Science.gov

Sample records for aerosol physical characteristics

  1. Spatial characteristics of aerosol physical properties over the northeastern parts of peninsular India

    NASA Astrophysics Data System (ADS)

    Niranjan, K.; Melleswara Rao, B.; Brahmanandam, P. S.; Madhavan, B. L.; Sreekanth, V.; Krishna Moorthy, K.

    2005-11-01

    Measurements on aerosol spectral optical depths and near surface mass-size distributions made at several locations in the states of Andhra Pradesh, Orissa and Chattisgarh, constituting the northeastern part of the peninsular India during the ISRO-GBP land campaign-I show significant regional variations in aerosol physical properties. Higher spectral optical depths were observed in the coastal regions and over southern latitudes compared to interior continental regions and northern latitudes. The optical depths, size index "α" and the near surface aerosol mass concentrations indicate a relative abundance of nucleation mode aerosols in the northern latitudes, in contrast to the dominance of the accumulation mode aerosols at the eastern coastal and southern latitudes. The airmass pathways derived from the back trajectory analysis indicate that the higher aerosol population in the accumulation mode, and consequently the higher optical depths in the southern locations, could be due to the transport of aerosol from the polluted north Indian regions via the oceanic region over the Bay of Bengal, where significant particle growth is expected, increasing the population of accumulation mode aerosols over these regions.

  2. Climatological Aspects of Aerosol Physical Characteristics in Tunisia Deduced from Sun Photometric Measurements

    PubMed Central

    Chaâbane, Mabrouk; Azri, Chafai; Medhioub, Khaled

    2012-01-01

    Atmospheric and climatic data measured at Thala site (Tunisia) for a long-time period (1977–2001) are used to analyse the monthly, seasonal, and annual variations of the aerosol optical depth at 1 μm wavelength. We have shown that aerosol and microphysical properties and the dominating aerosol types depend on seasons. A comparison of the seasonal cycle of aerosol optical characteristics at Thala site showed that the contribution of long-range transported particles is expected to be larger in summer as a consequence of the weather stability typical of this season. Also, the winter decrease in atmospheric turbidity may result from increases in relative humidity and decreases in temperature, leading to increased particle size and mass and increased fall and deposition velocities. The spring and autumn weather patterns usually carry fine dust and sand particles for the desert area to Thala region. The annual behaviour of the aerosol optical depth recorded a period of stead increase started in 1986 until 2001. Trends in atmospheric turbidity after 1988 could be explained other ways by the contribution of the eruption of Mount Pinatubo in 1991 and by local or regional changes in climate or in aerosol emissions. PMID:22629150

  3. Aerosol source plume physical characteristics from space-based multiangle imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph A.; Li, W.-H.; Moroney, Catherine; Diner, David J.; Martonchik, John V.; Fishbein, Evan

    2007-06-01

    Models that assess aerosol effects on regional air quality and global climate parameterize aerosol sources in terms of amount, type, and injection height. The multiangle imaging spectroradiometer (MISR) aboard NASA's Terra satellite retrieves total column aerosol optical thickness (AOT), and aerosol type over cloud-free land and water. A stereo-matching algorithm automatically retrieves reflecting-layer altitude wherever clouds or aerosol plumes have discernable spatial contrast, with about 500-m accuracy, at 1.1-km horizontal resolution. Near-source biomass burning smoke, volcanic effluent, and desert dust plumes are observed routinely, providing information about aerosol amount, particle type, and injection height useful for modeling applications. Compared to background aerosols, the plumes sampled have higher AOT, contain particles having expected differences in Angstrom exponent, size, single-scattering albedo, and for volcanic plume and dust cloud cases, particle shape. As basic thermodynamics predicts, thin aerosol plumes lifted only by regional winds or less intense heat sources are confined to the boundary layer. However, when sources have sufficient buoyancy, the representative plumes studied tend to concentrate within discrete, high-elevation layers of local stability; the aerosol is not uniformly distributed up to a peak altitude, as is sometimes assumed in modeling. MISR-derived plume heights, along with meteorological profile data from other sources, make it possible to relate radiant energy flux observed by the moderate resolution imaging spectroradiometer (MODIS), also aboard the Terra spacecraft, to convective heat flux that plays a major role in buoyant plume dynamics. A MISR climatology of plume behavior based on these results is being developed.

  4. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  5. Physical characterization of incense aerosols.

    PubMed

    Mannix, R C; Nguyen, K P; Tan, E W; Ho, E E; Phalen, R F

    1996-12-20

    Experiments were performed to study the physical characteristics of smoke aerosols generated by burning three types of stick incense in a 4 m3 clean room. Sidestream cigarette smoke was also examined under the same conditions to provide a comparison. Among the parameters measured were (a) masses of aerosol, carbon monoxide and nitrogen oxides generated by burning the incense or cigarettes, (b) rates of decay of the particles from the air, and (c) estimates of count median particle size during a 7 h period post-burning. There was variability among the types of incense studied with respect to many of the parameters. Also, as a general trend, the greater the initial particulate mass concentration, the more rapid the rate of decay of the smoke. In relation to the quantity of particulate generated, cigarette smoke was found to produce proportionally larger quantities of carbon monoxide and nitrogen oxides than did incense. Due to the fact that burning incense was found to generate large quantities of particulate (an average of greater than 45 mg/g burned, as opposed to about 10 mg/g burned for the cigarettes), it is likely, in cases in which incense is habitually burned in indoor settings, that such a practice would produce substantial airborne particulate concentrations.

  6. Variability in aerosol optical and physical characteristics over the Bay of Bengal and the Arabian Sea deduced from Ångström exponents

    NASA Astrophysics Data System (ADS)

    Kedia, Sumita; Ramachandran, S.

    2009-07-01

    Spectral distribution of aerosol optical depths (AODs) measured in the 0.4-0.875 μm wavelength region using a Sun photometer over Bay of Bengal and Arabian Sea during the 2006 premonsoon season are analyzed to obtain more interesting information on the physical and optical characteristics of aerosols. Examination of spectral AODs measured over the Bay of Bengal and the Arabian Sea by deriving the Ångström exponent (α) for the entire spectral range (0.4-0.875 μm), α for different spectral ranges, and second derivative (α') showed that the aerosol size distribution is of mixed type or bimodal with contributions from fine and coarse modes. The α-AOD relationships in short (0.4-0.5 μm), long (0.65-0.9 μm), and full (0.4-0.9 μm) spectral ranges determined for various aerosol models (urban, maritime clean, maritime polluted, and desert) suggest that the α-AOD relationship can vary depending on whether the size distribution is unimodal, mixed type, or bimodal, similar to the results obtained for measured AOD spectra. Significant curvature in the ln AOD versus ln λ is observed which causes spectral variation in α derived in different spectral ranges. Over the Bay of Bengal for 76% of AOD spectra, α2 - α1 is >1, suggesting the presence of fine-mode aerosols from a wide variety of fine-mode fractions or a mixture of modes, while over the Arabian Sea, α2 - α1 is <1 for 84% of AOD spectra, clearly indicating the dominance of coarse-mode aerosols. These characteristics can be used in modeling the regional and seasonal aerosol radiative effects and in remote sensing.

  7. Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: physical and chemical properties.

    PubMed

    Bisht, D S; Srivastava, A K; Pipal, A S; Srivastava, M K; Pandey, A K; Tiwari, S; Pandithurai, G

    2015-04-01

    To understand the boundary layer characteristics and pathways of aerosol-cloud interaction, an Integrated Ground Observational Campaign, concurrent with Cloud Aerosol Interaction and Precipitation Enhancement Experiment, was conducted by the Indian Institute of Tropical Meteorology, Pune, under Ministry of Earth Sciences at Mahabubnagar (a rural environment, which is ~100 km away from an urban city Hyderabad in Andhra Pradesh), during the period of July-November 2011. Collected samples of PM2.5 and PM10 were analyzed for water-soluble ionic species along with organic carbon (OC) and elemental carbon (EC). During study period, the average mass concentrations of PM2.5 and PM10 were about 50(±10) and 69(±14) μg m(-3), respectively, which are significantly higher than the prescribed Indian National Ambient Air Quality Standards values. The chemical species such as sum of anions and cations from measured chemical constituents were contributed to be 31.27 and 38.49% in PM2.5 and 6.35 and 5.65% to the PM10, whereas carbonaceous species contributed ~17.3 and 20.47% for OC and ~3.0 and 3.10% for EC, respectively. The average ratio of PM2.5/PM10 during study period was ~0.73(±0.2), indicating that the dominance of fine size particles. Carbonaceous analysis results showed that the average concentration of OC was 14 and 8.7 μg m(-3), while EC was 2.1 and 1.5 μg m(-3) for PM10 and PM2.5, respectively. The ratios between OC and EC were estimated, which were 6.6 and 5.7 for PM10 and PM2.5, suggesting the presence of secondary organic aerosol. Total carbonaceous aerosol accounts 23% of PM10 in which the contribution of OC is 20% and EC is 3%, while 20% of PM2.5 mass in which the contribution of OC is 17% and EC is 3%. Out of the total aerosols mass, water-soluble constituents contributed an average of 45% in PM10 and 38% in PM2.5 including about 39% anions and 6% cations in PM10, while 31% anions and 7% cations in PM2.5 aerosol mass collectively at study site. PMID

  8. Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: physical and chemical properties.

    PubMed

    Bisht, D S; Srivastava, A K; Pipal, A S; Srivastava, M K; Pandey, A K; Tiwari, S; Pandithurai, G

    2015-04-01

    To understand the boundary layer characteristics and pathways of aerosol-cloud interaction, an Integrated Ground Observational Campaign, concurrent with Cloud Aerosol Interaction and Precipitation Enhancement Experiment, was conducted by the Indian Institute of Tropical Meteorology, Pune, under Ministry of Earth Sciences at Mahabubnagar (a rural environment, which is ~100 km away from an urban city Hyderabad in Andhra Pradesh), during the period of July-November 2011. Collected samples of PM2.5 and PM10 were analyzed for water-soluble ionic species along with organic carbon (OC) and elemental carbon (EC). During study period, the average mass concentrations of PM2.5 and PM10 were about 50(±10) and 69(±14) μg m(-3), respectively, which are significantly higher than the prescribed Indian National Ambient Air Quality Standards values. The chemical species such as sum of anions and cations from measured chemical constituents were contributed to be 31.27 and 38.49% in PM2.5 and 6.35 and 5.65% to the PM10, whereas carbonaceous species contributed ~17.3 and 20.47% for OC and ~3.0 and 3.10% for EC, respectively. The average ratio of PM2.5/PM10 during study period was ~0.73(±0.2), indicating that the dominance of fine size particles. Carbonaceous analysis results showed that the average concentration of OC was 14 and 8.7 μg m(-3), while EC was 2.1 and 1.5 μg m(-3) for PM10 and PM2.5, respectively. The ratios between OC and EC were estimated, which were 6.6 and 5.7 for PM10 and PM2.5, suggesting the presence of secondary organic aerosol. Total carbonaceous aerosol accounts 23% of PM10 in which the contribution of OC is 20% and EC is 3%, while 20% of PM2.5 mass in which the contribution of OC is 17% and EC is 3%. Out of the total aerosols mass, water-soluble constituents contributed an average of 45% in PM10 and 38% in PM2.5 including about 39% anions and 6% cations in PM10, while 31% anions and 7% cations in PM2.5 aerosol mass collectively at study site.

  9. Aerosol's optical and physical characteristics and direct radiative forcing during a shamal dust storm, a case study

    NASA Astrophysics Data System (ADS)

    Saeed, T. M.; Al-Dashti, H.; Spyrou, C.

    2014-04-01

    Dust aerosols are analyzed for their optical and physical properties during an episode of a dust storm that blew over Kuwait on 26 March 2003 when the military Operation Iraqi Freedom was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March. The synoptic sequence leading to the dust storm and the associated wind fields are discussed. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26 and 27 March respectively while the Ångstrom coefficient, α870/440, dropped to -0.0234 and -0.0318. Particulate matter concentration of 10 μm diameter or less, PM10, peaked at 4800 μg m-3 during dust storm hours of 26 March. Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved aerosol optical depth (AOD) by Deep Blue algorithm and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI) exhibited high values. Latitude-longitude maps of AOD and AI were used to deduce source regions of dust transport over Kuwait. The vertical profile of the dust layer was simulated using the SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by -60 Wm-2 and surface level by -175 Wm-2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 K day-1 between 3 and 5 km, dropped to 1.5 K day-1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 K day-1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to cool the atmosphere slightly reaching a maximum rate of -0.1 K day-1 at 6 km.

  10. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  11. Implementation of the Missing Aerosol Physics into LLNL IMPACT

    SciTech Connect

    Chuang, C

    2005-02-09

    characteristics and composition of aerosols. These processes, together with other physical properties (i.e., size, density, and refractive index), determine the atmospheric lifetime of aerosols and their radiative forcing. To better represent physical properties of aerosols, we adapted an aerosol microphysics model that simulates aerosol size distribution. Work toward this goal was done in collaboration with Professor Anthony Wexler of University of California at Davis. Professor Wexler's group has developed sectional models of atmospheric aerosol dynamics that include an arbitrary number of size sections and chemical compounds or compound classes. The model, AIM (Aerosol Inorganic Model), is designed to predict the mass distribution and composition of urban and regional particulate matter (''Sun and Wexler'', 1998a, b). This model is currently incorporated into EPA's Models-3 air quality modeling platform/CMAQ (Community Multiscale Air Quality) to test its performance with previous simulations of CMAQ over the continental US.

  12. Physical and Optical/Radiative Characteristics of Aerosol and Cloud Particles in Tropical Cirrus: Importance in Radiation Balance

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm

  13. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  14. MDIs: physics of aerosol formation.

    PubMed

    Clark, A R

    1996-03-01

    The aerosol clouds produced by metered dose inhalers are very dynamic and dramatic changes in both droplet size and velocity take place within the first few centimeters of the spray plume. It is the interaction of this dynamic cloud with the geometry of the mouth and oropharynx that controls the extent of oral deposition and hence the ability of the MDI to deliver a respiratory therapeutic to the lung. Oral deposition is controlled by inertial mechanisms and in order to develop meaningful in-vitro test methods consideration must be given to both the velocity and droplet size distribution of the cloud. The correct design of the inlet ports used to convey MDI clouds in aerosol sizing instruments is therefore crucial to the development of successful in-vitro methodologies. The use of large sampling chambers or the characterization of residual aerosol droplets is unlikely to produce meaning product comparisons or satisfactory product control data.

  15. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  16. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  17. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    Ice particles are ubiquitous in the atmosphere existing as the sole constituents of glaciated cirrus clouds or coexisting with supercooled liquid droplets in mixed-phase clouds. Aerosol particles serving as heterogeneous ice nuclei for ice crystal formation impact the global radiative balance by modification of cloud radiative properties, and thus climate. Atmospheric ice formation is not a well understood process and represents great uncertainty for climate prediction. The oceans which cover the majority of the earth's surface host nearly half the total global primary productivity and contribute to the greatest aerosol production by mass. However, the effect of biological activity on particle aerosolization, particle composition, and ice nucleation is not well established. This dissertation investigates the link between marine biological activity, aerosol particle production, physical/chemical particle characteristics, and ice nucleation under controlled laboratory conditions. Dry and humidified aerosol size distributions of particles from bursting bubbles generated by plunging water jets and aeration through frits in a seawater mesocosm containing bacteria and/or phytoplankton cultures, were measured as a function of biological activity. Total particle production significantly increases primarily due to enhanced aerosolization of particles ≤100 nm in diameter attributable to the presence and growth of phytoplankton. Furthermore, hygroscopicity measurements indicate primary organic material associated with the sea salt particles, providing additional evidence for the importance of marine biological activity for ocean derived aerosol composition. Ice nucleation experiments show that these organic rich particles nucleate ice efficiently in the immersion and deposition modes, which underscores their importance in mixed-phase and cirrus cloud formation processes. In separate ice nucleation experiments employing pure cultures of Thalassiosira pseudonana, Nannochloris

  18. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    PubMed

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate. PMID:26794419

  19. Optical and physical characteristics of Bay of Bengal aerosols during W-ICARB: Spatial and vertical heterogeneities in the marine atmospheric boundary layer and in the vertical column

    NASA Astrophysics Data System (ADS)

    Moorthy, K. Krishna; Beegum, S. Naseema; Babu, S. Suresh; Smirnov, Alexander; John, Sherine Rachel; Kumar, K. Raghavendra; Narasimhulu, K.; Dutt, C. B. S.; Nair, Vijayakumar S.

    2010-12-01

    Analysis of the continuous and collocated measurements of columnar spectral aerosol optical depths (AODs) and mass size distributions in the marine atmospheric boundary layer (MABL) over the Bay of Bengal (BoB), carried out from 27 December 2008 to 29 January 2009 during the Winter Integrated Campaign for Aerosols, Gases and Radiation Budget (W-ICARB), revealed distinct regional features in the spatial variations of the aerosol properties in the MABL and column. In general, AODs were high over the northern and northwestern parts of the BoB, with pockets of very high values, within which the AODs were as high as ˜0.8 while the smallest values (˜0.1) were observed over the northeastern BoB, off the Myanmar and Bangladesh coasts. Interestingly, though, this region had the highest Angstrom wavelength exponent α (˜1.5), notwithstanding the generally high values that prevailed over the eastern as well as northern coastal regions of India. Back trajectory analyses revealed the significant role of the advected aerosols in the observed spatial pattern. Within the MABL, high accumulation mode mass concentrations (MA) prevailed over the entire BoB with the accumulation fraction ranging from 0.6 to 0.95, whereas very high fine-mode (r < 0.1 μm) aerosol mass fractions (˜0.8) were observed over the northeastern and western coastal BoB adjoining the Indian mainland (where α was high to very high). The vertical distributions, inferred from the columnar and MABL properties as well as from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations data, revealed better homogeneity in the northeastern and eastern BoB, whereas significant heterogeneity was seen over other regions.

  20. Characteristics of Chinese aerosols determined by individual-particle analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Anderson, James R.

    2001-08-01

    Tropospheric aerosols that originate in China and are transported over the North Pacific Ocean have potentially significant impacts on regional and global climate. These aerosols are complex mixtures of soil dust and anthropogenic particles from a variety of sources, including fossil fuel combustion, biomass burning, mining, smelting, and other industrial processes, plus reaction products of heterogeneous processes that affect these particles during transport. In the coastal marine atmosphere, these particles could be further mixed with marine aerosols. To provide examples of the diversity of chemical and physical properties of east Asian aerosols in the spring, individual aerosol particle samples were collected in April and May 1999 in three different environments in China: Qingdao on the coast of the East China Sea, Beijing in the northeast interior, and Mount Waliguan in remote northwestern China. Results reveal that aerosols in this region are complex and heterogeneous. In addition to significant differences in aerosol composition and size distributions among the samples, each sample contains a large number of polyphase aggregates. Many of the particles also have irregular shapes; for a number of the particle types, the irregular shapes should persist even at high ambient RH. Because composition, degree and nature of polyphase aggregation, and shape all effect aerosol radiative properties, the complex state of east Asian aerosols presents a challenge for the modeling of aerosol radiative forcing in the region.

  1. Paint spray tests for respirators: aerosol characteristics.

    PubMed

    Ackley, M W

    1980-05-01

    Liquid paint is sprayed from an atomizing nozzle to form an aerosol for testing paint spray respirators. The generated aerosol conditions are dependent upon liguid properties, spray-nozzle flow conditions and droplet evaporation. A technique was developed for controlling the aerosol concentrations reliably. Particle-size distributions of lacquer and enamel have been measured. The lacquer distribution was found to be multi-modal. Aerosol concentration dradients arise when the nozzle is not properly positioned. Filter loading resistance is significantly affected by these concentration variations. With regard to selection of standard aerosol test be improved by modifying the current NIOSH criteria to include a description of the particle-size distribution, a more precise definition of the paint and paint thinner chemical compositions, and a narrower concentration range. PMID:6932174

  2. Comparison of Observed and Modeled Regional Scale Aerosol Characteristics for ACE-ASIA and TRACE-P

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Carmichael, G.; Tang, Y.; McNaughton, C.

    2002-12-01

    During spring of 2001 we measured aerosol physical, chemical and optical properties for Asian aerosol with our similar instrument sets [University of Hawaii] from two aircraft - the NASA P3-B (TRACE-P) and NSF C-130 (ACE-ASIA). Observed aerosol characteristics included aerosol number concentration, measured with Ultrafine Condensation Nuclei counter (UCN) and CN counters; size distributions, obtained from a radial differential mobility analyzer (RDMA), a laser optical particle counter (OPC), aerodynamic particle sizer (APS) and wing mounted probes; aerosol light scattering and absorption obtained from nephelometers and a Particle Soot Absorption Photometers (PSAP). On the C-130 a dry and humidified nephelometer was operated to measure humidity dependence of aerosol light scattering, f(RH). Size distributions and number concentrations were measured with thermal aerosol volatilization to infer particles volatility and refractory properties linked to dust and soot aerosol components. Here we compare these observations to results from the University of Iowa CFORS/STEM model of related aerosol characteristics during these measurement periods. This model includes a wide variety of aerosol chemical and optical properties - black and organic carbon (BC and OC), dust, sulfate concentrations and calculated aerosol optical depth. This comparison is based not only on case studies bur also on regional scale air mass characterization. To facilitate this comparison a set of scatter "signature" plots of measured aerosol parameters like f(RH) vs. fractional submicron aerosol surface area or submicron refractory volume vs. total aerosol absorption is used. This approach generates clusters of data characteristics for different air masses. The model shows a high degree of consistency in identifying the main features of biomass burning, urban/industrial pollution, and dust events. This combination of measured and modeled aerosol parameters is shown to be valuable in quantifying the

  3. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  4. Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.

    2015-12-01

    During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.

  5. Aerosol physical properties and their impact on climate change processes

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  6. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  7. Analysis of the Impact of Major Dust Events on the Aerosols Characteristics over Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; El-Askary, Hesham; Al-Shaibani, Abdulaziz; Hariri, Mustafa M.

    2015-04-01

    The Kingdom of Saudi Arabia is a major source of atmospheric dust. Frequent dust storms blow up and significantly affect human activities, airports and citizens' health. Aerosols optical and physical characteristics are influenced by major dust storms outbreaks. In this, paper, ground based AERONET measurements are integrated with space-borne sensors, namely MODIS and CALIPSO to analyze aerosols' characteristics during March - May of 2009 where a massive dust storm blew up and caused a widespread heavy atmospheric dust load over Saudi Arabia and the same period during 2010, where less dust activities were reported. The MODIS Deep Blue AOD analysis showed similar aerosols pattern over the land, however a substantial variance in aerosol loading during March - May 2009 compared with the same period in 2010 was observed. The angstrom exponent analysis showed that the majority of aerosol measurements in 2009 and 2010 are dominated by coarse-mode particles with angstrom exponent < 0.5. Detailed analysis of aerosol optical properties shows significant influence of coarse mode particles in the enhanced aerosol loading in 2009. The volume depolarization rations (VDR) derived from CALIPSO backscattering measurements is used to find latitudinal profile of mean aerosol optical depth to indicate the type of particles and to discriminate spherical aerosols with non-spherical particles. Acknowledgement The authors would like to acknowledge the support provided by the King Abdel Aziz City for Science & Technology (KACST) for funding this work under grant No. (MT-32-76). The support provided by the Deanship of Research at King Fahd University of Petroleum & Minerals (KFUPM) is gratefully acknowledged.

  8. The conservative characteristic FD methods for atmospheric aerosol transport problems

    NASA Astrophysics Data System (ADS)

    Fu, Kai; Liang, Dong

    2016-01-01

    In the paper, we develop the new conservative characteristic finite difference methods (C-CFD) for the atmospheric aerosol transport problems. We propose the time second-order and spatial high-order conservative characteristic finite difference methods for the aerosol vertical advection-diffusion process and the two-dimensional conservative characteristic finite difference methods for aerosol horizontal transport process in the second-order splitting algorithm. Based on the characteristic form of advection-diffusion equations tracking back along the characteristic curve, we treat the integrals over the tracking cells at the previous time level by the conservative interpolations and propose to treat the diffusion terms by the average along the characteristics, where the high-order discrete fluxes are obtained by approximating the cumulative mass function and are continuous at the tracking points. The important feature is that the proposed C-CFD schemes preserve mass and have second-order accuracy in time and high-order accuracy in space. Numerical tests are taken to show the accuracy in time and space and mass conservation of our C-CFD schemes, compared with the standard CFD method. A real case of air quality modelling during the 2008 Beijing Olympics and a severe haze in North China are further simulated and analyzed by using our C-CFD algorithm. Simulated results are in good agreement with observations. The developed C-CFD algorithm can be used for efficiently solving large scale atmospheric aerosol transport problems.

  9. Quantitative determination of stratospheric aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Tingey, D. L.; Potter, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In the S192 data, a peak was apparent in the lower altitudes that was not present in the shorter wavelengths and grew with increasing wavelength beginning with band 7. For ten S192 wavelengths, the relative altitude increment was determined by knowledge of the relative position of the highest point in the scan arc. Using this scheme, results of scaling and inverting data for passes 47 and 61 were put into two models. Each result had three chart representations: (1) limb brightness measurement, (2) attenuation coefficients, and (3) ratio of the aerosol and Rayleigh coefficients to accentuate layers.

  10. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  11. A physical model of Titan's aerosols.

    PubMed

    Toon, O B; McKay, C P; Griffith, C A; Turco, R P

    1992-01-01

    Microphysical simulations of Titan's stratospheric haze show that aerosol microphysics is linked to organized dynamical processes. The detached haze layer may be a manifestation of 1 cm sec-1 vertical velocities at altitudes above 300 km. The hemispherical asymmetry in the visible albedo may be caused by 0.05 cm sec-1 vertical velocities at altitudes of 150 to 200 km, we predict contrast reversal beyond 0.6 micrometer. Tomasko and Smith's (1982, Icarus 51, 65-95) model, in which a layer of large particles above 220 km altitude is responsible for the high forward scattering observed by Rages and Pollack (1983, Icarus 55, 50-62), is a natural outcome of the detached haze layer being produced by rising motions if aerosol mass production occurs primarily below the detached haze layer. The aerosol's electrical charge is critical for the particle size and optical depth of the haze. The geometric albedo, particularly in the ultraviolet and near infrared, requires that the particle size be near 0.15 micrometer down to altitudes below 100 km, which is consistent with polarization observations (Tomasko and Smith 1982, West and Smith 1991, Icarus 90, 330-333). Above about 400 km and below about 150 km Yung et al.'s (1984, Astrophys. J. Suppl. Ser. 55, 465-506) diffusion coefficients are too small. Dynamical processes control the haze particles below about 150 km. The relatively large eddy diffusion coefficients in the lower stratosphere result in a vertically extensive region with nonuniform mixing ratios of condensable gases, so that most hydrocarbons may condense very near the tropopause rather than tens of kilometers above it. The optical depths of hydrocarbon clouds are probably less than one, requiring that abundant gases such as ethane condense on a subset of the haze particles to create relatively large, rapidly removed particles. The wavelength dependence of the optical radius is calculated for use in analyzing observations of the geometric albedo. The lower

  12. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are listed with a brief comment as to the research performed. The publications titles are: The effects of particle size and nitric acid uptake on the homogenous freezing of sulfate aerosols; Parameterization of an aerosol physical chemistry model (APCM) for the NH3/H2SO4/HNO3/H2O system at cold temperatures; and The onset, extent and duration of dehydration in the Southern Hemisphere polar vortex.

  13. Analyses of scattering characteristics of chosen anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal

    2008-10-01

    In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).

  14. Infrared Spectroscopy and Physical Chemistry of Cryogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Clapp, Mannie Lee

    1995-01-01

    Infrared spectroscopy has been used as a tool for elucidating the spectroscopic and physical properties of cryogenic aerosols. Ammonia and hydrazine aerosols have been studied using this technique under conditions designed to mimic those found in the atmosphere of Jupiter. Aerosols of water ice, nitric acid and water, and sulfuric acid and water were also studied under temperature conditions similar to those found in the Earth's stratosphere. Aerosols are generated in low temperature flow cells via homogeneous and heterogeneous nucleation of the gas phase. The technique affords information on the size, composition, number density, and in some cases shape, of the particles created. Both ammonia and hydrazine aerosols were studied over the temperature range from 180 K to 110 K. Mie theory can adequately describe the observed particle spectra in most cases. Under conditions designed to enhance particle aggregation, shape effects in the 9.4 mu m absorption band of the ammonia aerosols become apparent which can be modeled well using the Discrete Dipole Approximation. Both substances can exist as supercooled liquid droplets. Ammonia particles freeze distinctly at 155 K, while hydrazine particles freeze over the temperature range from 180 K to 170 K. Spectra of aerosols which are of mixtures of ammonia and hydrazine reveal that the inclusion of hydrazine into ammonia particles affects the spectrum of the ammonia very little, while the hydrazine absorptions are strongly perturbed. Hydrazine is not very soluble in the ammonia particles, even at very low concentrations. A new technique for determining complex refractive indices from aerosol spectra has been developed and applied to water ice and crystalline hydrazine. Comparisons with previous data indicate that the method is sound and accurate. The temperature dependence of the water ice complex refractive index has been quantified and compares well with previous results as a function of temperature. No temperature

  15. Aerosols physical properties at Hada Al Sham, western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.-P.; Hussein, T.; Aaltonen, V.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Almazroui, M.; Almehmadi, F. M.; Al Zawad, F. M.; Hakala, J.; Khoder, M.; Neitola, K.; Petäjä, T.; Shabbaj, I. I.; Hämeri, K.

    2016-06-01

    This is the first time to clearly derive the comprehensive physical properties of aerosols at a rural background area in Saudi Arabia. Aerosol measurements station was established at a rural background area in the Western Saudi Arabia to study the aerosol properties. This study gives overview of the aerosol physical properties (PM10, PM2.5, black carbon and total number concentration) over the measurement period from November 2012 to February 2015. The average PM10 and PM2.5 concentrations were 95 ± 78 μg m-3 (mean ± STD, at ambient conditions) and 33 ± 68 μg m-3 (at ambient conditions), respectively. As expected PM10 concentration was dominated by coarse mode particles (PM10-PM2.5), most probably desert dust. Especially from February to June the coarse mode concentrations were high because of dust storm season. Aerosol mass concentrations had clear diurnal cycle. Lower values were observed around noon. This behavior is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). During the day time the boundary layer is evolving, causing enhanced mixing and dilution leading to lower concentration. PM10 and PM2.5 concentrations were comparable to values measured at close by city of Jeddah. Black carbon concentration was about 2% and 6% of PM10 and PM2.5 mass, respectively. Total number concentration was dominated by frequent new particle formation and particle growth events. The typical diurnal cycle in particle total number concentration was clearly different from PM10 and PM2.5.

  16. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations

    NASA Technical Reports Server (NTRS)

    Sasano, Yasuhiro; Browell, Edward V.

    1989-01-01

    The present study demonstrates the potential of a multiple-wavelength lidar for discriminating between several aerosol types on the basis of the wavelength dependence of the aerosol backscatter coefficient. The two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064nm can provide unique information for discriminating between various aerosol types (continental, maritime, Saharan-dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols). Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. The disagreement between the theoretical and empirical results in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations.

  17. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment.

    PubMed

    Verma, S; Bhanja, S N; Pani, S K; Misra, A

    2014-04-01

    We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in

  18. Physical and Chemical Properties of Anthropogenic Aerosols: An Overview

    EPA Science Inventory

    Aerosol chemical composition is complex. Combustion aerosols can comprise tens of thousands of organic compounds, refractory brown and black carbon, heavy metals, cations, anions, salts, and other inorganic phases. Aerosol organic matter normally contains semivolatile material th...

  19. Dynamical characteristics of atmospheric aerosols over IG region

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Singh, Ramesh P.; Kumar, Rajesh

    2016-05-01

    The dynamical characteristics of atmospheric aerosols over the Indo-Gangetic (IG) region are primarily dependent on the geographical settings and meteorological conditions. Detailed analysis of multi satellite data and ground observations have been carried out over three different cities i.e. Kanpur, Greater Noida and Amritsar during 2010-2013. Level-3 Moderate Resolution Imaging Spectroradiometer (MODIS) terra daily global grid product with spatial resolution of 1° × 1° shows the mean AOD at 500 nm wavelength value of 0.73, 0.70 and 0.67 with the standard deviation of 0.43, 0.39 and 0.36 respectively over Amritsar, Greater Noida and Kanpur. Our detailed analysis shows characteristic behavior of aerosols from west to east in the IG region depending upon the proximity of desert regions of Arabia. We have observed large influx of dusts from the Thar desert and Arabia peninsula during pre-monsoon season (April-June), highly affecting Amritsar which is close to the desert region.

  20. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  1. The characteristics of brown carbon aerosol during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; He, Ke-bin; Du, Zhen-yu; Engling, Guenter; Liu, Jiu-meng; Ma, Yong-liang; Zheng, Mei; Weber, Rodney J.

    2016-02-01

    Brown carbon (i.e., light-absorbing organic carbon, or BrC) exerts important effects on the environment and on climate in particular. Based on spectrophotometric absorption measurements on extracts of bulk aerosol samples, this study investigated the characteristics of BrC during winter in Beijing, China. Organic compounds extractable by methanol contributed approximately 85% to the organic carbon (OC) mass. Light absorption by the methanol extracts exhibited a strong wavelength dependence, with an average absorption Ångström exponent of 7.10 (fitted between 310 and 450 nm). Normalizing the absorption coefficient (babs) measured at 365 nm to the extractable OC mass yielded an average mass absorption efficiency (MAE) of 1.45 m2/g for the methanol extracts. This study suggests that light absorption by BrC could be comparable with black carbon in the spectral range of near-ultraviolet light. Our results also indicate that BrC absorption and thus BrC radiative forcing could be largely underestimated when using water-soluble organic carbon (WSOC) as a surrogate for BrC. Compared to previous work relying only on WSOC, this study provides a more comprehensive understanding of BrC aerosol based on methanol extraction.

  2. Characteristics-based sectional modeling of aerosol nucleation and condensation

    NASA Astrophysics Data System (ADS)

    Frederix, E. M. A.; Stanic, M.; Kuczaj, A. K.; Nordlund, M.; Geurts, B. J.

    2016-12-01

    A new numerical method for the solution of an internally mixed spatially homogeneous sectional model for aerosol nucleation and condensation is proposed. The characteristics method is used to predict droplet sizes within a discrete time step. The method is designed such that 1) a pre-specified number of moments of the droplet size distribution may be preserved, 2) there exists no time step stability restriction related to the condensation rate and section size, 3) highly skewed fixed sectional distributions may be used and 4) it is straightforward to extend to spatially inhomogeneous settings and to incorporate droplet coagulation and break-up. We derive, starting from mass conservation, a consistent internally mixed multi-species aerosol model. For certain condensational growth laws analytical solutions exist, against which the method is validated. Using two-moment and four-moment-preserving schemes, we find first order convergence of the numerical solution to the analytical result, as a function of the number of sections. As the four-moment-preserving scheme does not guarantee positivity of the solution, a hybrid scheme is proposed, which, when needed, locally reverts back to two-moment preservation, to prevent negativity. As an illustration, the method is applied to a complete multi-species homogeneous nucleation and condensation problem.

  3. Physical characteristics of sand injectites

    NASA Astrophysics Data System (ADS)

    Hurst, Andrew; Scott, Anthony; Vigorito, Mario

    2011-06-01

    Almost two hundred years of research is reviewed that focuses on the physical characteristics of sandstone intrusions. It is concerned with mechanisms of sand injection, particularly with fluid-grain transport and sedimentation processes during the remobilization, injection and extrusion of sand. Outcrop and subsurface studies in combination with laboratory experimental data are drawn on to present the state-of-the-art of sand injection. The text covers 1) geometry, internal structure, and microtexture of deformed parent units, injected and extruded sandstones, 2) host-strata and their seal characteristics that contribute to basin-wide overpressure generation, 3) common trigger mechanisms for sand injection such as high magnitude seismicity and the rapid injection of large volumes of fluids, 4) fluid types that drive sand into fractures, 5) hydrofracture mechanisms that induce regional-scale seal failure, 6) liquefaction and fluidization processes that transport sand into fractures, 7) sedimentation processes in fractures, 8) the flow regime of fluidized sand during injection, 9) post-sand-injection fluid flow and diagenesis, 10) porosity and permeability characteristics of injected sandstones and 11) post-sand-injection fluid-flow over geological timescales. Processes of sand remobilization, injection, and extrusion are complex and depend on many interrelated factors including: fluid(s) properties (e.g. pressure, volume, composition), parent unit and host-strata characteristics (e.g. depositional architecture, grain size and distribution, clay-size fraction, thickness, permeability) and burial depth at the time of injection. Many studies report erosional contacts between host strata and injected sands and these record high-velocity, erosive flow during injection. The flow regime is poorly constrained and similar features are interpreted as records of laminar and turbulent flow, or both, during injection. Internal structures are common in sandstone intrusions and

  4. Optical characteristics of the aerosol in Spain and Austria and its effect on radiative forcing

    NASA Astrophysics Data System (ADS)

    Horvath, H.; Alados Arboledas, L.; Olmo, F. J.; Jovanović, O.; Gangl, M.; Kaller, W.; SáNchez, C.; Sauerzopf, H.; Seidl, S.

    2002-10-01

    The horizontal and vertical attenuation of the aerosol, the sky radiance, and the light absorption coefficient of the aerosol have been determined at wavelengths in the visible. From this set of data the following optical characteristics of the atmospheric aerosol could be derived: vertical optical depth, horizontal extinction and absorption coefficient, scattering phase function, asymmetry parameter, and single scattering albedo. Campaigns have been performed in Almería, Spain, and Vienna, Austria. The aerosol undergoes a considerable variation, as experienced by many other studies. Sometimes the vertical and the horizontal measurements gave similar data; on other days the aerosol at the surface and the aerosol aloft were completely different. The "clearest" aerosol always had the smallest single scattering albedo and thus relatively the highest light absorption. The optical characteristics of the aerosol in the two very different locations were very similar. Using the measured optical data, a radiative transfer calculation was performed, and the radiation reaching the ground was calculated. Comparing the values for the clear aerosol and the days with higher aerosol load, the radiative forcing due to the additional aerosol particles could be determined. The forcing of the aerosol at the ground is always negative, and at the top of the atmosphere it is close to zero or slightly negative. Its dependence on wavelength and zenith angle is presented. The preindustrial aerosol in Europe was estimated, and the forcing due to the present-day aerosol was determined. At the surface it is negative, but at the top of the atmosphere it is close to zero or positive. This is caused by the light absorption of the European aerosol, which is higher than in most other locations.

  5. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  6. A Physically-Based Estimate of Radiative Forcing by Anthropogenic Sulfate Aerosol

    SciTech Connect

    Ghan, Steven J. ); Easter, Richard C. ); Chapman, Elaine G. ); Abdul-Razzak, Hayder; Zhang, Yang ); Leung, Ruby ); Laulainen, Nels S. ); Saylor, Rick D. ); Zaveri, Rahul A. )

    2001-04-01

    Estimates of direct and indirect radiative forcing by anthropogenic sulfate aerosols from an integrated global aerosol and climate modeling system are presented. A detailed global tropospheric chemistry and aerosol model that predicts concentrations of oxidants as well as aerosols and aerosol precursors, is coupled to a general circulation model that predicts both cloud water mass and cloud droplet number. Both number and mass of several externally-mixed aerosol size modes are predicted, with internal mixing assumed for the different aerosol components within each mode. Predicted aerosol species include sulfate, organic and black carbon, soil dust, and sea salt. The models use physically-based treatments of aerosol radiative properties (including dependence on relative humidity) and aerosol activation as cloud condensation nuclei. Parallel simulations with and without anthropogenic sulfate aerosol are performed for a global domain. The global and annual mean direct and indirect radiative forcing due to anthropogenic sulfate are estimated to be -0.3 to -0.5 and -1.5 to -3.0 W m-2, respectively. The radiative forcing is sensitive to the model's horizontal resolution, the use of predicted vs. analyzed relative humidity, the prediction vs. diagnosis of aerosol number and droplet number, and the parameterization of droplet collision/coalescence. About half of the indirect radiative forcing is due to changes in droplet radius and half to increased cloud liquid water.

  7. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, D.; Zhao, Q.

    2015-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.

  8. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.

    PubMed

    Sasano, Y; Browell, E V

    1989-05-01

    The present study demonstrates the potential of a multiple wavelength lidar for discriminating between several aerosol types such as maritime, continental, stratospheric, and desert aerosols on the basis of wavelength dependence of the aerosol backscatter coefficient. In the analysis of lidar signals, the two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength, and this made it possible to reduce the uncertainty in the extinction/backscatter ratio, which is a key parameter in the lidar solution. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064 nm can provide unique information for discriminating between various aerosol types such as continental, maritime, Saharan dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols. Measurement error estimation was also made through numerical simulations. Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. There was disagreement between the theoretical and empirical results, which in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations. PMID:20548724

  9. Characteristics of atmospheric aerosol optical depth variation in China during 1993-2012

    NASA Astrophysics Data System (ADS)

    Xu, X.; Qiu, J.; Xia, X.; Sun, L.; Min, M.

    2014-12-01

    Atmospheric aerosol optical depth (AOD) is a critical physical parameter for indicating atmospheric turbidity and aerosol content, and is also a key factor in determining the aerosol radiative forcing effects. This study gives the long-term variation characteristics of atmospheric aerosol optical depth at 14 first-class solar radiation stations in China during 1993-2012. Based on the broadband extinction method (BEM), we retrieve the AOD from the hourly accumulated direct solar radiation. Using a AOD selection method, we derive and analyze the monthly, seasonal and annual averaged AOD. The results show that (1) the mean AOD ranges from 0.135 (Lhasa) to 0.678 (Zhengzhou). Shenyang has the maximum standard deviation of 0.109, while Ejin Banner has the minimum value of 0.021. The mean value for all years and stations is 0.423. (2) At most stations, the largest AOD appears in spring and the smallest in autumn. The seasonal averaged AOD of all years and stations is 0.487 (spring), 0.456 (summer), 0.364 (autumn) and 0.381 (winter). (3) As to the variation trend, an increasing trend appeared at five stations (Kashi, Kunming, Zhengzhou, Wuhan and Shanghai), while a decreasing trend is found at two stations (Guangzhou and Beijing). After analyzing the correlations between AOD and the meteorological factors (i.e. temperature, pressure, humidity and visibility), we find that AOD has a positive correlation with temperature, and a negative correlation with pressure and visibility at most of the stations.

  10. Complex measurements of aerosol and ion characteristics in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kikas, Iu. E.; Kolomiets, S. M.; Kornienko, V. I.; Mirme, A. A.; Sal'm, Ia. I.; Sergeev, I. Ia.; Tammet, Kh. F.

    Results of a comprehensive study of the characteristics of atmospheric ions and aerosols in the boundary layer during the summer season are reported. A study is also made of the kinetics of aerosol formation under conditions of high artificial ionization of the air by alpha and UV radiation. A high degree of correlation is shown to exist between atmospheric concentrations of medium ions and fine (less than 0.01 micron) aerosol. The results obtained support the radiation-chemical mechanism of aerosol formation.

  11. Trace elemental characteristics of aerosols emitted from municipal incinerators

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    As part of a continuing investigation of high temperature combustion aerosols, elemental composition of size differentiated aerosols emitted from a local municipal incinerator was studied. Aerosols were aerodynamically separated into eight diameter groups ranging from 0.43 mm to 20 mm, collected, and analyzed by charged particle induced X-ray emission technique. On line data collection and reduction codes generated aerial densities for elements from Na to U with sensitivities in the ng/cu m range for most elements. From the total weights of aerosols collected per stage, their size distribution was determined to be bimodal, with one group centered at a diameter of 0.54 mm and the other at a diameter of 5.6 mm. Measured elemental concentrations in various size ranges indicate that K and S show a strong tendency to concentrate on aerosol surfaces. A weaker trend for surface preference was also observed for Mn and Ni, but other elements show no such trend.

  12. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  13. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  14. Characteristics of Carbonaceous and Ionic Species and Direct Aerosol Forcing of the Aerosols over Gosan, Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Kim, N.; Kim, Y.; Kang, C.

    2010-12-01

    Carbonaceous aerosols, consisting of elemental carbon (EC) are emitted into the atmosphere through incomplete combustion of biomass and fossil fuel. It directly warms the air by absorbing solar radiation. Another major pollutant emitted by fossil fuel combustion is SO2, which result in the formation of particulate sulfate (SO42-) compounds, contribute substantially to cool the air by scattering solar radiation. Therefore, carbonaceous and sulfate aerosols play an important role in regulating the amount of solar radiation absorbed by the earth atmosphere. (Charlson et al. 1992; Jacobson, 2004; Khan et al., 2010) Carbonaceous and sulfate aerosols are both temporally and spatially variable. Northeast Asia is characterized by high energy consumption. China, Japan, and South Korea have consumed 16.8%, 4.7%, and 2.1% of the world total primary energy, respectively in 2007 (BP, 2008). Consequently, there are resultant huge emissions of anthropogenic air pollutants. Therefore, the effect on climate forcing by carbonaceous and sulfate aerosols are even more important in this region. In this study, PM2.5 intensive measurement data for 18 separate periods at Gosan, Jeju, Korea from 1994 to 2006 were analyzed. Gosan is one of the cleanest areas in Korea and an excellent location to study the ambient aerosols in Northeast Asia (Kim et al., 2009). The characteristics of carbonaceous aerosols and anthropogenic ions such as SO42-, NO3-, NH4+ were analyzed. Also, direct aerosol forcing due to EC and SO42- were calculated. The net aerosol forcing were about -0.5 W m-2 to -0.1 W m-2 at Gosan. References BP, www.bp.com/statisticalreview, 2008. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A.Jr., Hansen, J.E., and Hofmann, D.J. (1992) Climate Forcing by Anthropogenic Aerosols, Science, 255, 423-430. Jacobson, M.Z. (2004) Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, Journal of

  15. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    according to the major fraction. Thus, many of the particles classified as sulfate may have contained significant mass fractions of carbonaceous or other material. These particles for the most part did not show two physical phases, however. Nonsulfate particles were classified according to the physical and chemical characteristics of each particle, and were grouped into the major nonsulfate particle classes, including C-rich, crustal, metallic, and salts. Our UT and LS sample analyses indicate a maximum for crustal and C-rich particle abundance in the Northern Hemisphere upper troposphere, and a salt particle maximum in the Southern Hemisphere upper troposphere. Metallic particles are clearly more prevalent in the troposphere than in the stratosphere, but interhemispheric differences appear small.

  16. Physical characterization of aerosol particles during the Chinese New Year’s firework events

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Wang, Tao; Yang, Xin; Gong, Youguo; Geng, Fuhai; Chen, Changhong

    2010-12-01

    Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100-500 nm) and PM 1 mass concentration, with a maximum total number concentration of 3.8 × 10 4 cm -3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm -3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM 1 exhibited on average above 150 μg m -3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.

  17. Comparison of aerosol properties over Beijing and Kanpur: Optical, physical properties and aerosol component composition retrieved from 12 years ground-based Sun-sky radiometer remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Li, Lei; Zhang, Fengxia; Li, Donghui; Xie, Yisong; Xu, Hua

    2015-02-01

    Aerosol mixtures composed of coarse and fine particles occur frequently in metropolitan areas in the world, especially in developing countries. Beijing, China, and Kanpur, India, are both in Asian monsoon regions and experience strong aerosol loading because of increased economic activities, vehicles, and urbanization. Observations originating from the Aerosol Robotic Network (AERONET) have played a vital role in the field of aerosol study. In order to understand the variations of aerosol optical, physical properties and component composition over Beijing and Kanpur, we focus on AERONET measurements collected at these two sites from 2002 to 2013 and employ a five-component (including black carbon, BC; mineral dust, DU; brown carbon, BrC; ammonium sulfate like, AS; and aerosol water content, AW) aerosol mixture model to retrieve the aerosol component composition. Particle size distribution, spectral characteristics of single-scattering albedo, and refractive indices of the aerosols over Beijing and Kanpur are found to be distinct and with regular seasonal variations. Correspondingly, aerosol components show distinct temporal characteristics at both sites. In Beijing, BC shows a significant decrease from 2002 to 2013 (especially after 2007) with an average declining rate of 0.69 mg m-2 yr-1. Among the five components, BC and BrC are higher during winter and autumn especially at Beijing, while DU and AS are higher during spring and summer at the two sites. With respect to site differences, BC and BrC are usually higher in Beijing in most of the year, while DU and AS are higher in Kanpur especially from April to June. Moreover, AW is similar and quite comparable at two sites.

  18. Towards climatological study on the characteristics of aerosols in Central Africa and Mediterranean sites

    NASA Astrophysics Data System (ADS)

    Benkhalifa, Jamel; Chaabane, Mabrouk

    2016-02-01

    The atmosphere contains molecules, clouds and aerosols that are sub-millimeter particles having a large variability in size, shape, chemical composition, lifetime and contents. The aerosols concentration depends greatly on the geographical situation, meteorological and environmental conditions, which makes aerosol climatology difficult to assess. Setting up a solar photometer (automatic, autonomous and portable instrument) on a given site allows carrying out the necessary measurements for aerosol characterization. The particle microphysical and optical properties are obtained from photometric measurements. The objective of this study is to analyze the spatial variability of aerosol optical thickness (AOT) in several Mediterranean regions and Central Africa, we considered a set of simultaneous data in the AErosol RObotic NETwork (AERONET) from six sites, two of which are located in Central Africa (Banizoumbou and Zinder Airport) and the rest are Mediterranean sites (Barcelona, Malaga, Lampedusa, and Forth Crete). The results have shown that the physical properties of aerosols are closely linked to the climate nature of the studied site. The optical thickness, single scattering albedo and aerosols size distribution can be due to the aging of the dust aerosol as they are transported over the Mediterranean basin.

  19. An analysis of the characteristics of aerosol light scattering coefficients at Seoul and Baengnyeongdo

    NASA Astrophysics Data System (ADS)

    Kim, B.; Eun, S.; Seo, W.; Park, J.; Ahn, J.; Moon, K.

    2013-12-01

    Aerosols in the atmosphere can scatter and absorb solar radiation and their spatial/temporal distributions are highly inhomogeneous due to short lifetimes (about a few weeks or less). Through scattering and absorption of solar radiation, aerosols directly affect visibility and climate through the modification of the Earth's energy budget (Charlson et al., 1992; Yan, 2007; Wang, 2012). This study investigates long-term trends and characteristics of aerosol light scattering coefficient at Seoul and Baengnyeongdo, 100 km upstream of Seoul, in Korea. Aerosol scattering coefficients were measured continuously with nephelometers. The analysis period is limited to one year of 2011. For the relationship analysis of extinction coefficients (σext) to visibility and aerosol optical depth, σsp observed at 3 p.m. have been used with help of aerosol absorption coefficients (σap) in order to remove its dependence upon relative humidity (RH), and also those of rainy period have been excluded. As expected, σext estimated are inversely proportional to visibility observation by eye. Aerosol extinction coefficients have been vertically integrated with an assumption of nearly well-mixed within an e-folding height to determine aerosol optical depth (τa), and compared with those retrieved from sunphotometer. The results show a reasonable agreement in spite of an inherent difference of each definition. We expect these findings would help to eventually understand aerosol radiative forcing and its effect on the regional climate change around Korea.

  20. The chemical evolution & physical properties of organic aerosol: A molecular structure based approach

    NASA Astrophysics Data System (ADS)

    Wei, Yiyi; Cao, Tingting; Thompson, Jonathan E.

    2012-12-01

    Global climate, atmospheric chemistry, and air quality are affected by tropospheric particulate matter. Recent measurements suggest organic compounds present in this haze comprise roughly half of total aerosol fine mass concentration globally. Unlike the well-constrained processes which result in formation of nitrate or sulfate aerosol, the oxidation of volatile organics in the atmosphere can lead to thousands of stable compounds in the aerosol phase. Development of a tractable framework to consider the chemical and physical evolution of the organic aerosol is crucial for modeling its effect on global climate. Here we show coupling a 3-dimensional coordinate system defined by the molecular descriptors of molecular weight, heteroatom mass, and double bond equivalents (D.B.E.) with high-resolution molecular mass spectrometry is a powerful approach for describing key properties of the organic aerosol. The scheme is conceptually simple, yet maintains sufficient complexity to be compatible with quantitative structure-property relationships (QSPRs) used to predict chemical and physical properties that govern aerosol behavior. From available data, both ambient organic aerosol and laboratory generated organic aerosol frequently occupy the region characterized by <10 D.B.E. <600 M.W. and <200 heteroatom mass. A QSPR analysis conducted illustrates spatial trends within the 3D space for volatility and Henry's law constants for 31,000 organic compounds considered.

  1. Optical Characteristics of Aerosols and Clouds Retrieved from Sky Radiometer Data of SKYNET

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Irie, H.; Takamura, T.

    2015-12-01

    SKYNET is an observation network to collect data related to aerosols, clouds, and radiation using a variety of ground-based instruments. The sky radiometer, manufactured by PREDE Co. Ltd., Japan, is one of the SKYNET instruments. Present research activities have made it possible to retrieve not only optical characteristics of aerosols and clouds, but also columnar water vapor and ozone concentrations using data of this instrument. This study analyzes sky radiometer data of various sites to understand optical characteristics of aerosols of different backgrounds. Several interesting results were obtained. For example, the light-absorption capacity of dust aerosols was observed to depend on not only mixed pollutants but also on aerosol size. We further studied the effects of aerosols on atmospheric heat budget using such observation data and a radiative transfer model. The results showed clear spatial and temporal variations of aerosol radiative forcing at the surface as well as top of atmosphere (TOA). Sky radiometer data of selected super sites of SKYNET were also analyzed to understand the optical characteristics of clouds. Such retrieved cloud parameters were validated using irradiances measured at the surface as well as MODIS cloud parameters. Though differences exist with respect to MODIS cloud parameters, irradiances calculated using sky radiometer retrieved cloud parameters agree fairly well with observed values.

  2. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  3. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    NASA Astrophysics Data System (ADS)

    Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P.

    2014-04-01

    This paper deals with recent improvements to the chemical transport model of Météo-France MOCAGE that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging, and by changing in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET), and a model inter-comparison project (AeroCom) is compared with MOCAGE simulations and showed that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the bias (from 0.032 to 0.002) and a better correlation (from 0.062 to 0.322) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive bias in the sea salt representation at high latitudes (from 0.153 to 0.026), and a negative bias in the desert dust representation in the African dust outflow region (from -0.179 to -0.051). The updates in sedimentation produced a modest difference; the bias with MODIS data from 0.002 in the updated configuration went to

  4. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  5. Investigation of aerosol characteristics from the central Himalayas and its adjacent foothills

    NASA Astrophysics Data System (ADS)

    Joshi, Hema; Naja, Manish; Babu, Suresh; Satheesh, Sk; Pal Singh, Krishna; Kumar, Rajesh; Moorthy, KKrishna

    2016-04-01

    Studies on atmospheric aerosols are important in the South Asia, especially over the Himalayas owing to their crucial role in regional climate change, radiation budget etc. The present study provides some of the crucial insights into the understanding of aerosol characteristics and associated processes over the central Himalayan region. The long term ground based aerosol data from high altitude site, Nainital (29.4°N, 79.5°E, 1958 m), India, are utilized extensively and estimated trends of the aerosol optical depth (AOD) and black carbon (BC) shows the increasing trend over this region. The significant amount of aerosol abundance is also observed in spring season each year. Further, in order to understand the transport and influence of aerosols from the Indo-Gangetic Plain (IGP) region to the nearby Himalayas, aerosols observation initiated from the low altitude site Pantnagar (29.0°N, 79.5°E, 231 m), India, are also utilized. Observations at these both sites which are merely at a distance of ~30 km show marked differences in the levels and seasonal and diurnal variations. The Himalayan site, is marked with low AOD and BC, except in spring, while IGP site is marked with high level of aerosols throughout the year. BC is maximum in winter (7.9±5.2 μg m-3) and minimum in summer-monsoon in IGP which exhibits nearly an inverse relation with mixing layer depth which is strongest in winter. On the other hand, BC reaches maximum in spring at Nainital. AOD is high throughout the year in IGP which shows annual peak (AOD500nm>0.6) in May-June, dominated by coarse mode, while fine mode aerosols dominates in late autumn and early winter. The Nainital site is marked with very low AOD in winter typical to clean site. Seasonal mean BC is found to be significantly higher at Pantnagar in winter (~652%), followed by in autumn (~577%), summer-monsoon (~318%) and spring (~248%) as compared to those at Nainital. Co-located observation of AOD along with aerosols extinction

  6. Characteristics of spectral aerosol optical depths over India during ICARB

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Moorthy, K. Krishna; Nair, Vijayakumar S.; Babu, S. Suresh; Satheesh, S. K.; Vinoj, V.; Reddy, R. Ramakrishna; Gopal, K. Rama; Badarinath, K. V. S.; Niranjan, K.; Pandey, Santosh Kumar; Behera, M.; Jeyaram, A.; Bhuyan, P. K.; Gogoi, M. M.; Singh, Sacchidanand; Pant, P.; Dumka, U. C.; Kant, Yogesh; Kuniyal, J. C.; Singh, Darshan

    2008-07-01

    Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent ( α) remained significantly lower (˜1) over the Arabian Sea compared to Bay of Bengal (BoB) (˜1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of

  7. Predicting Adult Personality from Minor Physical Characteristics.

    ERIC Educational Resources Information Center

    Paulhus, Delroy; Martin, Carol

    While minor physical anomalies (MPAs), a set of 17 non-obvious but measurable characteristics of the hands, face and feet, have been linked to a number of behavioral syndromes in children, such personality correlates of MPAs in adults have not been studied. To explore the relationshp between MPAs and temperament in a college sample, 114 students…

  8. New biometric modalities using internal physical characteristics

    NASA Astrophysics Data System (ADS)

    Mortenson, Juliana (Brooks)

    2010-04-01

    Biometrics is described as the science of identifying people based on physical characteristics such as their fingerprints, facial features, hand geometry, iris patterns, palm prints, or speech recognition. Notably, all of these physical characteristics are visible or detectable from the exterior of the body. These external characteristics can be lifted, photographed, copied or recorded for unauthorized access to a biometric system. Individual humans are unique internally, however, just as they are unique externally. New biometric modalities have been developed which identify people based on their unique internal characteristics. For example, "BoneprintsTM" use acoustic fields to scan the unique bone density pattern of a thumb pressed on a small acoustic sensor. Thanks to advances in piezoelectric materials the acoustic sensor can be placed in virtually any device such as a steering wheel, door handle, or keyboard. Similarly, "Imp-PrintsTM" measure the electrical impedance patterns of a hand to identify or verify a person's identity. Small impedance sensors can be easily embedded in devices such as smart cards, handles, or wall mounts. These internal biometric modalities rely on physical characteristics which are not visible or photographable, providing an added level of security. In addition, both the acoustic and impedance methods can be combined with physiologic measurements such as acoustic Doppler or impedance plethysmography, respectively. Added verification that the biometric pattern came from a living person can be obtained. These new biometric modalities have the potential to allay user concerns over protection of privacy, while providing a higher level of security.*

  9. Assessment of aerosol optical and micro-physical features retrieved from direct and diffuse solar irradiance measurements from Skyradiometer at a high altitude station at Merak: Assessment of aerosol optical features from Merak.

    PubMed

    Ningombam, Shantikumar S; Srivastava, A K; Bagare, S P; Singh, R B; Kanawade, V P; Dorjey, Namgyal

    2015-11-01

    Optical and micro-physical features of aerosol are reported using Skyradiometer (POM-01L, Prede, Japan) observations taken from a high-altitude station Merak, located in north-eastern Ladakh of the western trans-Himalayas region during January 2011 to December 2013. The observed daily mean aerosol optical depth (AOD, at 500 nm) at the site varied from 0.01 to 0.14. However, 75 % of the observed AOD lies below 0.05 during the study period. Seasonal peaks of AOD occurred in spring as 0.06 and minimum in winter as 0.03 which represents the aged background aerosols at the site. Yearly mean AOD at 500 nm is found to be around 0.04 and inter-annual variations of AOD is very small (nearly ±0.01). Angstrom exponent (a) varied seasonally from 0.73 in spring to 1.5 in autumn. About 30 % of the observed a lies below 0.8 which are the indicative for the presence of coarse-mode aerosols at the site. The station exhibits absorbing aerosol features which prominently occurred during spring and that may be attributed by the transported anthropogenic aerosol from Indo-Gangatic Plain (IGP). Results were well substantiated with the air mass back-trajectory analysis. Furthermore, seasonal mean of single scattering albedo (SSA at 500 nm) varied from of 0.94 to 0.98 and a general increasing trend is noticed from 400 to 870 nm wavelengths. These features are apparently regional characteristics of the site. Aerosol asymmetry factor (AS) decreases gradually from 400 to 870 nm and varied from 0.66 to 0.69 at 500 nm across the seasons. Dominance of desert-dust aerosols, associated by coarse mode, is indicated by tri-modal features of aerosol volume size distribution over the station during the entire seasons. PMID:26081773

  10. Aerosol characteristics over Bay of Bengal during winter: Results from W-ICARB experiment

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Manchanda, R. K.; Shankarnarayan, Sreenivasan; Babu, S. Suresh; Krishna Moorthy, K.; Kaskaoutis, D. G.

    2012-07-01

    The measurements of aerosol physical optical properties were carried out over placeBay of Bengal (BoB) during the period 27 December 2008--30 January 2009 as part of Winter Integrated Campaign on Aerosols, Gases and Radiation Budget (W-ICARB). The aerosol number size distribution at the surface was found to be bi-modal in the 72% of the cases with mode radius for the submicron aerosol of 0.13±0.01 μ m and 0.72±0.10μ m for the super-micron aerosol and the highest NT (350-550 cm{-3}), AOD500 (0.7}) and α 380-870 values were observed in western and northern BoB with lower values in the southern and parts of central BoB. The eastern part of BoB which was investigated for the first time showed concurrently high values of NT (200 and 300 cm-3), AOD500 (0.39±0.07) and α 380-870 (1.27±0.09). The aerosol types are examined using a classification scheme based on the relationship between aerosol load (AOD500) and particle size (α 380-870). The classification scheme indicated an extremely large fraction of fine-mode aerosols in turbid atmospheres, which is even larger than 90% in the western part of BoB and approaches 100% over eastern BoB. Furthermore, there is also an evidence of aerosol-size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The altitude variation of aerosol number density made for the first time over five different locations in BoB is found to be nearly steady at all locations within the convective boundary layer (up to 400 m), while above the aerosol concentration is found to decrease except for far east BoB. Examination of the air-mass back trajectories and the aerosol size distribution indicates that the aerosols advected from continental country-regionIndia have a pronounced natural (coarse mode) component, while those originating from placeEast Asia are in general accumulation origin.

  11. Sources and characteristics of sub-micron aerosols in the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; Brioude, J.; Brock, C. A.; de Gouw, J. A.; Hall, K.; Holloway, J. S.; Neuman, J.; Nowak, J. B.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Parrish, D. D.

    2010-12-01

    The NOAA WP-3D aircraft performed several flights in the San Joaquin Valley (SJV), California during the CalNex-2010 (California Research at the Nexus of Air Quality and Climate Change) field project in May-June 2010. SJV is generally a rural valley, with a high concentration of feedlots and agricultural sites as well as urbanized centers such as Fresno and Bakersfield. Preliminary results on size-resolved chemical composition of sub-micron aerosols measured using a compact time-of-flight aerosol mass spectrometer, measurements of trace gases affecting secondary production of aerosols, and FLEXPART back trajectory analyses are presented in order to identify sources of aerosols transported to or produced in the valley. Observed enhancements in various trace gases and aerosol species indicate a mixed influence from urban, industrial, and animal feedlots in the SJV. Three distinct observations suggest a complex transport pattern of pollutants with different origins to and within the valley: 1) CO and NOx mixing ratios were prominent downwind of the urban areas in the valley; 2) SO2, aerosol organics and sulfate were higher closer to the foothills of the Sierra Nevada Mountains on the east of the valley; 3) high concentration of aerosol phase ammonium and nitrate were observed in NH3-rich air masses, directly downwind of the feedlots in the central part of the valley. Aerosol enhancements in each of these air mass categories relative to the background determine the relative contribution and significance of different sources to aerosol loadings in the valley. Differences in VOC measurements and meteorology will be explored to investigate the observed variation in characteristics of organics on different days.

  12. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  13. The Influence of Aerosols and Environmental Moisture on the Characteristics of Supercellular and Multicellular Deep Convection

    NASA Astrophysics Data System (ADS)

    Grant, L. D.; van den Heever, S. C.

    2013-12-01

    Mechanisms leading to differences between low-precipitation (LP) and classic (CL) supercell storm structure are not well understood, due in part to the small number of observational and modeling studies of LPs that have been reported in the literature. Though LPs and CLs sometimes occur within close proximity, CLs are found under a wider range of environmental conditions. LPs usually form near the dryline or in the high plains of the U.S., and they are typically isolated or upwind relative to surrounding deep convection. Since high aerosol concentrations and dry layers are more likely in these environments, the goal of this research is to investigate the sensitivity of deep convective characteristics, including LP and classic supercells as well as neighboring convection, both to changes in the background aerosol concentrations and environmental moisture profile. The Regional Atmospheric Modeling System (RAMS), configured as a high-resolution cloud-resolving model, was used to achieve this goal. Simulated convection was initiated with a warm thermal perturbation, and subsequent deep convection was simulated under a range of aerosol concentrations and moisture profiles. In the control simulation, which utilized a clean aerosol background and a moist profile, the initial convection splits into a right-mover that becomes a strong and steady classic supercell, and a left-mover that evolves into a multicellular cluster. Sensitivity tests demonstrate that the right-mover becomes an LP supercell under both clean and polluted aerosol concentrations when elevated dry layers are present in the moisture profile. Precipitation characteristics of the left-moving cluster are sensitive both to the aerosol concentrations and the moisture profile. The relative control of aerosols and dry layers on the precipitation characteristics, microphysical processes, and thermodynamics including cold pool forcing, of different dynamically controlled convective storm types within the same

  14. Observed changes in aerosol physical and optical properties before and after precipitation events

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Dong, Yan; Dong, Zipeng; Du, Chuanli; Chen, Chuang

    2016-08-01

    Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter <0.8 μm [measured using an aerodynamic particle sizer (APS)], and fine particles with diameter <0.1 μm [measured using a scanning mobility particle sizer (SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution (measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100-120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.

  15. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2012-07-01

    An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China) was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable C isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  16. Physical characteristics of Eurasian winter temperature variability

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Yul; Son, Seok-Woo

    2016-04-01

    Despite the on-going global warming, recent winters in Eurasian mid-latitudes were much colder than average. In an attempt to better understand the physical characteristics for cold Eurasian winters, major sources of variability in surface air temperature (SAT) are investigated based on cyclostationary EOF analysis. The two leading modes of SAT variability represent the effect of Arctic amplification (AA) and the Arctic oscillation (AO), respectively. These two modes are distinct in terms of the physical characteristics, including surface energy fluxes and tropospheric circulations, and result in significantly different winter SAT patterns over the Eurasian continent. The AA-related SAT anomalies are dipolar with warm Arctic, centered at the Barents–Kara Seas, and cold East Asia. In contrast, the negative AO-related SAT anomalies are characterized by widespread cold anomalies in Northern Eurasia. Relative importance of the AA and the negative AO contributions to cold Eurasian winters is sensitive to the region of interest.

  17. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles Basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-02-01

    The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1-2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Organic aerosol (OA) is the most significant constituent of Los Angeles aerosol (42, 43, and 55% of total submicron mass in regimes I, II, and III, respectively), and that the overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Water soluble organic mass (WSOM) reaches maxima near 14:00-15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode

  18. Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics

    NASA Astrophysics Data System (ADS)

    Derimian, Yevgeny; Dubovik, Oleg; Huang, Xin; Lapyonok, Tatyana; Litvinov, Pavel; Kostinski, Alex B.; Dubuisson, Philippe; Ducos, Fabrice

    2016-05-01

    The evaluation of aerosol radiative effect on broadband hemispherical solar flux is often performed using simplified spectral and directional scattering characteristics of atmospheric aerosol and underlying surface reflectance. In this study we present a rigorous yet fast computational tool that accurately accounts for detailed variability of both spectral and angular scattering properties of aerosol and surface reflectance in calculation of direct aerosol radiative effect. The tool is developed as part of the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. We use the tool to evaluate instantaneous and daily average radiative efficiencies (radiative effect per unit aerosol optical thickness) of several key atmospheric aerosol models over different surface types. We then examine the differences due to neglect of surface reflectance anisotropy, nonsphericity of aerosol particle shape and accounting only for aerosol angular scattering asymmetry instead of using full phase function. For example, it is shown that neglecting aerosol particle nonsphericity causes mainly overestimation of the aerosol cooling effect and that magnitude of this overestimate changes significantly as a function of solar zenith angle (SZA) if the asymmetry parameter is used instead of detailed phase function. It was also found that the nonspherical-spherical differences in the calculated aerosol radiative effect are not modified significantly if detailed BRDF (bidirectional reflectance distribution function) is used instead of Lambertian approximation of surface reflectance. Additionally, calculations show that usage of only angular scattering asymmetry, even for the case of spherical aerosols, modifies the dependence of instantaneous aerosol radiative effect on SZA. This effect can be canceled for daily average values, but only if sun reaches the zenith; otherwise a systematic bias remains. Since the daily average radiative effect is obtained by integration over a range

  19. Measurement of particle size characteristics of metered dose inhaler (MDI) aerosols.

    PubMed

    Dolovich, M

    1991-01-01

    Measurement of the aerodynamic size of an aerosol allows a prediction of its deposition efficiency and behaviour in the lung. The dynamics of volatile or pressurized (MDI) aerosols presents problems not encountered in the characterization of solid or liquid particles alone. For example, the data obtained in real-time sampling as opposed to measuring an aged aerosol provide a truer representation of circumstances during actual clinical use, yet this may be difficult to achieve due to propellent evaporation. A number of particle sizing systems have been developed based upon light scattering techniques and aerodynamic principles. Each method has its limitations; in general, they successfully measure the aerodynamic size distributions of MDI aerosols. Cascade impactors, the "gold standard" of the industry have the advantage that they allow analysis of drug mass as well as other tracers within the aerosol, but the process as a whole is labour intensive, with limited resolution. Highly automated laser-based systems developed over the past 10 years measure the surface characteristics of the aerosol rather than the direct measurement of mass. Because of different values obtained from various sizing systems, it is suggested that all MDI drugs be sized using cascade impactors but that parallel data be obtained using an alternative sizing system.

  20. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; You, Chao; Zhu, Zhikun

    2016-04-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is may be partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35°N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  1. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  2. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    PubMed

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to

  3. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    PubMed

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to

  4. Mass concentration and mineralogical characteristics of aerosol particles collected at Dunhuang during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Shen, Z. X.; Cao, J. J.; Li, X. X.; Okuda, T.; Wang, Y. Q.; Zhang, X. Y.

    2006-03-01

    Measurements were performed in spring 2001 and 2002 to determine the characteristics of soil dust in the Chinese desert region of Dunhuang, one of the ground sites of the Asia-Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The mean mass concentrations of total suspended particle matter during the spring of 2001 and 2002 were 317 mu g m(-3) and 307 mu g m(-3) respectively. Eleven dust storm events were observed with a mean aerosol concentration of 1095 mu g m(-3), while the non-dusty days with calm or weak wind speed had a background aerosol loading of 196 mu g m(-3) on average in the springtime. The main minerals detected in the aerosol samples by X-ray diffraction were illite, kaolinite, chlorite, quartz, feldspar, calcite and dolomite. Gypsum, halite and amphibole were also detected in a few samples. The mineralogical data also show that Asian dust is characterized by a kaolinite to chlorite (K/C) ratio lower than 1 whereas Saharan dust exhibits a K/C ratio larger than 2. Air mass back- trajectory analysis show that three families of pathways are associated with the aerosol particle transport to Dunhuang, but these have similar K/C ratios, which further demonstrates that the mineralogical characteristics of Asian dust are different from African dust.

  5. Filter and electrostatic samplers for semivolatile aerosols: physical artifacts.

    PubMed

    Volckens, John; Leith, David

    2002-11-01

    Adsorptive and evaporative artifacts often bias measurements of semivolatile aerosols. Adsorption occurs when the sampling method disrupts the gas-particle partitioning equilibrium. Evaporation occurs because concentrations of semivolatiles are rarely constant over time. Filtration is subject to both adsorptive and evaporative artifacts. By comparison, electrostatic precipitation reduces these artifacts by minimizing the surface area of collected particles without substantially disrupting the gas-particle equilibrium. The extent of these artifacts was determined for filter samplers and electrostatic precipitator samplers for semivolatile alkane aerosols in the laboratory. Adsorption of gas-phase semivolatiles was lower in electrostatic precipitators by factors of 5-100 compared to the filter method. Particle evaporation from the electrostatic sampler was 2.3 times lower than that from TFE-coated glass-fiber filters. Use of a backup filter to correct for compound-specific adsorption artifacts can introduce positive or negative errors to the measured particle-phase concentration due to competition among the adsorbates for available adsorption sites. Adsorption of evaporated particles from the front filter onto the backup filter increased the measured evaporative artifact by a factor of 1.5-2.

  6. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    NASA Astrophysics Data System (ADS)

    Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. D.

    2015-02-01

    This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET, EMEP), and a model inter-comparison project (AeroCom) are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10) and a better correlation (from 0.06 to 0.32) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16), and a negative MNMB in the desert

  7. Impact of monsoon transitions on the physical and optical properties of aerosols

    NASA Astrophysics Data System (ADS)

    Corrigan, C. E.; Ramanathan, V.; Schauer, J. J.

    2006-09-01

    Project Atmospheric Brown Cloud (ABC-Asia) has focused on measuring the anthropogenic influence of aerosols, including black carbon, to determine the extent of sunlight dimming and radiative forcing over the Asian region. As part of this project, an observatory was built in the Republic of Maldives for the long-term monitoring of climate. An inaugural campaign was conducted to investigate the influence of the shifting monsoon seasons on aerosols and climate change. The presence of black carbon and other anthropogenic aerosols over the Indian Ocean varies with the cyclic nature of the Indian Monsoon. Roughly every 6 months, the winds change directions from southwest to northeast or vice versa. From June to October the wet monsoon brings clean air into the region from the Southern Hemisphere. Conversely, the dry monsoon brings polluted air from the Indian subcontinent and Southeast Asia from November through April. As a result, the region becomes charged with black carbon and other anthropogenic pollutants during the dry monsoon. In 2004 the transition between the clean and polluted seasons resulted in nearly an order of magnitude increase of scattering and absorbing aerosols. The change was foreshadowed with small events over a 1 month period prior to the abrupt arrival of pollution over a period of a few days as air from India and Southeast Asia arrived in the Maldives at the surface level. The new, polluted aerosol was characteristically darker since the black carbon concentration increased more substantially than the overall aerosol scattering. As a result, the aerosol coalbedo at a wavelength of 550 nm showed an increase from an average of 0.028 to 0.07. Black carbon mass concentrations increased by an order of magnitude from 0.03 to 0.47 μg/m3. These measurements suggest a large increase in the aerosol radiative forcing of the region with the arrival of the dry monsoon.

  8. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  9. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  10. In Vitro Surfactant and Perfluorocarbon Aerosol Deposition in a Neonatal Physical Model of the Upper Conducting Airways

    PubMed Central

    Goikoetxea, Estibalitz; Murgia, Xabier; Serna-Grande, Pablo; Valls-i-Soler, Adolf; Rey-Santano, Carmen; Rivas, Alejandro; Antón, Raúl; Basterretxea, Francisco J.; Miñambres, Lorena; Méndez, Estíbaliz; Lopez-Arraiza, Alberto; Larrabe-Barrena, Juan Luis; Gomez-Solaetxe, Miguel Angel

    2014-01-01

    Objective Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4–7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od) at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar). Conclusion This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support. PMID:25211475

  11. Characteristics of Submicron Aerosols in 2013 summer of Beijing

    NASA Astrophysics Data System (ADS)

    Guo, Song; Hu, Min; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Yusheng; Lu, Sihua; Zeng, Limin; Zhang, Renyi

    2016-04-01

    To characterize the air pollution of North China Plain of China, CAREBEIJING-2013 field campaign (Campaigns of Air quality REsearch in BEIJING and surrounding region) was conducted in summer of 2013. Submicron aerosols were measured at an urban site PKU (Peking University, 39° 59'21"N, 116° 18'25"E) from July 28th to September 31st 2013. A suite of integrated instruments was used to measure the size distribution, effective density and hygroscopicity of ambient particles. The chemical composition of submicron particles were measured by using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (Billerica, MA, USA). The average PM2.5 concentration was 73.0±70.7 μg m‑3 during the measurement. The particulate pollution showed distinct 4-7 days cycles controlled by the meteorological conditions. Each cycle started with low PM2.5 mass concentrations (<20 μg m‑3), since the air mass was from relatively clean mountainous area. The particle number concentrations were high, but and the sizes were small (<30 nm) at this stage, which can be explained by the new particle formation. In the succeeding days, both the particle mass and size continuously increased. The PM2.5concentration increased rapidly by >60 μg day‑1, and the particle mean diameter grew to >100 nm. It is interesting to note that the mean diameters showed similar trend to PM2.5 mass concentrations, indicating the particle pollution attributed to the growth of the newly formed small particles. During the measurement, the average particle densities are between 1.3-1.5 g cm‑3, indicating organics and sulfate were dominant in the particles. The densities of smaller particles, i.e. 46 nm, 81nm, showed single peak at 1.3-1.5 g cm‑3, indicating the particles are internal mixed sulfate and organics. While the 150nm and 240 nm particle densities exhibited bimodal distribution with an additional small peak at ˜1.1 g cm‑3, which is considered as external mixed organic

  12. Characteristics of Submicron Aerosols in 2013 summer of Beijing

    NASA Astrophysics Data System (ADS)

    Guo, Song; Hu, Min; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Yusheng; Lu, Sihua; Zeng, Limin; Zhang, Renyi

    2016-04-01

    To characterize the air pollution of North China Plain of China, CAREBEIJING-2013 field campaign (Campaigns of Air quality REsearch in BEIJING and surrounding region) was conducted in summer of 2013. Submicron aerosols were measured at an urban site PKU (Peking University, 39° 59'21"N, 116° 18'25"E) from July 28th to September 31st 2013. A suite of integrated instruments was used to measure the size distribution, effective density and hygroscopicity of ambient particles. The chemical composition of submicron particles were measured by using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (Billerica, MA, USA). The average PM2.5 concentration was 73.0±70.7 μg m-3 during the measurement. The particulate pollution showed distinct 4-7 days cycles controlled by the meteorological conditions. Each cycle started with low PM2.5 mass concentrations (<20 μg m-3), since the air mass was from relatively clean mountainous area. The particle number concentrations were high, but and the sizes were small (<30 nm) at this stage, which can be explained by the new particle formation. In the succeeding days, both the particle mass and size continuously increased. The PM2.5concentration increased rapidly by >60 μg day-1, and the particle mean diameter grew to >100 nm. It is interesting to note that the mean diameters showed similar trend to PM2.5 mass concentrations, indicating the particle pollution attributed to the growth of the newly formed small particles. During the measurement, the average particle densities are between 1.3-1.5 g cm-3, indicating organics and sulfate were dominant in the particles. The densities of smaller particles, i.e. 46 nm, 81nm, showed single peak at 1.3-1.5 g cm-3, indicating the particles are internal mixed sulfate and organics. While the 150nm and 240 nm particle densities exhibited bimodal distribution with an additional small peak at ˜1.1 g cm-3, which is considered as external mixed organic particles or aged

  13. Characteristics of 2-methyltetrols in ambient aerosol in Beijing, China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; Duan, Fengkui; Cheng, Yuan; He, Kebin

    2012-11-01

    PM10 and PM2.5 samples were collected from November, 2010 to October, 2011 at Tsinghua University in Beijing. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the 2-methyltetrols (2-methylthreitol and 2-methylerythritol). A clear seasonal variation in the ambient 2-methyltetrol concentrations was observed, with the highest levels occurring in the summer, followed by autumn, spring and winter. The average concentrations of the 2-methyltetrols in PM10 and PM2.5 were 17.5 ± 15.4 ng m-3 and 13.8 ± 12.2 ng m-3, respectively. The 2-methyltetrols exhibited significant positive correlations with ambient relative humidity and temperature, likely due to the higher isoprene emission strength and enhanced formation yield under higher temperature and humidity conditions. In contrast, there was no relationship between the concentration of 2-methyltetrols and sunshine duration. The significant positive correlation (R2 = 0.76) between 2-methyltetrols and SO42- indicated that high concentrations of SO42- can increase the formation rate of 2-methyltetrols from isoprene. Moreover, 2-methyltetrols were also observed in the winter time in Beijing, illustrating the enhancement of the 2-methyltetrol formation rate by high concentrations of pollutants in ambient aerosol.

  14. Modelling multi-component aerosol transport problems by the efficient splitting characteristic method

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Fu, Kai; Wang, Wenqia

    2016-11-01

    In this paper, a splitting characteristic method is developed for solving general multi-component aerosol transports in atmosphere, which can efficiently compute the aerosol transports by using large time step sizes. The proposed characteristic finite difference method (C-FDM) can solve the multi-component aerosol distributions in high dimensional domains over large ranges of concentrations and for different aerosol types. The C-FDM is first tested to compute the moving of a Gaussian concentration hump. Comparing with the Runge-Kutta method (RKM), our C-FDM can use very large time step sizes. Using Δt = 0.1, the accuracy of our C-FDM is 10-4, but the RKM only gets the accuracy of 10-2 using a small Δt = 0.01 and the accuracy of 10-3 even using a much smaller Δt = 0.002. A simulation of sulfate transport in a varying wind field is then carried out by the splitting C-FDM, where the sulfate pollution is numerically showed expanding along the wind direction and the effects of the different time step sizes and different wind speeds are analyzed. Further, a realistic multi-component aerosol transport over an area in northeastern United States is studied. Concentrations of PM2.5 sulfate, ammonium, nitrate are high in the urban area, and low in the marine area, while sea salts of sodium and chloride mainly exist in the marine area. The normalized mean bias and the normalized mean error of the predicted PM2.5 concentrations are -6.5% and 24.1% compared to the observed data measured at monitor stations. The time series of numerical aerosol concentration distribution show that the strong winds can move the aerosol concentration peaks horizontally for a long distance, such as from the urban area to the rural area and from the marine area to the urban and rural area. Moreover, we also show the numerical time duration patterns of the aerosol concentration distributions due to the affections of the turbulence and the deposition removal. The developed splitting C-FDM algorithm

  15. Winter time chemical characteristics of aerosols over the Bay of Bengal: continental influence.

    PubMed

    Aryasree, S; Nair, Prabha R; Girach, I A; Jacob, Salu

    2015-10-01

    As part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) conducted under the Geosphere Biosphere Programme of Indian Space Research Organisation, ship-based aerosol sampling was carried out over the marine environment of Bay of Bengal (BoB) during the northern winter months of December 2008 to January 2009. About 101 aerosol samples were collected, covering the region from 3.4° to 21° N latitude and 76° to 98° E longitude-the largest area covered-including the south east (SE) BoB for the first time. These samples were subjected to gravimetric and chemical analysis and the total aerosol loading as well the mass concentration of the ionic species namely F(-), Cl(-), Br(-), NO2 (-), NO3 (-), PO4 (2-), SO4 (2-), NH4 (+), etc. and the metallic species, Na, Mg, Ca, K, Al, Fe, Mn, Zn, and Pb were estimated for each sample. Based on the spatial distribution of individual chemical species, the air flow pattern, and airmass back trajectory analysis, the source characteristics of aerosols for different regions of BoB were identified. Significant level of continental pollution was noticed over BoB during winter. While transport of pollution from Indo-Gangetic Plain (IGP) contributed to aerosols over north BoB, those over SE BoB were influenced by SE Asia. A quantitative study on the wind-induced production of sea salt aerosols and a case study on the species dependent effect of rainfall are also presented in this paper. PMID:25994269

  16. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    NASA Astrophysics Data System (ADS)

    Prasad Vadrevu, Krishna; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-10-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2-5.3 km altitude in the forest fire plumes compared to 2.2-3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources.

  17. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Yusuke; Iriana, Windy; Oda, Masafumi; Puriwigati, Astiti; Tohno, Susumu; Lestari, Puji; Mizohata, Akira; Huboyo, Haryono Setiyo

    2014-04-01

    Biomass burning is a significant source of fine particulate matter (PM2.5). Forest, bush, and peat fires in Kalimantan and Sumatra, Indonesia are major sources of transboundary haze pollution in Southeast Asia. However, limited data exist regarding the chemical characteristics of aerosols at sources. We conducted intensive field studies in Riau Province, Sumatra, Indonesia, during the peatland fire and non-burning seasons in 2012. We characterized PM2.5 carbonaceous aerosols emitted from peatland fire based on ground-based source-dominated sampling. PM2.5 aerosols were collected with two mini-volume samplers using Teflon and quartz fiber filters. Background aerosols were also sampled during the transition period between the non-burning and fire seasons. We analyzed the carbonaceous content (organic carbon (OC) and elemental carbon (EC)) by a thermal optical reflectance utilizing the IMPROVE_A protocol and the major organic components of the aerosols by a gas chromatography/mass spectrometry. PM2.5 aerosols emitted from peatland fire were observed in high concentrations of 7120 ± 3620 μg m-3 and were primarily composed of OC (71.0 ± 5.11% of PM2.5 mass). Levoglucosan exhibited the highest total ion current and was present at concentrations of 464 ± 183 μg m-3. The OC/EC ratios (36.4 ± 9.08), abundances of eight thermally-derived carbon fractions, OC/Levoglucosan ratios (10.6 ± 1.96), and Levoglucosan/Mannosan ratios (10.6 ± 2.03) represent a signature profile that is inherent in peatland fire. These data will be useful in identifying contributions from single or multiple species in atmospheric aerosol samples collected from peatland fires.

  18. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols.

  19. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols. PMID:25846360

  20. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments

    SciTech Connect

    Wei-Hsin Chen; Shan-Wen Du; Hsi-Hsien Yang; Jheng-Syun Wu

    2008-05-15

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400{sup o}C are considered. Experimental observations indicate that when the reaction temperature is 1000{sup o}C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400{sup o}C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000{sup o}C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400{sup o}C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000{sup o}C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400{sup o}C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases. 31 refs., 9 figs., 1 tab.

  1. [Characteristics of Number Concentration Size Distributions of Aerosols Under Processes in Beijing].

    PubMed

    Su, Jie; Zhao, Pu-sheng; Chen, Yi-na

    2016-04-15

    The aerosol number concentration size distributions were measured by a Wide-Range Particle Spectrometer (WPS-1000XP) at an urban site of Beijing from 2012 to 2014; and the characteristics of the size distributions in different seasons and weather conditions were discussed. The results showed that the daily average number concentration of Aitken mode aerosols was highest in the spring and lowest in the autumn; the daily average number concentration of accumulation mode aerosols was bigher in the spring and winter, while lowest in summer; and the average concentration of coarse mode was highest during the winter. The Aitken mode particles had the most significant diurnal variations resulted from the traffic sources and the summer photochemical reactions. In the spring, autumn and winter, the number concentrations of accumulation mode of the nighttime was higher than that of the daytime. The coarse mode particles did not have obvious diurnal variation. During the heavy pollution process, the accumulation mode aerosols played a decisive role in PM₂.₅ concentrations and was usually removed by the north wind. The precipitation could effectively eliminate the coarse mode particles, but it bad no obvious effect on the accumulation mode particles under small speed wind and zero speed wind. During the dust process, the concentrations of coarse mode particles increased significantly, while the accumulation mode aerosol concentration was obviously decreased. PMID:27548939

  2. Towards understanding the variability of aerosol characteristics over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Pandey, Satyendra K.

    2016-05-01

    Ground and satellite based measurements show significant loading of atmospheric aerosols over the highly populated Indo-Gangetic Plains with implications to both air quality and regional climate. Recent studies have found varying trends in aerosol loading over this region during different seasons. However, most of these trends were associated or linked to changes in the strength of emission sources of both natural and anthropogenic origin. In this study, using data from multiple satellites (MODIS and MISR) and reanalysis (ECMWF, NCEP) products, we show that emission characteristics over the West or North-western part of India have significant impact on aerosol loading over the IGP irrespective of the seasons. Though it is known that variability in a combination of meteorological parameters impact aerosol loading conditions, we show that it is possible to explain them by using just the wind speed as a proxy. This shows that even slight changes to emission over Northwestern part of the Indian region may have significant impact on aerosol loading conditions over IGP with implications to air quality and regional climate.

  3. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-08-01

    mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode dominated by organics. Particulate NH4NO3 and (NH4)2SO4 appear to be NH3-limited in regimes I and II, but a significant excess of particulate NH4+ in the hot, dry regime III suggests less SO42- and the presence of either organic amines or NH4+-associated organic acids. C-ToF-AMS data were analyzed by Positive Matrix Factorization (PMF), which resolved three factors, corresponding to a hydrocarbon-like OA (HOA), semivolatile OOA (SV-OOA), and low-volatility OOA (LV-OOA). HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Periods characterized by high SV-OOA and LV-OOA were analyzed by filter analysis, revealing a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio), as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Aerosol composition was related to water uptake characteristics, and it is concluded that hygroscopicity is largely controlled by organic mass fraction (OMF). The hygroscopicity parameter κ averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation (Dd). An experiment-averaged κorg of 0.14 was calculated, indicating that the highly-oxidized organic fraction of aerosol in Los Angeles is appreciably

  4. Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.

    2003-01-01

    While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.

  5. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    SciTech Connect

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  6. PHYSICAL CHARACTERISTICS AND HEALTH EFFECTS OF AEROSOLS FROM COLLAPSED BUILDINGS

    EPA Science Inventory

    Airborne pollutants can rise to extreme levels when large buildings fall down. The terrorist attack on New York's World Trade Center (WTC) towers caused the release of an enormous quantity of pulverized building materials and combustion products into the local environment. Partic...

  7. a Study on the Physical and Chemical Properties of Stratospheric Aerosols.

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    The physical and chemical properties of stratospheric aerosols under background and perturbed conditions are discussed. First, a multi-component aerosol physical chemistry model was developed to study the composition and reactivity of stratospheric aerosols. The compositions are predicted from an equilibrium assumption between the condensed-and gas-phases, and they are calculated as a function of ambient temperature, relative humidity, and the total mass of nitric acid and sulfuric acid present per unit volume of air. The water and solute activity parameters in the aerosol model are derived from various laboratory sources, and the set of equilibrium equations are solved using a unique numerical scheme. The aerosol model is applied to study the formation of nitric acid-containing aerosols in the stratosphere. Also, the equilibrium compositions are used to estimate the extent of aqueous phase processing of chlorine species in the aerosol solutions. This processing can contribute to the depletion of the stratospheric ozone layer, especially after major volcanic eruptions where sulfate aerosols are more abundant. Second, a surface chemistry model was constructed that includes Langmuir trace-gas adsorption and desorption, Brunauer, Emmett and Teller adsorption of water vapor, surface poisoning, solvation and diffusion of molecules on the surface, chemical activation and reaction of adsorbates, and product desorption or reaction. This model is used to study the effects of relative humidity and other physical parameters on the efficiency of heterogeneous chemical processes which occur on the surfaces of solid polar stratospheric clouds. These heterogeneous chemical processes are responsible for the formation of the "ozone hole", can contribute to global ozone depletion, and may have tropospheric significance. Finally, a fluid dynamics and thermodynamics model of volcanic eruption columns was used to develop a scheme for predicting the extent of HCl removal from volcanic

  8. Measurements of physical and chemical properties of urban aerosols and their CCN activities in Seoul during the KORUS-AQ pre-campaign

    NASA Astrophysics Data System (ADS)

    Kim, N.; Yum, S. S.; Park, M.; Shin, H. J.; Bae, G. N.; Kwak, K. H.; Park, J. S.; Park, S. M.; Ahn, J.

    2015-12-01

    Interest in cloud condensation nuclei (CCN) has been increasing for the last few decades due to their first order effects on radiative and microphysical properties of clouds. Particularly, scientific understanding of CCN from anthropogenic sources becomes important because it is now considered that large uncertainties in climate change predictions stem from insufficient understanding of CCN. CCN activity is influenced by size and chemical component of aerosols. The KORUS-AQ campaign, jointly organized by National Institute of Environmental Research (NIER) of Korea and National Aeronautics and Space Administration (NASA) aims at understanding various aspects of air quality problem in Korea and will be held in spring, 2016. In preparation for this campaign, pre-campaign was held during May 18-June 13, 2015, in Seoul where numerous local anthropogenic sources exist and influence of Chinese continental outflow directly affects. Here we present some of the important results from the pre-campaign. Chemical properties of aerosols were measured with AMS. Aerosol and CCN number concentrations, aerosol size distribution and aerosol hygroscopic growth factor were measured by CPC, CCN counter, SMPS and H-TDMA, respectively. Average diurnal variation of aerosol number concentration showed three dominant peaks at around 0600_UTC and morning and evening rush hours. Each peak seemed to have different characteristics and therefore detailed analyses of physical and chemical properties of aerosols during the peaks as well as during some special events will be made. The hygroscopicity parameter, kappa, will be estimated by examining CCN activity, H-TDMA measured hygroscopic growth factor and mixing rule of aerosol chemical components, and the result will be compared as well.

  9. Teachers' and Students' Perceptions of Effective Physics Teacher Characteristics

    ERIC Educational Resources Information Center

    Korur, Fikret; Eryilmaz, Ali

    2012-01-01

    Problem Statement: What do teachers and students in Turkey perceive as the common characteristics of effective physics teachers? Purpose of Study: The first aim was to investigate the common characteristics of effective physics teachers by asking students and teachers about the effects of teacher characteristics on student physics achievement and…

  10. 19 CFR 351.411 - Differences in physical characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Differences in physical characteristics. 351.411....411 Differences in physical characteristics. (a) Introduction. In comparing United States sales with... have the same physical characteristics as the merchandise sold in the foreign market, and that...

  11. In situ observations of aerosol physical and optical properties in northern India

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Hyvarinen, A.; Hooda, R. K.; Raatikainen, T. E.; Sharma, V.; Komppula, M.

    2012-12-01

    The southern Asia, including India, is exposed to substantial quantities of particulate air pollution originating mainly from fossil fuel combustion and biomass burning. Besides serious adverse health effects, these aerosols cause a large reduction of solar radiation at the surface accompanied by a substantial atmospheric heating, which is expected to have significant influences on the air temperature, crop yields, livestock and water resources over the southern Asia. The various influences by aerosols in this region depend crucially on the development of aerosol emissions from household, industrial, transportation and biomass burning sectors. The main purpose of this study is to investigate several measured aerosol optical and physical properties. We take advantage of observations from two measurement stations which have been established by the Finnish Meteorological Institute and The Energy and Resources Institute. Another station is on the foothills of Himalayas, in Mukteshwar, about 350 km east of New Delhi at elevation about 2 km ASL. This site is considered as a rural background site. Measurements of aerosol size distribution (7-500 nm), PM10, PM2.5, aerosol scattering and absorption coefficients and weather parameters have been conducted since 2006. Another station is located at the outskirts of New Delhi, in Gual Pahari, about 35 km south of city centre. It is considered as an urban background site. Measurements of aerosol size distribution (7 nm- 10 μm), PM10, PM2.5, aerosol scattering and absorption coefficients, aerosol optical depth, aerosol vertical distribution (LIDAR), aerosol filter sampling for chemical characterization and weather parameters were conducted between 2008 and 2010. On the overall average PM10 and PM2.5 values were about 3-4 times higher in Gual Pahari than in Mukteshwar as expected, 216 and 126 μg m^-3, respectively. However, difference depended much on the season, so that during winter time PM10 and PM2.5 concentrations were about

  12. Physical and Chemical Properties of Aerosols at the Tropical Coastal Site, Trivandrum

    NASA Astrophysics Data System (ADS)

    George, Susan K.; Nair, Prabha R.; Parameswaran, Krishnaswamy; Jacob, Salu; Abraham, Annamma; Abhilash, K. S.

    The influence of tropospheric aerosols on the regional climate is fairly well accepted though there exists large uncertainties in assessing its exact magnitude. This is mainly due to the fact that the aerosol properties are highly variable at short spatial and temporal extents and the information available is rather limited. To overcome these deficiency it is highly essential to gather and analyse long term data covering different seasons over varying climatic regimes. Trivandrum (8.55o N, 77o E), a tropical coastal site situated near the southern tip of Indian Peninsula, is a location where systematic monitoring of different aerosol parameters are being carried out since last two decades. With progressing time new techniques and instruments are also being incorporated. This paper presents the results from the observations on aerosols carried out during the period 2003 to 2005 at this location. Different aerosol properties such as total mass concentration, number density, size distribution, optical depth, chemical composition, etc. are studied systematically during this period. A High Volume Sampler (for measuring total mass loading), Aerosol Spectrometer (for measuring size segregated number density from which size distribution can be derived), and Microtops Sunphotometer (which measures optical depth at 1020 nm) are used to study the physical/optical properties of aerosols. The chemical composition of atmospheric aerosols is examined employing Ion Chromatography, Atomic Absorption Spectroscopy and Inductively Couple Plasma - Atomic Emission Spectroscopy. The mean mass concentration of aerosols observed at this site is 54 µg m-3 , which varies by ±19 µg m-3 depending on season and prevailing meteorology. The aerosol number density is 108 particles/m3 . The mass loading at this location is significantly low compared to the northern parts of India as well as the national ambient air quality standards indicating that the environment is relatively less polluted as

  13. Spectroscopic characteristics and organic carbon contents in the aerosols collected in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Potter, H. J.; Kasaba, T.

    2015-12-01

    Organics in the atmospheric aerosols occupy 20 to 70% of the total mass. Since the proportion of organics is so large that it's important to understand their detailed characteristics. Polymeric compounds called HUmic-Like Substance (HULIS) are known to be present in the atmospheric aerosols. Biomass burning can be a source of HULIS. In this study, atmospheric aerosols were collected at Cape Hedo, a northern tip of Okinawa Island, and we characterized overall features of the organics collected in different seasons. In Okinawa, continental air mass prevails in spring, fall and winter, while maritime air mass from Pacific Ocean prevails in summer. Thus, it is relatively straightforward to identify sources of organics in different seasons. We measured total organic carbon (TOC) and water soluble organic carbon (WSOC) concentrations, and absorbance and fluorescence intensity for the aerosol samples collected during Nov 2012 and July 2014 (n=90). As a result, TOC and WSOC showed almost the same trend, higher concentrations when continental air mass prevailed in fall and winter, while lower concentrations in summer. Percentages of WSOC in TOC accounted for 33-44%. Absorption efficiency, absorbance per 1 ppm organic carbon concentration, of the samples showed higher values in winter and fall, and lower values in summer. Fluorescence efficiency, normalized fluorescence with quinine sulfate per 1 ppm organic carbon concentration, were also different, it is likely that different types of organics were present in the aerosols from different seasons. We are also planning to measure HULIS in the aerosols and will be discussed a link between their contribution and trans-boundary air pollution in Asia.

  14. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  15. Physical characteristics of cinnamon oil microcapsule

    NASA Astrophysics Data System (ADS)

    Hermanto, R. F.; Khasanah, L. U.; Kawiji; Atmaka, W.; Manuhara, G. J.; Utami, R.

    2016-02-01

    Cinnamon (Cinnamomum burmanii) oil products can be obtained from the bark by steam distillation. Essential oils are susceptible to high temperatures, oxidation, UV light, and humidity. Microencapsulation may change essential oils into powder, protect the sensitive core material and reduce the amount of flavor which lost during storage. In the microencapsulation, one of the important factors is the type of coating agent. The objective of this work was to characterize the cinnamon oil microcapsule. Ratio variations of coating agent maltodextrin and gum arabic were (1:0); (0:1); (1:1); (2:3). Physical characteristics such as water content, solubility, bulk density, surface oil, and microencapsulation efficiency of samples were investigated. Results showed that the ratio variations of the coating agent significantly affected the water content, bulk density, surface oil and microencapsulation efficiency but significantly affected the water solubility. Characteristics of selected microcapsule were 6.13% water content; 96.33% solubility; 0.46 g/cm3 bulk density; 2.68% surface oil; 70.68% microencapsulation efficiency and microstructures were rather good.

  16. Physicochemical and Toxicological Characteristics of Semi-volatile Components of Atmospheric Aerosols in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Verma, V.; Pakbin, P.; Cheung, K. L.; Cho, A. K.; Schauer, J. J.; Shafer, M. M.; Kleinman, M. T.; Sioutas, C.

    2010-12-01

    Recent toxicological studies have confirmed the oxidative properties of atmospheric aerosols and their capability to generate reactive oxygen species (ROS) in biological systems (Chen and Lippmann, 2009). While the links between aerosol toxicity and refractory transition metals present in ambient particulate matter (PM) have been documented, there are limited studies investigating the oxidative characteristics of semi-volatile species. The goal of present study is to examine the contribution of semi-volatile compounds in the oxidative potential of atmospheric aerosols. Concentrated ambient and thermodenuded quasi-ultrafine particles (<180 nm) were collected using the versatile aerosol concentration enrichment system (VACES) at an urban site near downtown Los Angeles. A thermodenuder (TD) was used to selectively remove the semi-volatile components of these aerosols over the temperature range of 50-200 oC. The oxidative potential of PM was measured by means of the DTT (dithiothreitol) assay. Detailed chemical analyses of PM samples, including organic and elemental carbon, water soluble elements, inorganic ions and polycyclic aromatic hydrocarbons (PAHs), were conducted to quantify the volatility profiles of different PM species, and also to investigate their effect on the measured oxidative potential. Refractory constituents, such as metals and elemental carbon, were marginally affected by heating, while labile species such as organic carbon and PAHs showed progressive loss in concentration with increase in TD temperature. The DTT-measured oxidative potential of PM was significantly decreased as the aerosols were heated and their semi-volatile components were progressively removed (42 %, 47 % and 66 % decrease in DTT activity at 50, 100 and 200 oC, respectively). Regression analysis performed between chemical constituents and DTT activity showed that the oxidative potential was strongly correlated with organic carbon and PAHs (R≥0.80; p≤0.05). Thus, semi

  17. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Earle, Michael; MacDonald, A. M.; Liu, Peter S.K.; Leaitch, W. R.

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm-3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  18. Remote continental aerosol characteristics in the Rocky Mountains of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Levin, Ezra J. T.

    The Rocky Mountains of Colorado and Wyoming enjoy some of the cleanest air in the United States, with few local sources of particulate matter or its precursors apart from fire emissions, windblown dust, and biogenic emissions. However, anthropogenic influences are also present with sources as diverse as the populated Front Range, large isolated power plants, agricultural emissions, and more recently emissions from increased oil and gas exploration and production. While long-term data exist on the bulk composition of background fine particulate matter at remote sites in the region, few long-term observations exist of aerosol size distributions, number concentrations and size resolved composition, although these characteristics are closely tied to important water resource issues through the potential aerosol impacts on clouds and precipitation. Recent modeling work suggests sensitivity of precipitation-producing systems to the availability of aerosols capable of serving as cloud condensation nuclei (CCN); however, model inputs for these aerosols are not well constrained due to the scarcity of data. In this work I present aerosol number and volume concentrations, size distributions, chemical composition and hygroscopicity measurements from long-term field campaigns. I also explore the volatility of organic material from biomass burning and the potential impacts on aerosol loading. Relevant aerosol observations were obtained in several long-term field studies: the Rocky Mountain Atmospheric Nitrogen and Sulfur study (RoMANS, Colorado), the Grand Tetons Reactive Nitrogen Deposition Study (GrandTReNDS, Wyoming) and as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen project (BEACHON, Colorado). Average number concentrations (0.04 < Dp < 20 mum) measured during the field studies ranged between 1000 -- 2000 cm-3 during the summer months and decreased to 200 -- 500 cm-3 during the winter. These seasonal changes in aerosol

  19. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    NASA Astrophysics Data System (ADS)

    Sun, Xuejin; Zhou, Junhao; Zhou, Yongbo

    2016-06-01

    Aerosol extinction coefficient profile (ECP) is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  20. Concentration characteristics of bromine and iodine in aerosols in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Gao, Yunchuan; Sun, Mingxing; Wu, Xiaowei; Liu, Yongdi; Guo, Yaqi; Wu, Ji

    2010-11-01

    Aerosol samples (TSP and PM 10) during each season were collected at a national monitoring point in Shanghai in 2008. Halogens (Br, I) were determined in samples along with sodium (Na) by ICP-MS and ICP-OES after microwave digestion. In this report we focused on the concentration characteristics of halogen elements Br and I and their seasonal distributions. The mean annual concentrations of total Br and I were 24 ng m -3 and 12 ng m -3 for TSP, 21 ng m -3 and 9 ng m -3 for PM 10, respectively. Concentrations of Br and I in TSP and PM 10 were lowest in summer but an increase occurred in autumn and winter. Water-soluble Br and I accounted for about 32% of the total Br and I in aerosols, and about 68% of Br and I was non soluble which may be non-soluble organic species. These non-soluble organic species are present in aerosols in the possible binding forms as mineral dust, natural organic matter, and adsorption to black carbon or mineral material such as iron oxides. Soluble Br and I in PM 10 extracted by a dilute acid solution (HNO 3 + H 2SO 4) increased by 22% and 18%, respectively, compared with water-soluble Br and I. A positive correlation with Na and sea water enrichment factors for Br and I indicated that bromine and iodine in aerosols originated mostly from marine sources in Shanghai.

  1. Pesticide aerosol characteristics in the vicinity of an agricultural vehicle cab during application.

    PubMed

    Bémer, Denis; Fismes, Joelle; Subra, Isabelle; Blachère, Veronique; Protois, Jean-Claude

    2007-07-01

    Pesticide spraying for crop protection leads to the formation of a mist of droplets, part of which is dispersed into the atmosphere. The characteristics of this aerosol, namely its particle size distribution and concentration, were measured during five campaigns involving cereal crop growing, wine grape culture, and orcharding. The measurement method incorporated a tracer product (fluorescein) with the treatment product; the pesticide aerosol concentration was then deduced from the tracer concentration. This method was validated by comparing the pesticide concentration determined by tracing with the concentration determined by direct measurement of the active substance of the pesticide. Concentration was measured using sampling filters, and particle size distribution was measured using cascade impactors. Instruments were mounted on an agricultural vehicle cab to optimize aerosol characterization, and then the cab's confinement efficiency was determined. Aerosols analyzed were fine, featuring mass median diameters between 4 microm and 15 microm; they are therefore highly dispersive. Their concentration is sufficiently high to justify operator protection by an efficient, filtered-air, pressurized cab, especially in wine grape culture and orcharding, which are the sectors where the highest pesticide transfers have been observed.

  2. Pesticide aerosol characteristics in the vicinity of an agricultural vehicle cab during application.

    PubMed

    Bémer, Denis; Fismes, Joelle; Subra, Isabelle; Blachère, Veronique; Protois, Jean-Claude

    2007-07-01

    Pesticide spraying for crop protection leads to the formation of a mist of droplets, part of which is dispersed into the atmosphere. The characteristics of this aerosol, namely its particle size distribution and concentration, were measured during five campaigns involving cereal crop growing, wine grape culture, and orcharding. The measurement method incorporated a tracer product (fluorescein) with the treatment product; the pesticide aerosol concentration was then deduced from the tracer concentration. This method was validated by comparing the pesticide concentration determined by tracing with the concentration determined by direct measurement of the active substance of the pesticide. Concentration was measured using sampling filters, and particle size distribution was measured using cascade impactors. Instruments were mounted on an agricultural vehicle cab to optimize aerosol characterization, and then the cab's confinement efficiency was determined. Aerosols analyzed were fine, featuring mass median diameters between 4 microm and 15 microm; they are therefore highly dispersive. Their concentration is sufficiently high to justify operator protection by an efficient, filtered-air, pressurized cab, especially in wine grape culture and orcharding, which are the sectors where the highest pesticide transfers have been observed. PMID:17487720

  3. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  4. Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J.

    2011-12-01

    Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal

  5. Comparing Organic Aerosol Composition from Marine Biogenic Sources to Seawater and to Physical Sea Spray Models

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Sanchez, K.; Massoli, P.; Elliott, S.; Burrows, S. M.; Bates, T. S.; Quinn, P.

    2015-12-01

    In much of the marine atmosphere, organic components in aerosol particles have many sources other than sea spray that contribute organic constituents. For this reason, physical sea spray models provide an important technique for studying the organic composition of particles from marine biogenic sources. The organic composition of particles produced by two different physical sea spray models were measured in three open ocean seawater types: (i) Coastal California in the northeastern Pacific, which is influenced by wind-driven, large-scale upwelling leading to productive or eutrophic (nutrient-rich) seawater and high chl-a concentrations, (ii) George's Bank in the northwestern Atlantic, which is also influenced by nutrient upwelling and eutrophic seawater with phytoplankton productivity and high chl-a concentrations, and (iii) the Sargasso Sea in the subtropical western Atlantic, which is oligotrophic and nutrient-limited, reflected in low phytoplankton productivity and low chl-a concentrations. Fourier transform infrared spectroscopy provides information about the functional group composition that represents the marine organic fraction more completely than is possible with techniques that measure non-refractory mass (vaporizable at 650°C). After separating biogenic marine particles from those from other sources, the measured compositions of atmospheric marine aerosol particles from three ocean regions is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. The organic composition of atmospheric primary marine (ocean-derived) aerosol particles is nearly identical to model generated primary marine aerosol particles from bubbled seawater. Variability in productive and non-productive seawater may be caused by the presence of surfactants that can stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components without substantial changes in overall group composition

  6. Characterization of the physical, chemical, and optical properties of atmospheric aerosol particles in New Hampshire

    NASA Astrophysics Data System (ADS)

    Slater, John Frederick

    Tropospheric aerosol particles directly affect the radiative budget of the Earth, and degrade visibility, by scattering and absorbing short-wavelength solar radiation. However, the radiative effect of aerosols is highly uncertain due to the non-uniform spatial distribution of the particles over Earth, their heterogeneous chemical composition, and their variable size. This dissertation quantifies some of the physical, chemical, and optical (radiative) properties of aerosols at different locations within New Hampshire (NH) from spring 2000 to fall 2001. During spring 2000, a 1-month study conducted at a mountaintop location adjacent to the White Mountain National Forest in northern NH showed that synoptic-scale air mass transport heavily influenced aerosol properties, and hence regional visibility. During W/SW flow, aerosol parameters and haziness were generally twice as high as times of N/NE flow. Similar transport dependent results were observed in October 2000 during a regional pollution event. Pollutants built-up in concentration during 22--28 October, culminated on 28 October, and then dropped 10-fold to background levels within a 6-hour period. Synoptic weather conditions during the transition from high to low pollutant levels indicated that an intense frontal boundary traversed the region, serving as a divide between a warm, humid, and polluted air mass from the W/SW, and a cold, dry, and clean air mass advancing out of Canada. Further work connecting air mass transport and aerosol variability in southern NH revealed that maximum aerosol optical depth (AOD) occurred in summer and was primarily associated with W/SW flow. Minimum AOD occurred in winter and was generally associated with N/NE flow. Mass scattering and absorption efficiencies of PM2.5 did not vary significantly between times of transport from different source regions and were very close to theoretical values. Maximum positive values of aerosol direct radiative forcing occurred in winter and maximum

  7. The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Carmichael, G. R.; Woo, J. H.; Qiang, Z.

    2014-12-01

    Recurrent particle matter episodes greatly influence air quality in Northeast Asia. According to many studies, a major reason is long-range transport of air pollutant. Large amount of emission of chemical compounds aggravate air pollution in the region. Emitted air pollutants mainly come from industrialized regions along the East China coast. It can be transported over downwind region by the prevailing westerlies. The long-rang transported fine particle certainly attributes to air quality in downwind region, but there are many unknowns on the quantity, transport pattern, and secondary aerosol production mechanism despite the fact with many studies have been performed. Major contributors of PM2.5 are inorganic secondary aerosols, sulfate, nitrate and ammonium, in Korea. Especially high relative contributions of inorganic secondary aerosols appear for westerly wind cases. The main pathway of production of inorganic secondary aerosols is produced by converting from SO2 and NOx during the long-range transport but the contribution varies dramatically depending on season and wind pattern. Sulfate is consistently the primary contributor of PM2.5 still now but we should more concern nitrate because that NOx emissions of China is increasing steeply since 2000 by leading powerplant, industry, and transport, despite downward trend of SO2. In order to better understand regional air quality modeling of the long-range transport, international study, MICS-Asia phase III, has been initiated with many researchers. We will present chemical characteristics of PM2.5 long-range transport during westerly wind cases focused on secondary aerosol, tracking their transport pattern, and production pathway. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  8. Physics of Stratocumulus Top (POST): turbulence characteristics

    NASA Astrophysics Data System (ADS)

    Jen-La Plante, Imai; Ma, Yongfeng; Nurowska, Katarzyna; Gerber, Hermann; Khelif, Djamal; Karpinska, Katarzyna; Kopec, Marta K.; Kumala, Wojciech; Malinowski, Szymon P.

    2016-08-01

    Turbulence observed during the Physics of Stratocumulus Top (POST) research campaign is analyzed. Using in-flight measurements of dynamic and thermodynamic variables at the interface between the stratocumulus cloud top and free troposphere, the cloud top region is classified into sublayers, and the thicknesses of these sublayers are estimated. The data are used to calculate turbulence characteristics, including the bulk Richardson number, mean-square velocity fluctuations, turbulence kinetic energy (TKE), TKE dissipation rate, and Corrsin, Ozmidov and Kolmogorov scales. A comparison of these properties among different sublayers indicates that the entrainment interfacial layer consists of two significantly different sublayers: the turbulent inversion sublayer (TISL) and the moist, yet hydrostatically stable, cloud top mixing sublayer (CTMSL). Both sublayers are marginally turbulent, i.e., the bulk Richardson number across the layers is critical. This means that turbulence is produced by shear and damped by buoyancy such that the sublayer thicknesses adapt to temperature and wind variations across them. Turbulence in both sublayers is anisotropic, with Corrsin and Ozmidov scales as small as ˜ 0.3 and ˜ 3 m in the TISL and CTMSL, respectively. These values are ˜ 60 and ˜ 15 times smaller than typical layer depths, indicating flattened large eddies and suggesting no direct mixing of cloud top and free-tropospheric air. Also, small scales of turbulence are different in sublayers as indicated by the corresponding values of Kolmogorov scales and buoyant and shear Reynolds numbers.

  9. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  10. Contribution of long-range transported aerosols to aerosol optical and physical properties: 3-year measurements at Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Heo, J.; Kim, S. W.; Kim, J. H.; Ogren, J. A.; Yoon, S. C.

    2015-12-01

    Recently, more attentions have been paid to air quality in East Asia due to the enhanced loading of atmospheric pollutants related to rapid industrialization. Gosan Climate Observatory (GCO), Korea is regarded as an ideal site to study the transport of atmospheric pollutants because it is frequently influenced by various airmasses from China, Korea, Japan and Pacific Ocean. In order to understand aerosol optical and physical properties according to airmass transport routes, three-year (2012-2014) continuous measurements of aerosol scattering/absorption coefficient and number size distribution were analyzed, together with 48-hour backward trajectory calculations. The averaged aerosol absorption (σa) and scattering coefficient (σs) for airmasses transported from North China (NC; 36% of all trajectories) were 6.65 Mm-1 and 94.72 Mm-1 at 550 nm wavelength, respectively, which were similar to those for stagnant airmasses (ST; 22% of all trajectories; σa: 6.26 Mm-1, σs: 93.99 Mm-1). The highest values of σa (7.03 Mm-1) and σs (108.34 Mm-1) were observed when airmasses were traveled from South China (SC; 11% of all trajectories). σa and σs for airmasses from Korean Peninsula (KP; 7% of all trajectories) and Pacific Ocean (PO; 14% of all trajectories; in parenthesis) were 5.63 (2.76) Mm-1 and 73.63 (50.93) Mm-1, respectively. Compared to other airmasses, the higher values of Scattering Angstrom Exponent (SAE) for ST (1.65) is thought to be the build-up of anthropogenic fine particulate pollutants. The Absorption Angstrom Exponent (AAE) was estimated to be 1.32 for NC airmass and 1.02 for SC airmass. Over the study period, 130 days of total 557 days were identified as new particle formation and growth event (NPF) from Scanning Mobility Particle Sizer (SMPS) measurements by Cyclostationary Empirical Orthogonal Function (CSEOF) approach. Especially, 55.4% (72 days) of total 130 NPF days were found when a cold and dry airmass comes from NC after passing the frontal

  11. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  12. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode.

    PubMed

    Pavagadhi, Shruti; Betha, Raghu; Venkatesan, Shriram; Balasubramanian, Rajasekhar; Hande, Manoor Prakash

    2013-04-01

    Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21-23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m(3)) as compared to that during the non-smoke haze period (27.0 μg/m(3)). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.

  13. Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, H. E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.; Thornhill, K. L.; Winstead, E.

    2003-11-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important in this region. NNW had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (<2 km) evenly divided between sea salts, non-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (<2 km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates from Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust. Low-altitude Channel exhibits the highest condensation nuclei (CN) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (≥65%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo in SE Asia reflects enhanced soot.

  14. Identification of characteristic mass spectrometric markers for primary biological aerosol particles and comparison with field data from submicron pristine aerosol particles

    NASA Astrophysics Data System (ADS)

    Freutel, F.; Schneider, J.; Zorn, S. R.; Drewnick, F.; Borrmann, S.; Hoffmann, T.; Martin, S. T.

    2009-04-01

    The contribution of primary biological aerosol (PBA) to the total aerosol particle concentration is estimated to range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that PBA is a major source of particles in the supermicron range, and is also an important fraction of the submicron aerosol. PBA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. For this reason we have performed mass spectrometric laboratory measurements (Aerodyne C-ToF and W-ToF AMS, single particle laser ablation instrument SPLAT) on pure submicron aerosol particles containing typical PBA compounds in order to identify typical mass spectral patterns of these compounds and to explain the observed fragmentation patterns on the basis of molecular structures. These laboratory data were compared to submicron particle mass spectra obtained during AMAZE-08 (Amazonian Aerosol CharacteriZation Experiment, Brazil, February/March 2008). The results indicate that characteristic m/z ratios for carbohydrates (e.g., glucose, saccharose, levoglucosan, mannitol) can be identified, for example m/z = 60(C2H4O2+) or m/z = 61(C2H5O2+). Certain characteristic peaks for amino acids were also identified in the laboratory experiments. In the field data from AMAZE-08, these characteristic peaks for carbohydrates and amino acids were found, and their contribution to the total organic mass was estimated to about 5%. Fragment ions from peptides and small proteins were also identified in laboratory experiments. Larger proteins, however, seem to become oxidized to CO2+ to a large extend in the vaporizing process of the AMS. Thus, detection of proteins in atmospheric aerosol particles with the AMS appears to be difficult.

  15. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  16. On the correlation of output rate and aerodynamic characteristics in vibrating-mesh-based aqueous aerosol delivery.

    PubMed

    Beck-Broichsitter, Moritz; Oesterheld, Nina; Knuedeler, Marie-Christine; Seeger, Werner; Schmehl, Thomas

    2014-01-30

    Aerosolization of aqueous formulations is of special interest for inhalative drug delivery, where an adequate nebulizer performance represents a prerequisite for improving pulmonary therapy. The present study investigated the interplay of output rate and aerodynamic characteristics of different excipient-based formulations and its impact on the atomization process by vibrating-mesh technology (i.e. eFlow(®)rapid). Output rate and aerodynamic characteristics were manipulated by both dynamic viscosity and conductivity of the applied formulation. Supplementation with sucrose and sodium chloride caused a decline (down to ∼0.2 g/min) and elevation (up to ∼1.0 g/min) of the nebulizer output rate, respectively. However, both excipients were capable of decreasing the aerodynamic diameter of produced aerosol droplets from >7.0 μm to values of ≤5.0 μm. Thus, the correlation of output rate and aerodynamic characteristics resulted in linear fits of opposite slopes (R(2)>0.85). Finally, the overall number of delivered aerosol droplets per time was almost constant for sucrose (≤1×10(8) droplets/s), while for sodium chloride a concentration-dependent increase was observed (up to ∼3×10(8) droplets/s). Overall, the current findings illustrated the influence of formulation parameters on the aerosolization process performed by vibrating-mesh technology. Moreover, concentration and charge distribution of aerosol populations supposedly modify the final characteristics of the delivered aerosols.

  17. Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick

    2008-01-01

    A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.

  18. Emissions and Characteristics of Ice Nucleating Particles Associated with Laboratory Generated Nascent Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    McCluskey, C. S.; Hill, T. C. J.; Beall, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Lee, C.; Al-Mashat, H.; Laskina, O.; Trueblood, J.; Grassian, V. H.; Prather, K. A.; Kreidenweis, S. M.; DeMott, P. J.

    2015-12-01

    Accurate emission rates and activity spectra of atmospheric ice nucleating particles (INPs) are required for proper representation of aerosol-cloud interactions in atmospheric modeling studies. However, few investigations have quantified or characterized oceanic INP emissions. In conjunction with the Center for Aerosol Impacts on the Climate and the Environment, we have directly measured changes in INP emissions and properties of INPs from nascent sea spray aerosol (SSA) through the evolution of phytoplankton blooms. Multiple offline and online instruments were used to monitor aerosol chemistry and size, and bulk water characteristics during two phytoplankton bloom experiments. Two methods were utilized to monitor the number concentrations of INPs from 0 to -34 °C: The online CSU continuous flow diffusion chamber (CFDC) and collections processed offline using the CSU ice spectrometer. Single particle analyses were performed on ice crystal residuals downstream of the CFDC, presumed to be INPs, via scanning transmission electron microscopy (STEM) and Raman microspectroscopy. Preliminary results indicate that laboratory-generated nascent SSA corresponds to number concentrations of INPs that are generally consistent with open ocean regions, based on current knowledge. STEM analyses revealed that the sizes of ice crystal residuals that were associated with nascent SSA ranged from 0.3 to 2.5 μm. Raman microspectroscopy analysis of 1 μm sized residuals found a variety of INP identities, including long chain organics, diatom fragments and polysaccharides. Our data suggest that biological processes play a significant role in ocean INP emissions by generating the species and compounds that were identified during these studies.

  19. Analysis of the chemical and physical properties of combustion aerosols: Properties overview

    EPA Science Inventory

    Aerosol chemical composition is remarkably complex. Combustion aerosols can comprise tens of thousands of organic compounds and fragments, refractory carbon, metals, cations, anions, salts, and other inorganic phases and substituents [Hays et al., 2004]. Aerosol organic matter no...

  20. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  1. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-12-01

    For the investigation of megacity emission plume characteristics mobile aerosol and trace gas measurements were carried out in the greater Paris region in July 2009 and January-February 2010 within the EU FP7 MEGAPOLI project (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation). The deployed instruments measured physical and chemical properties of sub-micron aerosol particles, gas phase constituents of relevance for urban air pollution studies and meteorological parameters. The emission plume was identified based on fresh pollutant (e.g., particle-bound polycyclic aromatic hydrocarbons, black carbon, CO2 and NOx) concentration changes in combination with wind direction data. The classification into megacity influenced and background air masses allowed a characterization of the emission plume during summer and winter environmental conditions. On average, a clear increase of fresh pollutant concentrations in plume compared to background air masses was found for both seasons. For example, an average increase of 190% (+ 8.8 ng m-3) in summer and of 130% (+ 18.1 ng m-3) in winter was found for particle-bound polycyclic aromatic hydrocarbons in plume air masses. The aerosol particle size distribution in plume air masses was influenced by nucleation and growth due to coagulation and condensation in summer, while in winter only the latter process (i.e., particle growth) seemed to be initiated by urban pollution. The observed distribution of fresh pollutants in the emission plume - its cross sectional Gaussian-like profile and the exponential decrease of pollutant concentrations with increasing distance to the megacity - are in agreement with model results. Differences between model and measurements were found for plume center location, plume width and axial plume extent. In general, dilution was identified as the dominant process determining the axial variations within the Paris

  2. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-05-01

    For the investigation of megacity emission plume characteristics mobile aerosol and trace gas measurements were carried out in the greater Paris region in July 2009 and January/February 2010 within the EU FP7 MEGAPOLI project. The deployed instruments measured physical and chemical properties of sub-micron aerosol particles, gas phase constituents of relevance for urban air pollution studies and meteorological parameters. The emission plume was identified based on fresh pollutant (e.g. particle-bound polycyclic aromatic hydrocarbons, black carbon, CO2 and NOx) concentration changes in combination with wind direction data. The classification into megacity influenced and background air masses allowed a characterization of the emission plume during summer and winter environmental conditions. On average, a clear increase of fresh pollutant concentrations in plume compared to background air masses was found for both seasons. For example, an average increase of 190% (+8.8 ng m-3) in summer and of 130% (+18.1 ng m-3) in winter was found for particle-bound polycyclic aromatic hydrocarbons in plume air masses. The aerosol particle size distribution in plume air masses was influenced by nucleation and growth due to coagulation and condensation in summer, while in winter only the second process seemed to be initiated by urban pollution. The observed distribution of fresh pollutants in the emission plume - its cross sectional Gaussian-like profile and the exponential decrease of pollutant concentrations with increasing distance to the megacity - are in agreement with model results. Differences between model and measurements were found for plume center location, plume width and axial plume extent. In general, dilution was identified as the dominant process determining the axial variations within the Paris emission plume. For in-depth analysis of transformation processes occurring in the advected plume, simultaneous measurements at a suburban measurement site and a stationary

  3. Aerosol Physical and Chemical Properties Before and After the Manaus Plume in the GoAmazon2014 Experiment

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Barbosa, H. M.; Ferreira De Brito, J.; Wurm, F.; Holanda, B. A.; Carbone, S.; Arana, A.; Cirino, G. G.; Souza, R. A. F. D.; Rizzo, L. V.; Martin, S. T.; Andreae, M. O.; Holben, B. N.; Schafer, J.

    2014-12-01

    As part of the GoAmazon2014 experiment, several aerosol and trace gas monitoring stations are being operated for at least one year before and after the Manaus plume. Three sites are being operated in pristine conditions, with atmospheric properties under natural biogenic conditions. These three sites called T0 are: ATTO (Amazon Tall Tower Observatory), ZF2 ecological research site and a third site called EMBRAPA. After the air masses are exposed to the Manaus plume, one site (called T2) is being operated right on the opposite side of the Negro River under the direct influence of the Manaus plume at 5 Km downwind of Manaus. Finally, at about 150 Km downwind of Manaus is the T3 Manacapuru site. Aerosol chemical composition is being analyzed using filters for fine (PM2.5) and coarse mode aerosol as well as three Aerodyne ACSM (Aerosol Chemical Speciation Monitors) instruments. Aerosol absorption is being studied with several aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using nephelometers. Aerosol size distribution is determined using scanning mobility particle sizers. The aerosol column is measures using AERONET sunphotometers before and after the Manaus plume, as well as several Lidar systems. The three sites before the Manaus plume show remarkable similar variability in aerosol concentrations and optical properties. This pattern is very different at the T2 site, with large aerosol concentrations enhancing aerosol absorption and scattering significantly. The aerosol is very oxidized before being exposed to the Manaus plume, and this pattern changes significantly for T2 and T3 sites, with a much higher presence of less oxidized aerosol. Typical ozone concentrations at mid-day before Manaus plume is a low 10-12 ppb, value that changes to 50-70 ppb for air masses suffering the influence of Manaus plume. A detailed comparison of aerosol characteristics and composition for the several

  4. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kumar, S.; Sharma, D.; Singh, R. P.; Kharol, S. K.; Sharma, M.; Singh, A. K.; Singh, S.; Singh, Atinderpal; Singh, D.

    2014-05-01

    Aerosol emissions from biomass burning are of specific interest over the globe due to their strong radiative impacts and climate implications. The present study examines the impact of paddy crop residue burning over northern India during the postmonsoon (October-November) season of 2012 on modification of aerosol properties, as well as the long-range transport of smoke plumes, altitude characteristics, and affected areas via the synergy of ground-based measurements and satellite observations. During this period, Moderate Resolution Imaging Spectroradiometer (MODIS) images show a thick smoke/hazy aerosol layer below 2-2.5 km in the atmosphere covering nearly the whole Indo-Gangetic Plains (IGP). The air mass trajectories originating from the biomass-burning source region over Punjab at 500 m reveal a potential aerosol transport pathway along the Ganges valley from west to east, resulting in a strong aerosol optical depth (AOD) gradient. Sometimes, depending upon the wind direction and meteorological conditions, the plumes also influence central India, the Arabian Sea, and the Bay of Bengal, thus contributing to Asian pollution outflow. The increased number of fire counts (Terra and Aqua MODIS data) is associated with severe aerosol-laden atmospheres (AOD500 nm > 1.0) over six IGP locations, high values of Ångström exponent (>1.2), high particulate mass 2.5 (PM2.5) concentrations (>100-150 µgm-3), and enhanced Ozone Monitoring Instrument Aerosol Index gradient (~2.5) and NO2 concentrations (~6 × 1015 mol/cm2), indicating the dominance of smoke aerosols from agricultural crop residue burning. The aerosol size distribution is shifted toward the fine-mode fraction, also exhibiting an increase in the radius of fine aerosols due to coagulation processes in a highly turbid environment. The spectral variation of the single-scattering albedo reveals enhanced dominance of moderately absorbing aerosols, while the aerosol properties, modification, and mixing atmospheric

  5. Characteristics of clouds and aerosol indirect effects in the MRI-CGCM3

    NASA Astrophysics Data System (ADS)

    Kawai, H.; Yukimoto, S.; Koshiro, T.; Ose, T.; Tanaka, T. Y.

    2013-12-01

    The two-moment bulk cloud scheme of the MRI-CGCM3 (the MRI-TMBC scheme) was developed by Tomonori Sakami (Yukimoto et al. 2012), and the model participated in CMIP5. Cloud water and ice contents, cloud droplet and ice crystal number concentrations, and cloud cover are the prognostic variables. Moreover, not only aerosol indirect effect for liquid cloud but also that for ice cloud is incorporated in the scheme using five species of aerosol concentrations calculated by the aerosol model MASINGAR mk-2. In the MRI-CGCM2.3 which was used for CMIP3, cloud cover was a diagnostic variable based on the relative humidity and there were no prognostic variables for liquid or ice water. Therefore, the progress of the cloud scheme from CGCM2.3 to CGCM3 is highly significant. On the other hand, there are large uncertainties in many processes in cloud schemes and substantial differences even in the basic climatology of the elements associated with clouds in climate models. Therefore, it is crucially worth exchanging information about such cloud processes, characteristics of simulated clouds, and difficulties related to representation of clouds among model developers of modeling centers. We would like to discuss such issues in our poster presentation with many researchers, introducing the overview of the cloud scheme and showing the basic behaviors related to clouds of the model and the shortage. For example, our model has a significant radiative flux bias over the Southern Ocean as is the case for a lot of climate models. We would like to share the characteristics of the model over the area and discuss the issue with them to find clues to alleviate the biases. The low cloud feedback mechanism in the MRI-CGCM3 in the CMIP5 experiment, which is notably important for a climate change prediction, will be also briefly introduced.

  6. In situ physical and chemical characterisation of the Eyjafjallajökull aerosol plume in the free troposphere over Italy

    NASA Astrophysics Data System (ADS)

    Sandrini, S.; Giulianelli, L.; Decesari, S.; Fuzzi, S.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Chiari, M.; Calzolai, G.; Canepari, S.; Perrino, C.; Facchini, M. C.

    2014-01-01

    Continuous measurements of physical and chemical properties at the Mt. Cimone (Italy) GAW-WMO (Global Atmosphere Watch, World Meteorological Organization) Global Station (2165 m a.s.l.) have allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull (Iceland) eruption of spring 2010. The event affected the Mt. Cimone site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from April 19 to 21 and the second from 18 to 20 May 2010. This paper reports the modification of aerosol characteristics observed during the two episodes, both characterised by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (ionic chromatography, particle induced X-ray emission-particle induced gamma-ray emission (PIXE-PIGE) and inductively coupled plasma mass spectrometry (ICP-MS)) were performed on aerosols collected by ground-level discrete sampling. The resulting database allows the characterisation of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterised by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn) allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m-3, i.e. 40% of total PM10 on 18 May, which was the most intense of the two episodes. These results appear

  7. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols

    NASA Astrophysics Data System (ADS)

    Trainic, M.; Riziq, A. A.; Lavi, A.; Flores, J. M.; Rudich, Y.

    2011-07-01

    The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient RH. The reactions were studied under different relative humidity (RH) conditions, varying from dry conditions (~20 % RH) and up to 90 % RH, covering conditions prevalent in many atmospheric environments. At λ = 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90 %). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ~3.5, and the optical extinction cross-section up to ~250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100nm to 300 nm, as well as with decreasing RH values from 90 % to ~40 %. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50 %, 75 % and 90 % show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ = 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including imidazoles) increases with increasing RH value. A core/shell model used for the investigation of the optical properties of the reaction products of AS 300nm with gas phase glyoxal, shows that the refractive index (RI) of the reaction products are in the range between 1.57-1.71 for the real part and between 0-0.02 for the imaginary part of the RI at 355 nm. The observed increase in the

  8. Comprehensive School Physical Activity Programs: Characteristics of Trained Teachers

    ERIC Educational Resources Information Center

    Centeio, Erin E.; Erwin, Heather; Castelli, Darla M.

    2014-01-01

    As public health concerns about physical inactivity and childhood obesity continue to rise, researchers are calling for interventions that comprehensively lead to more opportunities to participate in physical activity (PA). The purpose of this study was to examine the characteristics and attitudes of trained physical education teachers during the…

  9. Effect of operation conditions of the drop-on-demand aerosol generator on aerosol characteristics: Pseudo-cinematographic and plasma mass spectrometric studies

    NASA Astrophysics Data System (ADS)

    Orlandini v. Niessen, Jan O.; Krone, Karin M.; Bings, Nicolas H.

    2014-02-01

    The recently presented drop-on-demand (DOD) aerosol generator overcomes some of the drawbacks of pneumatic nebulization, as its aerosol is no longer generated by gas-liquid interaction. In the current study, an advanced imaging technique is presented, based on a CCD camera equipped with magnifying telecentric optics to allow for fast, automated and precise aerosol characterization as well as fundamental studies on the droplet generation processes by means of pseudo-cinematography. The DOD aerosol generator is thoroughly characterized regarding its droplet size distribution, which shows few distinct populations rather than a continuous distribution. Other important figures, such as the Sauter diameter (D3,2) of 22 μm and the span of 0.4 were also determined. Additionally, the influence of the electrical operation conditions of the dosing device on the aerosol generation process is described. The number and volume of the generated droplets were found to be very reproducible and user-variable, e.g. from 17 to 27 μm (D3,2), within a span of 0.07-0.89. The performances of different setups of the DOD as liquid sample introduction system in ICP-MS are correlated to the respective achievable aerosol characteristics and are also compared to the performance of a state-of-the-art μ-flow nebulizer (EnyaMist). The DOD system allowed for improved sensitivity, but slightly elevated signal noise and overall comparable limits of detection. The results are critically discussed and future directions are outlined.

  10. Chemical, Physical and Optical Properties of Saharan Dust Aerosols at a Marine Site in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Ortiz Montalvo, D. L.; Mayol Bracero, O. L.; Morales, F.; Sheridan, P.; Ogren, J. A.

    2005-12-01

    Atmospheric dust particles blown from the Sahara across the Atlantic into the Caribbean have an impact on its climate and public health. These particles may play a significant role in radiative forcing, affecting the extinction of solar radiation and thus having an influence on climate. About half of the dust that travels from Africa contains particles that are small enough to inhale. Human breathe them into the respiratory system and they settle in the lungs causing respiratory problems. To have a better understanding of these effects, information is needed on the properties of these aerosols. As part of this study, chemical, physical and optical characterization is being performed on aerosol samples collected at a marine site on the northeastern tip of Puerto Rico (Cabezas de San Juan, Fajardo), during periods with and without Saharan incursions. Stacked-filter units (SFU) are used to collect particles with diameters smaller than 1.7 μm, using Nuclepore, quartz and Teflon filters. These filter samples are analyzed to obtain the chemical composition of the particles. Initially we are focusing on the carbonaceous fraction (elemental and organic carbon, EC, and OC) of the aerosol using thermal/optical analysis. Online measurements of total particle number concentrations and aerosol light scattering coefficients are performed using a condensation particle counter and an integrating nephelometer, respectively. In addition, a sunphotometer, part of AERONET (http://aeronet.gsfc.nasa.gov/), is used to obtain the aerosol optical thickness (AOT). Preliminary results include only samples collected from air masses under the influence of Saharan dust, as signified by AOT satellite images from MODIS and the results from the air masses backward trajectories calculated with the NOAA HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model. In terms of the chemical composition, EC concentrations were at low-to-undetectable levels, indicating that OC concentrations

  11. Carbonaceous aerosol and its characteristics observed in Tokyo and south Kanto region

    NASA Astrophysics Data System (ADS)

    Minoura, Hiroaki; Morikawa, Tazuko; Mizohata, Akira; Sakamoto, Kazuhiko

    2012-12-01

    Due to enforcing vehicle emission reduction requirements in Japan, particulate matter (PM) concentration, especially elemental carbon (EC) concentration in roadside atmosphere, obviously decreased in the last decade. In spite of the previous vehicle emission reduction, EC concentration was not shown a clear decrease, recently. To achieve the PM2.5 environmental standard, measurements based on emission source contribution are desirable. However, source apportionment of carbonaceous aerosol was ambiguous because chemical components are complicated, and the components change through photochemical reaction. The goal of this study is to determine source apportionment for carbonaceous aerosols. Examination of PM2.5 was performed in south Kanto including Tokyo in the summer of 2008 and the winter of 2009. Emissions from the industrial area around Tokyo Bay and the agricultural northern area showed transportation and accumulation due to the seasonal prevailing wind. The emissions formed a geographical distribution due to photochemical reactions. The characteristics of carbonaceous aerosol were obtained using carbon profile analysis and carbon isotope analysis, including the source information such as fossil fuel emission origin, vegetation origin, and combustion product, photochemical reaction product, etc. Soot-EC was found as a substance with fossil fuel origin which did not contain biomass combustion matter, and since it is stable, there was no observed difference by site and a uniform concentration was observed in winter. It became apparent from the carbon isotope analysis using 14C that the carbon from the biomass origin involved 29% in total carbon in the summer, and 48% in winter even at Kudan of central Tokyo.

  12. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Li, Yanpeng; Fu, Honglei; Wang, Wei; Liu, Jun; Meng, Qinglong; Wang, Wenke

    2015-12-01

    In recent years, haze pollution has become one of the most critical environmental issues in Xi'an, China, with particular matter (PM) being one of the top pollutants. As an important fraction of PM, bioaerosols may have adverse effects on air quality and human health. In this study, to better understand the characteristics of such biological aerosols, airborne microbial samples were collected by using an Andersen six-stage sampler in Xi'an from October 8th to 22nd, 2014. The concentration, size distribution and genera of airborne viable bacteria and fungi were comparably investigated during the haze days and non-haze days. Correlations of bioaerosol levels with meteorological parameters and PM concentrations were also examined. The results showed that the daily average concentrations of airborne viable bacteria and fungi during the haze days, 1102.4-1736.5 and 1466.2-1703.9 CFU/m3, respectively, were not only much higher than those during the non-haze days, but also exceeded the recommended permissible limit values. Comparing to size distributions during the non-haze days, slightly different patterns for bacterial aerosols and similar single-peak distribution pattern for fungal aerosols were observed during the haze days. Moreover, more allergic and infectious genera (e.g. Neisseria, Aspergillus, and Paecilomyces) in bioaerosols were identified during the haze days than during non-haze days. The present results reveal that bioaerosols may have more significant effects on public health and urban air quality during the haze days than during non-haze days.

  13. Characteristics of atmospheric aerosol optical depth variation in China during 1993-2012

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Qiu, Jinhuan; Xia, Xiangao; Sun, Ling; Min, Min

    2015-10-01

    The long-term variations of atmospheric aerosol optical depth (AOD) over 14 first-class solar radiation stations in China during 1993-2012 are studied. The AOD at 750 nm wavelength is retrieved with the hourly accumulated direct solar radiation by using a broadband extinction method. The retrievals are validated in comparison with AERONET (Aerosol Robotic Network) and MODIS (Moderate Resolution Imaging Spectroradiometer) AOD products. For the comparison with AERONET, the correlation coefficient (R), mean bias error (MBE) and root mean square error (RMSE) of the monthly mean AODs are respectively 0.848, 0.029 and 0.101. Based on the statistical analysis, the monthly, seasonal and annual AOD variation characteristics are categorized as follow: (1) There are three major types of the seasonal AOD variations, which shows the largest seasonal averaged AOD appearing in spring, summer and winter. The smallest seasonal averaged AOD appears mostly in autumn. (2) Beijing and Guangzhou show a significant decreasing trend of the yearly AOD, while an increasing tendency appears in Zhengzhou, Shanghai, Kunming, Kashi and Wuhan. Although no significant variation trends are found, some fluctuations appear in the 20-year period in other cities. (3) The 20-year mean AOD ranges from 0.135 (Lhasa) to 0.678 (Zhengzhou). The aerosol hygroscopic growth contributes a lot to AOD in major cities in the eastern part of China, while not in most cities in the western part. A simple correction method is applied for enhancing the relationship of AOD and PM2.5 concentration.

  14. [Characteristics of carbonaceous aerosol concentration in snow and ice of glaciers in Tianshan Mountains].

    PubMed

    Wang, Sheng-Jie; Zhang, Ming-Jun; Wang, Fei-Teng; Li, Zhong-Qin

    2012-03-01

    The snow and ice samples, collected at Glacier No. 1 at the headwaters of Urumqi River (UG1) and Glacier No. 51 at Haxilegen of Kuytun River (HG51) in 2002 and 2004, were analyzed for organic carbon (OC) and element carbon (EC) by thermal/ optical reflectance (TOR). The spatio-temporal characteristics and environmental significance of OC and EC concentration were discussed in details. The concentration order of total carbon (TC) was: snowpack of west branch on UG1 (1 943 ng x g(-1)) > snowpack of east branch on UG1 (989 ng x g(-1)) > snowpack of HG51 (150 ng x g(-1)) > glacier ice of east branch on UG1 (77 ng x g(-1)), and the concentration order of OC and EC lay similar as TC. The concentration of OC and EC in snowpack of Tianshan Mountains were 557 ng x g(-1) and 188 ng x g(-1), respectively. Concentration peak of carbonaceous aerosol usually appeared near the dust layer at the bottom section of snowpack, but the some sudden events could increase the concentration in the surface snow. Because of the seasonality of carbon emission (e. g. heating and agricultural activities) and transportation (e. g. atmospheric circulation), the concentration of carbonaceous aerosol increased from July to November with fluctuations. Difference on the order of magnitude might exist between the concentration in snow (firn) and glacier ice, which was influenced by the glacier surroundings, sampling situation and other factors. EC on the surface snow affected the albedo significantly, and an average albedo reduction of 0.22 in the wavelength of 300-700 nm was simulated by SNICAR (snow, ice, and aerosol radiative) model.

  15. Optical, physical and chemical properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Di Biagio, Claudia; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Loisil, Rodrigue; Triquet, Sylvain; Zapf, Pascal; Roberts, Greg; Bourrianne, Thierry; Torres, Benjamin; Blarel, Luc; Sellegri, Karine; Freney, Evelyn; Schwarzenbock, Alfons; Ravetta, François; Laurent, Benoit; Mallet, Marc; Formenti, Paola

    2014-05-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), two intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, 18 June - 11 July 2012, and ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) have been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to

  16. Measurements of the chemical, physical, and optical properties of single aerosol particles

    NASA Astrophysics Data System (ADS)

    Moffet, Ryan Christopher

    Knowledge of aerosol physical, chemical, optical properties is essential for judging the effect that particulates have on human health, climate and visibility. The aerosol time-of-flight mass spectrometer (ATOFMS) is capable of measuring, in real-time, the size and chemical composition of atmospheric aerosols. This was exemplified by the recent deployments of the ATOFMS to Mexico City and Riverside. The ATOFMS provided rapid information about the major particle types present in the atmosphere. Industrial sources of particles, such as fine mode particles containing lead, zinc and chloride were detected in Mexico City. The rapid time response of the ATOFMS was also exploited to characterize a coarse particle concentrator used in human health effects studies. The ATOFMS showed the ability to detect changes in particle composition with a time resolution of 15 min during short 2 hour human exposure studies. As a major component of this work, an optical measurement has been added to the ATOFMS. The scattered light intensity was acquired for each sized and chemically analyzed particle. This scattering information together with the particle aerodynamic diameter, enabled the refractive index and density of the aerosol to be retrieved. This method was validated in the laboratory using different test particles such as oils, aqueous salt solutions and black carbon particles. It was found that the nozzle-type inlet does not evaporate aqueous salt particles as has been observed for aerodynamic lens inlets. These new optical and microphysical measurements were integrated into the ATOFMS for field deployment in Riverside and Mexico City. For both cities, the different mixing states were found to have unique refractive indexes and densities. A fraction of the strongly absorbing elemental carbon particles were observed to have a spherical morphology due to heavy mixing with secondary species. In addition to the quantitative refractive index and effective density measurements

  17. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  18. Characteristics of CALIOP attenuated backscatter noise: implication for cloud/aerosol detection

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Chae, J. H.; Lambert, A.; Zhang, F. F.

    2010-07-01

    To study cloud/aerosol features in the upper troposphere and lower stratosphere (UT/LS) with the NASA's A-Train sensors, a research algorithm is developed for a re-gridded CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Level 1 (L1) backscatter dataset. This paper provides a detailed analysis of the measurement noise of this re-gridded dataset in order to compare the lidar measurements with other collocated measurements (e.g., CloudSat, Microwave Limb Sounder). The re-gridded dataset has a manageable data volume for multi-year analysis. It has a fixed (5 km) horizontal resolution, and the measurement error is derived empirically from the background-corrected backscatter profile on a profile-by-profile basis. The 532-nm and 1064-nm measurement noises, determined from the data at altitudes above 19 km, are analyzed and characterized in terms of the mean (μ), standard deviation (σ), and normalized probability density function (PDF). These noises show a larger variance over landmasses and bright surfaces during day, and in regions with enhanced flux of energetic particles during night, where the instrument's ability for feature detection is slightly degraded. An increasing trend in the nighttime 1064-nm σ appears to be significant, which likely causes the increasing differences in cloud occurrence frequency between the 532-nm and 1064-nm channels. Most of the CALIOP backscatter noise distributions exhibit a Gaussian-like behavior but the nighttime 532-nm perpendicular measurements show multi-Gaussian characteristics. We apply σ - based thresholds to detect cloud/aerosol features in the UT/LS from the subset L1 data. The observed morphology is similar to that from the Level 2 (L2) 05km_CLAY+05km_ALAY product, but the occurrence frequency obtained in this study is slightly lower than the L2 product due to differences in spatial averaging and detection threshold. In the case where the measurement noises of two data sets are different, the normalized PDF has

  19. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan.

    PubMed

    Fang, Guor-Cheng; Lin, Shih-Chieh; Chang, Shih-Yu; Lin, Chuan-Yao; Chou, Charles-C K; Wu, Yun-Jui; Chen, Yu-Chieh; Chen, Wei-Tzu; Wu, Tsai-Lin

    2011-06-01

    In autumn of 2008, the chemical characteristics of major secondary ionic aerosols at a suburban site in central Taiwan were measured during an annually occurring season of high pollution. The semicontinuous measurement system measured major soluble inorganic species, including NH(4)(+), NO(3)(-), and SO(4)(2-), in PM(10) with a 15 min resolution time. The atmospheric conditions, except for the influences of typhoons, were dominated by the local sea-land breeze with clear diurnal variations of meteorological parameters and air pollutant concentrations. To evaluate secondary aerosol formation at different ozone levels, daily ozone maximum concentration (O(3,daily max)) was used as an index of photochemical activity for dividing between the heavily polluted period (O(3,daily max) ≧80 ppb) and the lightly polluted period (O(3,daily max)<80 ppb). The concentrations of PM(10), NO(3)(-), SO(4)(2-), NH(4)(+) and total major ions during the heavily polluted period were 1.6, 1.9, 2.4, 2.7 and 2.3 times the concentrations during the lightly polluted period, respectively. Results showed that the daily maximum concentrations of PM(10) occurred around midnight and the daily maximum ozone concentration occurred during daytime. The average concentration of SO(2) was higher during daytime, which could be explained by the transportation of coastal industry emissions to the sampling site. In contrast, the high concentration of NO(2) at night was due to the land breeze flow that transport inland urban air masses toward this site. The simulations of breeze circulations and transitions were reflected in transports and distributions of these pollutants. During heavily polluted periods, NO(3)(-) and NH(4)(+) showed a clear diurnal variations with lower concentrations after midday, possibly due to the thermal volatilization of NH(4)NO(3) during daytime and transport of inland urban plume at night. The diurnal variation of PM(10) showed the similar pattern to that of NO(3)(-) and NH(4

  20. IRRADIATION EFFECTS ON THE PHYSICAL CHARACTERISTICS OF SEWAGE SLUDGE

    SciTech Connect

    Lee, M-J.; Lee, J-K.; Yoo, D-H.; Ho, K.

    2004-10-05

    The radiation effects on the physical characteristic of the sewage sludge were studied in order to obtain information which will be used for study on the enhancement of the sludge's dewaterability. Water contents, capillary suction time, zeta potential, irradiation dose, sludge acidity, total solid concentration, sludge particle size and microbiology before and after irradiation were investigated. Irradiation gave an effect on physical characteristics sludge. Water content in sludge cake could be reduced by irradiation at the dose of 10kGy.

  1. The Nevada railroad system: Physical, operational, and accident characteristics

    SciTech Connect

    1991-09-01

    This report provides a description of the operational and physical characteristics of the Nevada railroad system. To understand the dynamics of the rail system, one must consider the system`s physical characteristics, routing, uses, interactions with other systems, and unique operational characteristics, if any. This report is presented in two parts. The first part is a narrative description of all mainlines and major branchlines of the Nevada railroad system. Each Nevada rail route is described, including the route`s physical characteristics, traffic type and volume, track conditions, and history. The second part of this study provides a more detailed analysis of Nevada railroad accident characteristics than was presented in the Preliminary Nevada Transportation Accident Characterization Study (DOE, 1990).

  2. Dry Lung as a Physical Model in Studies of Aerosol Deposition.

    PubMed

    Morozov, Victor N; Kanev, Igor L

    2015-10-01

    A new physical model was developed to evaluate the deposition of micro- and nanoaerosol particles (NAPs) into the lungs as a function of size and charges. The model was manufactured of a dry, inflated swine lung produced by Nasco company (Fort Atkinson, WI). The dry lung was cut into two lobes and a conductive tube was glued into the bronchial tube. The upper 1-2-mm-thick layer of the lung lobe was removed with a razor blade to expose the alveoli. The lobe was further enclosed into a plastic bag and placed within a metalized plastic box. The probability of aerosol deposition was calculated by comparing the size distribution of NAPs passed through the lung with that of control, where aerosol passed through a box bypassing the lung. Using this new lung model, it was demonstrated that charged NAPs are deposited inside the lung substantially more efficiently than neutral ones. It was also demonstrated that deposition of neutral NAPs well fits prediction of the Multiple-Path Particle Dosimetry (MPPD) model developed by the Applied Research Associates, Inc. (ARA).

  3. ERP differences between processing of physical characteristics and personality attributes

    PubMed Central

    2012-01-01

    Background Limited data from behavioral and brain-imaging studies indicate that personality traits and physical characteristics are processed differently by the brain. Additionally, electrophysiological results of studies comparing the processing of positive and negative words have produced mixed results. It is therefore not clear how physical and personality attributes with emotional valence (i.e., positive and negative valence) are processed. Thus, this study aimed to examine the neural activity associated with words describing personality traits and physical characteristics with positive or negative emotional valence using Event Related Potentials (ERPs). Methods A sample of 15 healthy adults (7 men, 8 women) participated in a computerized word categorization task. Participants were asked to categorize visual word stimuli as physical characteristics or personality traits, while ERPs were recorded synchronously. Results Behavioral reaction times to negative physical stimuli were shorter compared to negative personality words, however reaction times did not significantly differ for positive stimuli. Electrophysiological results showed that personality stimuli elicited larger P2 and LPC (Late Positive Component) amplitudes compared to physical stimuli, regardless of negative or positive valence. Moreover, negative as compared with positive stimuli elicited larger P2 and LPC amplitudes. Conclusion Personality and physical stimuli were processed differently regardless of positive or negative valence. These findings suggest that personality traits and physical characteristics are differentially classified and are associated with different motivational significance. PMID:22967478

  4. Physical characteristics of welding arc ignition process

    NASA Astrophysics Data System (ADS)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  5. The physical characteristics of satellite surfaces

    NASA Astrophysics Data System (ADS)

    Veverka, J.; Thomas, P.; Johnson, T. V.; Matson, D.; Housen, K.

    Both exogenic and endogenic effects have been proposed to explain the major observed characteristics of satellite surfaces. The current view is that the basic properties of most surfaces result from the intrinsic composition of a body and its geologic history. Exogenic effects have, however, played a role in modifying the appearance of nearly all surfaces. The most important exogenic effect is impact cratering, one manifestation of which is the production of micrometeoroid gardened regoliths on airless bodies. On large, silicate bodies the micrometeoroid bombardment can produce an optically mature, dark agglutinate-rich soil; the nature of regoliths on predominantly icy satellites remains uncertain. Direct accumulation of infalling material does not appear to play a major role in modifying most surfaces. Solar wind radiation effects have not altered greatly the optical properties of solar system objects; magnetospheric charged particles may have modified the optical properties of some outer planet satellites (e.g., sulfur ion bombardment in the case of some of the satellites of Jupiter). Other effects, such as aeolian and liquid/solid chemical weathering, may be important on satellites with atmospheres like Titan and Triton.

  6. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  7. New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Ji, D. S.; Liu, Z. R.; Hu, B.; Wang, L. L.; Huang, X. J.; Wang, Y. S.

    2015-07-01

    In recent years, an increasing amount of attention has been paid to heavy haze pollution in Beijing, China. In addition to Beijing's population of approximately 20 million and its 5 million vehicles, nearby cities and provinces are host to hundreds of heavily polluting industries. In this study, a comparison between observations in January 2013 and January 2014 showed that non-refractory PM1 (NR-PM1) pollution was weaker in January 2014, which was primarily caused by variations in meteorological conditions. For the first time, positive matrix factorization (PMF) was applied to the merged high-resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer measurements in Beijing, and the sources and evolution of NR-PM1 in January 2014 were investigated. The two factors, NO3-OA1 and NO3-OA2, were primarily composed of ammonium nitrate, and each showed a different degree of oxidation and diurnal variation. The organic fraction of SO4-OA showed the highest degree of oxidation of all PMF factors. The hydrocarbon-like organic aerosol (OA) and cooking OA factors contained negligible amounts of inorganic species. The coal combustion OA factor contained a high contribution from chloride in its mass spectrum. The NR-PM1 composition showed significant variations in January 2014, in which the contribution of nitrate clearly increased during heavy pollution events. The most effective way to control fine particle pollution in Beijing is through joint prevention and control measures at the regional level, rather than a focus on an individual city, especially for severe haze events.

  8. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A.; Sullivan, A. P.; Hennigan, C. J.; Weber, R. J.; Nenes, A.

    2008-02-01

    In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH4)2SO4) in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH4)2SO4. From our analysis, average thermodynamic properties (i.e, molar volume) are determined for samples using our newly developed Köhler Theory Analysis (KTA) method. The molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol-1 and 780±231 g mol-1, respectively. KTA also suggests that the relative proportion (in moles) of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.

  9. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A.; Nenes, A.; Sullivan, A. P.; Hennigan, C. J.; Weber, R. J.

    2007-03-01

    In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH4)2SO4) in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH4)2SO4. For our analysis, average thermodynamic properties (i.e., molar volume) are determined for samples using our newly developed Köhler Theory Analysis (KTA) method. We have found that, the molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol-1 and 780±231 g mol-1, respectively. KTA also suggests that the relative proportion (in moles) of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.

  10. Retrieval of effective complex refractive index from intensive measurements of characteristics of ambient aerosols in the boundary layer.

    PubMed

    Zhang, Xiaolin; Huang, Yinbo; Rao, Ruizhong; Wang, Zhien

    2013-07-29

    Aerosol complex refractive index (ACRI) has attracted intensive attentions due to its significance in modeling aerosol radiative effects. Determinations of ACRI from surface measurements of aerosol scattering and absorption coefficients as well as number size distributions during June, 2008 based on an iterative Mie algorithm were performed. The aim of our study was to introduce an inversion approach with the merits of high time-resolutions to retrieve the optically effective ACRI, especially its imaginary part. Based on simultaneous measurements of aerosol characteristics, mean ACRI value of 1.50 ( ± 0.34)-i0.025 ( ± 0.015) at 550 nm in Hefei in summer was deducted. The lower imaginary parts with higher single scattering albedos and lower scattering Angstrom exponents were obtained for haze periods compared with nonhaze conditions with similar air-mass back-trajectories, indicating more large and scattering particles contributing to the formation of haze episodes. The derived imaginary parts of ACRI related to agricultural biomass burning were in the range from 0.013 to 0.029 at 550 nm. Significant negative correlations between retrieved imaginary parts of ACRI and measured single scattering albedos indicate that our retrieval approach is a reasonable method for determining the imaginary parts of complex refractive indices of aerosol particles.

  11. Characteristics and Global Impact of Aerosols from Southern Africa and Eastern Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    Supported mainly by the NASA GACP and ACMAP, we have made significant progress in the global modeling of tropospheric aerosols and their precursors in the past few years, especially in the development of the GOCART model, simulation of anthropogenic and natural aerosols, data analysis of field observations and satellite retrievals, assessment of global and regional budgets, estimate of aerosol direct radiative forcing, and aerosol forecasting and data analysis for the ACE-Asia field experiment. Our results and findings are summarized in Chin et al. Model calculated multiple-year optical thickness for individual and total aerosols are at internet. These results have been frequently used by other groups, for example, to impose initial conditions for regional models, provide dust source functions for other global models, supply aerosol fields for chemistry and climate models, help data group interpret their measurements, select monitoring sites for ground observation network, and assist satellite retrievals.

  12. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols

    NASA Astrophysics Data System (ADS)

    Trainic, M.; Abo Riziq, A.; Lavi, A.; Flores, J. M.; Rudich, Y.

    2011-09-01

    The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient relative humidity (RH). Our experiments imitate an atmospheric scenario of a dry particle hydration at ambient RH conditions in the presence of glyoxal gas followed by efflorescence due to decrease of the ambient RH. The reactions were studied under different RH conditions, starting from dry conditions (~20% RH) and up to 90% RH, covering conditions prevalent in many atmospheric environments, and followed by consequent drying of the reacted particles before their analysis by the aerosol mass spectrometer (AMS), cavity ring down (CRD) and scanning mobility particle sizer (SMPS) systems. At λ = 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90%). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ~3.5, and the optical extinction cross-section up to ~250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100 nm to 300 nm, as well as with decreasing RH values from 90% to ~40%. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50%, 75% and 90% show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ = 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including

  13. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 µm. The aerosol yield w...

  14. Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Kuang, Bin Yu; Lin, Peng; Hu, Min; Yu, Jian Zhen

    2016-04-01

    Organosulfates (OSs) have been detected in various atmospheric environments, but their particle size distribution characteristics are unknown. In this work, we examined their size distributions in ambient aerosols to gain insights into the formation processes. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor at a receptor site in Hong Kong in both summer and winter and in Nansha in the Pearl River Delta in winter. The humic-like substances fraction in the size-segregated samples was isolated and analyzed using electrospray ionization coupled with an Orbitrap Ultra High Resolution Mass Spectrometer. Through accurate mass measurements, ∼190 CHOS and ∼90 CHONS formulas were tentatively identified to be OS compounds. Among them, OS compounds derived from isoprene, α-/β-pinene, and limonene and alkyl OSs having low double bond equivalents (DBE = 0,1) and 0-2 extra O beyond those in -OSO3 were found with high intensity. The biogenic volatile organic compounds-derived OS formulas share a common characteristic with sulfate in that the droplet mode dominated, peaking in either 0.56-1.0 or 1.0-1.8 μm size bin, reflecting sulfate as their common precursor. Most of these OSs have a minor coarse mode, accounting for 0-45%. The presence of OSs on the coarse particles is hypothesized to be a result of OSs on small particle (<0.32 μm) coagulating with coarse particles, as the abundance ratios of OS to non-sea-salt sulfate present on the coarse particles were similar to those on particles <0.32 μm. Among a few pairs of CHONS and CHOS that could be linked up through hydrolysis of a nitrooxy group in the CHONS form (e.g., m/z 294: C10H16O7NS- vs. m/z 249 C10H17O5S- from α/β-pinene, differing by (+H2O-HNO3)), the CHONS compounds had an enhanced coarse mode presence. This could be interpreted as a result of slower hydrolysis of the CHONS compounds on the alkali coarse particles. The low DBE alkyl OS compounds have a

  15. Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005-2010) over Beijing, China

    NASA Astrophysics Data System (ADS)

    Cao, Chunxiang; Zheng, Sheng; Singh, Ramesh P.

    2014-12-01

    Multi-satellite sensors are capable of monitoring transport and characteristics of dust storms and changes in atmospheric parameters along their transport. The present paper discusses aerosol optical properties and meteorological parameters during major dust storm events occurred in the period 2005-2010 over Beijing, China. The back trajectory model shows that the dust is transported from the Inner Mongolia and Mongolia arid regions to Beijing. High aerosol optical depth (AOD) at the wavelength 675 nm and low Ångström exponent (AE) values in the wavelength 440-870 nm are observed during dusty days. The aerosol size distribution (ASD) in coarse mode shows a large increase in the volume during dusty days. The single scattering albedo (SSA) increases with higher wavelength on dusty days, and is generally found to be higher compared to the days prior to and after the dust events, indicating the presence of high concentrations of scattering particles due to dust storm events. The physico-chemical properties of aerosols during dusty and non dusty days show distinct characteristics as reflected from the changes in the real and imaginary parts of refractive index (RI). In addition, the CO volume mixing ratio (COVMR) from Atmospheric Infrared Sounder (AIRS) shows a pronounced decrease on dusty days, while the H2O mass mixing ratio (H2OMMR) shows enhanced signal. Furthermore, enhanced level of water vapor (WV) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is also observed in and around Beijing over the dust storms track.

  16. Characteristics of Missing Physical Activity Data in Children and Youth

    ERIC Educational Resources Information Center

    Zhuang, Jie; Chen, Peijie; Wang, Chao; Huang, Liang; Zhu, Zheng; Zhang, Wenjie; Fan, Xiang

    2013-01-01

    Purpose: The purpose of this study was to investigate the characteristics of missing physical activity (PA) data of children and youth. Method: PA data from the Chinese City Children and Youth Physical Activity Study ("N" = 2,758; 1,438 boys and 1,320 girls; aged 9-17 years old) were used for the study. After the data were sorted by the…

  17. Relationship between aerosol characteristics and altitude based on multi-measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Ohshima, Tsubasa; Fujito, Toshiyuki; Sano, Itaru; Mukai, Sonoyo

    2010-10-01

    The suspending particulate matter (PM2.5) is a typical indicator of small particles in the atmosphere. Accordingly in order to monitor the air quality, sampling of PM2.5 has been widely undertaken over the world, especially in the urban cities. On the other hand, it is known that the sun photometry provides us with the aerosol information, e.g. aerosol optical thickness (AOT), aerosol size information and so on. Simultaneous measurements of PM2.5 and the AOT have been performed at a NASA/AERONET (Aerosol Robotics Network) site in urban city of Higashi-Osaka in Japan since March 2004, and successfully provided a linear correlation between PM2.5 and AOT in separately considering with several cases, e.g. usual, anthropogenic aerosols, dust aerosols and so on. This fact suggests that the vertical distribution also should be taken into account separately for each aerosol type. In this work, vertical profiles of atmospheric aerosols are considered based on combination use of photometric data with AERONET, LIDAR (Light Detection and Ranging) measurements and model simulations.

  18. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  19. Characteristics and Mechanism of Cu Films Fabricated at Room Temperature by Aerosol Deposition.

    PubMed

    Lee, Dong-Won; Kwon, Oh-Yun; Cho, Won-Ju; Song, Jun-Kwang; Kim, Yong-Nam

    2016-12-01

    We were successful in growing a dense Cu film on Al2O3 substrates at room temperature using an aerosol deposition (AD) method. The characteristics of Cu films were investigated through electrical resistivity and X-ray photoelectron spectroscopy (XPS). The resistivity of Cu films was low (9.2-12.5 μΩ cm), but it was five to seven times higher than that of bulk copper. The deterioration of the resistivity indicates that a Cu2O phase with CuO occurs due to a particle-to-particle collision. Moreover, the growth of Cu films was investigated by observing their microstructures. At the initial stage in the AD process, the impacted particles were flattened and deformed on a rough Al2O3 substrate. The continuous collision of impacted particles leads to the densification of deposited coating layers due to the plastic deformation of particles. The bonding between the Cu particles and the rough Al2O3 substrate was explained in terms of the adhesive properties on the surface roughness of Al2O3 substrates. It was revealed that the roughness of substrates was considerably associated with the mechanical interlocking between Cu particles and rough Al2O3 substrate. PMID:27009529

  20. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  1. Characteristics and Mechanism of Cu Films Fabricated at Room Temperature by Aerosol Deposition

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Won; Kwon, Oh-Yun; Cho, Won-Ju; Song, Jun-Kwang; Kim, Yong-Nam

    2016-03-01

    We were successful in growing a dense Cu film on Al2O3 substrates at room temperature using an aerosol deposition (AD) method. The characteristics of Cu films were investigated through electrical resistivity and X-ray photoelectron spectroscopy (XPS). The resistivity of Cu films was low (9.2-12.5 μΩ cm), but it was five to seven times higher than that of bulk copper. The deterioration of the resistivity indicates that a Cu2O phase with CuO occurs due to a particle-to-particle collision. Moreover, the growth of Cu films was investigated by observing their microstructures. At the initial stage in the AD process, the impacted particles were flattened and deformed on a rough Al2O3 substrate. The continuous collision of impacted particles leads to the densification of deposited coating layers due to the plastic deformation of particles. The bonding between the Cu particles and the rough Al2O3 substrate was explained in terms of the adhesive properties on the surface roughness of Al2O3 substrates. It was revealed that the roughness of substrates was considerably associated with the mechanical interlocking between Cu particles and rough Al2O3 substrate.

  2. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts

    PubMed Central

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-01-01

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution. PMID:27782166

  3. Oak Ridge Reservation. Physical Characteristics and National Resources

    SciTech Connect

    Parr, Patricia Dreyer; Joan, F. Hughes

    2006-10-09

    The topology, geology, hydrology, vegetation, and wildlife of the Oak Ridge Reservation (ORR) provide a complex and intricate array of resources that directly impact land stewardship and use decisions. The purpose of this document is to consolidate general information regarding the natural resources and physical characteristics of the ORR.

  4. Assessment of mild steel damage characteristics by physical methods

    NASA Astrophysics Data System (ADS)

    Botvina, L. R.; Soldatenkov, A. P.; Levin, V. P.; Tyutin, M. R.; Demina, Yu. A.; Petersen, T. B.; Dubov, A. A.; Semashko, N. A.

    2016-01-01

    The deformation and fracture localization characteristics are estimated by the methods of replicas, acoustic emission, metal magnetic memory, ultrasonic attenuation, microhardness, and electrical resistance. The relation between the estimated physical parameters on the one hand and the plastic zone size and the microcrack concentration in this zone, on the other, is considered.

  5. Male Counselor Gender Role Identity: Sexual Orientation and Physical Characteristics.

    ERIC Educational Resources Information Center

    Zanone, Charles F., IV; And Others

    This study hypothesized that male counselors whose sexual orientation and physical characteristics do not conform to conventional notions of masculinity (those who have had homosexual experiences and who do not fit the mesomorphic ideal) will be less traditional in their gender role attitudes, behaviors, and beliefs than those who adhere to more…

  6. Effect of adjuvant physical properties on spray characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of adjuvant physical properties on spray characteristics were studied. Dynamic surface tension was measured with a Sensa Dyne surface tensiometer 6000 using the maximum bubble pressure method. Viscosity was measured with a Brookfield synchro-lectric viscometer model LVT using a UL adap...

  7. Characteristics of aerosol size distributions and chemical compositions during wintertime pollution episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Zirui; Hu, Bo; Zhang, Junke; Yu, Yangchun; Wang, Yuesi

    2016-02-01

    To characterize the features of particle pollution, continuous measurements of particle number size distributions and chemical compositions were performed at an urban site in Beijing in January 2013. The particle number and volume concentration from 14 nm to 1000 nm were (37.4 ± 15.3) × 103 cm- 3 and (85.2 ± 65.6) μm3 cm- 3, respectively. N-Ait (Aitken mode) particles dominated the number concentration, whereas N-Acc (accumulation mode) particles dominated the volume concentration. Submicron particles were generally characterized by a high content of organics and SO42 -, and a low level of NO3- and Cl-. Two types of pollution episodes were observed, characterized by the "explosive growth" (EXP) and "sustained growth" (SUS) of PM2.5. Fine particles greater than 100 nm dominated the volume concentration during the ends of these pollution episodes, shifting the maximum of the number size distribution from 60 nm to greater than 100 nm in a few hours (EXP) or a few days (SUS). Secondary transformation is the main reason for the pollution episodes; SO42 -, NO3- and NH4+ (SNA) accounted for approximately 42% (EXP) and greater than 60% (SUS) of the N-Acc particle mass increase. The size distributions of particulate organics and SNA varied on timescales of hours to days, the characteristics of which changed from bimodal to unimodal during the evolution of haze episodes. The accumulation mode (peaking at approximately 500-700 nm) was dominated by organics that appeared to be internally mixed with nitrate or sulfate. The sulfate was most likely formed via heterogeneous reactions, because the SOR was constant under dry conditions (RH < 50%) and began to increase when RH > 50%, suggesting an important contribution from heterogeneous reactions with abundant aerosol water under wet conditions. Finally, the correlations between [NO3-]/[SO42 -] and [NH4+]/[SO42 -] suggest that the homogenous reaction between HNO3 and NH3 dominated the formation of nitrate under conditions of

  8. Temporal variability in Chemical and Stable isotopic characteristics of ambient bulk aerosols over a coastal environment of India

    NASA Astrophysics Data System (ADS)

    Agnihotri, R.; Karapurkar, S. G.; Sarma, V. V.; Praveen, P.; Kumar, M. D.

    2012-12-01

    Atmospheric carbonaceous aerosols are known to influence regional biogeochemical cycles of carbon (C) and nitrogen (N) in addition to regional radiation budgets. Owing to multiplicity of primary sources of natural and anthropogenic origin, their detailed chemical and isotopic characterization can greatly help in source apportionment and identifying secondary processes. From the roof of NIO-Goa (India) [15.46οN, 73.8oE; at ~55.8 MASL], atmospheric bulk aerosols (n=22) were collected on Quartz filters, from 2009 December to January 2011 covering entire 2010 (except monsoon period) to investigate temporal variability in their chemical and isotopic characteristics of the carbonaceous fraction i.e. TC, TOC and TN mass concentrations and their stable isotopic ratios (δ13CTC, δ13CTOC and δ15NTN). Both δ13CTC and δ13CTOC varied in narrow ranges (-24.9±1.1‰, -25.7±0.9‰ respectively), but significant differences were observed between the two during pre-monsoon months (as high as 2.3‰), possibly due to mixing of inorganic mineral dust. δ15NTN values showed a wide range of variability (average = 13.6±7.2‰), with significantly lower values (~2-5‰; as reported earlier by Agnihotri et al. 2011) during pre-monsoon period compared to those during winter (as high as ~26‰). Using δ13CTC values and two end-member mixing model (assuming δ13C of marine and continental carbon as -21 and -27‰ respectively), the average marine carbon fraction for Goa aerosols was estimated as 36±18.5%, significantly higher than reported for Chennai aerosols (~19%) (Pavuluri et al., 2011), but close to the reported average for marine aerosols at Bermuda (38%) (Turekian et al., 2003). Chemical and isotopic characteristics of ambient aerosols over Goa along with contemporaneous meteorological data indicate that winter aerosols contain significant proportion of carbonaceous fraction originated from biomass burning and other anthropogenic activities carried out in northern parts of

  9. Measurement of physical characteristics of materials by ultrasonic methods

    DOEpatents

    Lu, Wei-yang; Min, Shermann

    1998-01-01

    A method is described for determining and evaluating physical characteristics of a material. In particular, the present invention provides for determining and evaluating the anisotropic characteristics of materials, especially those resulting from such manufacturing processes as rolling, forming, extruding, drawing, forging, etc. In operation, a complex ultrasonic wave is created in the material of interest by any method. The wave form may be any combination of wave types and modes and is not limited to fundamental plate modes. The velocity of propagation of selected components which make up the complex ultrasonic wave are measured and evaluated to determine the physical characteristics of the material including, texture, strain/stress, grain size, crystal structure, etc.

  10. Measurement of physical characteristics of materials by ultrasonic methods

    DOEpatents

    Lu, W.Y.; Min, S.

    1998-09-08

    A method is described for determining and evaluating physical characteristics of a material. In particular, the present invention provides for determining and evaluating the anisotropic characteristics of materials, especially those resulting from such manufacturing processes as rolling, forming, extruding, drawing, forging, etc. In operation, a complex ultrasonic wave is created in the material of interest by any method. The wave form may be any combination of wave types and modes and is not limited to fundamental plate modes. The velocity of propagation of selected components which make up the complex ultrasonic wave are measured and evaluated to determine the physical characteristics of the material including, texture, strain/stress, grain size, crystal structure, etc. 14 figs.

  11. Influence of temperature and artificially-created physical barriers on the efficacy of synergized pyrethrin aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flour mills in the United States are utilizing synergized pyrethrin aerosol for management of stored product insects. However, the dispersal of the aerosol within a facility may be hampered by barriers created from machinery and other equipment that block dispersion. Additionally, seasonal temperatu...

  12. Interrelationships Between Aerosol Characteristics and Light Scattering During Late-winter in a Eastern Mediterranean Arid Environment

    NASA Technical Reports Server (NTRS)

    Ichoku, C.; Andreae, M. O.; Meixner, F. X.; Schebeske, G.; Formenti, P.; Maenhaut, W.; Cafmeyer, J.; Ptasinski, J.; Karnieli, A.; Orlovsky, L.

    1999-01-01

    An intensive field campaign involving measurement of various aerosol physical, chemical, and radiative properties was conducted at Sde Boker in the Negev Desert of Israel, from 18 February to 15 March 1997. Nephelometer measurements gave average background scattering coefficient values of about 25 M/m at 550 nm wavelength, but strong dust events caused the value of this parameter to rise up to about 800 M/m Backscattering fractions did not depend on aerosol loading, and generally fell in the range of 0.1 to 0.25, comparable to values reported for marine and Arctic environments. Chemical analysis of the aerosol revealed that, in the coarse size range (2 - 10 micrometer equivalent aerodynamic diameter (EAD)), calcium (Ca) was by far the most abundant element followed by silicon (Si), both of which are indicators for mineral dust. In the fine size fraction (< 2 micrometers EAD), sulfur (S) generally was the dominant element, except during high dust episodes when Ca and Si were again the most abundant. Furthermore, fine black carbon (BC) correlates with S, suggesting that they may have originated from the same sources or source regions. An indication of the short-term effect of aerosol loading on radiative forcing was provided by measurements of global and diffuse solar radiation, which showed that during high turbidity periods (strong dust events) almost all of the solar radiation reaching the area is scattered or absorbed.

  13. Study of aerosol behavior on the basis of morphological characteristics during festival events in India

    NASA Astrophysics Data System (ADS)

    Agrawal, Anubha; Upadhyay, Vinay K.; Sachdeva, Kamna

    2011-07-01

    Two important festival events were selected to assess their impacts on atmospheric chemistry by understanding settling velocity and emission time of aerosols. Using high volume sampler, aerosols were collected in a sequential manner to understand settling velocity and emission time of aerosols on a particular day. Composition and total suspended particulate load of the aerosols collected during the festivals were used as markers for strengthening the assessment. Terminal settling velocity of the aerosols were calculated using morphological and elemental compositional data, obtained from scanning electron microcopy (SEM) and energy dispersive X-ray (EDX) study. Aerosol load, black carbon, aromatic carbon and terminal velocity calculations were correlated to obtain conclusion that aerosols collected on the festival day might have been emitted prior to the festival. Settling time of aerosols collected on 17th and 19th October'09 during Diwali were found to be 36.5 (1.5 days) and 12.8 h, respectively. Carbon concentration estimated using EDX was found to be almost double in the sample collected after 2 days of the festival event. This strengthens our inference of time calculation where carbon with high concentration of load must have settled approximately after two days of the event. Settling time of aerosols collected on Holi morning and afternoon was found to be 1.7 and 24.8 h, respectively. Further, because of the small distance of 5.4 km between the meteorological station and sampling site, observed TSP values were compared with theoretical load values, calculated by using visibility values taken from the meteorological data. And it was found that both experimental and calculated values are close to each other about 50% of the times, which proves the assumption that experimental and meteorological data are comparable.

  14. Spatial and Temporal Characteristics of Aerosols from Collection 6 Aqua and Terra MODIS e-Deep Blue Products

    NASA Astrophysics Data System (ADS)

    Bettenhausen, C.; Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Carletta, N.

    2015-12-01

    Aerosols continue to attract a significant amount of attention from researchers worldwide due to their extensive effects on Earth's climate, ecology, public health, and even energy production. In order to truly understand these effects, a long, stable, and well-calibrated data record is required. Since 2000 and 2002, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites together with the e-Deep Blue aerosol retrieval algorithm have been providing such a data record. After a multi-year development effort, the production of both Aqua and Terra MODIS Collection 6 (C6) atmosphere products successfully completed earlier this year and the data was released to the public shortly thereafter. The C6 Deep Blue products (now enhanced Deep Blue or e-Deep Blue) have been significantly improved over the previous Collection 5.1 version. In this poster we provide an overview of the latest C6 e-Deep Blue products and the improvements implemented since the previous collection including coverage over dark surfaces and updates to the Terra calibration. Validation results utilizing Aerosol Robotic Network (AERONET) data are also summarized. We then use the C6 e-Deep Blue products from both Aqua and Terra to explore the spatial characteristics in addition to the seasonal and inter-annual variability of aerosols on both regional and global scales. We also use this as an opportunity to compare these results and investigate any differences found between the two instruments.

  15. Seasonal variations in the physico-chemical characteristics of aerosols in North Taiwan

    NASA Astrophysics Data System (ADS)

    Chou, Charles

    2014-05-01

    From 2007 to 2012, this study investigated the mass concentration and chemical composition of ambient aerosols (i.e. PM10, PM2.5, and PMc = PM10-PM2.5) at Cape Fuguei, Yangminshan, and NTU (National Taiwan University) stations in northern Taiwan. It was found that the concentration and composition of aerosols exhibited significant seasonal variations but without an inter-annual trend during the study period. Moderate correlations (R2 = 0.4-0.6) were observed among the aerosol concentrations at the respective stations, indicating that the aerosol concentrations were dominated by factors on regional scales. During the seasons of northeasterly winter monsoons, long range transport of dust and particulate air pollutants from the Asia Continent had negatively impacted the atmospheric environment in this area. On the other hand, as a highly developed urban area, Taipei has substantial local emissions of air pollutants that should have transported to the surrounding areas of Taipei basin and caused deterioration of air quality and visibility in Cape Fuguei and Yangminshan. The results indicated that the major components of aerosols in Taipei include sulfate, sea salts, dust, and organic matters. In addition, contributions from nitrate, ammonium, and elemental carbon were also significant. In terms of mass concentration, most of the sea salts and dust particles existed in the coarse mode of aerosols, whereas sulfate and EC were confined within PM2.5. This suggests that the dust and sea salts particles were externally mixed with EC and sulfate in the aerosols over Taipei area. Further, it was found that nitrate were closely associated with sea salts in aerosols, suggesting the reaction between nitric acid and sea salt particles. Different seasonality was observed for sea salt and dust: sea salts peaked in fall and dust reached the maximal level in springtime, implying their sources were regulated by independent seasonal factors. Particulate pollutants (i.e. sulfate, nitrate

  16. Composition and Characteristics of Aerosols in the Southern High Plains of Texas (USA)

    SciTech Connect

    Gill, Thomas E.; Stout, John E.; Peinado, Porfirio

    2009-03-10

    Aerosol samples on polycarbonate filters were collected daily for several years in the Southern High Plains region of western Texas. Selected samples representing a variety of size modes, locations, and air quality conditions were analyzed by PIXE. Silicon and other crustal elements dominated during dust storms and in the coarse mode; sulfur dominated during anthropogenic pollution episodes and in the fine mode. A mixture of both aerosol types was present even during 'clear' conditions. The Al/Si ratio in dust events increases with wind speed. These data provide an initial assessment of aerosol chemistry in the West Texas plains.

  17. Analysis of Aerosol Physical and Chemical Properties on the Coast of the Japanese Sea (Tango peninsula) during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Tohno, S.; Hoeller, R.; Ito, K.; Onishi, Y.; Ma, C. J.; Kasahara, M.; Cahill, T. A.; Cliff, S.

    2001-12-01

    During springtime the Japanese archipelago is periodically influenced by haze events originating from the Asian continent. The sources of these materials include both anthropogenic and natural aerosol, including the well-known yellow sand (Kosa) events, which can be recognized at places as far as Hawaii and the west coast of the United States. But there is also strong evidenced, which we want to support in this study, that these Kosa events are accompanied by strongly absorbing material as well as sulfates and organics. The springtime of 2001 was characterized by several strong dust events, which happened to be during the international ACE-Asia campaign. We participated in the ACE observation network by setting up a monitoring station during the period March 19 to April 6, 2001 for the measurement of aerosol optical, physical and chemical properties as well as observations of sky radiation. The measurement site is located on the coast of the Japanese Sea (Tango Peninsula, Kyoto Prefecture). Tango was chosen as an observation site, since it is relatively unpolluted and can therefore serve as a background site for studies of the direct impact of the mainland Asian outflow on the western Pacific area. The purpose of this work is to perform local and column closure experiments on aerosol properties, and to distinguish the anthropogenic part of the aerosol from the natural one. For this purpose, backward air-mass trajectories are calculated to identify potential sources of the observed aerosol. For measurements of aerosol mass-size distributions we used 12-stage low-pressure impactors, which were subsequently analyzed for elemental and ionic concentrations by PIXE, and Ion-chromatography, respectively. In addition, to get both the necessary time- and size-resolution, a DRUM sampler was operated with continuous collection and analysis for mass and optical transmission from 320 nm to 850 nm. Analysis is scheduled by synchrotron-XRF to < 0.1 ng/m3 for trace elemental

  18. 2014 iAREA campaign on aerosol in Spitsbergen - Part 1: Study of physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Lisok, J.; Markowicz, K. M.; Ritter, C.; Makuch, P.; Petelski, T.; Chilinski, M.; Kaminski, J. W.; Becagli, S.; Traversi, R.; Udisti, R.; Rozwadowska, A.; Jefimow, M.; Markuszewski, P.; Neuber, R.; Pakszys, P.; Stachlewska, I. S.; Struzewska, J.; Zielinski, T.

    2016-09-01

    This paper presents the results of measurements of aerosol physical and chemical properties during iAREA2014 campaign that took place on Svalbard between 15th of Mar and 4th of May 2014. With respect to field area, the experiment consisted of two sites: Ny-Ålesund (78°55‧N, 11°56‧E) and Longyearbyen (78°13‧N, 15°33‧E) with further integration of Aerosol Robotic Network (AERONET) station in Hornsund (77°00‧N, 15°33‧E). The subject of this study is to investigate the in-situ, passive and active remote sensing observations as well as numerical simulations to describe the temporal variability of aerosol single-scattering properties during spring season on Spitsbergen. The retrieval of the data indicates several event days with enhanced single-scattering properties due to the existence of sulphate and additional sea-salt load in the atmosphere which is possibly caused by relatively high wind speed. Optical results were confirmed by numerical simulations made by the GEM-AQ model and by chemical observations that indicated up to 45% contribution of the sea-salt to a PM10 total aerosol mass concentration. An agreement between the in-situ optical and microphysical properties was found, namely: the positive correlation between aerosol scattering coefficient measured by the nephelometer and effective radius obtained from laser aerosol spectrometer as well as negative correlation between aerosol scattering coefficient and the Ångstrom exponent indicated that slightly larger particles dominated during special events. The in-situ surface observations do not show any significant enhancement of the absorption coefficient as well as the black carbon concentration which might occur during spring. All of extensive single-scattering properties indicate a diurnal cycle in Longyearbyen, where 21:00-5:00 data stays at the background level, however increasing during the day by the factor of 3-4. It is considered to be highly connected with local emissions originating

  19. Time-resolved inorganic chemical composition of fine aerosol and associated precursor gases over an urban environment in western India: Gas-aerosol equilibrium characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Rengarajan, R.

    2015-05-01

    Inorganic ionic constituents (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) of PM2.5 and associated trace gases (NH3, HNO3 and HCl) were measured simultaneously by Ambient Ion Monitor - Ion Chromatograph (AIM-IC) system with a time resolution of one hour at an urban location in semi-arid region of western India during summer and winter. The average NH3, HNO3 and HCl concentrations were 11.6 ± 5.0, 2.9 ± 0.8 and 0.15 μg m-3, respectively, during winter. During summer, NH3 and HNO3 concentrations were of similar magnitude, whereas HCl concentration was less than ∼0.03 μg m-3. NH3 concentration exhibited a distinct diurnal variation during both seasons. However, HNO3 did not show a specific diurnal trend during the observation period in both seasons. The data obtained were used to study gas-aerosol equilibrium characteristics using a thermodynamic equilibrium model, ISORROPIA II. The results suggest that NH3 exists in equilibrium between measured fine-mode particle and gas phase with a systematic bias of ∼14%, whereas HCl and HNO3 deviate significantly from the modelled data. These observations have implications on thermodynamic equilibrium assumptions used for estimating various aerosol parameters such as liquid water content, pH, etc., thus causing significant bias in chemical transport model results over the study region.

  20. Light scattering characteristics of aerosols at ambient and as a function of relative humidity: Part II--A comparison of measured scattering and aerosol concentrations using statistical models.

    PubMed

    Malm, W C; Day, D E; Kreidenweis, S M

    2000-05-01

    The eastern United States national parks experience some of the worst visibility conditions in the nation. To study these conditions, the Southeastern Aerosol and Visibility Study (SEAVS) was undertaken to characterize the size-dependent composition, thermodynamic properties, and optical characteristics of the ambient atmospheric particles. It is a cooperative three-year study that is sponsored by the National Park Service and the Electric Power Research Institute and its member utilities. The field portion of the study was carried out from July 15 to August 25, 1995. The study design, instrumental configuration, and estimation of aerosol types from particle measurements is presented in a companion paper. In the companion paper, we compare measurements of scattering at ambient conditions and as functions of relative humidity to theoretical predictions of scattering. In this paper, we make similar comparisons, but using statistical techniques. Statistically derived specific scattering associated with sulfates suggest that a reasonable estimate of sulfate scattering can be arrived at by assuming nominal dry specific scattering and treating the aerosols as an external mixture with ammoniation of sulfate accounted for and by the use of Tang's growth curves to predict water absorption. However, the regressions suggest that the sulfate scattering may be underestimated by about 10%. Regression coefficients on organics, to within the statistical uncertainty of the model, suggest that a reasonable estimate of organic scattering is about 4.0 m2/g. A new analysis technique is presented, which does not rely on comparing measured to model estimates of scattering to evoke an understanding of ambient aerosol growth properties, but rather relies on measurements of scattering as a function of relative humidity to develop actual estimates of f(RH) curves. The estimates of the study average f(RH) curve for sulfates compares favorably with the theoretical f(RH) curve for ammonium

  1. Hydrogen chloride and aerosol ground cloud characteristics resulting from Space Shuttle launches

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Cofer, W. R., III; Woods, D. C.; Maddrea, G. L., Jr.

    1984-01-01

    Airborne measurements of gaseous HCl, gaseous and aerosol HCl, particulates, relative humidity and temperature were obtained in ground clouds produced during three Space Shuttle launches. Partitioning of HCl between HCl aerosol and gaseous HCl was investigated as the solid rocket exhaust cloud diluted with ambient air to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions for aqueous HCl aerosol formation generally agree with the measured HCl partitioning over HCl concentrations from 0.5 to 36 ppm. HCl concentration dispersion within four cloud segments at time t (min) was evaluated using the expression C = C(0) (t to the alpha power) where C(0) varied from 145 to 2250 ppm and alpha varied from -1.14 to -1.73. Aerosol fallout from the exhaust clouds was measured with time by monitoring HCl concentrations and aerosol distributions 100 m below the cloud as it drifted away from the launch site. Significant amounts of HCl were found to be removed by fallout of particles in the 80-220 micron diameter range up to 30 min after launch.

  2. Elemental characteristics of aerosols emitted from a coal-fired heating plant

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.

    1978-01-01

    Size differentiated aerosols were collected downstream from a heating plant fueled with eastern coal and analyzed using particle induced X-ray emission technique. Based on aerosol masses collected in various size ranges, the aerosol size distribution is determined to be trimodal, with the three peaks centered at 0.54 microns, 4.0 microns, and 11.0 microns, respectively. Of the various trace elements present in the aerosols, sulphur is the only element that shows very strong concentration in the smallest size group. Iron is strongly concentrated in the 4.0 micron group. Potassium, calcium, and titanium also exhibit stronger concentration in the 4.0 micron group than any other group. Other trace elements - vanadium, chromium, manganese, nickel, copper, and barium - are equally divided between the 0.54 microns and the 4.0 microns groups. Apparently, all of the trace elements - except S - enter aerosols during the initial formation and subsequent condensation phases in the combustion process. Excess concentration of sulphur in the 0.54 microns group can only be accounted for by recondensation of sulphur vapors on the combustion aerosols and gas-to-particle phase conversion of sulfate vapors at the stack top.

  3. Aerosol/cloud Base Droplet Size Distribution Characteristics and the Onset of Coalescence in Shallow and Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Bruintjes, R. T.; Lawson, P.; Lance, S.; Axisa, D.; Woods, S.

    2014-12-01

    It is clear that aerosols contribute to the observed differences in cloud droplet size distributions between maritime and continental and between non-polluted and polluted convection. In addition, other factors such as cloud base temperature, boundary layer depth, thermodynamic profile (updraft speeds) that vary between land and ocean regions, could also be contributing to the observed differences or acting in concert with aerosol effects. In addition, the initial cloud droplet spectra at cloud base to a large extent determines the microphysical processes of precipitation formation (water and ice) at higher levels in the clouds and thus the vertical transport of aerosols and gases in deep convective clouds. During the 2013 NASA SEAC4RS field campaign we have collected a large amount of microphysical data in both shallow and deep convective clouds. This data will be compared to data from other field campaigns to detect specific characteristics of the cloud base droplet size distribution and relate it to onset and evolution of the coalescence process in clouds. The presentation will provide a survey of the cloud droplet size distributions at cloud base in both shallow and deep convective clouds and will relate them to environmental parameters to better understand aerosol-cloud interactions and the other parameters that play a role in the onset of coalescence in convective clouds. We will relate the airborne aerosol variations (size and concentration in different environments) to the cloud droplet size distribution. Model simulations using a detailed coalescence model will be used to obtain a better understanding of the onset of the coalescence process.

  4. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA

    NASA Astrophysics Data System (ADS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2013-10-01

    Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183°N, 102.565°E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 ± 64 Mm-1; absorption: 15 ± 8 Mm-1; PM10 concentration: 33 ± 17 μg m-3), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 ± 3.6 μg m-3; EC: 2.0 ± 2.3 μg m-3) and secondary species (SO42-: 6.4 ± 3.7 μg m-3, NH4+: 2.2 ± 1.3 μg m-3). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 ± 0.33 μg m-3). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 ± 0.04 in the evening to 0.92 ± 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow.

  5. Variation of aerosol characteristics in the detail scale of time and space

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Nakata, M.; Sano, I.

    2012-04-01

    In this work, we intend to demonstrate the spatial and temporal variation of atmospheric aerosols around AERONET/Osaka site. Osaka is the second big city in Japan and a typical Asian urban area. It is well known that the aerosol distribution in Asia is complicated due to the increasing emissions of anthropogenic aerosols in association with economic growth and in addition behavior of natural dusts significantly varies with the seasons. Therefore local spatially and temporally resolved measurements of atmospheric particles in Asian urban city are meaningful. We equip various ground measurement devices of atmosphere in the campus of Kinki University (KU). The data supplied by the Cimel instrument are analyzed with a standard AERONET (Aerosol Robotics Network) processing system. It provides us with Aerosol optical thickness (AOT), the Ångström exponent and so on. We set up a PM sampler and a standard instrument of NIES/LIDAR network attached to our AERONET site. The PM sampler provides particle information about the concentrations of PM2.5, PM10 and OBC separately. In addition to the simultaneous measurements, we make observation of the air quality at several locations in the neighbour-hood using portable sun-photometers (Solar-Light Company Microtops-2). The simultaneous measurements of aerosols and numerical model simulations indicate that the spatial and temporal factors influence the characterization of atmospheric particles especially in dust event. Then we observe the air quality at such several locations within a few 10 km area from KU, as Izumi and Nara, in ordinal days and dust days. Izumi site locates near industrial area and Nara is in the east of KU beyond the mountain-Ikoma. It is found from the simultaneous measurements at these three sites that AOT at Izumi in ordinal days is the highest and Nara's lowest. It indicates that the Ikoma-mountains block off the polluted air from the west. However in dust days, AOT at Nara is as large as that at Higashi

  6. Measuring the characteristics of stratospheric aerosol layer and total ozone concentration at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey

    2015-11-01

    We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5 °N, 85.0 °E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of TOMS satellite data for the period 1979- 1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk after a series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, researchers record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  7. Certain Results of Measurements of Characteristics of Stratospheric Aerosol Layer and Total Ozone Content at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey

    2016-06-01

    We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N, 85.0°E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of Total Ozone Mapping Spectrometer (TOMS) data for the period 1979-1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk aftera series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, we record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  8. Analysis of the chemical and physical properties of combustion aerosols: State of the art.

    EPA Science Inventory

    The impact of combustion aerosols on human health is well documented byepidemiological studies, however the effect of low concentrations of ultrafineparticles on the human lung are not yet fully understood. With the advent ofnovel measurement technologies for simultaneous charact...

  9. Aerosol characteristics in the UTLS region: A satellite-based study over north India

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Misra, A.; Kanawade, Vijay P.; Devara, P. C. S.

    2016-01-01

    Vertical profiles of aerosol backscatter coefficient and depolarization ratio, obtained from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, were studied in the upper troposphere and lower stratosphere (UTLS) region over North India (21-30° N and 72-90° E), covering the highly polluted Indo-Gangetic Plain (IGP) for one-year period from December 2011 to November 2012. An enhanced aerosol layer was observed between 15 and 18 km altitude, in the vicinity of tropopause, with a broad layer depth of about 2 km. The aerosol layer showed strong seasonal, monthly as well as day and night time variability, with a peak value of backscatter coefficient during monsoon season (˜5.54 × 10-3 sr-1 in September). The corresponding depolarization ratio indicates anisotropic (non-spherical) nature of particles. The aerosol layer was found to be highly linked with the variability in tropopause height, showing a positive correlation between tropopause height and the height of maximum backscatter coefficient (correlation coefficient of 0.8). However, it was found to be negatively correlated with the integrated backscatter coefficient (IBC), with a correlation coefficient of 0.3. We further analyzed outgoing long-wave radiation (OLR) data during the study period to investigate the link between the observed enhanced aerosol layer in the UTLS region and prevailing deep convective activities over the study region. Low values of OLR during monsoon (about 214 W m-2) indicate the occurrence of deep convection over this region, which may cause a large-scale circulation-driven vertical transport of boundary-layer pollution into the atmosphere of UTLS region. Results may have potential implications for better understanding and assessing the chemical and radiative impacts of these aerosols in the tropical UTLS region.

  10. Sensitivity of the remote sensing reflectance of ocean and coastal waters to uncertainties in aerosol characteristics

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Garay, M. J.; Zhai, P.; Kalashnikova, O. V.; Diner, D. J.

    2015-12-01

    Remote sensing is a powerful tool for optical oceanography and limnology to monitor and study ocean, coastal, and inland water ecosystems. However, the highly spatially and temporally variable nature of water conditions and constituents, as well as atmospheric conditions are challenging factors, especially for spaceborne observations.Here, we study the quantitative impact of uncertainties in the spectral aerosol optical and microphysical properties, namely aerosol optical depth (AOD), spectral absorption, and particle size, on the remote sensing reflectance (Rrs) of simulated typical open ocean and coastal waters. Rrs is related to the inherent optical properties of the water column and is a fundamental parameter in ocean optics retrievals. We use the successive order of scattering (SOS) method to perform radiative transfer calculations of the coupled system of atmosphere and water. The optics of typical open ocean and coastal waters are simulated with bio-optical models. We derive sensitivities by comparing spectral SOS calculations of Rrs with a reference aerosol model against similar calculations performed using a different aerosol model. One particular focus of this study lies on the impact of the spectral absorption of dust and brown carbon, or similar particles with greater absorption at short wavelengths on Rrs. The results are presented in terms of the minimum expected error in Rrs due to the choice of an incorrect aerosol model during the atmospheric correction of ocean color remote sensing data from space. This study is independent of errors related to observational data or retrieval techniques.The results are relevant for quantifying requirements of aerosol retrievals to derive accurate Rrs from spaceborne observations, such as NASA's future Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission.

  11. Anthropometrics, Physical Performance, and Injury Characteristics of Youth American Football

    PubMed Central

    Caswell, Shane V.; Ausborn, Ashley; Diao, Guoqing; Johnson, David C.; Johnson, Timothy S.; Atkins, Rickie; Ambegaonkar, Jatin P.; Cortes, Nelson

    2016-01-01

    Background: Prior research has described the anthropometric and physical performance characteristics of professional, collegiate, and high school American football players. Yet, little research has described these factors in American youth football and their potential relationship with injury. Purpose: To characterize anthropometric and physical performance measures, describe the epidemiology of injury, and examine the association of physical performance measures with injury among children participating within age-based divisions of a large metropolitan American youth football league. Study Design: Case-control study; Level of evidence, 3. Methods: Demographic, anthropometric, and physical performance characteristics and injuries of 819 male children were collected over a 2-year period (2011-2012). Injury data were collected by the league athletic trainer (AT) and coaches. Descriptive analysis of demographic, anthropometric, and physical performance measures (40-yard sprint, pro-agility, push-ups, and vertical jump) were conducted. Incidence rates were computed for all reported injuries; rates were calculated as the number of injuries per 1000 athlete-exposures (AEs). Multinomial logistic regression was used to identify whether the categories of no injury, no-time-loss (NTL) injury, and time-loss (TL) injury were associated with physical performance measures. Results: Of the 819 original participants, 760 (92.8%) completed preseason anthropometric measures (mean ± SD: age, 11.8 ± 1.2 years; height, 157.4 ± 10.7 cm; weight, 48.7 ± 13.3 kg; experience, 2.0 ± 1.8 years); 640 (78.1%) players completed physical performance measures. The mean (±SD) 40-yard sprint and pro-agility measures of the players were 6.5 ± 0.6 and 5.7 ± 0.5 seconds, respectively; the number of push-ups and maximal vertical jump height were 16.5 ± 9.3 repetitions and 42.3 ± 8.4 cm, respectively. Players assigned to different teams within age divisions demonstrated no differences in

  12. Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2015-08-01

    Monitoring upper tropospheric-lower stratospheric (UTLS) secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile

  13. Application of both a physical theory and statistical procedure in the analyses of an in vivo study of aerosol deposition

    SciTech Connect

    Cheng, K.H.; Swift, D.L.; Yang, Y.H.

    1995-12-01

    Regional deposition of inhaled aerosols in the respiratory tract is a significant factor in assessing the biological effects from exposure to a variety of environmental particles. Understanding the deposition efficiency of inhaled aerosol particles in the nasal and oral airways can help evaluate doses to the extrathoracic region as well as to the lung. Dose extrapolation from laboratory animals to humans has been questioned due to significant physiological and anatomical variations. Although human studies are considered ideal for obtaining in vivo toxicity information important in risk assessment, the number of subjects in the study is often small compared to epidemiological and animal studies. This study measured in vivo the nasal airway dimensions and the extrathoracic deposition of ultrafine aerosols in 10 normal adult males. Variability among individuals was significant. The nasal geometry of each individual was characterized at a resolution of 3 mm using magnetic resonance imaging (MRI) and acoustic rhinometry (AR). The turbulent diffusion theory was used to describe the nonlinear nature of extrathoracic aerosol deposition. To determine what dimensional features of the nasal airway were responsible for the marked differences in particle deposition, the MIXed-effects NonLINear Regression (MIXNLIN) procedure was used to account for the random effort of repeated measurements on the same subject. Using both turbulent diffusion theory and MIXNLIN, the ultrafine particle deposition is correlated with nasal dimensions measured by the surface area, minimum cross-sectional area, and complexity of the airway shape. The combination of MRI and AR is useful for characterizing both detailed nasal dimensions and temporal changes in nasal patency. We conclude that a suitable statistical procedure incorporated with existing physical theories must be used in data analyses for experimental studies of aerosol deposition that involve a relatively small number of human subjects.

  14. Chemical and Physical Properties of Bulk Aerosols Observed During TRACE-P: Evidence of Nitrate Uptake on Dust Particles

    NASA Astrophysics Data System (ADS)

    Jordan, C.; Anderson, B.; Hudgins, C.; Winstead, E.; Thornhill, L.; Talbot, R.; Russo, R.; Scheuer, E.; Seid, G.; Dibb, J.; Fuelberg, H.

    2002-12-01

    Back trajectories and bulk aerosol chemical properties have been used to group aerosol samples measured on the DC-8 during TRACE-P into five source regions. Each of these source region groups was further subdivided into three altitude bins (< 2 km, 2 - 7 km, and > 7 km). The mean chemical signatures, size distributions, and other physical properties (e.g., volatility, single scatter albedo) will be presented for these groups. By combining chemical and physical measurements, the observed aerosol population for each group may be partitioned between black carbon, sea salts, non-sea salt water soluble ions, and dust. Using this approach, we have found that the bulk of the dust emanating from Asia during TRACE-P came from one region. The highest concentrations of pollution species were also found in this region, including particulate nitrate. The presence of gas phase pollutants such as nitric acid co-located with the dust allows for the uptake of gas-phase nitrogen onto the dust surfaces. Results show that in the dust sector at mid-altitudes (2 - 7 km), where the influence of sea salt is reduced compared to lower altitudes, 50% of the total nitrate is in particulate form. This is in contrast to 15% for sectors with little dust.

  15. Sensitivity of aerosol optical depth, single scattering albedo, and phase function calculations to assumptions on physical and chemical properties of aerosol

    EPA Science Inventory

    In coupled chemistry-meteorology simulations, the calculation of aerosol optical properties is an important task for the inclusion of the aerosol effects on the atmospheric radiative budget. However, the calculation of these properties from an aerosol profile is not uniquely defi...

  16. Chemical characteristics of organic aerosols in Algiers city area: influence of a fat manufacture plant

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Meklati, Brahim Youcef; Cecinato, Angelo

    Total concentrations and homologue distributions of organic fraction constituents have been determined in particulate matter emitted from different units of a fat manufacturer (i.e. oils refining and conditioning plants, and production and conditioning units of a soap industry) located in Algiers area, as well as in atmospheric aerosols. In particular n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH) were investigated. Organic aerosol contents varied broadly among the plant units, depending upon nature of the manufactured products. The percent composition of all classes of compounds investigated in ambient atmosphere was similar to those observed indoor at industrial plant units. Organic acids, n-alkanoic as well as n-alkenoic, appeared by far the most abundant organic constituents of aerosols, both indoor and outdoor, ranging from 7.7 to 19.8 and from 12.7 to 17.1 μg m -3, respectively. The huge occurrence of acids and n-alkanes in ambient aerosols was consistent with their high levels present in oil and fat materials. Among minor components of aerosols, n-alkan-2-ones and PAH, seemed to be related to thermally induced ageing and direct combustion of raw organic material used for oil and soap production.

  17. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  18. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  19. Aerosol characteristics and surface radiative forcing components during a dust outbreak in Gwangju, Republic of Korea.

    PubMed

    Ogunjobi, K O; Kim, Y J

    2008-02-01

    Atmospheric surface aerosol radiative forcing (SARF) DeltaF, forcing efficiency DeltaF(e) and fractional forcing efficiency DeltaFF(e) evaluated from cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Asia dust outbreak episodes in Gwangju, Republic of Korea are reported in this study. Columnar aerosol optical properties (aerosol optical depth (AOD), tau (alambda), Angstrom exponent alpha, mass concentration of fine and coarse mode particles) were also reported for the station between January 2000 and May 2001 consisting of 211cloud-free days. Results indicate that majority of the AOD were within the range 0.25-0.45 while some high aerosol events in which AODs > or = 0.6 were observed during the severe dust episodes. For example, AOD increases from annual average value of 0.34 +/- 0.13 at 501 nm to values >0.60 during the major dust events of March 27-30 and April 7-9, 2000, respectively. The alpha (501-870 nm) which is often used as a qualitative indicator of aerosol particle size had values ranging from 0.01 to 1.77. The diurnal forcing efficiency DeltaDF(e) at Gwangju was estimated to be -81.10 +/- 5.14 W m (-2)/tau (501 nm) and -47.09 +/- 2.20 W m (-2)/tau (501 nm) for the total solar broadband and visible band pass, respectively while the fractional diurnal forcing efficiency DeltaFDF(e) were -15.8 +/- 0.64%/tau (501 nm) and -22.87 +/- 1.13%/tau (501 nm) for the same band passes. Analyses of the 5-day air-mass back trajectories were further developed for Gwangju in order to classify the air-mass and types of aerosol reaching the site during the Asia dust episodes.

  20. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE PAGES

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; et al

    2016-03-04

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascentmore » (ω500  <  −25 hPa day−1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day−1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  1. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie-Raman lidar and a sky radiometer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Matsui, Ichiro; Jin, Yoshitaka; Khatri, Pradeep; Irie, Hitoshi; Takamura, Tamio; Aoki, Kazuma; Thana, Boossarasiri

    2015-06-01

    Distributions and optical characteristics of aerosols were continuously observed with a polarization-sensitive (532 nm), Mie-scattering (532 and 1064 nm) and Raman-scattering (607 nm) lidar and a sky radiometer in Phimai, Thailand. Polarization lidar measurements indicated that high concentration plumes of spherical aerosols considered as biomass burning smoke were often observed in the dry season. Plumes of non-spherical aerosols considered as long-range transported soil dust from Africa, the Middle East, or Northeast Asia were occasionally observed. Furthermore, low-concentration non-spherical aerosols were almost always observed in the atmospheric mixing layer. Extinction coefficient profiles of spherical aerosols and non-spherical dust exhibited different diurnal variations, and spherical aerosols including smoke were distributed in higher altitudes in the mixing layer and residual layer. The difference can be explained by hygroscopic growth of smoke particles and buoyancy of the smoke. Analysis of seasonal variations of optical properties derived from the Raman lidar and the sky radiometer confirmed that the lidar ratio, aerosol optical depth, and Angstrom exponent were higher in the dry season (October-May) and lower in the wet season (June-September). The single scattering albedo was lower in the dry season. These seasonal variations are explained by frequent biomass burning in the dry season consistent with previous studies in Southeast Asian region. At the same time, the present work confirmed that soil dust was a major aerosol component in Phimai, Thailand.

  2. Physical characteristics of polyimide films for flexible sensors

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Yang; Fang, Te-Hua; Lin, Yu-Cheng

    2008-08-01

    Physical characteristics of polyimide films, including optical, micro/nano mechanical, and thermophysical characteristics were investigated using a photometric, a nanoindentation, and a thermomechanical analyzer for applications in flexible sensors. Experimental results show that UV light cannot transmit into the polyimide films. The transmittances, with a maximum of about 86%, at VIS and near IR lights decrease with increasing PI film thicknesses. The mechanical characteristics were determined using tensile, bending moment, and nanoindentation testing. The stress-strain curve approximated bilinear characteristics, the load-unload bending moment exhibited hysteresis, and nanoindentation generated elastic energy dissipation in the loading-unloading region. Nanoindentation showed an almost uniform hardness and a reduced Young’s modulus of about 0.181±0.03 and 3.21±0.06 GPa, respectively, when the penetrating depth was more than about 2 μm. Thermophysical characteristics were greatly influenced on 8.3 and 25 μm specimens due to the higher relaxation of thin PI films. The thermal expansion remained steady when the thickness was over 50 μm. The results show that PI films have potential in flexible sensing and higher temperature fabrication.

  3. Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements

    NASA Astrophysics Data System (ADS)

    Pathak, B.; Subba, T.; Dahutia, P.; Bhuyan, P. K.; Moorthy, K. Krishna; Gogoi, M. M.; Babu, S. Suresh; Chutia, L.; Ajay, P.; Biswas, J.; Bharali, C.; Borgohain, A.; Dhar, P.; Guha, A.; De, B. K.; Banik, T.; Chakraborty, M.; Kundu, S. S.; Sudhakar, S.; Singh, S. B.

    2016-01-01

    Four years (2010-2014) of spectral aerosol optical depth (AOD) data from 4 Indian Space Research Organisation's ARFINET (Aerosol Radiative Forcing over India) stations (Shillong, Agartala, Imphal and Dibrugarh) in the North-Eastern Region (NER) of India (lying between 22-30°N and 89-98°E) are synthesized to evolve a regional aerosol representation, for the first time. Results show that the columnar AOD (an indicator of the column abundance of aerosols) is highest at Agartala (0.80 ± 0.24) in the west and lowest at Imphal (0.59 ± 0.23) in the east in the pre-monsoon season due to intense anthropogenic bio-mass burning in this region aided by long-range transport from the high aerosol laden regions of the Indo-Gangetic Plains (IGP), polluted Bangladesh and Bay of Bengal. In addition to local biogenic aerosols and pollutants emitted from brick kilns, oil/gas fields, household bio-fuel/fossil-fuel, vehicles, industries. Aerosol distribution and climatic impacts show a west to east gradient within the NER. For example, the climatological mean AODs are 0.67 ± 0.26, 0.52 ± 0.14, 0.40 ± 0.17 and 0.41 ± 0.23 respectively in Agartala, Shillong, Imphal and Dibrugarh which are geographically located from west to east within the NER. The average aerosol burden in NER ranks second highest with climatological mean AOD 0.49 ± 0.2 next to the Indo-Gangetic Plains where the climatological mean AOD is 0.64 ± 0.2 followed by the South and South-East Asia region. Elevated aerosol layers are observed over the eastern most stations Dibrugarh and Imphal, while at the western stations the concentrations are high near the surface. The climate implications of aerosols are evaluated in terms of aerosol radiative forcing (ARF) and consequent heating of the atmosphere in the region which follows AOD and exhibit high values in pre-monsoon season at all the locations except in Agartala. The highest ARF in the atmosphere occurs in the pre-monsoon season ranging from 48.6 Wm-2 in Agartala

  4. Characteristics of PM2.5 Carbonaceous Aerosol in Urban New York State

    NASA Astrophysics Data System (ADS)

    Khwaja, H. A.; Dutkiewicz, V.; Briggs, R.; Siddique, A.; Regan, J.

    2008-12-01

    In order to investigate the characteristics of carbonaceous fine aerosols, PM2.5 and size-segregated particulate samples (< 2.5 um, 2.5 - 4.2 um, 4.2 - 10 um, and 10 um) were collected during the summer in two urban sites of New York State viz., Botanical Garden (BTG), New York City and Empire State Plaza (ESP), Albany. Gas phase organic compounds were sampled with polyurethane foam (PUF) plugs. Particulate samples were acquired on quartz fiber filters using a high-volume air sampler (Hi-Vol) attached with a slotted impactor. Filters were sonicated in dichloromethane:methanol (9:1); extracts concentrated. A suite of more than 200 individual organic compounds was identified in the PM2.5 samples. Molecular markers, homologous compound series, and non-polar and polar organic compounds were detected at ng/m3 ambient concentrations using gas chromatography/mass spectrometry (GC/MS). Measurements of the organic carbon (OC) and elemental carbon (EC) were also made. Organic compounds detected in the size-segregated samples were grouped into different classes including phthalates and adipates, n-alkanes, alkanoic acids, cyclic siloxanes, waxes, benzoates, polyethylene glycols, squalene, and 4-nitro-butylated phenol. Results indicated that these organic species were predominantly associated in the fine particle mode (< 2.5 um). Gaseous organic compounds trapped in the PUF appeared rich in phenol, 4-nitro-2,6-ditertbutylphenol, pentachlorophenol, benzoic acid, alkanoic acids (C6 - C16 ), PAHs (naphthalene to pyrene), and phthalates. The major part of the extractable and elutable organic carbon was found to correspond to a complex mixture of phthalates and adipates, benzoate esters, n-alkanes, methyl silicates, phosphate esters, aldehydes and ketones, alcohols, alkyl amines, nitrosamines, formamides, amides, morpholines, carboxylic acids, methyl and isopropyl esters, dicarboxylic acids, waxes, lactones, hopanes, ionol 2, and PAHs. The most abundant classes of compounds are

  5. Characteristics of fine particle carbonaceous aerosol at two remote sites in Central Asia

    NASA Astrophysics Data System (ADS)

    Miller-Schulze, Justin P.; Shafer, Martin M.; Schauer, James J.; Solomon, Paul A.; Lantz, Jeffrey; Artamonova, Maria; Chen, Boris; Imashev, Sanjar; Sverdlik, Leonid; Carmichael, Greg R.; Deminter, Jeff T.

    2011-12-01

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of PM to Eastern Asia, the Pacific Ocean, and the Western United States. PM is of significant interest not only because of its adverse effect on public health but also due to its more recently realized role in climate change. To investigate the sources and characteristics of PM in the region, a series of PM 2.5 and PM 10 samples were collected on an every-other-day basis at two sites (termed "Bishkek" and "Teploklyuchenka") in the Central Asian nation of the Kyrgyz Republic (also known as Kyrgyzstan) for a full year from July 2008 to July 2009. These samples were analyzed using standard methods for mass, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-insoluble organic carbon by difference (OC minus WSOC) and a variety of molecular marker chemical species to be used in a chemical mass balance (CMB) model to apportion the sources of OC. These analyses indicate that approximately 19 ± 6.4% of the PM 2.5 mass at both sites throughout the year consists of OC. The carbonaceous component of PM 2.5 is dominated by OC, with OC/Total Carbon (TC) ratios being around 0.8 in the winter to almost 0.95 in the summer months. The CMB analysis indicated that mobile sources, i.e., gasoline and diesel engine exhaust, biomass combustion, and biogenic secondary organic aerosol (SOA) formation from isoprene and α-pinene precursors in the summer months were the dominant sources of OC. A strong positive correlation was observed between non-biomass burning WSOC and the un-apportioned OC from the CMB analysis, indicating that some of this un-apportioned OC is WSOC and likely the result of SOA-forming atmospheric processes that were not estimated by the CMB analysis performed. In

  6. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    NASA Astrophysics Data System (ADS)

    Jähn, Michael; Muñoz-Esparza, Domingo; Chouza, Fernando; Reitebuch, Oliver; Knoth, Oswald; Haarig, Moritz; Ansmann, Albert; Tegen, Ina

    2016-04-01

    Large eddy simulations (LESs) with ASAM (All Scale Atmospheric Model) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. This method is now also validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment) field campaign is used for both model initialization and comparisons. Several sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" or when the turbulent marine boundary layer flow is replaced by laminar winds. Additional simulation cases deal with modified surface characteristics and their impacts on the simulation results. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with lidar data show similarities in the downwind vertical wind structure and accurately reproduces the development of the daytime convective boundary layer measured by the Raman lidar.

  7. Comparison of characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012

    NASA Astrophysics Data System (ADS)

    Chen, Huizhong; Wu, Dui; Yu, Jianzhen

    2016-04-01

    Using the data on aerosol observed hourly by Marga ADI 2080 and Grimm 180, we compared the characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. The mass concentration of aerosol appeared distinct between the two weather processes. During rainy weather, the mass concentration of PM and total water-soluble components decreased obviously. During cold air-dust weather, the cleaning effect of cold air occurred much more suddenly and about a half day earlier than the dust effect. As a result, the mass concentration of PM and total water-soluble components first dropped dramatically to a below-normal level and then rose gradually to an above-normal level. The ratio of PM2.5/PM10 and PM1/PM10 decreased, suggesting that dust-storm weather mainly brought in coarse particles. The proportion of Ca2+ in the total water-soluble components significantly increased to as high as 50 % because of the effect of dust weather. We further analysed the ionic equilibrium during rainy and cold air-dust weather, and compared it with that during hazy weather during the same period. The aerosol during rainy weather was slightly acidic, whereas that during hazy weather and cold air-dust weather was obviously alkaline, with that during cold air-dust weather being significantly more alkaline. Most of the anions, including SO4 2- and NO3 -, were neutralised by NH4 + during rainy and hazy weather, and by Ca2+ during cold air-dust weather.

  8. Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013

    NASA Astrophysics Data System (ADS)

    Bi, Jianrong; Huang, Jianping; Hu, Zhiyuan; Holben, B. N.; Guo, Zhiqiang

    2014-08-01

    Several heavy atmospheric haze pollution episodes occurred over eastern and northern China during January of 2013. The pollution covered more than 100 km2 and caused serious impacts on environmental quality, human health, and transportation. In this study, we characterize aerosol microphysical, optical, and radiative characteristics using a combination of ground-based Sun/sky radiometer retrievals and a radiative transfer model. Our results show that during about half of the total number of days, daily PM2.5 and PM10 concentrations are larger than 100 µg/m3, with maxima of 462 and 433 µg/m3, respectively, during the haze events. Fine-mode (PM2.5) particles dominated the aerosol size during the episodes. The volume size distribution and median radius of fine-mode particles generally increase as aerosol optical depth at 440 nm (AOD440) increases. The median effective radius of fine-mode particles increases from 0.15 µm at low AOD value (AOD440 ~ 0.3) to a radius of 0.25-0.30 µm at high AOD value (AOD440 ≥ 1.0). The daily mean single-scattering albedo (SSA), imaginary part of refractive index (RI), and asymmetry factor display pronounced spectral behaviors. The overall mean SSA440 and SSA675 are 0.892 and 0.905, respectively. The corresponding RI440 and RI675 are 0.016 and 0.011, respectively. This indicates that a significant amount of absorption occurred under the haze event in Beijing during January 2013. Approximately half of the incident solar radiation energy went into heating the atmosphere as a result of strong aerosol loading and absorption. The daily averaged heating rate in the haze particle layer (0-3.2 km) varies from 0.12 to 0.81 K/day in Beijing, which might exert profound impact on the atmospheric thermodynamic and dynamical structures and cloud development, which should be further studied.

  9. [Pollution Characteristics and Sources of Carbonaceous Aerosol in PM2.5 During Winter in Guanzhong Area].

    PubMed

    Tian, Peng-shan; Cao, Jun-ji; Han, Yong-ming; Zhang, Ning-ning; Zhang, Rong; Liu, Sui-xin

    2016-02-15

    To study the characteristics and sources of carbonaceous aerosol in PM2.5 during winter in Guanzhong area, PM2.5 samples were collected from December 2012 to February 2013 in Xi'an, Baoji, Weinan and Qinling, and then organic carbon (OC) and elemental carbon (EC) were analyzed following the thermal/optical reflection protocol. The average concentrations of OC in the four sites were 47.8, 45.8, 31.2 and 37.0 microg x m(-3), respectively, while EC concentrations were 8.5, 6.7, 7.6 and 5.7 microg x m(-3), respectively. Total carbonaceous aerosol (TCA) accounted for 36.4%, 46.2%, 36.9% and 33.4% of PM2.5, respectively. OC was strongly correlated with EC in Xi'an (R2 = 0.93) and Qinling (R2 = 0.91), while weakly correlated in Baoji (R2 = 0.58) and Weinan (R2 = 0.62), which indicated that OC and EC had more similar sources or higher mixing degree in the former two sites. All OC/EC ratios exceeded 2.0, which indicated the formation of secondary organic carbon (SOC). In Xi'an, Baoji, Weinan and Qinling, SOC accounted for 21.6%, 40.3%, 23.2% and 27.8% of OC, respectively. Positive matrix factorization (PMF) was used to analyze the sources of carbonaceous aerosol and four sources were obtained. Coal burning was the major source, contributing 45.3%-47.9% in Guanzhong area. Gasoline vehicle and biomass burning were the minor sources, contributing 26.1%-33.1% and 14.3%-20.1% respectively. In addition, diesel vehicle also had some contribution to carbonaceous aerosol.

  10. Chemical characteristics of aerosol and rain water during an El Niño and PDO influenced Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Rajeev, Pradhi; Rajput, Prashant; Gupta, Tarun

    2016-11-01

    According to the meteorological long-term variability pattern, year 2015 was influenced by El Niño and PDO (Pacific Decadal Oscillation; causes weakening of Indian Summer Monsoon). These conditions facilitate the assessment of chemical characteristics of fine-mode ambient aerosols (PM2.5; n = 48) and individual rain waters (pH: 6.4-7.6; n = 15) during the South-west monsoon (July-September 2015) in the central Indo-Gangetic Plain (IGP; Kanpur). Water-soluble ionic species (WSIS) have been measured to assess the undergoing processes (neutralization, formation and below-cloud scavenging) and estimate their dry and wet deposition fluxes. The ∑WSIS varies from 4 to 32 μg/m3 in PM2.5, whereas it ranges from 32 to 102 mg/L in rain waters. The NH4+ and SO42- are found to be predominant in PM2.5 (16-120 μg/m3), whereas HCO3- and Ca2+ are predominant in rain water samples. The difference in chemical composition of PM2.5 and rain water is largely attributed to additional contribution of coarse-mode mineral dust in rain water. The Ca2+ and Mg2+ in both aerosols and rain water samples are associated with HCO3-. The NO3- and SO42- are neutralized predominantly by NH4+ and ∑-/∑+ ratio is ≈ 1 in both aerosols and rain waters. Furthermore, co-variability of NO3- with nss-Ca2+ in PM2.5 indicates role of fine-mode mineral dust surface in the formation of ammonium nitrate. Characteristic mass ratios (HCO3-/Ca2+ and SO42-/NH4+) in rain water look quite similar to those in aerosols (PM2.5). This suggests that below-cloud scavenging is predominant mechanism of aerosols wash-out. Dry deposition fluxes of Mg2+, NH4+ and SO42- are ∼13% of their wet deposition fluxes, whereas for K+, Ca2+ and NO3- it is <6%.

  11. Characteristics of aerosol at a lower atmospheric layer in DRAGON field campaign

    NASA Astrophysics Data System (ADS)

    KUJI, M.; Azuma, Y.; Kitakoga, S.; Sano, I.; Holben, B. N.

    2013-12-01

    Air pollution arises severely over East Asia with the rapid economic development nowadays. Monitoring the atmospheric environment, as one of the purposes, an intensive field campaign, Distributed Regional Aerosol Gridded Observation Networks (DRAGON), was carried out in the spring of year 2012, led by National Aeronautics and Space Administration (NASA). At that time, atmospheric phenomena such as Yellow sand and haze events were observed at Nara in the western part of Japan, as one of the DRAGON observation sites. The atmospheric events were characterized with the AErosol RObotic NETwork (AERONET) data. As a result of the data analysis, it was found that more light-absorbing and smaller particles dominated at the lower than upper atmospheric layer for the Kosa event in particular. A backward trajectory analysis suggested that the Yellow sand event traveled over the East Asian industrial cities, which could lead to a mixture of sand and air pollutants with moderate particle size and light-absorptivity. In addition, visibility observation was evaluated quantitatively with AERONET data in the DRAGON campaign since eye observation was inherently semi-quantitative. The extinction coefficient estimated from visibility was compared to that from AERONET. As a result, it was found that the extinction coefficients were generally consistent to each other. But there were some discrepancies, which could be caused with the atmospheric phenomena or aerosol types. It is confirmed that visibility is strongly influenced with aerosols in the case of severe atmospheric phenomena in particular.

  12. Composition and Characteristics of Aerosols in the Southern High Plains of Texas (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosol samples on polycarbonate filters were collected daily for several years in the Southern High Plains region of western Texas. Selected samples representing a variety of size modes, locations, and air quality conditions were analyzed by PIXE. Silicon and other crustal elements dominated duri...

  13. Impact of aerosol composition and foliage characteristics on forest canopy deposition rates: A laboratory study

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2013-12-01

    Forests are a major sink for atmospheric aerosols. Hence it has been suggested that (i) increased tree planting in urban areas might lead to a reduction in aerosol particle concentrations and thus a reduction in respiratory conditions and heart complications, and (ii) forests may be responsible for removing a disproportionately large fraction of potentially climate-relevant fine and ultra-fine aerosol particles from the atmosphere. However, larger uncertainties remain with respect to controls on uptake rates for forests. E.g. the deposition flux partitioning between foliage and non-foliage elements, the influence of particle size and composition, the role of leaf surface morphology and stomatal aperture in surface uptake. Improved understanding of the relative importance of these factors and the variability across different tree species should help determine how much of a sink naturally occurring and planted forests can provide downstream of fine particle production. In this study, a sample of trees native to southern Indiana were exposed to ultra-fine aerosol particle populations in a 1.5 m x 1.5 m x 1.5 m Teflon chamber. Stable particle size distributions (PSD) with geometric mean diameters (GMD) ranging from 40 to 80 nm were generated from sodium chloride, ammonium nitrate, ammonium sulfate and sodium sulfite solutions using a TSI model 3940 Aerosol Generation System (AGS). The aerosol stream was diluted using scrubbed and dried zero air to allow a variation of total number concentration across two orders of magnitude. PSD in the chamber are continuously measured using a TSI Scanning Mobility Particle Spectrometer (SMPS) comprising an Electrostatic Classifier (EC model 3080) attached to a Long DMA (LDMA model 3081) and a TSI model 3025A Butanol Condensation Particle Counter (CPC) operated with both the internal diffusion loss and multiple charge corrections turned on. The composition of the chamber air was also monitored for carbon dioxide (CO2) and water vapor

  14. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  15. Aerosol Chemical and Physical Properties Observed over Puerto Rico in the Tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jusino-Atresino, R.; Xia, L.; Song, F.; Gao, Y.

    2008-12-01

    Tropospheric aerosols that originate in Africa and are transported over the Atlantic Ocean have potential impacts over the Caribbean region. To investigate aerosol properties over this region, air sampling was conducted at San Juan Cape (18.46°N, 66.12°W), Puerto Rico during the summer months in 2006. Aerosol samples were collected by both commercial PM2.5 sampler and in-house fabricated TSP sampler. Analyses of aerosols were made through the use of the following instrumental methods: (1)Ion Chromatography for the determinations of water-soluble cations (sodium, ammonium, potassium, magnesium and calcium) and anions (fluoride, acetate, propionate, methanesulfonate, chloride, nitrate, succinate, malonate, sulfate and oxalate); (2)Inductively Coupled Plasma Mass Spectrometry for the concentrations of selected trace elements (Al, Fe, Mn, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V); (3)Scanning Electron Microscopy for individual aerosol particle characterization. Crustal enrichment factors were calculated to determine the strength of crustal source. Preliminary results indicate that sodium (22 - 99 μg m- 3) and ammonium (1.1 - 50 μg m-3) were the major cations and chloride (1.5 - 99 μg m-3) and sulfate (35 μg m-3) were the dominant anions. Malonate (3.8 - 6.9 μg m- 3) was the most abundant organic anion. Atmospheric concentrations of iron ranged 0.30 - 3.3 ng m- 3. The elements, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V, were enriched by factors of 600 to 40,000 relative to their natural abundance in crustal soil. Principal components analysis indicates six assemblages of fifteen types of aerosol particles, dominated by Si - rich particles.

  16. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles

    NASA Astrophysics Data System (ADS)

    Mochida, Michihiro; Kawamura, Kimitaka

    2004-11-01

    Biomass burning, which is characterized by pyrolysis as well as vaporization and condensation of biomass constituents, is a significant source of atmospheric organic aerosols. In this study, hygroscopic properties of five organic compounds (levoglucosan, D-glucose, and vanillic, syringic, and 4-hydroxybenozoic acids), which are major pyrolysis products of wood, were measured using a tandem differential mobility analyzer. Levoglucosan, which is typically the most abundant species in wood burning aerosols, showed a significant hygroscopic growth for particles with a diameter of 100 nm. No efflorescence was observed under the measured relative humidity, and a supersaturated condition of levoglucosan-water particles was observed. The growth factors of levoglucosan are 1.08, 1.18, 1.23, and 1.38 at relative humidity (RH) of 60, 80, 85, and 90%, respectively. The measured hygroscopic curves are in general consistent with those estimated from ideal solution theory and Uniquac Functional-Group Activity Coefficient (UNIFAC) and Conductor-Like Screening Model for Real Solvent (COSMO-RS) methods. Significant hygroscopic growth was also observed for D-glucose, whose growth factor is quite similar to that of levoglucosan. However, three model pyrolysis products of lignin (i.e., vanillic-, syringic-, and 4-hydroxybenzoic acids) did not show any hygroscopic growth under the RH conditions up to 95%. On the basis of the organic composition of wood burning aerosols, the water absorption attributed to levoglucosan in wood burning aerosols is calculated to be up to 30% of the organic mass at 90% RH. This study demonstrates that oxygenated organics emitted from biomass burning could significantly enhance the hygroscopic properties of atmospheric aerosols.

  17. The Migration Characteristics of Radioactive Aerosol from the Fukushima Nuclear Accident in China

    NASA Astrophysics Data System (ADS)

    Dantong, Liu; Jinzhou, Du

    2014-05-01

    As a result of the Fukushima Nuclear Accident (FUNA), lots of radioactive materials were released and transported to the world. In order to assess the impacts caused by the FUNA to China, the transport pathways of aerosols arrived in China were studied in detail. The analysis data were mainly collected from the national nuclear security administration of China from 31st, March to 22nd, April 2011. The air mass trajectory figures plotted by the NOAA HYSPLIT MODEL were used to explain the aerosols' movements. Heilongjiang was the first province to report on the detection of 131I in its aerosol samples on 26th, March 2011 in China. The maximum of 131I was reported to be 8.01mBq/m3 in Jilin Province on 4th April. However, the highest activities of 137Cs and 134Cs were found to be 1.55mBq/m3 and 1.43mBq/m3 respectively in Xinjiang Province on 8th April. In addition, the statistical ratios of 131I/137Cs and 134Cs/137Cs were 0-26.43 with an average of 2.57 and 0-1.8 with an average of 0.34. Based on the relationships of radionuclides' activities in aerosol between different cities (e.g. Beijing and Liaoning, Beijing and Xinjiang), using canonical correlation analysis, five routes of transmission reaching the mainland were summarized: a. from the Arctic Pole, b. from the North America, c. from the India Peninsula and India Ocean, d. from the Western Pacific Ocean and Japan, e. comprehensive influences between different cities of China. Moreover, some important meteorological factors influencing the aerosols' transportation, such as the global monsoon, rainfall, and wind direction, were also discussed.

  18. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near New Delhi

    NASA Astrophysics Data System (ADS)

    Singh, Sudha

    Generally, industrial and transport sectors are considered as major contributors of air pollution but recently, biomass burning is also reported as a major source of atmospheric aerosols (1, 2) especially in the developing world where solid fuels such as dung cake, wood and crop residues are used in traditional cooking which are responsible for poor air quality, respiratory problems and radiative forcing etc .In India, most of the research has been focused on emission estimates from biomass burning and cooking. No effort has been made to understand the chemistry and sources of fine aerosols in rural areas during cooking hours. This study fills this knowledge gap and strengthens our understanding about abundance of various chemical constituents of atmospheric aerosols emitted during cooking hours.Aerosol samples were collected from village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (~6m). The aerosol samples were collected on 8 hourly basis at a flow rate of 1 LPM. Water extracts of these filters were analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). During cooking period, the concentration of the major ions followed the order of Ca2+> SO42-> NO3-> Cl-> K+> NH4+> Mg2+> Na2+> F-. Among anion SO42 (5 µg/m3) showed highest value and in case of cations Ca2+ (7.32µg/m3) has highest value.

  19. The Relationship of Freshmen's Physics Achievement and Their Related Affective Characteristics

    ERIC Educational Resources Information Center

    Gungor, Almer (Abak); Eryilmaz, Ali; Fakioglu, Turgut

    2007-01-01

    The purpose of this study was to determine the best-fitting structural equation model between the freshmen's physics achievement and selected affective characteristics related to physics. These characteristics are students' situational interest in physics, personal interest in physics, aspiring extra activities related to physics, importance of…

  20. Physical and chemical characteristics of Lake Oahe, 1968-69

    USGS Publications Warehouse

    Selgeby, James H.; Jones, William E.

    1974-01-01

    The physical and chemical characteristics presented provide a description of Lake Oahe and establish bases for certain characteristics which may alter as the reservoir ages. Water temperatures were strongly influenced by wind-driven currents and water depth. The duration of thermal stratification varied from about 3 wk in the upstream portion of the reservoir to about 15 wk near the dam in 1968 and from unstratified upstream to about 15 wk downstream in 1969. Dissolved oxygen was usually near saturation, although it fell to 30% in 1968 and 43% in 1969. Nitrate nitrogen and soluble phosphorous were present on all sampling dates in 1969. Silica levels may have become limiting for diatoms in late summer, 1969.

  1. Optical system for determining physical characteristics of a solar cell

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    The invention provides an improved optical system for determining the physical characteristics of a solar cell. The system comprises a lamp means for projecting light in a wide solid-angle onto the surface of the cell; a chamber for receiving the light through an entrance port, the chamber having an interior light absorbing spherical surface, an exit port for receiving a beam of light reflected substantially normal to the cell, a cell support, and an lower aperture for releasing light into a light absorbing baffle; a means for dispersing the reflection into monochromatic components; a means for detecting an intensity of the components; and a means for reporting the determination.

  2. Influence of continental advection on aerosol characteristics over Bay of Bengal (BoB) in winter: results from W-ICARB cruise experiment

    NASA Astrophysics Data System (ADS)

    Kharol, S. K.; Badarinath, K. V. S.; Kaskaoutis, D. G.; Sharma, A. R.; Gharai, B.

    2011-08-01

    The transport of aerosols and pollutants from continental India to the adjoining oceanic areas is a major topic of concern and several experimental campaigns have been conducted over the region focusing on aerosol characteristics and their climate implications. The present study analyzes the spectral aerosol optical depth (AOD) variations over Bay of Bengal (BoB) during Winter-Integrated Campaign for Aerosols, gases and Radiation Budget (W-ICARB) from 27 December 2008 to 30 January 2009 and investigates the influence of the adjoining landmass to the marine aerosol field. High AOD500 values (>0.7) occurred over northern BoB due to outflow of aerosols and pollutants from the densely populated Indo-Gangetic Plains (IGP); low AOD500 (0.1-0.2) was observed in central and southern BoB, far away from the mainland. The Angstrom exponent "α" was observed to be high (>1.2) near coastal waters, indicating relative abundance of accumulation-mode continental aerosols. On the other hand, over southern BoB its values dropped below ~0.7. National Center for Environmental Prediction (NCEP) reanalysis data on winds at 850 and 700 hPa, along with air-mass trajectories calculated using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, suggested transport of continental aerosols from central and northern India over the BoB. On the other hand, when the ship was crossing the eastern BoB, the aerosol loading was strongly affected by air-masses originating from Southeast Asia, causing an increase in AOD and α. Biomass-burning episodes over the region played an important role in the observed aerosol properties. Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) AOD550 and cruise measured AOD550 showed good agreement (R2 = 0.86 and 0.77, respectively) over BoB, exhibiting similar AOD and α spatio-temporal variation.

  3. PMSE dependence on aerosol charge number density and aerosol size

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Lübken, Franz-Josef; Hoffmann, Peter; Latteck, Ralph; Baumgarten, Gerd; Blix, Tom A.

    2003-04-01

    It is commonly accepted that the existence of polar mesosphere summer echoes (PMSEs) depends on the presence of charged aerosols since these are comparatively heavy and reduce the diffusion of free electrons due to ambipolar forces. Simple microphysical modeling suggests that this diffusivity reduction is proportional to rA2 (rA = aerosol radius) but only if a significant amount of charges is bound on the aerosols such that NA∣ZA∣/ne > 1.2 (NA = number of aerosols, ZA = aerosol charge, ne = number of free electrons). The fact that the background electron profile frequently shows large depletions ("biteouts") at PMSE altitudes is taken as a support for this idea since within biteouts a major fraction of free electrons is missing, i.e., bound on aerosols. In this paper, we show from in situ measurements of electron densities and from radar and lidar observations that PMSEs can also exist in regions where only a minor fraction of free electrons is bound on aerosols, i.e., with no biteout and with NA∣ZA∣/ne ≪ 1. We show strong experimental evidence that it is instead the product NA∣ZA∣rA2 that is crucial for the existence of PMSEs. For example, small aerosol charge can be compensated by large aerosol radius. We show that this product replicates the main features of PMSEs, in particular the mean altitude distribution and the altitude of PMSEs in the presence of noctilucent clouds (NLCs). We therefore take this product as a "proxy" for PMSE. The agreement between this proxy and the main characteristics of PMSEs implies that simple microphysical models do not satisfactorily describe PMSE physics and need to be improved. The proxy can easily be used in models of the upper atmosphere to better understand seasonal and geographical variations of PMSEs, for example, the long debated difference between Northern and Southern hemisphere PMSEs.

  4. Titan's Aerosol and Stratospheric Ice Opacities Between 18 and 500 Micrometers: Vertical and Spectral Characteristics from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; Samuelson, Robert E.

    2011-01-01

    Vertical distributions and spectral characteristics of Titan's photochemical aerosol and stratospheric ices are determined between 20 and 560 per centimeter (500-18 micrometers) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15 N, 15 S, and 58 S, where accurate temperature profiles can be independently determined. In addition, estimates of aerosol and ice abundances at 62 N relative to those at 15 S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are approximately 3 times more abundant at 62 N than at 15 S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at approximately 160 per centimeter, appear to be located over a narrow altitude range in the stratosphere centered at approximately 90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58 S. There is some evidence of a second ice cloud layer at approximately 60 km altitude at 58 S associated with an emission feature at approximately 80 per centimeter. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan. Unlike the highly restricted range of altitudes (50-100 km) associated with organic condensate clouds, Titan's photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15 N and 58 S latitude. The ratio of aerosol-to-gas scale heights range from 1.3-2.4 at about 160 km to 1.1-1.4 at 300 km, although there is considerable variability with latitude, The aerosol exhibits a very broad emission feature peaking at approximately 140 per centimeter. Due to its extreme breadth and low wavenumber, we speculate that this feature may

  5. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Aslam, M. Y.; Upadhyay, M.; Rengarajan, R.; Bhushan, R.; Rathore, J. S.; Singh, S. K.; Kumar, S.

    2016-09-01

    Carbonaceous species (elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC)) and water-soluble inorganic species (Na+, NH4+, K+, Ca2 +, Mg2 +, Cl-, NO3-, SO42 -) in PM10 and PM2.5 from Ahmedabad and Jodhpur (urban and semi-urban locations, respectively) in western India were measured during May-September, 2011. Stable isotope composition of carbonaceous aerosol (δ13C of TC) in PM10 samples was also determined. Average EC concentration in PM10 at Ahmedabad was 1 μg m- 3 (range: 0.34 to 3.4 μg m- 3), almost 80% of which remained in PM2.5. Similarly, 70% of EC in PM10 (average: 0.9 μg m- 3) resided in PM2.5 at Jodhpur. Average OC concentration at Ahmedabad was 6.4 μg m- 3 and ~ 52% of this was found in PM2.5. On the contrary, OC concentration at Jodhpur was 40 μg m- 3, 80% of which was found in coarse particles contributing substantially to aerosol mass. δ13C of TC (average: - 27.5‰, range: - 29.6 to - 25.8‰) along with WSOC/EC ratio shows an increasing trend at Jodhpur suggesting the possibility of aging of aerosol, since aging results in enrichment of heavier isotope. OC and WSOC show significant correlations with K+ and not with EC, indicating biogenic origin of OC. Different size distributions are also exhibited by WSOC at the two stations. On the other hand, δ13C exhibits an inverse trend with sea-salt constituents at Ahmedabad, indicating the influence of air masses transported from the western/south-western region on carbonaceous aerosol. These results suggest that a strong heterogeneity exists in the sources of carbonaceous aerosol over this region and potential sources of non-combustion emissions such as bio-aerosol that need further investigation.

  6. Anthropometric and physical characteristics of english academy rugby league players.

    PubMed

    Till, Kevin; Tester, Emma; Jones, Ben; Emmonds, Stacey; Fahey, Jack; Cooke, Carlton

    2014-02-01

    The purpose of the present study was to evaluate the anthropometric and physical characteristics of English academy rugby league players by annual-age category (under 16s-under 20s) and between backs and forwards. Data were collected on 133 academy players over a 6-year period (resulting in a total of 257 assessments). Player assessments comprised of anthropometric (height, body mass, sum of 4 skinfolds) and physical (vertical jump, 10- and 20-m sprint, estimated V[Combining Dot Above]O2max via the yo-yo intermittent recovery test level 1, absolute 1 repetition maximum [1RM], and relative squat, bench press, and prone row) measures. Univariate analysis of variance demonstrated significant (p ≤ 0.05) increases in height, body mass, vertical jump, absolute, and relative strength measures across the 5 annual-age categories (e.g., body mass: under 16s = 75.2 ± 11.1, under 20s = 88.9 ± 8.5 kg; vertical jump: under 16s = 45.7 ± 5.2, under 20s = 52.8 ± 5.4 cm; 1RM bench press: under 16s = 73.9 ± 13.2, under 20s = 114.3 ± 15.3 kg). Independent t-tests identified significant (p ≤ 0.05) differences between backs and forwards for anthropometric (e.g., under 16s body mass: backs = 68.4 ± 8.6, forwards = 80.9 ± 9.7 kg) and physical (e.g., under 19s 20-m sprint: backs = 3.04 ± 0.08, forwards = 3.14 ± 0.12s; under 18s relative squat: backs = 1.65 ± 0.18, forwards = 1.51 ± 0.17 kg·kg) characteristics that were dependent on the age category and measure assessed. Findings highlight that anthropometric and physical characteristics develop across annual-age categories and between backs and forwards in academy rugby league players. These findings provide comparative data for such populations and support the need to monitor player development in junior rugby league players.

  7. Summer-winter differences in the relationships among background southeastern U.S. aerosol optical, micro-physical, and chemical properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Relationships among aerosol optical, micro-physical, and chemical properties are useful for evaluating regional climate models, developing satellite-based aerosol retrievals, and understanding aerosol sources and processes. Since aerosol loading and optical properties vary primarily on seasonal scales in the southeastern U.S., it is important that such studies be carried out over multiple seasons but few (if any) such multi-season studies have been conducted in the region. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1080m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were also made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. Some of the major findings will be presented. Higher values of lower tropospheric aerosol light scattering coefficient at 550nm (a proxy for aerosol loading) are associated with higher single-scattering albedo (SSA) and lower hemispheric backscatter fraction (b) during both summer and winter. Absorption Angstrom exponent (AAE) is typically well under 1 during summer and near 1.3-1.4 during winter. Lowest summer AAE values coincide with large, highly-reflective particles and higher aerosol light scattering coefficient but summer AAE is only weakly anti-correlated with organic and sulfate mass concentrations. Winter AAE is consistent with a mixture of elemental carbon and light-absorbing organic carbon, possibly influenced by regional residential wood-burning during winter. The hygroscopic dependence of visible light scattering is sensitive to sulfate and organic aerosol mass fractions during both summer and winter

  8. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2011-05-01

    Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dynamics, the deposition of 1- and 3-μm aerosol particles was predicted in models of human alveolar sac and terminal acinar bifurcation under rhythmic wall motion for two breathing conditions (functional residual capacity = 3 liter, tidal volume = 0.5 and 0.9 liter, breathing period = 4 s). Particles entering the model during one inspiration period were tracked for multiple breathing cycles until all particles deposited or escaped from the model. Flow recirculation inside alveoli occurred only during transition between inspiration and expiration and accounted for no more than 1% of the whole cycle. Weak flow irreversibility and convective transport were observed in both models. The average deposition efficiency was similar for both breathing conditions and for both models. Under normal gravity, total deposition was ~33 and 75%, of which ~67 and 96% occurred during the first cycle, for 1- and 3-μm particles, respectively. Under zero gravity, total deposition was ~2-5% for both particle sizes. These results support previous findings that gravitational sedimentation is the dominant deposition mechanism for micrometer-sized aerosols in acinar airways. The results also showed that moving walls and multiple breathing cycles are needed for accurate estimation of aerosol deposition in acinar airways.

  9. Aerosol chemical characteristics of an island site in the Bay of Bengal (Bhola-Bangladesh).

    PubMed

    Salam, Abdus; Bauer, Heidi; Kassin, Karin; Ullah, Shah Mohammad; Puxbaum, Hans

    2003-06-01

    Aerosol constituents (elemental carbon, organic carbon, soluble ions including organic acids, and selected trace metals) were investigated from samples of a field campaign taking place at Bhola Island in the Bay of Bengal (Bangladesh). The campaign took place in the pre-monsoon season (May 2001) using low volume samplers. Carbonaceous material comprised the majority of the analysed components. The average concentrations of EC and OC were 2.8 and 4.6 microg m(-3), respectively. Oxalic acid was the most abundant dicarboxylic acid (average 268 ng m(-3)) followed by malonic and malic acid. The contribution of carboxylic acids-carbon to organic carbon was 2.0%. Average concentrations observed for sulfate and nitrate were 3.7 microg m(-3) and 1.5 microg m(-3). Two different types of aerosol were identified at the rural background site on Bhola Island during southerly synoptic flow by means of trajectory analysis: air masses were transported from the Bay of Bengal to the sampling site in all cases. However, during "Period 1" they experienced longer residence times over the Indian Ocean, while the "Period 2" trajectories came along the Indian coast or passed over the Indian continent. During Period 1 the concentration levels of soluble ions were a factor of 4-6 lower than during Period 2. The concentrations of EC, OC and K differed less than a factor of 1.5 between the two periods. The Period 1 aerosol showed similarities to the haze layers observed during winter-monsoon conditions south of India during the INDOEX experiment. Based on EC/TC and K/EC ratios we find that around 80% of the carbonaceous aerosol from Period 1 in Bhola is from fossil fuel and only around 50% from Period 2. Absolute concentrations of carbonaceous species, soluble ions and trace metals indicate that the background site on Bhola Island is affected by emissions from urbanized regions of Southeast Asia.

  10. Carbonaceous aerosol characteristics over Delhi in Northern India: Seasonal variability and possible sources

    NASA Astrophysics Data System (ADS)

    Srivastava, Atul Kumar; Bisht, Ds; Tiwari, S.

    Carbonaceous aerosols have been the focus of extensive studies during the last decade due to its significant impacts on human health, visibility and climate change. As per Asian regions are concerned, aerosols in south-Asia are gaining considerable importance because of their potential impacts on regional climate, yet their possible sources are poorly understood. Semi-continuous measurements of organic carbon (OC) and elemental carbon (EC) and continuous measurements of black carbon (BC) aerosols were conducted simultaneously at Delhi during the period from January 2011 to May 2012. Delhi is the capital city of India and one of the densely populated and industrialized urban megacities in Asia, located at the Ganga basin in the northern part of India. Being highly polluted region, mass concentrations of OC, EC and BC over Delhi were found to vary from about 6-92 mug m (-3) (mean: 23±16 mug m (-3) ), 3-38 mug m (-3) (mean: 11±7 mug m (-3) ) and 1-24 mug m (-3) (mean: 7±5 mug m (-3) ), respectively during the entire measurement period, with about two times higher concentration during winter as compared to summer. A significant correlation between OC and EC (R=0.95, n=232) and relatively lower OC/EC ratio (range: 1.0-3.6; mean: 2.2±0.5) suggest fossil fuel emission as a dominant source of carbonaceous aerosols over the station. The average mass concentration of EC was found about 38% higher than BC during the study period, which is interestingly different as reported at other locations over Ganga basin. We also determined the associated optical properties of carbonaceous species (e.g. absorption coefficient and mass absorption efficiency) over the station. Significant loading of carbonaceous species over such regions emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective.

  11. The detection of clouds, aerosols and marine atmospheric boundary layer characteristics from simulated GLAS data

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Spinhirne, James D.

    1998-01-01

    Scheduled for launch in 2001 as part of NASA's Earth Observing System (EOS), the Geoscience Laser Altimeter System (GLAS) will provide continuous laser sounding of the earth's atmosphere from space for the first time. From its polar orbit about 600 km above the surface, GLAS will employ a 40 Hz solid state laser operating at 1064 nm to measure topography to an accuracy of 10 cm. Simultaneously, the atmospheric channels (1064 and 532 nm) of GLAS will provide profiles of atmospheric backscatter from 40 km to the ground with 75 meter vertical resolution (Spinhirne and Palm, 1996). These measurements will give scientists an unprecedented global data set on the vertical structure of clouds and aerosols which will greatly aid research efforts aimed at understanding their effects on climate and their role in climate change (Hartman, 1994). To better understand and predict the performance of the GLAS atmospheric channels, a computer model was developed to simulate the type of signal that the instrument would likely produce. The model uses aircraft lidar data and provides realistic simulated GLAS data sets over large areas spanning a wide range of atmospheric conditions. These simulated GLAS datasets are invaluable for designing and testing algorithms for the retrieval of parameters such as cloud and aerosol layer height, optical depth and extinction cross section. This work is currently proceeding and in this paper we will present results of the cloud and aerosol detection algorithm with emphasis on the detection of Marine Atmospheric Boundary Layer (MABL) aerosol. In addition, we use a recently developed technique to ascertain the feasability of estimating MABL moisture and temperature structure from spaceborne systems such as GLAS.

  12. Physical and chemical characteristics of pitaya fruits at physiological maturity.

    PubMed

    Ortiz, T A; Takahashi, L S A

    2015-01-01

    The aim of this study was to analyze the physical and chemical characteristics of the maturation process of pitaya fruit (Hylocereus undatus) to identify indicators that can be used to determine the point of physiological maturity and establish the optimal timing of physiological maturity for harvesting the fruit. A completely randomized experimental design was employed and four biological repeats were performed. Physiological maturity was assessed using various physical characteristics: longitudinal length (LL), equatorial diameter (ED), pericarp thickness (PeT), pulp thickness (PuT), fruit mass (FM), pulp mass (PuM), pericarp mass (PeM), pericarp percentage (%Pe), pulp percentage (%Pu), pulp/pericarp ratio (Pu/Pe), pericarp color index (CI), hue color angle (h°), lightness index (L*), chroma (C*), blue-yellow variation (b*), and green-red variation (a*). Additionally, chemical characteristics such as soluble solid content (SS), titratable acidity (TA), SS/TA ratio, and pH were screened. The data were statistically analyzed by fitting regression models and computing Pearson's correlation coefficients (P < 0.05). Physiological maturity in pitaya fruits occurred between the 30th and 32nd days after anthesis, and this proved to be the optimal period for harvest. At this time, the fruit was completely red with high SS, and had the recommended values of TA, pH, and SS/TA ratio. During this period, ED, PuT, FM, PuM, %Pu, and Pu/Pe increased while PeT, PeM, and %Pe fell; these changes are considered desirable by producers and/or consumers. PuM was the variable that displayed more strong's association with other variables in the analysis. PMID:26600501

  13. Physical and chemical characteristics of pitaya fruits at physiological maturity.

    PubMed

    Ortiz, T A; Takahashi, L S A

    2015-11-19

    The aim of this study was to analyze the physical and chemical characteristics of the maturation process of pitaya fruit (Hylocereus undatus) to identify indicators that can be used to determine the point of physiological maturity and establish the optimal timing of physiological maturity for harvesting the fruit. A completely randomized experimental design was employed and four biological repeats were performed. Physiological maturity was assessed using various physical characteristics: longitudinal length (LL), equatorial diameter (ED), pericarp thickness (PeT), pulp thickness (PuT), fruit mass (FM), pulp mass (PuM), pericarp mass (PeM), pericarp percentage (%Pe), pulp percentage (%Pu), pulp/pericarp ratio (Pu/Pe), pericarp color index (CI), hue color angle (h°), lightness index (L*), chroma (C*), blue-yellow variation (b*), and green-red variation (a*). Additionally, chemical characteristics such as soluble solid content (SS), titratable acidity (TA), SS/TA ratio, and pH were screened. The data were statistically analyzed by fitting regression models and computing Pearson's correlation coefficients (P < 0.05). Physiological maturity in pitaya fruits occurred between the 30th and 32nd days after anthesis, and this proved to be the optimal period for harvest. At this time, the fruit was completely red with high SS, and had the recommended values of TA, pH, and SS/TA ratio. During this period, ED, PuT, FM, PuM, %Pu, and Pu/Pe increased while PeT, PeM, and %Pe fell; these changes are considered desirable by producers and/or consumers. PuM was the variable that displayed more strong's association with other variables in the analysis.

  14. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    NASA Astrophysics Data System (ADS)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  15. Aerosol Indirect Effects on the Cold Pool Characteristics of Convective Storms and Their Subsequent Feedbacks to Convective Development and Surface Precipitation

    NASA Astrophysics Data System (ADS)

    van den Heever, S. C.

    2008-12-01

    Enhanced aerosol concentrations are often associated with a decrease in the surface precipitation through their suppression of the warm rain process. Such changes to the surface precipitation may, however, have an impact on the associated cold pool characteristics, thereby affecting subsequent convective development and the resultant surface precipitation. This dynamic response of the cold pool to enhanced aerosol concentrations may therefore at times offset the aerosol indirect effects on precipitation through its organization of the convection. The relationship between aerosol indirect effects on precipitation characteristics and the associated dynamic forcing of the cold pool has been investigated through the use of several cloud-resolving simulations of convective storms over Florida. Toward the end of NASA's CRYSTAL-FACE field campaign conducted over Florida during July 2002, high concentrations of Saharan dust, which can serve as cloud condensation nuclei and ice nuclei, were observed over the peninsula of Florida. Cloud-resolving model simulations have been conducted using the Regional Atmospheric Modeling System (RAMS) to investigate the impacts of varying aerosol concentrations on the characteristics of the convection developing over the Peninsula. The model was initialized with vertical profiles of both clean and high aerosol concentrations observed during the field campaign. Results from the simulations show that while enhanced aerosol concentrations do tend to result in a decrease in the surface precipitation throughout much of the lifecycle of the storms, there are however times when the precipitation produced by the high aerosol case is greater than that of the clean case. It is during these times that the gust fronts of the storms in the clean case have outrun their associated updrafts, resulting in a weakening of the storm system and a concomitant decrease in surface precipitation. In the high aerosol case the updrafts remain co-located with their

  16. Characteristics of the water-soluble components of aerosol particles in Hefei, China.

    PubMed

    Deng, Xue-liang; Shi, Chun-e; Wu, Bi-wen; Yang, Yuan-jian; Jin, Qi; Wang, Hong-lei; Zhu, Song; Yu, Caixia

    2016-04-01

    Size-classified daily aerosol mass concentrations and concentrations of water-soluble inorganic ions were measured in Hefei, China, in four representative months between September 2012 and August 2013. An annual average mass concentration of 169.09 μg/m(3) for total suspended particulate (TSP) was measured using an Andersen Mark-II cascade impactor. The seasonal average mass concentration was highest in winter (234.73 μg/m(3)) and lowest in summer (91.71 μg/m(3)). Water-soluble ions accounted for 59.49%, 32.90%, 48.62% and 37.08% of the aerosol mass concentration in winter, spring, summer, and fall, respectively, which indicated that ionic species were the primary constituents of the atmospheric aerosols. The four most abundant ions were NO3(-), SO4(2-), Ca(2+) and NH4(+). With the exception of Ca(2+), the mass concentrations of water-soluble ions were in an intermediate range compared with the levels for other Chinese cities. Sulfate, nitrate, and ammonium were the dominant fine-particle species, which were bimodally distributed in spring, summer and fall; however, the size distribution became unimodal in winter, with a peak at 1.1-2.1 μm. The Ca(2+) peak occurred at approximately 4.7-5.8 μm in all seasons. The cation to anion ratio was close to 1.4, which suggested that the aerosol particles were alkalescent in Hefei. The average NO3(-)/SO4(2-) mass ratio was 1.10 in Hefei, which indicated that mobile source emissions were predominant. Significant positive correlation coefficients between the concentrations of NH4(+) and SO4(2-), NH4(+) and NO3(-), SO4(2-) and NO3(-), and Mg(2+) and Ca(2+) were also indicated, suggesting that aerosol particles may be present as (NH4)2SO4, NH4HSO4, and NH4NO3. PMID:27090692

  17. Water soluble ions in aerosols (TSP) : Characteristics, sources and seasonal variation over the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Tripathee, Lekhendra; Kang, Shichang; Zhang, Qianggong; Rupakheti, Dipesh

    2016-04-01

    Atmspheric pollutants transported from South Asia could have adverse impact on the Himalayan ecosystems. Investigation of aerosol chemistry in the Himalayan region in Nepal has been limited on a temporal and spatial scale to date. Therefore, the water-soluble ionic composition of aerosol using TSP sampler was investigated for a year period from April 2013 to March 2014 at four sites Bode, Dhunche, Lumbini and Jomsom characterized as an urban, rural, semi-urban and remote sites in Nepal. During the study period, the highest concentration of major cation was Ca2+ with an average concentration of 8.91, 2.17, 7.85 and 6.42 μg m-3 and the highest concentration of major anion was SO42- with an average of 10.96, 4.06, 6.85 and 3.30 μg m-3 at Bode, Dhunche, Lumbini and Jomsom respectively. The soluble ions showed the decrease in concentrations from urban to the rural site. Correlations and PCA analysis suggested that that SO42-, NO3- and NH4+ were derived from the anthropogenic sources where as the Ca2+ and Mg2+ were from crustal sources. Our results also suggest that the largest acid neutralizing agent at our sampling sites in the central Himalayas are Ca2+ followed by NH4+. Seasonal variations of soluble ions in aerosols showed higher concentrations during pre-monsoon and winter (dry-periods) due to limited precipitation amount and lower concentrations during the monsoon which can be explained by the dilution effect, higher the precipitation lower the concentration. K+ which is regarded as the tracer of biomss burning had a significant peaks during pre-monsoon season when the forest fires are active around the regions. In general, the results of this study suggests that the atmospheric chemistry is influenced by natural and anthropogenic sources. Thus, soluble ionic concentrations in aerosols from central Himalayas, Nepal can provide a useful database to assess atmospheric environment and its impacts on human health and ecosystem in the southern side of central

  18. Investigating the frequency and trends in global above-cloud aerosol characteristics with CALIOP and OMI

    NASA Astrophysics Data System (ADS)

    Alfaro-Contreras, R.; Zhang, J.; Campbell, J. R.; Reid, J. S.

    2015-02-01

    Seven and a half years (June 2006-November 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol and cloud layer products are compared with collocated Ozone Monitoring Instrument (OMI) Aerosol Index (AI) data and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, to investigate variability in estimates of bi-annual and monthly above-cloud aerosol (ACA) events globally. The active- (CALIOP) and passive-based (OMI-MODIS) techniques have their advantages and caveats for ACA detection, and thus both are used to get a thorough and robust comparison of daytime cloudy-sky ACA distribution and climatology. For the first time, baseline above-cloud aerosol optical depth (ACAOD) and AI thresholds are derived and examined (AI = 1.0, ACAOD = 0.015) for each sensor. Both OMI-MODIS and CALIOP-based daytime spatial distributions of ACA events show similar patterns during both study periods (December-May) and (June-November). Divergence exists in some regions, however, such as Southeast Asia during June through November, where daytime cloudy-sky ACA frequencies of up to 10% are found from CALIOP yet are non-existent from the OMI-based method. Conversely, annual cloudy-sky ACA frequencies of 20-30% are reported over Northern Africa from the OMI-based method, yet are largely undetected by the CALIOP-based method. This is possibly due to a misclassification of thick dust plumes as clouds by the OMI-MODIS based method. An increasing trend of ~0.5% per year (since 2009) in global monthly cloudy-sky ACA daytime frequency of occurrence is found using the OMI-MODIS based method. Yet, CALIOP-based global daytime ACA frequencies exhibit a near-zero trend. Further analysis suggests that the OMI derived cloudy-sky ACA frequency trend may be affected by OMI row anomalies in later years. A few regions are found to have increasing trends of cloudy-sky ACA frequency, including the Middle-East and India. Regions with slightly negative cloudy-sky ACA

  19. Evaluation of IASI derived dust aerosols characteristics over the tropical belt

    NASA Astrophysics Data System (ADS)

    Capelle, V.; Chédin, A.; Siméon, M.; Tsamalis, C.; Pierangelo, C.; Pondrom, M.; Armante, R.; Crevoisier, C.; Crepeau, L.; Scott, N. A.

    2013-11-01

    IASI-derived monthly mean infrared (10 μm) dust aerosol optical depth (AOD) and altitude are evaluated against ground based AERONET measurements of the 500 nm coarse mode AOD and CALIOP measurements of the altitude at 38 AERONET sites within the tropical belt (30° N-30° S). The period covered extends from July 2007 to December 2012. The evaluation goes through the analysis of Taylor diagrams and box and whiskers plots, separating situations over sea and over land. Concerning AOD, the overall correlation for the sites over sea comes to 0.88 for 713 items (IASI and AERONET monthly mean bins). The overall normalized standard deviation is of 0.96. Over land, essentially desert, correlation is of 0.74 for 582 items and the normalized standard deviation is of 0.87. This slight but significant degradation over land most probably results from the greater complexity of the surface (heterogeneity, elevation) and, to a lesser extent, to the episodic presence of dust within the boundary layer (particularly for sites close to active sources) to which IASI, as any thermal infrared sounder, is poorly sensitive contrary to AERONET. Concerning altitude over sea, correlation is of 0.78 for 925 items and the normalized standard deviation is of 1.03. Results over land, essentially over deserts, are not satisfactory for a majority of sites. To the reasons listed above for the AOD must be added the smaller IASI signal induced by the altitude compared to the signal induced by the AOD. Site by site, disparities appear that we estimate being principally due to either the insufficient number of AERONET observations throughout the period considered, to the complexity of the situation mixing several aerosol types (case of the Persian Gulf, for example), to surface heterogeneities (elevation, emissivity, etc.), or to the use of a single aerosol model ("MITR"). Results using another aerosol model with different refractive indices are presented and discussed. We conclude that the present

  20. Evaluation of IASI-derived dust aerosol characteristics over the tropical belt

    NASA Astrophysics Data System (ADS)

    Capelle, V.; Chédin, A.; Siméon, M.; Tsamalis, C.; Pierangelo, C.; Pondrom, M.; Crevoisier, C.; Crepeau, L.; Scott, N. A.

    2014-09-01

    IASI (Infrared Atmospheric Sounder Interferometer)-derived monthly mean infrared (10 μm) dust aerosol optical depth (AOD) and altitude are evaluated against ground-based Aerosol RObotic NETwork of sun photometers (AERONET) measurements of the 500 nm coarse-mode AOD and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) measurements of altitude at 38 AERONET sites (sea and land) within the tropical belt (30° N-30° S). The period covered extends from July 2007 to June 2013. The evaluation goes through the analysis of Taylor diagrams and box-and-whiskers plots, separating situations over oceanic regions and over land. For the AOD, such an evaluation raises the problem of the difference between the two spectral domains used: infrared for IASI and visible for AERONET. Consequently, the two measurements do not share the same metrics. For that reason, AERONET coarse-mode AOD is first "translated" into IASI-equivalent infrared AOD. This is done by the determination, site by site, of an infrared to visible AOD ratio. Because translating visible coarse-mode AOD into infrared AOD requires accurate knowledge of variables, such as the infrared refractive index or the particle size distribution, quantifying the bias between these two sources of AOD is not straightforward. This problem is detailed in this paper, in particular in Appendix A. For the sites over oceanic regions, the overall AOD temporal correlation comes to 0.86 for 786 items (IASI and AERONET monthly mean bins). The overall normalized standard deviation (i.e. ratio of the standard deviation of the test data (IASI) to that of the reference data (AERONET)) is 0.93, close to the desired value of 1. Over land, essentially desert, correlation is 0.74 for 619 items and the normalized standard deviation is 0.86. This slight but significant degradation over land most probably results from the greater complexity of the surface (heterogeneity, elevation) and, to a lesser extent, to the episodic presence of dust

  1. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    SciTech Connect

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda; Russell, Lynn M.; Rasch, Philip J.; Elliott, S.

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical

  2. Physical properties of ambient and laboratory-generated secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda C.; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey A.; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-01

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory-generated secondary organic aerosols (SOA). Scanning transmission X-ray microscopy was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Particles with higher viscosity/surface tension can be identified by a steeper slope on a plot of TCA versus size because they flatten less upon impaction. The slopes of the ambient data are statistically similar indicating a small range of average viscosities/surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory-generated SOA. This comparison indicates that ambient organic particles have higher viscosities/surface tensions than those typically generated in laboratory SOA studies.

  3. Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol

    SciTech Connect

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-17

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

  4. Photoelectrochemical and physical properties of titanium dioxide films obtained by aerosol pyrolysis

    SciTech Connect

    Belaidi, A.; Chaqour, S.M.; Gorochov, O.; Neumann-Spallart, M

    2004-04-02

    Aerosol pyrolysis (AP) was used to prepare thin films of titanium dioxide on various substrates. The films were characterized by SEM, SIMS, XRD, and thickness measurements, and by photoelectrochemical response before and after annealing in various ambients. Pinhole-free anatase films of thickness up to 1000 nm were prepared. Incident photon to current efficiencies (IPCEs) of up to 20% at 365 nm were obtained for thick films under depletion conditions, in aqueous electrolytes.

  5. On Group Phase Quantization and Its Physical Characteristics

    NASA Astrophysics Data System (ADS)

    Du, Bao-Qiang; Zhou, Wei; Yu, Jian-Guo; Dong, Shao-Feng

    2011-05-01

    The physical characteristics of phase quantum are further revealed, based on the proposition of concepts of the greatest common factor frequency, the least common multiple period, quantized phase shift resolution and equivalent phase comparison frequency. Then the problem of phase comparison between different frequency signals is certified in detail. Using the basic principle of phase comparison between different frequencies and the variation law of group phase difference, a point of view on group phase quantization is presented. Group phase quantum is not only an indivisible individual of group phase, but also a basic unit composing group phase difference. It is equal to the equivalent phase comparison period of phase comparison between different frequencies in size. Experimental results show not only a high measurement resolution of 10-12/s in frequency measurement based on group phase quantum, but also a super-high locked phase precision of 10-13/s in active H atomic clock.

  6. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  7. Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Hu, Zhaofu; Gao, Shaopeng; Qu, Bin; Sillanpää, Mika

    2016-10-01

    Light absorption characteristics of carbonaceous aerosols are key considerations in climate forcing research. However, in situ measurement data are limited, especially on the Tibetan Plateau (TP) - the Third Pole of the world. In this study, the mass absorption cross section (MAC) of elemental carbon (EC) and water soluble organic carbon (WSOC) of total suspended particles at two high-altitude stations (Lulang station and Everest station) in the Tibetan Plateau (TP) were investigated. The mean MACEC values at 632 nm were 6.85 ± 1.39 m2 g-1 and 6.49 ± 2.81 m2 g-1 at these two stations, both of which showed little seasonal variations and were slightly higher than those of EC of uncoated particles, indicating that the enhancement of MACEC by factors such as coating with organic aerosols was not significant. The mean MACWSOC values at 365 nm were 0.84 ± 0.40 m2 g-1 and 1.18 ± 0.64 m2 g-1 at the two stations. Obvious seasonal variations of high and low MACWSOC values appeared in winter and summer, respectively, mainly reflecting photobleaching of light absorption components of WSOC caused by fluctuations in sunlight intensity. Therefore, this phenomenon might also exists in other remote areas of the world. The relative contributions of radiative forcing of WSOC to EC were 6.03 ± 3.62% and 11.41 ± 7.08% at these two stations, with a higher ratio in winter. As a result, both the contribution of WSOC to radiative forcing of carbonaceous aerosols and its seasonal variation need to be considered in radiative forcing related study.

  8. Chemical and Aerosol Characteristics of Asian Outflow as Observed during INTEX-B and TRACE-P

    NASA Astrophysics Data System (ADS)

    Thornhill, L.; Anderson, B. E.; Winstead, E. L.; Chen, G.; Clarke, A.; Dibb, J.; Scheuer, E.; Sachse, G.; Blake, D.; Fuelberg, H.

    2007-12-01

    The NASA Intercontinental Transport and Chemistry Experiment, phase B (INTEX-B) was conducted in the spring of 2006 to investigate the transport and transformation of gases and aerosols on transcontinental/intercontinental scales and to assess the impacts of the aged pollutants on air quality and climate. To accomplish these goals, the instrumented, North Dakota DC-8 aircraft was deployed during two separate phases to study vastly different pollution and transport phenomena. During the first 3 weeks of March, the aircraft was based in Houston and flew sorties over Mexico City and the western Gulf to examine the composition, outflow pathways, and evolution of pollution from Mexico City. The second phase took place between April 17 and May 15, and involved basing the aircraft at first Hickam AFB, Hawaii, then Anchorage, AK to examine the outflow of pollution from Asia at different points along the transport pathway. In this presentation, we analyze data from the second phase of INTEX-B to characterize the composition of Asian outflow as a function of age (e.g. C2H2/CO ratio) and vertical location (0-2, 2-4, 4-6, 6-8, and >8 km). We use airmass trajectories to identify the primary Asian continental source regions that influence atmospheric composition within the Northeast Pacific region and characterize those source regions using aerosol and gas phase tracers. In addition, we compare INTEX-B vertical profiles of trace gas and aerosol species with similar measurements recorded aboard the DC-8 just off the Asian coast during the 2001 NASA Transport and Chemistry near the Equator - Pacific (TRACE-P) experiment to evaluate changes in species concentrations/characteristics during the approximately 10-day transport period between the two regions.

  9. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhuang, Guoshun; Sun, Yele; An, Zhisheng

    A 4-year campaign from 2001 to 2004 monitoring PM 2.5 and TSP in the spring season in urban Beijing, China was performed to study the variation of characteristics and the different formation mechanisms of aerosols in dust, haze, and clear days. A total of 315 aerosol samples were collected and used in this study. The aerosols were more basic in dust days and more acidic in haze days. The ions presented in the order of SO42->Ca 2+≫ NO3->Cl -> NH4+>Na + in dust days, and of SO42-> NO3-> NH4+≫Cl ->Ca 2+>K + in haze days. Ions has been classified into three groups, "Na +, Mg 2+, Ca 2+", "K +, SO42-, Cl -", and " NO3-, NH4+", representing crust, pollution-crust, and pollution species, respectively. Crust and pollution ions were the main ion fractions in dust and haze days, respectively. The variation of Ca 2+/Al showed that the increase of dust in dust and haze days was from soil and construction, respectively. "CaCO 3, CaSO 4, and (NH 4) 2SO 4" and "(NH 4) 2SO 4, NH 4NO 3, and Ca(NO 3) 2" were the major species in dust and haze days, respectively. The formation of CaSO 4 on airborne soil particles and the formation of (NH 4) 2SO 4 and NH 4NO 3 were the predominant pathways of sulfate and nitrate formations in dust and haze days, respectively. Sulfate might be mainly formed through heterogeneous reactions in the aqueous surface layer on the pre-existing particles, while nitrate mainly through homogeneous gas-phase reactions in the spring season in Beijing. The formation of sulfate and nitrate was accelerated in dust and haze days.

  10. Physiological and physical characteristics of elite dragon boat paddlers.

    PubMed

    Ho, Sarah R; Smith, Richard M; Chapman, Philip G; Sinclair, Peter J; Funato, Kazuo

    2013-01-01

    The objectives of this study were to profile the physiological and physical characteristics of elite dragon boat paddlers, to identify characteristics that predict race performance and to quantify the metabolic energy contributions to simulated 200-m and 500-m dragon boat racing. Eleven, national level, male, Japanese dragon boat paddlers completed a battery of tests on a paddling ergometer including an incremental maximal aerobic capacity test, a 2-minute maximal accumulated oxygen deficit (MAOD) test, and simulated 200-m and 500-m races. A physiological and physical profile of subjects was compiled. Results showed that 200-m race performance correlated with flexed arm girth and excess postexercise oxygen consumption (EPOC) measured in the 30 minutes after the MAOD test, whereas 500-m race performance correlated with body fat percentage, relaxed and flexed arm girth, MAOD, EPOC, and peak power during the MAOD test. Stepwise multiple regression revealed that flexed arm girth was the most powerful predictor of 200-m and 500-m race performance, followed by EPOC with the combination of these 2 factors able to explain 74% and 68% of the variance in 200-m and 500-m race performance, respectively. Aerobic energy contributions for 200-m (50 seconds) and 500-m (1 minute 50 seconds) races were (mean (95% confidence intervals)) 52.1% (range, 47.4-56.8%) and 67.5% (range, 60.1-77.8%), respectively. In conclusion, coaches should develop training programs targeted at developing upper-body musculature and increasing anaerobic capacity because these factors are the strongest predictors of 200-m and 500-m race performance. Given the substantial aerobic energy contributions even for a 200-m race event, coaches should aim to increase the maximal aerobic capacity of the paddler in preparation for both 200-m and 500-m events.

  11. Orbital and Physical Characteristics of Meter-sized Earth Impactors

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward

    2015-11-01

    We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).

  12. Characteristics of heavy aerosol pollution during the 2012-2013 winter in Beijing, China

    NASA Astrophysics Data System (ADS)

    Quan, Jiannong; Tie, Xuexi; Zhang, Qiang; Liu, Quan; Li, Xia; Gao, Yang; Zhao, Delong

    2014-05-01

    A comprehensive measurement was carried out to analyze the heavy haze events during 2012-2013 winter in Beijing. The measured variables include some important meteorological parameters, such wind directions, wind speeds, relative humidity (RH), planetary boundary layer (PBL), solar radiation, and visibility. The aerosol composition and concentrations (including particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)) as well as their gas-phase precursors (including nitrogen oxides (NOx) and sulfur dioxide (SO2)) were analyzed during the period between Nov. 16, 2012 and Jan. 15, 2013. The results show that the hourly mean concentrations of PM2.5 often exceeded 200 μg/m3, with a maximum concentration of 600 μg/m3 on Jan. 13, 2013. The relative humidity was increased during the haze events, indicating that both aerosol concentrations and RH had important effect on the reduction of visibility, causing the occurrence of the haze events. Because the wind speeds were generally low (less than 1 m/s) during the haze event, the vertical dispersion and the PBL heights were very important factors for causing the strong variability of aerosol concentrations. This study also finds that under the lower visibility condition, the conversion from the gas-phase of NOx and SO2 to the particle phase of NO3 and SO4 were higher than the values under the higher visibility condition. Because the lower visibility condition was corresponding to the lower photochemical activity than the higher visibility condition, the higher conversion from gas phase to particle phase in the lower visibility condition indicated that there was important heterogeneous formation of NO3 and SO4 during the heavy haze events.

  13. Demographic characteristics and physical activity behaviors in sixteen Michigan parks.

    PubMed

    Reed, Julian A; Price, Anna E; Grost, Lisa; Mantinan, Karah

    2012-04-01

    The Building Healthy Communities (BHC) initiative addresses inadequate physical activity in Michigan using a population-based approach to prevent chronic disease. Eighteen local health departments through 2010 received $1,505,179 to plan and implement community-based interventions to increase physical activity among low-income and minority populations. This paper examines park user demographics, compares park user demographics to the demographic characteristics and examines physical activity behaviors of park users in these parks. BHC Park usage was examined from 2008 to 2010 using the System for Observing Play and Recreation in Communities (SOPARC). One sample binomial tests were used to examine if the proportion of male and female park users was different than the proportion of males and females in Michigan and to examine if the proportion of white and other park users was different than the proportion of whites and others in Michigan. A chi-square goodness-of-fit test was used to examine whether the observed proportions for age groups observed using the park differed from the actual proportions for age groups in Michigan. The majority of BHC park users were white. More children were observed than other age groups. Park users were most often observed engaging in walking or vigorous activity rather than sedentary activities. When comparing the proportion of whites (54.7%) and others (42.8%) observed using the parks to the proportion of whites (79%) and others (21%) residing in Michigan, there was a significant difference (P < 0.001) with a greater proportion of whites and smaller proportion of persons of other ethnicities expected to be observed using the parks. This chi square goodness of fit test showed a significant difference in the observed and expected number of persons observed using the trail in each age group (χ(2) = 4,897.707, df = 3, P < 0.001) with a greater number of children (n = 1,939) and teens (n = 1,116) observed than the number of

  14. Aerosol abundances and optical characteristics in the pacific basin free troposphere

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; Livingston, J. M.; Ferry, G. V.; DeFelice, T. E.

    During NASA's Global Backscatter Experiment (GLOBE) mission flights in November 1989 and May 1990, a DC-8 research aircraft probed the Pacific Basin free troposphere for about 90 flight hours in each month between +72 and -62 degrees latitude, +130 and -120 degrees longitude, and up to 39,000 feet pressure altitudes. Aerosols were sampled continuously in situ by optical particle counters to measure concentration and particle size, and during 48 10-min intervals during each mission by wire impactors for concentration, size, composition, phase and shape analyses. The optical particle counters cover a particle diameter range between 0.3 and 20 μm; wire impactors extend the range down to 0.03 μm. Results of particle number, size, shape, together with the assumption of a refractive index corresponding to (NH 4) 2SO 4 to account for the prevalence of aerosol sulfur, were utilized in a Mie algorithm to calculate aerosol extinction and backscatter for a range of wavelengths (0.385 < λ < 10.64 μm). Computations for 22 randomly selected size distributions yield coefficients of extinction E0.525=(2.03±1.20) × 10 -4 km -1 and backscatter β0.525=(6.45±3.49) × 10 -6 km -1 sr -1 in the visible, and E10.64=(8.13±6.47) × 10 -6 km -1 and β10.64=(9.98±10.69) × 10 -8 km -1 sr -1 in the infra-red, respectively. Large particles ( D > 0.3 μm) contribute two-thirds to the total extinction in the visible (λ=0.525 μm), and almost 100% in the infra-red (λ= 10.64 μm). These results have been used to define an IR optical aerosol climatology of the Pacific Basin free troposphere, from which it follows that the infra-red backscatter coefficient at λ=9.25 μm wavelength fluctuates between 5.0 × 10 -10 and 2.0 × 10 -7 km -1 sr -1 with a modal value 2.0 × 10 -8 km -1 sr -1.

  15. Characteristics of wintertime polycyclic aromatic hydrocarbon assemblage in aerosol of the Southern Adriatic

    NASA Astrophysics Data System (ADS)

    Jovanović, V. Ž.; Pfendt, P. A.; Filipović, A. J.

    2007-09-01

    Features of polycyclic aromatic hydrocarbon (PAH) assemblage in aerosol samples collected from the atmosphere of Herceg Novi during the winter months of two successive years were studied. The results showed almost the same concentration profiles of identified PAHs for samples from the two periods analyzed, generally suggesting a similar origin. Diagnostic ratios indicated combustion of wood and coal, emissions from petrol and diesel engines, and dust resuspension as sources that predominantly contributed to the atmospheric PAH concentrations. Statistical analysis, principal component analysis (PCA) in particular, allowed us to identify the impact of meteorological parameters on PAH abundance.

  16. Aerosol and gas-phase characteristics in relation to meteorology: Case studies in populated arid settings

    NASA Astrophysics Data System (ADS)

    Crosbie, Ewan Colin

    Atmospheric aerosols and trace gases are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrologic cycle. In arid and semi-arid regions, where cloud cover is often low and precipitation is generally scarce and sporadic, the driving processes accounting for the production, loss and transport of atmospheric constituents are often distinctly different from other climates. In arid regions, the same circulation dynamics that suppress cloud formation can be responsible for creating strong subsidence inversions, which cap atmospheric mixing and trap pollutants close to the surface, often placing populated arid regions high on global rankings of air pollution concerns. In addition, low soil moisture can encourage wind-blown dust emissions, which can be a significant fraction of the total aerosol loading in both coarse and fine modes on a mass basis. Three distinct focus regions are investigated over varying time scales, using a diverse set of techniques, and with wide-ranging primary goals. 1) the Tehran metropolitan area in Iran over a ten-year period from 2000-2009, 2) Tucson, Arizona over 2012-2014 with three intensive monitoring periods during summer 2014 and winter 2015 and 3) the San Joaquin Valley in California during the NASA DISCOVER-AQ campaign during Jan-Feb 2013. However, in all cases, local and regional scale meteorology play a significant role in controlling the spatiotemporal variability in trace gas and aerosol concentrations. Particular emphasis is placed on understanding transport pathways due to the local wind patterns and the importance of key meteorological parameters such as temperature, humidity and solar radiation on controlling production and loss mechanisms. While low in magnitude, the precipitation pattern is still an important sink mechanism that modulates gas phase and particle abundances in all three regions, either through scavenging or by promoting vertical mixing. The reported measurements

  17. Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, John E.; Jacobson, Mark Z.; Remer, Lorraine A.

    2012-04-01

    Biomass burning (BB) aerosol particles affect clouds through competing microphysical and radiative (semi-direct and cloud absorption) effects, each of which dominates at different degrees of aerosol loading. Here, we analyze the influence of competing aerosol effects on mixed-phase clouds, precipitation, and radiative fields over the Amazon with a climate-air pollution-weather forecast model that treats aerosol-cloud-radiative interactions physically. Extensive comparisons with remotely sensed observations and in situ measurements are performed. Both observations and model results suggest an increase in cloud optical depth (COD) with increasing aerosol optical depth (AOD) at low AODs, and a decrease in COD with increasing AOD at higher AODs in accord with previous observational and modeling studies. The increase is attributed to a combination of microphysical and dynamical effects, whereas the decrease is attributed to a dominance of radiative effects that thin and darken clouds. An analogous relationship is shown for other modeled cloud variables as well. The similarity between the remotely sensed observations and model results suggests that these correlations are physically based and are not dominated by satellite retrieval artifacts. Cloud brightening due to BB is found to dominate in the early morning, whereas cloud inhibition is found to dominate in the afternoon and at night. BB decreased the net top of the atmosphere solar+IR irradiance modestly, but with large diurnal variation. We conclude that models that exclude treatment of aerosol radiative effects are likely to over-predict the microphysical effects of aerosols and underestimate the warming due to aerosols containing black and brown carbon.

  18. Physical and thermal characteristics of dairy cattle manure.

    PubMed

    Sutitarnnontr, Pakorn; Hu, Enzhu; Tuller, Markus; Jones, Scott B

    2014-11-01

    Greenhouse and regulated gas emissions from animal waste are naturally mediated by moisture content and temperature. As with soils, emissions from manure could be readily estimated given the physical, hydraulic, and thermal properties are described by models and microbes and nutrients are not limiting factors. The objectives of this study were to measure and model physical, hydraulic, and thermal properties of dairy manure to support advanced modeling of gas and water fluxes in addition to solute, colloid, and heat transport. A series of soil science measurement techniques were applied to determine a set of fundamental properties of as-excreted dairy cattle manure. Relationships between manure dielectric permittivity and volumetric water content (θ) were obtained using time-domain reflectometry and capacitance-based dielectric measurements. The measured water retention characteristic for cattle manure was similar to organic peat soil. The unsaturated hydraulic conductivity function of dairy manure was inferred from inverse numerical fitting of laboratory manure evaporation results. The thermal properties of dairy manure, including thermal conductivity, thermal diffusivity, and bulk volumetric heat capacity, were also determined using three penta-needle heat pulse probes. The accuracy of the heat capacity measurements was determined from a comparison of theoretical θ, estimated from the measured thermal properties with that determined by the capacitance-based dielectric measurement. These data represent a novel and unique contribution for advancing prediction and modeling capabilities of gas emissions from cattle manure, although the uncertainties associated with the complexities of shrinkage, surface crust formation, and cracking must also be considered.

  19. Sheep milk: physical-chemical characteristics and microbiological quality.

    PubMed

    Merlin Junior, Ivandré Antonio; Santos, Joice Sifuentes dos; Costa, Ligia Grecco; Costa, Renan Grecco; Ludovico, Agostinho; Rego, Fabiola Cristine de Almeida; Santana, Elsa Helena Walter de

    2015-09-01

    Sheep milk is the third most consumed milk in Brazil. It is much appreciated for its nutritional status and is important for children that have problems with cow milk. Little information is known about the chemical, physical and microbiological composition of sheep milk from South Brazil. Thus, the aim of this study was to describe chemical and microbiological characteristics of sheep milk produced on two rural properties located in southern Brazil (ParanA and Rio Grande do Sul). The chemical composition of sheep milk was 17.32 g/100 g total solids, 5.86 g/100 g total protein, 4.46 g/100 g casein, 1.08 g/100 g whey protein, 7.28 g/100 g fat, 0.93 g/100 g ash, and 3.41 g/100 g lactose. High somatic cell count (1.7x106 cells/mL), total mesophilic bacterias (16.0 x 106 CFU/mL) and psychrotrophics (5.8 x 106 CFU/mL) were observed. Growth of Staphylococcus aureus, enterobacteria and coliforms occurred in 100% of the samples, and 45% of the samples showed growth of Escherichia coli. The sheep milk physical-chemical and microbiology parameters are similar to those presented in the literature for other countries but somatic cell count presented high levels. PMID:26821492

  20. Sheep milk: physical-chemical characteristics and microbiological quality.

    PubMed

    Merlin Junior, Ivandré Antonio; Santos, Joice Sifuentes dos; Costa, Ligia Grecco; Costa, Renan Grecco; Ludovico, Agostinho; Rego, Fabiola Cristine de Almeida; Santana, Elsa Helena Walter de

    2015-09-01

    Sheep milk is the third most consumed milk in Brazil. It is much appreciated for its nutritional status and is important for children that have problems with cow milk. Little information is known about the chemical, physical and microbiological composition of sheep milk from South Brazil. Thus, the aim of this study was to describe chemical and microbiological characteristics of sheep milk produced on two rural properties located in southern Brazil (ParanA and Rio Grande do Sul). The chemical composition of sheep milk was 17.32 g/100 g total solids, 5.86 g/100 g total protein, 4.46 g/100 g casein, 1.08 g/100 g whey protein, 7.28 g/100 g fat, 0.93 g/100 g ash, and 3.41 g/100 g lactose. High somatic cell count (1.7x106 cells/mL), total mesophilic bacterias (16.0 x 106 CFU/mL) and psychrotrophics (5.8 x 106 CFU/mL) were observed. Growth of Staphylococcus aureus, enterobacteria and coliforms occurred in 100% of the samples, and 45% of the samples showed growth of Escherichia coli. The sheep milk physical-chemical and microbiology parameters are similar to those presented in the literature for other countries but somatic cell count presented high levels.

  1. The physical and chemical characteristics of pulverized coal combustion ashes

    SciTech Connect

    Ozasa, Kazuo; Kamijo, Tsunao; Owada, Tetsuo; Hosoda, Nobumichi

    1999-07-01

    Japan is the world's largest consumer of coal. Most of it is imported from various countries around the world. While coal generates more CO{sub 2}, which contributes to the greenhouse effect more than other types of fuel, plans are being drawn up to depend more on coal energy in order to maintain diversity in energy sources. Production of coal ash will increase as a result. In Japan, therefore, the public and private sectors are active in both developing and implementing clean, efficient and effective coal utilization technologies. More than 100 types of coal are being burned in Japan at present. For example, a power generating plant burns 20 to 40 different types of coal annually. Since a single type or coal blended with several different types are burned in Japan, the properties of coal ash differ by consuming plant and season. Therefore, understanding coal ash characteristics based on various properties is essential to the effective utilization of coal. The center of Coal Utilization, Japan has researched and developed effective utilization of coal ash as a supplementary project of the Ministry of International Trade and Industry. Chemical, physical, soil, and leaching characteristics, which are fundamental to using pulverized coal ash as a civil engineering material in large quantities, were selected and are described in this report.

  2. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds

    NASA Astrophysics Data System (ADS)

    Fujii, Yusuke; Kawamoto, Haruo; Tohno, Susumu; Oda, Masafumi; Iriana, Windy; Lestari, Puji

    2015-06-01

    Smoke emitted from Indonesian peatland fires has caused dense haze and serious air pollution in Southeast Asia such as visibility impairment and adverse health impacts. To mitigate the Indonesian peatland fire aerosol impacts, an effective strategy and international framework based on the latest scientific knowledge needs to be established. Although several attempts have been made, limited data exist regarding the chemical characteristics of peatland fire smoke for the source apportionment. In order to identify the key organic compounds of peatland fire aerosols, we conducted intensive field studies based on ground-based and source-dominated sampling of PM2.5 in Riau Province, Sumatra, Indonesia, during the peatland fire seasons in 2012. Levoglucosan was the most abundant compound among the quantified organic compounds at 8.98 ± 2.28% of the PM2.5 mass, followed by palmitic acid at 0.782 ± 0.163% and mannosan at 0.607 ± 0.0861%. Potassium ion was not appropriate for an indicator of Indonesian peatland fires due to extremely low concentrations associated with smoldering fire at low temperatures. The vanillic/syringic acids ratio was 1.06 ± 0.155 in this study and this may be a useful signature profile for peatland fire emissions. Particulate n-alkanes also have potential for markers to identify impact of Indonesian peatland fire source at a receptor site.

  3. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds

    NASA Astrophysics Data System (ADS)

    Fujii, Yusuke; Kawamoto, Haruo; Tohno, Susumu; Oda, Masafumi; Iriana, Windy; Lestari, Puji

    2015-06-01

    Smoke emitted from Indonesian peatland fires has caused dense haze and serious air pollution in Southeast Asia such as visibility impairment and adverse health impacts. To mitigate the Indonesian peatland fire aerosol impacts, an effective strategy and international framework based on the latest scientific knowledge needs to be established. Although several attempts have been made, limited data exist regarding the chemical characteristics of peatland fire smoke for the source apportionment. In order to identify the key organic compounds of peatland fire aerosols, we conducted intensive field studies based on ground-based and source-dominated sampling of PM2.5 in Riau Province, Sumatra, Indonesia, during the peatland fire seasons in 2012. Levoglucosan was the most abundant compound among the quantified organic compounds at 8.98 ± 2.28% of the PM2.5 mass, followed by palmitic acid at 0.782 ± 0.163% and mannosan at 0.607 ± 0.0861%. Potassium ion was not appropriate for an indicator of Indonesian peatland fires due to extremely low concentrations associated with smoldering fire at low temperatures. The vanillic/syringic acids ratio was 1.06 ± 0.155 in this study and this may be a useful signature profile for peatland fire emissions. Particulate n-alkanes also have potential for markers to identify impact of Indonesian peatland fire source at a receptor site.

  4. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    NASA Astrophysics Data System (ADS)

    Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul

    2016-08-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  5. [Study on pollution characteristics of carbonaceous aerosols in Xi'an City during the spring festival].

    PubMed

    Zhou, Bian-Hong; Zhang, Cheng-Zhong; Wang, Ge-Hui

    2013-02-01

    The samples of PM2.5 with 8 times periods were collected using Automated Cartridge Collection Unit (ACCU) of Rupprecht& Patashnick (R&P)Corporation, and monitored by R&P1400a instrument of TEOM series online during 2011 Spring Festival in Xi'an city. The organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contents of 3 h integrated PM2.5 were analyzed to evaluate the influence of firework display on the carbonaceous components in urban air. The mass concentration of PM2.5 was found increased significantly from 00:00 A. M. to 02:59 A. M. at the Chinese Lunar New Year's Eve than the non-firework periods, reaching 1514.8 microg.m-3 at 01:00 A. M. The mass concentrations of OC, EC, WSOC, and WIOC during the same time period were 123.3 microg.m-3, 18.6 microg.m-3, 66.7 microg.m-3, and 56.6 microg.m-3, about 1.7, 1.2, 1.4, and 2.2 times higher than the average in normal days, respectively. Correlation analysis among WSOC, OC, and EC contents in PM25 showed that firework emission was an obvious source of carbonaceous aerosol in the Spring Festival vacation. However, it only contributes to 9. 4% for aerosol in fireworks emission.

  6. Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Spackman, J. R.; Bahreini, R.; de Gouw, J. A.; Gao, R. S.; Holloway, J. S.; Lack, D. A.; Langridge, J. M.; Peischl, J.; Middlebrook, A. M.; Ryerson, T. B.; Warneke, C.; Watts, L. A.; Fahey, D. W.

    2011-09-01

    Black carbon (BC) aerosol mass mixing ratio and microphysical properties were measured from the NOAA P-3 aircraft during active surface oil burning subsequent to the Deepwater Horizon oil rig explosion in April 2010. Approximately 4% of the combusted material was released into the atmosphere as BC. The total amount of BC introduced to the atmosphere of the Gulf of Mexico via surface burning of oil during the 9-week spill is estimated to be (1.35 ± 0.72) × 106 kg. The median mass diameter of BC particles observed in the burning plume was much larger than that of the non-plume Gulf background air and previously sampled from a variety of sources. The plume BC particles were internally mixed with very little non-refractory material, a feature typical of fresh emissions from fairly efficient fossil-fuel burning sources and atypical of BC in biomass burning plumes. BC dominated the total accumulation-mode aerosol in both mass and number. The BC mass-specific extinction cross-section was 10.2 ± 4.1 and 7.1 ± 2.8 m2/g at 405 and 532 nm respectively. These results help constrain the properties of BC emissions associated with DWH and other large spills.

  7. [Study on pollution characteristics of carbonaceous aerosols in Xi'an City during the spring festival].

    PubMed

    Zhou, Bian-Hong; Zhang, Cheng-Zhong; Wang, Ge-Hui

    2013-02-01

    The samples of PM2.5 with 8 times periods were collected using Automated Cartridge Collection Unit (ACCU) of Rupprecht& Patashnick (R&P)Corporation, and monitored by R&P1400a instrument of TEOM series online during 2011 Spring Festival in Xi'an city. The organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contents of 3 h integrated PM2.5 were analyzed to evaluate the influence of firework display on the carbonaceous components in urban air. The mass concentration of PM2.5 was found increased significantly from 00:00 A. M. to 02:59 A. M. at the Chinese Lunar New Year's Eve than the non-firework periods, reaching 1514.8 microg.m-3 at 01:00 A. M. The mass concentrations of OC, EC, WSOC, and WIOC during the same time period were 123.3 microg.m-3, 18.6 microg.m-3, 66.7 microg.m-3, and 56.6 microg.m-3, about 1.7, 1.2, 1.4, and 2.2 times higher than the average in normal days, respectively. Correlation analysis among WSOC, OC, and EC contents in PM25 showed that firework emission was an obvious source of carbonaceous aerosol in the Spring Festival vacation. However, it only contributes to 9. 4% for aerosol in fireworks emission. PMID:23668108

  8. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Reid, J. S.; Benedetti, A.; Colarco, P. R.; da Silva, A.; Lu, S.; Sekiyama, T.; Tanaka, T. Y.; Baldasano, J. M.; Basart, S.; Brooks, M. E.; Eck, T. F.; Iredell, M.; Hansen, J. A.; Jorba, O. C.; Juang, H.-M. H.; Lynch, P.; Morcrette, J.-J.; Moorthi, S.; Mulcahy, J.; Pradhan, Y.; Razinger, M.; Sampson, C. B.; Wang, J.; Westphal, D. L.

    2015-01-01

    Here we present the first steps in developing a global multi-model aerosol forecasting ensemble intended for eventual operational and basic research use. Drawing from members of the International Cooperative for Aerosol Prediction (ICAP) latest generation of quasi-operational aerosol models, 5-day aerosol optical thickness (AOT) forecasts are analyzed for December 2011 through November 2012 from four institutions: European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA), NASA Goddard Space Flight Center (GSFC), and Naval Research Lab/Fleet Numerical Meteorology and Oceanography Center (NRL/FNMOC). For dust, we also include the National Oceanic and Atmospheric Administration-National Geospatial Advisory Committee (NOAA NGAC) product in our analysis. The Barcelona Supercomputing Centre and UK Met Office dust products have also recently become members of ICAP, but have insufficient data to be included in this analysis period. A simple consensus ensemble of member and mean AOT fields for modal species (e.g., fine and coarse mode, and a separate dust ensemble) is used to create the ICAP Multi-Model Ensemble (ICAP-MME). The ICAP-MME is run daily at 00:00 UTC for 6-hourly forecasts out to 120 h. Basing metrics on comparisons to 21 regionally representative Aerosol Robotic Network (AERONET) sites, all models generally captured the basic aerosol features of the globe. However, there is an overall AOT low bias among models, particularly for high AOT events. Biomass burning regions have the most diversity in seasonal average AOT. The Southern Ocean, though low in AOT, nevertheless also has high diversity. With regard to root mean square error (RMSE), as expected the ICAP-MME placed first over all models worldwide, and was typically first or second in ranking against all models at individual sites. These results are encouraging; furthermore, as more global operational aerosol models come online, we expect their inclusion in a robust

  9. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  10. The Relationship between Physical Therapist Assistant Faculty Characteristics and Program Outcomes on the National Physical Therapy Examination

    ERIC Educational Resources Information Center

    Novak, Malorie Kosht

    2009-01-01

    Background. There is a paucity of published literature regarding the correlation between faculty characteristics and outcomes on the National Physical Therapy Examination for Physical Therapist Assistants (NPTE-PTA). Purpose. To determine if there was a relationship between faculty characteristics in PTA educational programs and program outcomes…

  11. Photoelectrochemical and physical properties of tungsten trioxide films obtained by aerosol pyrolysis

    SciTech Connect

    Sadale, S.B.; Chaqour, S.M.; Gorochov, O.; Neumann-Spallart, M.

    2008-06-03

    Aerosol pyrolysis (AP) was used for preparing semiconducting films of tungsten trioxide using peroxotungstic acid as a precursor. The films were characterized by SEM, XRD, and by their photoelectrochemical response. Porous, polycrystalline (monoclinic) films of thickness up to 3 {mu}m were prepared. An incident photon to current efficiency (IPCE) of 0.55 at 365 nm was obtained for films of 1 {mu}m thickness on conducting F:SnO{sub 2}/glass substrates under depletion conditions, in junctions with aqueous electrolytes. The spectral (photocurrent) response extended into the visible region (up to 470 nm) which is of importance for solar applications like photocatalysis.

  12. Characteristics of CALIOP attenuated backscatter noise: implication for cloud/aerosol detection

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Chae, J. H.; Lambert, A.; Zhang, F. F.

    2011-03-01

    A research algorithm is developed for noise evaluation and feature detection of the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Level 1 (L1) backscatter data with an emphasis on cloud/aerosol features in the upper troposphere and lower stratosphere (UT/LS). CALIOP measurement noise of the version v2.01 and v2.02 L1 backscatter data aggregated to (5 km) horizontal resolution is analyzed with two approaches in this study. One is to compare the observed and modeled molecular scatter profiles by scaling the modeled profile (with a fitted scaling factor α) to the observed clear-sky backscatter profiles. This scaling α value is sensitive to errors in the calibrated backscatter and the atmospheric model used. Most of the nighttime 532-nm α values are close to unity, as expected, but an abrupt drop occurred in October 2008 in the daytime 532-nm α, which is likely indicative of a problem in the v2.02 daytime calibrated data. The 1064-nm night α is generally close to 2 while its day α is ~3. The other approach to evaluate the lidar measurement noise is to use the calibrated lidar backscatter data at altitudes above 19 km. With this method, the 532-nm and 1064-nm measurement noises are analyzed and characterized individually for each profile in terms of the mean (μ) and standard deviation (σ), showing larger σ values in general over landmasses or bright surfaces during day and in radiation-hard regions during night. A significant increasing trend is evident in the nighttime 1064-nm σ, which is likely responsible for the increasing difference between the feature occurrence frequencies (532-nm vs. 1064-nm) derived from this study. For feature detection with the research algorithm, we apply a σ-based method to the aggregated L1 data. The derived morphology of feature occurrence frequency is in general agreement with that obtained from the Level 2 (L2) 05 km_CLAY+05 km_ALAY products at 5 km horizontal resolution. Finally, a normalized probability density

  13. Carbonaceous aerosol characteristics in outdoor and indoor environments of Nanchang, China, during summer 2009.

    PubMed

    Huang, Hong; Zou, Changwei; Cao, Junji; Tsang, Pokeung

    2011-11-01

    A study of carbonaceous aerosol was initiated in Nanchang, a city in eastern China, for the first time. Daily and diurnal (daytime and nighttime) PM2.5 (particulate matter with aerodynamic diameter < or =2.5 microm) samples were collected at an outdoor site and in three different indoor environments (common office, special printing and copying office, and student dormitory) in a campus of Nanchang University during summer 2009 (5-20 June). Daily PM10 (particulate matter with aerodynamic diameter < or =10 microm) samples were collected only at the outdoor site, whereas PM2.5 samples were collected at both indoor and outdoor sites. Loaded PM2.5 and PM10 samples were analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance following the Interagency Monitoring of Protected Visual Environments-Advanced (IMPROVE-A) protocol. Ambient mass concentrations of PM10 and PM2.5 in Nanchang were compared with the air quality standards in China and the United States, and revealed high air pollution levels in Nanchang. PM2.5 accounted for about 70% of PM10, but the ratio of OC and EC in PM2.5 to that in PM10 was higher than 80%, which indicated that OC and EC were mainly distributed in the fine particles. The variations of carbonaceous aerosol between daytime and nighttime indicated that OC was released and formed more rapidly in daytime than in nighttime. OC/EC ratios were used to quantify secondary organic carbon (SOC). The differences in SOC and SOC/OC between daytime and nighttime were useful in interpreting the secondary formation mechanism. The results of (1) OC and EC contributions to PM2.5 at indoor sites and the outdoor site; (2) indoor-outdoor correlation of OC and EC; (3) OC-EC correlation; and (4) relative contributions of indoor and outdoor sources to indoor carbonaceous aerosol indicated that OC indoor sources existed in indoor sites, with the highest OC emissions in I2 (the special printing and copying office), and that indoor EC originated

  14. Characteristics of fine and coarse particles of natural and urban aerosols of Brazil

    NASA Astrophysics Data System (ADS)

    Orsini, C. Q.; Tabacniks, M. H.; Artaxo, P.; Andrade, M. F.; Kerr, A. S.

    Fine and coarse particles have been sampled from 1982 to 1985 in one natural forest seacoast site (Juréia) and five urban-industrial cities (Vitória, Salvador, Porto Alegre, São Paulo and Belo Horizonte). The time variations of concentrations in air and the relative elemental compositions of fine and coarse particle fractions, sampled by Nuclepore stacked filter units (SFU), have been determined gravimetrically and by PIXE analysis, respectively. Enrichment factors and correlation coefficients of the trace elements measured led to unambiguous characterization of soil dust and sea salt, both major aerosol sources that emit coarse particles, and soil dust is also a significant source of fine particles.

  15. Correlation between satellite-derived aerosol characteristics and oceanic dimethylsulfide (DMS). Master's thesis

    SciTech Connect

    Shema, R.A.

    1988-12-01

    Since the turn of the century, the earth's climate has fluctuated between warming and cooling cycles. A warming cycle has been observed in the early 1900's. The rising global temperature has been attributed to CO/sub 2/ release from the burning of fossil fuels. The absorption of IR energy emitted from the earth, or greenhouse effect , brought concern that continued warming would melt polar ice caps and permanently change global climate. However, beginning in the mid-1940's, atmospheric cooling was observed. A possible contribution to the cooling trend is an increase in the numbers of relatively small aerosol particles. These particles are efficient scatters of solar radiation. An increase in the number of scattering events causes a higher albedo, thereby creating a cooler planet. McCormick and Ludwig (1967) have presented arguments to show this relationship. Approximately forty years later, in the early 1980's, warming of the earth's climate again has been observed.

  16. Physical and thermal characteristics of dairy cattle manure.

    PubMed

    Sutitarnnontr, Pakorn; Hu, Enzhu; Tuller, Markus; Jones, Scott B

    2014-11-01

    Greenhouse and regulated gas emissions from animal waste are naturally mediated by moisture content and temperature. As with soils, emissions from manure could be readily estimated given the physical, hydraulic, and thermal properties are described by models and microbes and nutrients are not limiting factors. The objectives of this study were to measure and model physical, hydraulic, and thermal properties of dairy manure to support advanced modeling of gas and water fluxes in addition to solute, colloid, and heat transport. A series of soil science measurement techniques were applied to determine a set of fundamental properties of as-excreted dairy cattle manure. Relationships between manure dielectric permittivity and volumetric water content (θ) were obtained using time-domain reflectometry and capacitance-based dielectric measurements. The measured water retention characteristic for cattle manure was similar to organic peat soil. The unsaturated hydraulic conductivity function of dairy manure was inferred from inverse numerical fitting of laboratory manure evaporation results. The thermal properties of dairy manure, including thermal conductivity, thermal diffusivity, and bulk volumetric heat capacity, were also determined using three penta-needle heat pulse probes. The accuracy of the heat capacity measurements was determined from a comparison of theoretical θ, estimated from the measured thermal properties with that determined by the capacitance-based dielectric measurement. These data represent a novel and unique contribution for advancing prediction and modeling capabilities of gas emissions from cattle manure, although the uncertainties associated with the complexities of shrinkage, surface crust formation, and cracking must also be considered. PMID:25602228

  17. Oak Ridge Reservation Physical Characteristics and Natural Resources

    SciTech Connect

    Parr, P.D.; Hughes, J.F.

    2006-09-19

    The topography, geology, hydrology, vegetation, and wildlife of the Oak Ridge Reservation (ORR) provide a complex and intricate array of resources that directly impact land stewardship and use decisions (Fig. 1). The purpose of this document is to consolidate general information regarding the natural resources and physical characteristics of the ORR. The ORR, encompassing 33,114 acres (13,401 ha) of federally owned land and three Department of Energy (DOE) installations, is located in Roane and Anderson Counties in east Tennessee, mostly within the corporate limits of the city of Oak Ridge and southwest of the population center of Oak Ridge. The ORR is bordered on the north and east by the population center of the city of Oak Ridge and on the south and west by the Clinch River/Melton Hill Lake impoundment. All areas of the ORR are relatively pristine when compared with the surrounding region, especially in the Valley and Ridge Physiographic Province (Fig. 2). From the air, the ORR is clearly a large and nearly continuous island of forest within a landscape that is fragmented by urban development and agriculture. Satellite imagery from 2006 was used to develop a land-use/land-cover cover map of the ORR and surrounding lands (Fig. 3). Following the acquisition of the land comprising the ORR in the early 1940s, much of the Reservation served as a buffer for the three primary facilities: the X-10 nuclear research facility (now known as the Oak Ridge National Laboratory [ORNL]), the first uranium enrichment facility or Y-12 (now known as the Y-12 National Security Complex [Y-12 Complex]), and a gaseous diffusion enrichment facility (now known as the East Tennessee Technology Park [ETTP]). Over the past 60 years, this relatively undisturbed area has evolved into a rich and diverse eastern deciduous forest ecosystem of streams and reservoirs, hardwood forests, and extensive upland mixed forests. The combination of a large land area with complex physical characteristics

  18. Evaluation of IASI derived dust aerosols characteristics over the tropical belt

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, Alain; Pondrom, Marc; Siméon, Mathilde; Tsamalis, Christophe; Pierangelo, Clémence; Armante, Raymond; Crevoisier, Cyril; Crépeau, Laurent; Scott, Noëlle

    2014-05-01

    IASI-derived monthly mean infrared (10 µm) dust aerosol optical depth (AOD) and altitude are evaluated against ground based AERONET measurements of the 500 nm coarse mode AOD and CALIOP measurements of the altitude at 38 AERONET sites (land and sea) within the tropical belt (30°N-30°S). The period covered extends from July 2007 to December 2013. The evaluation goes through the analysis of Taylor diagrams and box and whiskers plots, separating situations over sea and over land. Concerning AOD, the overall correlation for the sites over sea comes to 0.88 for 713 items (IASI and AERONET monthly mean bins). The overall normalized standard deviation is of 0.96. Over land, essentially desert, correlation is of 0.74 for 582 items and the normalized standard deviation is of 0.87. This slight but significant degradation over land most probably results from the greater complexity of the surface (heterogeneity, elevation) and, to a lesser extent, to the episodic presence of dust within the boundary layer (particularly for sites close to active sources) to which IASI, as any thermal infrared sounder, is poorly sensitive contrary to AERONET. Concerning altitude over sea, correlation is of 0.78 for 925 items and the normalized standard deviation is of 1.03. Results over land, essentially over deserts, are not satisfactory for a majority of sites. Extension of the approach to extra-tropical sites, in particular the Mediterranean basin, is in progress and preliminary results will be shown. We conclude that the present results demonstrate the usefulness of IASI data as an additional constraint to a better knowledge of the impact of aerosols on the climate system.

  19. Characteristics of aerosol pollution during heavy haze events in Suzhou, China

    NASA Astrophysics Data System (ADS)

    Tian, Mi; Wang, Huanbo; Chen, Yang; Yang, Fumo; Zhang, Xiaohua; Zou, Qiang; Zhang, Renquan; Ma, Yongliang; He, Kebin

    2016-06-01

    Extremely severe haze weather events occurred in many cities in China, especially in the east part of the country, in January 2013. Comprehensive measurements including hourly concentrations of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC)) and related gas-phase precursors were conducted via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai. PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less) frequently exceeded 150 µg m-3 on hazy days, with the maximum reaching 324 µg m-3 on 14 January 2013. Unfavorable weather conditions (high relative humidity (RH), and low rainfall, wind speed, and atmospheric pressure) were conducive to haze formation. High concentrations of secondary aerosol species (including SO42-, NO3-, NH4+, and SOC) and gaseous precursors were observed during the first two haze events, while elevated primary carbonaceous species emissions were found during the third haze period, pointing to different haze formation mechanisms. Organic matter (OM), (NH4)2SO4, and NH4NO3 were found to be the major contributors to visibility impairment. High concentrations of sulfate and nitrate might be explained by homogeneous gas-phase reactions under low RH conditions and by heterogeneous processes under relatively high RH conditions. Analysis of air mass trajectory clustering and potential source contribution function showed that aerosol pollution in the studied areas was mainly caused by local activities and surrounding sources transported from nearby cities.

  20. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  1. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  2. Triplicity and physical characteristics of Asteroid (216) Kleopatra

    NASA Astrophysics Data System (ADS)

    Descamps, P.; Marchis, F.; Berthier, J.; Emery, J. P.; Duchêne, G.; de Pater, I.; Wong, M. H.; Lim, L.; Hammel, H. B.; Vachier, F.; Wiggins, P.; Teng-Chuen-Yu, J.-P.; Peyrot, A.; Pollock, J.; Assafin, M.; Vieira-Martins, R.; Camargo, J. I. B.; Braga-Ribas, F.; Macomber, B.

    2011-02-01

    To take full advantage of the September 2008 opposition passage of the M-type Asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis, F. et al. [2008a]. (3749) Balam. In: Green, D.W.E. (Ed.), IAU Circ. 8928; Marchis, F., Descamps, P., Berthier, J., Emery, J.P. [2008b]. S/2008 ((216)) 1 and S/2008 ((216)) 2. In: Green, D.W.E. (Ed.), IAU Circ. 8980). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64 ± 0.02 × 10 18 kg. This translates into a bulk density of 3.6 ± 0.4 g/cm 3, which implies a macroscopic porosity for Kleopatra of ˜30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.

  3. Physical Characteristics of a Spherical Stellarator or Hybrid.*

    NASA Astrophysics Data System (ADS)

    Moroz, P. E.; Batchelor, D. B.; Carreras, B. A.; Hirshman, S. P.; Lynch, V. E.; Spong, D. A.; Ware, A.; Whitson, J.

    1996-11-01

    Main features of the magnetic field structure, MHD equilibrium characteristics, and particle transport in a recently proposed [1-4] ultra-low-aspect-ratio stellarator system, called Spherical Stellarator (SS), or a tokamak-stellarator hybrid system, SMARTH (\\underlineSmall \\underlineAspect \\underlineRatio \\underlineToroidal \\underlineHybrid), are discussed. Various coil configurations convenient for an experimental device and capable of producing the stellarator effects are considered and compared. Configurations are found that feature high-β MHD equilibria in SS with the bootstrap current and in SMARTH with the ohmic current and good transport properties for thermal particles. A strong positive effect of the radial electric field on particle transport is found. [1] P. E. Moroz, Phys. Rev. Lett. 76 (30), 1996. [2] P. E. Moroz, Physics of Plasmas 3 , 1996. [3] P. E. Moroz, 23rd IEEE Conf. on Plasma Sci., Boston, 1996, p. 190. [4] P. E. Moroz, D. B. Batchelor, B. A. Carreras, S. P. Hirshman, V. E. Lynch, D. A. Spong et al. , to appear in Fusion Technology, 1996. *Supported by DOE under Grant DE-FG02-88ER53264 and Contract DE-AC05-84OR21400 with Lockheed Martin Energy Systems, Inc.

  4. Profiling in basketball: physical and physiological characteristics of elite players.

    PubMed

    Ostojic, Sergej M; Mazic, Sanja; Dikic, Nenad

    2006-11-01

    The purpose of this study was to describe structural and functional characteristics of elite Serbian basketball players and to evaluate whether players in different positional roles have different physical and physiological profiles. Five men's basketball teams participated in the study and competed in the professional First National League. Physiological measurements were taken of 60 players during the final week of their preparatory training for competition. According to positional roles, players were categorized as guards (n = 20), forwards (n = 20), and centers (n = 20). Guards were older (p < 0.01) and more experienced (p < 0.01) as compared with both forwards and centers. Centers were taller and heavier than guards and forwards (p < 0.01), whereas forwards had significantly higher height and weight than guards (p < 0.01). Centers had more body fat (p < 0.01) as compared with forwards and guards. Also, centers had significantly lower estimated VO(2)max values (p < 0.01) compared with forwards and guards. In addition, the highest heart rate frequencies during the last minute of the shuttle run test were lower in guards (p < 0.01) as compared with forwards and centers. Vertical jump power was significantly higher in centers (p < 0.01) as compared with guards. The results of the present study demonstrate that a strong relationship exists between body composition, aerobic fitness, anaerobic power, and positional roles in elite basketball.

  5. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Tang, L. L.; Wang, Z.; Yu, H. X.; Sun, Y. L.; Liu, D.; Qin, W.; Canonaco, F.; Prévôt, A. S. H.; Zhang, H. L.; Zhou, H. C.

    2015-02-01

    Atmospheric submicron particulate matter (PM1) is one of the most significant pollution components in China. Despite its current popularity in the studies of aerosol chemistry, the characteristics, sources and evolution of atmospheric PM1 species are still poorly understood in China, particularly for the two harvest seasons, namely, the summer wheat harvest and autumn rice harvest. An Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was deployed for online monitoring of PM1 components during summer and autumn harvest seasons in urban Nanjing, in the Yangtze River delta (YRD) region of China. PM1 components were shown to be dominated by organic aerosol (OA, 39 and 41%) and nitrate (23 and 20%) during the harvest seasons (the summer and autumn harvest). Positive matrix factorization (PMF) analysis of the ACSM OA mass spectra resolved four OA factors: hydrocarbon-like mixed with cooking-related OA (HOA + COA), fresh biomass-burning OA (BBOA), oxidized biomass-burning-influenced OA (OOA-BB), and highly oxidized OA (OOA); in particular the oxidized BBOA contributes ~80% of the total BBOA loadings. Both fresh and oxidized BBOA exhibited apparent diurnal cycles with peak concentration at night, when the high ambient relative humidity and low temperature facilitated the partitioning of semi-volatile organic species into the particle phase. The fresh BBOA concentrations for the harvests are estimated as BBOA = 15.1 × (m/z 60-0.26% × OA), where m/z (mass-to-charge ratio) 60 is a marker for levoglucosan-like species. The (BBOA + OOA-BB)/ΔCO, (ΔCO is the CO minus background CO), decreases as a function of f44 (fraction of m/z 44 in OA signal), which might indicate that BBOA was oxidized to less volatile OOA, e.g., more aged and low volatility OOA (LV-OOA) during the aging process. Analysis of air mass back trajectories indicates that the high BB pollutant concentrations are linked to the air masses from the western (summer harvest) and southern (autumn harvest) areas.

  6. The characteristics of Beijing aerosol during two distinct episodes: impacts of biomass burning and fireworks.

    PubMed

    Cheng, Yuan; Engling, Guenter; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Ma, Yong-liang; Liang, Lin-lin; Lu, Zi-feng; Liu, Jiu-meng; Zheng, Mei; Weber, Rodney J

    2014-02-01

    The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K(+)) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K(+) (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter.

  7. The characteristics of Beijing aerosol during two distinct episodes: impacts of biomass burning and fireworks.

    PubMed

    Cheng, Yuan; Engling, Guenter; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Ma, Yong-liang; Liang, Lin-lin; Lu, Zi-feng; Liu, Jiu-meng; Zheng, Mei; Weber, Rodney J

    2014-02-01

    The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K(+)) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K(+) (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter. PMID:24275313

  8. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations: Method, validation, and data characteristics

    SciTech Connect

    Rind, D. ); Chiou, E.W.; Larsen, J. ); Chu, W.; McCormick, M.P.; McMaster, L. ); Oltmans, S. ); Lerner, J. )

    1993-03-20

    Water vapor observations obtained from the Stratospheric Aerosol and Gas Experiment II (SAGE II) solar occulation instrument for the troposphere and stratosphere are presented and compared with correlative in situ measurement techniques and other satellite data. The SAGE II instrument produces water vapor values from cloud top to approximately 1 mbar, except in regions of high aerosol content such as occurs in the low to middle stratosphere after volcanic eruptions. Details of the analysis procedure, instrumental errors, and data characteristics are discussed. Various features of the data set for the first 5 years after launch (1985-1989) are identified. These include an increase in middle and upper tropospheric water vapor during northern hemisphere summer and autumn, thus at times of warmest sea surface temperature; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere, with lower values during northern hemisphere winter and spring; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds. SAGE II data will be useful for studying individual water vapor profiles, tropospheric response to climate perturbations, tropospheric-stratospheric exchange (due to its inherent high vertical resolution), and stratospheric transports. It should also aid in the preparation, for the first time on a global scale, of climatologies of the stratosphere and the upper level cloud-free troposphere, for use in radiative, dynamical, and chemical studies. 57 refs., 6 figs., 5 tabs.

  9. Observations and Inferred Physical Characteristics of Compact Intracloud Discharges

    SciTech Connect

    Argo, P.E.; Eack, K.B.; Holden, D.N.; Massey, R.S.; Shao, X.; Smith, D.A.; Wiens, K.C.

    1999-02-01

    Compact intracloud discharges (CIDS) represent a distinct class of electrical discharges that occur within intense regions of thunderstorms. They are singular discharges that produce brief (typically 3 µs in duration) broadband RF emissions that are 20 to 30 dB more powerful than radiation from all other recorded lightning processes in the HF and VHF radio spectrum. Far field electric field change recordings of CIDS consist of a single, large-amplitude bipolar pulse that begins to rise during the RF-producing phase of the CID and typically lasts for 20 µs. During the summer of 1998 we operated a 4-station array of electric field change meters in New Mexico to support FORTE satellite observations of transient RF and optical sources and to learn more about the phenomenology and physical characteristics of CIDS. Over 800 CIDS were detected and located during the campaign. The events were identified on the basis of their unique field change waveforms. CID source heights determined using the relative delays of ionospherically reflected source emissions were typically between 4 and 11 km above ground level. Events of both positive and negative polarity were observed with events' of initially- negative polarity (indicative of discharges occurring between underlying positive and overlying negative charge) occurring at slightly higher altitudes. Within CID field change waveforms the CID pulse was often followed within a few ms by one or more smaller-amplitude pulses. We associate these subsequent pulses with the initial activity of a "normal" intracloud flash, the inference being that some fraction of the time, a CID initiates an intracloud lightning flash.

  10. Anthropometric Characteristics and Physical Performance of Colombian Elite Male Wrestlers

    PubMed Central

    Ramirez-Velez, Robinson; Argothyd, Rodrigo; Meneses-Echavez, Jose Francisco; Beatriz Sanchez-Puccini, Maria; Lopez-Alban, Carlos Alejandro; Cohen, Daniel Dylan

    2014-01-01

    Background: Wrestling was an important part of the ancient Olympic Games and is still one of the most popular events of the modern Olympic Games. Studies indicate that general physiologic profile of successful wrestlers is high anaerobic power and capacity, muscular strength, above average aerobic power, exceptional flexibility, fat free mass, and a mesomorphic somatotype. Objectives: The objective of the present study was to evaluate anthropometric characteristics and physical performance of elite male wrestlers. Patients and Methods: The Colombian Wrestling Team was evaluated while in preparation for the Olympic Games (n = 21; age, 27.9 ± 6.7 years). Athletes were tested on anthropometric and fitness parameters: body composition, somatotype distribution according to Heath-Carter, aerobic capacity, vertical jump, and anaerobic power. Results: The evaluations showed a mean body fat percentage of 13.6% ± 3.0% (95% CI, 12.2%-15%), muscle mass of 46.4% ± 2.2% (95% CI, 45.4%-47.4%), Ponderal index of 41.0 ± 1.8 (95% CI, 40.2-41.8), body adiposity index (BAI) 25.1 ± 3.6 (95% CI, 23.5-26.8), and somatotype distribution mesomorphic-ectomorph (5.3-1.6-3.8). Mean aerobic capacity was 45.9 ± 6.6 mL/kg/min (95% CI, 42.8-48.9), vertical jump was 36.4 ± 6.6 cm (95% CI, 11.8-16.6), and anaerobic power was 92.6 ± 19.5 kg/s (95% CI, 83.7-101.5). Conclusions: These results provided a profile of elite wrestlers that could be used as training targets for developing athletes. The results may also provide information for training and tactical planning. PMID:25741411

  11. Physical characteristics of five clinical systems for digital mammography

    SciTech Connect

    Lazzari, B.; Belli, G.; Gori, C.; Rosselli Del Turco, M.

    2007-07-15

    The purpose of this study was to evaluate and compare the physical characteristics of five clinical systems for digital mammography (GE Senographe 2000D, Lorad Selenia M-IV, Fischer Senoscan, Agfa DM 1000, and IMS Giotto) currently in clinical use. The basic performances of the mammography systems tested were assessed on the basis of response curve, modulation transfer function (MTF), noise power spectrum, noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) in an experimental setting closely resembling the clinical one. As expected, all the full field digital mammography systems show a linear response curve over a dynamic range from 3.5 to 500 {mu}Gy (0.998

  12. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

    USGS Publications Warehouse

    Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.

    2011-01-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of

  13. Latitudinal and longitudinal variation in aerosol characteristics from Sun photometer and MODIS over the Bay of Bengal and Arabian Sea during ICARB

    NASA Astrophysics Data System (ADS)

    Kedia, Sumita; Ramachandran, S.

    2008-07-01

    Spatial variations in aerosol optical properties as function of latitude and longitude are analysed over the Bay of Bengal and Arabian Sea during ICARB cruise period of March-May 2006 from in situ sun photometer and MODIS (Terra, Aqua) satellite measurements. Monthly mean 550 nm aerosol optical depths (AODs) over the Bay of Bengal and Arabian Sea show an increase from March to May both in spatial extent and magnitude. AODs are found to increase with latitude from 4°N to 20°N over the Bay of Bengal while over Arabian Sea, variations are not significant. Sun photometer and MODIS AODs agree well within ±1σ variation. Bay of Bengal AOD (0.28) is higher than the Arabian Sea (0.24) latitudinally. Aerosol fine mode fraction (FMF) is higher than 0.6 over Bay of Bengal, while FMF in the Arabian Sea is about 0.5. Bay of Bengal α(˜1) is higher than the Arabian Sea value of 0.7, suggesting the dominance of fine mode aerosols over Bay of Bengal which is corroborated by higher FMF values over Bay of Bengal. Air back trajectory analyses suggest that aerosols from different source regions contribute differently to the optical characteristics over the Bay of Bengal and Arabian Sea.

  14. Analysis of the sensitivity of thermal infrared nadir satellite observations to the chemical and micro-physical properties of upper tropospheric-lower stratospheric sulphate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Sèze, Geneviève; Legras, Bernard

    2015-04-01

    Secondary sulphate aerosols are the predominant typology of aerosols in the upper troposphere/lower stratosphere (UTLS), and can have an important impact on radiative transfer and climate, cirrus formation and chemistry in the UTLS. Despite their importance, the satellite observation at the regional scale of sulphate aerosols in the UTLS is limited. In this work, we address the sensitivity of the thermal infrared satellite observations to secondary sulphate aerosols in the UTLS. The absorption properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The absorption coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques : Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the absorption of idealized aerosol layers, at typical UTLS conditions, on the radiance spectra observed by these simulated satellite instruments. We found a marked spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with absorption peaks at 1170 and 905 cm-1. Micro-windows with a sensitivity to chemical and micro-physical properties of the sulphate aerosol layer are identified, and the role of interfering species, and temperature and water vapour profile is discussed.

  15. Characteristics of indoor aerosols in residential homes in urban locations: a case study in Singapore.

    PubMed

    Balasubramanian, Rajasekhar; Lee, Sheng Sheng

    2007-08-01

    As part of a major study to investigate the indoor air quality in residential houses in Singapore, intensive aerosol measurements were made in an apartment in a multistory building for several consecutive days in 2004. The purpose of this work was to identify the major indoor sources of fine airborne particles and to assess their impact on indoor air quality for a typical residential home in an urban area in a densely populated country. Particle number and mass concentrations were measured in three rooms of the home using a real-time particle counter and a low-volume particulate sampler, respectively. Particle number concentrations were found to be elevated on several occasions during the measurements. All of the events of elevated particle concentrations were linked to indoor activities based on house occupant log entries. This enabled identification of the indoor sources that contributed to indoor particle concentrations. Activities such as cooking elevated particle number concentrations < or =2.05 x 10(5) particles/cm3. The fine particles collected on Teflon filter substrates were analyzed for selected ions, trace elements, and metals, as well as elemental and organic carbon (OC) contents. To compare the quality of air between the indoors of the home and the outdoors, measurements were also made outside the home to obtain outdoor samples. The chemical composition of both outdoor and indoor particles was determined. Indoor/outdoor (I/O) ratios suggest that certain chemical constituents of indoor particles, such as chloride, sodium, aluminum, cobalt, copper, iron, manganese, titanium, vanadium, zinc, and elemental carbon, were derived through migration of outdoor particles (I/O <1 or - 1), whereas the levels of others, such as nitrite, nitrate, sulfate, ammonium, cadmium, chromium, nickel, lead, and OC, were largely influenced by the presence of indoor sources (I/O >1). PMID:17824289

  16. Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Moorthy, K. Krishna; Alappattu, Denny P.; Kunhikrishnan, P. K.; George, Susan; Nair, Prabha R.; Babu, S. Suresh; Abish, B.; Satheesh, S. K.; Tripathi, Sachchida Nand; Niranjan, K.; Madhavan, B. L.; Srikant, V.; Dutt, C. B. S.; Badarinath, K. V. S.; Reddy, R. Ramakrishna

    2007-07-01

    The Indo-Gangetic Plain (IGP) encompasses a vast area, (accounting for ˜21% of the land area of India), which is densely populated (accommodating ˜40% of the Indian population). Highly growing economy and population over this region results in a wide range of anthropogenic activities. A large number of thermal power plants (most of them coal fed) are clustered along this region. Despite its importance, detailed investigation of aerosols over this region is sparse. During an intense field campaign of winter 2004, extensive aerosol and atmospheric boundary layer measurements were made from three locations: Kharagpur (KGP), Allahabad (ALB), and Kanpur (KNP), within the IGP. These data are used (1) to understand the regional features of aerosols and BC over the IGP and their interdependencies, (2) to compare it with features at locations lying at far away from the IGP where the conditions are totally different, (3) to delineate the effects of mesoscale processes associated with changes in the local atmospheric boundary layer (ABL), (4) to investigate the effects of long-range transport or moving weather phenomena in modulating the aerosol properties as well as the ABL characteristics, and (5) to examine the changes as the season changes over to spring and summer. Our investigations have revealed very high concentrations of aerosols along the IGP, the average mass concentrations (MT) of total aerosols being in the range 260 to 300 μg m-3 and BC mass concentrations (MB) in the range 20 to 30 μg m-3 (both ˜5 to 8 times higher than the values observed at off-IGP stations) during December 2004. Despite, BC constituted about 10% to the total aerosol mass concentration, a value quite comparable to those observed elsewhere over India for this season. The dynamics of the local atmospheric boundary layer (ABL) as well as changes in local emissions strongly influence the diurnal variations of MT and MB, both being inversely correlated with the mixed layer height (Zi) and the

  17. [Retrieval of dust fraction of atmospheric aerosols based on spectra characteristics of refractive indices obtained from remote sensing measurements].

    PubMed

    Wang, Ling; Li, Zheng-Qiang; Li, Dong-Hui; Li, Kai-Tao; Tian, Qing-Jiu; Li, Li; Zhang, Ying; Lü, Yang; Gu, Xing-Fa

    2012-06-01

    Mineral dust is an important chemical component of aerosol, which has a significant impact on the climate and environmental changes. The spectral behavior of aerosol refractive indices at four wavelengths from 440 to 1 020 nm was analyzed based on one year observation obtained from Beijing AERONET site. The real parts of refractive index (n) in each band did not differ greatly, however the imaginary parts (k) showed a significant difference due to the absorption of mineral dust in aerosol. From 440 to 670 nm k decreased rapidly, while from 670 to 1 020 nm featured a lower, constant value. Accordingly, k(440 nm) could be considered separately with other three bands. Hence, we added mineral dust into the currently used three-component aerosol chemical model to form a new four-component model (i. e. BC, AS, dust and water) which is more suitable to represent the aerosol chemical composition. Then we presented a method to retrieve dust content in aerosols using this four-component model and refractive indices obtained from the sunphotometer measurements. Finally the dust content in aerosol was investigated under different weather conditions, i. e. clear, haze and dust in Beijing. The results showed that volume fractions of the dust component were 88%, 37% and 48% for clear, hazy and dusty day respectively, which was consistent with the coarse mode proportion in aerosols calculated from aerosol size distributions.

  18. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization, and counting measurements.

    PubMed

    Renard, Jean-Baptiste; Berthet, Gwenaël; Robert, Claude; Chartier, Michel; Pirre, Michel; Brogniez, Colette; Herman, Maurice; Verwaerde, Christian; Balois, Jean-Yves; Ovarlez, Joëlle; Ovarlez, Henri; Crespin, Jacques; Deshler, Terry

    2002-12-20

    The physical properties of stratospheric aerosols can be retrieved from optical measurements involving extinction, radiance, polarization, and counting. We present here the results of measurements from the balloonborne instruments AMON, SALOMON, and RADIBAL, and from the French Laboratoire de Météorologie Dynamique and the University of Wyoming balloonborne particle counters. A cross comparison of the measurements was made for observations of background aerosols conducted during the polar winters of February 1997 and January-February 2000 for various altitudes from 13 to 19 km. On the one band, the effective radius and the total amount of background aerosols derived from the various sets of data are similar and are in agreement with pre-Pinatubo values. On the other hand, strong discrepancies occur in the shapes of the bimodal size distributions obtained from analysis of the raw measurement of the various instruments. It seems then that the log-normal assumption cannot fully reproduce the size distribution of background aerosols. The effect ofthe presence of particular aerosols on the measurements is discussed, and a new strategy for observations is proposed.

  19. Effect Of Dynamic Characteristics of Power Supplies on Aerosol Composition While Welding With Coated Electrodes

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Sadikov, I. D.

    2016-08-01

    In the context of a significant increase in production output and use of welding technologies in the manufacturing of engineering products the problem of hygienic characteristics of working conditions in arc fusion welding is becoming increasingly important. The work represents how the dynamic characteristics of a power supply affect the transfer of alloying elements from a coated electrode into a base metal, a slag phase and a solid component of welding fumes. Short-circuit current limiting in inverters reduces overheating of electrode metal drops by 15%; welding fumes quantitative component - to 38%; manganese - to 30%; thermal radiation intensity - by 37%.

  20. Description of the Sun as a Star: General Physical Characteristics

    NASA Technical Reports Server (NTRS)

    Kucera, Theresa; Crannell, Carol Jo

    2000-01-01

    Numerical parameters characterizing the size and energy output of the sun are presented. These values are the standard yardstick by which other stars are measured. The large number of significant digits tabulated here serve mainly to illustrate the precision to which these parameters are known. Also listed are parameters characterizing the earth's orbit around the sun and the intensity of the sun's radiation at the mean orbital distance. The appearance of the sun depends critically on how it is observed. Each type of radiation observed carries specific information about the physical processes at work on the sun. Special types of instruments reveal aspects otherwise invisible. Coronagraphs reveal the dimmer outer regions of the sun's atmosphere otherwise visible only during total solar eclipses. Spectroscopy can reveal motions, magnetic field strengths, temperatures and densities. In situ measurements have revealed the characteristics of the solar wind and extended our knowledge of the solar magnetic field both near the earth and beyond the orbits of the planets. As an example, the sun's disk observed almost simultaneously in six different wavelengths of light is shown. In visible light we can see the white disk of the sun with the dark spots known as sunspots. By analyzing the spectral lines produced by the sun we can measure the strength of the sun's magnetic field at its surface, producing a magnetogram. This magnetogram reveals that the sunspots are regions of intense magnetic field. Further images of the sun reveal that the sunspot regions are just the bases of systems of hot loops which emit radio-waves, ultraviolet light and X-rays. The sun imaged in a spectral line of hydrogen known as "H alpha" is shown. In this line we also see the long dark "filaments". These filaments form in long channels between areas of opposing magnetic field. Such channels can be seen in the ultraviolet image. Data concerning the sun are obtained with many different kinds of

  1. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Ge, Xinlei; Chen, Yanfang; Shen, Yafei; Zhang, Qi; Sun, Yele; Xu, Jianzhong; Ge, Shun; Yu, Huan; Chen, Mindong

    2016-07-01

    In this work, the Aerodyne soot particle - aerosol mass spectrometer (SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD) of China, for online characterization of the submicron aerosols (PM1). The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC) simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics). The average PM1 concentration was found to be 28.2 µg m-3, with organics (45 %) as the most abundant component, following by sulfate (19.3 %), nitrate (13.6 %), ammonium (11.1 %), rBC (9.7 %), and chloride (1.3 %). These PM1 species together can reconstruct ˜ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (< 100 nm vacuum aerodynamic diameter) were dominated by organics and rBC, while large particles had significant contributions from secondary inorganic species. Source apportionment of organic aerosols (OA) yielded four OA subcomponents, including hydrocarbon-like OA (HOA), cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5 %), but primary organic aerosol (POA, equal to the sum of HOA and COA) can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand, in contrast to other species

  2. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    within the atmosphere. Therefore, the few existing approaches to chemical transformation and aerosol evolution rest heavily on assumptions, for example, that particles are adequately represented as spheres and are homogeneous in composition as a function of particle size, although both assumptions are known to be inaccurate (e.g., Buseck and Pósfai, 1999; Buseck et al., 2002).This chapter provides an overview of the loading, geographical distribution, and chemical and physical properties of both natural and anthropogenic atmospheric aerosols and of the processes controlling their production, reaction, transport, and ultimate removal - the "life cycle" of tropospheric aerosols. More detailed treatment may be found in texts by Junge (1963), Friedlander (1977), Twomey (1977), Hinds (1982, 1999), Seinfeld and Pandis (1998), and Jacob (1999). We highlight here the effects of aerosols on climate. The effects of aerosols on health, visibility, heterogeneous chemistry, and ozone are examined by Heintzenberg et al. (2003), Jacob (2000), Kreidenweis (1995), Anastasio and Martin (2001), Pósfai and Molnár (2000), and Prospero et al. (2002). A detailed overview of tropospheric aerosols and their environmental effects is given by EPA (2002). Kaufman et al. (2002) provide an overview of satellite measurement of aerosols pertinent to climate change.

  3. Size Distribution and Chemical Characteristic of Aerosols in Northwestern Black Sea Region of Turkey

    NASA Astrophysics Data System (ADS)

    Oztürk, Fatma; Keles, Melek; Halif Ngagine, Soulemane

    2016-04-01

    Size segregated PM samples were collected at the city center of Bolu, which is northwestern part of the Black Sea region of Turkey between 2015 and 2016. A cascade impactor was used for the collection of weekly PM samples on pre-fired quartz filters in eight different size ranges (9.0-10.0 μm, 5.8-9.0 μm, 4.7-5.8 μm, 3.3-4.7 μm, 2.1-3.3 μm, 1.1-2.1 μm, 0.65-1.1 μm, 0.43-0.65 μm). The collected samples were divided in three parts and each part was analyzed with different analytical technique. The first part of the filter was analyzed in terms of major ions (SO42-, NO3-, Cl-, NH4+, K+, Ca2+, Mg2+, Na+). A large suit of metals from Li to U were determined in the second fraction of the filter by means of ICPMS. Lastly, the third part of the filter was analyzed in terms of EC and OC. The preliminary results indicated that the PM mass depicted bimodal distribution and the average concentration of PM10 was about 100 μg/m3for a five week period. Both EC and OC showed bi-modal distribution while these two parameters were more enriched on smaller particles. The average concentrations of EC and OC in PM1 were determined as 4.1 and 40.6 μg/m3, respectively, indicating the secondary organic aerosol formation in Bolu ambient air. Among the major ions, SO42- and NH4+ depicted unimodal distribution having significantly higher concentrations in fine particles (< 1 μm) while the rest of the ions present bimodal distribution. Mass closure analysis will be applied to the generated data set and sources will be evaluated by applying PMF. This project was supported financially by Turkish Scientific and Technological Research Council (TÜBİTAK) with a project number 114Y429.

  4. Characteristics of mineral aerosol deposited on the glaciers of Mt. Elbrus, Caucasus, Russia.

    NASA Astrophysics Data System (ADS)

    Kutuzov, Stanislav; Shahgedanova, Maria; Mikhalenko, Vladimir; Ginot, Patrick; Lavrentiev, Ivan; Popov, Gregory

    2014-05-01

    Records of mineral aerosol (desert dust) stored in glaciers provide data on frequency and intensity of deposition events, source regions and atmospheric pathways of mineral dust. We present and discuss a chronology of dust deposition events recorded in the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus (5150 m a.s.l.), Caucasus Mountains, Russia and covering the period of 2009-2013. Particle size distribution and chemical analysis (major ions, trace elements) were peformed using Coulter Counter Multisizer III, Abacus particle counter, IC and ICPMS analysis. Sampling was performed using continuous flow analysis (CFA) system. Annual average dust flux (264 μg/cm2 a-1) and average mass concentration (1.7 mg/kg) over the period 2007-2013 were calculated for the first time for this region. A combination of satellite imagery (MSG SEVIRI), trajectory models (FLEXTA, HYSPLIT) and meteorological data were used to accurately date each of the dust layers observed in shallow cores and investigate provenance of the dust and its pathways. Desert dust originating from the Middle East and Sahara was deposited on the Caucasus glaciers 3-6 times a year. Although less frequent, Saharan events are characterized by considerably higher dust loads than the more frequent Middle Eastern events. The mass median diameter of dust particles ranged between 2 and 9 μm. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia. This may be related to dust emissions from agricultural fields which, if abandoned due to droughts, become important sources of dust. By contrast, samples of the Saharan dust originated from natural sources showed lower concentrations of ammonium. The mean values of crustal enrichment factors for the measured trace elements including metals were calculated. Overall

  5. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Ji, Dongsheng; Zhang, Junke; He, Jun; Wang, Xiaoju; Pang, Bo; Liu, Zirui; Wang, Lili; Wang, Yuesi

    2016-01-01

    Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured hourly with a semicontinuous thermal-optical analyzer in urban Beijing, China, from Mar 1, 2013 to Feb 28, 2014. The annual mean concentrations of OC and EC in Beijing were 14.0 ± 11.7 and 4.1 ± 3.2 μg/m3, respectively. The concentrations observed in this study were lower than those of other reports over the past ten years; however, the concentrations were higher than those reported from most of the megacities in North America and Europe. These findings suggest that OC and EC remained at high levels despite the implementation of strict control measures to improve air quality. The OC and EC concentrations exhibited strong seasonality, with high values in the autumn and winter but low values in the spring and summer in Beijing. The diurnal OC and EC cycles were characterized by higher values at night and in the morning because of primary emissions, accumulations and low boundary-layer heights. Due to increasing photochemical activity, a well-defined OC peak was observed at approximately noon. The OC and EC concentrations followed typical lognormal patterns in which more than 75% of the OC samples had concentrations between 0.9 and 18.0 μg/m3 and 75% of the EC samples had concentrations between 0.4 and 5.6 μg/m3. An EC tracer method and combined EC tracer and K+ mass balance methods were used to estimate the contributions from secondary formation and biomass burning, respectively. High secondary organic carbon (SOC) concentrations were found in the autumn and winter due to low temperatures, which are favorable for the absorption and condensation of semi-volatile organic compounds on existing particles. High correlations were found between the estimated SOC in PM2.5 and the observed OOA (oxidized organic aerosol) in PM1; thus, the method proved to be effective and reliable. The annual average OCBiomass burning (OCbb) contribution to the total OC concentration was 18.4%, suggesting that biomass

  6. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  7. [Physical characteristics of medical students at UOEH (1979-1996)].

    PubMed

    Ichikawa, Y; Morikawa, S; Furuta, M

    2000-03-01

    The purpose of this study is to explore future directions for health and physical education at UOEH. To do so, the authors first analyzed data taken from physical fitness tests conducted for newly incoming medical students every year since UOEH was founded more than twenty years ago. It was seen that male students tended to be overweight, but that the level of their physical fitness was about the same as the national average. We then managed to obtain data from a physical fitness test conducted for about 50 members of the 1997 graduating class just after their graduation. The results from comparing these data with those taken six years before showed a remarkable tend: that is, the males who had been already over-weight when they became freshmen, tended to gain more weight over the six years spent at UOEH. This paper examines the causes of these results, and an ideal future Japanese university health and physical education plan.

  8. Family social characteristics related to physical growth of young children.

    PubMed Central

    Christiansen, N; Mora, J O; Herrera, M G

    1975-01-01

    Altogether 164 poor families who had children of normal and subnormal weight and height were studied in Bogota, Colombia. Physical growth was found to be positively associated with expenditure on food, sanitary conditions in the home, mother's age, birth interval between surviving children, level of parental newspaper reading, aspirations for children, and socioeconomic status. Physical growth was negatively associated with crowded living conditions and family size. Only mother's age, family size, spacing of births, and sanitary conditions were related to weight and height, independent of socioeconomic status. Food expenditure, crowding, parental newspaper reading, and aspirations for children all reflected the influence of socioeconomic status upon physical growth. The findings emphasized the importance of within-class social differences as they affect the physical growth of young children. PMID:1182354

  9. Microbial quality and physical-chemical characteristics of thermal springs.

    PubMed

    Fazlzadeh, Mehdi; Sadeghi, Hadi; Bagheri, Pari; Poureshg, Yusef; Rostami, Roohollah

    2016-04-01

    Microbial quality and physical-chemical properties of recreational spas were surveyed to investigate the health aspect of the spas' water. A total of 195 samples were collected from pools and springs of the spas in five sites from Ardebil Province of Iran. The effects of an independent factor defined as 'condition' and its component sub-factors (i.e., sampling point, location, and sampling date) on microbial quality and physical-chemical properties of the spas were studied by applying path analysis. The influence of physical-chemical properties on microbial quality was also considered. The percentage of samples exceeding the ISIRI (Swimming pool water microbiological specifications (vol 9412), Institute of Standards and Industrial Research of Iran, Tehran, 2007) limits for Staphylococcus (spp.) was up to 55.8 in the springs and 87.8 in the pools, 58.1 and 99.2 for HPC, 90.7 and 97.8 for total coliform and fecal coliform, and 9.3 and 34.4 for Pseudomonas aeruginosa, respectively. There were significant differences between the pools and springs for both physical-chemical properties and microbial quality. From the path analysis, sampling point was the most effective sub-factor of 'condition' on both the physical-chemical properties and microbial quality. Among the physical-chemical properties, water color had the most enhancing or additive influence on microbial pollution, while EC indicated a reducing or subtractive effect.

  10. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  11. The Characteristics of the Outdoor School Environment Associated with Physical Activity

    ERIC Educational Resources Information Center

    Haug, Ellen; Torsheim, Torbjorn; Sallis, James F.; Samdal, Oddrun

    2010-01-01

    The school is an important setting for physical activity. The purpose of the present study was to examine the association between physical environmental characteristics and participation in daily physical activity during school breaks. Data from 130 schools and 16 471 students (Grades 4-10) in Norway were obtained in 2004 through self-administered…

  12. Physical and chemical characteristics of Mt. St. Helens airborne debris

    SciTech Connect

    Sedlacek, W.A.; Heiken, G.H.; Mroz, E.J.; Gladney, E.S.; Perrin, D.R.; Leifer, R.; Fisenne, I.; Hinchliffe, L.; Chuan, R.L.

    1980-01-01

    Tephra and aerosols from the May 18, 1980 eruption of Mt. St. Helens, Washington were sampled in the lower stratosphere with a WB-57F aircraft. The main body of the plume was intercepted over western Kansas on May 20, 48 hours after the eruption, at an altitude of 15.2 km. Concentrations on filter samples were 26 ng of SO/sub 4//g of air and 579 ng of ash/g of air. Angular glass pyroclasts ranged in size from 0.5 to 10 ..mu..m, with a mean grain size of 2 ..mu..m. Samples collected at altitudes of 16.7 and 12.5 km had only traces of SO/sub 4/ and ash. A second flight was flown, 72 hours after the eruption, on May 21. From north Texas to central Wyoming, at an altitude of 15.2 km, < 0.5 to 38 ng of ash/g of air and 1.0 to 2.2 ng of SO/sub 4//g of air were sampled. At an altitude of 18.3 km, from central Wyoming to NW New Mexico, the plume density and character were variable. Glassy pyroclasts similar to those sampled on the first flight range in size from 0.5 to 4 ..mu..m dia. Trace element analysis revealed some volatile element enrichment, but far less than previously observed in the plume from St. Augustine Volcano, 1976. Values of /sup 210/Po//sup 210/Pb were 0.7 to 1.32 comparable to the secular equilibrium value of 1.0 and far less than ratios previously reported by Lambert.

  13. PETN: Variation in Physical and Chemical Characteristics Related to Aging.

    SciTech Connect

    Monroe, D. C.; Laintz, K. E.; Kramer, J. F.; Peterson, P. D.

    2006-01-01

    Physical and chemical analyses of five PETN (pentaerythritol tetranitrate) batches have been conducted to assist in defining powder acceptance criteria for qualification of newly manufactured powders, as well as for examination of potential changes related to aging and thus changes in performance. Results showed that (1) repeatable Fisher Sub-Sieve Sizer measurements (which relate well to historic performance data) could be obtained with consistent sample setup and measurement techniques; (2) BET nitrogen adsorption estimates of surface area correlate well with Fisher measurements and appear less variable; (3) PharmaVision particle size analyses show promise in discriminating among PETN batches; and (4) SEMs are extremely useful in semi-quantitative discrimination among batches. Physical and chemical data will be related to performance data (to be obtained) to develop quantitative physical and chemical tests useful in predicting performance over time, i.e., as powders age.

  14. Derivation of the density and refractive index of organic matter and elemental carbon from closure between physical and chemical aerosol properties.

    PubMed

    Schmid, Otmar; Chand, Duli; Karg, Erwin; Guyon, Pascal; Frank, Goran P; Swietlicki, Erik; Andreae, Meinrat O

    2009-02-15

    Information on the density (rho) and refractive index m (=n-ik) of elemental carbon (ECa) and organic matter (OMa), the main carbon components of atmospheric aerosols, has frequently been obtained from closure calculations between physical and chemical aerosol properties. However, this approach has suffered from large uncertainties since there were more unknown (or poorly known) parameters than defining equations. In this study, we propose a method that avoids this ambiguity mainly by considering both optical and mass closure and by expressing the three ECa parameters (rho(ECa), n(ECa), k(ECa)) by a single (unknown) parameter. This allows mathematically rigorous determination of rho(Eca), m(ECa), rho(OMa) and m(OMa) from standard physico-chemical aerosol data and rigorous error analysis. The results are unambiguous and self-consistent, i.e., there is no difference between the chemically and physically derived p and m values of the atmospheric aerosol. Application of this method to our previously published data on biomass burning particles from Amazonia yields rho(ECa) = 1.8(+/-0.2) g/cm3, m(ECa) = 1.9(+/-0.1)-i0.20(-0.04/+0.02), rho(OMa) = 1.39(+/-0.13) g/cm3 and m(OMa) = 1.46(+/-0.02), where the launcertainty limits given in parenthesis are based on the principles of error propagation. The relatively low imaginary part of m(ECa) indicates the presence of only partially graphitized elemental carbon, which is consistentwith biomass burning aerosol dominated by smoldering combustion conditions.

  15. Probing and monitoring aerosol and atmospheric clouds with an electro-optic oscillator.

    PubMed

    Arnon, S; Kopeika, N S

    1996-09-20

    Monitoring, probing, and sensing characteristics of aerosol clouds is difficult and complicated. Probing the characteristics of aerosols is most useful in the chemical and microelectronic industry for processing control of aerosols and emulsion, decreasing bit error rate in adaptive optical communication systems, and in acquiring data for atmospheric science and environment quality. We present a new mathematical and optical engineering model for monitoring characteristics of aerosol clouds. The model includes the temporal transfer function of aerosol clouds as a variable parameter in an electro-optic oscillator. The frequency of the oscillator changes according to changes in the characteristics of the clouds (density, size distribution, physical thickness, the medium and the particulate refractive indices, and spatial distribution). It is possible to measure only one free characteristic at a given time. An example of a practical system for monitoring the density of aerosol clouds is given. The frequency of the oscillator changes from 1.25 to 0.43 MHz for changes in aerosol density from 2000 to 3000 particulates cm(-3). The advantages of this new method compared with the transmissometer methods are (a) no necessity for line-of-sight measurement geometry, (b) accurate measurement of high optical thickness media is possible, (c) under certain conditions measurements can include characteristics of aerosol clouds related to light scatter that cannot be or are difficult to measure with a transmissometer, and (d) the cloud bandwidth for free space optical communication is directly measurable.

  16. Aerosol Size Distribution in the marine regions

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  17. Income, Family Characteristics, and Physical Violence toward Children

    ERIC Educational Resources Information Center

    Berger, L.M.

    2005-01-01

    Objective:: This paper discusses the ways in which existing microeconomic theories of partner abuse, intra-family bargaining, and distribution of resources within families may contribute to our current understanding of physical child abuse. The empirical implications of this discussion are then tested on data from the 1985 National Family Violence…

  18. Heart disease and physical activity: looking beyond patient characteristics.

    PubMed

    Blanchard, Chris M

    2012-01-01

    Physical activity (PA) adherence is a problem that has plagued cardiovascular disease patients for years. Because of this, researchers have advocated for the identification of key theoretical correlates that can be used to guide PA intervention development. The present review will identify key PA correlates for these patients and provide subsequent recommendations to look beyond patient-level correlates.

  19. Can basin land use effects on physical characteristics of streams be determined at broad geographic scales?

    USGS Publications Warehouse

    Goldstein, R.M.; Carlisle, D.M.; Meador, M.R.; Short, T.M.

    2007-01-01

    The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed. ?? Springer Science+Business Media B.V. 2006.

  20. Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

    SciTech Connect

    Chang, D.; Cheng, Y.; Reutter, P.; Trentmann, J.; Burrows, S. M.; Spichtinger, P.; Nordmann, S.; Andreae, M. O.; Poschl, U.; Su, H.

    2015-09-21

    Here, a recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of NCN of ~ 1000 to 3000 cm–3. (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.

  1. Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

    DOE PAGES

    Chang, D.; Cheng, Y.; Reutter, P.; Trentmann, J.; Burrows, S. M.; Spichtinger, P.; Nordmann, S.; Andreae, M. O.; Poschl, U.; Su, H.

    2015-09-21

    Here, a recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. Themore » integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of NCN of ~ 1000 to 3000 cm–3. (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.« less

  2. Comprehensive Mapping and Characteristic Regimes of Aerosol Effects on the Formation and Evolution of Pyro-Convective Clouds

    SciTech Connect

    Chang, Di; Cheng, Yafang; Reutter, Philipp; Trentmann, Jrg; Burrows, Susannah M.; Spichtinger, Peter; Nordmann, Stephan; Andreae, M. O.; Poschl, U.; Su, Hang

    2015-09-21

    A recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation characterized by ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent development of clouds. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show that: (1) the three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but the net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complicated and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for a value of NCN of ~1000 to 3000 cm-3. (3) The employment of nonlinear (dynamic and microphysical) processes leads to a more complicated and unstable response of clouds to aerosol perturbation compared with the parcel model results. Therefore, conclusions drawn from limited case studies might require caveats regarding their representativeness, and high-resolution sensitivity studies over a wide range of aerosol concentrations and updraft velocities are highly recommended.

  3. Voice characteristics of female physical education student teachers.

    PubMed

    Grillo, Elizabeth U; Fugowski, Justine

    2011-05-01

    In this study, the subjective and objective voice measures of seven female physical education student teachers during a semester of student teaching were investigated. The participants completed the voice measures at three data collection time points: baseline, middle, and end of the semester. The voice measures included acoustic and aerodynamic data, perceptual rating scales of vocal quality and vocal fatigue, an end-of-semester questionnaire, and the Voice Handicap Index. Results demonstrated that the subjective and objective voice measures changed at the middle and the end of the semester as compared with those at baseline. The change in the voice measures may suggest that the vocal mechanism was adapting to the increased vocal demands of teaching physical education.

  4. The HARP Time Projection Chamber: Characteristics and physics performance

    NASA Astrophysics Data System (ADS)

    Ammosov, V.; Bolshakova, A.; Boyko, I.; Chelkov, G.; Dedovitch, D.; Dydak, F.; Elagin, A.; Gapienko, V.; Gostkin, M.; Guskov, A.; Kroumchtein, Z.; Koreshev, V.; Linssen, L.; De Min, A.; Nefedov, Yu.; Nikolaev, K.; Semak, A.; Sviridov, Yu.; Usenko, E.; Wotschack, J.; Zaets, V.; Zhemchugov, A.

    2008-04-01

    The HARP spectrometer that took data at the CERN Proton Synchrotron in 2001 and 2002 had as large-angle detector system a Time Projection Chamber (TPC) surrounded by Resistive Plate Chambers. The design of the TPC, experience with its operation, and its good physics performance are described. The successful recovery from track distortions arising from inhomogeneities of the electric and magnetic fields in the TPC volume is discussed.

  5. Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia.

    PubMed

    Xu, Jingsha; Tai, Xuhong; Betha, Raghu; He, Jun; Balasubramanian, Rajasekhar

    2015-10-01

    Recurrent smoke-haze episodes that occur in Southeast Asia (SEA) are of much concern because of their environmental and health impacts. These haze episodes are mainly caused by uncontrolled biomass and peat burning in Indonesia. Airborne particulate matter (PM) samples were collected in the southwest coast of Singapore from 16 August to 9 November in 2009 to assess the impact of smoke-haze episodes on the air quality due to the long-range transport of biomass and peat burning emissions. The physical and chemical characteristics of PM were investigated during pre-haze, smoke-haze, and post-haze periods. Days with PM2.5 mass concentrations of ≥35 μg m(-3) were considered as smoke-haze events. Using this criterion, out of the total 82 sampling days, nine smoke-haze events were identified. The origin of air masses during smoke-haze episodes was studied on the basis of HYSPLIT backward air trajectory analysis for 4 days. In terms of the physical properties of PM, higher particle surface area concentrations and particle gravimetric mass concentrations were observed during the smoke-haze period, but there was no consistent pattern for particle number concentrations during the haze period as compared to the non-haze period except that there was a significant increase at about 08:00, which could be attributed to the entrainment of PM from aloft after the breakdown of the nocturnal inversion layer. As for the chemical characteristics of PM, among the six key inorganic water-soluble ions (Cl(-), NO3(-), nss-SO4(2-), Na(+), NH4(+), and nss-K(+)) measured in this study, NO3(-), nss-SO4(2-), and NH4(+) showed a significant increase in their concentrations during the smoke-haze period together with nss-K(+). These observations suggest that the increased atmospheric loading of PM with higher surface area and increased concentrations of optically active secondary inorganic aerosols [(NH4)2SO4 or NH4HSO4 and NH4NO3] resulted in the atmospheric visibility reduction in SEA due to

  6. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  7. Influence of the micro-physical properties of the aerosol on the atmospheric correction of OLI data acquired over desert area

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana

    2016-04-01

    This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected

  8. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  9. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  10. Chemical characteristics of PM2.5 and organic aerosol source analysis during cold front episodes in Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Yuan, Zibing; Lau, Alexis K. H.; Huang, Xiao-Feng

    2012-11-01

    In this study, we investigate the influence of long-range transport (LRT) episodes brought in by cold front on the concentration levels of PM2.5, major aerosol constituents, organic tracers, and PM2.5 source characteristics in Hong Kong, China. PM2.5 samples were collected during January-March 2004 and January-March 2005 and analyzed for major constituents and organic tracer species. Synoptic weather conditions and characteristics of common air pollutants were used to categorize the sampling days to three groups, i.e., groups mainly affected by local emissions or regional transport (RT) or cold front LRT. Concentrations of PM2.5 mass and its major constituents during cold-front days were lower than those during RT-dominated periods but higher than those during local emissions-dominated periods. Source apportionment using chemical mass balance (CMB) indicates that vehicular exhaust was a significant primary OC source of mainly local emissions, making average contributions of 1.82, 1.50, and 2.39 μg C m- 3 to OC in the local, LRT, and RT sample groups, respectively. During cold front periods, primary OC concentrations attributable to biomass burning and coal combustion were approximately triple and double, respectively, those during periods dominated by local emissions. Suspended dust, a minor primary OC source (0.24-0.40 μg C m- 3), also showed increased contribution during cold fronts. The unexplained OC by CMB (i.e., total OC minus apportioned primary OC), an approximate indicator for secondary OC, was a significant fraction of OC (> 48%) and its mass concentration was much higher in the cold front LRT and RT sample groups (6.37 and 9.48 μg C m- 3) than in the local sample group (3.8 μg C m- 3). Source analysis as well as tracer concentration variation shows that biomass burning OC and water soluble organic carbon (WSOC) were correlated, suggesting biomass burning as a significant contributor to WSOC.

  11. Application of laser light scattering for determination of the border aerosol-air in a specialized physical laboratory setup

    NASA Astrophysics Data System (ADS)

    Damov, K. S.; Iliev, M. T.

    2016-02-01

    The current article examines the application of laser light scattering in a specialized laboratory setup. It is used for determination of the kinematic viscosity and mass density of Aerodispersed Systems formed in Limited Volume (High Concentration Aerosols) by the method of free flow out. The measurement chamber is first filled with the investigated aerosol. After a predetermined delay time the aerosol is allowed to flow out through a calibrated pipe with fixed size located few centimetres above the chamber's bottom. The lowering of the upper border aerosol-air is continuously scanned using a laser beam directed along the axis of the cylindrical chamber. The kinematic viscosity and mass density of the investigated aerosol phase are calculated by formulas obtained by the authors. The suggested application of laser light scattering led to higher accuracy of the determination the position of aerosol-air border, thence the certainty of this method. This improvement allowed the use of computer controlled optoelectronic setting. The use of laser light scattering significantly improves the method for determination of the kinematic viscosity and mass density of Aerodispersed Systems formed in Limited Volume.

  12. Physical characteristics of GE (General Electric) BWR (boiling-water reactor) fuel assemblies

    SciTech Connect

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs.

  13. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.

    PubMed

    Zhou, Qi Tony; Armstrong, Brian; Larson, Ian; Stewart, Peter J; Morton, David A V

    2010-08-11

    The aim of this study was to investigate the influence of the intrinsic inter-particulate cohesion of model pharmaceutical powders on their aerosolization from a dry powder inhaler. Two cohesive poly-disperse lactose powders with median particle sizes of around 4 and 20 microm were examined. The results showed that after dry coating with magnesium stearate, their flowability, fluidization and de-agglomeration behaviours could be substantially improved, as indicated by powder rheometry, shear testing and laser diffraction aerosol testing. This was achieved by reducing their cohesiveness via surface modification. In contrast to some previous reports, this study demonstrated how powder aerosolization may be improved more significantly and consistently (for widely varying air flow rates) by substantially reducing their inter-particulate cohesive forces. This study contributes to the understanding of the relationship between intrinsic cohesive nature and bulk properties such as flowability, fluidization and de-agglomeration and its impact on their aerosolization, which is fundamental and critical in the optimal design of dry powder inhaler formulations. The intensive mechanical dry coating technique also demonstrated a promising potential to improve aerosolization efficiency of fine cohesive model powders.

  14. Physical characteristics of non-fuel assembly reactor components

    SciTech Connect

    Hawkes, E.C.

    1994-09-01

    The primary objective of this report is to enhance the utility of the Characteristics Data Base (CDB). This has been accomplished by providing a pictorial representation of the principal non-fuel assembly (NFA) components along with a tabular summary of key information about each type of component. This report is intended for use as an adjunct to the CDB. Toward this end, the report may be used either as a complement to the detailed descriptions in the CDB, or as a stand-alone document that acts as an illustrated abstract of the CDB. Line drawings of major NFA components are included. Data not provided in the CDB are also included. Summary descriptions of each component are given in tabular format.

  15. The optical, chemical, and physical properties of aerosols and gases emitted by the laboratory combustion of wildland fuels

    NASA Astrophysics Data System (ADS)

    McMeeking, Gavin R.

    Biomass burning is a major source of trace gases and particles that have a profound impact on the atmosphere. Trace gases emitted by fires include the greenhouse gases CO2 and CH4, as well as CO and volatile organic compounds that affect air quality. Particle emissions affect climate, visibility, the hydrologic cycle, and human health. This work presents measurements of trace gas and aerosol emissions from a series of controlled laboratory burns for various plant species common to North America. Over 30 fuels were tested through ˜250 individual burns during the Fire Laboratory at Missoula Experiment. Emission factors are presented as a function of modified combustion efficiency (MCE), a measure of the fire combustion conditions. The emissions of many trace gas and aerosol species depended strongly on MCE: smoldering-phase combustion dominated fires (low MCE) emitted roughly four times as much gas-phase hydrocarbon species and organic aerosols than flaming-phase dominated fires (high MCE). Inorganic aerosol emissions depended more strongly on plant species and components than on MCE. Flaming-phase dominated fires tended to produce aerosol with high mass fractions of strongly light-absorbing elemental carbon. Smoldering-phase fires produced aerosol with large mass fractions of more weakly light absorbing organic carbon, but this material was found to have a strong wavelength dependence of absorption, greater than the inverse wavelength relationship typically assumed for light absorbing aerosol. A two component model---featuring elemental carbon with a weak wavelength dependence but high mass-normalized absorption efficiency and organic carbon with a strong wavelength dependence but low mass-normalized absorption efficiency---is shown to represent the bulk absorption spectra of biomass burning aerosol. The results show that at wavelengths below ˜450 nm, organic carbon light absorption could rival that of elemental carbon for aerosol dominated by organic carbon. If

  16. Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength Lidar measurements

    NASA Technical Reports Server (NTRS)

    Sasano, Y.; Browell, E. V.

    1986-01-01

    Aerosols are often classified into several general types according to their origins and composition, such as maritime, continental, and stratospheric aerosols, and these aerosol types generally have different characteristics in chemical and physical properties. The present study aims at demonstrating the potential for distinguishing these aerosol types by the wavelength dependence of their backscatter coefficients obtained from quantitative analyses of multiple wavelength lidar signals. Data from the NASA Airborne Differential Abosrption lidar (DIAL) S ystems, which can measure aerosol backscatter profiles at wavelenghts of 300, 600, and 1064 nm and ozone profiles of backscatter coefficients for these three wavelength were derived from the observations of aerosols of different types. Observations were performed over the Atlantic Ocean, the Southwestern United States, and French Guyana.

  17. Chemical, physical and radiative properties of atmospheric aerosols measured at Mt. Lulin Atmospheric Background Station (LABS) in East Asia during biomass burning seasons (Invited)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Lee, C.; Wang, S.; Chuang, M.; Chia, E.; Andrews, E.; Ogren, J. A.; Lin, J.; Hung, H.; Hsiao, T.; Liang, S.

    2013-12-01

    This paper presents the chemical, physical and radiative properties of atmospheric aerosols measured at the Lulin Atmospheric Background Station (LABS) which is located at Mt. Lulin (2,862 m MSL; 23o 28'07"N, 120o52'25"E) in central Taiwan, East Asia, and has been operated since 13 April, 2006. LABS is unique because its location and altitude enhances the global network of GAW (Global Atmosphere Watch) in the Southeast Asian region, where no high-elevation baseline station is available. Our site is located between the GAW Waliguan station (3,810 m) on the Tibetan plateau and the Mauna Loa Observatory (3,397m) in Hawaii. We will particularly focus on the results obtained during the spring season, when biomass burning activities prevail in northern Southeast Asia. Chemical characterization of fine and coarse aerosol particles, including water-soluble ions, organic and elemental carbon, and trace elements, will be presented. Aerosol optical properties, including scattering, absorption, extinction, single scattering albedo, Ångström exponent, and aerosol optical depth, as well as the derived radiative forcing efficiency, will be discussed. Results of cloud condensation nuclei measurements, made intermittently, will also be presented. Trajectory studies indicate that this site experiences a variety of air masses originating from contaminated and clean source regions, giving a distinctive contrast of atmospheric changes. To summarize the results, the maximum values (and monthly means) of these chemical, physical and radiative parameters generally occurred during spring time, especially in March, corresponding to prevailing biomass burning activities in SE Asia. Besides, LABS is also one of the supersites during the 2010-2013 spring campaigns of the Seven South East Asian Studies (7-SEAS) for studying the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate over Southeast Asian region. Results of source (northern Thailand

  18. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  19. Physical Characteristics and Geobiology of 'Rotten' Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Frantz, C. M.; Light, B.; Orellana, M. V.; Carpenter, S.; Junge, K.

    2015-12-01

    Arctic sea ice in its final stage of demise, "rotten ice", is characterized by seriously compromised structural integrity, making it difficult to collect and study. Consequently, little is known about the physical, chemical and biological properties of this ice type. Yet, as the Arctic melt season lengthens, this ice type will likely appear sooner and become more prevalent in the Arctic Ocean and its occurrence may be more common than satellite mapping and ice charts suggest (e.g., Barber et al., 2009). Here we present physical, chemical, biological, and optical measurements of first-year ice near Barrow, Alaska during the spring and summer of 2015. Samples represent a progression from solid, "springtime" shorefast ice (May); through melting, heavily melt-ponded, "summertime" shorefast ice (June); to the final stage of barely-intact, "rotten" ice collected from small floes Beaufort Sea (July). Results indicate that rotten ice exhibits low salinity, is well drained and has a lower density than its springtime counterpart. X-ray tomography of dimethyl phthalate-casted sea ice samples indicates differences in porosity and relative permeability in rotten ice vs. spring- and summertime ice. We also present a preliminary characterization of rotten sea ice as a microbial habitat using preliminary results of chemical measurements (nutrients, dissolved organic and inorganic carbon), and microbiological characterizations (concentrations and16S/18S rDNA-based identifications) from seawater vs. sea ice vs. sea ice brines. Optical measurements show that while decreased ice thickness and increased melt pond coverage cause an overall increase in solar radiation to the ocean as sea ice warms, rotten ice is actually less transparent to solar radiation than its spring- and summertime counterparts. These factors determine solar heating in the ocean and, ultimately, the potential for accelerated ice melting (e.g., Light et al., 2008). This work provides a foundation for understanding

  20. Identifying the Common Characteristics of Comprehensive School Physical Activity Programs in Louisiana

    ERIC Educational Resources Information Center

    Deslatte, Kyrie'; Carson, Russell L.

    2014-01-01

    The purpose of this project was to (a) determine the common characteristics of current comprehensive school physical activity programs (CSPAP) in Louisiana and (b) identify strategies for implementing a CSPAP. Four individuals (i.e., one physical education teacher, one principal, and two classroom teachers) were recruited from three public schools…

  1. Physical Attacks: An Analysis of Teacher Characteristics Using the Schools and Staffing Survey

    ERIC Educational Resources Information Center

    Williams, Thomas O., Jr.; Ernst, Jeremy V.

    2016-01-01

    This study investigated physical attacks as reported by public school teachers on the most recent Schools and Staffing Survey (SASS) from the National Center for Education Statistics administered by the Institute of Educational Sciences. For this study, characteristics of teachers who responded affirmatively to having been physically attacked in…

  2. How Student Characteristics Affect Girls' and Boys' Verbal Engagement in Physics Instruction

    ERIC Educational Resources Information Center

    Jurik, Verena; Groschner, Alexander; Seidel, Tina

    2013-01-01

    This study investigated how student characteristics predict the nature of girls' and boys' verbal interactions with their teachers in physics classes. The sample included (N = 1378) students from 81 randomly selected high-school physics classrooms in Germany and the German-speaking part of Switzerland. At the beginning of the school year, the…

  3. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    aerosol (core)-shell (BC) when compared to their external mixture, while the SSA for maritime aerosols does not vary significantly for different mixing scenarios because of the dominance of sea salt aerosols. Thus, these results confirm that aerosol mixing can modify the physical and optical characteristics of aerosols, which vary as a function of relative humidity. These calculations will be useful in parameterising the effect of core-shell vs. external mixing of aerosols in global climate models, and in the evaluation of aerosol radiative effects. PMID:23563501

  4. Aerosol-Cloud-Precipitation Interactions in the Climate System

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.

    2015-12-01

    Aerosols serve as cloud condensation nuclei (CCN) and thus have a powerful effect on cloud properties. Increased aerosol concentrations resulting from pollution lead to higher cloud droplet concentrations, but smaller droplet sizes. This in turn affects the physical processes inside clouds that lead to the initiation of precipitation. Depending on a number of factors, including aerosol composition, atmospheric stability, and cloud water content, increasing CCN concentrations may either decrease or increase rainfall. In convective clouds, early rain formation is suppressed, which makes more water and energy available to rise higher in the atmosphere and form ice particles. This may invigorate the dynamics of convection, encourage the formation of hail and lightning, and enhance the transport of materials to the upper troposphere. In turn, cloud processing also affects the concentrations, composition, and distribution of atmospheric aerosols. In order to understand and quantify the effects of air pollution on climate, and precipitation in particular, knowledge of natural abundance and characteristics of aerosols is as essential as the observation of perturbed conditions. I will present recent advances in the conceptual understanding of aerosol-precipitation interactions, as well as results of measurements on aerosol and cloud characteristics in pristine and polluted conditions.

  5. An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data

    PubMed Central

    Hersey, S. P.; Garland, R. M.; Crosbie, E.; Shingler, T.; Sorooshian, A.; Piketh, S.; Burger, R.

    2015-01-01

    We present a comprehensive overview of particulate air quality across the five major metropolitan areas of South Africa (Cape Town, Bloemfontein, Johannesburg and Tshwane (Gauteng Province), the Industrial Highveld Air Quality Priority Area (HVAPA), and Durban), based on a decadal (1 January 2000 to 31 December 2009) aerosol climatology from multiple satellite platforms and detailed analysis of ground-based data from 19 sites throughout Gauteng Province. Satellite analysis was based on aerosol optical depth (AOD) from MODIS Aqua and Terra (550 nm) and MISR (555 nm) platforms, Ångström Exponent (α) from MODIS Aqua (550/865 nm) and Terra (470/660 nm), ultraviolet aerosol index (UVAI) from TOMS, and results from the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. At continentally influenced sites, AOD, α, and UVAI reach maxima (0.12–0.20, 1.0–1.8, and 1.0–1.2, respectively) during austral spring (September–October), coinciding with a period of enhanced dust generation and the maximum integrated intensity of close-proximity and subtropical fires identified by MODIS Fire Information for Resource Management System (FIRMS). Minima in AOD, α, and UVAI occur during winter. Results from ground monitoring indicate that low-income township sites experience by far the worst particulate air quality in South Africa, with seasonally averaged PM10 concentrations as much as 136 % higher in townships that in industrial areas. We report poor agreement between satellite and ground aerosol measurements, with maximum surface aerosol concentrations coinciding with minima in AOD, α, and UVAI. This result suggests that remotely sensed data are not an appropriate surrogate for ground air quality in metropolitan South Africa. PMID:26312061

  6. Generation and physical characteristics of the ERTS MSS system corrected computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Thomas, V. L.

    1973-01-01

    The generation and format are discussed of the ERTS system corrected multispectral scanner computer compatible tapes. The discussion includes spacecraft sensors, scene characteristics, data transmission, and conversion of data to computer compatible tapes at the NASA Data Processing Facility. Geometeric and radiometric corrections, tape formats, and the physical characteristics of the tapes are also included.

  7. Generation and physical characteristics of the LANDSAT-1, -2 and -3 MSS computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Thomas, V. L.

    1977-01-01

    The generation and format of the LANDSAT 1, 2, and 3 system corrected multispectral scanner computer compatible tapes are discussed. Included in the discussion are the spacecraft sensors, scene characteristics, the transmission of data, and the conversion of the data to computer compatible tapes. Also included in the discussion are geometric and radiometric corrections, tape formats, and the physical characteristics of the tape.

  8. Levels and Characteristics of Physical Activity among a College Student Cohort

    ERIC Educational Resources Information Center

    Miller, Kim; Staten, Ruth R.; Rayens, Mary Kay; Noland, Melody

    2005-01-01

    The purpose of this study was to assess physical activity levels and the relationships between activity and personal characteristics among a cohort of college students and to determine personal characteristics that predict activity. A sample of 1,700 undergraduates was mailed a survey that requested demographic information and assessed health…

  9. Physical characteristics of summer sea ice across the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tucker, W. B.; Gow, A. J.; Meese, D. A.; Bosworth, H. W.; Reimnitz, E.

    1999-01-01

    Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4‰ at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76°N to almost none in mid-August at 88°N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.

  10. Physical and decay characteristics of commercial LWR spent fuel

    SciTech Connect

    Roddy, J.W.; Claiborne, H.C.; Ashline, R.C.; Johnson, P.J.; Rhyne, B.T.

    1985-10-01

    Information was collected from the literature and from major manufacturers that will be useful in the design and construction of a mined geologic repository for the disposal of light-water-reactor spent fuel. Pertinent data are included on mechanical design characteristics and materials of construction for fuel assemblies and fuel rods and computed values for heat generation rates, radioactivity, and photon and neutron emission rates as a function of time for four reference cases. Calculations were made with the ORIGEN2 computer code for burnups of 27,500 and 40,000 MWd for a typical boiling-water reactor and 33,000 and 60,000 MWd for a typical pressurized-water reactor. The results are presented in figures depicting the individual contributions per metric ton of initial heavy metal for the activation products, fission products, and actinides and their daughters to the radioactivity and thermal power as a function of time. Tables are also presented that list the contribution of each major nuclide to the radioactivity, thermal power, and photons and neutrons emitted for disposal periods from 1 to 100,000 years.

  11. Physical characteristics of summer sea ice across the Arctic Ocean

    USGS Publications Warehouse

    Tucker, W. B.; Gow, A.J.; Meese, D.A.; Bosworth, H.W.; Reimnitz, E.

    1999-01-01

    Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4??? at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76??N to almost none in mid-August at 88??N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.

  12. Physical and decay characteristics of commercial LWR spent fuel

    SciTech Connect

    Roddy, J.W.; Claiborne, H.C.; Ashline, R.C.; Johnson, P.J.; Rhyne, B.T.

    1986-01-01

    Information was collected from the literature and from major manufacturers that will be useful in the design and construction of a mined geologic repository for the disposal of light-water-reactor spent fuel. Pertinent data are included on mechanical design characteristics and materials of construction for fuel assemblies and fuel rods and computed values for heat generation rates, radioactivity, and photon and neutron emission rates as a function of time for four reference cases. Calculations were made with the ORIGEN2 computer code for burnups of 27,500 and 40,000 MWd for a typical boiling-water reactor and 33,000 and 60,000 MWd for a typical pressurized-water reactor. The results are presented in figures depicting the individual contributions per metric ton of initial heavy metal for the activation products, fission products, and actinides and their daughters to the radioactivity and thermal power as a function of time. Tables are also presented that list the contribution of each major nuclide to the radioactivity, thermal power, and photons and neutrons emitted for disposal emitted for disposal periods from 1 to 100,000 years.

  13. Physical modeling of optical characteristics of blood-containing tissue

    NASA Astrophysics Data System (ADS)

    Chernova, Svetlana P.; Pravdin, Alexander B.; Tuchin, Valery V.; Vari, Sandor G.

    1998-01-01

    In the course of search for systems and media that could simulate optical characteristics of bio-objects we developed a method of preparation of tissue phantoms on a gel base. Examination of fluorescence spectra of agar and gelatin gel revealed that agar gel may be used in phantom preparation as a matrix free of reabsorption effect and with low intrinsic fluorescence. But in subsequent experiments we used 10% gelatin gel in order to reproduce native fluorescence of biotissue. Phantom samples were prepared as 2.2 or 3.2 mm thick 25 mm diameter gel 'tablets' with controlled content of blood and scatterer (polystyrene latex). In phantoms without scatterer we studied the dependence of the shape of fluorescence spectrum on blood content (excitation wavelength 350 - 380 nm, observation of emission spectra within 400 - 650 nm range). We obtained an agreement of fluorescence intensity and spectrum shape transformation, as the blood concentration in phantom increases, with the changes of in vivo tissue autofluorescence spectra (literature data) when going from normal tissue to the abnormal region. Using measurements of collimated transmittance we evaluated scattering coefficient for polystyrene latex embedded in 10% gelatin gel. When blood was added, the linear dependence of extinction in phantom on latex concentration was distorted within absorption band.

  14. Physical characteristics of bright Class I methanol masers

    NASA Astrophysics Data System (ADS)

    Leurini, S.; Menten, K. M.; Walmsley, C. M.

    2016-07-01

    Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks. Aims: We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results. Methods: We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas. Results: We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly high-temperature (>100 K) high-density (n(H2) ~ 107-108 cm-3) structures with methanol maser emission measures, ξ, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the

  15. Influence of Morphological Characteristics on Physical and Physiological Performances of Tunisian Elite Male Handball Players

    PubMed Central

    Moncef, Cherif; Said, Mohamed; Olfa, Najlaoui; Dagbaji, Gomri

    2012-01-01

    Purpose The purpose of this study was to describe the body structure and morphological characteristics of Tunisian elite handball players, and to determine the effect of these variables on functional and physical performance levels. Methods A sample of 42 male handball players (mean age 21.98±3.24 years; training duration 12 years) at international level was submitted to a test battery comprising morphological, physical and physiological assessments. Tests were yo-yo intermittent recovery test, squat jump test, countermovement jump test, vertical-jump test, and Repeated sprint Ability. Measures for assessment of anthropometric characteristics were age, size, weight, body mass index, body fat, fat mass and thin mass. Results Weight was negatively correlated to the squat jump and the countermovement jump performance. Age, weight, and body composition measures (fat and thin body mass) were additionally negatively related to the maximal oxygen uptake, and to the maximal velocity obtained in the Yo-Yo recovery test. No relationship was found between size, body mass index, body fat and the physical abilities considered. Concerning the effects of physical characteristics on the functional performances, we can note a positive relationship between squat jump, countermovement jump, and the yo-yo recovery test performance. No relationship was found between vertical jump, repeated sprint ability, and the physiological performances. Conclusions Study results point to the existence of strong correlation between morphological and physical characteristics with functional characteristics. In handball, it is possible to have a reliable estimate of anthropometric measurements, physical and physiological performances. PMID:22942992

  16. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  17. [Seasonal Variation Characteristics and Potential Source Contribution of Sulfate, Nitrate and Ammonium in Beijing by Using Single Particle Aerosol Mass Spectrometry].

    PubMed

    Liu, Lang; Zhang, Wen-jie; Du, Shi-yong; Hou, Lu-jian; Han, Bin; Yang, Wen; Chen, Min-dong; Bai, Zhi-peng

    2016-05-15

    Single particle aerosol mass spectrometry (SPAMS) was deployed to continuously observe the aerosol particles of Beijing urban area from 2013-12 to 2014-11, and the hourly average data of sulfate, nitrate and ammonium (SNA) were obtained using the characteristic ion tracer method. The mixing state and size distribution of SNA were analyzed. In addition, based on Hysplit 48 h back air mass trajectory results in combination with Concentration Weighted Trajectory method (CWT), we obtained the seasonal potential source contribution area of SNA. The results showed that the mixture of sulfate, nitrate and ammonium in spring and summer was more stable than that in autumn and winter. The size distribution of sulfate and nitrate was very similar. The size distribution characteristics of SNA followed the order of autumn > summer > spring > winter. The potential source region of SNA had similar spatial distribution characteristics, and the potential source region of SNA was mainly located in Beijing and south areas, especially at Tianjin, Langfang, Hengshui, Baoding and Shijiazhuang. PMID:27506011

  18. [Seasonal Variation Characteristics and Potential Source Contribution of Sulfate, Nitrate and Ammonium in Beijing by Using Single Particle Aerosol Mass Spectrometry].

    PubMed

    Liu, Lang; Zhang, Wen-jie; Du, Shi-yong; Hou, Lu-jian; Han, Bin; Yang, Wen; Chen, Min-dong; Bai, Zhi-peng

    2016-05-15

    Single particle aerosol mass spectrometry (SPAMS) was deployed to continuously observe the aerosol particles of Beijing urban area from 2013-12 to 2014-11, and the hourly average data of sulfate, nitrate and ammonium (SNA) were obtained using the characteristic ion tracer method. The mixing state and size distribution of SNA were analyzed. In addition, based on Hysplit 48 h back air mass trajectory results in combination with Concentration Weighted Trajectory method (CWT), we obtained the seasonal potential source contribution area of SNA. The results showed that the mixture of sulfate, nitrate and ammonium in spring and summer was more stable than that in autumn and winter. The size distribution of sulfate and nitrate was very similar. The size distribution characteristics of SNA followed the order of autumn > summer > spring > winter. The potential source region of SNA had similar spatial distribution characteristics, and the potential source region of SNA was mainly located in Beijing and south areas, especially at Tianjin, Langfang, Hengshui, Baoding and Shijiazhuang.

  19. Southeast Asian Summer Burning: A Micro Pulse Lidar Network Study of Aerosol Particle Physical Properties near Fires in Borneo and Sumatra

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Welton, E. J.; Holben, B. N.; Campbell, J. R.

    2013-12-01

    In August and September 2012, as part of the continuing Seven South East Asian Studies (7-SEAS) project, three autonomous elastic-scattering 355 nm lidars were deployed by the NASA Micro Pulse Lidar Network (MPLNET) to Sumatra and Borneo, measuring the vertical profile of aerosol particle scattering during peak burning season. In coordination with the Aerosol Robotic Network (AERONET), a regional characterization of aerosol particle physical properties and distribution was performed. In addition to a permanent regional network site at Singapore, the three temporary sites established for this research include Jambi (Sumatra, Indonesia), Kuching (northwest Borneo, Malaysia) and Palangkaraya (south-central Borneo, Indonesia). In this paper, we discuss the mission and instruments, and introduce data products available to the community through the MPLNET online website. We further describe initial results of the study, including a contrast of mean vertical scattering profiles versus those observed near active fire sources at Jambi and Palangkaraya, and resolve longer-range particle evolution at receptor sites, like Kuching, that are most commonly 1-2 days downwind of larger fire complexes.

  20. Design considerations and performance characteristics of AirSentinel: a new UV-LIF bio-aerosol threat detection trigger

    NASA Astrophysics Data System (ADS)

    DeFreez, Richard; Merrill, Ezra; Albanna, Sam; Davis, Bert; Call, Charles

    2005-10-01

    AirSentinel® is a new low cost, compact ultraviolet-based light induced fluorescence (UV-LIF) bio-aerosol threat detection trigger. Earlier UV-LIF triggers, for example, FLAPS, BARTS, BAWS, Bioni, and BioLert, have used UV laser sources to induce fluorescence of biological aerosols. Two recent developments from the DARPA MTO SUVOS program, BAST and TAC-BIO, use UV LEDs for the same purpose, thereby broadening the term UV-LIF to mean laser or LED induced autofluorescence. All of these earlier triggers interrogate aerosols on a particle-by-particle basis on- the-fly. The major trade-off for these instruments is cost, size, and complexity versus counting efficiency (probability of detection) with the lower size end of the respirable range being most difficult to detect. AirSentinel® employs a different approach to UV-LIF detection: aerosol concentration by collection on a surface, surface interrogation, and surface rejuvenation prior to repeated concentration and interrogation cycles. Aerosol particle concentration via impaction on a surface addresses the issue of small particle counting efficiency since the fluorescence from the sum of the particles is the sum of the fluorescence signals from the collected particles, typically hundreds or thousands in number. Surface interrogation for a LIF signal is accomplished by illumination with a 280 nm and/or a 365 nm LED. As expected, test results show better relative detection performance using 280 nm excitation LEDs for bio-toxin simulants and somewhat better performance at 365 nm for standard Bacillus globigii spore targets. AirSentinel® beta technology is currently in long term testing in a number of public and other government buildings.

  1. [Evaluating method of the characteristic physical properties of the wetting mass using texture analyser].

    PubMed

    Gao, Ya; Hong, Yan-long; Xian, Jie-chen; Zhang, Ning; Feng, Yi; Yang, Xiu-juan

    2012-08-01

    To build the evaluating method of the characteristic physical properties of the wetting mass, this study reported the preparation of wetting mass by adding water into microcrystalline cellulose, and using texture analyser texture profile analysis to test its physical properties, including hardness, adhesiveness, springness, cohesiveness, chewiness, resilience and so on, then finding out the better method and parameters. The method was evaluated and used to test wetting mass, which was made of microcrystalline cellulose of different types and polyvinylpyrrolidone. When running texture profile analysis whose trigger force was 1500 g, the relative standard deviation was under 10%, and the trend of every characteristic physical property tallied with the theory result by water ratio increase. Testing result of the same excipient with the same water ratio had a higher precision, while characteristic physical properties of wetting mass who was made of the same excipient with different water ratios and different excipients had a great difference. Using texture analyser to test physical properties of wetting mass could get a result which tallied with the theory by water ratio increase, and had a well precision, accuracy and sensitivity, and thus it could also evaluate the characteristic physical properties of wetting mass relatively well. PMID:23162903

  2. Characteristics of urban sidewalks/streets and objectively measured physical activity.

    PubMed

    Suminski, Richard R; Heinrich, Katie M; Poston, Walker S C; Hyder, Melissa; Pyle, Sara

    2008-03-01

    Several studies have found significant relationships between environmental characteristics (e.g., number of destinations, aesthetics) and physical activity. While a few of these studies verified that the physical activities assessed were performed in the environments examined, none have done this in an urban, neighborhood setting. This information will help efforts to inform policy decisions regarding the design of more "physically active" communities. Fourteen environmental characteristics of 60, 305-m-long segments, located in an urban, residential setting, were directly measured using standardized procedures. The number of individuals walking, jogging, and biking in the segments was assessed using an observation technique. The segments were heterogeneous with regards to several of the environmental characteristics. A total of 473 individuals were seen walking, bicycling, or jogging in the segments during 3,600 min of observation (60 min/segment). Of the 473 seen, 315 were walking, 116 bicycling, and 42 jogging. A greater number of individuals were seen walking in segments with more traffic, sidewalk defects, graffiti, and litter and less desirable property aesthetics. Only one environmental characteristic was associated with bicycling and none were significantly related with jogging. This study provides further evidence that environmental characteristics and walking are related. It also adds new information regarding the importance of scale (e.g., micro, macro) and how some environmental characteristics of urban, residential sidewalks and streets relate to physical activity.

  3. Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Renjian; Huan, Ning; Zhou, Xiuji; Zhang, Yangmei; Zhou, Huaigang; Zhang, Leiming

    2012-12-01

    In the summer and winter of 2004 and 2005, size-segregated atmospheric aerosols were sampled with modified Andersen KA200 Multi-stage impactor at two regional background stations in the eastern China, the Shangdianzi station (SDZ) in the suburb of Beijing and the Lin'An station (LA) in the Yangtze river delta region, both are WMO Global Atmospheric Watch station, which represent the regional background of air pollutions of the two rapid developing economical zone of China, the Yangtze River Delta region (YRD) and Beijing-Tianjin region. The aerosol mass size distributions, ionic compositions, organic and elemental carbon (OC and EC), and elemental components were analyzed. The mass concentrations for TSP (total suspend particle), PM11 (aerodynamic diameter less than 11 μm), and PM2.1 (aerodynamic diameter less than 2.1 μm) at both sites showed obviously different between the winter and summer, with higher mass concentrations measured in the winter time. All seasonal mean mass concentrations of PM2.1 accounted for over 50% of PM11 at both sites. The aerosol mass closure study indicated that the total mass concentration reconstructed from the aerosol chemical composition agreed well with the measured gravimetric mass at the two stations. The fine aerosol particles at the two stations were composed mainly of sulfate and organic matter. In the summer, more than half of the PM2.1 mass was sulfate, suggesting a dominant contribution of secondary aerosol to the fine particles in these two regions. In the winter, the contribution of nitrate to the fine particles increased significantly due to the lower volatile losses under the cold weather. The proportions of soil type components in the PM2.1 showed similar magnitude in the winter and summer at Lin'An station but significant seasonal differences with higher fractions in the winter at Shangdianzi station. On average EC accounted for about 2%-6% of the fine particle mass (PM2.1) at both sites with proportionally lower EC

  4. Scanning Mobile Lidar for Aerosol Tracking and Biological Aerosol Identification

    NASA Astrophysics Data System (ADS)

    He, Tingyao; Bergant, Klemen; Filipčič, Andrej; Forte, Biagio; Gao, Fei; Stanič, Samo; Veberič, Darko; Zavrtanik, Marko

    2010-05-01

    Optical properties of non-biological aerosols containing aromatic hydrocarbons, such as industrial chemicals and engine exhausts, have already been thoroughly studied using remote sensing techniques. However, because of their complex composition and characteristics, the identification of biological aerosols, such as fungi, pollen and bacteria that are present in the environment remains a rather difficult task. The collection of information on both non-biological and biological aerosols is of great importance for understanding their interrelation, physical and chemical properties and their influence on human health and the environment. Biological and non-biological aerosols can be simultaneously detected, tracked and identified by a scanning mobile Mie-fluorescence lidar. The device developed at the University of Nova Gorica can perform azimuth and zenith angle scans with an angular resolution of 0.1°, as well as operate in both day and night-time conditions. Aerosols of biological origin are identified through the detection of the fluorescence of the amino acid tryptophan which is present in almost all substances of biological origin. In our system, the transmitter is a solid state Nd:YAG laser which is capable of simultaneous emission of light at a base wavelength of 1064 nm (IR) and its quadrupled wavelength of 266 nm (UV) at a maximum repetition rate of 10 Hz. Tryptophan contained in biological aerosols is excited by the 266 nm laser pulses and the returning fluorescence signals are detected in the spectral band centered at 295 nm. The receiver is a Newtonian telescope which uses a 300 mm parabolic mirror to direct received light into three detection channels - two elastic backscatter channels (IR and UV) and a fluorescence channel. First experiments show that the detection range of the lidar reaches 10 km in the IR channel and 3 km in the UV channel. Based on the preliminary simulations of the signal-to-noise ratio, the detection range for biological

  5. Comparison of Fe(II) Photo-Formation Characteristics Between Aqueous Humic Acid Solutions and Aqueous Extracts of Atmospheric Aerosols Collected at Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Saito, K.; Okada, K.; Arakaki, T.

    2007-12-01

    Photochemical cycles of Fe(III)-Fe(II) affects the oxidation and the reduction of transient species such as active oxygen species and various transition metals in the atmospheric condensed phases. Although the importance of organic ligands to iron cycling (e.g. ligand-to-metal charge transfer) is becoming clearer, the mechanism by which photochemical reduction of Fe(III) to Fe(II) are not well understood. Humic acid (HA) is considered as an important organic ligand for Fe(III) complexes in the environment. HA is a collection of organic compounds that exist in nature but whose structures are not well known. Commercially available HAs as received from the manufacturers contain trace amount of iron. Using this residual Fe, we investigated the photochemical formation of Fe(II) in aqueous HA solutions to elucidate the photochemical cycles of Fe(III)-Fe(II) in the atmospheric water drops. We purchased HAs from several different suppliers. We investigated the effects of pH and wavelengths on Fe(II) photo-formation using monochromatic radiations at 313, 334, 366, and 405 nm. Concentrations of photochemically formed Fe(II) were determined by ferrozine-HPLC technique, and the apparent quantum yields were determined based on the total absorbance of the HA solutions. Fe(II) photo-formation characteristics of the aqueous humic acid solutions purchased from different suppliers showed slightly different wavelength dependence. Furthermore, we compared Fe(II) photoformation characteristics observed in aqueous HA solutions with those in the aqueous extracts of atmospheric aerosols collected in Okinawa, Japan. The results showed that the apparent quantum yields of the aerosol extracts were 5-10 times higher than those of the HA solutions. Wavelength-dependence of Fe(II) photo-formation observed in the aqueous extracts of aerosols was similar to that seen in the aqueous HA solutions.

  6. Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; Baltensperger, Urs

    2016-03-01

    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.

  7. Correlations between absorption Angström exponent (AAE) of wintertime ambient urban aerosol and its physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Filep, Á.; Pintér, M.; Török, Zs.; Bozóki, Z.; Szabó, G.

    2014-07-01

    Based on a two-week measurement campaign in an environment heavily polluted both by transit traffic and household heating in the inner city of Szeged (Hungary), correlations between the absorption Angström exponent (AAE) fitted to the optical absorption coefficients measured with a four wavelength (1064, 532, 355 and 266 nm) photoacoustic aerosol measuring system (4λ-PAS) and various aerosol parameters were identified. AAE was found to depend linearly on OCwb/EC and on NGM100/NGMD20, i.e. on the ratio of mass concentrations of elemental carbon (EC) to the fraction of organic carbon associated with wood burning (OCwb), and on the ratio of aerosol number concentrations in the 20 nm (NGMD20) to 100 nm (NGMD100) modes, with a regression coefficient of R = 0.95 and R = 0.86, respectively. In the daily fluctuation of AAE two minima were identified, which coincide with the morning and afternoon rush hours, during which NGMD20 exhibits maximum values. During the campaign the shape of the aerosol volume size distribution (dV/dlogD) was found to be largely invariant, supporting the assumption that the primary driver for the AAE variation was aerosol chemical composition rather than particle size. Furthermore, when wavelength segregated AAE values were calculated, AAE for the shorter wavelengths (AAE355-266) was also found to depend linearly on the above mentioned ratios with similar regression coefficients but with a much steeper correlation line, while the AAE for the longer wavelengths (AAE1064-532) exhibits only a considerably weaker correlation. These results prove the unique advantages of real time multi-wavelength photoacoustic measurement of optical absorption in case the wavelength range includes the ultra-violet too.

  8. The evaluation of a shuttle borne lidar experiment to measure the global distribution of aerosols and their effect on the atmospheric heat budget

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Joseph, J. H.; Trauger, J. T.; Guetter, P. J.; Eloranta, E. W.; Lawler, J. E.; Wiscombe, W. J.; Odell, A. P.; Roesler, F. L.; Weinman, J. A.

    1975-01-01

    A shuttle-borne lidar system is described, which will provide basic data about aerosol distributions for developing climatological models. Topics discussed include: (1) present knowledge of the physical characteristics of desert aerosols and the absorption characteristics of atmospheric gas, (2) radiative heating computations, and (3) general circulation models. The characteristics of a shuttle-borne radar are presented along with some laboratory studies which identify schemes that permit the implementation of a high spectral resolution lidar system.

  9. Ship diesel emission aerosols: A comprehensive study on the chemical composition, the physical properties and the molecular biological and toxicological effects on human lung cells of aerosols from a ship diesel engine operated with heavy or light diesel fuel oil

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Buters, J.; Öder, S.; Dietmar, G.; Kanashova, T.; Paur, H.; Dilger, M.; Mülhopt, S.; Harndorf, H.; Stengel, B.; Rabe, R.; Hirvonen, M.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Berube, K.; Sippula, O.; Streibel, T.; Karg, E.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Arteaga Salas, M.; Orasche, J.; Müller, L.; Reda, A.; Passig, J.; Radischat, C.; Gröger, T.; Weiss, C.

    2013-12-01

    The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties, transformation processes and health effects of anthropogenic combustion emissions. This is performed by thorough comprehensive chemical and physical characterization of combustion aerosols (including application of advantageous on-line methods) and studying of biological effects on human lung cell-cultures. A new ALI air-liquid-interface (ALI) exposition system and a mobile S2-biological laboratory were developed for the HICE-measurements. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized (e.g. proteomics). By using stable isotope labeling technologies (13C-Glucose/metabolomics; 2H-Lysine/SILAC-proteomics), high sensitivity and accuracy for detection of molecular-biological effects is achievable even at sub-toxic effect dose levels. Aerosols from wood combustion and ship diesel engine (heavy/light fuel oil) have been investigated. The effect of wood combustion and ship diesel PM e.g. on the protein expression of ALI-exposed A549 cells was compared. Filtered aerosol is used as gas-reference for the isotope labeling based method (SILAC). Therefore the effects of wood combustion- and shipping diesel-PM can be directly compared. Ship diesel aerosol causes a broader distribution in the observed fold changes (log2), i.e. more proteins are significantly up-/down-regulated in case of shipping diesel PM-exposure. This corresponds to a stronger biological reaction if compared to wood combustion-PM exposure. The chemical analysis results on wood combustion- and ship diesel-PM depict more polycyclic aromatic hydrocarbons (PAH)/oxidized-PAH but less of some transition metals (V, Fe) in the wood combustion case. Interestingly, alkylated PAH are considerably more abundant in shipping PM, suggesting that PAH/Oxy-PAH may be less relevant for

  10. Sources and characteristics of carbonaceous aerosols at Agra "World heritage site" and Delhi "capital city of India".

    PubMed

    Pipal, A S; Tiwari, S; Satsangi, P G; Taneja, Ajay; Bisht, D S; Srivastava, A K; Srivastava, M K

    2014-01-01

    Agra, one of the oldest cities "World Heritage site", and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM₂.₅: d < 2.5 μm) as well as associated carbonaceous aerosols. PM₂.₅ was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM₂.₅ was 165.42 ± 119.46 μg m(-3) at AGR while at DEL it was 211.67 ± 41.94 μg m(-3) which is ~27% higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m(-3). The PM₂.₅ was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96 ± 34.42 and 9.53 ± 7.27 μm m(-3), respectively. Total carbon (TC) was 79.01 ± 38.98 μg m(-3) at AGR, while it was 50.11 ± 11.93 (OC), 10.67 ± 3.56 μg m(-3) (EC), and 60.78 ± 14.56 μg m(-3) (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM₂.₅ and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26

  11. Sources and characteristics of carbonaceous aerosols at Agra "World heritage site" and Delhi "capital city of India".

    PubMed

    Pipal, A S; Tiwari, S; Satsangi, P G; Taneja, Ajay; Bisht, D S; Srivastava, A K; Srivastava, M K

    2014-01-01

    Agra, one of the oldest cities "World Heritage site", and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM₂.₅: d < 2.5 μm) as well as associated carbonaceous aerosols. PM₂.₅ was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM₂.₅ was 165.42 ± 119.46 μg m(-3) at AGR while at DEL it was 211.67 ± 41.94 μg m(-3) which is ~27% higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m(-3). The PM₂.₅ was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96 ± 34.42 and 9.53 ± 7.27 μm m(-3), respectively. Total carbon (TC) was 79.01 ± 38.98 μg m(-3) at AGR, while it was 50.11 ± 11.93 (OC), 10.67 ± 3.56 μg m(-3) (EC), and 60.78 ± 14.56 μg m(-3) (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM₂.₅ and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26

  12. Kinetic characteristics of the synthesis of multiwall carbon nanotubes by aerosol pyrolysis of a ferrocene solution in benzene

    NASA Astrophysics Data System (ADS)

    Cherkasov, N. B.; Savilov, S. B.; Pryakhin, A. N.; Ivanov, A. S.; Lunin, V. V.

    2012-03-01

    Approximating the experimental data on the mass distribution of multiwall carbon nanotubes (MCNT) along a reactor, a three-step kinetic model of their synthesis in the aerosol pyrolysis of a ferrocene solution in benzene is proposed. The values of effective rate constants upon the introduction of a catalyst in situ for the reactions that are the basis for synthesizing MCNT via the pyrolysis of hydrocarbons are obtained for the first time.

  13. Physical characteristics of stream subbasins in the Cannon River Basin, southern Minnesota

    USGS Publications Warehouse

    Sanocki, Christopher A.; Winterstein, Thomas A.

    2000-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Cannon River Basin, located in southeastern Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and marsh, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, and locations of U.S. Geological Survey high-flow, and continuous-record gaging stations.

  14. Physical Characteristics of Stream Subbasins in the Redeye (Leaf) River Basin, Central Minnesota

    USGS Publications Warehouse

    Sanocki, Christopher A.; Fischer, Brian C.

    2000-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Redeye (Leaf) River Basin, located in central Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, and locations of U.S. Geological Survey high-flow, and continuous-record gaging stations.

  15. Physical characteristics of stream subbasins in the lower Minnesota River basin, south-central Minnesota

    USGS Publications Warehouse

    Sanocki, C.A.

    1997-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Lower Minnesota River Basin, located in south-central Minnesota are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, outfalls of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  16. Physical characteristics of stream subbasins in the Cottonwood River basin, southwestern Minnesota

    USGS Publications Warehouse

    Sanocki, C.A.

    1995-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected points on streams in the Cottonwood River Basin, located in southwestern Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slop?. The points on the stream include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  17. Use of high-volume outdoor smog chamber photo-reactors for studying physical and chemical atmospheric aerosol formation and composition

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.

  18. Generation and physical characteristics of the Landsat 1 and 2 MSS computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Thomas, V. L.

    1975-01-01

    The generation and format is discussed of the Landsat 1 and 2 system corrected multispectral scanner computer compatible tapes. Included in the discussion are the spacecraft sensors, scene characteristics, the transmission of data, and the conversion of the data to computer compatible tapes at the NASA Data Processing Facility. Geometric and radiometric corrections, tape formats, and the physical characteristics of the tape are also described.

  19. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  20. Remote Marine Aerosol: A Characterization of Physical, Chemical and Optical Properties and their Relation to Radiative Transfer in the Troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Porter, John N.

    1997-01-01

    Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).

  1. Results of a comprehensive atmospheric aerosol-radiation experiment in the southwestern United States. I - Size distribution, extinction optical depth and vertical profiles of aerosols suspended in the atmosphere. II - Radiation flux measurements and

    NASA Technical Reports Server (NTRS)

    Deluisi, J. J.; Furukawa, F. M.; Gillette, D. A.; Schuster, B. G.; Charlson, R. J.; Porch, W. M.; Fegley, R. W.; Herman, B. M.; Rabinoff, R. A.; Twitty, J. T.

    1976-01-01

    Results are reported for a field test that was aimed at acquiring a sufficient set of measurements of aerosol properties required as input for radiative-transfer calculations relevant to the earth's radiation balance. These measurements include aerosol extinction and size distributions, vertical profiles of aerosols, and radiation fluxes. Physically consistent, vertically inhomogeneous models of the aerosol characteristics of a turbid atmosphere over a desert and an agricultural region are constructed by using direct and indirect sampling techniques. These results are applied for a theoretical interpretation of airborne radiation-flux measurements. The absorption term of the complex refractive index of aerosols is estimated, a regional variation in the refractive index is noted, and the magnitude of solar-radiation absorption by aerosols and atmospheric molecules is determined.

  2. Physical properties, chemical composition, sources, spatial distribution and sinks of indoor aerosol particles in a university lecture hall

    NASA Astrophysics Data System (ADS)

    Salma, I.; Dosztály, K.; Borsós, T.; Söveges, B.; Weidinger, T.; Kristóf, G.; Péter, N.; Kertész, Zs.

    2013-01-01

    PM10 mass, particle number (N) and CO2 concentrations, particle number size distributions and meteorological parameters were determined with high time resolution, and daily aerosol samples were collected in the PM10-2.0 and PM2.0 size fractions for chemical analysis in the middle of a university lecture hall for one week. Median concentrations for the PM10 mass and N of 15.3 μg m-3 and 3.7 × 103 cm-3, respectively were derived. The data are substantially smaller than the related outdoor levels or typical values for residences. There were considerable concentration differences for workdays, weekends and various lectures. Main sources of PM10 mass include the usage of chalk sticks for writing, wiping the blackboard, ordinary movements and actions of students and cleaning. High PM10 mass concentration levels up to 100 μg m-3 were realised for short time intervals after wiping the blackboard. The mass concentrations decreased rapidly after the emission source ceased to be active. Two classes of coarse particles were identified. General indoor dust particles exhibited a residence time of approximately 35 min, while the residence time for the chalk dust particles was approximately 20 min as lower estimates. Emission source rate for wiping the blackboard was estimated to be between 8 and 14 mg min-1. This represents a substantial emission rate but the source is active only up to 1 min. Suspension of the chalk (made mainly of gypsum) dust particles was confirmed by enrichment of Ca and S in the hall with respect to ambient urban aerosol. Contribution of ambient aerosol via the heating, ventilation and air conditioning (HVAC) facility was considerable for time intervals when the indoor sources of PM10 mass were not intensive. The HVAC facility introduces, however, the major amount of aerosol particles from the outdoors as far as their number concentration is regarded. Mean contribution of ultrafine particles to the total particle number was (69 ± 7)%, which is smaller

  3. Chemical and optical characteristics of atmospheric aerosols in Beijing during the Asia-Pacific Economic Cooperation China 2014

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Gao, Jian; Zhang, Leiming; Wang, Han; Qiu, Xionghui; Zhang, Zhisheng; Wu, Yunfei; Chai, Fahe; Wang, Shulan

    2016-11-01

    To evaluate the effectiveness of regional pollution control measures for improving visibility imposed during the Asia-Pacific Economic Cooperation (APEC) period, day- and nighttime PM2.5 and PM10 samples were collected at an urban site in Beijing from October to November, 2014. PM2.5 and PM10 samples were subject to chemical analysis for major water-soluble ions, organic carbon (OC), element carbon (EC), and biomass burning tracers - anhydrosugar levoglucosan (LG). In addition, aerosol scattering coefficient (bsp) and aerosol absorption coefficient (bap) at dry condition were measured. PM2.5 mass concentration was 190 ± 125, 88 ± 60, 199 ± 142 μg m-3 during the pre-, during- and post-APEC period, respectively, while the concentration of the sum of (NH4)2SO4 and NH4NO3 was 75 ± 69, 19 ± 22 and 40 ± 46 μg m-3, respectively. The sum of (NH4)2SO4 and NH4NO3 accounted for 49 ± 24%, 19 ± 12% and 24 ± 12% of bext (the sum of bsp and bap) at ambient condition during the pre-, during- and post-APEC period, respectively, and the corresponding numbers are 39 ± 18%, 62 ± 8% and 61 ± 10% for the sum of OM and EC. Reduction of secondary inorganic aerosols played a key role in the "APEC blue", especially under moisture conditions due to their hygroscopic properties. As a result, visibility was improved significantly during the APEC period with five out of the 12 days having a visibility higher than 20 km. Control of biomass burning, especially during the nighttime, was not performed well during the APEC period, which should be paid more attention in making future emission control measures.

  4. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a.

  5. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a. PMID:25766014

  6. The Role of Biographical Characteristics in Preservice Classroom Teachers' School Physical Activity Promotion Attitudes

    ERIC Educational Resources Information Center

    Webster, Collin A.; Monsma, Eva; Erwin, Heather E.

    2010-01-01

    Recommendations for increasing children's daily physical activity (PA) call on classroom teachers to assume an activist role at school. This study examined relationships among preservice classroom teachers' (PCT; n = 247) biographical characteristics, perceptions and attitudes regarding school PA promotion (SPAP). Results indicated participants…

  7. Impact of Policy Environment Characteristics on Physical Activity and Sedentary Behaviors of Children Attending Afterschool Programs

    ERIC Educational Resources Information Center

    Beets, Michael W.; Huberty, Jennifer; Beighle, Aaron; Moore, Justin B.; Webster, Collin; Ajja, Rahma; Weaver, Glenn

    2013-01-01

    State and national organizations recently developed policies focused on increasing physical activity (PA) in afterschool programs (ASPs). These policies emphasize "activity friendly" environment characteristics that, when present, should lead to higher levels of PA and reduce the amount of time children spend sedentary during an ASP. Currently,…

  8. Frequency of Use and Characteristics of People with Intellectual Disabilities Subject to Physical Interventions

    ERIC Educational Resources Information Center

    McGill, Peter; Murphy, Glynis; Kelly-Pike, Amanda

    2009-01-01

    Background: The use of physical intervention (PI) with people with intellectual disabilities continues to cause concern. This study sought to clarify the frequency and circumstances of PI use and gather data on the characteristics of individuals subject to PI. Method: Data on individuals subject to PI were gathered by postal questionnaire…

  9. Diagnostic opto-electronic system for measuring physical and biological characteristics of the skin in vivo

    NASA Astrophysics Data System (ADS)

    Makara, Ivanna V.; Kozhukhar, Oleksander T.; Komada, Pawel; Dussembayeva, Shynar

    2015-12-01

    Actuality development of optoelectronic rapid diagnostic system for measuring physical and biological characteristics of the skin in vivo with radiation of electromagnetic radiation in the optical range to obtain objective information on the spatial distribution of biochemical and morphological and anatomical components are different for state standards and pathology.

  10. Physical Performance Characteristics of Assisted Living Residents and Risk for Adverse Health Outcomes

    ERIC Educational Resources Information Center

    Giuliani, Carol A.; Gruber-Baldini, Ann L.; Park, Nan S.; Schrodt, Lori A.; Rokoske, Franzi; Sloane, Philip D.; Zimmerman, Sheryl

    2008-01-01

    Purpose: Researchers know little about the physical performance ability of residential care/assisted living (RC/AL) residents and its relationship to adverse outcomes such as fracture, nursing home placement, functional decline, and death. The purposes of this article are to (a) describe the functional characteristics of RC/AL residents, (b)…

  11. The Physical and Technical Characteristics of English Language Teaching Courseware in Malaysia

    ERIC Educational Resources Information Center

    Mukundan, Jayakaran; Nimehchisalem, Vahid; Sayadian, Sima

    2012-01-01

    The present paper reports the findings of a study that investigated the physical and technical characteristics of the English language teaching courseware in Malaysia. A randomly selected group of English language teachers in Malaysia (n = 200) were surveyed to evaluate the courseware. SPSS (18.0) was applied to analyze the data. The results…

  12. Pesticide occurrence in groundwater and the physical characteristics in association with these detections in Ireland.

    PubMed

    McManus, Sarah-Louise; Richards, Karl G; Grant, Jim; Mannix, Anthony; Coxon, Catherine E

    2014-11-01

    This study explores the associations of pesticide occurrence in groundwater to geological characteristics of the monitoring points (MPs) contributing area. Pesticide analyses were undertaken during a 2-year groundwater monitoring campaign which generated 845 samples. MCPA and mecoprop were the most frequently detected pesticides in groundwater. Each MP (n = 158) had a specifically delineated zone of contribution (ZOC) and the dominant physical characteristics present from nine national datasets were recorded for each ZOC. Associations between detections in groundwater and the dominant physical characteristic in each MPs ZOC tested were then statistically analyzed using Fisher's exact test, logistic regression, and multiple logistic regression. The original physical characteristic datasets used that were associated with detections in groundwater were the type of MP, aquifer type, and Quaternary deposit type. Logistic regression revealed that springs, regionally important aquifer types, aquifers with a karstic flow regime, and alkaline Quaternary deposits in existence above karst aquifers in a MP's ZOC were more likely to have a pesticide detection in groundwater. Multiple regression from this exploratory work showed some mutual dependency between soil association, aquifer type, and the Geological Survey of Ireland groundwater vulnerability map. The combination of national monitoring data and physical attribute datasets can be used to explore key areas where groundwater is more vulnerable to pesticide contamination.

  13. National Board Certified Physical Educators: Background Characteristics, Subjective Warrants, and Motivations

    ERIC Educational Resources Information Center

    Woods, Amelia Mays; Rhoades, Jesse Lee

    2010-01-01

    This study examined National Board Certified Physical Education Teacher's (NBCPETs) demographic characteristics, recalled subjective warrants for entrance into the profession, and reasons for seeking this advanced certification. An extensive search for approximately 1,200 NBCPETs resulted in contact information for 819 NBCPETs. All were sent a…

  14. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  15. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  16. Differences in physical characteristics in collegiate baseball players. A descriptive position by position analysis.

    PubMed

    Carda, R D; Looney, M A

    1994-12-01

    Physical characteristics including height, weight, body composition, and somatotype of NCAA Division II baseball players were evaluated to determine if differences in physical profiles exist by position at this level of competition. Differences in height, weight, lean body weight and somatoplots were found among various players. Pitchers were found to be taller that infielders and outfielders and displayed more endomorphy and less mesomorphy than the outfielders. Among the infielders, first basemen were taller than second basemen and third basemen while shortstops were found to be taller than second basemen. With respect to weight, first basemen and catchers were found to be heavier than second basemen. The second basemen had less lean body mass than all other infield groups. The data reveal more than a general description is warranted when describing the physical characteristics of baseball players at this level of play.

  17. Diffusion loading and drug delivery characteristics of alginate gel microparticles produced by a novel impinging aerosols method.

    PubMed

    Hariyadi, Dewi M; Lin, Sharon Chien-Yu; Wang, Yiwei; Bostrom, Thor; Turner, Mark S; Bhandari, Bhesh; Coombes, Allan G A

    2010-12-01

    Microencapsulation of a hydrophilic active (gentamicin sulphate (GS)) and a hydrophobic non-steroidal anti-inflammatory drug (ibuprofen) in alginate gel microparticles was accomplished by molecular diffusion of the drug species into microparticles produced by impinging aerosols of alginate solution and CaCl(2) cross-linking solution. A mean particle size in the range of 30-50 µm was measured using laser light scattering and high drug loadings of around 35 and 29% weight/dry microparticle weight were obtained for GS and ibuprofen respectively. GS release was similar in simulated intestinal fluid (phosphate buffer saline (PBS), pH 7.4, 37°C) and simulated gastric fluid (SGF) (HCl, pH 1.2, 37°C) but was accelerated in PBS following incubation of microparticles in HCl. Ibuprofen release was restricted in SGF but occurred freely on transfer of microparticles into PBS with almost 100% efficiency. GS released in PBS over 7 h, following incubation of microparticles in HCl for 2 h was found to retain at least 80% activity against Staphylococcus epidermidis while Ibuprofen retained around 50% activity against Candida albicans. The impinging aerosols technique shows potential for producing alginate gel microparticles of utility for protection and controlled delivery of a range of therapeutic molecules.

  18. Investigating the frequency and interannual variability in global above-cloud aerosol characteristics with CALIOP and OMI

    NASA Astrophysics Data System (ADS)

    Alfaro-Contreras, R.; Zhang, J.; Campbell, J. R.; Reid, J. S.

    2016-01-01

    Seven and a half years (June 2006 to November 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol and cloud layer products are compared with collocated Ozone Monitoring Instrument (OMI) aerosol index (AI) data and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products in order to investigate variability in estimates of biannual and monthly above-cloud aerosol (ACA) events globally. The active- (CALIOP) and passive-based (OMI-MODIS) techniques have their advantages and caveats for ACA detection, and thus both are used to derive a thorough and robust comparison of daytime cloudy-sky ACA distribution and climatology. For the first time, baseline above-cloud aerosol optical depth (ACAOD) and AI thresholds are derived and examined (AI = 1.0, ACAOD = 0.015) for each sensor. Both OMI-MODIS and CALIOP-based daytime spatial distributions of ACA events show similar patterns during both study periods (December-May) and (June-November). Divergence exists in some regions, however, such as Southeast Asia during June through November, where daytime cloudy-sky ACA frequencies of up to 10 % are found from CALIOP yet are non-existent from the OMI-based method. Conversely, annual cloudy-sky ACA frequencies of 20-30 % are reported over northern Africa from the OMI-based method yet are largely undetected by the CALIOP-based method. Using a collocated OMI-MODIS-CALIOP data set, our study suggests that the cloudy-sky ACA frequency differences between the OMI-MODIS- and CALIOP-based methods are mostly due to differences in cloud detection capability between MODIS and CALIOP as well as QA flags used. An increasing interannual variability of ˜ 0.3-0.4 % per year (since 2009) in global monthly cloudy-sky ACA daytime frequency of occurrence is found using the OMI-MODIS-based method. Yet, CALIOP-based global daytime ACA frequencies exhibit a near-zero interannual variability. Further analysis suggests that the OMI-derived interannual variability in

  19. The New Zealand rugby injury and performance project. III. Anthropometric and physical performance characteristics of players.

    PubMed Central

    Quarrie, K L; Handcock, P; Waller, A E; Chalmers, D J; Toomey, M J; Wilson, B D

    1995-01-01

    OBJECTIVE: To investigate the anthropometric and physical performance characteristics of New Zealand rugby players of different ages and both sexes. METHODS: 356 rugby players (264 male, 92 female) took part in the study during a single season. Playing grade ranged from schoolboys and schoolgirls to senior men and women. Assessment of height, weight, neck circumference, and somatotype was performed before the competitive rugby season. A battery of six physical performance assessments was completed after the anthropometry. Analysis of variance was used to examine differences in these variables between field positions and grades. RESULTS: Significant differences between forwards and backs on anthropometric and physical performance variables were apparent at all grades assessed. In terms of anthropometric characteristics, forwards of a given grade were generally taller, possessed greater body mass, and were more endomorphic and less ectomorphic than backs of the same grade. The backs tended to perform better on physical performance measures than forwards, being more aerobically fit, faster, more agile, and possessing a higher degree of muscular endurance. Differences in anthropometry and physical performance attributes were also apparent between players from the various grades. The players at higher levels were generally larger, and performed better on tests of physical performance than the players at lower levels. These differences were found in both sexes. CONCLUSIONS: The greater body mass of the forwards allows them to obtain greater momentum than the backs when sprinting. The ability to obtain greater momentum is important in the body contact phases of the game. Forwards may compromise their aerobic fitness and speed to some extent in order to maintain a high body mass. The anthropometric and physical performance characteristics of players appear to reflect the demands placed on them by the sport. PMID:8808542

  20. Fish assemblage relationships with physical characteristics and presence of dams in three eastern Iowa rivers

    USGS Publications Warehouse

    Pierce, Clay; Nicholas L. Ahrens,; Anna K. Loan-Wilsey,; Gregory A. Simmons,; Gregory T. Gelwicks,

    2013-01-01

    Fish assemblages in rivers of the Midwestern United States are an important component of the region's natural resources and biodiversity. We characterized the physical environment and presence of dams in a series of reaches in three eastern Iowa rivers tributary to the Mississippi River and related these characteristics to the fish assemblages present. Some physical characteristics were similar among the 12 study reaches, whereas others differed substantially. We found a total of 68 species across the 12 study reaches; 56 in the Turkey River, 51 in the Maquoketa River and 50 in the Wapsipinicon River. Seventeen species could be described as ‘downstream-distributed’; 15 being found only in the lowest reach of one or more rivers and the other two being found only in the lowest reaches or two or more contiguous reaches including the lowest reach. Two species could be described as ‘upstream-distributed’, being found only in an uppermost reach. Non-metric multidimensional scaling ordination illustrated similarities among reaches, and five physical variables were significantly correlated with assemblage similarities. Catchment area and number of dams between reaches and the Mississippi River were strongly correlated with assemblage similarities, but the directions of their effects were opposite. Catchment area and number of dams were confounded. The collective evidence to date suggests that the pervasiveness of dams on rivers significantly alters fish assemblages, making underlying patterns of species change and relationships with naturally varying and human-influenced physical characteristics along a river's course difficult to discern.

  1. Space-borne and ground-based observation of Aerosols in China and an overview of the EAST-AIRE

    NASA Astrophysics Data System (ADS)

    Li, Z.; Holben, B.; Xia, X.; Xin, J.; Dickerson, R.

    2006-05-01

    China is a region of heavy aerosol loading of distinct and complex properties. To date, few in-situ measurements were made of the physical properties and chemical composition of the aerosols near the source regions. A lack of aerosol properties, together with relative bright surfaces, makes the retrieval of aerosols from space challenging and uncertain. In order to gain a basic knowledge of the characteristics of aerosols and to improve satellite retrievals, a team of scientists from U.S. and China conduct joint field measurements in the form of routine observations at fixed sites, and intensive observation campaigns. Major findings will be presented concerning both the aerosol properties and their spatial and temporal variations using ground-based and space-borne remote sensing techniques, as well as in-situ observation techniques. The results reveal that the mean aerosol loading is on average larger by several factors than the global mean values. All existing satellite aerosol retrieved products contain exceptionally large errors. Yet, the aerosol absorption is so strong that lead to extremely large forcing at the surface but very small at the TOA. A large fraction of major aerosol episodes are caused by anthropogenic emissions that are built up by stable atmospheric conditions.

  2. Seasonal changes in anthropometric and physical characteristics within English academy rugby league players.

    PubMed

    Till, Kevin; Jones, Ben; Emmonds, Stacey; Tester, Emma; Fahey, Jack; Cooke, Carlton

    2014-09-01

    Professional rugby league clubs implement training programmes for the development of anthropometric and physical characteristics within an academy programme. However, research that examines seasonal changes in these characteristics is limited. The purpose of the study was to evaluate the seasonal changes in anthropometric and physical characteristics of academy rugby league players by age category (i.e., under 14, 16, 18, 20). Data were collected on 75 players pre- and postseason over a 6-year period (resulting in a total of 195 assessments). Anthropometric (body mass, sum of 4 skinfolds) and physical (10- and 20-m sprint, vertical jump, Yo-Yo intermittent recovery test and 1 repetition maximum squat, bench press, and prone row) measures were collected. The under 14s and 16s showed greater seasonal improvements in body mass (e.g., under 14s = 7.4 ± 4.3% vs. under 20s = 1.2 ± 3.3%) and vertical jump performance than under 18s and under 20s. In contrast, under 18s and under 20s players showed greater seasonal improvements in Yo-Yo performance and 10-m sprint (e.g., under 14s = 1.3 ± 3.9% vs. under 20s = -1.9 ± 1.2%) in comparison to under 14s and under 16s. Seasonal strength improvements were greater for the under 18s compared with under 20s. This study provides comparative data for seasonal changes in anthropometric and physical characteristics within rugby league players aged 13-20 years. Coaches should be aware that seasonal improvements in speed may not exist within younger age categories, until changes in body mass stabilize and consider monitoring changes in other characteristics (e.g., momentum). Large interplayer variability suggests that player development should be considered on an individual and longitudinal basis.

  3. Chemical and physical influences on aerosol activation in liquid clouds: an empirical study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Webster, C. S.; Rieder, H. E.; Hammer, E.; Gysel, M.; Bukowiecki, N.; Weingartner, E.; Steinbacher, M.; Baltensperger, U.

    2015-06-01

    A simple empirical model to predict the number of aerosols which activate to form cloud droplets in a warm, free tropospheric cloud has been established, based on data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) campaigns at the Jungfraujoch (JFJ). It is shown that 76% of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential CCN (defined as number of particles larger than 90 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO and the height of the measurements above cloud base. The model has similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (north west and south east). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this model is applicable to warm, free tropospheric clouds over the European continent.

  4. Chemical Structural Characteristics of HULIS and Other Fractionated Organic Matter in Urban Aerosols: Results from Mass Spectral and FT-IR Analysis.

    PubMed

    Chen, Qingcai; Ikemori, Fumikazu; Higo, Hayato; Asakawa, Daichi; Mochida, Michihiro

    2016-02-16

    The chemical characteristics of complex organic matter in atmospheric aerosols remain poorly understood. Water-insoluble organic matter (WISOM) and water-soluble organic matter (WSOM) in the total suspended particulates collected in the city of Nagoya in summer/early autumn and winter were extracted using multiple solvents. Two fractions of humic-like substances, showing neutral and acidic behavior (HULIS-n and HULIS-a, respectively), and the remaining highly polar part (HP-WSOM) were fractionated from WSOM using solid phase extraction. The chemical structural characteristics and concentrations of the organic matter were investigated using mass spectrometry and Fourier transform infrared (FT-IR) spectroscopy. WISOM and HULIS-n had low O/C ratios (0.1 and 0.4, respectively) and accounted for a large fraction of the organics in aerosols (70%). HULIS-a and HP-WSOM had higher O/C ratios (0.7 and 1.0, respectively), and their concentrations in summer and early autumn were on average ∼2 times higher than those in winter. The mass spectrum and FT-IR analyses suggest the following: (1) WISOM were high-molecular-weight aliphatics (primarily C27-C32) with small proportions of -CH3, -OH, and C═O groups; (2) HULIS-n was abundant in aliphatic structures and hydroxyl groups (primarily C9-C18) and by branched structures; (3) HULIS-a and HP-WSOM contained relatively large amounts of low-molecular-weight carboxylic acids and alcohols (primarily C4-C10); and (4) WISOM and HULIS-n were relatively abundant in amines and organic nitrates. PMID:26771766

  5. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  6. Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuang; Bi, Xiaohui; Feng, Yinchang; Dai, Qili; Xiao, Zhimei; Li, Liwei; Wu, Jianhui; Yuan, Jie; Zhang, YuFen

    2016-11-01

    The OC/EC online monitoring campaign was carried out in Tianjin of China from 8th February to 15th March 2015 during the Chinese Spring Festival period (CSFP). The concentrations of OC, EC, BC and other ambient pollutants (e.g. SO2, NO2 and PM2.5, etc.) in high time resolution were measured with related online-monitoring instruments. During the CSFP, according to the peaks of PM2.5 concentrations and number concentrations (NC) of aerosol particles with aerodynamic diameters between 0.3 and 2.5 μm, five pollution-events were generally identified and displayed. These pollution-events were closely associated with large-scale fireworks displaying, combustion activities such as heating for winter, and the stable meteorological conditions, etc. During the CSFP, EC and OC concentrations showed variations up to one order of magnitude. The uncertainty of instrument itself and the difference for measured methods, further caused the differences between thermal OC (measured OC by thermal method) and optical OC (measured OC by optical method) concentrations, as well as between thermal EC (measured EC by thermal method) and optical EC (measured EC by optical method) concentrations. The high-concentration carbonaceous aerosols could enlarge the uncertainty of measuring instrument, reducing the correlations between OC and EC, and enhance the differences among thermal EC, optical BC and optical EC. The OC/EC ratios and the percentages of SOC/OC would be declined, when the pollution-events formed during the CSFP. Due to the different sources for thermal POC and thermal SOC, the correlation of the two was relatively lower (R2 = 0.39). Thermal POC dominated over thermal OC during the CSFP.

  7. [Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City].

    PubMed

    Zhang, Qiu-Chen; Zhu, Bin; Su, Ji-Feng; Wang, Hong-Lei

    2012-06-01

    In order to compare aerosol water-soluble inorganic species in different air-pollution periods, samples of PM10, PM2.1, PM1.1 and the main water-soluble ions (NH4+, Mg2+, Ca2+, Na+, K+, NO2(-), F(-), NO3(-), Cl(-), SO4(2-)) were measured, which were from 3 air-pollution incidents (continued pollution in October 16-30 of 2009, sandstorm pollution in April 27-30 of 2010, and crop burning pollution in June 14 of 2010. The results show that aerosol pollution of 3 periods is serious. The lowest PM2.1/PM10 is only 0.27, which is from sandstorm pollution period, while the largest is 0. 7 from crop burning pollution period. In continued pollution periods, NO3(-) and SO4(2-) are the dominant ions, and the total anions account for an average of 18.62%, 32.92% and 33.53% of PM10, PM2.1 and PM1.1. Total water-soluble ions only account for 13.36%, 23.72% and 28.54% of PM10, PM2.1 and PM1.1 due to the insoluble species is increased in sandstorm pollution period. The mass concentration of Ca2+ in sandstorm pollution period is higher than the other two pollution periods, and which is mainly in coarse particles with diameter larger than 1 microm. All the ten water-soluble ions are much higher in crop burning pollution especially K+ which is the tracer from crop burning. The peak mass concentrations of NO3(-), SO4(2-) and NH4+ are in 0.43-0.65 microm. PMID:22946180

  8. [Pollution characteristics of carbonaceous aerosols in PM2.5 during typical winter days in Wuxi City ].

    PubMed

    Yun, Long-long; Lu, Fan; Zhang, Tian-shu; Wu, De-xia; Sheng, Shi-jie; Lu, Yi-huai; Liu, Jian-guo

    2014-09-01

    The purpose of this study was to investigate the process of haze in winter and the variation of carbonaceous aerosols in haze days. Continuous measurements of PM2.5 and meteorological parameters were conducted from Dec 3rd ,2013 to Jan 3rd, 2014, in Wuxi City. The carbonaceous component was quantified with the thermal/optical transmission (TOT) method. The results showed that: Three times of haze progresses occurred during the sampling period. Cold air, wind and rainfall were the most efficient ways to improve air quality. The mass concentration of PM2.5, OC and EC were (132.38 ± 87.17) μg.m-3, (22.80±9.77) μg.m-3 and (2.08 ± 1. 63) μg.m-3, respectively. The TC accounted for 23.57% of the PM2.5; at the same time, the TC and PM2.5 were found to be strongly correlated (correlation coefficients = 0. 730). There was a negative correlation between the ratio of carbonaceous aerosol in PM2.5 and the concentration of PM2.5, and the ratio in haze days was lower than that in normal days, which suggested that secondary inorganic particles (SO(2-)(4) , NO(-)(3), NH: ) may have a fast growth in haze days. Average OC/EC ratio was 12. 83, and there was a poor correlation between OC and EC, indicating that secondary pollutants might exist. The secondary organic carbon (SOC) was estimated to be 9.04 μg.m -3, accounting for 40. 96% of OC.

  9. Measured and perceived environmental characteristics are related to accelerometer defined physical activity in older adults

    PubMed Central

    2012-01-01

    Background Few studies have investigated both the self-perceived and measured environment with objectively determined physical activity in older adults. Accordingly, the aim of this study was to examine measured and perceived environmental associations with physical activity of older adults residing across different neighborhood types. Methods One-hundred and forty-eight older individuals, mean age 64.3 ± 8.4, were randomly recruited from one of four neighborhoods that were pre-determined as either having high- or low walkable characteristics. Individual residences were geocoded and 200 m network buffers established. Both objective environment audit, and self-perceived environmental measures were collected, in conjunction with accelerometer derived physical activity behavior. Using both perceived and objective environment data, analysis consisted of a macro-level comparison of physical activity levels across neighborhood, and a micro-level analysis of individual environmental predictors of physical activity levels. Results Individuals residing in high-walkable neighborhoods on average engaged in 11 min of moderate to vigorous physical activity per day more than individuals residing in low-walkable neighborhoods. Both measured access to non-residential destinations (b = .11, p < .001) and self-perceived access to non-residential uses (b = 2.89, p = .031) were significant predictors of time spent in moderate to vigorous physical activity. Other environmental variables significantly predicting components of physical activity behavior included presence of measured neighborhood crime signage (b = .4785, p = .031), measured street safety (b = 26.8, p = .006), and perceived neighborhood satisfaction (b = .5.8, p = .003). Conclusions Older adult residents who live in high-walkable neighborhoods, who have easy and close access to nonresidential destinations, have lower social dysfunction pertinent to crime, and generally perceive the neighborhood to a higher overall

  10. The Influence of Fog and Airmass History on Aerosol Optical, Physical and Chemical Properties at Pt. Reyes National Seashore

    SciTech Connect

    Berkowitz, Carl M.; Berg, Larry K.; Yu, Xiao-Ying; Alexander, M. L.; Laskin, Alexander; Zaveri, Rahul A.; Jobson, Bertram Thomas; Andrews, Elisabeth; Ogren, John A.

    2011-04-05

    This paper presents an analysis of the aerosol chemical composition, optical properties and size distributions for a range of conditions encountered during a field measurement campaign conducted between July 7-29, 2005 at Point Reyes National Seashore, north of San Francisco, CA. Observations are partitioned into one-hour periods when conditions were ‘clear’ or ‘foggy’ to identify evidence of cloud processing of aerosols. During the first half of the campaign (July 7-18), conditions at the site were largely maritime. However flow during the second half of the campaigns (July 18-29) was influenced by a thermal trough that added a cyclonic twist to the incoming marine air, bringing it from the south with a more extensive over-land trajectory. Neither flow regime was associated with air coming from the San Francisco Bay area to the south. Measurements by an Aerodyne aerosol mass spectrometer (AMS) of the equivalent molar ratio of ammonium to the sum of sulfate, nitrate and chloride made before the onset of the thermal trough on July 18th were associated with acidic or near-neutral particles. Measurements made after July 18th appear to have excess ammonium. The AMS measurements of mass loading were an order of magnitude less than those reported by a nearby IMPROVE station. However, the AMS measures only non-refractory particles between 0.1 µm and 1 µm, which would not include sea salt. In contrast, the IMPROVE station employs filter-based techniques to measure mass for all particles < 2.5 µm. Assuming chlorine is associated with large sea salt particles at Pt. Reyes and removing this value from the IMPROVE data resulted in good agreement in the total mass fraction between these two techniques,, indicating the importance of sea salt mass in particles greater than 1 µm. Model calculations of the equilibrium gas-phase mixing ratio of NH3 suggest very high values which we attribute to agricultural practices within the park. Reported as an incidental finding is

  11. Physical characteristics of a new synthetic fiber mattress in relation to pressure sores.

    PubMed

    Mita, K; Akataki, K; Itoh, K; Yoshida, M; Shinoda, T; Ishida, Y

    1997-01-01

    The purpose of the present investigation was to develop a mattress which was made of the new synthetic fibers called 'Shin-Gosen', and to determine its physical characteristics associated with pressure sores such as pressure distribution, temperature and humidity. The Shin-Gosen mattress consisted of three layers of elastic fibers made of polyester multifilaments, which were mediated by four layers of wave-like fabrics made of nylon monofilaments. The physical characteristics of the mattress were compared with (a) the conventional cotton hospital mattress and (b) the SORELESS MAT made of vacuole gel which effectively eliminated compression forces. The Shin-Gosen mattress was found to provide pressure relief effects similar to that of the SORELESS MAT the desired thermal insulation as well as that of the cotton mattress and a higher level of moisture vapor permeability. These excellent features will not only contribute to preventing pressure sores, but will also enable comfortable resting and sleeping. PMID:9444514

  12. Physical characteristics of stream subbasins in the Pomme de Terre River Basin, west-central Minnesota

    USGS Publications Warehouse

    Lorenz, D.L.; Payne, G.A.

    1994-01-01

    Data describing the physical characteristics of stream subbasins upstream from selected points on streams in the Pomme de Terre River Basin, located in west-central Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. The points on the stream include outlets of subbasins of at least 5 square miles, outfalls of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  13. Physical characteristics of stream subbasins in the Chippewa River basin, west-central Minnesota

    USGS Publications Warehouse

    Sanocki, C.A.; Krumrie, J.R.

    1994-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected points on streams in the Chippewa River Basin, located in west-central Minnesota, are presented in this report The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. The points on the stream include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  14. Relationship of physical characteristics and life habits to treadmill exercise capacity.

    PubMed

    Leon, A S; Jacobs, D R; DeBacker, G; Taylor, H L

    1981-06-01

    Apparently healthy middle-aged men (n = 175) were recruited from a population sample and completed questionnaires about habitual physical activity, smoking, beverage consumption and sleep habits. Body mass index (BMI), heart rate and blood pressure were measured at rest and during submaximal exercise; frequency of ventricular premature beats (VPB) on an ECG rhythm strip; hand grip strength; and serum cholesterol. These characteristics were correlated with duration of treadmill exercise by the Bruce protocol. Univariate analysis indicated that treadmill performance was significantly and positively correlated with leisure-time physical activity and personal reports of sweating and/or dyspnea occurring regularly during such physical activity. Performance was negatively correlated with age, BMI, resting heart rate, cigarette smoking, and consumption of caffeine-containing beverages, but was insignificantly related to job physical activity, hand grip strength, alcohol consumption, sleep habits, blood pressure, cigar smoking, serum cholesterol, and the frequency of VPB. A 0.75 multiple correlation coefficient was found between treadmill performance and 11 of the above variables and the r is increased to 0.81 by adding heart rate during submaximal exercise. It is concluded that substantial prediction of work capacity and physical fitness of population is achieved by questionnaires and easily obtained, noninvasive physical measures.

  15. Characteristics and sources of PM2.5-bound carbonaceous aerosols in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Hong, Youwei; Hong, Zhenyu; Chen, Jinsheng

    2016-04-01

    An investigation of atmospheric fine particle (PM2.5) from Shanghai, Nanjing and Ningbo in the Yangtze River Delta was conducted during Nov 2014 and Aug 2015. Organic species, including 16 polycyclic aromatic hydrocarbons (PAHs), 10 nitro-PAHs and C8 to C40 n-alkanes, and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate carbonaceous aerosols' spatiotemporal variations and identify their potential sources. The averaged concentrations of total PAHs and n-alkanes in Shanghai, Nanjing and Ningbo were 16.5 and 101.1 ng m-3, 21.1 and 128.2 ng m-3, 33.0 and 241.1 ng m-3, respectively, while the mean concentrations of 10 nitro-PAHs was 2.02, 2.37 and 2.70 ng m-3. Seasonal variations of organic compounds were listed in the following order: winter > autumn > spring > summer. N-alkanes detected in PM2.5 were characterized by odd carbon number preference, with a unimodal peak shape. The maximum carbon number (Cmax) was C29, followed by C27 and C31. According to diagnostic ratios and principle components analysis (PCA) methods, vehicle emissions and coal burning were the dominant sources of PAHs. The ratios of 2-nitrofluoranthene to 1-nitropyrene were larger than 5, indicating that atmospheric transformation from PAHs was a major source of nitro-PAHs. Meanwhile, primary emissions tracers i.e., 1-nitropyrene (the mean concentration of 0.024 ng m-3 in all cities) was observed, suggesting primary contribution of motor vehicle exhaust to the fine particulate organic aerosols. In addition, isotope abundances (δ13COC=-24.6±0.8‰ and δ13CEC = -23.9±1.4‰) and EC/TC ratio (0.2 < EC/TC < 0.5) in Shanghai demonstrated that fossil fuels (e.g. motor vehicles) were the most important source for carbonaceous PM2.5. We further focus on radiocarbon (14C) analysis and gas/particle partitioning of organic tracers on different size particles. Keywords: organic tracers; stable carbon isotopes; spatiotemporal variations; sources apportionment; Yangtze River Delta

  16. Characteristics and sources of PM2.5-bound carbonaceous aerosols in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Hong, Youwei; Hong, Zhenyu; Chen, Jinsheng

    2016-04-01

    An investigation of atmospheric fine particle (PM2.5) from Shanghai, Nanjing and Ningbo in the Yangtze River Delta was conducted during Nov 2014 and Aug 2015. Organic species, including 16 polycyclic aromatic hydrocarbons (PAHs), 10 nitro-PAHs and C8 to C40 n-alkanes, and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate carbonaceous aerosols' spatiotemporal variations and identify their potential sources. The averaged concentrations of total PAHs and n-alkanes in Shanghai, Nanjing and Ningbo were 16.5 and 101.1 ng m-3, 21.1 and 128.2 ng m-3, 33.0 and 241.1 ng m-3, respectively, while the mean concentrations of 10 nitro-PAHs was 2.02, 2.37 and 2.70 ng m-3. Seasonal variations of organic compounds were listed in the following order: winter > autumn > spring > summer. N-alkanes detected in PM2.5 were characterized by odd carbon number preference, with a unimodal peak shape. The maximum carbon number (Cmax) was C29, followed by C27 and C31. According to diagnostic ratios and principle components analysis (PCA) methods, vehicle emissions and coal burning were the dominant sources of PAHs. The ratios of 2-nitrofluoranthene to 1-nitropyrene were larger than 5, indicating that atmospheric transformation from PAHs was a major source of nitro-PAHs. Meanwhile, primary emissions tracers i.e., 1-nitropyrene (the mean concentration of 0.024 ng m-3 in all cities) was observed, suggesting primary contribution of motor vehicle exhaust to the fine particulate organic aerosols. In addition, isotope abundances (δ13COC=‑24.6±0.8‰ and δ13CEC = ‑23.9±1.4‰) and EC/TC ratio (0.2 < EC/TC < 0.5) in Shanghai demonstrated that fossil fuels (e.g. motor vehicles) were the most important source for carbonaceous PM2.5. We further focus on radiocarbon (14C) analysis and gas/particle partitioning of organic tracers on different size particles. Keywords: organic tracers; stable carbon isotopes; spatiotemporal variations; sources apportionment; Yangtze River Delta

  17. Particle size dependent response of aerosol counters

    NASA Astrophysics Data System (ADS)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    During an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (IAMAS-IUGG), 10 instruments for aerosol number concentration measurement were studied, covering a wide range of methods based on various different measuring principles. In order to investigate the detection limits of the instruments considered with respect to particle size, simultaneous number concentration measurements were performed for monodispersed aerosols with particle sizes ranging from 1.5 to 50 nm diameter and various compositions. The instruments considered show quite different response characteristics, apparently related to the different vapors used in the various counters to enlarge the particles to an optically detectable size. A strong dependence of the 50% cutoff diameter on the particle composition in correlation with the type of vapor used in the specific instrument was found. An enhanced detection efficiency for ultrafine hygroscopic sodium chloride aerosols was observed with water operated systems, an analogous trend was found for n-butanol operated systems with nonhygroscopic silver and tungsten oxide particles.

  18. Rural Latino Youth Park Use: Characteristics, Park Amenities, and Physical Activity

    PubMed Central

    Saelens, Brain E.; Thompson, Beti

    2010-01-01

    Less than half of youth engage in sufficient physical activity to achieve health benefits. Key environmental factors of park and recreation spaces may influence youth physical activity. We sought to ascertain youth characteristics and behaviors that attract youth to parks with specific amenities and encourage physical activity while at the parks in a rural, predominantly Latino community. We examined the quality of amenities in the 13 parks and recreation spaces that middle school aged youth have access to in their community using the Environmental Assessment of Parks and Recreation Spaces (EAPRS) tool. Middle school students completed surveys in the school classroom (n = 1,102) regarding park use, physical activity, and intrapersonal characteristics (e.g., motivators). We used logistic regression to identify correlates of any park use, use of higher quality field and court parks, and active and sedentary park use. Younger age, participation in an after school activity, and identification of a team as a motivator were positively associated with any park use. Use of higher quality court and field parks was associated with participation in an after school activity and being Latino. The odds of being active in the parks were greater for boys and Latinos. Older age and alcohol use are correlated with being sedentary at the park, while odds of being sedentary at the park were lower for boys and youth who met physical activity guidelines. Organized team activities may encourage active use of higher quality fields and courts parks by Latino youth; thereby, increasing their level of physical activity. PMID:20924779

  19. A study of automotive workers anthropometric physical characteristics from Mexico Northwest.

    PubMed

    Lucero-Duarte, Karla; de la Vega-Bustillos, Enrique; López-Millán, Francisco

    2012-01-01

    Due to the lack of anthropometric information in northwest Mexico, we did an anthropometric study that represents the population physical characteristics and that is reliable for the design or redesign of workstations. The study was divided in two phases. The first one was the anthropometric study of 2900 automotive industry workers in northwest of Mexico. The study includes 40 body dimensions of 2345 males and 555 females personalized to be used in future researches. Second phase includes compared anthropometric characteristics of population reported in four Mexican studies and a Colombian study against the current study. Benefits of this project are: a reliable database of anthropometric characteristic of automotive industry population for workstations design or redesign that match with the users, increase product quality and reduce economic, medical and union complains.

  20. Comparison of selected cultural, physical, and water-quality characteristics of lakes in Washington

    USGS Publications Warehouse

    Bortleson, Gilbert Carl; Dion, N.P.

    1979-01-01

    The report presents comparisons and a graphical overview of the relative magnitude and regional and statewide distribution of 19 selected cultural, physical, and water-quality characteristics measured in a reconnaissance study of several hundred lakes in Washington. Statewide, mean depth of almost one-fourth of the lakes is shallow (2.0 meters or less), and only 7 percent of the lakes have mean depths greater than 20 meters. About one-third of the lakes had Secchi-disc readings of 2.0 meters or less, a value often considered characteristic of eutrophic lakes. The poorest water clarity was observed in the Columbia Plateau, where 68 percent of the lakes had Secchi-disc readings of less than 2.0 meters. More than one-third of the lakes in the State had total phosphorus concentrations that exceeded 30 micrograms per liter, a concentration that is often considered characteristic of eutrophic lakes. (Woodard-USGS)

  1. Characteristics of trace gases and aerosols at top of urban canopy layer in Nanjing of China from one year observational study

    NASA Astrophysics Data System (ADS)

    Wang, Tijian

    2013-04-01

    To understand the physical and chemical processes of air pollution formation in urban and their linkage with climate change in Yangtze River Delta(YRD), the fast developing area in China, a monitoring site was built on the top of a high building in the center of Nanjing. The site was set up to investigate the long term variations of trace gases and aerosols, which may play important roles in air pollution and climate change in regional scale. From one year measurement records, the annual average concentrations of ozone, sulfur dioxide, carbon monoxide, carbon dioxide, nitric oxide, total reactive nitrogen, water vapor are reported as 161.9±19.4 ppb, 93.8±8.9 ppb, 3856.7±412.1 ppb, 565.1±20.0 ppm, 173.6±15.6 ppb, 230.8±24.9 ppb, 34.76±7.2x10-3, respectively. PM10, PM2.5, visibility, black carbon, back scattering of particles(BSP), single scattering albedo(SSA), aerosol optical depth(AOD) and Angstrom wavelength exponent (AWE) are 115±113.1 μg/m3, 54±46.1 μg/m3, 9780±5594 m, 3055.9±2102.3 ng/m3, 66.3±97.5 Mm-1, 0.5±2.4, 0.7±0.38 and 1.22±0.28, respectively. Measurement show that the levels of air pollutants in YRD in East China are high compared to Pearl River Delta(PRD) in South China and Jing-Jin-Ji (JJJ) in North China, suggesting a possible stronger effect on atmospheric environment, climate change and human health in this region, which should be further addressed in the future study.

  2. Size distribution characteristics of carbonaceous aerosol in Xishuangbanna, southwest China: a sign for biomass burning in Asia.

    PubMed

    Guo, Yuhong

    2016-03-01

    In 2012, size-segregated aerosol samples were collected in Xishuangbanna, a forest station in southwest China. The concentrations of organic and elemental carbon (OC and EC for short) were quantified with thermal/optical carbon analyzer in the filter samples. OC and EC exhibited similar seasonal patterns, with the highest concentrations in spring, possibly due to the influence of biomass burning in south and southeast Asia. The mass size distributions of OC and EC were bimodal in all the sampling seasons, each with a dominant peak in the fine mode of 0.4-0.7 μm and a coarse peak in the size range of 2.1-4.7 μm. In fine mode, OC and EC showed smaller geometric mean diameters (GMDs) during winter. OC and EC were prone to be more concentrated in fine particles in spring and winter than in summer and autumn. Furthermore, EC was more abundant in fine particles than OC. Good correlations (R(2) = 0.75-0.82) between OC and EC indicated that they had common dominant sources of combustion such as biomass burning and fossil fuel combustion emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, more elevated OC/EC ratios being found in the winter. PMID:26851952

  3. Physical and Temporal Characteristics of Under 19, Under 21 and Senior Male Beach Volleyball Players

    PubMed Central

    Medeiros, Alexandre; Marcelino, Rui; Mesquita, Isabel; Palao, José Manuel

    2014-01-01

    This study aimed to assess the effects of age groups and players’ role (blocker vs. defender specialist) in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19), 933 rallies from Under 21 (U21), and 1480 rallies from senior (senior) (Men’s Swatch World Championships, 2010-2011) were observed using video match analysis. Cluster analysis was used to set teams’ competitive levels and establish quality of opposition as “balanced”, “moderate balanced” and “unbalanced” games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies) and physical (number of jumps and number of hits done by defenders and blockers) characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player’s role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a) balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19) and U21; b) moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c) unbalanced games, no significant findings were shown. This study suggests differences in players’ performances according to age group and players’ role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics. Key Points Player

  4. Physical and temporal characteristics of under 19, under 21 and senior male beach volleyball players.

    PubMed

    Medeiros, Alexandre; Marcelino, Rui; Mesquita, Isabel; Palao, José Manuel

    2014-09-01

    This study aimed to assess the effects of age groups and players' role (blocker vs. defender specialist) in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19), 933 rallies from Under 21 (U21), and 1480 rallies from senior (senior) (Men's Swatch World Championships, 2010-2011) were observed using video match analysis. Cluster analysis was used to set teams' competitive levels and establish quality of opposition as "balanced", "moderate balanced" and "unbalanced" games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies) and physical (number of jumps and number of hits done by defenders and blockers) characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player's role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a) balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19) and U21; b) moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c) unbalanced games, no significant findings were shown. This study suggests differences in players' performances according to age group and players' role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics. Key PointsPlayer roles, quality of opposition