Science.gov

Sample records for aerosol particulate matter

  1. PREFACE OF SPECIAL ISSUE OF AEROSOL SCIENCE AND TECHNOLOGY FOR PARTICULATE MATTER SUPERSITES PROGRAM AND RELATED STUDIES

    EPA Science Inventory

    This article is the preface or editors note to a dedicated issue of Aerosol Science and Technology, journal of the American Association for Aerosol Research. It includes a selection of scientific papers from the specialty conference entitled, "Particulate Matter Supersites ...

  2. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  3. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  4. Relating hygroscopicity and composition of organic aerosol particulate matter

    SciTech Connect

    Duplissy, J.; DeCarlo, P. F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, T.; Gysel, M.; Aiken, A. C.; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, D. R.; Collins, D. R.; Tomlinson, J.; Baltensperger, U.

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg = 2.2 × f44 - 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. Finally, the use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.

  5. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes.

    PubMed

    Radzi bin Abas, M; Oros, Daniel R; Simoneit, B R T

    2004-05-01

    The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, alpha- and beta-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and beta-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas.

  6. Concentrations and composition of aerosols and particulate matter in surface waters along the transatlantic section

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Novigatsky, A. N.; Redzhepova, Z. U.; Dara, O. M.

    2016-07-01

    Along the transatlantic section from Ushuaia to Gdańsk (March 26-May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237-111 739 particles/L for the fraction of 0.3-1 μm and to 0.02-34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river-sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.

  7. DAILY VARIATION IN ORGANIC COMPOSITION OF FINE PARTICULATE MATTER IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...

  8. Spatial and Temporal Variability of Outdoor Coarse Particulate Matter Mass Concentrations Measured with a New Coarse Particulate Sampler during the Detroit Exposure and Aerosol Research Study

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10-2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spa...

  9. Molecular marker characterization and source appointment of particulate matter and its organic aerosols.

    PubMed

    Choi, Jong-Kyu; Ban, Soo-Jin; Kim, Yong-Pyo; Kim, Yong-Hee; Yi, Seung-Muk; Zoh, Kyung-Duk

    2015-09-01

    This study was carried out to identify possible sources and to estimate their contribution to total suspended particle (TSP) organic aerosol (OA) contents. A total of 120 TSP and PM2.5 samples were collected simultaneously every third day over a one-year period in urban area of Incheon, Korea. High concentration in particulate matters (PM) and its components (NO3(-), water soluble organic compounds (WSOCs), and n-alkanoic acids) were observed during the winter season. Among the organics, n-alkanes, n-alkanoic acids, levoglucosan, and phthalates were major components. Positive matrix factorization (PMF) analysis identified seven sources of organic aerosols including combustion 1 (low molecular weight (LMW)-polycyclic aromatic hydrocarbons (PAHs)), combustion 2 (high molecular weight (HMW)-PAHs), biomass burning, vegetative detritus (n-alkane), secondary organic aerosol 1 (SOA1), secondary organic aerosol 2 (SOA2), and motor vehicles. Vegetative detritus increased during the summer season through an increase in biogenic/photochemical activity, while most of the organic sources were prominent in the winter season due to the increases in air pollutant emissions and atmospheric stability. The correlation factors were high among the main components of the organic carbon (OC) in the TSP and PM2.5. The results showed that TSP OAs had very similar characteristics to the PM2.5 OAs. SOA, combustion (PAHs), and motor vehicle were found to be important sources of carbonaceous PM in this region. Our results imply that molecular markers (MMs)-PMF model can provide useful information on the source and characteristics of PM.

  10. Molecular marker characterization and source appointment of particulate matter and its organic aerosols.

    PubMed

    Choi, Jong-Kyu; Ban, Soo-Jin; Kim, Yong-Pyo; Kim, Yong-Hee; Yi, Seung-Muk; Zoh, Kyung-Duk

    2015-09-01

    This study was carried out to identify possible sources and to estimate their contribution to total suspended particle (TSP) organic aerosol (OA) contents. A total of 120 TSP and PM2.5 samples were collected simultaneously every third day over a one-year period in urban area of Incheon, Korea. High concentration in particulate matters (PM) and its components (NO3(-), water soluble organic compounds (WSOCs), and n-alkanoic acids) were observed during the winter season. Among the organics, n-alkanes, n-alkanoic acids, levoglucosan, and phthalates were major components. Positive matrix factorization (PMF) analysis identified seven sources of organic aerosols including combustion 1 (low molecular weight (LMW)-polycyclic aromatic hydrocarbons (PAHs)), combustion 2 (high molecular weight (HMW)-PAHs), biomass burning, vegetative detritus (n-alkane), secondary organic aerosol 1 (SOA1), secondary organic aerosol 2 (SOA2), and motor vehicles. Vegetative detritus increased during the summer season through an increase in biogenic/photochemical activity, while most of the organic sources were prominent in the winter season due to the increases in air pollutant emissions and atmospheric stability. The correlation factors were high among the main components of the organic carbon (OC) in the TSP and PM2.5. The results showed that TSP OAs had very similar characteristics to the PM2.5 OAs. SOA, combustion (PAHs), and motor vehicle were found to be important sources of carbonaceous PM in this region. Our results imply that molecular markers (MMs)-PMF model can provide useful information on the source and characteristics of PM. PMID:26022138

  11. A study of aerosol properties based on observations of particulate matter from the U.S. Embassy in Beijing, China

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anondo; Toohey, Darin W.

    2016-08-01

    The United States Embassy in Beijing, China publicly released a record of mass concentrations of particulate matter 2.5 µm and smaller in aerodynamic diameter (PM2.5), from April 2008 to the present, measured with a beta attenuation monitor (BAM). We compare these measurements with observations of particulate matter recorded at the Beijing Institute of Atmospheric Physics and observations of visibility recorded at the Beijing Capital International Airport (BCIA) to assess their value as a record of air quality in the greater Beijing metropolitan area. We find that the PM2.5 observations correlate well with the other observations of particulate matter (PM) over the period 1 January-1 February 2013 using a tapered element oscillating microbalance and an aerosol mass spectrometer (AMS), and they exhibit a clear inverse correlation with visibility measured at BCIA. Using inverse visibility as a proxy of radiation extinction, we determine a dry mass extinction efficiency and a dependence of radiation extinction on relative humidity, which is consistent with other studies of polluted urban environments. We deduce a strong degree of homogeneity of particulate pollution across the Beijing metropolitan region and conclude that the U.S. Embassy measurements are a reliable sample of this particulate pollution during periods of photochemical smog. The U.S. Embassy observations of PM2.5 appear to remain consistent throughout the available record and can serve as a useful dataset for studying future trends in particulate matter as China implements ambitious measures to improve air quality in the region.

  12. Use of Remotely Sensed Aerosol Optical Depth in Particulate Matter Forecasting for Urban Areas

    NASA Astrophysics Data System (ADS)

    Grant, S. L.; Crist, K.

    2011-12-01

    Cincinnati, a large metropolitan area in southwestern Ohio, has been listed as a non-attainment area based on the EPA 1997 PM2.5 (particulate matter with aerodynamic diameter < 2.5μm) standard with a number of unhealthy days reported annually for sensitive groups. AirNow provides air quality index for the city, but its accuracy largely depends on the air quality forecast models used and ground-based monitoring network measurements. These networks are inherently limited by their sparse distribution; nonetheless, they form an integral part of many decision-making structure and epidemiological studies. Remote sensing instruments such as MODIS provide daily aerosol optical depth (AOD) products with almost global spatial coverage, which are available on a near-real-time (NRT) basis. This work aims to show that the NRT AOD product obtained from MODIS can improve the air quality forecast in the Cincinnati area. To achieve this, an evaluation of the correlation of AOD retrievals with ground-based PM2.5 observations is carried out. Further to which, the MODIS AOD data is included as a variable in a statistical model to bolster current PM2.5 forecasting capabilities. Other key input parameters to the multiple linear regression model includes surface and vertical weather patterns, mixing height, local wind patterns, relative humidity and temperature.

  13. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter.

    PubMed

    Sandradewi, Jisca; Prévôt, Andre S H; Szidat, Sönke; Perron, Nolwenn; Alfarra, M Rami; Lanz, Valentin A; Weingartner, Ernest; Baltensperger, Urs

    2008-05-01

    A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PM(wb), PM(traffic)). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8-1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PM(wb) and PM(traffic) values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.

  14. Limitations of Remotely Sensed Aerosol as a Spatial Proxy for Fine Particulate Matter

    PubMed Central

    Paciorek, Christopher J.; Liu, Yang

    2009-01-01

    Background Recent research highlights the promise of remotely sensed aerosol optical depth (AOD) as a proxy for ground-level particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5). Particular interest lies in estimating spatial heterogeneity using AOD, with important application to estimating pollution exposure for public health purposes. Given the correlations reported between AOD and PM2.5, it is tempting to interpret the spatial patterns in AOD as reflecting patterns in PM2.5. Objectives We evaluated the degree to which AOD can help predict long-term average PM2.5 concentrations for use in chronic health studies. Methods We calculated correlations of AOD and PM2.5 at various temporal aggregations in the eastern United States in 2004 and used statistical models to assess the relationship between AOD and PM2.5 and the potential for improving predictions of PM2.5 in a subregion, the mid-Atlantic. Results We found only limited spatial associations of AOD from three satellite retrievals with daily and yearly PM2.5. The statistical modeling shows that monthly average AOD poorly reflects spatial patterns in PM2.5 because of systematic, spatially correlated discrepancies between AOD and PM2.5. Furthermore, when we included AOD as a predictor of monthly PM2.5 in a statistical prediction model, AOD provided little additional information in a model that already accounts for land use, emission sources, meteorology, and regional variability. Conclusions These results suggest caution in using spatial variation in currently available AOD to stand in for spatial variation in ground-level PM2.5 in epidemiologic analyses and indicate that when PM2.5 monitoring is available, careful statistical modeling outperforms the use of AOD. PMID:19590681

  15. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than

  16. An Evaluation of Sharp Cut Cyclones for Sampling Diesel Particulate Matter Aerosol in the Presence of Respirable Dust

    PubMed Central

    Cauda, Emanuele; Sheehan, Maura; Gussman, Robert; Kenny, Lee; Volkwein, Jon

    2015-01-01

    Two prototype cyclones were the subjects of a comparative research campaign with a diesel particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a downstream impactor. The DPMS is currently used in mining environments to separate dust from the diesel particulate matter and to avoid interferences in the analysis of integrated samples and direct-reading monitoring in occupational environments. The sampling characteristics of all three devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all three devices were found to be similar, with 50% penetration efficiencies (d50) close to the design value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring occupational exposure to diesel particulate matter in US mining operations. The prototype cyclones were shown to have ‘sharp cut’ size-selection characteristics that equaled or exceeded the sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, while the results of the tests with coal dust induced the exclusion of one of the prototypes from subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone (SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of the SCC remained constant, the deposited respirable coal dust particles altered the size-selection performance of the currently used sampler. This study demonstrates that the SCC performed better overall than the DPMS. PMID:25060240

  17. Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols.

    PubMed

    Shafer, Martin M; Toner, Brandy M; Overdier, Joel T; Schauer, James J; Fakra, Sirine C; Hu, Shaohua; Herner, Jorn D; Ayala, Alberto

    2012-01-01

    We report on the development and application of an integrated set of analytical tools that enable accurate measurement of total, extractable, and, importantly, the oxidation state of vanadium in sub-milligram masses of environmental aerosols and solids. Through rigorous control of blanks, application of magnetic-sector-ICPMS, and miniaturization of the extraction/separation methods we have substantially improved upon published quantification limits. The study focused on the application of these methods to particulate matter (PM) emissions from diesel vehicles, both in baseline configuration without after-treatment and also equipped with advanced PM and NO(x) emission controls. Particle size-resolved vanadium speciation data were obtained from dynamometer samples containing total vanadium pools of only 0.2-2 ng and provide some of the first measurements of the oxidation state of vanadium in diesel vehicle PM emissions. The emission rates and the measured fraction of V(V) in PM from diesel engines running without exhaust after-treatment were both low (2-3 ng/mile and 13-16%, respectively). The V(IV) species was measured as the dominant vanadium species in diesel PM emissions. A significantly greater fraction of V(V) (76%) was measured in PM from the engine fitted with a prototype vanadium-based selective catalytic reductors (V-SCR) retrofit. The emission rate of V(V) determined for the V-SCR equipped vehicle (103 ng/mile) was 40-fold greater than that from the baseline vehicle. A clear contrast between the PM size-distributions of V(V) and V(IV) emissions was apparent, with the V(V) distribution characterized by a major single mode in the ultrafine (<0.25 μm) size range and the V(IV) size distribution either flat or with a small maxima in the accumulation mode (0.5-2 μm). The V(V) content of the V-SCR PM (6.6 μg/g) was 400-fold greater than that in PM from baseline (0.016 μg/g) vehicles, and among the highest of all environmental samples examined. Synchrotron

  18. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors

  19. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  20. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China.

    PubMed

    Han, Yong; Wu, Yonghua; Wang, Tijian; Zhuang, Bingliang; Li, Shu; Zhao, Kun

    2015-11-01

    Assessment of the correlation between aerosol optical depth (AOD) and particulate matter (PM) is critical to satellite remote sensing of air quality, e.g. ground PM10 and ground PM2.5. This study evaluates the impacts of aloft-aerosol-plume and aerosol-type on the correlation of AOD-PM by using synergistic measurement of a polarization-sensitive Raman-Mie lidar, CIMEL sunphotometer (SP) and TEOM PM samplers, as well as the satellite MODIS and CALIPSO, during April to July 2011 in Nanjing city (32.05(○)N/118.77(○)E), southeast China. Aloft-aerosol-layer and aerosol types (e.g. dust and non-dust or urban aerosol) are identified with the range-resolved polarization lidar and SP measurements. The results indicate that the correlations for AOD-PM10 and AOD-PM2.5 can be much improved when screening out the aloft-aerosol-layer. The linear regression slopes show significant differences for the dust and non-dust dominant aerosols in the planetary boundary layer (PBL). In addition, we evaluate the recent released MODIS-AOD product (Collection 6) from the "dark-target" (DT) and "deep-blue" (DB) algorithms and their correlation with the PM in Nanjing urban area. The results verify that the MODIS-DT AODs show a good correlation (R = 0.89) with the SP-AOD but with a systematic overestimate. In contrast, the MODIS-DB AOD shows a moderate correlation (R = 0.66) with the SP-AOD but with a smaller regression intercept (0.07). Furthermore, the moderately high correlations between the MODIS-AOD and PM10 (PM2.5) are indicated, which suggests the feasibility of PM estimate using the MODIS-AOD in Nanjing city. PMID:26071961

  1. Identification of haze-creating sources from fine particulate matter in Dhaka aerosol using carbon fractions.

    PubMed

    Begum, Bilkis A; Hopke, Philip K

    2013-09-01

    Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 microg/m3 and 6.0 microg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter. PMID:24151680

  2. A novel Aerosol-Into-Liquid Collector for online measurements of trace metal and elements in ambient particulate matter (PM)

    NASA Astrophysics Data System (ADS)

    Wang, Dongbin; Shafer, Martin; Schauer, James; Sioutas, Constantinos

    2015-04-01

    A novel monitor for online, in-situ measurement of several important metal species (i.e. Fe, Mn and Cr) in ambient fine and ultrafine particulate matter (PM) is developed based on a recent published high flow rate Aerosol-Into-Liquid Collector. This Aerosol-Into-Liquid Collector collects particles directly as highly concentrated slurry samples, and the concentrations of target metals in slurry samples are subsequently determined in a Micro Volume Flow Cell (MVFC) coupled with absorbance spectrophotometry to detect colored complexes coming from the reactions between target metals and specific reagents. Laboratory tests are conducted to evaluate the performance of the MVFC-absorbance system. The calibration curves of the system are determined using standard solutions prepared by serial dilution. As part of the evaluation, the effects of reaction time, reagent amount and interference on the system are also evaluated. Field evaluations of the online monitor will be performed to validate the ability of this new online sampler in near-continuous collection and measurements. Both laboratory and field evaluations of the novel monitor will indicate that it is an effective and valuable technology for PM collection and characterization of important metal species in ambient aerosols.

  3. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Kobayashi, Minoru; Mochida, Michihiro; Kawamura, Kimitaka; Lee, Meehye; Lim, Ho-Jin; Turpin, Barbara J.; Komazaki, Yuichi

    2004-10-01

    The organic compound tracers of atmospheric particulate matter, as well as organic carbon (OC) and elemental carbon (EC), have been characterized for samples acquired during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) from Gosan, Jeju Island, Korea, from Sapporo, Japan, and from Chichi-jima Island in the western North Pacific, as well as on the National Oceanic and Atmospheric Administration R/V Ronald H. Brown. Total extracts were analyzed by gas chromatography-mass spectrometry to determine both polar and aliphatic compounds. Total particles, organic matter, and lipid and saccharide compounds were high during the Asian dust episode (early April 2001) compared to levels at other times. The organic matter can be apportioned to seven emission sources and to significant oxidation-producing secondary products during long-range transport. Terrestrial natural background compounds are vascular plant wax lipids derived from direct emission and as part of desert sand dust. Fossil fuel utilization is obvious and derives from petroleum product and coal combustion emissions. Saccharides are a major polar (water-soluble) carbonaceous fraction derived from soil resuspension (agricultural activities). Biomass-burning smoke is evident in all samples and seasons. It contributes up to 13% of the total compound mass as water-soluble constituents. Burning of refuse is another source of organic particles. Varying levels of marine-derived lipids are superimposed during aerosol transport over the ocean. Secondary oxidation products increase with increasing transport distance and time. The ACE-Asia aerosols are composed not only of desert dust but also of soil dust, smoke from biomass and refuse burning, and emissions from fossil fuel use in urban areas.

  4. INDOOR/OUTDOOR AEROSOL CONCENTRATION RATIOS DURING THE 1999 FRESNO PARTICULATE MATTER EXPOSURE STUDIES AS A FUNCTION OF SIZE, SEASON, AND TIME OF DAY

    EPA Science Inventory

    The 1999 Fresno particulate matter exposure studies tools place in February (winter season) and April/May (spring season) for two periods of four weeks. During that time, near-continuous measurements of indoor and outdoor aerosol concentrations were made with a scanning mobilit...

  5. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  6. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Radzi Bin Abas, M.; Rahman, Noorsaadah A.; Omar, Nasr Yousef M. J.; Maah, M. Jamil; Abu Samah, Azizan; Oros, Daniel R.; Otto, Angelika; Simoneit, Bernd R. T.

    The solvent-extractable compounds of urban airborne particulate matter were analyzed to determine the distributions of homologous and biomarker tracers. Samples were collected by high-volume air filtration during the haze episode of 1997 around the University of Malaya campus near Petaling Jaya, a suburb of Kuala Lumpur, Malaysia. These results show that the samples contain n-alkanes, n-alkan-2-ones, n-alkanols, methyl n-alkanoates, n-alkyl nitriles, n-alkanals, n-alkanoic acids, levoglucosan, PAHs, and UCM as the dominant components, with minor amounts of terpenoids, glyceryl esters and sterols, all derived from natural biogenic sources (vascular plant wax), from burning of biomass, and from anthropogenic utilization of fossil fuel products (lubricating oil, vehicle emissions, etc.). Some compositional differences are observed in the samples and greater atmospheric concentrations were found for almost all organic components in the samples collected near a roadway. The results interpreted in terms of major sources are due to local build-up of organic contaminants from vehicular emissions, smoke from biomass burning, and natural background as a result of the atmospheric stability during the haze episodes. The organic components transported in from areas outside the region, assuming all smoke components are external to the city, amount to about 30% of the total organic particle burden.

  7. Particulate matter and heavy metals in the atmospheric aerosol from Cartagena, Spain

    NASA Astrophysics Data System (ADS)

    Moreno-Grau, S.; Pérez-Tornell, A.; Bayo, J.; Moreno, J.; Angosto, J. M.; Moreno-Clavel, J.

    Total suspended particulate matter (TSP) and lead (Pb) concentrations were monitored at three sampling stations in Cartagena, Spain, from February 1990 to December 1998, and copper (Cu), zinc (Zn), and cadmium (Cd) atmospheric concentrations were measured from January 1991 to December 1998. TSP and Pb values were analysed from samples collected on glassfibre filters, and the concentrations of Pb, Cu, Zn, and Cd were calculated from cellulose ester filters, showing no statistically significant difference (95% C.L.) for Pb analysed in both filter types. The geographical and temporal distribution patterns were investigated. There was a trend to find the highest TSP levels during winter and autumn, and the highest Pb concentrations during the winter season. The Pb/Cd average ratios for each sampling point showed a direct anthropogenic contribution for the industrial areas, when compared with Pb/Cd ratio reported for global natural emissions. The correlation among heavy metals displayed similar results, differing from the residential area to the urban and industrial ones.

  8. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-02-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions, with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in BC and OA emitted by gasoline and diesel engines. Cycloalkanes predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. The presence of trace elements in vehicle exhaust raises the concern that ash deposits may accumulate over time in diesel particle filter systems, and may eventually lead to performance problems that require servicing.

  9. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-07-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions (N = 293), with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. OA mass spectra measured for HD truck exhaust plumes show cycloalkanes are predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in OA and BC emitted by gasoline and diesel engines. This finding indicates a large fraction of OA in gasoline exhaust is lubricant-derived as well. The similarity in OA and BC mass spectra for gasoline and diesel engine exhaust is likely to confound ambient source apportionment efforts to determine contributions to air pollution from these two important sources.

  10. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    NASA Technical Reports Server (NTRS)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  11. Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals

    NASA Astrophysics Data System (ADS)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-06-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM2.5 concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample “ten-fold” cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM2.5 mass concentrations are highly correlated with the actual observations, with out-of-sample R2 of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM2.5 levels.

  12. PREFACE: SPECIAL ISSUE OF AEROSOL SCIENCE AND TECHNOLOGY ON FINDINGS FROM THE FINE PARTICULATE MATTER SUPERSITES PROGRAM

    EPA Science Inventory

    This collection of papers, which is the first coordinated publication of results from the Phase II Supersites Program, reflects the objectives of the program - to characterize particulate matter, to provide information, such as source-receptor relationships, that support health...

  13. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments

    SciTech Connect

    Bernd R.T. Simoneit; Xinhui Bi; Daniel R. Oros; Patricia M. Medeiros; Guoying Sheng; Jiamo Fu

    2007-11-01

    Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Coal samples included lignite from Germany, semibituminous coal from Arizona, USA, bituminous coal from Wales, UK and sample from briquettes of semibituminous coal, bituminous coal and anthracite from China. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs. 36 refs., 2 figs., 3 tabs.

  14. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    EPA Science Inventory

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  15. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

    PubMed Central

    van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Kahn, Ralph; Levy, Robert; Verduzco, Carolyn; Villeneuve, Paul J.

    2010-01-01

    Background Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. Objective In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. Methods We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. Results We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3. Conclusions Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. PMID:20519161

  16. Improved CMAQ predictions of particulate matter utilizing the satellite-derived aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Lee, Daegyun; Byun, Daewon W.; Kim, Hyuncheol; Ngan, Fong; Kim, Soontae; Lee, Chongbum; Cho, Changrae

    2011-07-01

    Regional air quality models such as the Community Multiscale Air Quality (CMAQ) model have been widely used to study and simulate multi-scale air quality issues. Although they are capable of providing high quality atmospheric chemistry profiles through the utilization of high resolution inputs relating meteorology and emissions with chemical reactions, they cannot simulate air quality accurately if other input data are not appropriate and reliable. There have been few studies on the importance of chemical initial conditions (ICs) as it is considered that the impact of concentration fields specified at the beginning of simulation wears off quickly. This paper demonstrates that the significant errors during the early part of the simulation can damage model predictions and conversely if the ICs are prescribed appropriately with available observations, they can compensate for the shortcomings of the air quality prediction system especially when the episode-based emissions inputs representing real-life emission variations such as forest fires as well as the effects of long-range transport events that are not reflected in the basic model inputs. The key hypothesis of the present study is that prediction of aerosols can be improved by the initialization of the aerosol fields with the satellite-derived Aerosol Optical Depth (AOD). We compare the effects of using fine mode and total AOD for the initialization in terms of regional bias characteristics. We found that the impacts of two-step initial conditions adjustments could be substantial in the case of aerosol events such as wildfires, which the present modeling system does not consider during simulation due to the deficiency in the emission inputs. The total AOD case helped to refine PM 2.5 predictions over the northwestern area, where wildfire events occurred, for the fire event days improving the correlation coefficient significantly from 0.12 to 0.67. CMAQ predicted PM 2.5 concentrations in the fine mode case

  17. Study on particulate matter air pollution in Beijing with MODIS aerosol level 2 products

    NASA Astrophysics Data System (ADS)

    Mao, Jietai; Li, Chengcai; Lau, Alexis K.

    2004-09-01

    In the run-up to the 2008 Olympic Games in Beijing, Chinese government officials at both the central and municipal levels are keenly aware that they must transform Beijing into a world-class city. According to the Beijing Municipal Environmental Protection Bureau (BJEPB) to improve its air quality some actions are adopting, including taking steps to increase the forested area surrounding the city preventing dust storms, reducing the automotive vehicles, moving polluting factories now inside the fourth ring road ringing the inner city to locations outside of the fourth ring road, and switching the fuel of public buses and taxis from diesel to natural gas, etc. Will they eliminate most serious environmental problems in Beijing? MODIS aerosol products are helping us to answer this kind of questions. A long-term validation has been finished by sun-photometer observations, and the results proved the relative error of MODIS level 2 products was slightly larger than the estimation of Chu et al. (2002) from the results in most AERONET sites. However, the comparison between the products and moisture-corrected air pollution index (API) data, which were daily released to public by EPB, showed a high correlation coefficient. An air pollution episode in 2003 was investigated by the usage of satellite products. Our conclusion for the air pollution control strategy in Beijing is that only reducing the pollution sources from inner city can't fully solve the pollution problems in Beijing and the regional transports from the nearby southern provinces are contributing a lot to the pollution situation in Beijing.

  18. Rigid particulate matter sensor

    DOEpatents

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  19. Development of Particulates and Aerosols Research

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Rivera, Monica

    2005-01-01

    During the past year several accomplishments were made for both the Particulate Matter Characterization and Measurement System, (PMCMS) and PAGEMS projects. The PAGEMS focus is to measure particulate emissions as a function of combustor parameters such as inlet temperature, inlet pressure and fuel air ratio. These measurements are used to evaluate combustor performance in hopes of correlating particulate emissions with engine conditions. These measurements have taken place at in-house NASA combustor facilities and off-site facilities. Ths work is unique because particulate measurements at high- pressure conditions are not commonly made. Some calibration of the PAGEMS instrumentation was done as well as minor modifications to the PAGEMS plumbing setup. These led to measurement improvements. The instrumentation and measurement process for PAGEMS was assessed and new instruments such as a thermodenuder, thermal mass flow meters and a cyclone separator were purchased to improve the PAGEMS instrumentation and measurement process. A worksheet was created to simulate varying inlet conditions to the DMA. This worksheet allows the user to assess the error in the measurements when certain conditions exist. Two technical papers were written with the PAGEMS team for the EXCAVATE field project. A paper was also reviewed for an in house publication. Also data was processed and analyzed for another field project (PAX) and will be part of a third PAGEMS paper. Accomplishments were also made with the PMCMS project. The calibration of the radial differential mobility analyzer, (RDMA) in the particle sizing system in the PMCMS was completed and provided satisfactory results. The voltages used for the RDMA depending on the particle of interest were corrected. The measurement capability of the PMCMS was increased by replacing the MetOne CPC with a TSI CPC. Lastly, assistance was provided to three college summer students with calibration of their particulate equipment and Monica Rivera

  20. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  1. Polarimetric discrimination of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk; Gregory, Don

    2012-06-01

    A polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection from 300 to 1100 nm has been constructed and tested. Exploratory research has been conducted which may lead to the standoff detection of bio-aerosols in the atmosphere. The polarization properties of bsubtilis (surrogate for anthrax spore) have been compared to ambient particulate matter species such as pollen, dust and soot (all sampled onto microscope slides) and differentiating features have been identified. The application of this technique for the discrimination of bio-aerosol from background clutter has been demonstrated.

  2. Estimation of particulate matter from simulation and measurements

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Nakano, Tomio; Okuhara, Takaaki; Sano, Itaru; Mukai, Sonoyo

    2011-11-01

    The particulate matter is a typical indicator of small particles in the atmosphere. In addition to providing impacts on climate and environment, these small particles can bring adverse effects on human health. Then an accurate estimation of particulate matter is an urgent subject. We set up SPM sampler attached to our AERONET (Aerosol Robotics Network) station in urban city of Higashi-Osaka in Japan. The SPM sampler provides particle information about the concentrations of various SPMs (e.g., PM10 and PM2.5) separately. The AEROENT program is world wide ground based sunphotometric observation networks by NASA and provides the spectral information about aerosol optical thickness (AOT) and Angstrom exponent (α). Simultaneous measurements show that a linear correlation definitely exists between AOT and PM2.5. These results indicate that particulate matter can be estimated from AOT. However AOT represents integrated values of column aerosol amount retrieved from optical property, while particulate matter concentration presents in-situ aerosol loading on the surface. Then simple way using linear correlation brings the discrepancy between observed and estimated particulate matter. In this work, we use cluster information about aerosol type to reduce the discrepancy. Our improved method will be useful for retrieving particulate matter from satellite measurements.

  3. Apparatus for particulate matter analysis

    DOEpatents

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  4. [Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)].

    PubMed

    Mu, Ying-Ying; Lou, Sheng-Rong; Chen, Chang-Hong; Zhou, Min; Wang, Hong-Li; Zhou, Zhen; Qiao, Li-Ping; Huang, Cheng; Li, Mei; Li, Li; Wang, Qian; Huang, Hai-Ying; Zou, Lan-Jun

    2013-06-01

    A single particle aerosol mass spectrometer (SPAMS) was applied to characterize the size distribution (200 nm-2.0 microm) and chemical compositions of ambient particles during a polluted event from 11th to 18th, November 2011. OCEC, METAL, EC, SECONDARY and K-Na types of particulates were the dominant groups observed in hazy day period, which were 27.4%, 3.4%, 7.3% , 45.6% and 5.4% of the overall measured particles, respectively. The observed five types of particles contained the secondary composition such as 18NH4(+), 80SO3(-), 96SO4(-), 97HSO4(-), 46NO2(-), 62NO3(-) and 125H (NO3) -, showing that they probably went through different aging processes, and the increasing of the SECONDARY particles during the event clearly indicated a secondary aerosol pollution. Heterogeneous reactions of SO2 and particles could be the reason of strong 97HSO4(-) signals in the mass spectrums of OCEC type particles while the existence of organic compounds might have an important influence on the aerosol formation with the gas-phase sulfuric acid. Fresh EC particles in the environment tended to be aging with above-mentioned secondary ions by the analysis of particle size distribution and eventually lead to a particle type conversion from EC to SECONDARY. Organic amine in marine environment was brought to the land by the warm, moist marine air mass that dramatically removed atmospheric SECONDARY and OCEC particles from the air with a heavy rain and leading to the observation of amine particles in the clean day period. PMID:23947016

  5. [Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)].

    PubMed

    Mu, Ying-Ying; Lou, Sheng-Rong; Chen, Chang-Hong; Zhou, Min; Wang, Hong-Li; Zhou, Zhen; Qiao, Li-Ping; Huang, Cheng; Li, Mei; Li, Li; Wang, Qian; Huang, Hai-Ying; Zou, Lan-Jun

    2013-06-01

    A single particle aerosol mass spectrometer (SPAMS) was applied to characterize the size distribution (200 nm-2.0 microm) and chemical compositions of ambient particles during a polluted event from 11th to 18th, November 2011. OCEC, METAL, EC, SECONDARY and K-Na types of particulates were the dominant groups observed in hazy day period, which were 27.4%, 3.4%, 7.3% , 45.6% and 5.4% of the overall measured particles, respectively. The observed five types of particles contained the secondary composition such as 18NH4(+), 80SO3(-), 96SO4(-), 97HSO4(-), 46NO2(-), 62NO3(-) and 125H (NO3) -, showing that they probably went through different aging processes, and the increasing of the SECONDARY particles during the event clearly indicated a secondary aerosol pollution. Heterogeneous reactions of SO2 and particles could be the reason of strong 97HSO4(-) signals in the mass spectrums of OCEC type particles while the existence of organic compounds might have an important influence on the aerosol formation with the gas-phase sulfuric acid. Fresh EC particles in the environment tended to be aging with above-mentioned secondary ions by the analysis of particle size distribution and eventually lead to a particle type conversion from EC to SECONDARY. Organic amine in marine environment was brought to the land by the warm, moist marine air mass that dramatically removed atmospheric SECONDARY and OCEC particles from the air with a heavy rain and leading to the observation of amine particles in the clean day period.

  6. Application of Remotely-sensed Aerosol Optical Depth in Characterization and Forecasting of Urban Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Grant, Shanique L.

    Emissions from local industries, particularly coal-fired power plants, have been shown to enhance the ambient pollutant budget in the Ohio River Valley (ORV) region. One pollutant that is of interest is PM2.5 due to its established link to respiratory illnesses, cardiopulmonary diseases and mortality. State and local agencies monitor the impact of the local point sources on the ambient concentrations at specific sites; however, the monitors do not provide satisfactory spatial coverage. An important metric for describing ambient particulate pollution is aerosol optical depth (AOD). It is a dimensionless geo-physical product measured remotely using satellites or ground-based light detection ranging instruments. This study focused on assessing the effectiveness of using satellite aerosol optical depth (AOD) as an indicator for PM2.5 in the ORV and two cities in Ohio. Three models, multi-linear regression (MLR), principal component analysis (PCA) -- MLR and neural network, were trained using 40% of the total dataset. The outcome was later tested to minimize error and further validated with another 40% of the dataset not included in the model development phase. Furthermore, to limit the effect of seasonality, four models representing each season were created for each city using meteorological variables known to influence PM2.5 and AOD concentration. GIS spatial analysis tool was employed to visualize and make spatial and temporal comparisons for the ORV region. Comparable spatial distributions were observed. Regression analysis showed that the highest and lowest correlations were in the summer and winter, respectively. Seasonal decomposition methods were used to evaluate trends at local Ohio monitoring stations to identify areas most suitable for improved air quality management. Over the six years of study, Cuyahoga County maintained PM2.5 concentrations above the national standard and in Hamilton County (Cincinnati) PM2.5 levels ranked above the national level for more

  7. Feasibility of the detection of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry

    SciTech Connect

    Salcedo, D.; Laskin, Alexander; Shutthanandan, V.; Jimenez, Jose L.

    2012-08-10

    The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measured ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple

  8. Spatial and Temporal Variation in Fine Particulate Matter Mass and Chemical Composition: The Middle East Consortium for Aerosol Research Study

    PubMed Central

    Abdeen, Ziad; Heo, Jongbae; Wu, Bo; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.; Schauer, James J.

    2014-01-01

    Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 μg/m3, with an average of 28.7 μg/m3. Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 μg/m3) in the summer (April–June) months compared to winter (October–December) months (26.0 μg/m3) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East. PMID:25045751

  9. Biomass burning as an important source of reactive oxygen species associated with the atmospheric aerosols in Southeastern United States - Implications for health effects of ambient particulate matter

    NASA Astrophysics Data System (ADS)

    Verma, V.; Weber, R. J. J.; Fang, T.; Xu, L.; Ng, N. L.; Russell, A. G.

    2014-12-01

    We assessed the potential of water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS). ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated daily samples) collected for one year at various sites in different environmental settings in the southeast, including three urban Atlanta sites, and one rural site in Yorkville. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for the DTT activity. Organic aerosol (OA) composition was measured at selected sites using a High-Resolution Time-of-Flight Aerosol Mass Spectrophotometer (HR-ToF-AMS). The various factors of the organic aerosols, i.e. Isoprene OA (Isop-OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA) were also resolved, and their ability to generate ROS investigated by linear regression techniques. Among all OA factors, BBOA was most consistently associated with ROS, with the highest intrinsic DTT activity of 151±20 pmol/min/μg. The water-soluble bioavailable fraction of BBOA-DTT activity is 2-3 times higher than the reported total-DTT activity of diesel exhaust particles. The total contribution of various aerosol sources to the ROS generating potential was also determined by the positive matrix factorization approach. Interestingly, biomass burning appears as the strongest source of ROS generation, with its annual contribution of 35 % to DTT activity; the contribution was higher in winter (47 %), than summer (24 %) and fall (17 %) seasons. The good agreement between the hydrophobic DTT activity with that estimated from the summed OA components, indicates that humic-like substances (HULIS), which are abundantly emitted

  10. Thermodynamic approaches using group contribution methods to model partitioning of semi-volatile organic compounds on atmospheric particulate matter: Temperature, humidity, and composition of aerosols

    NASA Astrophysics Data System (ADS)

    Jang, Myoseon

    The partitioning of organic compounds between particulate matter and the gas phase is strongly influenced by temperature, water vapor concentration, the chemical composition of particles, and the amount of organic material in particles. To describe the partitioning of semi-volatile organic compounds (SOCs) between the gas phase and particles (G/P), a partitioning constant, Kp, has been estimated from experimental measurements and theory. Because the true or observed Kp of SOCs determined from a given particle medium includes the activity coefficient term, the linearity between log Kp and the liquid (or subcooled liquid) vapor pressure, log pLo must be corrected by the activity coefficients of individual compounds. To calculate activity coefficients in different particle liquid media such as wood combustion, diesel combustion exhaust, and the secondary aerosols from α-pinene-ozone reaction, thermodynamic models (Hildebrand-Hansen cohesive energy density and UNIFAC) which use an additive group contribution method were used. Humidity effects on the G/P partitioning of the different types of semi-volatile organic compounds (SOCs) in the organic layer of different particles, were studied. The equilibrated water uptake in the organic layer of chemically different particles was computed from the activity coefficient of water in the organic liquid layer of an aerosol and the ambient relative humidity (RH). It was concluded that the humidity effect on partitioning was most important for hydrophobic compounds in polar aerosols and this effect was significant. Secondary aerosols from the α-pinene reaction with ozone were characterized using derivation methods. Products were identified by using instrumental techniques such as GC/CI-MS-ECD, GC/EI-MS-ECD, and GC/FT-IR. For oxy functional groups such as acids, ketones and aldehydes, derivatization was performed using fluorinated reagents to reinforce the analytical power on GC development: O- (2,3,4,5,6-pentafluorobenzyl

  11. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  12. Particulate matter and preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  13. Study of primary biological aerosols to characterize their diversity in particulate matter over the Indian tropical region: assessment for climatic and health impact

    NASA Astrophysics Data System (ADS)

    Priyamvada R, H.; Muthalagu, A.; R, R.; Verma, R. S.; Philip, L.; Desprès, V.; Poeschl, U.; Gunthe, S. S.

    2015-12-01

    Primary Biological Aerosol Particles (PBAPs) are ubiquitous in the Earth's atmosphere and can influence the biosphere, climate, and public health (Després et al., 2012).To study the importance of the PBAPs, it is important to have an understanding about their origin, seasonal abundance and diversity. The study of PBAPs over the Indian tropical region becomes important as it hosts ~ 18% of the world population and has a distinct climate with a systematic and cyclic monsoon season which is different from the continental climates in Europe and America. In this study, the PBAPs were characterized by the application of molecular genetic techniques involving DNA extraction, PCR amplifications, cloning and DNA sequencing. In addition, characterization of the fungal source emissions was performed to better understand the diversity, abundance, and relative contribution of the fungal aerosols. For the present study, DNA analysis was performed on a one-year air filter set of PM10 (particulate matter ≤10 mm) covering three distinct meteorological seasons, i.e. summer, monsoon, and winter. The results from DNA analysis revealed the presence of bacteria and fungi in the filter samples. The fungal source characterization performed by the DNA analysis revealed the ratio of Basidiomycota to Ascomycota to be 96:4, which is consistent with previously reported studies from airborne fungal communities in the European continental boundary layer air (Fröhlich-Nowoisky et al., 2009). In the study region, the highest species richness was found to be present in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.81%). Agaricaceae, Polyporaceae and Psathyrellaceae were dominant families in the study region and the families like Clavariaceae, Nectriaceae, Phanerochaetachae, Pleurotaceae and Strophariaceae were found to be rare. The results will next be compared with the diversity and types of the fungi found in ambient PM10. More details will be presented.

  14. Relationships between columnar aerosol optical properties and surface particulate matter observations in north-central Spain from long-term records (2003-2011)

    NASA Astrophysics Data System (ADS)

    Bennouna, Y. S.; Cachorro, V.; Burgos, M. A.; Toledano, C.; Torres, B.; de Frutos, A.

    2014-06-01

    This work examines the relationships between Aerosol Optical Depth (AOD) and Particulate Matter (PMX) parameters, based on long records (2003-2011) of two nearby sites from the AERONET and EMEP networks in the north-central area of Spain. The climatological annual cycle of PM10 and PM2.5 present a bimodality which might be partly due to desert dust intrusions, a pattern which does not appear in the annual cycle of the AOD. In the case of the AOD, this bimodality is likely to be masked because of the poor sampling of sunphotometer data as compared to PMX (67% of days against 90%), and this fact stresses the necessity of long-term observations. In monthly series, significant interannual variations are observed and most extrema coincide, however the bimodal shape remains relatively stable for PMX. Significant and consistent trends were found for both datasets likely associated to a decrease of desert dust apportionment until 2009. PM10 and AOD daily data are moderately correlated (0.56), a correlation improving for monthly means (0.70). In the case of strong desert dust events day-to-day correlation is not systematic, therefore an extensive analysis on PMX, fine-PM ratio, AOD and associated Ångström exponent (α) is carried out.

  15. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research. PMID:25639078

  16. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research.

  17. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    PubMed

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  18. Nighttime aqueous-phase secondary organic aerosols in Los Angeles and its implication for fine particulate matter composition and oxidative potential

    NASA Astrophysics Data System (ADS)

    Saffari, Arian; Hasheminassab, Sina; Shafer, Martin M.; Schauer, James J.; Chatila, Talal A.; Sioutas, Constantinos

    2016-05-01

    Recent investigations suggest that aqueous phase oxidation of hydrophilic organic compounds can be a significant source of secondary organic aerosols (SOA) in the atmosphere. Here we investigate the possibility of nighttime aqueous phase formation of SOA in Los Angeles during winter, through examination of trends in fine particulate matter (PM2.5) carbonaceous content during two contrasting seasons. Distinctive winter and summer trends were observed for the diurnal variation of organic carbon (OC) and secondary organic carbon (SOC), with elevated levels during the nighttime in winter, suggesting an enhanced formation of SOA during that period. The nighttime ratio of SOC to OC was positively associated with the relative humidity (RH) at high RH levels (above 70%), which is when the liquid water content of the ambient aerosol would be high and could facilitate dissolution of hydrophilic primary organic compounds into the aqueous phase. Time-integrated collection and analysis of wintertime particles at three time periods of the day (morning, 6:00 a.m.-9:00 a.m.; afternoon, 11:00 a.m.-3:00 p.m.; night, 8:00 p.m.-4:00 a.m.) revealed higher levels of water soluble organic carbon (WSOC) and organic acids during the night and afternoon periods compared to the morning period, indicating that the SOA formation in winter continues throughout the nighttime. Furthermore, diurnal trends in concentrations of semi-volatile organic compounds (SVOCs) from primary emissions showed that partitioning of SVOCs from the gas to the particle phase due to the decreased nighttime temperatures cannot explain the substantial OC and SOC increase at night. The oxidative potential of the collected particles (quantified using a biological macrophage-based reactive oxygen species assay, in addition to the dithiothreitol assay) was comparable during afternoon and nighttime periods, but higher (by at least ∼30%) compared to the morning period, suggesting that SOA formation processes possibly

  19. The short-term association of selected components of fine particulate matter and mortality in the Denver Aerosol Sources and Health (DASH) study

    EPA Science Inventory

    Associations of short-term exposure to fine particulate matter (PM2.5) with daily mortality may be due to specific PM2.5 chemical components. Objectives: Daily concentrations of PM2.5 chemical species were measured over five consecutive years in Denver, CO to investigate whethe...

  20. Method of dispersing particulate aerosol tracer

    DOEpatents

    O'Holleran, Thomas P.

    1988-01-01

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  1. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    NASA Astrophysics Data System (ADS)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  2. Development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, Sojin; Song, Chul-han; Park, Rae Seol; Park, Mi Eun; Han, Kyung man; Kim, Jhoon; Choi, Myungje; Ghim, Young Sung; Woo, Jung-Hun

    2016-04-01

    To improve short-term particulate matter (PM) forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD) data retrieved from a geostationary equatorial orbit (GEO) satellite sensor, GOCI (Geostationary Ocean Color Imager) which covers a part of Northeast Asia (113-146° E; 25-47° N), were used. Although GOCI can provide a higher number of AOD data in a semicontinuous manner than low Earth orbit (LEO) satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatiotemporal-kriging (STK) method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages in using the STK method in this study is that more observed AOD data can be used to prepare the best initial AOD fields compared with other methods that use single frame of observation data around the time of initialization. It is demonstrated in this study that the short-term PM forecast system developed with the application of the STK method can greatly improve PM10 predictions in the Seoul metropolitan area (SMA) when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ˜ 60 and ˜ 70{%}, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC (particle-into-liquid sampler coupled with ion chromatography) and low air-volume sample

  3. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  4. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  5. [Carbon in particulate matter in the air].

    PubMed

    Godec, Ranka

    2008-12-01

    Carbon in Particulate Matter in the AirCarbon (Latin carbo) in elemental form appears as diamond, graphite, fullerene, and black amorphous carbon. Black amorphous carbon can be found in atmospheric aerosols and its main forms are elemental (EC), organic (OC), and carbonate (CC) carbon. Atmospheric carbon particles are transmitted through more than 70 sources of air pollutants. Elemental carbon is the primary pollutant, which results from incomplete combustion of fossil and biomass fuels. It also appears as soot, in sediment, soil, and ice core. Many quantitative determinations of elemental carbon are based on its chemical inertness, thermal stability, and visual features. Organic carbon includes organic compounds such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins and furans, polybrominated diphenylethers, and other organic pollutants are the products of combustion and formation of secondary organic aerosols.The aim of this paper was to describe different forms of carbon in the atmosphere, how they affect people, climate, and the atmosphere, and to give an overview of different methods for their determination. PMID:19064370

  6. Correlation study between suspended particulate matter and DOAS data

    NASA Astrophysics Data System (ADS)

    Si, Fuqi; Liu, Jianguo; Xie, Pinghua; Zhang, Yujun; Liu, Wenqing; Kuze, Hiroaki; Lagrosas, Nofel; Takeuchi, Nobuo

    2006-05-01

    Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6 13.7 m2 g-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.

  7. PARTICULATE MATTER, OXIDATIVE STRESS AND NEUROTOXICITY

    EPA Science Inventory

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary dis...

  8. Particulate matter, oxidative stress and neurotoxicity.

    EPA Science Inventory

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary dis...

  9. OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER

    EPA Science Inventory

    The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...

  10. Ecological effects of particulate matter.

    PubMed

    Grantz, D A; Garner, J H B; Johnson, D W

    2003-06-01

    Atmospheric particulate matter (PM) is a heterogeneous material. Though regulated as un-speciated mass, it exerts most effects on vegetation and ecosystems by virtue of the mass loading of its chemical constituents. As this varies temporally and spatially, prediction of regional impacts remains difficult. Deposition of PM to vegetated surfaces depends on the size distribution of the particles and, to a lesser extent, on the chemistry. However, chemical loading of an ecosystem may be determined by the size distribution as different constituents dominate different size fractions. Coating with dust may cause abrasion and radiative heating, and may reduce the photosynthetically active photon flux reaching the photosynthetic tissues. Acidic and alkaline materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more likely route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. PM deposited directly to the soil can influence nutrient cycling, especially that of nitrogen, through its effects on the rhizosphere bacteria and fungi. Alkaline cation and aluminum availability are dependent upon the pH of the soil that may be altered dramatically by deposition of various classes of PM. A regional effect of PM on ecosystems is linked to climate change. Increased PM may reduce radiation interception by plant canopies and may reduce precipitation through a variety of physical effects. At the present time, evidence does not support large regional threats due to un-speciated PM, though site-specific and constituent-specific effects can be readily identified. Interactions of PM with other pollutants and with components of climate change remain important areas of research in assessment of challenges to ecosystem stability.

  11. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  12. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  13. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  14. Particulate matter in the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Ragent, B.; Esposito, L. W.; Tomasko, M. G.; Marov, M. IA.; Shari, V. P.

    1985-01-01

    The paper presents a summary of the data currently available (June 1984) describing the planet-enshrouding particulate matter in the Venus atmosphere. A description and discussion of the state of knowledge of the Venus clouds and hazes precedes the tables and plots. The tabular material includes a precis of upper haze and cloud-top properties, parameters for model-size distributions for particles and particulate layers, and columnar masses and mass loadings.

  15. Particulate matter formation from photochemical degradation of organophosphorus pesticides

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    Several experiments were performed in the European Photo-reactor - EUPHORE - for studying aerosol formation from organophosphorus pesticides such as diazinon, chlorpyrifos, chlorpyrifos-methyl and pirimiphos-methyl. The mass concentration yields obtained (Y) were in the range 5 - 44% for the photo-oxidation reactions in the presence and the absence of NOx. These results confirm the importance of studying pesticides as significant precursors of atmospheric particulate matter due to the serious risks associated to them. The studies based on the use of EUPHORE photoreactor provide useful data about atmospheric degradation processes of organophosphorus pesticides to the atmosphere. Knowledge of the specific degradation products, including the formation of secondary particulate matter, could complete the assessment of their potential impact, since the formation of those degradation products plays a significant role in the atmospheric chemistry, global climate change, radiative force, and are related to health effects.

  16. Particulate matter sensor with a heater

    DOEpatents

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  17. Long-term assessment of particulate matter using CHIMERE model

    NASA Astrophysics Data System (ADS)

    Monteiro, A.; Miranda, A. I.; Borrego, C.; Vautard, R.; Ferreira, J.; Perez, A. T.

    Particulate matter (PM) and aerosols have became a critical pollutant and object of several research applications, due to their increasing levels, especially in urban areas, causing air pollution problems and thus effects on human health. The main purpose of this study is to perform a first long-term air quality assessment for Portugal, regarding aerosols and PM pollution. The CHIMERE chemistry-transport model, forced by the MM5 meteorological fields, was applied over Portugal for 2001 year, with 10 km horizontal resolution, using an emission inventory obtained from a spatial top-down disaggregation of the 2001 national inventory database. The evaluation model exercise shows a model trend to overestimate particulate pollution episodes (peaks) at urban sites, especially in winter season. This could be due to an underprediction of the winter model vertical mixing and also to an overestimation of PM emissions. Simulated inorganic components (ammonium and sulfate) and secondary organic aerosols (SOA) were compared to measurements taken at Aveiro (northwest coast of Portugal). An underestimation of the three components was verified. However, the model is able to predict their seasonal variation. Nevertheless, as a first approach, and despite the complex topography and coastal location of Portugal affected by sea salt natural aerosols emissions, the results obtained show that the model reproduces the PM levels, temporal evolution, and spatial patterns. The concentration maps reveal that the areas with high PM values are covered by the air quality monitoring network.

  18. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  19. REINVENTING PERSONAL EXPOSURE TO PARTICULATE MATTER

    EPA Science Inventory

    Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...

  20. Miniature Sensors for Airborne Particulate Matter

    EPA Science Inventory

    Our group is working to design a small,lightweight, low-cost real-time particulate matter(PM) sensor to enable better monitoring of PMconcentrations in air, with the goal of informingpolicymakers and regulators to provide betterpublic health. The sensor reads the massconcentratio...

  1. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  2. SPATIAL PREDICTION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    A new national monitoring network for the measurement of fine particular matter (PM2.5) is currently under development. A primary goal of this network is to collect monitoring data in residential communities for the evaluation of compliance with particulate air quality standards...

  3. Source apportionment of particulate matter in Denmark

    NASA Astrophysics Data System (ADS)

    Moenster, J.; Glasius, M.; Nielsen, O. J.; Bilde, M.; Jensen, F. P.

    2005-12-01

    Atmospheric particulate matter (PM) has received considerable attention over the last decade as an important component of air pollution, particularly due to its health effects on the exposed population. Typically the mass of particles with diameters smaller that 10 μm (PM10) has been used in large cohort studies to estimate health effects such as increase in hospitalization rate, asthma attacks and premature deaths. Particles smaller than 2.5 μm (PM2.5) and ultra fine particles have been used in various epidemiological studies and correlations between exposure to fine and ultra fine particles and health effects have been found. Limits of acceptable concentrations of PM10, PM2.5 and some carcinogenic species have been made, and it is important to find the origin of the particulate matter to prevent exceeds of these limits. This can be done by measuring particle mass, organic/inorganic fractions of particles, the chemical components and other relevant factors, and then use receptor modeling for source apportionment of the particulate matter. We have done measurements at street level and urban background in Copenhagen, Denmark, to determine the origin of different sizes of particulate matter and the toxic organic compounds connected to these particles. We also did measurements in a small village with less traffic and more residential wood combustion for a comparison between traffic and wood combustion generated pollution. Our results show a significant amount of particulate matter coming from non local sources and are dominated by long-range transported inorganic salts. The amount of these is highly depended on the wind direction and thus on the origin of the wind plume. The origin of the carcinogenic organic compound benzo(a)pyrene was found to be local combustion sources. To prevent events of high particulate matter concentration in Copenhagen, Denmark, a reduction of emission from the local traffic will only lead to a minor effect, since the majority of the

  4. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  5. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  6. 40 CFR 52.776 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for attainment and maintenance of the secondary standards for particulate matter in...

  7. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  8. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  9. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  10. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  11. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  12. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  13. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  14. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  15. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  16. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  17. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  18. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  19. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  20. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  1. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  2. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  3. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  4. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  5. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  6. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  7. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  8. 40 CFR 60.682 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  9. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  10. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  11. 40 CFR 60.342 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  12. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  13. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  14. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  15. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  16. 40 CFR 60.472 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  17. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  18. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  19. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  20. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  1. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  2. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  3. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  4. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  5. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  6. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  7. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  8. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  9. 40 CFR 60.342 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  10. 40 CFR 60.682 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  11. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  12. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  13. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  14. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  15. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  16. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  17. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  18. 40 CFR 60.472 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  19. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  20. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  1. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  2. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  3. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  4. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  5. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  6. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  7. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  8. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  9. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  10. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  11. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  12. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  13. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  14. 40 CFR 60.342 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  15. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  16. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  17. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  18. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  19. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  20. 40 CFR 60.472 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  1. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  2. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  3. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  4. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  5. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  6. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  7. 40 CFR 60.682 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  8. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  9. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  10. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  11. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  12. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  13. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  14. Hyphenation of a EC / OC thermal-optical carbon analyzer to photo-ionization time-of-flight mass spectrometry: an off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter

    NASA Astrophysics Data System (ADS)

    Diab, J.; Streibel, T.; Cavalli, F.; Lee, S. C.; Saathoff, H.; Mamakos, A.; Chow, J. C.; Chen, L.-W. A.; Watson, J. G.; Sippula, O.; Zimmermann, R.

    2015-08-01

    Source apportionment and characterization of primary and secondary aerosols remains a challenging research field. In particular, the organic composition of primary particles and the formation mechanism of secondary organic aerosols (SOAs) warrant further investigations. Progress in this field is strongly connected to the development of novel analytical techniques. In this study an off-line aerosol mass spectrometric technique based on filter samples, a hyphenated thermal-optical analyzer photo-ionization time-of-flight mass spectrometer (PI-TOFMS) system, was developed. The approach extends the capability of the widely used particulate matter (PM) carbon analysis (for elemental / organic carbon, EC / OC) by enabling the investigation of evolved gaseous species with soft and selective (resonance enhanced multi-photon ionization, REMPI) and non-selective photo-ionization (single-photon ionization, SPI) techniques. SPI was tuned to be medium soft to achieve comparability with results obtained by the electron ionization aerosol mass spectrometer (AMS). Different PM samples including wood combustion emission samples, smog chamber samples from the reaction of ozone with different SOA precursors, and ambient samples taken at Ispra, Italy, in winter as well as in summer were tested. The EC / OC-PI-TOFMS technique increases the understanding of the processes during thermal-optical analysis and identifies marker substances for the source apportionment. Composition of oligomeric or polymeric species present in PM can be investigated by the analysis of the thermal breakdown products. In the case of wood combustion, in addition to the well-known markers at m/z ratios of 60 and 73, two new characteristic masses (m/z 70 and 98) have been revealed as potentially linked to biomass burning. All four masses were also the dominant signals in an ambient sample taken in winter time in Ispra, Italy, confirming the finding that wood burning for residential heating is a major source of PM

  15. Establishing the origin of particulate matter across Europe

    NASA Astrophysics Data System (ADS)

    Schaap, Martijn; Kranenburg, Richard; Hendriks, Carlijn; Kuenen, Jeroen

    2016-04-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. In this paper we like to provide an overview of recent source apportionment studies aimed at PM and its precursors carried out at TNO. The source apportionment module that tracks the origin of modelled particulate matter distributions throughout a LOTOS-EUROS simulation will be explained. To optimally apply this technology dedicated emission inventories, e.g. fuel type specific, need to be generated. Applications to Europe shows that in northwestern Europe the contribution of transport and agricultural emissions dominate the PM mass concentrations, especially during episodic events. In eastern Europe, the domestic and energy sector are much more important. In southern Europe the picture is more mixed, although the frequent high levels of desert dust stand out. Evaluation of the source allocation against experimental data and PMF analyses is challenging as there is only a limited availability of source specific tracers or factors that can be used for direct comparison. Nonetheless, for the available tracers such as vanadium for heavy fuel oil combustion an evaluation is very well possible. The source apportionment technique can also be used to interpret particulate matter formation efficiencies. It will be shown that the conversion rates for the secondary inorganic aerosol precursors (NOx, NH3 and SO2) have changed during the last 20 years. A particular problem is related to the fact that CTMs systematically underestimate observed PM levels, which means that the contribution of certain source categories (natural, agriculture, combustion) are underestimated. Future developments needed to improve the source apportionment information concerning process knowledge, data assimilation as well as model implementation will be discussed. Specific challenges concerning the

  16. Thermogravimetric analysis of diesel particulate matter

    NASA Astrophysics Data System (ADS)

    Lapuerta, M.; Ballesteros, R.; Rodríguez-Fernández, J.

    2007-03-01

    The regulated level of diesel particulate mass for 2008 light-duty diesel on-road engines will be 0.005 g km-1 in Europe. Measurements by weighing and analysis of this low level of particulate mass based on chemical extraction are costly, time consuming and hazardous because of the use of organic solvents, potentially carcinogenic. An alternative to this analysis is proposed here: a thermal mass analyser that measures the volatile fraction (VOF) as well as the soot fraction of the particulate matter (PM) collected on a cleaned fibre glass filter. This paper evaluates this new thermal mass measurement (TGA) as a possible alternative to the conventional chemical extraction method, and presents the results obtained with both methods when testing a diesel engine fuelled with a reference diesel fuel (REF), a pure biodiesel fuel (B100) and two blends with 30% and 70% v/v biodiesel (B30 and B70, respectively).

  17. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    SciTech Connect

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  18. High secondary aerosol contribution to particulate pollution during haze events in China

    NASA Astrophysics Data System (ADS)

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  19. High secondary aerosol contribution to particulate pollution during haze events in China.

    PubMed

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R; Slowik, Jay G; Platt, Stephen M; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M; Bruns, Emily A; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; El Haddad, Imad; Prévôt, André S H

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution. PMID:25231863

  20. TOXICOLOGICAL EFFECTS OF PARTICULATE MATTER DERIVED FROM THE DESTRUCTION OF THE WORLD TRADE CENTER

    EPA Science Inventory

    May 15, 2002
    Abstract submitted by Stephen H. Gavett for American Association for Aerosol Research (AAAR) annual meeting October 7-11, 2002 in Charlotte, NC.

    TOXICOLOGICAL EFFECTS OF PARTICULATE MATTER DERIVED FROM THE DESTRUCTION OF THE WORLD TRADE CENTER
    Stephen H ...

  1. FINE PARTICULATE MATTER SOURCE ATTRIBUTION FOR SOUTHEAST TEXAS USING 14C/13C RATIOS

    EPA Science Inventory

    Radiocarbon analyses of fine particulate matter samples collected during the summer of 2000 in southeast Texas indicate that a substantial fraction of the aerosol carbon at an urban/suburban site (27% to 73%) and at a rural, forested site (44% to 77%) was modern carbon. Data fr...

  2. An evaluation of indoor and outdoor biological particulate matter (BioPM)

    EPA Science Inventory

    Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina, and Denver, CO, were collected and analyzed as the goal of this ...

  3. Free amino acids in atmospheric particulate matter of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  4. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data.

  5. Characterization of Particulate Matter from a Heavily Industrial Environment

    NASA Astrophysics Data System (ADS)

    Valarini, Simone; Ynoue, Rita Yuri

    2011-01-01

    A characterization of PM aerosols collected in Cubatão, Brazil is presented. Throughout 2009, 5 sampling campaings were carried out at CEPEMA (Centro de Capacitação e Pesquisa em Meio Ambiente da Universidade de São Paulo), in the vicinity of PETROBRAS oil refinery. Mini-vol portable air sampler was deployed to collect coarse and fine particles. Size-fractionated particle samples were collected by a Micro-Orifice Uniform Deposition Impactor (MOUDI) device. Gravimetric analysis showed three peaks for mass size distributions: the After-Filter stage (cut point diameter of less than 0,1μm), stage 7A (d=0,32μm) and stage 3A (d= 3,2μm). Fine particle matter (FPM) concentrations were almost always lower than coarse particle matter (CPM) concentrations. Comparison between the PM2.5 (particulate matter lower than 2.5μg.m-3) measurements by the MOUDI and Mini-Vol sampler reveals good agreement. However, MOUDI underestimates CPM. Reflectance analysis showed that almost all the Black Carbon is found in the Mini-Vol FPM and lower stages of the MOUDI, with higher concentrations at the After-Filter. The atmospheric loading of PM 2.5 was elevated at night, mainly due to more stable atmospheric conditions. Aerosol samples were analyzed for water- soluble ions, black carbon (BC), and trace elements using a number of analytical techniques.

  6. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  7. Toxicity of inhaled traffic related particulate matter

    NASA Astrophysics Data System (ADS)

    Gerlofs-Nijland, Miriam E.; Campbell, Arezoo; Miller, Mark R.; Newby, David E.; Cassee, Flemming R.

    2009-02-01

    Traffic generated ultrafine particulates may play a major role in the development of adverse health effects. However, little is known about harmful effects caused by recurring exposure. We hypothesized that repeated exposure to particulate matter results in adverse pulmonary and systemic toxic effects. Exposure to diesel engine exhaust resulted in signs of oxidative stress in the lung, impaired coagulation, and changes in the immune system. Pro-inflammatory cytokine levels were decreased in some regions of the brain but increased in the striatum implying that exposure to diesel engine exhaust may selectively aggravate neurological impairment. Data from these three studies suggest that exposure to traffic related PM can mediate changes in the vasculature and brain of healthy rats. To what extent these changes may contribute to chronic neurodegenerative or vascular diseases is at present unclear.

  8. Micro-scale variability of particulate matter and the influence of urban fabric on the aerosol distribution in two mid-sized German cities

    NASA Astrophysics Data System (ADS)

    Paas, Bastian; Schneider, Christoph

    2016-04-01

    Spatial micro-scale variability of particle mass concentrations is an important criterion for urban air quality assessment. The major proportion of the world's population lives in cities, where exceedances of air quality standards occur regularly. Current research suggests that both long-term and even short-term stays, e.g. during commuting or relaxing, at locations with high PM concentrations could have significant impacts on health. In this study we present results from model calculations in comparison to high resolution spatial and temporal measurements. Airborne particles were sampled using an optical particle counter in two inner-city park areas in Aachen and Munster. Both are mid-sized German cities which, however, are characterized by a different topology. The measurement locations represent spots with different degrees of outdoor particle exposure that can be experienced by a pedestrian walking in an intra-urban recreational area. Simulations of aerosol distributions induced by road traffic were conducted using both the German reference dispersion model Austal2000 and the numerical microclimate model ENVI-met. Simulation results reveal details in the distribution of urban particles with highest concentrations of PM10 in direct vicinity to traffic lines. The corresponding concentrations rapidly decline as the distances to the line sources increase. Still, urban fabric and obstacles like shrubs or trees are proved to have a major impact on the aerosol distribution in the area. Furthermore, the distribution of particles was highly dependent of wind direction and turbulence characteristics. The analysis of observational data leads to the hypothesis that besides motor traffic numerous diffuse particle sources e.g. on the ability of surfaces to release particles by resuspension which were dominantly apparent in measured PM(1;10) and PM(0.25;10) data are present in the urban roughness layer. The results highlight that a conclusive picture concerning micro

  9. Sampling results of the improved SKC diesel particulate matter cassette.

    PubMed

    Noll, James D; Timko, Robert J; McWilliams, Linda; Hall, Peter; Haney, Robert

    2005-01-01

    Diesel particulate matter (DPM) samples from underground metal/nonmetal mines are collected on quartz fiber filters and measured for carbon content using National Institute for Occupational Safety and Health Method 5040. If size-selective samplers are not used to collect DPM in the presence of carbonaceous ore dust, both the ore dust and DPM will collect on the quartz filters, causing the carbon attributed to DPM to be artificially high. Because the DPM particle size is much smaller than that of mechanically generated mine dust aerosols, it can be separated from the larger mine dust aerosol by a single-stage impactor. The SKC DPM cassette is a single-stage impactor designed to collect only DPM aerosols in the presence of carbonaceous mine ore aerosols, which are commonly found in underground nonmetal mines. However, there is limited data on how efficiently the SKC DPM cassette can collect DPM in the presence of ore dust. In this study we investigated the ability of the SKC DPM cassette to collect DPM while segregating ore dust from the sample. We found that the SKC DPM cassette accurately collected DPM. In the presence of carbon-based ore aerosols having an average concentration of 8 mg/m3, no ore dust was detected on SKC DPM cassette filters. We did discover a problem: the surface areas of the DPM deposits on SKC DPM cassettes, manufactured prior to August 2002 were inconsistent. To correct this problem, SKC modified the cassette. The new cassette produced, with 99% confidence, a range of DPM deposit areas between 8.05 and 8.28 cm2, a difference of less than 3%.

  10. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  11. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 2, Retrieval of Particulate Matter Concentration

    NASA Astrophysics Data System (ADS)

    Moore, K. D.; Bird, A. W.; Wojcik, M.; Lemon, R.; Hatfield, J.

    2014-12-01

    An elastic backscatter light detection and ranging (Lidar) system emits a laser pulse and measures the return signal from molecules and particles along the path. It has been shown that particulate matter mass concentrations (PM) can be retrieved from Lidar data using multiple wavelengths. In this paper we describe a technique that allows for semi-quantitative PM determination under a set of guiding assumptions using only one laser wavelength. The Space Dynamics Laboratory has designed an eye-safe (1.5 μm) single wavelength elastic Lidar system called CELiS (Compact Eye-safe Lidar System), which is described in a companion paper, to which this technique is applied. Data utilized in the PM retrieval include the Lidar return signal, ambient temperature, ambient humidity, barometric pressure, particle size distribution, particle chemical composition, and PM measurements. Particle size distribution is measured with an optical particle counter. PM is measured with filter-based measurements. Chemical composition is determined through multiple analyses on exposed filter samples. Particle measurements are made both inside and outside of the plume of interest and collocated with the lidar beam for calibration. The meteorological and particle measurements are used to estimate the total extinction (σ) and backscatter (β) for background and plume aerosols. These σ and β values are used in conjunction with the lidar return signal in an inversion technique based on that of Klett (1985, Appl. Opt., 1638-1643). Variable σ/β ratios over the lidar beam path are used to estimate the values of σ and β at each lidar bin. A relationship between β and PM mass concentrations at calibration points is developed, which then allows the β values derived over the lidar beam path to be converted to PM. A PM-calibrated, scanning Lidar system like CELiS can be used to investigate PM concentrations and emissions over a large volume, a task that is very difficult to accomplish with typical

  12. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  13. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  14. 40 CFR 60.62 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.62... Plants § 60.62 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton)....

  15. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  16. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  17. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  18. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  19. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  20. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  1. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  2. Assessing the Cytotoxicity of Black Carbon As A Model for Ultrafine Anthropogenic Aerosol Across Human and Murine Cells: A Chronic Exposure Model of Nanosized Particulate Matter

    NASA Astrophysics Data System (ADS)

    Salinas, E.

    2015-12-01

    Combustion-derived nanomaterials or ultrafine (<1 μm) atmospheric aerosols are primarily products of anthropogenic activities, such as the burning of fossil fuels. Ultrafine particles (UFPs) can absorb other noxious pollutants including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), toxic organic compounds, and heavy metals. The combination of high population density, meteorological conditions, and industrial productivity brings high levels of air pollution to the metropolitan area of El Paso, Texas, USA/ Ciudad Juarez, Chihuahua, Mexico, comprising the Paso del Norte air basin. A study conducted by scientists from the Research Triangle Park in North Carolina, analyzed sites adjacent to heavy-traffic highways in El Paso and elucidated higher UFP concentrations in comparison to previously published work exploring pollution and adverse health effects in the basin. UFPs can penetrate deep into the alveolar sacs of the lung, reaching distant alveolar sacs and inducing a series of immune responses that are detrimental to the body: evidence suggests that UFPs can also cross the alveolar-blood barrier and potentially endanger the body's immune response. The physical properties of UFPs and the dynamics of local atmospheric and topographical conditions indicate that emissions of nanosized carbonaceous aerosols could pose significant threats to biological tissues upon inhalation by local residents of the Paso del Norte. This study utilizes Black Carbon (BC) as a model for environmental UFPs and its effects on the immunological response. An in vitro approach is used to measure the ability of BC to promote cell death upon long-term exposure. Human epithelial lung cells (A549), human peripheral-blood monocytes (THP-1), murine macrophages (RAW264.7), and murine epithelial lung cells (LA-4) were treated with BC and assessed for metabolic activity after chronic exposure utilizing three distinct and independent cell viability assays. The cell viability

  3. Evaluation of a Portable Photometer for Estimating Diesel Particulate Matter Concentrations in an Underground Limestone Mine

    PubMed Central

    Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; Kittelson, David B.

    2010-01-01

    A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071

  4. Characterizing Aerosolized Particulate As Part Of A Nanoprocess Exposure Assessment

    SciTech Connect

    Jankovic, John Timothy; Ogle, Burton R; Zontek, Tracy L; Hollenbeck, Scott M

    2010-01-01

    The purpose of this effort was to propose important aerosol characterization parameters that should be gathered as part of a nanomaterial hazard assessment and to offer a methodology for applying that data to daily operations. This study documents different ways of characterizing nanoscale materials using an aerosol from a process simulation consisting of a vacuum cleaner motor operating inside an enclosure. The aerosol is composed of insoluble carbon particles plus environmental background constituents. The average air concentration is 2.76E+5 p/cm3. Size measurements of the aerosol indicate > 70% of the particulate is blade-like in shape, 50% of which have a height dimension 100 nm. In terms of an equivalent spherical diameter 0.8% of the particulate is 100 nm in size. The carbon blades are characterized as having a root-mean-square roughness of 75 nm, and average fractal dimension of 2.25. These measures: aerosol chemistry, solubility, shape and size, surface area, number concentration and size distribution are important parameters to collect for current exposure assessment and toxicology and epidemiology studies.

  5. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  6. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... STANDARDS Pt. 50, App. J Appendix J to Part 50—Reference Method for the Determination of Particulate Matter... Composition Changes in Sampling and Analysis of Organic Compounds in Aerosols. Int. J. Environ. Analyt....

  7. Field measurement of diesel particulate matter emissions.

    PubMed

    Volkwein, Jon C; Mischler, Steven E; Davies, Brian; Ellis, Clive

    2008-03-01

    A primary means to reduce environmental levels of diesel particulate matter (DPM) exposure to miners is to reduce the amount of DPM emission from the engine. A quick and economic method to estimate engine particulate emission levels has been developed. The method relies on the measurement of pressure increase across a filter element that is briefly used to collect a DPM sample directly from the engine exhaust. The method has been refined with the inclusion of an annular aqueous denuder to the tube which permits dry filter samples to be obtained without addition of dilution air. Tailpipe filter samples may then be directly collected in hot and water-supersaturated exhaust gas flows from water bath-cooled coal mine engines without the need for dilution air. Measurement of a differential pressure (DP) increase with time has been related to the mass of elemental carbon (EC) on the filter. Results for laboratory and field measurements of the method showed agreement between DP increase and EC collected on the filter with R(2) values >0.86. The relative standard deviation from replicate samples of DP and EC was 0.16 and 0.11, respectively. The method may also have applications beyond mining, where qualitative evaluation of engine emissions is desirable to determine if engine or control technology maintenance may be required.

  8. MODELING ENVIRONMENTAL EXPOSURES TO PARTICULATE MATTER AND PESTICIDES

    EPA Science Inventory

    This presentation describes initial results from on-going research at EPA on modeling human exposures to particulate matter and residential pesticides. A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM1o and P...

  9. Production of particulate matter from the combustion of wood pellets

    NASA Astrophysics Data System (ADS)

    Papučík, Štefan; Jandačka, Jozef; Chabadová, Jana; Pialát, Peter

    2015-05-01

    For production of particulate matters affect more aspects. One of the biggest affect is combustion air volume and iťs deviding on primary and secondary part. In this article is described experimental device, on which was investigated affect of combustion air volume on production particulate matters, measuring method, measured and analysed achieved results.

  10. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan... the Northwest Nevada and Nevada Intrastate Regions. (b) The following rule and portions of the...

  11. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted minor revisions to the Columbia Falls, Butte and Missoula PM-10 SIPS. (b) Determination—EPA has determined...

  12. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Massachusetts § 52.1131 Control strategy: Particulate matter....

  13. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... individual, enclosed storage bin is exempt from the applicable stack PM concentration limit (and...

  14. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... individual, enclosed storage bin is exempt from the applicable stack PM concentration limit (and...

  15. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... individual, enclosed storage bin is exempt from the applicable stack PM concentration limit (and...

  16. 40 CFR 52.332 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Editorial Note: For Federal Register citations affecting § 52.332, see the List of CFR Sections Affected... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10...

  17. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  18. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met because...

  19. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  20. 40 CFR 52.427 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area has attained the 1997 annual PM2.5 NAAQS. This determination, in accordance with 40 CFR 51.1004(c... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter...: Particulate matter. Determination of attainment. EPA has determined, as of May 16, 2012, that based on 2007...

  1. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  2. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met because...

  3. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  4. 40 CFR 52.2526 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal...

  5. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  6. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  7. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  8. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  9. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  10. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  11. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  12. 40 CFR 52.332 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....332, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10...

  13. 40 CFR 52.332 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Editorial Note: For Federal Register citations affecting § 52.332, see the List of CFR Sections Affected... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10...

  14. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  15. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  16. 40 CFR 52.427 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nonattainment area has attained the 1997 annual PM2.5 NAAQS. This determination, in accordance with 40 CFR 51... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based...

  17. 40 CFR 52.427 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nonattainment area has attained the 1997 annual PM2.5 NAAQS. This determination, in accordance with 40 CFR 51... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based...

  18. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  19. 40 CFR 52.332 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Editorial Note: For Federal Register citations affecting § 52.332, see the List of CFR Sections Affected... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10...

  20. 40 CFR 52.2526 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal...

  1. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  2. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  3. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  4. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  5. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  6. Method for removing particulate matter from a gas stream

    DOEpatents

    Postma, Arlin K.

    1984-01-01

    Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

  7. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  8. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  9. 40 CFR 52.1341 - Control strategy: particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... This determination, in accordance with 40 CFR 51.1004(c), suspends the requirements for this area to... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: particulate matter... Control strategy: particulate matter. Determination of Attainment. EPA has determined, as of May 23,...

  10. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  11. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  12. FEDERAL REFERENCE AND EQUIVALENT METHODS FOR MEASURING FINE PARTICULATE MATTER

    EPA Science Inventory

    In the national ambient air quality standards specified by the U.S. Environmental Protection Agency in the Code of Federal Regulations, new standards were established for particulate matter on July 18, 1997. The new particulate matter standards specify mass concentration as the...

  13. Characterisation of particulate matter in different types of archives

    NASA Astrophysics Data System (ADS)

    Mašková, Ludmila; Smolík, Jiří; Vodička, Petr

    2015-04-01

    To determine the composition of particulate matter (PM) in the indoor environments of four different types of archives (three naturally ventilated and one filtered), intensive size-resolved sampling was performed for four seasons of the year. For reconstituting indoor PM, nine aerosol components were considered. Organic matter was the dominant component of both fine and coarse fractions and represented approximately 50-80% of the PM. In the fine fraction, the next most abundant components were elemental carbon and sulphate, and in the coarse fraction the next most abundant were crustal matter, sulphate and nitrate. The resulting mass closure explained 95(±13)% and 115(±38)% of the gravimetric indoor PM in the fine and coarse size fractions, respectively. The results revealed that all the particles found indoors can be considered to be potentially threatening to the stored materials. The results also showed that the most important source of indoor PM in the naturally ventilated archives was penetration from the outdoor air, whereas in the filtered archive, the concentrations of particles were strongly reduced. In naturally ventilated archives the influence of domestic heating, road traffic and local sources (industrial pollution, camp fires) was observed. Furthermore, activities of the staff were identified as an indoor source of coarse particles in all archives.

  14. 77 FR 38760 - National Ambient Air Quality Standards for Particulate Matter; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Particulate Matter; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... revise the national ambient air quality standards (NAAQS) for particulate matter (PM). This action...: Questions concerning the ``National Ambient Air Quality Standards for Particulate Matter'' proposed...

  15. GIST-PM-Asia v1: development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, S.; Song, C. H.; Park, R. S.; Park, M. E.; Han, K. M.; Kim, J.; Choi, M.; Ghim, Y. S.; Woo, J.-H.

    2016-01-01

    To improve short-term particulate matter (PM) forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD) data retrieved from a geostationary equatorial orbit (GEO) satellite sensor, GOCI (Geostationary Ocean Color Imager) which covers a part of Northeast Asia (113-146° E; 25-47° N), were used. Although GOCI can provide a higher number of AOD data in a semicontinuous manner than low Earth orbit (LEO) satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatiotemporal-kriging (STK) method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages in using the STK method in this study is that more observed AOD data can be used to prepare the best initial AOD fields compared with other methods that use single frame of observation data around the time of initialization. It is demonstrated in this study that the short-term PM forecast system developed with the application of the STK method can greatly improve PM10 predictions in the Seoul metropolitan area (SMA) when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ˜ 60 and ˜ 70 %, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC (particle-into-liquid sampler coupled with ion chromatography) and low air-volume sample

  16. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  17. Characterization of particulate matter concentrations during controlled indoor activities

    NASA Astrophysics Data System (ADS)

    Glytsos, T.; Ondráček, J.; Džumbová, L.; Kopanakis, I.; Lazaridis, M.

    2010-04-01

    Indoor sources have been identified as a major contributor to the increase of particle concentration in indoor environments. The work presented here is a study of the characteristics of particulate matter number size distribution and mass concentration under controlled indoor activities in a laboratory room. The objective is to characterize particulate matter concentrations indoors resulted under the influence of specific sources. Measurements were performed in an empty laboratory (period September-October 2006) using a GRIMM SMPS+C system (particle size range between 11.1 and 1083.3 nm), a DustTrak Aerosol Monitor (TSI) and a P-Trak Ultrafine Particle Counter (TSI). The studied indoor activities included candle burning, hot plate heating, water boiling, onion frying, vacuuming, hair drying, hair spraying, smoking and burning of incense stick. The AMANpsd computer algorithm was used to evaluate the modal structure of measured particle number size distribution data. Furthermore, the change of the particle number size distribution shape under the influence of different emission sources was studied versus time. Finally the particle emission rates were computed. High particle number concentrations were observed during smoking, onion frying, candle burning and incense stick burning. The highest particle mass concentrations were measured during smoking and hair spraying. The shift of the particle size distribution to larger diameters suggests the presence of strong coagulation effect during candle burning, incense stick burning, smoking and onion frying. The size distribution was mainly bimodal during onion frying and candle burning, whereas the size distribution remained unimodal during incense stick burning and smoking experiments.

  18. Particulate matter formation in the San Joaquin Valley: Modeling of a winter episode

    SciTech Connect

    Kaduwela, A.P.; Hughes, V.M.; Hackney, R.J.; Jackson, B.J.; Magliano, K.L.; Ranzieri, A.J.

    1998-12-31

    The gaseous and particulate matter concentrations in the San Joaquin Valley simulated using UAM-AERO for the January 4--6, 1996 winter episode are presented and compared with the measurements made during this period. The emphasis here is on the formation of secondary aerosols. The sensitivity of modeled results to input data such as initial/boundary conditions, emissions, and meteorological conditions is also described.

  19. Particulate Matter Size, Distribution and Concentrations in the Lower Urban Atmosphere

    NASA Astrophysics Data System (ADS)

    Mathis, D.; Baldwin, C.; Skeete, D.; Austin, S.

    2002-12-01

    Aerosols and atmospheric gases continually alter the amount of radiation reaching the Earth's surface. Aerosols cause a direct climate forcing by reflecting some the solar radiation that would reach the Earth's surface. The uncertainty in the direct aerosol radiative forcing is due to the poorly know optical properties and the amount and distribution of aerosols in the atmosphere. In order to improve our knowledge of the role of aerosols in our environment, it is necessary to accurately estimate the aerosol radiative forcing and determine the size, distribution and concentration or aerosols in the atmosphere. A PC-2H Air Particle Analyzer QCM Cascade Impactor and a Multi-Filter Rotating Shadow-band Radiometer (MFRSR-7) are used to measure optical depth, particle size, distribution and horizontal spatial variability along with the impact of atmospheric conditions in lower urban atmosphere (less than 100 meters). Aerosol particles contribute significantly to the pollution of urban air. Monitoring particulate matter in urban air has important health implications, especially since asthma and other lung diseases in inner city communities are above the national average. Results on the size, distribution and concentration of particles at various low heights (less than 100 meters) and their relationship with aerosol optical depth and the impact of atmospheric conditions will presented. This research is supported by grants from NASA MU-SPIN, NASA Space Science and NSF LSAMP.

  20. Factors Controlling Liquid Particulate Matter in Amazonia

    NASA Astrophysics Data System (ADS)

    Bateman, A. P.; Gong, Z.; de Sá, S. S.; Wernis, R. A.; Yee, L.; Isaacman-VanWertz, G. A.; Goldstein, A. H.; Castillo, P.; Sedlacek, A. J., III; Palm, B. B.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Jimenez, J. L.; Alexander, L.; Manzi, A. O.; Souza, R. A. F. D.; Artaxo, P.; Martin, S. T.

    2015-12-01

    The hygroscopic response of particulate matter (PM) during GoAmazon 2014/5 was investigated through the use of particle rebound (or lack thereof) during impaction. The hygroscopic response was measured online and in real-time using a custom designed impaction apparatus. The impaction apparatus was calibrated with respect to particle viscosity indicating a liquid state (viscosity <102 Pa s) for complete adherence (no particle rebound). By varying the PM water content and observing particle rebound as a function of RH (up to 98%), the hygroscopic response and phase state of the PM under investigation was determined. The hygroscopic response curves were categorized according to the rebound fraction at high RH (80 - 98%) bounded by two extremes. 1) Time periods that resemble pure SOM generated under controlled chamber conditions, where no particle rebound is observed above 80% RH. 2) Time periods that a large fraction (10 - 40%) of particles rebound at RH values >95%, an indication of hydrophobic particles. The role of anthropogenic and biogenic factors in controlling the hygroscopic response of PM in Amazonia is investigated through meteorological conditions and particle chemical composition.

  1. Airborne particulate matter and spacecraft internal environments

    NASA Technical Reports Server (NTRS)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  2. PARTICULATE MATTER CONCENTRATIONS IN NON-RESIDENTIAL MICROENVIRONMENTS

    EPA Science Inventory

    Exposures to airborne particulate matter (PM) have long been associated with increases in both acute and chronic human health effects. Traditionally, research and regulations have focused on outdoor air pollution. However, human activity pattern studies show that people are ind...

  3. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart shall cause to be discharged into the atmosphere from any blast furnace, dross reverberatory furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  4. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart shall cause to be discharged into the atmosphere from any blast furnace, dross reverberatory furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  5. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart shall cause to be discharged into the atmosphere from any blast furnace, dross reverberatory furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  6. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart shall cause to be discharged into the atmosphere from any blast furnace, dross reverberatory furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  7. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart shall cause to be discharged into the atmosphere from any blast furnace, dross reverberatory furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  8. Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.

    PubMed

    Carbone, Marco; Penna, Nadia; Piro, Patrizia

    2015-09-01

    The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.

  9. Effect of ambient particulate matter expousre on hemostasis

    EPA Science Inventory

    Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...

  10. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    EPA Science Inventory

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...

  11. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    EPA Science Inventory

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM-exposure. The goal of this stud...

  12. AMBIENT PARTICULATE MATTER DECREASED IN HUMAN ALVEOLAR MACHROPHAGE CYTOKINE RELEASE

    EPA Science Inventory

    Human exposure to ambient airborne particulate matter (PM) is associated with cardiopulmonary mortality and morbidity, including increased hospitalizations for lung infection. Normal lung immune responses to bacterial infection include alveolar macrophage cytokine production and...

  13. COMPARISON OF METHODS FOR MEASURING CONCENTRATIONS OF SEMIVOLATILE PARTICULATE MATTER

    EPA Science Inventory

    The paper gives results of a comparison of methods for measuring concentrations of semivolatile particulate matter (PM) from indoor-environment, small, combustion sources. Particle concentration measurements were compared for methods using filters and a small electrostatic precip...

  14. Bioaccessibility of palladium and platinum in urban aerosol particulates

    NASA Astrophysics Data System (ADS)

    Puls, Christoph; Limbeck, Andreas; Hann, Stephan

    2012-08-01

    To evaluate potential health hazards caused by environmental Platinum Group Elements (PGEs), bioaccessibility of the metals in question needs to be assessed. To gain appropriate data, airborne particulate matter samples of different size fractions (total suspended particles as well as PM10 and PM2.5) were taken in downtown Vienna, an urban site primarily polluted by traffic. Total PGE concentrations in these samples were in the low picogram per cubic meter range, as determined by ID-ICP-MS after microwave digestion. For elimination of elements interfering with the accurate quantification, the digested samples were subjected to a cleaning procedure involving cation exchange. For determination of the bioaccessible fraction, it was assumed that inhaled particles are removed from the respiratory system by mucociliary clearance and subsequently ingested. Accordingly, the solubility of PGE in synthetic gastric juice was investigated by batch extraction of particulate matter samples followed by microwave assisted UV-digestion, cation exchange cleanup and ID-ICP-MS. The acquired data was used to calculate the bioaccessible fraction of Pd and Pt in airborne particulate matter. Average GIT-extractable fractions for Pd and Pt in TSP were 41% and 27%, in PM10 34% and 26%, respectively, thus exceeding previously determined values for bioaccessibility of PGE from ground catalyst materials by up to an order of magnitude.

  15. Air Quality Criteria for Particulate Matter.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  16. Particulate matter and early childhood body weight.

    PubMed

    Kim, Eunjeong; Park, Hyesook; Park, Eun Ae; Hong, Yun-Chul; Ha, Mina; Kim, Hwan-Cheol; Ha, Eun-Hee

    2016-09-01

    Concerns over adverse effects of air pollution on children's health have been rapidly rising. However, the effects of air pollution on childhood growth remain to be poorly studied. We investigated the association between prenatal and postnatal exposure to PM10 and children's weight from birth to 60months of age. This birth cohort study evaluated 1129 mother-child pairs in South Korea. Children's weight was measured at birth and at six, 12, 24, 36, and 60months. The average levels of children's exposure to particulate matter up to 10μm in diameter (PM10) were estimated during pregnancy and during the period between each visit until 60months of age. Exposure to PM10 during pregnancy lowered children's weight at 12months. PM10 exposure from seven to 12months negatively affected weight at 12, 36, and 60months. Repeated measures of PM10 and weight from 12 to 60months revealed a negative association between postnatal exposure to PM10 and children's weight. Children continuously exposed to a high level of PM10 (>50μg/m(3)) from pregnancy to 24months of age had weight z-scores of 60 that were 0.44 times lower than in children constantly exposed to a lower level of PM10 (≤50μg/m(3)) for the same period. Furthermore, growth was more vulnerable to PM10 exposure in children with birth weight <3.3kg than in children with birth weight >3.3kg. Air pollution may delay growth in early childhood and exposure to air pollution may be more harmful to children when their birth weight is low. PMID:27344372

  17. Characterization of coarse particulate matter in school gyms

    SciTech Connect

    Branis, Martin; Safranek, Jiri

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} and PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school

  18. EVALUATION OF METHODS FOR THE DETERMINATION OF DIESEL-GENERATED FINE PARTICULATE MATTER: PHYSICAL CHARACTERIZATION OF RESULTS

    EPA Science Inventory

    A multi-phase instrument comparison study was conducted on two different diesel engines on a dynamometer to compare commonly used particulate matter (PM) measurement techniques while sampling the same diesel exhaust aerosol and to evaluate inter- and intra-method variability. In...

  19. Source Apportionment of Ambient Fine Particulate Matter in Dearborn, Michigan, using Hourly Resolved PM Chemical Composition Data

    EPA Science Inventory

    High time-resolution aerosol sampling was conducted for one month during July–August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite o...

  20. PREFACE TO SPECIAL SECTION ON PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE, AND THE FOURTH COLLOQUIUM ON PARTICULATE MATTER AND HUMAN HEALTH

    EPA Science Inventory

    In response to epidemiological studies published over twenty years ago, at least three research communities have been intensively studying airborne particulate matter (PM). These efforts have been coordinated by approaching the source - atmospheric accumulation/receptor - exposu...

  1. Sources and Processes Affecting Particulate Matter Pollution over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  2. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  3. The role of particulate matter in exacerbation of atopic asthma.

    PubMed

    Gavett, S H; Koren, H S

    2001-01-01

    Increasing evidence shows that elevated levels of particulate matter (PM) can exacerbate existing asthma, while evidence that PM can promote the induction of asthma is limited. PM in ambient air has been associated with increased emergency room visits and medication use by asthmatics. Controlled human exposure studies of acid aerosols suggest increased responses among adolescent asthmatics. Increased ambient and indoor levels of bioaerosols (e.g., house dust mite, fungal spores, endotoxin) have been associated with exacerbation of asthma. Environmental Protection Agency (EPA) studies focus on the effects of exposing humans and animal models to a combination of various PM samples (e.g., diesel exhaust particles, oil fly ash) and allergens (e.g., house dust mite, ovalbumin). These research efforts to understand the mechanisms by which PM exposure can promote allergic sensitization and exacerbate existing asthma concentrate on the role of transition metals. Exposure of animal models to combined PM and allergen promotes allergic sensitization and increases allergic inflammation and airway hyperresponsiveness. Exposure of healthy human volunteers to emission source PM samples promotes inflammation and increased indices of oxidant formation correlating with the quantity of transition metals in the samples. Results of these studies suggest that transition metals in ambient PM promote the formation of reactive oxygen species and subsequent lung injury, inflammation, and airway hyperresponsiveness leading to airflow limitation and symptoms of asthma.

  4. Extraterrestrial matter and atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Cziczo, D. J.; Cziczo, D. J.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    In situ measurements of the composition of stratospheric aerosols detected Fe, Mg, Na, K, Ca, Ni, and other meteoritic material in a large number of particles. These particles include ablated meteoric material that has recondensed, descended from the upper atmosphere, and combined with the sulfate in the stratosphere. Along with laboratory calibrations and a knowledge of the stratospheric sulfur budget, these measurements allow estimates of the flux of extraterrestrial material reaching the present-day earth. The stratospheric particles are depleted in the more refractory elements, suggesting that some of the incoming material is not ablated. Consideration of the much larger flux of meteors in the earth's early history suggests that ablated meteoric material could have altered the properties of the early atmosphere in ways that might be relevant to the origin of life.

  5. Structure analysis and size distribution of particulate matter from candles and kerosene combustion in burning chamber

    NASA Astrophysics Data System (ADS)

    Baitimirova, M.; Osite, A.; Katkevics, J.; Viksna, A.

    2012-08-01

    Burning of candles generates particulate matter of fine dimensions that produces poor indoor air quality, so it may cause harmful impact on human health. In this study solid aerosol particles of burning of candles of different composition and kerosene combustion were collected in a closed laboratory system. Present work describes particulate matter collection for structure analysis and the relationship between source and size distribution of particulate matter. The formation mechanism of particulate matter and their tendency to agglomerate also are described. Particles obtained from kerosene combustion have normal size distribution. Whereas, particles generated from the burning of stearin candles have distribution shifted towards finer particle size range. If an additive of stearin to paraffin candle is used, particle size distribution is also observed in range of towards finer particles. A tendency to form agglomerates in a short time is observed in case of particles obtained from kerosene combustion, while in case of particles obtained from burning of candles of different composition such a tendency is not observed. Particles from candles and kerosene combustion are Aitken and accumulation mode particles

  6. Microorganisms associated particulate matter: a preliminary study.

    PubMed

    Alghamdi, Mansour A; Shamy, Magdy; Redal, Maria Ana; Khoder, Mamdouh; Awad, Abdel Hameed; Elserougy, Safaa

    2014-05-01

    This study aims to determine the microbiological quality of particulate matter (PM) in an urban area in Jeddah, Saudi Arabia, during December 2012 to April 2013. This was achieved by the determination of airborne bacteria, fungi, and actinobacteria associated PM10 and PM2.5, as well as their relationships with gaseous pollutants, O3, SO2 and NO2, and meteorological factors (T°C, RH% and Ws). High volume samplers with PM10 and PM2.5 selective sizes, and glass fiber filters were used to collect PM10 and PM2.5, respectively. The filters were suspended in buffer phosphate and aliquots were spread plated onto the surfaces of trypticase soy agar, malt extract agar, and starch casein agar media for counting of bacteria, fungi and actinobacteria-associated PM, respectively. PM10 and PM2.5 concentrations averaged 159.9 μg/m(3) and 60 μg/m(3), respectively, with the ratio of PM2.5/PM10 averaged ~0.4. The concentrations of O3, SO2 and NO2 averaged 35.73 μg/m(3), 38.1μg/m(3) and 52.5 μg/m(3), respectively. Fungi and actinobacteria associated PM were found in lower concentrations than bacteria. The sum of microbial loads was higher in PM10 than PM2.5, however a significant correlation (r=0.57, P ≤ 0.05) was found between the sum of microbial loads associated PM10 and PM2.5. Aspergillus fumigatus and Aspergillus niger were the common fungal types associated PM. Temperature significantly correlated with both PM10 (r=0.44), and PM2.5 (r=0.5). Significant negative correlations were found between O3 and PM2.5 (r=-0.47), and between SO2 with PM10 (r=-0.48). Wind speed positively correlated with airborne microorganisms associated PM. The regression model showed that the inverse PM2.5 concentration (1/PM2.5) was a significant determinant of fungal count associated PM. Chemical processes and environmental factors could affect properties of PM and in turn its biological quality.

  7. [Light absorption by suspended particulate matter in Chagan Lake, Jilin].

    PubMed

    Wang, Yuan-Dong; Liu, Dian-Wei; Song, Kai-Shan; Zhang, Bai; Wang, Zong-Ming; Jiang, Guang-Ji; Tang, Xu-Guang; Lei, Xiao-Chun; Wu, Yan-Qing

    2011-01-01

    Spectral characteristics and the magnitudes of light absorption by suspended particulate matter were determined by spectrophotometry in this optically complex Lake Chagan waters for the purpose of surveying the natural variability of the absorption coefficients to parameterize the bio-optical models for converting satellite or in-situ water reflectance signatures into water quality information. Experiments were carried out on seasonal frozen Lake Chagan, one representative inland case-2 water body in Northeast of China. Particulate absorption properties analyzed using the field data on July 15th and October 12th 2009 were measured using the quantitative filter technique to produce absorption spectra containing several fractions that could be attributed to two main optical active constituents (OACs) phytoplankton pigments and non-algal particulates (mineral sediments, and organic detritus). Results suggested that the suspended particulate matter (SPM) concentration was higher while phytoplankton biomass (chlorophyll-a concentration) was lower in July and that in October. The spectral shape of total suspended particulate matter resembled that of non-algal particulates which contributed greater than phytoplankton in total particulate absorption during both periods. An obvious absorption peak occurring at around 440 nm exhibited an increase in phytoplankton contribution in October. Non-algal particulate absorption at 440 nm (a(NAP) (440)) had better correlation with total suspended particulate matter concentration than that with chlorophyll-a over the two periods. Light absorption by phytoplankton pigments in the Chagan lake region was generally lower than that of non-algal components. Chl. a dominating phytoplankton pigment composition functioned exponentially with its absorption coefficients at 440 and 675 nm specifically, the average values of which in July were 0.146 8 m2 x mg(-1) and 0.050 3 respectively while in October they were 0.153 3 and 0.013 2 m2 x mg(-1

  8. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  9. Pulmonary function changes in children associated with fine particulate matter

    SciTech Connect

    Koenig, J.Q.; Larson, T.V.; Hanley, Q.S.; Rebolledo, V.; Dumler, K.; Checkoway, H.; Wang, S.Z.; Lin, D.; Pierson, W.E. )

    1993-10-01

    During winter months many neighborhoods in the Seattle metropolitan area are heavily affected by particulate matter from residential wood burning. A study was conducted to investigate the relationship between fine particulate matter and pulmonary function in young children. The subjects were 326 elementary school children, including 24 asthmatics, who lived in an area with high particulate concentrations predominantly from residential wood burning. FEV1 and FVC were measured before, during and after the 1988-1989 and 1989-1990 winter heating seasons. Fine particulate matter was assessed using a light-scattering instrument. Analysis of the relationship between light scattering and lung function indicated that an increase in particulate air pollution was associated with a decline in asthmatic children's pulmonary function. FEV1 and FVC in the asthmatic children dropped an average of 34 and 37 ml respectively for each 10(-4) m-1 increase in sigma sp. This sigma sp increase corresponds to an increase in PM2.5 of 20 micrograms/m3. It is concluded that fine particulate matter from wood burning is significantly associated with acute respiratory irritation in young asthmatic children.

  10. Discrete-element modeling of particulate aerosol flows

    SciTech Connect

    Marshall, J.S.

    2009-03-20

    A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.

  11. Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Alam, Mohammed S.; West, Charles E.; Scarlett, Alan G.; Rowland, Steven J.; Harrison, Roy M.

    2013-02-01

    Samples of airborne particulate matter (PM2.5) have been collected in Birmingham, UK and extracted with dichloromethane prior to analysis by two-dimensional GC separation and TOFMS analysis. Identification of compounds using the NIST spectral library has revealed a remarkable diversity of compounds, some of which have not been previously reported in airborne analyses. Groups of compounds identified in this study include a large number of oxygenated VOC including linear and branched compounds, substituted aromatic compounds and alicyclic compounds, oxygenated polycyclic aromatic and alicyclic compounds, organic nitrogen compounds, branched chain VOC and substituted aromatic VOC, phthalates, organo-phosphates and organo-sulphate compounds. Many of the compounds identified are mass production chemicals, which due to their semi-volatility enter the atmosphere and subsequently partition onto pre-existing aerosol. Their contribution to the toxicity of airborne particulate matter is currently unknown but might be significant. The diverse industrial uses and potential sources of the identified compounds are reported.

  12. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    NASA Astrophysics Data System (ADS)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  13. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  14. Spatial statistics of atmospheric particulate matter in China

    NASA Astrophysics Data System (ADS)

    Gao, Shenghui; Wang, Yangjun; Huang, Yongxiang; Zhou, Quan; Lu, Zhiming; Shi, Xiang; Liu, Yulu

    2016-06-01

    In this paper, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamic of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.

  15. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE PAGES

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; et al

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  16. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    PubMed Central

    2015-01-01

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  17. Time course of bronchial cell inflammation following exposure to diesel particulate matter using a modified EAVES.

    PubMed

    Hawley, Brie; McKenna, Dave; Marchese, Anthony; Volckens, John

    2014-08-01

    Electrostatic deposition of particles onto the surface of well-differentiated airway cells is a rapid and efficient means to screen for toxicity associated with exposure to fine and ultrafine particulate air pollution. This work describes the development and application of an electrostatic aerosol in vitro exposure system (EAVES) with increased throughput and ease-of-use. The modified EAVES accommodates standard tissue culture plates and uses an alternating electric field to deposit a net neutral charge of aerosol onto air-interface cell cultures. Using this higher-throughput design, we were able to examine the time-course (1, 3, 6, 9, and 24 h post-exposure) of transcript production and cytotoxicity in well-differentiated human bronchial cells exposed to diesel particulate matter at levels of 'real-world' significance. Statistically significant responses were observed at exposure levels (∼0.4 μg/cm(2)) much lower than typically reported in vitro using traditional submerged/resuspended techniques. Levels of HO-1, IL-8, CYP1A1, COX-2, and HSP-70 transcripts increased immediately following diesel particulate exposure and persisted for several hours; cytotoxicity was increased at 24h. The modified EAVES provides a platform for higher throughput, more efficient and representative testing of aerosol toxicity in vitro.

  18. An evaluation of indoor and outdoor biological particulate matter

    NASA Astrophysics Data System (ADS)

    Menetrez, M. Y.; Foarde, K. K.; Esch, R. K.; Schwartz, T. D.; Dean, T. R.; Hays, M. D.; Cho, S. H.; Betancourt, D. A.; Moore, S. A.

    The incidences of allergies, allergic diseases and asthma are increasing world wide. Global climate change is likely to impact plants and animals, as well as microorganisms. The World Health Organization, U.S. Environmental Protection Agency, U.S. Department of Agriculture, U.S. Department of Health and Human Services, and the Intergovernmental Panel on Climate Change cite increased allergic reactions due to climate change as a growing concern. Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina (NC), and Denver (CO), were collected and analyzed as the goal of this research. A study of PM 10 (<10 μm in aerodynamic diameter) and PM 2.5 (<2.5 μm in aerodynamic diameter) fractions of ambient bioaerosols was undertaken for a six month period to evaluate the potential for long-term concentrations. These airborne bioaerosols can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Three separate sites were monitored, samples were collected and analyzed for mass and biological content (endotoxins, (1,3)-β- D-glucan and protein). Concentrations of these bioaerosols were reported as a function of PM size fraction, mass and volume of air sampled. The results indicated that higher concentrations of biologicals were present in PM 10 than were present in PM 2.5, except when near-roadway conditions existed. This study provides the characterization of ambient bioaerosol concentrations in a variety of areas and conditions.

  19. Monitoring Particulate Matter with Commodity Hardware

    NASA Astrophysics Data System (ADS)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  20. From Source to City: Particulate Matter Concentration and Size Distribution Data from an Icelandic Dust Storm

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, T.; Mockford, T.; Bullard, J. E.

    2015-12-01

    Dust storms are the source of particulate matter in 20%-25% of the cases in which the PM10health limit is exceeded in Reykjavik; which occurred approximately 20 times a year in 2005-2010. Some of the most active source areas for dust storms in Iceland, contributing to the particulate matter load in Reykjavik, are on the south coast of Iceland, with more than 20 dust storm days per year (in 2002-2011). Measurements of particle matter concentration and size distribution were recorded at Markarfljot in May and June 2015. Markarfljot is a glacial river that is fed by Eyjafjallajokull and Myrdalsjokull, and the downstream sandur areas have been shown to be significant dust sources. Particulate matter concentration during dust storms was recorded on the sandur area using a TSI DustTrak DRX Aerosol Monitor 8533 and particle size data was recorded using a TSI Optical Particle Sizer 3330 (OPS). Wind speed was measured using cup anemometers at five heights. Particle size measured at the source area shows an extremely fine dust creation, PM1 concentration reaching over 5000 μg/m3 and accounting for most of the mass. This is potentially due to sand particles chipping during saltation instead of breaking uniformly. Dust events occurring during easterly winds were captured by two permanent PM10 aerosol monitoring stations in Reykjavik (140 km west of Markarfljot) suggesting the regional nature of these events. OPS measurements from Reykjavik also provide an interesting comparison of particle size distribution from source to city. Dust storms contribute to the particular matter pollution in Reykjavik and their small particle size, at least from this source area, might be a serious health concern.

  1. 40 CFR 60.472 - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... matter in excess of 0.67 kg/Mg (1.3 lb/ton) of asphalt charged to the still when a catalyst is added to... still when a catalyst is added to the still and when No. 6 fuel oil is fired in the afterburner; and (3... a catalyst; and (4) Particulate matter in excess of 0.64 kg/Mg (1.3 lb/ton) of asphalt charged...

  2. Particulate matter, air quality and climate: lessons learned and future needs

    NASA Astrophysics Data System (ADS)

    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S.

    2015-01-01

    The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last two decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which has allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol science, and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last two decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. But, while airborne particulate matter is responsible for globally important effects on premature human mortality, we still do not know the relative importance of different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing BC emissions, using known control measures would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China, and the USA. Thus there is

  3. Particulate matter, air quality and climate: lessons learned and future needs

    NASA Astrophysics Data System (ADS)

    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S.

    2015-07-01

    The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China

  4. AN EVALUATION OF THE PROTEIN MASS OF PARTICULATE MATTER

    EPA Science Inventory

    A comparison of ambient particulate matter mass concentrations with the total protein mass concentration has not been performed previously for North Carolina and was the goal of this study. The analysis of total protein mass was used as an all inclusive indicator of biologically ...

  5. Characterization of cotton gin particulate matter emissions – project plan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation timeline for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District, has pro...

  6. Characterization of cotton gin particulate matter emissions - project plan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation time line for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District has pro...

  7. 40 CFR 266.105 - Standards to control particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.105 Standards to control particulate matter. (a) A boiler or industrial furnace burning hazardous waste may not... standard cubic foot) after correction to a stack gas concentration of 7% oxygen, using...

  8. 40 CFR 266.105 - Standards to control particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.105 Standards to control particulate matter. (a) A boiler or industrial furnace burning hazardous waste may not... standard cubic foot) after correction to a stack gas concentration of 7% oxygen, using...

  9. 40 CFR 266.105 - Standards to control particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.105 Standards to control particulate matter. (a) A boiler or industrial furnace burning hazardous waste may not... standard cubic foot) after correction to a stack gas concentration of 7% oxygen, using...

  10. 40 CFR 266.105 - Standards to control particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.105 Standards to control particulate matter. (a) A boiler or industrial furnace burning hazardous waste may not... standard cubic foot) after correction to a stack gas concentration of 7% oxygen, using...

  11. Provisional Assessment of Recent Studies on Particulate Matter (2006)

    EPA Science Inventory

    A review of the national ambient air quality standards (NAAQS) for particulate matter (PM) is currently underway. The Criteria Document was completed in October 2004, and a proposed decision to revise the PM NAAQS was published in January 2006. The final decision is to be signe...

  12. Personal Coarse Particulate Matter Exposures in an Adult Cohort

    EPA Science Inventory

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM10-2.5, PM2.5). Data from these personal measuremen...

  13. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.672 Section 60.672 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... affected facility is enclosed in a building, then each enclosed affected facility must comply with...

  14. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter (PM). 60.672 Section 60.672 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... affected facility is enclosed in a building, then each enclosed affected facility must comply with...

  15. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  16. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  17. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  18. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  19. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  20. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  1. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  2. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  3. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  4. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  5. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock... subpart shall cause to be discharged into the atmosphere: (1) From any phosphate rock dryer any gases which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  6. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  7. Turkish Primary Students' Conceptions about the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2011-01-01

    This study was conducted to determine 4th, 5th, and 6th grade primary students' conceptions about the particulate nature of matter in daily-life events. Five questions were asked of students and interviews were used to collect data. The interviews were conducted with 12 students, four students from each grade, after they finished the formal…

  8. A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: SHEDS-PM

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM) that will be publicly available in Fall 2002. The Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model uses a probabilistic approach ...

  9. Integrated Science Assessment for Particulate Matter (Second External Review Draft)

    EPA Science Inventory

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Particulate Matter (PM) have been made available for independent peer review and public review. The ISA reflects the latest scientific knowledge useful in indicating the kind...

  10. 2009 Final Report: Integrated Science Assessment for Particulate Matter

    EPA Science Inventory

    Cover of the Integrated Science Assessment (ISA) for <span class=Particulate Matter" vspace = "5" hspace="5" align="right" border="1" /> EPA has released the final Integrated Science Assessment (ISA) for P...

  11. Turkish Pupils' Conceptions of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Boz, Yezdan

    2006-01-01

    The purpose of this research study is to explore year 6, 8 & 11 (13, 15 and 17 years old respectively) Turkish pupils' views about the particulate nature of matter within the context of phase changes. About 300 pupils participated in the study. Questionnaires distributed to year 6, 8 and 11 pupils included 6-item open-ended questions about (a)…

  12. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel...

  13. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel...

  14. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel...

  15. 40 CFR 52.275 - Particulate matter control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... attainment and maintenance of the national standards for particulate matter: (1) Lake County APCD. (i) Part III-50 and Part V-1B, submitted on October 23, 1974, and previously approved under 40 CFR 52.223. (2... under 40 CFR 52.223. (b) The following regulations are disapproved because they relax the control...

  16. Particulate matter neurotoxicity in culture is size-dependent

    EPA Science Inventory

    Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has m...

  17. Respiratory dose analysis for components of ambient particulate matter

    EPA Science Inventory

    Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to induce health effects, specific attributes of PM that may cause health effects are somewhat ambiguous. Dose of each specific compone...

  18. EXPOSURE ASSESSMENT OF PARTICULATE MATTER FOR SUSCEPTIBLE POPULATIONS IN SEATTLE

    EPA Science Inventory

    In this article we present results from a 2-year comprehensive exposure assessment study that examined the particulate matter (PM) exposures and health effects in 108 individuals with and without chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), and as...

  19. Inductively heated particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  20. AN INDOOR AIR QUALITY MODEL FOR PARTICULATE MATTER

    EPA Science Inventory

    Thye paper discusses an indoor air quality (IAQ) model for particulate matter (PM). The standard for PM < 2.5 micrometers in aerodynamic diameter (PM 2.5) proposed by the U.S. EPA has produced considerable interest in indoor exposures to PM. IAQ models provide a useful tool for...

  1. Particulate matter adjacent to cattle deep-bedded monoslope facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region. Many of these facilities add organic bedding material to the pens once or twice per week. Particulate matter concentrations and emissions from these facilities have not been evaluate...

  2. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oxygen, when liquid fossil fuel is burned. ...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent oxygen. (ii) Exhibit 35 percent opacity or greater. (2) From any smelt dissolving tank any gases which...

  3. Electrically heated particulate matter filter with recessed inlet end plugs

    DOEpatents

    Gonze, Eugene V.; Ament, Frank

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  4. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Petroleum..., required by § 60.8, is completed, but not later than 60 days after achieving the maximum production rate at... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  5. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  6. AIR QUALITY CRITERIA FOR PARTICULATE MATTER (Final Report, Oct 2004)

    EPA Science Inventory

    EPA has completed the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter (PM) as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic revi...

  7. 40 CFR 266.105 - Standards to control particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard cubic foot) after correction to a stack gas concentration of 7% oxygen, using procedures prescribed in 40 CFR part 60, appendix A, methods 1 through 5, and appendix IX of this part. (b) An owner or... particulate matter standard. (c) Oxygen correction. (1) Measured pollutant levels must be corrected for...

  8. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock... subpart shall cause to be discharged into the atmosphere: (1) From any phosphate rock dryer any gases which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  9. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  10. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  11. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  12. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  13. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  14. 77 FR 12526 - Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base...

  15. STATUS AND PROGRESS IN PARTICULATE MATTER FORECASTING: INITIAL APPLICATION OF THE ETA- CMAQ FORECAST MODEL

    EPA Science Inventory

    This presentation reviews the status and progress in forecasting particulate matter distributions. The shortcomings in representation of particulate matter formation in current atmospheric chemistry/transport models are presented based on analyses and detailed comparisons with me...

  16. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction

    EPA Science Inventory

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...

  17. 77 FR 50446 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the 1997 annual fine particulate matter (PM 2.5 )...

  18. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations

    NASA Astrophysics Data System (ADS)

    Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo; Ridley, David A.; Rizzo, Luciana V.; Arana, Andrea

    2016-09-01

    We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a large underestimation of AOD over regions impacted by tropical biomass burning, scaling particulate emissions from fire by up to a factor of 6 to enable the models to simulate observed AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics account for 66-84 % of global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry season PM2.5 concentrations in regions of high fire activity in South America and underestimates AOD over South America, Africa and Southeast Asia. When we assume an upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions impacted by biomass burning is reduced relative to previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the exception of equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 emissions poorly simulates observed seasonal variability in surface PM2.5 and AOD in regions where small fires dominate, providing

  19. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  20. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    NASA Astrophysics Data System (ADS)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  1. PRELIMINARY PARTICULATE MATTER MASS CONCENTRATIONS ASSOCIATED WITH LONGITUDINAL PANEL STUDIES "ASSESSING HUMAN EXPOSURES OF HIGH RISK SUBPOPULATIONS TO PARTICULATE MATTER"

    EPA Science Inventory

    The NERL Particulate Matter Longitudinal Panel Studies were used to characterize temporal variations of personal exposure to PM and related co-pollutants, including that of PM measured at ambient sites. These studies were fundamental in understanding the associations between p...

  2. Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model

    PubMed Central

    Liu, Qinghai; Babadjouni, Robin; Radwanski, Ryan; Cheng, Hank; Patel, Arati; Hodis, Drew M.; He, Shuhan; Baumbacher, Peter; Russin, Jonathan J.; Morgan, Todd E.; Sioutas, Constantinos; Finch, Caleb E.; Mack, William J.

    2016-01-01

    This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles, impacted primarily by traffic emissions. Re-aerosolized nPM or filtered air was then administered to mice through whole body exposure chambers for forty-five cumulative hours. Exposed mice then underwent middle cerebral artery occlusion/ reperfusion. Following cerebral ischemia/ reperfusion, mice exposed to nPM exhibited significantly larger infarct volumes and less favorable neurological deficit scores when compared to mice exposed to filtered air. Mice exposed to nPM also demonstrated increases in markers of inflammation and oxidative stress in the region of the ischemic core. The findings suggest a detrimental effect of urban airborne particulate matter exposure in the setting of acute ischemic stroke. PMID:27071057

  3. 75 FR 17894 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...; Particulate Matter Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... September 11, 2009. EPA revised its particulate matter standards in October 2006 by strengthening the 24... particulate matter. DATES: Comments must be received on or before May 10, 2010. ADDRESSES: Submit...

  4. Research priorities for airborne particulates matter in the United States

    SciTech Connect

    Samet, J.; Wassle, R.; Holmes, K.J.; Abt, E.; Bakshi, K.

    2005-07-15

    Despite substantial progress in reducing air pollution over the past 30 years, particulates remain a poorly understood health concern that requires further study. The article provides a brief overview of the work of an independent National Research Council (NRC) Committee on particulate matter (PM). It highlights the committee's process for developing during its deliberations. It reflects on the committee as a potential model to provide guidance on a broad research area in which findings may have significant policy implications. 13 refs., 1 fig., 1 tab.

  5. Gene-particulate matter-health interactions

    SciTech Connect

    Kleeberger, Steven R. . E-mail: kleeber1@niehs.nih.gov; Ohtsuka, Yoshinori

    2005-09-01

    Inter-individual variation in human responses to air pollutants suggests that some subpopulations are at increased risk to the detrimental effects of pollutant exposure. Extrinsic factors such as previous exposure and nutritional status may influence individual susceptibility. Intrinsic (host) factors that determine susceptibility include age, gender, and pre-existing disease (e.g., asthma), and it is becoming clear that genetic background also contributes to individual susceptibility. Environmental exposures to particulates and genetic factors associated with disease risk likely interact in a complex fashion that varies from one population and one individual to another. The relationships between genetic background and disease risk and severity are often evaluated through traditional family-based linkage studies and positional cloning techniques. However, case-control studies based on association of disease or disease subphenotypes with candidate genes have advantages over family pedigree studies for complex disease phenotypes. This is based in part on continued development of quantitative analysis and the discovery and availability of simple sequence repeats and single nucleotide polymorphisms. Linkage analyses with genetically standardized animal models also provide a useful tool to identify genetic determinants of responses to environmental pollutants. These approaches have identified significant susceptibility quantitative trait loci on mouse chromosomes 1, 6, 11, and 17. Physical mapping and comparative mapping between human and mouse genomes will yield candidate susceptibility genes that may be tested by association studies in human subjects. Human studies and mouse modeling will provide important insight to understanding genetic factors that contribute to differential susceptibility to air pollutants.

  6. Calculating the potential to emit particulate matter

    SciTech Connect

    Vaart, D.R. van der

    1996-09-01

    As the implementation of the 1990 amendments to the Clean Air Act, and Title V in particular, continues, questions regarding the calculation of a facility`s potential to emit continue to surface. The US Environmental Protection Agency (EPA) has provided limited guidance decisions, although many are still being made during Title V implementation. This paper discusses what is meant by PM-10 and the validity of using sieve analysis in estimating particulate emissions. Title V of the Clean Air Amendments of 1990, and the accompanying regulations in 40 CFR Part 70, defines a major source subject to Title V by calculating its potential emissions of all regulated pollutants, both criteria and hazardous air pollutants. For PM, the threshold emission rate is 100 tons per year (tpy) for applicability to Title V. Much discussion has ensued regarding a definition of PM for the purpose of determining a facility`s potential to emit. Recently, EPA provided guidance which indicated that only PM-10 should be considered for making this determination although many states regulate larger particles through their state implementation plan (SIP) as a surrogate for PM-10.

  7. Seasonal and spatial relationship of chemistry and toxicity in atmospheric particulate matter using aquatic bioassays.

    PubMed

    Sheesley, Rebecca J; Schauer, James J; Hemming, Jocelyn D; Geis, Steve; Barman, Miel A

    2005-02-15

    In light of current interest in better understanding the environmental impact of atmospheric particulate matter (PM), a new strategy has been employed to screen the relative toxicities of ambient and source aerosols. Short-term and acute aquatic bioassays using Ceriodaphnia dubia and a green alga (Selenastrum capricornutum) as test organisms have been in use for many years in the regulation of wastewater effluents. These tests have been employed in the present study to compare the toxicity of water extracts of atmospheric particulate matter and dichloromethane (DCM) extracts that have been transferred to dimethyl sulfoxide and diluted in water. Atmospheric PM was collected at four sites located near the south shore of Lake Michigan and one site in Michigan's Upper Peninsula at discrete events during three seasons. Parallel chemical analyses of the two extracts directly assessed the relation between the chemical composition and the toxicity of the extract. Inductively coupled plasma analysis of the metals in the water extract and gas chromatography-mass spectroscopy of the organics in the DCM extract showed a relationship between high toxicity and high water-soluble copper concentration and high secondary organic aerosol tracers in the extracted aerosol. Although previous fractionation studies have not looked at water-soluble copper, significant toxicity has been measured in the semipolar and polar organic fractions of ambient aerosols and diesel exhaust particles, which are the fractions in which secondary organic aerosol components would be expected. For the water extracts, the summer samples were consistently more toxic than the autumn or spring samples. There was not a seasonal pattern for the toxicity of the DCM extracts; however, spatial differences were apparent. The toxicity end points of select samples from one site qualitatively correlate with the high polycyclic aromatic hydrocarbon concentrations. Additionally, high toxicity in the July DCM extracts from

  8. Nested long-term calculations of particulate matter and photo-oxidants over Europe with EURAD

    NASA Astrophysics Data System (ADS)

    Memmesheimer, M.; Friese, E.; Jakobs, H. J.; Feldmann, H.; Kessler, C.; Ebel, A.; Kerschgens, M. J.

    2003-04-01

    The EURAD modeling system has been applied to calculate particulate matter and photo-oxidants in the troposphere over Europe for the year 1997. The numerical simulations are performed on a mother domain covering the whole of Europe (horizontal grid size 125 km) and three nest levels with grid sizes of 25, 5, and 1 km, respectively. The focus of the nested domains is on the strongly polluted area of North-Rhine Westphalia (NRW). The upper boundary of the model is at an altitude of about 15 km (100 hPa). 23 layers have been used in the vertical, the lowest layer is about 40 m thick, 15 layers are located below 3000 m. Emission data have been supplied by EMEP, the TNO and the local agency (NRW). The mesoscale model MM5 is used to carry out the simulation of the meteorological fields. The RACM chemical mechanism is used to calculate the gas-phase chemistry, the modal aerosol dynamics model MADE has been applied to account for aerosol dynamics. The composition of aerosols is handled within a nitrate-sulfate-ammonia-water equilibrium system, formation of organic aerosols from gaseous precursors is considered using the module SORGAM. The concentrations as simulated with the model have been analysed with respect to the EU directives on the control of air quality. The results of the model calculations have been compared to observations on the European scale (EMEP network) and in the local scale (LUA-NRW network). A simple emission scenario illustrates clearly the impact of long-range transport of particulate matter and photo-oxidants on NRW during specific episodes. Some interesting features from the daily short-term predictions of the EURAD system, carried out during the recent years, are show in addition. Future improvements of the modeling system (e.g. extension to the hemispheric scale and the lower stratosphere) are discussed.

  9. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site.

    PubMed

    Taiwo, A M; Beddows, D C S; Calzolai, G; Harrison, Roy M; Lucarelli, F; Nava, S; Shi, Z; Valli, G; Vecchi, R

    2014-08-15

    In this study, the Multilinear Engine (ME-2) receptor model was applied to speciated particulate matter concentration data collected with two different measuring instruments upwind and downwind of a steelworks complex in Port Talbot, South Wales, United Kingdom. Hourly and daily PM samples were collected with Streaker and Partisol samplers, respectively, during a one month sampling campaign between April 18 and May 16, 2012. Daily samples (PM10, PM2.5, PM2.5-10) were analysed for trace metals and water-soluble ions using standard procedures. Hourly samples (PM2.5 and PM2.5-10) were assayed for 22 elements by Particle Induced X-ray Emission (PIXE). PM10 data analysis using ME-2 resolved 6 factors from both datasets identifying different steel processing units including emissions from the blast furnaces (BF), the basic oxygen furnace steelmaking plant (BOS), the coke-making plant, and the sinter plant. Steelworks emissions were the main contributors to PM10 accounting for 45% of the mass when including also secondary aerosol. The blast furnaces were the largest emitter of primary PM10 in the study area, explaining about one-fifth of the mass. Other source contributions to PM10 were from marine aerosol (28%), traffic (16%), and background aerosol (11%). ME-2 analysis was also performed on daily PM2.5 and PM2.5-10 data resolving 7 and 6 factors, respectively. The largest contributions to PM2.5-10 were from marine aerosol (30%) and blast furnace emissions (28%). Secondary components explained one-half of PM2.5 mass. The influence of steelworks sources on ambient particulate matter at Port Talbot was distinguishable for several separate processing sections within the steelworks in all PM fractions. PMID:24875261

  10. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site.

    PubMed

    Taiwo, A M; Beddows, D C S; Calzolai, G; Harrison, Roy M; Lucarelli, F; Nava, S; Shi, Z; Valli, G; Vecchi, R

    2014-08-15

    In this study, the Multilinear Engine (ME-2) receptor model was applied to speciated particulate matter concentration data collected with two different measuring instruments upwind and downwind of a steelworks complex in Port Talbot, South Wales, United Kingdom. Hourly and daily PM samples were collected with Streaker and Partisol samplers, respectively, during a one month sampling campaign between April 18 and May 16, 2012. Daily samples (PM10, PM2.5, PM2.5-10) were analysed for trace metals and water-soluble ions using standard procedures. Hourly samples (PM2.5 and PM2.5-10) were assayed for 22 elements by Particle Induced X-ray Emission (PIXE). PM10 data analysis using ME-2 resolved 6 factors from both datasets identifying different steel processing units including emissions from the blast furnaces (BF), the basic oxygen furnace steelmaking plant (BOS), the coke-making plant, and the sinter plant. Steelworks emissions were the main contributors to PM10 accounting for 45% of the mass when including also secondary aerosol. The blast furnaces were the largest emitter of primary PM10 in the study area, explaining about one-fifth of the mass. Other source contributions to PM10 were from marine aerosol (28%), traffic (16%), and background aerosol (11%). ME-2 analysis was also performed on daily PM2.5 and PM2.5-10 data resolving 7 and 6 factors, respectively. The largest contributions to PM2.5-10 were from marine aerosol (30%) and blast furnace emissions (28%). Secondary components explained one-half of PM2.5 mass. The influence of steelworks sources on ambient particulate matter at Port Talbot was distinguishable for several separate processing sections within the steelworks in all PM fractions.

  11. Satellite remote sensing of particulate matter and air quality assessment over global cities

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Christopher, Sundar A.; Wang, Jun; Gehrig, Robert; Lee, Yc; Kumar, Naresh

    Using 1 year of aerosol optical thickness (AOT) retrievals from the MODerate resolution Imaging Spectro-radiometer (MODIS) on board NASA's Terra and Aqua satellite along with ground measurements of PM 2.5 mass concentration, we assess particulate matter air quality over different locations across the global urban areas spread over 26 locations in Sydney, Delhi, Hong Kong, New York City and Switzerland. An empirical relationship between AOT and PM 2.5 mass is obtained and results show that there is an excellent correlation between the bin-averaged daily mean satellite and ground-based values with a linear correlation coefficient of 0.96. Using meteorological and other ancillary datasets, we assess the effects of wind speed, cloud cover, and mixing height (MH) on particulate matter (PM) air quality and conclude that these data are necessary to further apply satellite data for air quality research. Our study clearly demonstrates that satellite-derived AOT is a good surrogate for monitoring PM air quality over the earth. However, our analysis shows that the PM 2.5-AOT relationship strongly depends on aerosol concentrations, ambient relative humidity (RH), fractional cloud cover and height of the mixing layer. Highest correlation between MODIS AOT and PM 2.5 mass is found under clear sky conditions with less than 40-50% RH and when atmospheric MH ranges from 100 to 200 m. Future remote sensing sensors such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that have the capability to provide vertical distribution of aerosols will further enhance our ability to monitor and forecast air pollution. This study is among the first to examine the relationship between satellite and ground measurements over several global locations.

  12. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  13. Composition of particulate organic matter sampled in the troposphere over Siberia

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Voronetskaya, Natalya G.; Pevneva, Galina S.; Golovko, Anatoly K.; Kozlov, Alexander S.; Simonenkov, Denis V.; Tolmachev, Gennadii N.

    2015-04-01

    In this paper we present some results of the analysis of organic compounds contained in the particulate matter sampled in the Siberian air shed during monthly research flights in 2012-2013. Aerosol sampling was performed in the tropospheric layer from 500 to 7000 m over the Karakan pine forest located on the east bank of the Novosibirsk Reservoir (River Ob). The Optik TU-134 aircraft laboratory was used as a research platform for in-situ measurements of atmospheric trace gas species and aerosols, as well as a particulate matter collection on PTFE filters. Analysis of the particulate organic matter sampled in the Siberian air shed in 2012-2013 allowed us to draw the following conclusions: the total content of n-alkanes increases in the spring and decreases in the winter. the length of the n-alkane homologous series had no seasonal dependence. maximum in the molecular weight distribution of n-alkanes varies depending on the season; compounds with C17, C22 and C25 chains dominated in winter and spring 2012, whereas in summer - C17 ones; in 2013 compounds with C17 chains dominated in winter, C18-C20 - in spring, and C21 and C23 - in summer. Carbon preference index (CPI) value for a given chain length of the homologous series (on the average from C12 to C28) did not reflect the contribution of sources of n-alkanes in the atmosphere. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  14. High diversity of fungi in air particulate matter.

    PubMed

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-01

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  15. Electrically heated particulate matter filter soot control system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  16. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  17. Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components.

    PubMed

    Wang, MingYi; Yao, Lei; Zheng, Jun; Wang, XinKe; Chen, JianMin; Yang, Xin; Worsnop, Douglas R; Donahue, Neil M; Wang, Lin

    2016-06-01

    Aging of organic aerosol particles is one of the most poorly understood topics in atmospheric aerosol research. Here, we used an aerosol flow tube together with an iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-HRToF-CIMS) to investigate heterogeneous ozonolysis of oleic acid (OL), developing a comprehensive oxidation mechanism with observed products. In addition to the well-known first-generation C9 products including nonanal, nonanoic acid, azelaic acid, and 9-oxononanoic acid, the iodide-adduct chemical ionization permitted unambiguous determination of a large number of high-molecular-weight particulate products up to 670 Da with minimum amounts of fragmentation. These high-molecular-weight products are characterized by a fairly uniform carbon oxidation state but stepwise addition of a carbon backbone moiety, and hence continuous decrease in the volatility. Our results demonstrate that heterogeneous oxidation of organic aerosols has a significant effect on the physiochemical properties of organic aerosols and that reactions of particulate SCIs from ozonolysis of an unsaturated particulate species represent a previously underappreciated mechanism that lead to formation of high-molecular-weight particulate products that are stable under typical atmospheric conditions.

  18. [Form of the particulate matter ambient air standards in China].

    PubMed

    Wang, Shuai; Ding, Jun-Nan; Wang, Rui-Bin; Li, Jian-Jun; Meng, Xiao-Yan; Yang, Bin; Lin, Hong

    2014-02-01

    Based on the principles from the World Health Organization (WHO) and the United States, an analysis was conducted to study the form of 24-hour standard of particulate matter in China by methods of statistical regression, proportional rollback and controlling contrast maps, using the monitoring data of inhalable particulate matter (PM10) from 120 cities in China during year 2005 to 2012. It was found that for cities in China, when the annual arithmetic mean of PM10 was equal to the national standard, the non-exceedance rates of daily average PM10 in most cities were higher than 95.0% , and the average rate for all cities was 97.1%. The average non-exceedance rate was 96.3% for cities in North China and Northwest China, 96.6% for Northeast China, 97.2% for East China and Central South China, and 98.1% for Southwest China. When the 97th percentile was chosen as the form of 24-hour standard of particulate matter for China, the 24-hour standard had an equal controlling strength with the annual standard. The 24-hour standard will become the controlling standard when larger percentiles were chosen, otherwise the contrary. By considering together the statistical characteristics of PM10 level in China, the robustness of the percentiles and protection of human health, the 95th percentile was suitable as the preferred form of the 24-hour standard of PM10 and PM2.5 in China.

  19. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  20. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  1. Particulate matter and manganese exposures in Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Pellizzari, E. D.; Clayton, C. A.; Rodes, C. E.; Mason, R. E.; Piper, L. L.; Fort, B.; Pfeifer, G.; Lynam, D.

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (˜1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM 2.5 and PM 10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM 2.5, PM 10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m -3 for the PM 10 and PM 2.5 fractions, respectively, and 5.50 and 1.83 ng m -3 for Mn in PM 10 and PM 2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM 10, the personal particulate matter levels (median 48.5 μg m -3) were much higher than either indoor (23.1 μg m -3) or outdoor levels (23.6 μg m -3). The median levels for PM 2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m -3, respectively. The correlation between PM 2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16-0.27). Indoor Mn concentration distributions (in PM 2.5 and PM 10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure

  2. 40 CFR 52.528 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... particulate matter. 52.528 Section 52.528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... strategy: Sulfur oxides and particulate matter. (a) In a letter dated October 10, 1986, the Florida... and Port Everglades plants of Florida Power and Light Company from the particulate emission limits...

  3. 40 CFR 52.528 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... particulate matter. 52.528 Section 52.528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... strategy: Sulfur oxides and particulate matter. (a) In a letter dated October 10, 1986, the Florida... and Port Everglades plants of Florida Power and Light Company from the particulate emission limits...

  4. 40 CFR 52.528 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... particulate matter. 52.528 Section 52.528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... strategy: Sulfur oxides and particulate matter. (a) In a letter dated October 10, 1986, the Florida... and Port Everglades plants of Florida Power and Light Company from the particulate emission limits...

  5. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    NASA Astrophysics Data System (ADS)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  6. Source apportionment studies on particulate matter in Beijing/China

    NASA Astrophysics Data System (ADS)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  7. Trace Metal Composition of Suspended Particulate Matter Along Meridional and Zonal Clivar Sections in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Barrett, P. M.; Grand, M. M.; Landing, W. M.; Measures, C. I.; Resing, J. A.

    2014-12-01

    Total trace element concentrations (Al, Fe, Mn, Cu, Ni, Zn, Pb, Ca, Si, P) were analyzed by X-ray fluorescence on suspended particulate matter samples (>0.4μm) collected at 12-depth profiles in the upper 1000 m of the water column in the Indian Ocean at stations with 1-degree spacing along CLIVAR sections I8S and I9N (February-April 2007) from the Antarctic margin to the Bay of Bengal. Particulate Al distributions reflect large sedimentary inputs from the Ganges-Brahmaputra river system into the Bay of Bengal as well as ice melt and shelf inputs near the Antarctic continent with lower concentrations in surface waters from deposition of aerosol dust. Elevated particulate Fe is evident at depth (>300m) downstream of the Kerguelen plateau, suggesting input of particulate Fe from plateau sediments may fuel surface productivity in this region. Cu, Ni, and Pb are elevated in surface waters centered around 40S, suggesting an anthropogenic signature potentially influenced by local atmospheric deposition or advection into the interior of the basin by the South Indian Ocean Current. In the south Indian Ocean, particulate matter composition reflects high biological production as evidenced by elevated particulate P concentrations in surface waters, with a sharp delineation apparent between high particulate Ca concentrations within the 'great calcite belt' (30-55S) and high particulate Si and Zn concentrations in the Indian sector of the Southern Ocean associated with diatom productivity. We will also present particulate trace metal data from CLIVAR zonal transect I5 between South Africa and Australia (May-May 2009) that is currently being analyzed.

  8. Removal of particulate matter from combustion gas streams

    SciTech Connect

    Krigmont, H.V.; Coe, E.L. Jr.

    1991-01-29

    This patent describes an apparatus for removing particulate matter from a combustion gas stream that is passed through an electrostatic precipitator having precipitating elements therein. It comprises: first means for selectively injecting a controllably variable amount of a conditioning agent into a combustion gas stream at a location prior to the entry of the combustion gas into an electrostatic precipitator; second means for establishing the duty cycle of the power provided to a precipitating element in the electrostatic precipitator; third means for measuring the relative particulate content of the combustion gas stream after it leaves the electrostatic precipitator; and fourth means for controlling the first means and the second means in response to the measurement derived from the third means.

  9. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  10. Total-Reflection X-ray fluorescence analysis of elements in size-fractionated particulate matter sampled on polycarbonate filters — Composition and sources of aerosol particles in Göteborg, Sweden

    NASA Astrophysics Data System (ADS)

    Wagner, Annemarie; Mages, Margarete

    2010-06-01

    This is the first study applying the technique of cold plasma ashing on polycarbonate filters as a preparative step for subsequent elemental analysis of aerosol particles by Total-Reflection X-ray fluorescence. The procedure has been validated by analyzing blanks of the filter material, chemicals used as additives as well as certified standard reference material. The results showed that cold plasma ashing is superior to conventional digestion methods with regard to the ease of sample preparation and contamination. A PIXE cascade impactor was used to collect size-fractionated aerosol particles in 9 size classes ranging from 16 to 0.06 µm aerodynamic diameter at an urban and a suburban site in Göteborg, Sweden. Filter segments loaded with the aerosol particles were cut out and fixed on Quartz carriers. After adding 10 ng of Ga as internal standard the samples were dried, digested by cold plasma ashing and analyzed by Total-Reflection X-ray fluorescence. The analysis of aerosol particles showed that elemental concentrations at both the urban and the suburban site in Göteborg were low compared to central Europe. More and concurrent sampling of size-fractionated particles is required to identify local sources of trace elements in the urban area of Göteborg.

  11. Chemical Characterization and Source Apportionment of Particulate Matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika; Stone, Elizabeth; Quraishi, Tauseef; Schauer, James; Shafer, Martin; Mahmood, Abid

    2010-05-01

    Lahore, Pakistan is a rapidly growing megacity with a population approaching 10 million. A significant issue affecting many of the world's megacities is extremely high levels of air pollution associated with transportation, solid fuel combustion, and industrial sources. High ambient concentrations of particulate matter (PM), as well as high levels of toxic components of PM, have been linked to increased mortality and morbidity. Although much focus has been directed at particulate matter mass, in many developing and underdeveloped nations, the adverse health impacts of high levels of PM are further enhanced by the high concentrations of toxic components in PM. To address these issues is Lahore, a measurement campaign of fine (PM2.5) and coarse (PM10-2.5) particulate matter was conducted for the 2007 calendar year, which included measurements of particle mass, detailed chemical composition of PM and source apportionment calculations. Annual average PM2.5 and PM10 concentrations were measured to be 194 µg m-3 and 336 µg m-3, respectively, with daily 24-hour maximum concentrations of 410 µg m-3 and 650 µg m-3 for PM2.5 and PM10, respectively. PM2.5 and PM10 samples were analysed for organic and elemental carbon, organic species, ionic species, elemental composition, water soluble elements and biological activity using a macrophage ROS assay. The coarse mode was dominated by crustal dust components, while the fine fraction was dominated by carbonaceous aerosols. The PM10 elemental composition data, which included data for toxic metals, was processed using principle component analysis to determine likely source categories. Seven factors were identified explaining 91% of the variance of the measured components. The factors included a number of industrial sources, re-suspended soil, mobile sources, and regional secondary aerosol. Source contributions to the organic carbon (OC) component of the PM2.5 fraction were identified using organic tracer species and chemical

  12. PAH Accessibility in Particulate Matter from Road-Impacted Environments.

    PubMed

    Allan, Ian J; O'Connell, Steven G; Meland, Sondre; Bæk, Kine; Grung, Merete; Anderson, Kim A; Ranneklev, Sissel B

    2016-08-01

    Snowmelt, surface runoff, or stormwater releases in urban environments can result in significant discharges of particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) into aquatic environments. Recently, more-specific activities such as road-tunnel washing have been identified as contributing to contaminant load to surface waters. However, knowledge of PAH accessibility in particulate matter (PM) of urban origin that may ultimately be released into urban surface waters is limited. In the present study, we evaluated the accessibility of PAHs associated with seven distinct (suspended) particulate matter samples collected from different urban sources. Laboratory-based infinite sink extractions with silicone rubber (SR) as the extractor phase demonstrated a similar pattern of PAH accessibility for most PM samples. Substantially higher accessible fractions were observed for the less-hydrophobic PAHs (between 40 and 80% of total concentrations) compared with those measured for the most-hydrophobic PAHs (<5% of total concentrations). When we focused on PAHs bound to PM from tunnel-wash waters, first-order desorption rates for PAHs with log Kow > 5.5 were found in line with those commonly found for slowly or very slowly desorbing sediment-associated contaminants. PAHs with log Kow < 5.5 were found at higher desorbing rates. The addition of detergents did not influence the extractability of lighter PAHs but increased desorption rates for the heavier PAHs, potentially contributing to increases in the toxicity of tunnel-wash waters when surfactants are used. The implications of total and accessible PAH concentrations measured in our urban PM samples are discussed in a context of management of PAH and PM emission to the surrounding aquatic environment. Although we only fully assessed PAHs in this work, further study should consider other contaminants such as OPAHs, which were also detected in all PM samples. PMID:27312518

  13. Removal of Particulate Matter Emissions from a Vehicle Using a Self-Powered Triboelectric Filter.

    PubMed

    Han, Chang Bao; Jiang, Tao; Zhang, Chi; Li, Xiaohui; Zhang, Chaoying; Cao, Xia; Wang, Zhong Lin

    2015-12-22

    Particulate matter (PM) pollution from automobile exhaust has become one of the main pollution sources in urban environments. Although the diesel particulate filter has been used in heavy diesel vehicles, there is no particulate filter for most gasoline cars or light-duty vehicles because of high cost. Here, we introduce a self-powered triboelectric filter for removing PMs from automobile exhaust fumes using the triboelectrification effect. The finite element simulation reveals that the collision or friction between PTFE pellets and electrodes can generate large triboelectric charges and form a space electric field as high as 12 MV/m, accompanying an open-circuit voltage of ∼6 kV between the two electrodes, which is comparable to the measured value of 3 kV. By controlling the vibration frequency and fill ratio of pellets, more than 94% PMs in aerosol can be removed using the high electric field in the triboelectric filter. In real automobile exhaust fumes, the triboelectic filter has a mass collection efficiency of ∼95.5% for PM2.5 using self-vibration of the tailpipe.

  14. Removal of Particulate Matter Emissions from a Vehicle Using a Self-Powered Triboelectric Filter.

    PubMed

    Han, Chang Bao; Jiang, Tao; Zhang, Chi; Li, Xiaohui; Zhang, Chaoying; Cao, Xia; Wang, Zhong Lin

    2015-12-22

    Particulate matter (PM) pollution from automobile exhaust has become one of the main pollution sources in urban environments. Although the diesel particulate filter has been used in heavy diesel vehicles, there is no particulate filter for most gasoline cars or light-duty vehicles because of high cost. Here, we introduce a self-powered triboelectric filter for removing PMs from automobile exhaust fumes using the triboelectrification effect. The finite element simulation reveals that the collision or friction between PTFE pellets and electrodes can generate large triboelectric charges and form a space electric field as high as 12 MV/m, accompanying an open-circuit voltage of ∼6 kV between the two electrodes, which is comparable to the measured value of 3 kV. By controlling the vibration frequency and fill ratio of pellets, more than 94% PMs in aerosol can be removed using the high electric field in the triboelectric filter. In real automobile exhaust fumes, the triboelectic filter has a mass collection efficiency of ∼95.5% for PM2.5 using self-vibration of the tailpipe. PMID:26554501

  15. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    NASA Astrophysics Data System (ADS)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  16. Fe, Ni and Zn speciation, in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  17. AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE

    SciTech Connect

    John H. Pavlish; Steven A. Benson

    1999-07-01

    This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

  18. Wireless zoned particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

    2011-10-04

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  19. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  20. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  1. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  2. Apparatus for removal of particulate matter from gas streams

    DOEpatents

    Smith, Peyton L.; Morse, John C.

    2000-01-01

    An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

  3. 75 FR 45075 - Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA... Matter and Ozone'' (Transport Rule) which is published elsewhere in today's issue of the Federal Register... 2006 fine particulate matter (PM 2.5 ) national ambient air quality standards (NAAQS) and the...

  4. Fine particulate matter and visibility in the Lake Tahoe Basin: chemical characterization, trends, and source apportionment.

    PubMed

    Green, Mark C; Chen, L W Antony; DuBois, David W; Molenar, John V

    2012-08-01

    Speciated PM2.5 (particulate matter with an aerodynamic diameteraerosol dominated reconstructedfine mass at both sites, with 58% at Bliss State Park (BLIS) and 68% at South Lake Tahoe (SOLA). Fine mass at SOLA is 2.5 times that at BLIS, mainly due to enhanced organic and elemental carbon (OC and EC). SOLA experiences a winter peak in PM25 mainly due to OC and EC from residential wood combustion, whereas BLIS experiences a summer peak in PM2.5 mainly due to OC and ECfrom wildfires. Carbonaceous aerosol dominates visibility impairment, causing about 1/2 the reconstructed aerosol light extinction at BLIS and 70% at SOLA. Trend analysis (1990-2009) showed statistically significant decreases in aerosol extinction at BLIS on 20% best and 60% middle visibility days and statistically insignificant upward trends on 20% worst days. SOLA (1990-2003) showed statistically significant decreases in aerosol extinction for all day categories, driven by decreasing OC and EC. From the regional haze rule baseline period of 2000-2004 until 2005-2009, BLIS saw 20% best days improving and 20% worst days getting worse due to increased wildfire effects. Receptor modeling was performed using positive matrix factorization (PMF) and chemical mass balance (CMB). It confirmed that (1) biomass burning dominanted PM25 sources at both sites with increasing importance over time; (2) low combustion efficiency burning accounts for most of the biomass burning contribution; (3) road dust and traffic contributions were much higher at SOLA than at BLIS; and (4) industrial combustion and salting were minor sources.

  5. Novel Collection and Toxicological Analysis Techniques for IC Engine Exhaust Particulate Matter

    SciTech Connect

    Michael Keane; Xiao-Chun Shi; Tong-man Ong

    2008-09-30

    The project staff partnered with Costas Sioutas from the University of Southern California to apply the VACES (Versatile Aerosol Concentration Enhancement System) to a diesel engine test facility at West Virginia University Department of Mechanical Engineering and later the NIOSH Lake Lynn Mine facility. The VACES system was able to allow diesel exhaust particulate matter (DPM) to grow to sufficient particle size to be efficiently collected with the SKC Biosampler impinger device, directly into a suspension of simulated pulmonary surfactant. At the WVU-MAE facility, the concentration of the aerosol was too high to allow efficient use of the VACES concentration enhancement, although aerosol collection was successful. Collection at the LLL was excellent with the diluted exhaust stream. In excess of 50 samples were collected at the LLL facility, along with matching filter samples, at multiple engine speed and load conditions. Replicate samples were combined and concentration increased using a centrifugal concentrator. Bioassays were negative for all tested samples, but this is believed to be due to insufficient concentration in the final assay suspensions.

  6. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning.

    PubMed

    Reid, Colleen E; Jerrett, Michael; Petersen, Maya L; Pfister, Gabriele G; Morefield, Philip E; Tager, Ira B; Raffuse, Sean M; Balmes, John R

    2015-03-17

    Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event. PMID:25648639

  7. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning.

    PubMed

    Reid, Colleen E; Jerrett, Michael; Petersen, Maya L; Pfister, Gabriele G; Morefield, Philip E; Tager, Ira B; Raffuse, Sean M; Balmes, John R

    2015-03-17

    Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event.

  8. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    PubMed Central

    Machado, Brenda I.; Murr, Lawrence E.; Suro, Raquel M.; Gaytan, Sara M.; Ramirez, Diana A.; Garza, Kristine M.; Schuster, Brian E.

    2010-01-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  9. Impact of Filtration Velocities and Particulate Matter Characteristics on Diesel Particulate Filter Wall Loading Performance

    SciTech Connect

    Lance, Michael J; Walker, Larry R; Yapaulo, Renato A; Orita, Tetsuo; Wirojsakunchai, Ekathai; Foster, David; Akard, Michael

    2009-01-01

    The impact of different types of diesel particulate matter (PM) and different sampling conditions on the wall deposition and early soot cake build up within diesel particulate filters has been investigated. The measurements were made possible by a newly developed Diesel Exhaust Filtration Analysis (DEFA) system in which in-situ diesel exhaust filtration can be reproduced with in small cordierite wafer disks, which are essentially thin sections of a Diesel Particulate Filter (DPF) wall. The different types of PM were generated from selected engine operating conditions of a single-cylinder heavy-duty diesel engine. Two filtration velocities 4 and 8 cm/s were used to investigate PM deep-bed filtration processes. The loaded wafers were then analyzed in a thermal mass analyzer that measures the Soluble Organic Fraction (SOF) as well as soot and sulfate fractions of the PM. In addition, the soot residing in the wall of the wafer was examined under an optical microscope illuminated with Ultraviolet light and an Environmental Scanning Electron Microscope (E-SEM) to determine the bulk soot penetration depth for each loading condition. It was found that higher filtration velocity results in higher wall loading with approximately the same penetration depth into the wall. PM characteristics impacted both wall loading and soot cake layer characteristics. Results from imaging analysis indicate that soot the penetration depth into the wall was affected more by PM size (which changes with engine operating conditions) rather than filtration velocity.

  10. Analysis of semi-volatile materials (SVM) in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Salvador, Christian Mark; Chou, Charles C.-K.

    2014-10-01

    The mass fraction of semi-volatile materials (SVM) in fine particulate matter (PM2.5) was investigated at a subtropical urban aerosol observatory (TARO, 25.0 °N, 121.5 °E) in Taipei, Taiwan during August 2013. In particular, an integrated Denuder-FDMS-TEOM system was employed to study the effectiveness of the coupling of FDMS and TEOM instruments. The charcoal and MgO denuders used in this study performed a removal efficiency of 89 and 95% for positive interferences in OC and nitrate measurements, respectively, and did not induce a significant particle loss during the field campaign, suggesting that denuders should be considered as a standard device in PM2.5 instrumentation. Analysis on the mass concentration and speciation data found that, as a result of SVM loss, FRM-based measurement underestimated PM2.5 by 21% in our case. Coupling FDMS to TEOM significantly improved the bias in PM2.5 mass concentration from -25% to -14%. The negative bias in FDMS-TEOM was attributed to the failure of FDMS in recovering the mass of lost SVOMs in PM2.5. The results of this study highlight the significance of SVM in a subtropical urban environment, give a warning of underestimated health risk relevant to PM2.5 exposure, and necessitate further development of instrument and/or technique to provide accurate ambient levels of fine particulate matters.

  11. Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter

    NASA Astrophysics Data System (ADS)

    Alves, Célia A.; Oliveira, César; Martins, Natércia; Mirante, Fátima; Caseiro, Alexandre; Pio, Casimiro; Matos, Manuel; Silva, Hugo F.; Oliveira, Cristina; Camões, Filomena

    2016-02-01

    Particulate matter samples were collected in a road tunnel in Lisbon (PM0.5, PM0.5-1, PM1-2.5, and PM2.5-10) and at two urban locations representing roadside and background stations (PM2.5 and PM2.5-10). Samples were analysed for organic and elemental carbon (OC and EC), n-alkanes, n-alkenes, hopanes, some isoprenoid compounds, and steranes. Particulate matter concentrations in the tunnel were 17-31 times higher than at roadside in the vicinity, evidencing an aerosol origin almost exclusively in fresh vehicle emissions. PM0.5 in the tunnel comprised more than 60% and 80% of the total OC and EC mass in PM10, respectively. Concentrations of the different aliphatic groups of compounds in the tunnel were up to 89 times higher than at roadside and 143 times higher than at urban background. Based on the application of hopane-to-OC or hopanes-to-EC ratios obtained in the tunnel, it was found that vehicle emissions are the dominant contributor to carbonaceous particles in the city but do not represent the only source of these triterpenic compounds. Contrary to what has been observed in other studies, the Σhopane-to-EC ratios were higher in summer than in winter, suggesting that other factors (e.g. biomass burning, dust resuspension, and different fuels/engine technologies) prevail in relation to the photochemical decay of triterpenoid hydrocarbons from vehicle exhaust.

  12. Satellite constraints on surface concentrations of particulate matter

    NASA Astrophysics Data System (ADS)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  13. Modeling particulate matter emissions during mineral loading process under weak wind simulation.

    PubMed

    Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen

    2013-04-01

    The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity.

  14. Satellite-based retrieval of particulate matter concentrations over the United Arab Emirates (UAE)

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Temimi, Marouane; Hareb, Fahad; Eibedingil, Iyasu

    2016-04-01

    In this study, an empirical algorithm was established to retrieve particulate matter (PM) concentrations (PM2.5 and PM10) using satellite-derived aerosol optical depth (AOD) over the United Arab Emirates (UAE). Validation of the proposed algorithm using ground truth data demonstrates its good accuracy. Time series of in situ measured PM concentrations between 2014 and 2015 showed high values in summer and low values in winter. Estimated and in situ measured PM concentrations were higher in 2015 than 2014. Remote sensing is an essential tool to reveal and back track the seasonality and inter-annual variations of PM concentrations and provide valuable information on the protection of human health and the response of air quality to anthropogenic activities and climate change.

  15. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions

    NASA Astrophysics Data System (ADS)

    Bozek, Frantisek; Huzlik, Jiri; Pawelczyk, Adam; Hoza, Ignac; Naplavova, Magdalena; Jedlicka, Jiri

    2016-02-01

    This article is directed to evaluating the proportion of polycyclic aromatic hydrocarbons (PAHs) captured on particulate matter (PM) classified as PM2.5-10 and PM2.5, i.e. particulate matter of aerodynamic diameter 2.5-10 μm and 2.5 μm. During three week-long and one 2-day campaigns, 22 paired air samples were taken in parallel of PM10 and PM2.5 fractions inside the Mrázovka tunnel in Prague, Czech Republic. Following sample preparation, concentrations of individual PAHs were determined using gas chromatography combined with mass spectrometry. Concentrations of individual pairs of each PAH were tested by the nonparametric method using Spearman's rank correlation coefficient. At significance level p < 0.01, it was demonstrated that all individual PAHs, including their totals, were bound to the PM2.5 fraction. Exceptions were seen in the cases of acenaphthylene, acenaphthene, and indeno[1,2,3-cd]pyrene, the concentrations of which fluctuated around the detection limit, where increased measurement error can be expected.

  16. Urban particulate matter pollution: a tale of five cities.

    PubMed

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment. PMID:27310460

  17. Resuspension of particulate matter and PAHs from street dust

    NASA Astrophysics Data System (ADS)

    Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B.

    2011-01-01

    Winter street sanding activities in northern countries are often associated with elevated pollution by particulate matter. There are indications that street dust may act as a source of particle-bound PAHs. However, very few studies have addressed the resuspension potential of PAHs from street dust. The purpose of this study was to quantitatively assess emissions of particulate matter and PAHs from street dust by laboratory-scale simulation of particle resuspension. Increases in air velocity caused proportional increases in air-borne PM 2.5, PM 10 and PM total concentrations, while the concentrations of PAHs associated with resuspended particles did not show clear statistically significant dependence on air velocity. A substantial difference in particle and PAH resuspension was observed between dust from the city center street and dust from the connecting street. The data obtained in the present study indicate that street dust may be a significant source not only of PMs but also of particle-bound PAHs in ambient air.

  18. Personal coarse particulate matter exposures in an adult cohort

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Case, Martin; Yeatts, Karin; Chen, Fu-Lin; Scott, James; Svendsen, Erik; Devlin, Robert

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM 10-2.5, PM 2.5). Data from these personal measurements were then compared to community-based measures that might typically represent surrogate measurements of exposure often used in epidemiological assessments. To determine personal exposures to various particulate matter (PM) size fractions, a recently evaluated personal PM monitor capable of direct PM 10-2.5 size fraction collection was used. Participants living in the central region of North Carolina and enrolled in the NCAAES were asked to wear the monitor attached to a supporting backpack for 24-h collection periods. These volunteers were monitored for 2 to 4 days with subsequent gravimetric analysis of their PM samples. Personal PM 10-2.5 mass concentrations were observed to be highly variable and ranged from 7.6 to 40.2 μg/m 3 over an 8-month period. The median for this measurement from all participants (50th percentile) was 13.7 μg/m 3. A coefficient of determination ( r2) of 0.02 was established for community-based PM 10-2.5 mass concentrations versus personal exposures. Similar coefficients established for PM 2.5 mass revealed only a modest improvement in agreement ( r2 = 0.12). Data from the exposure findings are reported here.

  19. Particulate Matter Concentrations in East Oakland's High Street Corridor

    NASA Astrophysics Data System (ADS)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  20. Particulate organic matter sinks and sources in high Arctic fjord

    NASA Astrophysics Data System (ADS)

    Kuliński, Karol; Kędra, Monika; Legeżyńska, Joanna; Gluchowska, Marta; Zaborska, Agata

    2014-11-01

    The main aim of this paper is to present results on concentrations, fluxes and isotopic composition (δ13Corg) of particulate and sedimentary organic carbon (measures of particulate and sedimentary organic matter, respectively) in Kongsfjorden, Spitsbergen. The terrestrial particulate organic carbon (POC) input to the Kongsfjorden reached 760 · 106 ± 145 · 106 g Corg y- 1, forced mostly by the glaciers' activity. This constituted 5-10% of the bulk POC supplied to the system. Marine primary production was the main source of the remaining 90-95% of POC. Organic carbon burial rates amounted to 9 ± 1 g Corg m- 2 y- 1 in the central and 13 ± 1 g Corg m- 2 y- 1 in the outer part of the fjord. Two terrestrial POM δ13Corg end members were identified: the ancient organic matter (OM) supplied by glaciers and rivers fed by water discharged from the glaciers (from - 25.4‰ to - 25.1‰), and the fresh terrestrial POM (from - 26.7‰ to - 26.6‰). Marine OM was characterized by a wide range of δ13Corg signatures: from ≤ - 26.1‰ for the phytoplankton depleted in 13Corg to ca. - 15.8‰ for debris of marine phytobenthos. The lack of distinct marine δ13Corg end member and the resemblance of phytoplankton δ13Corg signatures to the terrestrial POM δ13Corg end member precluded the use of the two δ13Corg end member mixing model to trace the terrestrial OM in Kongsfjorden, which is also very likely to happen in other Arctic regions.

  1. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  2. Adverse effect of diesel engine produced particulate matter on various stone types and concrete: a laboratory exposure experiment

    NASA Astrophysics Data System (ADS)

    Farkas, Orsolya; Szabados, György; Antal, Ákos; Török, Ákos

    2015-04-01

    The effect of particulate matter on construction materials have been studied under laboratory conditions. For testing the adverse effects of diesel soot and particulate matter on stone and concrete a small scale laboratory exposure chamber was constructed. Blocks of 9 different stone types and concrete was placed in the chamber and an exhaust pipe of diesel engine was diverted into the system. Tested stones included: porous limestone, cemented non-porous limestone, travertine, marble, rhyolite tuff, andesite and granite. The engine was operated for 10 hours and the produced particulate matter was diverted directly to the surface of the material specimens of 3 cm in diameter each. Working parameters of the engine were controlled; the composition of the exhaust gas, smoke value and temperature were continuously measured during the test. Test specimens were documented and analysed prior to exposure and after the exposure test. Parameters such colorimetric values, weight, surface properties, mineralogical compositions of the test specimens were recorded. The working temperature was in the order of 300°C-320°C. The gas concentration was in ppm as follows: 157 CO; 5.98 CO2, 34.3 THC; 463 NOx; 408 NO; 12.88 O2. Our tests have demonstrated that significant amount of particulate matter was deposited on construction materials even at a short period of time; however the exposure was very intense. It also indicates that that the interaction of particulate matter and aerosol compounds with construction materials in urban areas causes rapid decay and has an adverse effect not only on human health but also on built structures.

  3. 77 FR 12769 - Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base...

  4. Atmospheric particulate matter levels, chemical composition and optical absorbing properties in Camagüey, Cuba.

    PubMed

    Barja, Boris; Mogo, Sandra; Cachorro, Victoria E; Antuña, Juan Carlos; Estevan, Rene; Rodrigues, Ana; de Frutos, Ángel

    2013-02-01

    Atmospheric aerosol particles were collected at Camagüey, Cuba, during the period from February 2008 to April 2009 in order to know the particulate matter levels (PM) together with a general chemical and absorption characterization. The aerosols collection was carried out with a low volume particulate impactor twice a week. Gravimetric analysis of the particulate matter fractions PM10 and PM1 was carried out. An analysis of the eight major inorganic species (Na (+), K(+), Ca(2+), Mg(2+), NH4 (+), Cl(-), NO3(-) and SO4 (2-)) using ionic chromatography was conducted. The results were analyzed in two periods, the high aerosol concentration period (May to August) and the period with low aerosol concentration (the other months). During the high concentration period the average PM10 and PM1 levels were 35.11 μg m (-3) (std = 15.45 μg m(-3)) and 16.86 μg m(-3) (std = 6.14 μg m (-3)). During the low concentration period the average PM10 and PM1 levels were 23.13 μg m (-3) (std = 5.00 μg m(-3)) and 13.00 μg m(-3) (std = 4.02 μg m (-3)). For both periods, Cl(-), Na(+) and NO3 (-) are the predominant species in the coarse fraction (PM1-10), and SO 4(2-)and NH4(+) are the predominant species in the fine fraction (PM1). The spectral aerosol absorption coefficient, σ a, was measured for the wavelength range 400-700 nm with 10 nm steps. The σ a values were obtained with a filter transmission method for the fine fraction and were evaluated for 54 days covering a wide range of atmospheric conditions including a Saharan dust intrusion. σ a ranges from 8.5 M m(-1) to 34.5 M m(-1) at a wavelength of 550 nm, with a mean value of 18.7 M m (-1). The absorption Ångström parameter, αa, calculated for the pair of wavelengths (450/700 nm) presents a mean value of 0.33 (std = 0.19), which is a very low value comparing with those that can be found in the bibliography. Although the sampling period is short, these data represent the first evaluation of PM values with their

  5. Investigating the Optical and Microphysical Properties of Particulate Matter during MEGAPOLI Field Campaigns

    NASA Astrophysics Data System (ADS)

    Hu, R.; Sokhi, R.; Chemel, C.; Vazhappilly-Francis, X.; Yu, Y.; Fisher, B.

    2010-09-01

    Particulate Matter (or aerosols) is one of major components affecting the air quality and climate change. Despite the abundance of PM in the atmosphere, the emissions, composition and transformation of PM are still poorly understood due partly to the large measurement uncertainties and chemical complexity, particularly a distinct lack of the optical and microphysical properties of PM over megacities. In this study, we use the global chemistry transport model (GEOS-Chem) and regional air quality model (WRF-CMAQ) to simulate the optical and microphysical properties of PM over megacities such as London and Paris. The intensive MEGAPOLI field campaigns were performed during summer 2009 in the Ile-de-France region and winter 2010 in Paris. Measurements have provided the detailed information on aerosol properties including size distribution, volatility, hygroscopicity, chemical composition and optical properties. We use the observational data from the intensive field campaigns to validate the simulations from global and regional air quality models. The model simulations of major aerosol species including sulphate, ammonium, nitrate and black carbon, particularly the organic compounds will be evaluated with measurement datasets. We analyses the effects of emissions, meteorology and chemistry on the aerosol properties over megacities. The impact of Megacity emissions on PM concentrations (PM10 and PM2.5) will be examined according to model simulations, particularly the factors such as speciation, temporal profile and contributions from the long range transport. We use the satellite observational data such as the Ozone Monitoring Instrument (OMI), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) for inter-comparison with the model simulations on regional and urban scales. The combining modeling and observations will improve our understanding of PM properties and the model prediction accuracy of PM episodes.

  6. Development of emission factors for particulate matter in a school

    SciTech Connect

    Scheff, P.A.; Paulius, V.; Conroy, L.M.

    1999-07-01

    Schools have complex indoor environments which are influenced by many factors such as number of occupants, building design, office equipment, cleaning agents, and school activities. Like large office buildings, school environments may be adversely influenced by deficiencies in ventilation which may be due to improper operation of HVAC systems, attempts at energy efficiency that limit the supply of outdoor air, or remodeling of building components. Most importantly, children spend up to a third of their time in these structures, and thus it is desirable to better understand the environmental quality in these buildings. A middle school (grades 6 to 8) in a residential section of Springfield, IL was selected for this baseline indoor air quality survey. The school was characterized as having no health complaints, good maintenance schedules, and did not contain carpeting within the classrooms or hallways. The focus of this paper is on the measurements of air quality in the school. The development of emission factors for particulate matter is also discussed. Four indoor locations including the Cafeteria, a Science Classroom, an Art Classroom, and the Lobby outside of the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February of 1997. Integrated samples (8 hour sampling time) for respirable and total particulate matter, and short-term measurements of bioaerosols (two minute samples, three times per day) on three consecutive days were collected at each of the indoor and outdoor sites. Continuous measurements of carbon dioxide, carbon monoxide, temperature and humidity were logged at all locations for five days. Continuous measurements of respirable particulate matter were also collected in the Lobby area. Detailed logs of occupant activity were also collected at each indoor monitoring location throughout the study. Total particle concentrations ranged from 29 to 177 {micro}g/m{sup 3} in the art

  7. Evaluation of the chemically speciated particulate matter from a high-resolution air quality modeling system over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pay, M. T.; Piot, M.; Jimenez-Guerrero, P.; Jorba, O.; Perez, C.; Baldasano, J. M.

    2009-04-01

    Particulate matter (PM) is a complex mixture of many compounds, both natural and anthropogenic; that determines its compositions and size. In addition, it is influenced by multiple atmospheric physico-chemical processes that can affect this matter from its release point, as a primary aerosol, or via gas-to-particle conversion processes that give rise to secondary aerosols. Inter-comparisons of European air quality models at regional and urban scales show that models tend to underestimate the observed concentrations of PM10 and PM2.5. Definitely, an accurate representation of the chemically speciated aerosols compounds is required in order to adequately simulate PM concentrations. The Barcelona Supercomputing Center-Centro Nacional de Supercomputacion (BSC-CNS) currently operates high-resolution air quality forecasts for Europe (12km, 1hr) and the Iberian Peninsula (4km, 1hr) with WRF-ARW/HERMES/CMAQ/DREAM modelling system under the umbrella of the CALIOPE project (http://www.bsc.es/caliope/) and Saharan dust forecasts with BSC-DREAM (http://www.bsc.es/projects/earthscience/DREAM/). In this framework, PM10 and PM2.5 products in both domains are achieved adding the Saharan dust contribution from DREAM (8 bins version) to the anthropogenic output of CMAQ. Furthermore, the CMAQ version used for this modelling system includes the contribution of sea salt aerosols. Eleven different chemical aerosol components can be distinguished, namely nitrates, sulphates, ammonium, elemental carbon, organic carbon with three subcomponents: primary, secondary anthropogenic and secondary biogenic, soil, sodium, chlorine and mineral dust. This study is focused on the evaluation of these aforementioned aerosol compounds from WRF-ARW/HERMES/CMAQ/DREAM over the Iberian Peninsula domain for the year 2004. The model evaluation with respect to the individual aerosol components has been performed for the domains of study. Albeit PM composition evaluation is presently hampered by the lack of

  8. Large scale air monitoring: lichen vs. air particulate matter analysis.

    PubMed

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10).

  9. Chemical Composition of Fine Particulate Matter and Life Expectancy

    PubMed Central

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  10. Particulate matter dynamics in naturally ventilated freestall dairy barns

    NASA Astrophysics Data System (ADS)

    Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E. L.

    2013-04-01

    Particulate matter (PM) concentrations and ventilation rates, in two naturally ventilated freestall dairy barns, were continuously monitored for two years. The first barn (B1) housed 400 fresh lactating cows, while the second barn (B2) housed 835 non-fresh lactating cows and 15 bulls. The relationships between PM concentrations and accepted governing parameters (environmental conditions and cattle activity) were examined. In comparison with other seasons, PM concentrations were lowest in winter. Total suspended particulate (TSP) concentrations in spring and autumn were relatively higher than those in summer. Overall: the concentrations in the barns and ambient air, for all the PM categories (PM2.5, PM10, and TSP), exhibited non-normal positively skewed distributions, which tended to overestimate mean or average concentrations. Only concentrations of PM2.5 and PM10 increased with ambient air temperature (R2 = 0.60-0.82), whereas only concentrations of TSP increased with cattle activity. The mean respective emission rates of PM2.5, PM10, and TSP for the two barns ranged between 1.6-4.0, 11.9-15.0, and 48.7-52.5 g d-1 cow-1, indicating similar emissions from the two barns.

  11. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  12. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  13. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  14. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  15. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  16. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Particulate matter (PM-10) Group III... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter... State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  17. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the State of Nevada submitted a revision to the State Implementation Plan for Battle Mountain that...

  18. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Particulate matter (PM-10) Group III... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter... State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  19. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year... 18, 1997 (62 FR 36852), EPA established an annual PM 2.5 NAAQS at 15.0 micrograms per cubic...

  20. Evaluating the effectiveness of vegetative environmental buffers in mitigating particulate matter emissions from poultry houses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate Matter (PM) emissions from animal operations have been identified as a major air pollutant source with health and environmental impacts. Nearly 600 million broilers are produced annually on the Delmarva Peninsula, making it a hot spot for particulate matter emissions from poultry houses....

  1. SUMMARY FINDINGS FROM THE U.S. EPA'S PARTICULATE MATTER PANEL STUDIES

    EPA Science Inventory

    The U.S. EPA's Particulate Matter Panel Studies were a series of longitudinal human exposure studies used to characterize personal exposures to particulate matter (PM) and related co-pollutants to that of pollutants of ambient origin. Participants were monitored over time (28 d...

  2. 40 CFR 60.43b - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM... Industrial-Commercial-Institutional Steam Generating Units § 60.43b Standard for particulate matter (PM). (a... facility any gases that contain PM in excess of the following emission limits: (1) 22 ng/J (0.051...

  3. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  4. 40 CFR 60.43c - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM... Industrial-Commercial-Institutional Steam Generating Units § 60.43c Standard for particulate matter (PM). (a... cause to be discharged into the atmosphere from that affected facility any gases that contain PM...

  5. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  6. A Literature Review of Concentrations and Size Distributions of Ambient Airborne Pb-Containing Particulate Matter

    EPA Science Inventory

    The final 2008 lead (Pb) national ambient air quality standards (NAAQS) revision maintains Pb in total suspended particulate matter as the indicator. However, the final rule permits the use of low-volume PM10 (particulate matter sampled with a 50% cut-point of 10 μm) F...

  7. 40 CFR 52.1278 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.1278 Section 52.1278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Mississippi § 52.1278 Control strategy: Sulfur oxides and particulate matter. In a letter dated January...

  8. 40 CFR 52.2130 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.2130 Section 52.2130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Carolina § 52.2130 Control strategy: Sulfur oxides and particulate matter. In letters dated May 7,...

  9. 40 CFR 52.1278 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.1278 Section 52.1278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Mississippi § 52.1278 Control strategy: Sulfur oxides and particulate matter. In a letter dated January...

  10. 40 CFR 52.2130 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.2130 Section 52.2130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Carolina § 52.2130 Control strategy: Sulfur oxides and particulate matter. In letters dated May 7,...

  11. 40 CFR 52.2130 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.2130 Section 52.2130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Carolina § 52.2130 Control strategy: Sulfur oxides and particulate matter. In letters dated May 7,...

  12. 40 CFR 52.578 - Control Strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control Strategy: Sulfur oxides and particulate matter. 52.578 Section 52.578 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Strategy: Sulfur oxides and particulate matter. In a letter dated March 26, 1987, the Georgia Department...

  13. 40 CFR 52.2130 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.2130 Section 52.2130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Carolina § 52.2130 Control strategy: Sulfur oxides and particulate matter. In letters dated May 7,...

  14. 40 CFR 52.1278 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.1278 Section 52.1278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Mississippi § 52.1278 Control strategy: Sulfur oxides and particulate matter. (a) In a letter dated January...

  15. 40 CFR 52.2130 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.2130 Section 52.2130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Carolina § 52.2130 Control strategy: Sulfur oxides and particulate matter. In letters dated May 7,...

  16. 40 CFR 52.933 - Control Strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control Strategy: Sulfur oxides and particulate matter. 52.933 Section 52.933 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Strategy: Sulfur oxides and particulate matter. In a letter dated March 27, 1987, the Kentucky...

  17. 40 CFR 52.1278 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.1278 Section 52.1278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Mississippi § 52.1278 Control strategy: Sulfur oxides and particulate matter. (a) In a letter dated January...

  18. 40 CFR 52.1278 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.1278 Section 52.1278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Mississippi § 52.1278 Control strategy: Sulfur oxides and particulate matter. In a letter dated January...

  19. 40 CFR 52.2231 - Control strategy: Sulfur oxides and particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.2231 Section 52.2231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.2231 Control strategy: Sulfur oxides and particulate matter. (a) Part D conditional approval....

  20. Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway

    EPA Science Inventory

    The mechanisms by which exposure to particulate matter increases the risk of cardiovascular events are not known. Recent human and animal data suggest that particulate matter may induce alterations in hemostatic factors. In this study we determined the mechanisms by which particu...

  1. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group III... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter... State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  2. Monitoring atmospheric particulate matter through cavity ring-down spectroscopy.

    PubMed

    Thompson, Jonathan E; Smith, Benjamin W; Winefordner, James D

    2002-05-01

    Cavity ring-down spectroscopy was explored as a means to measure atmospheric optical extinction. Ambient air was sampled through a window on the campus of the University of Florida and transported to a ring-down cell fashioned from standard stainless steel vacuum components. When a copper vapor laser operating at 10 kHz is employed, this arrangement allowed for nearly continuous monitoring of atmospheric extinction at 510 and 578 nm. We have characterized the system performance in terms of detection limit and dynamic range and also monitored a change in atmospheric extinction during a nearby wildfire and fireworks exhibition. The sensitivity and compatibility with automation of the technique renders it useful as a laboratory-based measurement of airborne particulate matter. PMID:12033292

  3. An Optical Backscatter Sensor for Particulate Matter Measurement

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y; Partridge Jr, William P

    2009-01-01

    Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

  4. Monitoring atmospheric particulate matter through cavity ring-down spectroscopy.

    PubMed

    Thompson, Jonathan E; Smith, Benjamin W; Winefordner, James D

    2002-05-01

    Cavity ring-down spectroscopy was explored as a means to measure atmospheric optical extinction. Ambient air was sampled through a window on the campus of the University of Florida and transported to a ring-down cell fashioned from standard stainless steel vacuum components. When a copper vapor laser operating at 10 kHz is employed, this arrangement allowed for nearly continuous monitoring of atmospheric extinction at 510 and 578 nm. We have characterized the system performance in terms of detection limit and dynamic range and also monitored a change in atmospheric extinction during a nearby wildfire and fireworks exhibition. The sensitivity and compatibility with automation of the technique renders it useful as a laboratory-based measurement of airborne particulate matter.

  5. Fine particulate matter in acute exacerbation of COPD

    PubMed Central

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  6. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  7. Acute pulmonary toxicity of urban particulate matter and ozone.

    PubMed Central

    Vincent, R.; Bjarnason, S. G.; Adamson, I. Y.; Hedgecock, C.; Kumarathasan, P.; Guénette, J.; Potvin, M.; Goegan, P.; Bouthillier, L.

    1997-01-01

    We have investigated the acute lung toxicity of urban particulate matter in interaction with ozone. Rats were exposed for 4 hours to clean air, ozone (0.8 ppm), the urban dust EHC-93 (5 mg/m3 or 50 mg/m3), or ozone in combination with urban dust. The animals were returned to clean air for 32 hours and then injected (intraperitoneally) with [3H]thymidine to label proliferating cells and killed after 90 minutes. The lungs were fixed by inflation, embedded in glycol methacrylate, and processed for light microscopy autoradiography. Cell labeling was low in bronchioles (0.14 +/- 0.04%) and parenchyma (0.13 +/- 0.02%) of air control animals. Inhalation of EHC-93 alone did not induce cell labeling. Ozone alone increased (P < 0.05) cell labeling (bronchioles, 0.42 +/- 0.16%; parenchyma, 0.57 +/- 0.21%), in line with an acute reparative cell proliferation. The effects of ozone were clearly potentiated by co-exposure with either the low (3.31 +/- 0.31%; 0.99 +/- 0.18%) or the high (4.45 +/- 0.51%; 1.47 +/- 0.18%) concentrations of urban dust (ozone X EHC-93, P < 0.05). Cellular changes were most notable in the epithelia of terminal bronchioles and alveolar ducts and did not distribute to the distal parenchyma. Enhanced DNA synthesis indicates that particulate matter from ambient air can exacerbate epithelial lesions in the lungs. This may extend beyond air pollutant interactions, such as to effects of inhaled particles in the lungs of compromised individuals. Images Figure 1 PMID:9403707

  8. Trends in primary particulate matter emissions from Canadian agriculture.

    PubMed

    Pattey, Elizabeth; Qiu, Guowang

    2012-07-01

    Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981-2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summer fallow land.

  9. Trends in primary particulate matter emissions from Canadian agriculture.

    PubMed

    Pattey, Elizabeth; Qiu, Guowang

    2012-07-01

    Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981-2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summer fallow land. PMID:22866575

  10. Deposition of heavy metals from particulate settleable matter in soils of an industrialized area

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Particulate air pollutants from industrial emissions and natural resource exploitation represent an important contribution to soil contamination. These atmospheric particles, usually settleable particulate matter form (which settle by gravity) are deposited on soil through both dry and wet. The most direct consequences on soil of air pollutants are acidification and salinization, not to mention the pollution that can cause heavy metals as components of suspended particulate matter. The main objective of this study was to evaluate the influence of air pollution in soil composition. For this purpose, has been conducted a study of the composition of heavy metals in the settleable particulate matter in two locations (Almazora and Vila-real) with high industrial density (mainly ceramic companies) located in the ceramic cluster of Castellón (Spain). Settleable air particles samples were collected with a PS Standard Britannic captor (MCV-PS2) for monthly periods between January 2007 and December 2009. We analyzed the following elements: Cd, Pb, Cu, Ni, Sb and Bi which are highly toxic and have the property of accumulating in living organisms. It has been determined the concentration of heavy metals in the soluble fraction of settleable air particles by ICP-MS. The annual variation of the results obtained in both populations shows a decline over the study period the concentrations of heavy metals analyzed. This fact is associated with the steady implementation of corrective measures in the main industrial sector in the area based on the treatment of mineral raw materials. Moreover, this decline is, in turn, a lower intake of heavy metals to the soil. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330 Moral R., Gilkes R.J.; Jordán M.M. (2005) "Distribution of heavy

  11. The Stable and Radio- Carbon Isotopic Content of Labile and Refractory Carbon in Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    McNichol, A. P.; Rosenheim, B. E.; Gerlach, D. S.; Hayes, J. M.

    2006-12-01

    Studies of the isotopic content of atmospheric particulate matter are hampered by difficulties in chemically defining the pools of carbon and analytically isolating the different pools. We are conducting studies on reference materials and atmospheric aerosol samples to develop a method to measure stable and radio- carbon isotopes on the labile and refractory carbon. We are using a flow-through combustion system that allows us to combust, collect and measure the isotopic content of the gases produced at all stages of heating/oxidizing. We compare our results to those measured using a chemothermal oxidation method (CTO) (Gustafsson et al., 2001). In this method, refractory carbon is defined as the material remaining after pre- combusting a sample at 375°C in the presence of oxygen for 24 hours. The reference materials are diesel soot, apple leaves and a hybrid of the two (DiesApple), all from NIST. These provide carbon with two well-defined fractions -- the soot provides refractory carbon that is radiocarbon dead and the apple leaves provide organic carbon that is radiocarbon modern. Radiocarbon results from DiesApple indicate that the "refractory" carbon defined by the CTO method is actually a mixture of old and modern carbon that contains over 25% modern carbon. This suggests that charred material formed from the apples leaves during the pre-combustion step is contributing to the fraction we identify as refractory carbon. We are studying this by analyzing the individual materials and the mixture using our flow-through system. First results with this system indicate that the refractory fraction trapped from the DiesApple contains much less modern carbon than the CTO method, less than 7%. We will present detailed concentration and isotopic results of the generation of carbon dioxide during programmed combustion of each of the reference materials. We studied the radiocarbon content of both the total carbon (TC) and refractory carbon in the fine particulate matter (PM

  12. Comparison of methods for online measurement of diesel particulate matter.

    PubMed

    Liu, Zhun; Swanson, Jacob; Kittelson, David B; Pui, David Y H

    2012-06-01

    Gravimetric analysis is the regulatory method for diesel particulate mass measurement. Because of issues such as adsorption/volatilization artifacts, it faces obstacles in measuring ultra low level emissions from modern diesel engines. Alternative methods of suspended particle mass measurement have been developed that show improvements in time resolution, sensitivity, and accuracy. Three size-resolved methods were considered here. Two methods rely on converting number size distributions obtained using a scanning mobility particle sizer (SMPS). Conversion techniques were based on effective density measurements and the Lall-Friedlander aggregate model. The third method employs the Universal Nanoparticle Analyzer (UNPA) to measure the aggregate size distribution from which mass is calculated. Results were compared with mass concentrations obtained using gravimetric analysis. The effective density conversion resulted in mass concentrations that were highly correlated (R(2) >0.99) with filter mass. The ratios to filter mass concentration were found to be 0.99 ± 0.04, 0.45 ± 0.03, and 0.45 ± 0.19 for the effective density conversion, the Lall-Friedlander conversion, and the UNPA, respectively, for a wide range of engine operating conditions. In addition, the diesel aerosol mass distributions measured by the online techniques are in agreement to within 15-20% with respect to the mass median diameter, while discrepancies were observed in the mass concentration.

  13. Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment.

    PubMed

    Lin, Lin; Lee, Milton L; Eatough, Delbert J

    2010-01-01

    Fine particulate matter is believed to be more toxic than coarse particles and to exacerbate health problems such as respiratory and cardiopulmonary diseases. Specific organic compounds within atmospheric fine particulate material can be used to differentiate specific inputs from various emissions and thus is helpful in identifying the major urban air pollution sources that contribute to these health problems. Particular marker compounds that carry signature information about different emission sources (i.e., gasoline or diesel motor vehicles, wood smoke, meat cooking, vegetative detritus, and cigarette smoke) are reviewed. Aerosol organic types (e.g., from mass spectrometry data, which can also help in elucidation of carbonaceous material sources) are also discussed. Apportionment of the primary source contributions and atmospheric processes contributing to fine particulate matter and fine particulate organic material concentrations are outlined. This review provides an overview of the latest developments in chemical characterization approaches for identification and quantification of compounds in complex organic mixtures associated with fine atmospheric particles and their use in chemical mass balance (CMB) and positive matrix factorization (PMF) source apportionment models.

  14. Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment.

    PubMed

    Lin, Lin; Lee, Milton L; Eatough, Delbert J

    2010-01-01

    Fine particulate matter is believed to be more toxic than coarse particles and to exacerbate health problems such as respiratory and cardiopulmonary diseases. Specific organic compounds within atmospheric fine particulate material can be used to differentiate specific inputs from various emissions and thus is helpful in identifying the major urban air pollution sources that contribute to these health problems. Particular marker compounds that carry signature information about different emission sources (i.e., gasoline or diesel motor vehicles, wood smoke, meat cooking, vegetative detritus, and cigarette smoke) are reviewed. Aerosol organic types (e.g., from mass spectrometry data, which can also help in elucidation of carbonaceous material sources) are also discussed. Apportionment of the primary source contributions and atmospheric processes contributing to fine particulate matter and fine particulate organic material concentrations are outlined. This review provides an overview of the latest developments in chemical characterization approaches for identification and quantification of compounds in complex organic mixtures associated with fine atmospheric particles and their use in chemical mass balance (CMB) and positive matrix factorization (PMF) source apportionment models. PMID:20102032

  15. Exposure to particulate matter in India: A synthesis of findings and future directions.

    PubMed

    Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E

    2016-05-01

    Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail. PMID:26974362

  16. Exposure to particulate matter in India: A synthesis of findings and future directions.

    PubMed

    Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E

    2016-05-01

    Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail.

  17. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    SciTech Connect

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  18. Seasonal composition of remote and urban fine particulate matter in the United States

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Schichtel, B. A.; Pitchford, M.; Malm, W. C.; Frank, N. H.

    2012-03-01

    Speciated aerosol composition data from the rural Interagency Monitoring for Protected Visual Environments (IMPROVE) network and the Environmental Protection Agency's urban/suburban Chemical Speciation Network (CSN) were combined to evaluate and contrast the PM2.5 composition and its seasonal patterns at urban and rural locations throughout the United States. We examined the 2005-2008 monthly and annual mean mass concentrations of PM2.5 ammonium sulfate (AS), ammonium nitrate (AN), particulate organic matter (POM), light-absorbing carbon (LAC), mineral soil, and sea salt from 168 rural and 176 urban sites. Urban and rural AS concentrations and seasonality were similar, and both were substantially higher in the eastern United States. Urban POM and LAC concentrations were higher than rural concentrations and were associated with very different seasonality depending on location. The highest urban and rural POM and LAC concentrations occurred in the southeastern and northwestern United States. Wintertime peaks in AN were common for both urban and rural sites, but urban concentrations were several times higher, and both were highest in California and the Midwest. Fine soil concentrations were highest in the Southwest, and similar regional patterns and seasonality in urban and rural concentrations suggested impacts from long-range transport. Contributions from sea salt to the PM2.5 budget were non-negligible only at coastal sites. This analysis revealed spatial and seasonal variability in urban and rural aerosol concentrations on a continental scale and provided insights into their sources, processes, and lifetimes.

  19. Chemical composition of particulate matter in Spain: modelling evaluation of the CALIOPE system for 2004

    NASA Astrophysics Data System (ADS)

    Pay, María. Teresa; Piot, Matthias; Jorba, Oriol; Basart, Sara; Gassó, Santiago; Dabdub, Donald; Jiménez-Guerrero, Pedro; Querol, Xavier; Pandolfi, Marco; María Baldasano, José

    2010-05-01

    In the frame of the CALIOPE project, a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/BSC-DREAM8b, has been developed and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model. The BSC-DREAM8b model simulates long-range transport of mineral dust over the domains under study. The HERMES model system, using a bottom-up approach, was adopted to estimate emissions for the Iberian Peninsula simulation at 4km x 4km horizontal resolution, every hour. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). Model simulations are compared with ground-based measurements from the EMEP and Spanish air quality networks. The speciation of PM10 and PM2.5 from 8 stations of the CSIC-IJA network is analyzed to evaluate the model chemical composition of particulate matter. Results show that model predictions for relevant gas phase species, such as ozone, are in very good agreement (less than 25% gross error) with observations. Concerning the chemical composition of particulate matter, PM2.5 nitrate and sulphate model predictions are better simulated than for other species; good agreement between model and observations is found throughout the year (correlations around 0.6). Results also show that carbonaceous aerosol concentrations are substantially under-predicted during the entire year, most likely due to a lack of some secondary organic aerosol formation pathways in the model. Good correlation for coarse Na+ is found due to its inertness. Concentrations of fine Na+ are slightly under-predicted due to

  20. Development of methods for the speciation of metals in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Majestic, Brian J.

    2007-12-01

    This study focuses on advancing methods to measure and speciate trace-elements in atmospheric particulate matter (PM) to support human exposure and health studies. Methods were developed to measure Fe(II) and Fe(III) in PM samples using samplers collecting daily average particulate matter samples and personal exposure samples. Low-cost wet-chemical methods were also developed to measure the oxidation state of leachable iron, chromium and manganese present in low-volume PM samples. In addition, a study was conducted to determine if metals collected by different personal exposure samplers currently used in exposure and health studies were comparable. Results from the intercomparison study between co-located personal and fixed-site ambient samplers showed that different personal sampler designs display biases that are largest for metals predominating in the super-micron fraction. Using one consistent personal exposure sampler, a pilot study was conducted to examine trace-metal concentrations in personal exposure samples from individuals residing in an assisted-living home. These results were compared to ambient outdoor and fixed-indoor concentrations, and generally, outdoor > indoor > personal exposure concentrations. The pilot study demonstrated that adequate tools exist to measure trace-element exposures under real-world conditions. Using the methods developed in the study, labile Fe(II) and Fe(III) as well as total soluble manganese and soluble oxidized manganese from atmospheric PM were routinely detected in ambient and personal exposure samples. Samples extracted in a variety of environmentally and biologically relevant fluids showed that leachable iron and manganese strongly depends on the extractant. Atmospheric samples from a residential location in Toronto (which uses the fuel additive, MMT) showed that a significant fraction of oxidized labile manganese is present in the PM2.5 fraction, in contrast to US cities that do not use MMT. Both the wet-chemical and

  1. CHARACTERIZATION OF PARTICULATE MATTER FROM PHOENIX, ARIZONA, USING RAY FLUORESCENCE AND COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    Numerous epidemiological studies have found associations between airborne particulate matter measured at community monitors and increased mortality and morbidity. Chemical and physical characteristics of particulate matter (e.g., elemental composition, size) and source identifi...

  2. Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg; Peckham, S. E.

    2006-11-11

    A new fully-coupled meteorology-chemistry-aerosol model is used to simulate the urban to regional scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a five day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still under-estimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  3. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  4. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  5. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  6. Sources of organic pollution in particulate matter and soil of Silesian Agglomeration (Poland): evidence from geochemical markers.

    PubMed

    Fabiańska, Monika J; Kozielska, Barbara; Konieczyński, Jan; Kowalski, Adam

    2016-06-01

    The exact input of particular sources to polycyclic aromatic hydrocarbons (PAHs) concentrations in urban and industrial agglomerations is still not well recognized. The major breakthrough is possible using geochemical markers. In the air aerosol and soil samples from areas located in the direct influence of industry/traffic in Silesian Agglomeration (Poland), PAHs and other organic compounds were analyzed, including geochemical markers (biomarkers) and polar compounds from fossil fuels and biomass. Gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS) were applied to investigate the composition of particulate matter and soil extracts. The results suggest that the predominant source of PAHs is fossil fuel. The presence and distribution of steranes, pentacyclic triterpenoids (i.e., hopanes and moretanes) and alkyl PAHs point to traffic emissions and fossil fuel combustion, mainly bituminous coal for power and heat purposes, as the main source of PAHs in the region. Moreover, the presence of fossil fuel biomarker in particulate matter and soil extracts from a rural site, previously considered to be free of organic pollution, requires a cautious interpretation for PAHs results. Apart from the fossil fuel, also other sources of contamination were identified in particulate matter extracts by their markers: phenols and levoglucosan for biomass and diisopropylnaphthalenes for printing materials combustion. The absence of polar biomass combustion indicators in soil extracts might be related to their higher reactivity. PMID:26362678

  7. Photochemical production of singlet oxygen from particulate organic matter.

    PubMed

    Appiani, Elena; McNeill, Kristopher

    2015-03-17

    Dissolved organic matter is established as one of the most relevant photosensitizers in aquatic environments, producing singlet oxygen (1O2) alongside other photochemically produced reactive intermediates. While the production of 1O2 from DOM has been well studied, the relative importance of particulate organic matter (POM) to the overall 1O2 production is less well understood. POM is known to play an important role in pollutant fate through the sorption and transport of hydrophobic pollutants. If POM is directly involved in 1O2 production, sorbed molecules would be expected to undergo enhanced photodegradation. In this work, synthetic POM was prepared by coating silica particles with commercial humic acid. The photochemical behavior of these POM samples was compared to dissolved commercial humic acids (DOM). Suspended natural sediment was also studied to test the environmental relevance of the synthetic POM model. Synthetic POM particles appear to simulate well the 1O2-production of suspended sediment. The 1O2 concentrations experienced by POM-sorbed probe molecules was up to 30% higher than experienced by DOM-sorbed ones, even though the aqueous concentration of 1O2 in irradiated POM suspensions was much lower than the analogous DOM solutions. These results were interpreted with a reaction-diffusion model, which suggested that the production rate of 1O2 by POM is lower than DOM, but the loss of 1O2 from the POM-phase is also lower than DOM. Based on the experimental results of this study, calculations were conducted to estimate the impact of removing POM on 1O2-mediated processes. These calculations indicate that compounds with a log Koc value near 4 will be most affected by removal of POM and that the magnitude of the effect is proportional to the fraction of the total organic matter represented by POM. This study demonstrates that particles can play an important role in the degradation of organic compounds via aquatic photochemistry.

  8. Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China.

    PubMed

    Liang, Linlin; Engling, Guenter; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui; Liu, Xuyan; He, Kebin

    2016-05-01

    Saccharides are important constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of saccharides in aerosols in Beijing, China, saccharide composition was measured in ambient PM samples collected at an urban site in Beijing. The highest concentrations of total saccharides in Beijing were observed in autumn, while an episode with abnormal high total saccharide levels was observed from 15 to 23 June, 2011, due to extensive agricultural residue burning in northern China during the wheat harvest season. Compared to the other two categories of saccharides, sugars and sugar alcohols, anhydrosugars were the predominant saccharide group, indicating that biomass burning contributions to Beijing urban aerosol were significant. Ambient sugar and sugar alcohol levels in summer and autumn were higher than those in spring and winter, while they were more abundant in PM2.5 during winter time. Levoglucosan was the most abundant saccharide compound in both PM2.5 and PM10, the annual contributions of which to total measured saccharides in PM2.5 and PM10 were 61.5% and 54.1%, respectively. To further investigate the sources of the saccharides in ambient aerosols in Beijing, the PM10 datasets were subjected to positive matrix factorization (PMF) analysis. Based on the objective function to be minimized and the interpretable factors identified by PMF, six factors appeared to be optimal as to the probable origin of saccharides in the atmosphere in Beijing, including biomass burning, soil or dust, isoprene SOA and the direct release of airborne fungal spores and pollen. PMID:26921589

  9. Airborne Particulate Matter Inhibits Alveolar Fluid Reabsorption in Mice via Oxidant Generation

    PubMed Central

    Mutlu, Gökhan M.; Snyder, Colleen; Bellmeyer, Amy; Wang, Helena; Hawkins, Keenan; Soberanes, Saul; Welch, Lynn C.; Ghio, Andrew J.; Chandel, Navdeep S.; Kamp, David; Sznajder, Jacob I.; Budinger, G. R. Scott

    2006-01-01

    Ambient particulate matter is increasingly recognized as a significant contributor to human cardiopulmonary morbidity and mortality in the United States and worldwide. We sought to determine whether exposure to ambient particulate matter would alter alveolar fluid clearance in mice. Mice were exposed to a range of doses of a well-characterized particulate matter collected from the ambient air in Düsseldorf, Germany through a single intratracheal instillation, and alveolar fluid clearance and measurements of lung injury were made. Exposure to even very low doses of particulate matter (10 μg) resulted in a significant reduction in alveolar fluid clearance that was maximal 24 h after the exposure, with complete resolution after 7 d. This was paralleled by a decrease in lung Na,K-ATPase activity. To investigate the mechanism of this effect, we measured plasma membrane Na,K-ATPase abundance in A549 cells and Na,K-ATPase activity in primary rat alveolar type II cells after exposure to particulate matter in the presence or abscence of the combined superoxide dismutase and catalase mimetic EUK-134 (5 μM). Membrane but not total protein abundance of the Na,K-ATPase was decreased after exposure to particulate matter, as was Na,K-ATPase activity. This decrease was prevented by the combined superoxide dismutase/catalase mimetic EUK-134. The intratracheal instillation of particulate matter results in alveolar epithelial injury and decreased alveolar fluid clearance, conceivably due to downregulation of the Na,K-ATPase. PMID:16439801

  10. Noise Pollution and How it Can Indirectly Affect the Amounts of Particulate Matter in the Environment

    NASA Astrophysics Data System (ADS)

    Swamy, S.; Power, J.; Pham, D.; Preston, K. B.; Iqbal, A.

    2007-12-01

    Human and animal activity that occurs on gravel and dirt roads tends to contribute to high levels of particulate matter in the atmosphere. Birds molt their feathers, automobiles emit unused residues, and humans and animals stir up debris on the ground. Not only do these activities generate particulate matter, but they also generate noise. The aim of our study was to determine if a direct correlation exists between the amount of particulate matter and the noise levels in select areas within the Lake Merritt Park region of downtown Oakland, California. In addition, our research was aimed at determining if the level of noise at various locations conforms to City of Oakland regulations. Over a four-week period we measured noise levels and particulate matter concentrations at 27 different sites within the Park region. Preliminary results indicate that at a construction site and a residential area near the lake a direct correlation between our two variables existed; high noise level accompanied high particulate matter while low noise level accompanied low particulate matter, respectively. However, at the majority of the areas around the lake either indirect or no correlation was observed. Based on our results thus far, we conclude that noise levels are not indicative of particulate matter levels and that noise levels around Lake Merritt do conform to the city's regulations.

  11. Fine Particulate Matter Constituents Associated with Cardiovascular Hospitalizations and Mortality in New York City

    PubMed Central

    Ito, Kazuhiko; Mathes, Robert; Ross, Zev; Nádas, Arthur; Thurston, George; Matte, Thomas

    2011-01-01

    Background Recent time-series studies have indicated that both cardiovascular disease (CVD)mortality and hospitalizations are associated with particulate matter (PM). However, seasonal patterns of PM associations with these outcomes are not consistent, and PM components responsible for these associations have not been determined. We investigated this issue in New York City (NYC), where PM originates from regional and local combustion sources. Objective In this study, we examined the role of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) and its key chemical components on both CVD hospitalizations and on mortality in NYC. Methods We analyzed daily deaths and emergency hospitalizations for CVDs among persons ≥ 40 years of age for associations with PM2.5, its chemical components, nitrogen dioxide (NO2), carbon monoxide, and sulfur dioxide for the years 2000–2006 using a Poisson time-series model adjusting for temporal and seasonal trends, temperature effects, and day of the week. We estimated excess risks per interquartile-range increases at lags 0 through 3 days for warm (April through September) and cold (October through March) seasons. Results The CVD mortality series exhibit strong seasonal trends, whereas the CVD hospitalization series show a strong day-of-week pattern. These outcome series were not correlated with each other but were individually associated with a number of PM2.5 chemical components from regional and local sources, each with different seasonal patterns and lags. Coal-combustion–related components (e.g., selenium) were associated with CVD mortality in summer and CVD hospitalizations in winter, whereas elemental carbon and NO2 showed associations with these outcomes in both seasons. Conclusion Local combustion sources, including traffic and residual oil burning, may play a year-round role in the associations between air pollution and CVD outcomes, but transported aerosols may explain the seasonal variation in associations

  12. Chemical characteristics of fine particulate matters measured during severe winter haze events in Ulaanbaatar, Mongolia.

    PubMed

    Batmunkh, Tsatsral; Kim, Young J; Jung, Jin Sang; Park, Kihong; Tumendemberel, Bulgan

    2013-06-01

    In order to investigate the chemical characteristics of atmospheric aerosol measured during a severe winter haze event, 12-hr PM2.5 (particulate matter with an aerodynamic diameter < or = 2.5 microm) samples were collected at an urban site in Ulaanbaatar Mongolia, from January 9 to February 17, 2008. On average, 12-hr PM2.5 mass concentration was 105.1 +/- 34.9 microg/m3. Low PM2.5 mass concentrations were measured when low pressure developed over central Mongolia. The 12-hr average organic mass by carbon (OMC) varied from 6.4 to 132.3 microg/m3, with a mean of 54.9 +/- 25.4 microg/m3, whereas elemental carbon (EC) concentration ranged from 0.1 to 3.6 microgC/m3, with a mean of 1.5 +/- 0.8 microgC/m3. Ammonium sulfate was found to be the most abundant water-soluble ionic component in Ulaanbaatar during the sampling period, with an average concentration of 11.3 +/- 5.0 microg/m3. In order to characterize the effect of air mass pathway on fine particulate matter characteristics, 5-day back-trajectory analysis was conducted, using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The haze level was classified into three categories, based on the 5-day air mass back trajectories, as Stagnant (ST), Continental (CT), and Low Pressure (LP) cases. PM2.5 mass concentration during the Stagnant condition was approximately 2.5 times higher than that during the Low Pressure condition, mainly due to increased pollutant concentration of OMC and secondary ammonium sulfate.

  13. Particulate matter mass and chemical component concentrations over four Chinese cities along the western Pacific coast.

    PubMed

    Xu, Hong; Bi, Xiao-Hui; Zheng, Wei-Wei; Wu, Jian-Hui; Feng, Yin-Chang

    2015-02-01

    China has witnessed rapid economic growth in the past three decades, especially in coastal areas. Particulate matter (PM) pollution is becoming increasingly serious in China's cities along the western Pacific coast with the rapid development of China's society and economy. This study analyzed PM (PM10 and PM2.5) in terms of their mass and chemical composition in four coastal Chinese cities. The goal was to study the spatial variation and characteristics of PM pollution in sites under different levels of economic development and in diverse natural environments. A distinct trend for concentrations of PM and related chemical species was observed and increased from south to north in Haikou, Ningbo, Qingdao, and Tianjin. Secondary inorganic aerosols, crustal materials, and organic matter dominated the composition of both PM10 and PM2.5. Crustal materials were the most abundant species in the northern coastal areas because these areas have less vegetation cover and lower humidity than southern coastal areas. The presence of high SO4 (2-)/nitrate (NO3 (-)) concentrations indicated that the burning of coals gives significant contributions to PM10 and PM2.5. The differences observed in the characteristics of PM pollution in these coastal cities are probably caused by different levels of industrial and urban development.

  14. A study of the origin, nature, and behavior of particulate matter and metallic atoms in the mesosphere, lower thermosphere, and at the mesopause. [using lidar data

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1973-01-01

    In a study of particulate matter and metallic atoms in the vicinity of the mesopause, three areas have received the most effort. These areas are: the significance of cometary dust influxes to the earth's atmosphere; the relation of nightglows to atmospheric motions and aerosols; and the feasibility of using an airborne resonant scatter lidar to study polar noctilucent clouds, the sodium layer, and fireball dust.

  15. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    EPA Science Inventory

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  16. Global Air Quality Predictions of Particulate Matter in the Middle East and Sensitivity to Future Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Couzo, E. A.; Holmes, C. D.; Paltsev, S.; Alawad, A.; Selin, N. E.

    2014-12-01

    We examine the influence of natural and anthropogenic drivers of future PM in the Middle East region using two future emissions scenarios to drive the GEOS-Chem atmospheric chemistry model. The Arabian Peninsula is a major source of windblown dust as well as anthropogenic aerosols. Future emissions - driven jointly and individually by climate change and anthropogenic emissions from this rapidly growing region - will play an important role in both climate forcing and human health impacts from particulate matter. We use two scenarios to compare their climate and air quality implications. First, we use the Intergovernmental Panel on Climate Change Representative Concentration Pathways (RCPs) for four radiative forcing cases. Second, we develop a consistent future greenhouse gas and conventional pollutant emission inventory using the MIT Emissions Prediction and Policy Analysis (EPPA) model, which is a general equilibrium model of the global economy that calculates how economic growth and anthropogenic emissions change as a result of policies and other stressors. With EPPA, we examine three emissions cases, a business-as-usual case and two stabilization cases leading to anthropogenic radiative forcings of 3.7 W/m2 and 4.5 W/m2. We use these scenarios to drive GEOS-Chem for present and future climate, assessing changes in chemical composition of aerosol and drivers, both natural and anthropogenic, out to 2050. We find that projected anthropogenic emissions are strong determinants of future particulate matter air quality in the Middle East region.

  17. Organic matter of the troposphere—IV. Lipids in harmattan aerosols of nigeria

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Cox, R. E.; Standley, L. J.

    Harmattan aerosols were sampled during the 1979 and 1980 seasons in urban, rural and remote areas of Nigeria, in order to characterize sources of the continental carbonaceous particulate matter. High volume air samples (400-3600 m 3) were obtained. The sample filters were extracted and the soluble lipids were separated into functional group fractions for molecular analyses. These lipids were composed primarily of vascular plant wax and minor amounts of microbial detritus, with a significant anthropogenic component from petroleum products and burning superimposed in samples under urban influence. Plant wax was characterized by the homologous series of mainly n-alkanes and n-alkanols, with minor amounts of n-alkanoic acids, n-alkan-2-ones and biomarkers, all in the higher molecular weight range (> C 20). Alcohol fractions contained characteristic phytosterols (C 27-C 29) and triterpenols (C 30 > C 29), which are the biomarkers for vegetation sources. The plant wax signatures of the aerosols in northern Nigeria could be correlated with two dominant geographic source regions (e.g. northern Nigeria and Sahara). A microbial lipid component was evident primarily in the hydrocarbon (as unresolved complex mixture, UCM) and fatty acid fractions (< C 20). Its origin was inferred to be from erosion of lacustrine detritus and from viable microbiota in the ambient particles. Petroleum residues and traces of pyrogenic polynuclear aromatic hydrocarbons (PAH) were present in HC fractions of Harmattan aerosols under some urban influence. These anthropogenic components were comprised of n-alkanes (matter source determinations. This permitted the assignment of Harmattan aerosol source regions and the conclusion that the urban components are rapidly diluted

  18. Concentrations of particulate matter and arsenic in Bor (Serbia).

    PubMed

    Serbula, S M; Antonijević, M M; Milosević, N M; Milić, S M; Ilić, A A

    2010-09-15

    Measurements of air quality in the territory of Bor (Serbia) were performed at the sampling sites in the urban-industrial, suburban and rural area during the 2003-2008 period. A high level of arsenic (As) concentration in suspended particulate matter (PM) is of a predominantly industrial origin. The major source of pollution is the copper smelter which is situated in the close vicinity of the urban area of Bor. The ambient level of PM and As is influenced by meteorological parameters as well as the remoteness from the copper smelter. Continual exceedances of the annual limit value (LV) for As (6 ng m(-3)) were recorded at the sampling sites in the urban-industrial and suburban area. Maximum annual As concentrations were recorded at Town Park (46.5 ng m(-3)) in 2004, Institute (95.4 ng m(-3)) in 2004 and Jugopetrol (74.5 ng m(-3)) in 2003. In the past 15 years not a single mean annual As concentration recorded at the sampling sites Town Park, Institute and Jugopetrol has been within the LV. When the average annual and maximum monthly As concentrations are compared, it can be concluded that the level of pollution is higher in the urban-industrial and suburban areas than in the rural area. PMID:20510514

  19. Particulate matter and heart disease: Evidence from epidemiological studies

    SciTech Connect

    Peters, Annette . E-mail: peters@gsf.de

    2005-09-01

    The association between particulate matter and heart disease was noted in the mid-nineties of last century when the epidemiological evidence for an association between air pollution and hospital admissions due to cardiovascular disease accumulated and first hypotheses regarding the pathomechanism were formulated. Nowadays, epidemiological studies have demonstrated coherent associations between daily changes in concentrations of ambient particles and cardiovascular disease mortality, hospital admission, disease exacerbation in patients with cardiovascular disease and early physiological responses in healthy individuals consistent with a risk factor profile deterioration. In addition, evidence was found that annual average PM{sub 2.5} exposures are associated with increased risks for mortality caused by ischemic heart disease and dysrhythmia. Thereby, evidence is suggesting not only a short-term exacerbation of cardiovascular disease by ambient particle concentrations but also a potential role of particles in defining patients' vulnerability to acute coronary events. While this concept is consistent with the current understanding of the factors defining patients' vulnerability, the mechanisms and the time-scales on which the particle-induced vulnerability might operate are unknown.

  20. Occurrence of polychlorinated terphenyls (PCTs) in indoor particulate matter.

    PubMed Central

    Seidel, U; Schweizer, E; Schweinsberg, F; Wodarz, R; Rettenmeier, A W

    1996-01-01

    In the course of a routine investigation concerned with polychlorinated biphenyl (PCB) contamination of dust collected in classrooms of a junior high school, a group of electron capture detector (ECD)-sensitive compounds with high boiling points were found in addition to PCBs. Using gas chromatographic-mass spectrometric techniques, these compounds were identified as polychlorinated terphenyls (PCTs). Additional measurements indicated that the PCTs were present only in particulate matter collected from the tops of fluorescent light frames but not in air samples obtained concomitantly in the classrooms. Attempts to identify the PCT emission source were unsuccessful. A survey of the literature revealed that PCTs are ubiquitously distributed environmental contaminants, although no data on their indoor occurrence have been reported to date. In view of the toxic effects of PCTs, which seem to be as important as those of PCBs, further attention should be given to the possible presence of PCTs in indoor environments. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:8959406