calculated from the current collected by the plates. The mean free path for molecular collisions in the mesosphere is comparable to the size of the instrument opening; thus, the analyzer performance is modeled by a Monte Carlo computer code that finds the aerosol particles trajectories within the instrument including both the electrostatic force and the forces from collisions of the aerosol particles with air molecules. Mass sensitivity curves obtained using the computer models are near to those obtained in the laboratory using an ion source. The first two flights of the instrument returned data showing the charge number densities of both positive and negative aerosol particles in four mass ranges.

  7. The Humidity Dependence of N2O5 Uptake to Citric Acid Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Grzinic, G.; Bartels-Rausch, T.; Tuerler, A.; Ammann, M.

    2013-12-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. The heterogeneous loss of N2O5 to aerosol particles has remained uncertain, and reconciling lab and field data has demonstrated some gaps in our understanding of the detailed mechanism. We used the short-lived radioactive tracer 13N to study N2O5 uptake kinetics on aerosol particles in an aerosol flow reactor at ambient pressure, temperature and relative humidity. Citric acid, representing strongly oxidized polyfunctional organic compounds in atmospheric aerosols, has been chosen as a proxy due to its well established physical properties. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 15-75 % RH, within which the uptake coefficient varies between about 0.001 and about 0.02. Taking into account the well established hygroscopic properties of citric acid, we interpret uptake in terms of disproportionation of N2O5 into nitrate ion and nitronium ion and reaction of the latter with liquid water.

  8. Submicron Aerosol Characterization of Water by a Differential Mobility Particle Sizer.

    DTIC Science & Technology

    1987-02-01

    relevant to modern science and industry. N *% ~ ~ ~?1 *1?%~%~ 0.0 :~. % % his ’i tl’tt Security Classif ication KIEV WORDS Submricron aerosols Water ...7 :-711 no0 StIHICRON AEROSOL CHARACTERIZATION OF WATER DY A vi1 DIFFERENTIAL NOBILITY PA.. (U) DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON... WATER BY A DIFFERENTIAL MOBILITY PARTICLE SIZER (U) by B. Kournikakis, A. Gunning, J. Fildes and J. Ho Project No. 251SD EL .TE APR 099?07uD February

  9. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Weigel, Ralf; Kandler, Konrad; Günther, Gebhard; Molleker, Sergej; Grooß, Jens-Uwe; Vogel, Bärbel; Weinbruch, Stephan; Borrmann, Stephan

    2016-07-01

    Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate / carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ˜ 5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  10. Dual-wavelength-excitation single-particle fluorescence spectrometer/particle sorter for real-time measurement of organic carbon and biological aerosols

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Pinnick, Ron G.; Hill, Steven C.; Huang, Hermes; Chang, Richard K.

    2008-10-01

    We report the development of a Single-Particle Fluorescence Spectrometer (SPFS) system capable of measuring two UV-laser excited fluorescence spectra from a single particle on-the-fly. The two dispersed fluorescence spectra are obtained from excitation by two lasers at different wavelengths (263 nm and 351 nm). The SPFS samples single particles with sizes primarily in the 1-10 μm range. The fluorescence spectra are recorded from 280 nm to 600 nm (in 20 channels) for 263 nm excitation and from 370 nm to 700 nm (in 22 channels) for 351 nm excitation. The elastic scattering (channel 4 and 9) is also recorded for sizing each particle. A time stamp for single particles is marked with a variable time interval resolution from 10 ms to 10 minutes. The SPFS employs a virtual-impactor concentrator to concentrate respirable-sized particles with a resulting (size-dependent) effective flow rate of around 100 liters/min. The SPFS can measure single-particle spectra at a maximum rate of 90,000/sec, although the highest rates we have experienced for the ambient are only several hundred/sec. When the SPFS is combined with an aerodynamic deflector (puffer) to sort particles according to their fluorescence spectral characteristics, the SPFS/puffer system can selectively deflect and collect an enriched sample of targeted particles (at rates limited by the puffer) of 1200 particles/sec, for further examination. In laboratory tests, aerosol particles with similar UV-LIF spectra (e.g. B. subtilis and E.coli) are puffed into the reservoir of a micro-fluidic cell, where fluorescent-labeled antibodies bind to them and were classified by their labeled fluorescence. Measurements of the background ambient aerosol with the SPFS system made at sites with different regional climate (Connecticut, Maryland, and New Mexico) were clustered (unstructured hierarchical analysis) into 8-10 groups, with over 90% of all the fluorescent particles contained within these clusters (threshold dot product=0

  11. Progress Towards Identifying and Quantifying the Organic Ice Nucleating Particles in Soils and Aerosols

    NASA Astrophysics Data System (ADS)

    Hill, T. C. J.; DeMott, P. J.; Fröhlich-Nowoisky, J.; Tobo, Y.; Suski, K. J.; Levin, E. J.; Kreidenweis, S. M.; Franc, G. D.

    2014-12-01

    Soil and plant surfaces emit ice nucleating particles (INP) to the atmosphere, especially when disturbed by wind, harvesting, rain or fire. Organic (biogenic) INP are abundant in most soils and dominate the population that nucleate >-15°C. For example, the sandy topsoil of sagebrush shrubland, a widespread ecotype prone to wind erosion after fire, contains ~106 organic INP g-1 at -6°C. The relevance of organic INP may also extend to colder temperatures than previously thought: Particles of soil organic matter (SOM) have been shown to be more important than mineral particles for the ice nucleating ability of agricultural soil dusts to -34°C. While the abundance of ice nucleation active (INA) bacteria on plants has been established, the identity of the organic INP in and emitted by soils remains a 40-year-old mystery. The need to understand their production and release is highlighted by recent findings that INA bacteria (measured with qPCR) account for few, if any, of the warm-temperature organic INP that predominate in boundary layer aerosols and snow; organic INP lofted with soil dusts seem a likely source. The complexity of SOM hinders its investigation. It contains decomposing plant materials, a diverse microbial and microfaunal community, humus, and inert organic matter. All are biochemically complex and all may contain ice nucleating constituents, either by design or by chance. Indeed the smoothness of the INP temperature spectra of soils is indicative of numerous, overlapping distributions of INP. We report recent progress in identifying and quantifying the organic INP in soils and boundary layer aerosols representative of West Central U.S. ecosystems, and how their characteristics may affect their dispersal. Chemical, enzymatic and DNA-based tests were used to assess contributions of INP from plant tissues, INA bacteria, INA fungi, organic crystals, monolayers of aliphatic alcohols, carbohydrates, and humic substances, while heat- and peroxide-based tests

  12. Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic

    NASA Astrophysics Data System (ADS)

    Anastasio, Cort; Jordan, Andrea L.

    We have studied oxidant photoformation in aqueous extracts of aerosol particles collected from Alert, Nunavut, Canada during springtime. Absorption spectra of the extracts reveal that Alert particles have tremendous light absorption coefficients (e.g., α300˜100 cm -1) as a result of unidentified, pH-dependent, water-soluble chromophores. Illumination of the extracts leads to the rapid formation of both hydroxyl radical ( rad OH) and hydrogen peroxide (HOOH). Based on our laboratory results, the calculated rate of rad OH photoformation in Alert particles is very rapid, ˜1 mM h -1 (midday, 1 April, 248 K), with nitrate photolysis contributing only ˜10% of the total rate. Deposition of these aerosol particles, in conjunction with smaller contributions from gaseous chromophores, leads to estimated rates of rad OH photoformation in the quasi-liquid layer of surface snow of 20-40 μM h -1; approximately a third of this reactivity is from nitrate photolysis. The estimated 24-h-average rate of HOOH photoformation in Alert particles (˜9 mM h -1 on 1 April) is large enough to be a major source of HOOH to both the particles and the gas phase. In contrast, particle-derived reactions in the snow appear to be a minor source of HOOH to the surface snowpack. The effects of rad OH and HOOH photoformation in particles and snowpack likely include the oxidation of organic carbon, halides, and S(IV) species to yield products such as volatile aldehydes and carboxylic acids, photoactive halogens, and sulfuric acid. In addition, rad OH and HOOH photoformation within the snowpack might significantly alter snow and ice core records of HOOH and other trace gases.

  13. Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Freney, Evelyn J.; Buseck, Peter R.

    2011-07-01

    Hygroscopic aerosol particles change the magnitude of light scattering through condensation and evaporation of water vapor. We collected aerosol particles from two megacities and observed the particle shapes at various values of relative humidity (RH) using an environmental cell within a transmission electron microscope. Many Mexico City samples had sulfate particles that were embedded within weakly hygroscopic organic aerosol, whereas the Los Angeles samples mainly consisted of externally mixed sulfate particles. For the Mexico City samples, when the RH was increased in the microscope, only the sulfate parts deliquesced, but the entire particle did not become spherical, i.e., particles containing deliquescent phases do not necessarily become spherical upon deliquescence. This result conflicts with the assumption used in many models, i.e., that deliquesced particles become spherical. Using a discrete-dipole approximation to calculate light scattering of simulated particles that resemble the observed ones, we show that, for particles >1.0 μm, the spherical-shape assumption used in Mie theory underestimates the light scattering by ˜50%, with the exact value depending on the sizes and relative volumes of the constituent phases.

  14. Anthropogenic monoterpene pollution episodes in a forest environment in association with aerosol particles

    NASA Astrophysics Data System (ADS)

    Liao, L.; Taipale, R.; Dal Maso, M.; Ehn, M.; Junninen, H.; Nieminen, T.; Kerminen, V.; Kulmala, M. T.

    2010-12-01

    Monoterpenes (MT) present in troposphere affect atmospheric chemistry and air quality. The oxidation of monoterpenes leading to secondary organic aerosol formation can affect aerosol loadings, and further influence the climate system. Identified sources of MT include biogenic and anthropogenic origins. In this study, we present a four-year set observation of MT to examine: 1. the origin and the quantification of elevated MT concentrations. 2. The influence of enhanced MT emissions on local air chemistry and possible associated pollutants. 3. Possible influence of anthropogenic MT emissions on physical and chemical properties of enhanced aerosol particles. VOC observations were continuously con-ducted using a PTR-MS from Jun. 12 2006 to Sep. 24 2007 and from Jun. 1 2008 to Mar. 3 2009. As an example, MT observed on March 8, 2007 are plotted in Figure 1 along with DMPS. The DMPS spectra show simultaneous elevations of Aitken-mode particles seen as red colors when monoterpenes are dramatically elevated during six short periods on this day. Out of the four-year dataset amounting to 580 days in total, 27.4% of the days showed MT pollution episodes. The sum of the total episode durations is equal to 3.62% time of the whole PTR-MS measurement period. The average concentration of MT was increased from 0.205 to 0.270 ppbv, which roughly results in 32% overestimation of biogenic MT without considering the influence of these anthropogenic emissions. The origin of episodes is mainly from the Korkeakoski sawmill which is ca. 6 km away from the SMEAR II station and 130 degrees South East direction. VOCs are the main pollutants from sawmill. We did not see clear connections between MT and other gas pollutants during MT episodes. The case studies have shown that other associated pollutants may be occasionally emitted. The strong link between anthropogenic MT and aerosol particles suggest that sawmills could be a main source of anthropogenic VOCs, as well as aerosol loading at the

  15. Urban organic aerosols measured by single particle mass spectrometry in the megacity of London

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.

    2012-05-01

    During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were already discussed (Dall'Osto et al., 2009a,b; Harrison et al., 2012). In this manuscript the origins and properties of four unreported particle types postulated to be due to locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings although it could not unambiguously associated with a specific source or atmospheric process. The fourth class (Secondary Organic Aerosols - Polycyclic Aromatic Hydrocarbon; SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary aerosol production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. A comparison of ATOFMS particle class data is then made with factors obtained by Positive Matrix Factorization and PAH signatures obtained from Aerosol Mass Spectrometer (AMS) data (Allan et al., 2010). Both the Ca-EC and OC particle types correlate with primary Hydrocarbon-like Organic Aerosol (HOA, R2 = 0.65 and 0.50 respectively), and Na-EC-OC correlates weakly with the AMS

  16. Differential aerosolization of algal and cyanobacterial particles in the atmosphere.

    PubMed

    Sharma, Naveen K; Singh, Surendra

    2010-10-01

    Aeroalgal sampling at short height (2.5 m) over natural aquatic and terrestrial algal sources revealed that despite of being similar in size (<1 mm), algal groups vary in their atmospheric abundance. Cyanobacteria were the most abundant, while chlorophytes and bacillariophytes though present, but rare. Statistical analysis (Akaike Information Criterion) showed that climatic factors (temperature, relative humidity, rainfall, wind velocity and sunshine hours) acted in concert, and mainly affected the release and subsequent vertical movement (aerosolization) of algae from natural sources. Variation in aerosolization may affect the atmospheric abundance of algae. These findings have important implication as dispersal limitation may influence the biogeography and biodiversity of microbial algae.

  17. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  18. Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, Christopher; Wiedemann, Kenia T.; Sinha, Bärbel; Shiraiwa, Manabu; Gunthe, Sachin S.; Smith, Mackenzie; Su, Hang; Artaxo, Paulo; Chen, Qi; Cheng, Yafang; Elbert, Wolfgang; Gilles, Mary K.; Kilcoyne, Arthur L. D.; Moffet, Ryan C.; Weigand, Markus; Martin, Scot T.; Pöschl, Ulrich; Andreae, Meinrat O.

    2012-08-01

    The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.

  19. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  20. Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study

    NASA Astrophysics Data System (ADS)

    Leng, C.; Zhang, Q.; Zhang, D.; Zhang, H.; Xu, C.; Li, X.; Kong, L.; Tao, J.; Cheng, T.; Zhang, R.; Chen, J.; Qiao, L.; Lou, S.; Wang, H.; Chen, C.

    2014-07-01

    New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a actor of 1.2-1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a~rate of 4.33 μg cm-3 h-1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h-1 and 0.36 cm-3 s-1, respectively. The newly formed particles grew quickly from nucleation mode (10-20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4-1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN / NCN) were significantly enhanced from 0.24-0.60 to 0.30-0.91 at SS of 0.2-1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2 = 0.96, Npredicted / Nmeasured = 1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra, thus significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g. 1.0%) conditions.

  1. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  2. Aerosol Source Plume Physical Characteristics from Space-based Multiangle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Li, W.-H.; Moroney, Catherine; Diner, David J.; Martonchik, John V.; Fishbein, Evan

    2007-01-01

    Models that assess aerosol effects on regional air quality and global climate parameterize aerosol sources in terms of amount, type, and injection height. The multiangle imaging spectroradiometer (MISR) aboard NASA's Terra satellite retrieves total column aerosol optical thickness (AOT), and aerosol type over cloud-free land and water. A stereo-matching algorithm automatically retrieves reflecting-layer altitude wherever clouds or aerosol plumes have discernable spatial contrast, with about 500-m accuracy, at 1.1-km horizontal resolution. Near-source biomass burning smoke, volcanic effluent, and desert dust plumes are observed routinely, providing information about aerosol amount, particle type, and injection height useful for modeling applications. Compared to background aerosols, the plumes sampled have higher AOT, contain particles having expected differences in Angstrom exponent, size, single-scattering albedo, and for volcanic plume and dust cloud cases, particle shape. As basic thermodynamics predicts, thin aerosol plumes lifted only by regional winds or less intense heat sources are confined to the boundary layer. However, when sources have sufficient buoyancy, the representative plumes studied tend to concentrate within discrete, high-elevation layers of local stability; the aerosol is not uniformly distributed up to a peak altitude, as is sometimes assumed in modeling. MISR-derived plume heights, along with meteorological profile data from other sources, make it possible to relate radiant energy flux observed by the moderate resolution imaging spectroradiometer (MODIS), also aboard the Terra spacecraft, to convective heat flux that plays a major role in buoyant plume dynamics. A MISR climatology of plume behavior based on these results is being developed.

  3. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  4. Balloon borne measurements of aerosol and cloud particles over Japan during PACDEX

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Orikasa, N.; Nagai, T.; Murakami, M.; Tajiri, T.; Saito, A.; Yamashita, K.

    2007-12-01

    This paper presents the preliminary result of the balloon borne measurements of the aerosol and cloud microphysical properties over Tsukuba (36.1°N, 140.1°E), Japan, on 10 and 22 May 2007. The purpose of the measurement is to study the influence of Asian mineral dust on ice clouds formation in the middle and upper troposphere. The balloon measured the vertical distributions of aerosol number size distribution (0.13 to 3.9 μm in threshold radius, 8 sizes) by use of the optical particle counter, cloud size (10 μ m to 5 mm in the longest dimension), shape, and number concentration by use of the hydrometer videosonde, humidity by use of SnowWhite hygrometer, and temperature and pressure by use of Meisei RS-01G radiosonde between altitudes of 0 and 16 km. The aerosol size distribution showed bimodal distribution with mode radii of <0.13 μm (fine mode) and about 0.8 μm (coarse mode) over the troposphere (0-13.5 km in altitude). The number concentrations ranged from 150 to 1 cm-3 in the fine mode and from 3 to 0.1 cm-3 in the coarse mode. High depolarization ratio (>10%) obtained from the ground-based Raman lidar measurement revealed the presence of nonspherical dust in the coarse mode. Columnar, bullet-like, and irregular ice crystals with 10-400 μm in size were detected between altitudes of 8 and 13 km on 10 May and 10 and 13 km on 22 May. The maximum crystal concentration was 0.15 cm-3. We discuss the possibility of the formation of the ice cloud from the dust based on the result of the measurements.

  5. Likely seeding of cirrus clouds by stratospheric Kasatochi volcanic aerosol particles near a mid-latitude tropopause fold

    NASA Astrophysics Data System (ADS)

    Campbell, James R.; Welton, Ellsworth J.; Krotkov, Nickolay A.; Yang, Kai; Stewart, Sebastian A.; Fromm, Michael D.

    2012-01-01

    Following the explosive 7-8 August 2008 Mt. Kasatochi volcanic eruption in southwestern Alaska, a segment of the dispersing stratospheric aerosol layer was profiled beginning 16 August in continuous ground-based lidar measurements over the Mid-Atlantic coast of the eastern United States. On 17-18 August, the layer was displaced downward into the upper troposphere through turbulent mixing near a tropopause fold. Cirrus clouds and ice crystal fallstreaks were subsequently observed, having formed within the entrained layer. The likely seeding of these clouds by Kasatochi aerosol particles is discussed. Cloud formation is hypothesized as resulting from either preferential homogenous freezing of relatively large sulfate-based solution droplets deliquesced after mixing into the moist upper troposphere or through heterogeneous droplet activation by volcanic ash. Satellite-borne spectrometer measurements illustrate the evolution of elevated Kasatochi SO 2 mass concentrations regionally and the spatial extent of the cirrus cloud band induced by likely particle seeding. Satellite-borne polarization lidar observations confirm ice crystal presence within the clouds. Geostationary satellite-based water vapor channel imagery depicts strong regional subsidence, symptomatic of tropopause folding, along a deepening trough in the sub-tropical westerlies. Regional radiosonde profiling confirms both the position of the fold and depth of upper-tropospheric subsidence. These data represent the first unambiguous observations of likely cloud seeding by stratospheric volcanic aerosol particles after mixing back into the upper troposphere.

  6. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  7. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    NASA Astrophysics Data System (ADS)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  8. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    PubMed

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  9. Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site.

    PubMed

    Creamean, Jessie M; Ault, Andrew P; Ten Hoeve, John E; Jacobson, Mark Z; Roberts, Gregory C; Prather, Kimberly A

    2011-10-01

    Determining the major sources of particles that act as cloud condensation nuclei (CCN) represents a critical step in the development of a more fundamental understanding of aerosol impacts on cloud formation and climate. Reported herein are direct measurements of the CCN activity of newly formed ambient particles, measured at a remote rural site in the Sierra Nevada Mountains of Northern California. Nucleation events in the winter of 2009 occurred during two pristine periods following precipitation, with higher gas-phase SO(2) concentrations during the second period, when faster particle growth occurred (7-8 nm/h). Amines, as opposed to ammonia, and sulfate were detected in the particle phase throughout new particle formation (NPF) events, increasing in number as the particles grew to larger sizes. Interestingly, long-range transport of SO(2) from Asia appeared to potentially play a role in NPF during faster particle growth. Understanding the propensity of newly formed particles to act as CCN is critical for predicting the effects of NPF on orographic cloud formation during winter storms along the Sierra Nevada Mountain range. The potential impact of newly formed particles in remote regions needs to be compared with that of transported urban aerosols when evaluating the impact of aerosols on clouds and climate.

  10. Aerosol and Cloud-Nucleating Particle Observations during an Atmospheric River Event

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; McCluskey, C. S.; Petters, M.; Suski, K. J.; Levin, E. J.; Hill, T. C. J.; Atwood, S. A.; Schill, G. P.; Rocci, K.; Boose, Y.; Martin, A.; Cornwell, G.; Al-Mashat, H.; Moore, K.; Prather, K. A.; Rothfuss, N.; Taylor, H.; Leung, L. R.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; Creamean, J.; White, A. B.; Kreidenweis, S. M.

    2015-12-01

    The multi-agency CalWater 2015 project occurred over North Central CA and the Eastern Pacific during January to March 2015 (Spackman et al., this session). The goals of the campaign were to document the structure of atmospheric rivers (ARs) that deliver much of the water vapor associated with major winter storms along the U.S. West Coast and to investigate the modulating effect of aerosols on precipitation. Aerosol sources that may influence orographic cloud properties for air lifted over the mountains in California in winter include pollution, biomass burning, soil dusts and marine aerosols, but their roles will also be influenced by transport, vertical stratification, and scavenging processes. We present results from a comprehensive study of aerosol distributions, compositions, and cloud nucleating properties during an intense winter storm during February 2015, including data from an NSF-supported measurement site at Bodega Bay, from the DOE-ARM Cloud Aerosol Precipitation Experiment that included sampling on the NOAA RV Ron Brown offshore and the G-1 aircraft over ocean and land, and with context provided by other NOAA aircraft and remote sensing facilities. With a special focus on the coastal site, we discuss changes in aerosol distributions, aerosol hygroscopicity, and number concentrations of fluorescent particles, cloud condensation nuclei (CCN), and ice nucleating particles (INPs) during the AR event. We compare with periods preceding and following the event. For example, total aerosol number and surface area concentrations at below 0.5 μm diameter decreased from typical values of a few thousand cm-3 and 100 μm2 cm-3, respectively, to a few hundred cm-3 and 10 μm2cm-3 at Bodega Bay during the AR event. CCN concentrations were similarly lower, but hygroscopicity parameter (kappa) increased from typical values of 0.2 to values > 0.5 during the AR.INP and fluorescent particle number concentrations were generally lower during the AR event than at any other

  11. Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A.

    2016-01-01

    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.

  12. Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai

    2015-05-01

    A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.

  13. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  14. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  15. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the

  16. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products.

    PubMed

    Mostafa, A M A; Tamaki, K; Moriizumi, J; Yamazawa, H; Iida, T

    2011-07-01

    This study was performed to measure the activity size distribution of aerosol particles associated with short-lived radon decay products in indoor air at Nagoya University, Nagoya, Japan. The measurements were performed using a low pressure Andersen cascade impactor under variable meteorological conditions. The results showed that the greatest activity fraction was associated with aerosol particles in the accumulation size range (100-1000 nm) with a small fraction of nucleation mode (10-100 nm). Regarding the influence of the weather conditions, the decrease in the number of accumulation particles was observed clearly after rainfall without significant change in nucleation particles, which may be due to a washout process for the large particles.

  17. [Comparative studies of particle distribution range of aerosol cromolyn sodium generated by MDI systems].

    PubMed

    Gradoń, L; Sosnowski, T R

    1999-05-01

    Particles size distribution of the sodium cromoglycate preparations: CROPOZ PLUS and CROMOGEN EB generated with MDI and for under-pressure releasing methods were measured. Results of measurements indicate a significant repeatability of each sample properties. An average contribution of mass of the respirable fraction for both aerosolized pharmaceuticals is in the range of 40% of the generated dose. CROMOGEN EB with optimizer (spacer) gives a higher contribution of the respirable fraction--up to 50% of dose, with simultaneous lower value of the released mass of aerosol. Particles size distribution of CROPOZ PLUS within a respirable fraction indicates an efficient penetration and deposition of particles in the upper, central and peripheral parts of tracheobronchial tree (TB). High contribution of submicron particles of CROMOGEN EB with optimizer gives efficient penetration and deposition of these particles in the lungs.

  18. Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles.

    PubMed

    Byeon, Jeong Hoon; Kim, Jang-Woo

    2010-07-20

    To obtain evenly distributed pure Ag particles with a narrow size distribution on a polymer membrane, a novel activation procedure with an environmentally friendly, cost-effective method was utilized as a pretreatment before electroless Ag deposition. The pretreatment was first performed on an untreated membrane surface by collecting ultrafine ambient spark-generated Ag aerosol particles. After annealing, the electroless Ag film was fabricated on the collected aerosol particles in the Ag electroless bath. Experimental characterizations showed that the ultrafine Ag particles were uniformly anchored onto the membrane surface through pretreatment, resulting in a pure Ag film of closely packed particles with a narrow size distribution on the membrane, and the properties were comparable to those of an Ag film on wet Sn-Ag-activated membranes.

  19. Measurements Of Sub- 3nm Aerosol Particles In Tropical Rainforest Conditions - Technical Challenges And Solutions

    NASA Astrophysics Data System (ADS)

    Wimmer, D.; Alessandro, F.; Backmann, J.; Manninen, H. E.; Lehtipalo, K.; Petäjä, T.; Kulmala, M. T.

    2014-12-01

    A Particle Size Magnifier (PSM; Vanhanen et al., 2011) was used for studying the sub-3 nm aerosol particles during the second intensive observation period of the GoAmazon campaign. The PSM is using diethylene glycol (DEG) as condensing liquid, which has a low saturation vapour pressure and is hygroscopic. The high supersaturation needed for activating sub-3 nm particles is reached by mixing the sample with clean air saturated with DEG. The measurements took place in Sept-Oct, when typical temperatures at the measurement site are around 303 K, and relative humidity (RH) around 90%. Due to these challenging conditions, in combination with the hygroscopicity of the DEG, careful design and testing of the instrument was required. We developed an inlet reducing the RH at the inlet of the PSM while keeping the diffusion losses of particles in the inlet as low as possible. The inlet design is based on a sintered tube, where dry, pressurized dilution flow is added. Downstream of the sintered tube, a core sampling probe is used. The core sampling allows to sample from the center of the tube, where the highest particle concentration is, while an additional make-up flow allows for a higher sample flow rate. The RH of the ambient, dilution flow and PSM inlet flow are monitored continuously. Tests in the laboratory have shown that the RH could be reduced down to less than 30%, while the ambient RH was 90-100%. The characterization of the inlet regarding diffusion losses lead to a cut off diameter of 1.6 nm, compared to 1.3 nm without inlet. Thus, this new inlet design allows measurements of sub-3 nm particles in tropical rainforest condition.

  20. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  1. Atmospheric Black Carbon: Chemical Bonding and Structural Information of Individual Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Gilles, M. K.; Tivanski, A. V.; Hopkins, R. J.; Marten, B. D.

    2006-12-01

    The formation of aerosols from both natural and anthropogenic sources affects the Earth's temperature and climate by altering the radiative properties of the atmosphere. Aerosols containing black carbon (BC) that are released into the atmosphere from the burning of biomass, natural fires and the combustion of coals, diesel and jet fuels, contribute a large positive component to this radiative forcing, thus causing a heating of the atmosphere. A distinct type of biomass burn aerosol referred to as "tar balls" has recently been reported in the literature and is characterized by a spherical morphology, high carbon content and ability to efficiently scatter and absorb light. At present, very little is known about the exact nature and variation of the range of BC aerosols in the atmosphere with regards to optical, chemical and physical properties. Additionally, the similarity of these aerosols to surrogates used in the laboratory as atmospheric mimics remains unclear. The local chemical bonding, structural ordering and carbon-to-oxygen ratios of a plethora of black carbon standard reference materials (BC SRMs), high molecular mass humic-like substances (HULIS) and atmospheric aerosols from a variety of sources are examined using scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STXM/NEXAFS enables single aerosol particles of diameter upwards of 100 nm to be studied, which allows the diversity of atmospheric aerosol collected during a variety of field missions to be assessed. We apply a semi-quantitative peak fitting method to the recorded NEXAFS spectral fingerprints allowing comparison of BC SRMs and HULIS to BC aerosol originating from anthropogenic combustion and biomass burning events. This method allows us to distinguish between anthropogenic combustion and biomass burn aerosol using both chemical bonding and structural ordering information. The STXM/NEXAFS technique has also been utilized to

  2. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; ...

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group

  3. Sources and composition of submicron organic mass in marine aerosol particles

    SciTech Connect

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak

  4. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  5. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry.

    PubMed

    Parkhomchuk, E V; Gulevich, D G; Taratayko, A I; Baklanov, A M; Selivanova, A V; Trubitsyna, T A; Voronova, I V; Kalinkin, P N; Okunev, A G; Rastigeev, S A; Reznikov, V A; Semeykina, V S; Sashkina, K A; Parkhomchuk, V V

    2016-09-01

    Accelerator mass spectrometry (AMS) was shown to be applicable for studying the penetration of organic aerosols, inhaled by laboratory mice at ultra-low concentration ca. 10(3) cm(-3). We synthesized polystyrene (PS) beads, composed of radiocarbon-labeled styrene, for testing them as model organic aerosols. As a source of radiocarbon we used methyl alcohol with radioactivity. Radiolabeled polystyrene beads were obtained by emulsifier-free emulsion polymerization of synthesized (14)C-styrene initiated by K2S2O8 in aqueous media. Aerosol particles were produced by pneumatic spraying of diluted (14)C-PS latex. Mice inhaled (14)C-PS aerosol consisting of the mix of 10(3) 225-nm particles per 1 cm(3) and 5·10(3) 25-nm particles per 1 cm(3) for 30 min every day during five days. Several millions of 225-nm particles deposited in the lungs and slowly excreted from them during two weeks of postexposure. Penetration of particles matter was also observed for liver, kidneys and brain, but not for a heart.

  6. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  7. Real-time characterization of the size and chemical composition of individual particles in ambient aerosol systems in Riverside, California

    SciTech Connect

    Noble, C.A.; Prather, K.A.

    1995-12-31

    Atmospheric aerosols, although ubiquitous, are highly diverse and continually fluctuating systems. A typical aerosol system may consist of particles with diameters between {approximately}0.002 {mu}m and {approximately}200 {mu}m. Even in rural or pristine areas, atmospheric particle concentration is significant, with concentrations up to 10{sup 8} particles/cm{sup 3} not being uncommon. Chemical composition of atmospheric particles vary from simple water droplets or acidic ices to soot particles and cigarette smoke. Due to changes in atmospheric conditions, processes such as nucleation, coagulation or heterogeneous chemistry may effect both physical and chemical properties of individual particles over relatively short time intervals. Recently, aerosol measurement techniques are focusing on determining the size and/or chemical composition of individual aerosol particles. This research group has recently developed aerosol time-of-flight mass spectrometry (ATOFMS), a technique which allows for real-time determination of the size and chemical composition of individual aerosol particles. Single particle measurements are performed in one instrument using dual laser aerodynamic particle sizing and time-of-flight mass spectrometry. Aerosol-time-of-flight mass spectrometry is briefly described in several other abstracts in this publication.

  8. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  9. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing

  10. Individual Aerosol Particles from Biomass Burning in Southern Africa Compositions and Aging of Inorganic Particles. 2; Compositions and Aging of Inorganic Particles

    NASA Technical Reports Server (NTRS)

    Li, Jia; Posfai, Mihaly; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen- bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  11. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  12. Evidence for surface nucleation: efflorescence of ammonium sulfate and coated ammonium sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Ciobanu, V. Gabriela; Marcolli, Claudia; Krieger, Ulrich K.; Zuend, Andreas; Peter, Thomas

    2010-05-01

    Aerosol particles are ubiquitous in the atmosphere and can undergo different phase transitions, such as deliquescence and efflorescence. Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in supersaturated AS and 1:1 and 8:1 (by weight) poly(ethylene glycol)-400 (PEG-400)/AS particles, which were deposited as droplets with diameters in the 16 - 35 μm range on a hydrophobically coated slide. The PEG-400/AS particles that are exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below 90 % RH with the PEG-400 phase surrounding the aqueous AS inner phase (Marcolli and Krieger, 2006; Ciobanu et al., 2009). Pure AS particles effloresced in the RH range from 36.3 to 43.7 % RH, in agreement with literature data (31 - 48 % RH). In contrast, 1:1 PEG-400/AS particles with diameters of the AS phase from 7.2 - 19.2 μm effloresced between 26.8 - 33.9 % RH and 8:1 PEG-400/AS particles with diameters of the AS phase from 1.8 - 7.3 μm between 24.3 - 29.3 % RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that neither a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, nor the presence of low amounts of PEG-400 in the AS phase, nor different timescales between various experimental techniques could possibly explain the low AS ERH values of PEG-400/AS particles in our setup. High-speed photography of the efflorescence process allowed to monitor the proceeding of the AS crystallization fronts within the particles with millisecond time resolution. The nucleation locations were deduced based on the initial crystals growth locations. Statistical analysis of 31 and 19 efflorescence events for pure AS and 1:1 PEG-400/AS particles, respectively, identified the air/droplet/substrate contact line and the air/droplet interface as preferred nucleation locations in the case of pure AS particles

  13. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  14. The effect of phase partitioning of semivolatile compounds on the measured CCN activity of aerosol particles

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2013-09-01

    The effect of inorganic semivolatile aerosol compounds on the CCN activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big fraction of semivolatiles is evaporated from particles before activation in the CCN counter? (2) How much the CCN activity can be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? The results show that, to increase the CCN activity of aerosol particles, a very high gas phase concentration (as compared to typical ambient conditions) is needed. We used nitric acid as a test compound. A concentration of several ppb or higher is needed for measurable effect. In the case of particle evaporation, we used ammonium nitrate as a test compound and found that it partially evaporates before maximum supersaturation is reached in the CCN counter, thus causing an underestimation of CCN activity. The effect of evaporation is clearly visible in all supersaturations, leading to an underestimation of the critical dry diameter by 10 to 15 nanometres in the case of ammonium nitrate particles in different supersaturations. This result was also confirmed by measurements in supersaturations between 0.1 and 0.7%.

  15. Urban organic aerosols measured by single particle mass spectrometry in the megacity of London

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.

    2011-02-01

    During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were accompanied by Aerosol Mass Spectrometer (AMS) quantitative aerosol mass loading measurements (Dall'Osto et al., 2009a, b). In this manuscript the origins and properties of four particle types associated with locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species, and contains both primary and secondary components. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings. The fourth class (SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. Finally, a comparison of ATOFMS particle class data is made with factors obtained by Positive Matrix Factorization from AMS data.. Both the Ca-EC and OC particle types correlate with the AMS HOA primary organic fraction (R2 = 0.65 and 0.50 respectively), and Na-EC-OC, but not SOA-PAH, which correlates weakly with the AMS OOA secondary organic aerosol factor (R2 = 0.35). A detailed analysis was conducted to identify ATOFMS particle type(s) representative

  16. A CAM (continuous air monitor) sampler for collecting and assessing alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Bethel, E.L.; Ortiz, C.A.; Stanke, J.G. )

    1991-07-01

    A new continuous air monitor (CAM) sampler for assessing alpha-emitting transuranic aerosol particles has been developed. The system has been designed to permit collection of particles that can potentially penetrate into the thoracic region of the human respiratory system. Wind tunnel testing of the sampler has been used to characterize the penetration of aerosol to the collection filter. Results show that greater than or equal to 50% of 10-micrograms aerodynamic equivalent diameter (AED) particles are collected by the filter at wind speeds of 0.3 to 2 m s-1 and at sampling flow rates of 28 to 113 L min-1 (1 to 4 cfm). The deposition of 10-microns AED particles takes place primarily in the center of the filter, where the counting efficiency of the detector is highest.

  17. Individual particle morphology, coatings, and impurities of black carbon aerosols in Antarctic ice and tropical rainfall

    NASA Astrophysics Data System (ADS)

    Ellis, Aja; Edwards, Ross; Saunders, Martin; Chakrabarty, Rajan K.; Subramanian, R.; Timms, Nicholas E.; Riessen, Arie; Smith, Andrew M.; Lambrinidis, Dionisia; Nunes, Laurie J.; Vallelonga, Paul; Goodwin, Ian D.; Moy, Andrew D.; Curran, Mark A. J.; Ommen, Tas D.

    2016-11-01

    Black carbon (BC) aerosols are a large source of climate warming, impact atmospheric chemistry, and are implicated in large-scale changes in atmospheric circulation. Inventories of BC emissions suggest significant changes in the global BC aerosol distribution due to human activity. However, little is known regarding BC's atmospheric distribution or aged particle characteristics before the twentieth century. Here we investigate the prevalence and structural properties of BC particles in Antarctic ice cores from 1759, 1838, and 1930 Common Era (C.E.) using transmission electron microscopy and energy-dispersive X-ray spectroscopy. The study revealed an unexpected diversity in particle morphology, insoluble coatings, and association with metals. In addition to conventionally occurring BC aggregates, we observed single BC monomers, complex aggregates with internally, and externally mixed metal and mineral impurities, tar balls, and organonitrogen coatings. The results of the study show BC particles in the remote Antarctic atmosphere exhibit complexity that is unaccounted for in atmospheric models of BC.

  18. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    DOE PAGES

    Xu, Ning; Martinez, Alexander; Schappert, Michael Francis; ...

    2015-08-14

    Here, a simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 °C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements.

  19. Pulse height response of an optical particle counter to monodisperse aerosols

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Grice, S. S.; Cuda, V.

    1976-01-01

    The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.

  20. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    SciTech Connect

    Xu, Ning; Martinez, Alexander; Schappert, Michael Francis; Montoya, Dennis Patrick; Martinez, Patrick Thomas; Tandon, Lav

    2015-08-14

    Here, a simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 °C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements.

  1. TOTAL PARTICLE, SULFATE, AND ACIDIC AEROSOL EMISSIONS FROM KEROSENE SPACE HEATERS

    EPA Science Inventory

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine part...

  2. Total reflection X-ray fluorescence (TXRF) for direct analysis of aerosol particle samples.

    PubMed

    Bontempi, E; Zacco, A; Benedetti, D; Borgese, L; Colombi, P; Stosnach, H; Finzi, G; Apostoli, P; Buttini, P; Depero, L E

    2010-04-14

    Atmospheric aerosol particles have a great impact on the environment and on human health. Routine analysis of the particles usually involves only the mass determination. However, chemical composition and phases provide fundamental information about the particles' origins and can help to prevent health risks. For example, these particles may contain heavy metals such as Pb, Ni and Cd, which can adversely affect human health. In this work, filter samples were collected in Brescia, an industrial town located in Northern Italy. In order to identify the chemical composition and the phases of the atmospheric aerosols, the samples were analysed by means of total reflection X-ray fluorescence (TXRF) spectrometry with a laboratory instrument and X-ray microdiffraction at Synchrotron Daresbury Laboratories, Warrington (Cheshire, UK). The results are discussed and correlated to identify possible pollution sources. The novelty of this analytical approach is that filter samples for TXRF were analysed directly and did not require chemical pretreatment to leach elements from the aerosol particulates. The results of this study clearly show that TXRF is a powerful technique for the analysis of atmospheric aerosols on 'as-received' filters, thereby leaving samples intact and unaltered for possible subsequent analyses by other methods. In addition, the low detection limits for many elements (low ng/cm2) indicate that this method may hold promise in various application fields, such as nanotechnology.

  3. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  4. Aerosol Particle Interfacial Thermodynamics and Phase Partitioning Measurements Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Dutcher, Cari; Metcalf, Andrew

    2015-03-01

    Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.

  5. Deposition of aerosol particles in human lungs: in vivo measurements and modeling

    EPA Science Inventory

    The deposition dose and site of inhaled particles within the lung are the key determinants in health risk assessment of particulate pollutants. Accurate dose estimation, however, is a formidable task because aerosol transport and deposition in the lung are governed by many factor...

  6. Modeling Aerosol Particle Deposition on a Person Using Computational Fluid Dynamics

    DTIC Science & Technology

    numerical simulations of aerosol particle deposition on the human form. Numerical simulation of a two-phase turbulent impinging jet flow is studied to...validation show that the standard EIM with turbulent tracking tends to over predict the deposition efficiency. Greatly improved results were achieved by

  7. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Liu, Jiumeng; Parker, Eric T.; Hayes, Patrick L.; Jimenez, Jose L.; de Gouw, Joost A.; Flynn, James H.; Grossberg, Nicole; Lefer, Barry L.; Weber, Rodney J.

    2012-09-01

    The partitioning of semi-volatile compounds between the gas and particle phase influences the mass, size and chemical composition of the secondary organic aerosols (SOA) formed. Here we investigate the partitioning of water-soluble organic carbon (WSOC) and the formation of SOA in Los Angeles (LA), California and Atlanta, Georgia; urban regions where anthropogenic volatile organic compound (VOC) emissions are dominated by vehicles, but are contrasted by an additional large source of biogenic VOCs exclusive to Atlanta. In Atlanta, evidence for WSOC partitioning to aerosol water is observed throughout the day, but is most prevalent in the morning. During drier periods (RH < 70%), the WSOC partitioning coefficient (Fp) was in proportion to the organic mass, suggesting that both particle water and organic aerosol (OA) can serve as an absorbing phase. In contrast, despite the higher average RH, in LA the aerosol water was not an important absorbing phase, instead, Fp was correlated with OA mass. Particle water concentrations from thermodynamic predictions based on measured inorganic aerosol components do not indicate significant differences in aerosol hygroscopicity. The observed different WSOC partitioning behaviors may be attributed to the contrasting VOC mixture between the two cities. In addition, different OA composition may also play a role, as Atlanta OA is expected to have a substantially more aged regional character. These results are consistent with our companion studies that find similar partitioning differences for formic acid and additional contrasts in SOA optical properties. The findings provide direct evidence for SOA formation through an equilibrium partitioning process.

  8. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Liu, Jiumeng; Parker, Eric T.; Hayes, Patrick L.; Jimenez, Jose L.; Gouw, Joost A.; Flynn, James H.; Grossberg, Nicole; Lefer, Barry L.; Weber, Rodney J.

    2011-11-01

    The partitioning of semi-volatile compounds between the gas and particle phase influences the mass, size and chemical composition of the secondary organic aerosols (SOA) formed. Here we investigate the partitioning of water-soluble organic carbon (WSOC) and the formation of SOA in Los Angeles (LA), California and Atlanta, Georgia; urban regions where anthropogenic volatile organic compound (VOC) emissions are dominated by vehicles, but are contrasted by an additional large source of biogenic VOCs exclusive to Atlanta. In Atlanta, evidence for WSOC partitioning to aerosol water is observed throughout the day, but is most prevalent in the morning. During drier periods (RH < 70%), the WSOC partitioning coefficient (Fp) was in proportion to the organic mass, suggesting that both particle water and organic aerosol (OA) can serve as an absorbing phase. In contrast, despite the higher average RH, in LA the aerosol water was not an important absorbing phase, instead, Fp was correlated with OA mass. Particle water concentrations from thermodynamic predictions based on measured inorganic aerosol components do not indicate significant differences in aerosol hygroscopicity. The observed different WSOC partitioning behaviors may be attributed to the contrasting VOC mixture between the two cities. In addition, different OA composition may also play a role, as Atlanta OA is expected to have a substantially more aged regional character. These results are consistent with our companion studies that find similar partitioning differences for formic acid and additional contrasts in SOA optical properties. The findings provide direct evidence for SOA formation through an equilibrium partitioning process.

  9. Measuring the emission rate of an aerosol source placed in a ventilated room using a tracer gas: influence of particle wall deposition.

    PubMed

    Bémer, D; Lecler, M T; Régnier, R; Hecht, G; Gerber, J M

    2002-04-01

    A method to measure the emission rate of an airborne pollutant source using a tracer gas was tested in the case of an aerosol source. The influence of particle deposition on the walls of a test room of 72 m3 was studied. The deposition rate of an aerosol of MgCl2 was determined by means of two methods: one based on measuring the aerosol concentration decay inside the ventilated room, the other based on calculation of the material mass balance. The concentration decay was monitored by optical counting and the aerosol mass concentration determined by means of sampling on a filter and analysis of the mass deposited by atomic absorption spectrometry. Four series of measurements were carried out. The curve giving the deposition rate according to the particle aerodynamic diameter (d(ae)) was established and shows deposition rates higher than those predicted using the model of Corner. The decay method gives the best results. The study carried out has shown that the phenomenon of deposition has little effect on the measurement of the aerosol source emission rate using a tracer gas for particles of aerodynamic diameter < 5 microm (underestimation < 25%). For particles of a greater diameter, wall deposition is an extremely limiting factor for the method, the influence of which can, however, be limited by using a test booth of small volume and keeping the sampling duration as short as possible.

  10. The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

    SciTech Connect

    Shao, H.; Liu, G.

    2005-03-18

    An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.

  11. Online Aerosol Mass Spectrometry of Single Micrometer-Sized Particles Containing Poly(ethylene glycol)

    SciTech Connect

    Bogan, M J; Patton, E; Srivastava, A; Martin, S; Fergenson, D; Steele, P; Tobias, H; Gard, E; Frank, M

    2006-10-25

    Analysis of poly(ethylene glycol)(PEG)-containing particles by online single particle aerosol mass spectrometers equipped with laser desorption ionization (LDI) is reported. We demonstrate that PEG-containing particles are useful in the development of aerosol mass spectrometers because of their ease of preparation, low cost, and inherently recognizable mass spectra. Solutions containing millimolar quantities of PEGs were nebulized and, after drying, the resultant micrometer-sized PEG containing particles were sampled. LDI (266 nm) of particles containing NaCl and PEG molecules of average molecular weight <500 generated mass spectra reminiscent of mass spectra of PEG collected by other MS schemes including the characteristic distribution of positive ions (Na{sup +} adducts) separated by the 44 Da of the ethylene oxide units separating each degree of polymerization. PEGs of average molecular weight >500 were detected from particles that also contained t the tripeptide tyrosine-tyrosine-tyrosine or 2,5-dihydroxybenzoic acid, which were added to nebulized solutions to act as matrices to assist LDI using pulsed 266 nm and 355 nm lasers, respectively. Experiments were performed on two aerosol mass spectrometers, one reflectron and one linear, that each utilize two time-of-flight mass analyzers to detect positive and negative ions created from a single particle. PEG-containing particles are currently being employed in the optimization of our bioaerosol mass spectrometers for the application of measurements of complex biological samples, including human effluents, and we recommend that the same strategies will be of great utility to the development of any online aerosol LDI mass spectrometer platform.

  12. Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry.

    PubMed

    Zhang, Xinghua; Zhang, Yangmei; Sun, Junying; Yu, Yangchun; Canonaco, Francesco; Prévôt, Andre S H; Li, Gang

    2017-03-01

    An Aerodyne quadrupole aerosol mass spectrometry (Q-AMS) was utilized to measure the size-resolved chemical composition of non-refractory submicron particles (NR-PM1) from October 27 to December 3, 2014 at an urban site in Lanzhou, northwest China. The average NR-PM1 mass concentration was 37.3 μg m(-3) (ranging from 2.9 to 128.2 μg m(-3)) under an AMS collection efficiency of unity and was composed of organics (48.4%), sulfate (17.8%), nitrate (14.6%), ammonium (13.7%), and chloride (5.7%). Positive matrix factorization (PMF) with the multi-linear engine (ME-2) solver identified six organic aerosol (OA) factors, including hydrocarbon-like OA (HOA), coal combustion OA (CCOA), cooking-related OA (COA), biomass burning OA (BBOA) and two oxygenated OA (OOA1 and OOA2), which accounted for 8.5%, 20.2%, 18.6%, 12.4%, 17.8% and 22.5% of the total organics mass on average, respectively. Primary emissions were the major sources of fine particulate matter (PM) and played an important role in causing high chemically resolved PM pollution during wintertime in Lanzhou. Back trajectory analysis indicated that the long-range regional transport air mass from the westerly was the key factor that led to severe submicron aerosol pollution during wintertime in Lanzhou.

  13. Particle size analysis of radioactive aerosols formed by irradiation of argon using 65 MeV quasi-monoenergetic neutrons.

    PubMed

    Endo, A; Noguchi, H; Tanaka, Su; Kanda, Y; Oki, Y; Iida, T; Sato, K; Tsuda, S

    2002-04-01

    The size distributions of 38Cl and 39Cl aerosols formed from the irradiation of argon gas containing di-octyl phthalate (DOP) aerosols by 65 MeV quasi-monoenergetic neutrons were measured to study the formation mechanism of radioactive aerosols in high-energy radiation fields. Both the number size distribution and the activity-weighted size distribution were measured using an electrical low-pressure impactor. It was found that the 35Cl and 39Cl aerosols are formed by attachment of the radioactive atoms generated by the neutron-induced reaction to the DOP aerosol particles.

  14. Aerosol airmass type mapping over the urban Mexico City region from space-based multi-angle imaging

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2013-03-01

    Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we demonstrate MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Four distinct aerosol air masses are identified in the MISR data on 6 March 2006; these results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having SSA558≈0.7 must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.

  15. Oxidative aging of mixed oleic acid/sodium chloride aerosol particles

    NASA Astrophysics Data System (ADS)

    Dennis-Smither, Benjamin J.; Miles, Rachael E. H.; Reid, Jonathan P.

    2012-10-01

    Studies of the oxidative aging of single mixed component aerosol particles formed from oleic acid (OL) and sodium chloride over a range of relative humidities (RH) and ozone concentrations by aerosol optical tweezers are reported. The rate of loss of OL and changes in the organic phase volume are directly measured, comparing particles with effloresced and deliquesced inorganic seeds. The kinetics of the OL loss are analyzed and the value of the reactive uptake coefficient of ozone by OL is compared to previous studies. The reaction of OL is accompanied by a decrease in the particle volume, consistent with the evaporation of semivolatile products over a time scale of tens of thousands of seconds. Measurements of the change in the organic phase volume allow the branching ratio to involatile components to be estimated; between 50 and 85% of the initial organic volume remains involatile, depending on ozone concentration. The refractive index (RI) of the organic phase increases during and after evaporation of volatile products, consistent with aging followed by a slow restructuring in particle morphology. The hygroscopicity of the particle and kinetics of the response of the organic phase to changes in RH are investigated. Both size and RI of unoxidized and oxidized particles respond promptly to RH changes with values of the RI consistent with linear mixing rules. Such studies of the simultaneous changes in composition and size of mixed component aerosol provide valuable data for benchmarking kinetic models of heterogeneous atmospheric aging.

  16. Phoretic forces on aerosol particles surrounding an evaporating droplet in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Prodi, F.; Santachiara, G.; Belosi, F.; Vedernikov, A.; Balapanov, D.

    2014-06-01

    The work presents the results of an experimental campaign performed at the Drop Tower Facility (Bremen) in microgravity conditions, concerning the scavenging process of an evaporating single droplet in stationary conditions. In the experimental conditions the thermo- and diffusiophoretic forces are the only ones that can determine the scavenging of the aerosol. The research is finalized to help solve the open question concerning the contribution of thermo- and diffusiophoretic forces in aerosol scavenging process due to cloud droplets. Although earlier theoretical and experimental papers have addressed this problem, the results are contradictory and inconclusive. As phoretic forces depend on aerosol diameter and water vapour pressure gradient, experiments were performed by changing the aerosol diameter (range 0.4 μm-2 μm) and the water vapour gradient. The experimental results show a prevalence of the diffusiophoretic over thermophoretic force, for the considered aerosol. The measured values of the particle velocities due to phoretic forces increase with increasing aerosol diameter and vapour pressure gradient.

  17. Seasonal Variation of Aerosol Particle Size Using MER/Pancam Sky Imaging

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.

    2013-12-01

    Imaging of the sky taken by the Pancam cameras on-board the Mars Exploration Rovers (MER) provide a useful tool for determining the optical depth and physcial properties of aerosols above the rover. Specifically, the brightness of the sky as a function of angle away from the Sun provides a powerful constraint on the size distribution and shape of dust and water ice aerosols. More than 100 Pancam "sky surveys" were taken by each of the two MER rovers covering a time span of several Mars years and a wide range of dust loading conditions including the planet-encirclind dust storm during Mars Year 28 (Earth year 2007). These sky surveys enable the time evolution of aerosol particle size to be determined including its relation to dust loading. Radiative transfer modeling is used to model the observations. Synthetic Pancam sky brightness is computed using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and spherical geometry by integrating the source functions along curved paths in that coordinate system. We find that Mie scattering from spheres is not a good approximation for describing the angular variation of sky brightness far from the Sun (at scattering angles greater than 45 degrees). Significant seasonal variations are seen in the retrieved effective radius of the aerosols with higher optical depth strongly correlated with larger particle size.

  18. Airborne minerals and related aerosol particles: Effects on climate and the environment

    PubMed Central

    Buseck, Peter R.; Pósfai, Mihály

    1999-01-01

    Aerosol particles are ubiquitous in the troposphere and exert an important influence on global climate and the environment. They affect climate through scattering, transmission, and absorption of radiation as well as by acting as nuclei for cloud formation. A significant fraction of the aerosol particle burden consists of minerals, and most of the remainder— whether natural or anthropogenic—consists of materials that can be studied by the same methods as are used for fine-grained minerals. Our emphasis is on the study and character of the individual particles. Sulfate particles are the main cooling agents among aerosols; we found that in the remote oceanic atmosphere a significant fraction is aggregated with soot, a material that can diminish the cooling effect of sulfate. Our results suggest oxidization of SO2 may have occurred on soot surfaces, implying that even in the remote marine troposphere soot provided nuclei for heterogeneous sulfate formation. Sea salt is the dominant aerosol species (by mass) above the oceans. In addition to being important light scatterers and contributors to cloud condensation nuclei, sea-salt particles also provide large surface areas for heterogeneous atmospheric reactions. Minerals comprise the dominant mass fraction of the atmospheric aerosol burden. As all geologists know, they are a highly heterogeneous mixture. However, among atmospheric scientists they are commonly treated as a fairly uniform group, and one whose interaction with radiation is widely assumed to be unpredictable. Given their abundances, large total surface areas, and reactivities, their role in influencing climate will require increased attention as climate models are refined. PMID:10097046

  19. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  20. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  1. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 view from CALIOP

    NASA Astrophysics Data System (ADS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2013-03-01

    Vertical profiles of 0.532 μm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio (“lidar ratio”) necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolves more smoke over water than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of

  2. The Effect of Particle Size on Iron Solubility in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Marcotte, A. R.; Majestic, B. J.; Anbar, A. D.; Herckes, P.

    2012-12-01

    The long range transport of mineral dust aerosols, which contain approximately 3% iron by mass, results in an estimated 14-16 Tg of iron deposited into the oceans annually; however, only a small percentage of the deposited iron is soluble. In high-nutrient, low chlorophyll ocean regions iron solubility may limit phytoplankton primary productivity. Although the atmospheric transport processes of mineral dust aerosols have been well studied, the role of particle size has been given little attention. In this work, the effect of particle size on iron solubility in atmospheric aerosols is examined. Iron-containing minerals (illite, kaolinite, magnetite, goethite, red hematite, black hematite, and quartz) were separated into five size fractions (10-2.5, 2.5-1, 1-0.5, 0.5-0.25, and <0.25μm) and extracted into buffer solutions simulating environments in the transport of aerosol particles for 150 minutes. Particle size was confirmed by scanning electron microscopy (SEM). Soluble iron content of the extracted mineral solutions was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Extracted mineral solutions were also analyzed for Fe(II) and Fe(III) content using a ferrozine/UV-VIS method. Preliminary results show that differences in solution composition are more important than differences in size. When extracted into acetate and cloudwater buffers (pH 4.25-4.3), < 0.3% of the Fe in iron oxides (hematite, magnetite, and goethite) is transferred to solution as compared to ~0.1-35% for clays (kaolinite and illite). When extracted into a marine aerosol solution (pH 1.7), the percentage of Fe of the iron oxides and clays transferred to solution increases to approximately 0.5-3% and 5-70%, respectively. However, there is a trend of increased %Fe in the minerals transferred to solution in the largest and smallest size fractions (~0.01-0.3% and ~0.5-35% for iron oxides and clays, respectively), and decreased %Fe in the minerals transferred to solution in the mid

  3. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  4. Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Willis, Megan D.; Healy, Robert M.; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.

    2016-05-01

    Biomass burning organic aerosol (BBOA) can be emitted from natural forest fires and human activities such as agricultural burning and domestic energy generation. BBOA is strongly associated with atmospheric brown carbon (BrC) that absorbs near-ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single-particle measurements from a Soot-Particle Aerosol Mass Spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC), and potassium (K, a tracer for biomass burning aerosol) in an air mass influenced by wildfire emissions transported from northern Québec to Toronto, representing aged biomass burning plumes. Cluster analysis of single-particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 wt % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles. The average mass absorption efficiency of low-volatility BBOA is about 0.8-1.1 m2 g-1 based on a theoretical closure calculation. Our estimates indicate that low-volatility BBOA contributes ˜ 33-44 % of thermo-processed particle absorption at 405 nm; and almost all of the BBOA absorption was associated with low-volatility organics.

  5. Gas-particle partitioning of semivolatile organic compounds (SOCs) on mixtures of aerosols in a smog chamber.

    PubMed

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M

    2003-09-15

    The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of

  6. CFD analysis of the aerosolization of carrier-based dry powder inhaler formulations

    NASA Astrophysics Data System (ADS)

    Zhou, Qi (Tony); Tong, Zhenbo; Tang, Patricia; Yang, Runyu; Chan, Hak-Kim

    2013-06-01

    This study applied computational fluid dynamics (CFD) analysis to investigate the role of device design on the aerosolization of a carrier-based dry powder inhaler (DPI). The inhaler device was modified by reducing the inlet size, decreasing the mouthpiece length and increasing the mesh grid voidage. The flow patterns in the inhaler device were examined. It was observed that there was no significant influence on the aerosol performance with the reduced mouthpiece. When the inlet size was reduced to one third of the original one, the fine particle fraction (FPF), defined as mount of inhalable fine particles below 5μm in the aerosol, was improved significantly from 17.7% to 24.3%. The CFD analysis indicated that the increase in FPF was due to increasing air velocity for the smaller inlet. No significant difference was shown in FPF when the grid voidage was increased, but more drugs deposited in the mouthpiece and throat.

  7. Aerosol size distribution and new particle formation events in the suburb of Xi'an, northwest China

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Liu, Xiaodong; Dai, Jin; Wang, Zhao; Dong, Zipeng; Dong, Yan; Chen, Chuang; Li, Xingmin; Zhao, Na; Fan, Chao

    2017-03-01

    Particle number concentration and size distribution are important for better understanding the characteristics of aerosols. However, their measurements are scarce in western China. Based on the first measurement of particle number size distribution (10-487 nm) in the suburb of Xi'an, northwest China from November 2013 to December 2014, the seasonal, monthly and diurnal average particle number concentrations were investigated, and the characteristics of new particle formation (NPF) events and their dependencies on meteorological parameters also discussed. The results showed that the annual average particle number concentrations in the nucleation (NNUC), Aitken (NAIT), and Accumulation (NACC) size ranges were 960 cm-3, 4457 cm-3, 3548 cm-3, respectively. The mean total particle number concentration (NTOT) was 8965 cm-3 and largely dominated by particles in Aitken mode. The number concentration was dominated by particles around 67.3 nm in spring, summer and fall, while about 89.8 nm in winter. The percentage of the ultrafine size range (UFP, particles of diameter below 100 nm) to total particle number concentration was 63.2%, 69.6%, 62.2% and 58.1% in four seasons. The diurnal variation of the nucleation mode particles was mainly influenced by NPF events in summer, while by both traffic densities and NPF events in spring, fall and winter. The diurnal variation of the number concentration of Aitken mode particles correlated with the traffic emission in spring, fall and winter, while in summer it more correlated with contribution of the growth of the nucleation mode particles. The burst of nucleation mode particles typically started in the daytime (08:15-16:05, LST). The growth rates of nucleated particles ranged from 2.8 to 10.7 nm h-1 with an average of 5.0 ± 1.9 nm h-1. Among observed 66 NPF events from 347 effective measurement days, 85 percent of their air masses came from north or northwest China, resulting in a low concentration of pre-existing particles, and

  8. Retrieving the aerosol particle distribution in Titan's detached layer from ISS limb observations

    NASA Astrophysics Data System (ADS)

    Seignovert, B.; Rannou, P.; Lavvas, P.; Cours, T.; West, R. A.

    2015-10-01

    The study of the detached haze layer above Titan's thick atmosphere is one of the key elements to understand the growth of the aerosols in the upper atmosphere of Titan. In this work we will present the results of a radiative transfer inversion of the vertical profile distribution of aerosols in the detached haze layer (from 300 to 600 km) by using the I/F ratio ob- served by Cassini ISS camera. The analyses will focus on the derivation of the particle size distribution.

  9. Atmospheric budget of different elements in aerosol particles over Hungary

    NASA Astrophysics Data System (ADS)

    Molnár, A.; Mészáros, E.; Polyák, K.; Borbély-Kiss, I.; Koltay, E.; Szabó, Gy.; Horváth, Zs.

    The aim of this paper is to present the budget of seven elements (Cd, Cu, Mn, Ni, Pb, V and Zn) in the atmospheric aerosol over Hungary. The dry deposition is estimated on the basis of concentration and size distribution measurements and on dry deposition velocities available in the literature. The dry deposition velocity of two elements is obtained by transport model calculations. Wet deposition rates are determined by analyzing precipitation samples. The emissions of different elements necessary for budgeting are calculated by using statistical data on fossil fuel and gasoline burning, metallurgy, cement industry and waste incineration as well as on emission factors given by Pacyna (1984, Atmospheric Environment18, 41-50). It is found that the country is a net source for elements produced mostly by fossil fuel combustion while it is a net sink for elements released during industrial processes and automotive transport.

  10. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2011-04-12

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  11. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2012-07-10

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  12. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    SciTech Connect

    Cross, E.; Onasch, Timothy B.; Canagaratna, Manjula; Jayne, J. T.; Kimmel, Joel; Yu, Xiao-Ying; Alexander, M. L.; Worsnop, Douglas R.; Davidovits, Paul

    2009-10-01

    To accurately model the radiative forcing of aerosol particles, one must measure in real-time the size, shape, density, chemical composition, and mixing state of ambient particles. This is a formidable challenge because the chemical and physical properties of the aerosol particles are highly complex, dependent on the emission sources, the geography and meteorology of the surroundings, and the gas phase composition of the regional atmosphere.

  13. Interfacial Tensions of Aged Organic Aerosol Particle Mimics Using a Biphasic Microfluidic Platform.

    PubMed

    Metcalf, Andrew R; Boyer, Hallie C; Dutcher, Cari S

    2016-02-02

    Secondary organic aerosol (SOA) particles are a major component of atmospheric particulate matter, yet their formation processes and ambient properties are not well understood. These complex particles often contain multiple interfaces due to internal aqueous- and organic-phase partitioning. Aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which ambient organic vapors interact with suspended particles. To accurately predict the evolution of SOA in the atmosphere, we must improve our understanding of aerosol interfaces. In this work, biphasic microscale flows are used to measure interfacial tension of reacting methylglyoxal, formaldehyde, and ammonium sulfate aqueous mixtures with a surrounding oil phase. Our experiments show a suppression of interfacial tension as a function of organic content that remains constant with reaction time for methylglyoxal-ammonium sulfate systems. We also reveal an unexpected time dependence of interfacial tension over a period of 48 h for ternary solutions of both methylglyoxal and formaldehyde in aqueous ammonium sulfate, indicating a more complicated behavior of surface activity where there is competition among dissolved organics. From these interfacial tension measurements, the morphology of aged atmospheric aerosols with internal liquid-liquid phase separation is inferred.

  14. REDOX AND ELECTROPHILIC PROPERTIES OF VAPOR- AND PARTICLE-PHASE COMPONENTS OF AMBIENT AEROSOLS

    PubMed Central

    Eiguren-Fernandez, Arantzazu; Shinyashiki, Masaru; Schmitz, Debra A.; DiStefano, Emma; Hinds, William; Kumagai, Yoshito; Cho, Arthur K.; Froines, John R.

    2010-01-01

    Particulate matter (PM) has been the primary focus of studies aiming to understand the relationship between the chemical properties of ambient aerosols and adverse health effects. Size and chemical composition of PM have been linked to their oxidative capacity which has been postulated to promote or exacerbate pulmonary and cardiovascular diseases. But in the last few years, new studies have suggested that volatile and semivolatile components may also contribute to many adverse health effects. The objectives of this study were: i) assess for the first time the redox and electrophilic potential of vapor-phase components of ambient aerosols, and ii) evaluate the relative contributions of particle- and vapor-fractions to the hazard of a given aerosol. To achieve these objectives vapor- and particle-phase samples collected in Riverside (CA) were subjected to three chemical assays to determine their redox and electrophilic capacities. The results indicate that redox active components are mainly associated with the particle-phase, while electrophilic compounds are found primarily in the vapor-phase. Vapor-phase organic extracts were also capable of inducing the stress responding protein, heme-oxygenase-1 (HO-1), in RAW264.7 murine macrophages. These results demonstrate the importance of volatile components in the overall oxidative and electrophilic capacity of aerosols, and point out the need for inclusion of vapors in future health and risk assessment studies. PMID:20152964

  15. Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN)

    NASA Astrophysics Data System (ADS)

    Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S. S.; Wernli, H.; Andreae, M. O.; Pöschl, U.

    2009-09-01

    We have investigated the formation of cloud droplets under pyro-convective conditions using a cloud parcel model with detailed spectral microphysics and with the κ-Köhler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution (accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (NCD) for a wide range of updraft velocities (w=0.25-20 m s-1) and aerosol particle number concentrations (NCN=200-105 cm-3) at the cloud base. Depending on the ratio between updraft velocity and particle number concentration (w/NCN), we found three distinctly different regimes of CCN activation and cloud droplet formation: (1) An aerosol-limited regime that is characterized by high w/NCN ratios (>≈10-3 m s-1 cm3), high maximum values of water vapour supersaturation (Smax>≈0.5%), and high activated fractions of aerosol particles (NCN/NCN>≈90%). In this regime NCD is directly proportional to NCN and practically independent of w. (2) An updraft-limited regime that is characterized by low w/NCN ratios (<≈10-4 m s-1 cm3), low maximum values of water vapour supersaturation (Smax<≈0.2%), and low activated fractions of aerosol particles (NCD/NCN<≈20%). In this regime NCD is directly proportional to w and practically independent of NCN. (3) An aerosol- and updraft-sensitive regime (transitional regime), which is characterized by parameter values in between the two other regimes and covers most of the conditions relevant for pyro-convection. In this regime NCD depends non-linearly on both NCN and w. In sensitivity studies we have tested the influence of aerosol particle size distribution and hygroscopicity on NCD. Within the range of effective hygroscopicity parameters that is characteristic for continental atmospheric aerosols (κ≈0.05-0.6), we found that NCD depends rather weakly on the actual value of κ

  16. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Gong, S. L.; Shen, X. J.; Yang, S.

    2011-07-01

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O3 and various trace gases were continuously measured at an urban station before and during the Beijing O